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Green Innovation Value Chain Analysis of PV Solar Power 
  
 
 

 
 
 
Governments around the world have employed a variety of generous subsidies to help 

promote and develop clean energy technologies in the hope that they will widely replace dirtier 

carbon-based power sources.  Unfortunately these subsidies have not prevented numerous green 

technology bankruptcies including the infamous 2011 closure of the California based solar panel 

producer Solyndra, and these failures have cost taxpayers and private investors billions in lost 

capital.  The green innovation value chain (GIVC) provides a possible framework for 

determining the diffusion prospects of green technologies through environmental and financial 

comparisons to conventional alternatives across the separate chain links comprised of 

manufacturers, distributors, customers, government, and the environment.  The GIVC framework 

is used here to analyze the photovoltaic solar power chain, where financial deficits are found in 

each link that will need to be reduced or eliminated through technology advancements, subsidies, 

or changes in market conditions in order to provide the conditions necessary for the technology 

to achieve mass-market acceptance and positive financial returns. 

 
 
Keywords: Solar Power, Green Innovation Value Chain, Life cycle assessment, Green Subsidies. 
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1.0 Introduction 
 

 
“11 More Solyndras In Obama Energy Program.” (CBS News, Jan.13, 2012) 

 
 
The environmental innovation and strategy literatures frequently encourage firms and 

nations to make strategic commitments towards reducing CO2 and other emissions as a means to 

not only help the environment, but also increase firm profitability and competitive advantage 

(Porter and van der Linde, 1995; Porter and Reinhardt, 2007; Unruh and Ettenson, 2010).  The 

assumption that there are profitable and growing markets that are receptive to green technologies 

is largely based on decades of opinion polls showing a consistent and growing majority of 

citizens expressing concern for the environment (Nisbett and Myers, 2007).  Thus the possibility 

of higher profits while also helping the environment has spurred private and public sector 

investments in cleaner power generation to supply the electricity needs of industry and 

households, with one result being a 30% per annum growth in solar energy capacity over the past 

20 years (Solarbuzz, 2010).   

Figure 1 about here 

Yet the headline from the CBS News story above also highlights the high failure rate of 

green energy firms that have cost public and private investors billions in lost capital, including 

investments in recently bankrupted solar panel producers Solyndra, Evergreen, Spectrawatt and 

Solon (Attkisson, 2012; Hoium, 2012).  The large number of recent solar industry failures point 

to the need for a multi-stakeholder framework covering both the economic and environmental 

performance of solar technologies, which can be utilized to determine current viability and 

provide guidance to both private investors and government policy makers.  The recent 

introduction of the green innovation value chain (GIVC) concept offers promise in addressing 
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this need (Olson, 2013a), and the purpose of this article is to illustrate the GIVC concept via a 

case study of photovoltaic (PV) solar generated electricity and the key stakeholders who 

comprise each ‘link’ of the technology’s chain.  As illustrated in figure 1, the analysis will 

encompass the relative overall economic and environmental impact of PV solar versus natural 

gas generated electricity on equipment manufacturers, power companies, electricity customers, 

governments, and the environment.   

2.0 Background 

For many years a variety of scholarly literature has encouraged organizations to ‘green’ 

their manufacturing, distribution, and products as a strategic path that will provide them and 

society with both environmental and economic benefits (e.g. Porter and van der Linde, 1995, 

Porter and Reinhardt, 2007; Unruh and Ettenson, 2010).  A literature review of 325 green 

product development articles, however, found the majority were prescriptive in advocating more 

manufacturer efforts in developing and launching green products, while only 10% provided 

empirical support (Baumann, et al. 2002).  Furthermore, the empirical proof regarding the 

economic benefits of ‘going green’ is often anecdotal, with repeated references to a few well 

known cases such as Body Shop and the Toyota Prius (Crittenden, et al. 2011; Pujari, 2006; 

Rehfeld, et al., 2007).  Thus much of this pro-green ‘supply-side’ literature fails to acknowledge 

any potential tradeoffs for green adopting firms, such as higher costs and weakened competitive 

position (Ambec and Lanoie, 2008; Palmer et al., 1995).   

In contrast, a common theme in green technology adoption studies involving consumers 

is the presence of a value–action gap between the public’s almost universal pro-green attitudes 

and their much rarer pro-green behaviors.  This ‘demand-side’ value-action gap is widely 

attributed to the significant sacrifices that green technologies often require of users on 
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conventional attributes such as price, convenience, or quality (Olson, 2013b; Pujari et al., 2003; 

Rokka and Uusitalo, 2008).  While green tradeoffs are acknowledged in the consumer adoption 

literature, surprisingly few conceptual frameworks and little empirical research take their size 

and scope into account (Rokka and Uusitalo, 2008; Young et. al., 2010).  For example, Roger’s 

popular innovation diffusion theory predicts that innovations offering greater advantages versus 

current products will experience faster and more widespread adoption (Janssen and Jager, 2002; 

Rogers, 1995), but does not address the common green technology situation in which lower 

emission advantages require the acceptance of tradeoffs such as higher price/cost (Olson, 2013b).  

The Roger’s framework is also most often focused on the innovation adoption decisions by end-

users, but expectations of poor financial returns are also a major obstacle to the adoption of green 

technologies by the ‘supply-side’ firms that will produce and sell them (Ambec and Lanoie, 

2008; Wong, Turner, and Stoneman, 1996).  

These findings, together with other literature that demonstrates the helpfulness of broad 

based approaches to understanding innovation adoption, suggest that the evaluation of green 

technology diffusion prospects requires a multi-stakeholder perspective that encompasses both 

the supply-side (i.e. suppliers, manufacturers and distributors) and demand-side (i.e. end-users) 

(Enflo, Kander, and Schon, 2008).  Thus the GIVC framework combines the multi-stakeholder 

approach and emissions focus of life cycle assessment (LCA) with the cost/value aspects of 

traditional value-chain analysis to consider the tradeoffs facing potential adopting stakeholders, 

which will in turn influence the green technology’s supply and demand.  Although neither value 

chain analysis nor LCA are expressly designed as frameworks for understanding technology 

diffusion, the following sections demonstrate how the GIVC combines them to overcome the 

limitations of each as tools for evaluating the adoption prospects of green technologies. 
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2.1 Value-chain Analysis 

Value-chain analysis traditionally focuses on the positive and negative financial 

implications that activities such as logistics, operations, and marketing/sales can have on the 

costs and pricing power of a firm’s product.  The value-chain paradigm is also amendable to 

modifications that suit the analytic needs of specific areas such as the new product development 

process or non-manufacturing based firms such as banks (e.g. Hansen and Birkinshaw, 2007; 

Stabell and Fjeldstad, 1998).  Within the environmental arena, Porter and Reinhardt (2007) 

further suggest a ratio of profits to total emissions as a metric for evaluating the climate impact 

of each value-chain activity within the firm.   

Yet the focus on the value enhancing/detracting activities within a specific firm limits the 

usefulness of value-chain analysis in the study of green technologies because the approach 

typically ignores important external stakeholders.  For example, green technology frequently 

needs to satisfy pending or anticipated changes to government environmental regulations and 

policies (Bauman et al., 2002; Rehfeld, et al., 2007; Taylor, 2006).  In part this government 

‘push’ is often seen as necessary to achieve environmental objectives due to customer 

unwillingness to make green-related sacrifices on economic or quality attributes (Bamberg, 

2002; Ginsberg and Bloom, 2003; Wong et al., 1996).  Thus without widespread customer 

demand and/or government push, green technologies may not be seen as good investments by 

industry and therefore not be made available to displace conventional competitors (Pujari et al., 

2003; Pujari, 2006; Wong et. al., 1996).   

2.2 Life cycle Assessment (LCA) 

By including the financial focus of value chain analysis, GIVC offers a broader 

perspective than traditional LCA, which typically focuses on environmental impact via the 
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calculation of total emissions through each phase of the product’s life cycle from raw material 

extraction to final use and disposal (Albino et al., 2009, Baumann, et. al., 2002; Hermann et al. 

2006).  LCA case studies regarding the relative environmental performance of competing green 

and conventional technologies are often influential in policy and investment decisions, and have 

become so common that specific ISO operational standards have been developed for conducting 

them (Hillman, 2008; Finnveden et al., 2009).  While LCA is a multi-stakeholder approach, its 

focus on environmental effects typically ignores the financial implications of the focal 

technologies, which is a major limitation in terms of evaluating diffusion prospects (Finnveden et 

al., 2009; Norris, 2001).  GIVC analysis relies on LCA for the comparative environment link 

results, which may come from new or existing LCA studies that are then combined with the 

financial results from the other links to determine current viability and/or identify any weak links 

that will limit the green technology’s attractiveness to potential adopters.     

Another commonality between GIVC analysis and LCA is their systems approach, as 

they both focus on defining the boundaries between internal and external system/chain elements 

and the influence of interactions between subsystems/links on the results (Hillman, 2008; Olson, 

2013a).  An example of an interaction that is possible in both GIVC analysis and LCA, are the 

rebound effects that can occur when lower emissions are achieved through reduced energy 

consumption, which encourages greater use of the green technology and a subsequent loss of 

potential environmental gains (Finnveden et al. 2009; Hillman, 2008; Olson, 2013a).  The 

addition of financial results within GIVC analysis, however, brings another dimension to the link 

interactions, as favorable economics that increase the likelihood of green technology adoption by 

any single link, may also positively influence the adoption decisions of other links.       
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Although attempts have been made to incorporate economic elements into LCA, none 

have achieved widespread acceptance or consider the cost of green technology adoption from the 

perspective of all key stakeholders (Finnveden 1999; Finnveden et al. 2009).  Instead, the two 

types of financial analyses most typically utilized in LCA cases are narrower in their scope.  The 

first, sometimes referred to as environmental priority strategies (EPS), focuses on the demand 

side by estimating the price that citizens are willing to pay for the technology’s ability to provide 

environmental benefits such as improved human health and biodiversity (Finnveden et al. 2009; 

Steen 1999).  The utility of such data, however, is limited without the adoption cost estimates 

necessary to determine if they are lower than benefit valuations (Norris 2001).  The second 

method is commonly known as life cycle costing (LCC) and involves the calculation of the 

ownership costs related to technology adoption from the perspective of the buyer/user (Norris 

2001), but in focusing only on the costs of adoption for one party it ignore the costs borne by 

other stakeholders.  As will be demonstrated, GIVC analysis incorporates LCC type estimates for 

calculation of the customer link financial results, and EPS type estimates as a frame of 

comparison to the relative financial value of the environmental benefits derived by the chain’s 

adoption of the green technology.  Thus by focusing on both the environmental benefits and 

financial costs of technology adoption by all key stakeholders individually and across the entire 

chain, GIVC analysis is more complete and diagnostic than LCA related approaches as to 

whether poor financial returns are likely to be an obstacle to the mass-adoption of green 

technology (Olson 2013a).   

3.0 Green Innovation Value Chain (GIVC) 

Based on research that finds only small ‘extreme green’ segments are willing to accept 

significant tradeoffs in order to ‘go green’ (Ambec and Lanoie, 2008; Ginsberg and Bloom, 
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2004; Peattie and Peattie, 2009), a key GIVC assumption for predicting widespread green 

technology adoption is that it provides ‘win-win-win’ outcomes versus conventional competitors 

along each link of the chain (Olson 2013a).  GIVC analysis further assumes that the long-term 

viability of the green technology is based on the achievement of attractive financial results with 

minimal government subsidies, and thus attempts to isolate the business case from any current 

support to better determine how close the green technology is to standing on its own.   

Table 1 about here 

The following sections will use GIVC analysis to calculate the financial and 

environmental attractiveness of electricity generated by PV solar power plants, which is 

accomplished through a comparison with electricity generated via natural gas turbine generators.  

Data for the analysis is taken from well-respected government, industry, and academic sources 

cited throughout the text and focusing primarily on the United States electricity market.   As 

noted in table 1, despite the dramatic recent growth in solar generating capacity, it accounts for 

less than 1% of U.S. electricity production.  In contrast, natural gas generates almost a quarter of 

U.S. electricity, and is chosen as solar’s conventional competitor because it is projected to be the 

fastest growing carbon-based fuel source for new electricity generating plants (EIA, 2012; Smil, 

2012).  

The GIVC links included in the comparative analysis cover all the key demand and 

supply-side stakeholders that will determine the likelihood that PV solar can become a major 

source of electricity generation.  The links included in the present case are: 1) manufacturing (i.e. 

solar panels vs. gas-turbine generators), 2) distribution (utility company generated electricity via 

solar and gas power plants), 3) end-user (i.e. industrial and residential buyers of electricity), 4) 

government (subsidy supplier), and 5) the environment (CO2 equivalent LCA emissions of solar 
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vs. gas generated electricity).  Although other links, such as manufacturer supply chains, could 

also be included in the analysis, background research suggested that their addition would not 

materially influence the results, and hence the simplified chain is utilized for reasons of case 

parsimony.    

3.1 Manufacturer Link of the Green Innovation Value Chain 

Estimating the ‘subsidy free’ profitability of PV solar panel manufacturing is difficult due 

to the fact that industry growth has been largely fueled by generous government subsidies 

(Bernbaum and Failoa, 2012).  Recent reductions in solar subsidies by governments around the 

globe have led to industry overcapacity and the elimination of profits, which is demonstrated by 

the over 70% share price reduction since 2008 of two exchange-traded-funds (EFT) tracking the 

overall solar panel industry (Konrad, 2012).  Thus table 2 section 1 estimates zero profits for the 

solar panel manufacturer link, which is likely optimistic since analysts predict that near-term 

financial prospects are more likely to be negative than positive on an industry-wide basis (Styles, 

2011).  In comparison to the solar panel industry, the manufacturers of modern gas-turbine 

generators enjoy profit margins of approximately 15% (Hinton, 2011).   This 15% margin is then 

multiplied by the typical gas-turbine price of $200,000 per megawatt (MW) of capacity to 

provide the lifetime profit figure for gas-turbine manufacturers of $30,000 per MW (Nye 2012).  

Dividing the 999,000 gigawatt hours (GWh) of annual natural gas generated electricity by the 

4,119,828 GWh of U.S. natural gas generating capacity yields a 24.2% utilization rate (EIA 

2010).  Thus combining the 30-year plant life assumed by the U.S. Energy Information 

Administration (EIA) with a 24.2% utilization rate means that each MW of plant capacity would 

generate 63,725 megawatt hours (MWh) during its life (EIA 2012).  When this figure is divided 

by the $30,000 lifetime manufacturer profit per MW, the results show a gas-turbine manufacturer 
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profit of $0.47 per MWh versus the $0.00 per MWh estimate for PV solar panel manufacturers.  

Increased sales volumes would likely improve the financial picture for solar panel 

manufacturing, but the likelihood of achieving this is highly dependent on PV solar power 

attractiveness to the links further up the chain. 

Table 2 about here 

3.2 Distributor Link of the Green Innovation Value Chain 

 Solar power distributors in this case are the electric utility companies that link together 

thousands of PV panels to create solar power plants that generate electricity for retail sale.  The 

effort that utilities put into solar generated electricity is dependent on its relative costs and/or 

profit margins, which are typically poorer than carbon-based electricity due to basic physics and 

the power conversion limitations of current solar technology (Schlesinger and Hirsh, 2009).  

Solar energy is dependent on the mass and velocity of solar radiation, which is diluted over 90% 

by the time it travels from the sun to the earth (Tucker, 2009).  The best current PV solar panels 

typically collect less than 15% of this diluted solar radiation under ideal conditions (i.e. dust-free 

panels, no-cloud cover, day-time hours), which then goes through a series of power 

transformations for a further efficiency loss of 12-15% (Smil, 2010, pp. 12-14; Tucker, 2009).  

This means that solar power plants using current PV technology are limited to approximately 10 

watts of power per square meter of panel, although cloudy and short days can reduce this 

maximum figure by 50% (Smil, 2010, p. 16).  For example, Germany’s world-leading 25,000 

MW of installed solar panel capacity generated 18 terawatt-hours of electricity in 2011 (Bryce 

2012).  Thus during each 24-hour day during 2011, only 72.1 MWh was generated out of the 

maximum total capacity of 8,760 (i.e. 24 hours * 25,000 MW = 8,760 MWh or about 1% of 

maximum theoretical capacity) due to the country’s northern latitude and often-cloudy 
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environment.  In comparison, modern large gas turbines are currently 60% efficient in converting 

natural gas energy into electricity, and can generate 5,000 watts per square meter of power plant 

footprint under virtually all conditions (Smil, 2010, pp. 8-11).  These efficiency differences mean 

a solar plant that can deliver 1,000 MW would require at least 100 square kilometers of space 

(38.6 square miles) under ideal conditions, while a gas turbine power plant of the same capacity 

would need 0.2 square kilometers (0.077 square miles).   

 The sheer size needs of PV solar means land requirements are huge and costly, and 

typically forces the power plants to be located in less populated areas where the land is cheaper 

(Schlesinger and Hirsh, 2009).  But such remote locations enact their own costs as they typically 

require lengthy new power lines for transmitting the electricity to population centers, which can 

incur a further power loss of 5 to 7% (Deodhar, 2011).  In contrast, natural gas generating plants 

can be located close to population centers with relatively minimal disruption of the environment 

(Evans et al., 2008; Smil, 2010, p. 8-11). 

Distributor link profitability is calculated by the following formula:  Profit = (revenue 

from power sales – (cost of power generation + cost of backup power)).  The cost of power 

generation reported in table 2 section 2 utilizes EIA estimates for the levelized cost of generating 

one MWh of electricity that includes the costs of building, operating and maintaining a power 

plant during a 30-year life.  The EIA predicts a cost of $63.10 per MWh using natural gas and 

$152.70 for PV solar energy (EIA, 2012).  For PV solar, the EIA estimates do not include the $3 

to $5 per MWh cost of a conventional power generator backup required to provide customers 

with a reliable power source when the sun is not shining (St. John, 2012), and thus the mid-point 

estimate of $4 is added to the PV generation cost in table 2.  In the U.S. the average power 

company customer pays $98.26 per MWh (EIA, 2010), and together with the additional $0.35 
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per MWh coming from higher fees for green power (see note 3 in table 2) means each MWh of 

PV generated electricity is sold at a loss averaging $58.09.  In contrast, natural gas generated 

electricity earns a profit of $35.16 per MWh, which means the total financial deficit is $93.25 per 

MWh for PV solar in the distributor link.  Thus solar power gives its distributors negative 

margins versus natural gas, and will therefore only be attractive to power companies if customer 

preferences for clean energy allow premium prices to be charged that can make up the losses.   

3.3 Customer Link of the Green Innovation Value Chain 

 Nationwide, U.S. electricity customers that are offered the opportunity to buy green 

power generated from renewable sources are charged a price premium that averages $1.75 cents 

per kilowatt-hour (kWh) above the regular price, but only about 2% of homeowners and 

businesses voluntarily sign up to pay the extra fee (Environmental Leader 2010).  This low level 

of adoption should not be surprising, as solar generated electricity offers no visible advantages to 

customers versus gas-generated electricity (Pujari, et al., 2003).  After all, a home refrigerator or 

industrial robot will run just as well on ‘dirty’ gas-sourced electricity as from ‘clean’ solar 

power.  Similarly, because buying solar generated electricity from a power company is invisible 

to outside observers it provides no customer social status via public displays of environmental 

concern.  Furthermore, general consumer indifference to green power provides little opportunity 

for solar adopting firms to pass the higher costs of ‘greening’ their business processes onto their 

customers.   

Thus the unwillingness of most customers to pay even a small premium for clean 

electricity means that the extra green power revenue covers only a small portion of solar power’s 

extra cost to the power company, which forces the remaining customer base to pay higher prices 

to make up the deficit (Noon, 2012).  Solar’s higher costs to the GIVC customer link are 
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presented in table 2 section 3, and assumes the solar power buyer paying the $17.50 per MWh 

average ‘green power’ program price premium (Environmental Leader 2010). With 98% of 

customers not volunteering to pay extra for green electricity, together with the manufacturer and 

distributor link losses, only attractive government subsidies and/or compelling environmental 

benefits might make PV solar worthy of each link’s financial sacrifices. 

3.4 Government Link of the Green Innovation Value Chain 

Due to PV solar’s negative financial results for the manufacturer, distributor, and 

customer links, adoption of the current technology is largely dependent on government support 

that provides compensation for at least some of each link’s green sacrifices.  Environmentalists 

and government policy makers typically promote green technology subsidies and supports for 

three main reasons (Friedman 2008; Hargadon and Kenney 2012; Kahouli-Brahmi 2009; Kerry 

and Graham 2009).  First, they claim that non-green alternatives have an unfair advantage due to 

their failure to pay for negative externalities in the form of ‘free’ discharges of greenhouse gases.  

The second major justification is that relatively new green technologies require ‘temporary’ start-

up subsidies to compete effectively with older conventional technologies that benefit from the 

accumulated learning and scale effects built over decades of use.  The third common rationale for 

green subsidies is the creation of high value green industries and jobs.   

Thus from a public policy point of view, government supports should help overcome 

green technology disadvantages versus conventional alternatives and in so doing create market 

demand that will cost effectively reduce emissions and create industries to supply the new green 

markets.  These policy aims are reflected by the wide variety of government support for solar 

energy around the world, which includes research grants, tax credits, feed-in tariff subsidies, and 

renewable energy mandates for electric utilities.  As table 1 shows, in the U.S. these solar 
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subsidies are valued by the EIA at $24.34 per MWh generated, which is almost 100 times higher 

than the 25 cents per MWh subsidy received by natural gas, creating a $24.09 advantage for PV 

solar as shown in table 2 section 4.  Yet this PV solar support advantage is not generous enough 

to eliminate the $111.22 PV solar profit deficit from other links, as an $87.13 per MWh natural 

gas financial advantage remains even after government subsidies are included (see table 2 

section 6).  Experiences in Europe and the U.S. also suggest that green job creation benefits do 

little to improve the case for solar power subsidies.  For example an analysis of Spanish 

renewable energy supports (many in the solar power) found that each green job required 

$800,000 in subsidies and destroyed 2.2 jobs elsewhere in the economy (Alvarez et al. 2009).  

Similarly, a recent analysis by the U.S. Energy Department found that each permanent green job 

created by federal loan guarantees to green firms (again many in the solar field) had cost over $5 

million (Lawson, 2009).   

Thus the economic case for the government support of the PV solar industry is dependent 

on the economic value of emission reductions from the environment link being higher than the 

financial cost of achieving them across the other GIVC links.  Based on most economic analyses 

regarding the social, economic, and environmental benefits from a one-ton reduction in CO2 

emissions, PV solar emission reductions versus natural gas should not cost more than $50 per 

CO2 equivalent ton, and likely should cost less than $25 (Tol, 2007).   

3.5 Environment Link of the Green Innovation Value Chain 

The greenhouse gas emissions and other pollutants associated with all phases of the 

construction, operation, and decommissioning of PV solar and natural gas electricity generating 

capacity have been the subject of many LCA studies, where comparisons are typically based on 

CO2 equivalents per unit of electricity generated (i.e. non-CO2 pollutants are converted into 
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CO2 equivalent values).  The resulting LCA estimates vary widely due to differing assumptions 

regarding variables such as power plant efficiency levels, expected plant lifespan, local weather 

conditions (i.e. sunny hours per day), and needs for power grid investments (i.e. connecting 

power plant to grid).  Hence table 2 section 5 shows that LCA estimates for PV solar range from 

.032 to .217 CO2 equivalent tons per MWh, while natural gas generated electricity ranges from 

.385 to .443 tons per MWh (Lenzen, 2008; Sovacool, 2008).  These LCA figures are used to 

calculated the cost effectiveness of PV solar emission reductions using the following formula: 

(natural gas LCA emissions - PV solar LCA emissions) / (natural gas GIVC profit with & 

without subsidy - PV solar GIVC profits with & without subsides). 

  Table 2 section 5 shows the PV solar-induced CO2 equivalent ton reduction per MWh 

that result from subtracting the LCA estimates.  Thus the use of mid-point LCA estimates from 

each power source results in a CO2 equivalent ton reduction of .29 per MWh, while the best 

solar estimate versus the worst natural gas estimate is .41, and the worst solar versus the best 

natural gas is .17.  These CO2 equivalent reduction figures are then divided by the $111.22 total 

PV solar profit deficit, without any government subsidies, to determine the subsidy-free cost per 

CO2 ton reduction at $384, $271, and $662 respectively (see note 1 in figure 2).   When the 

government link subsidy is included, the PV solar profit deficit is reduced to $87.13, and the cost 

per CO2 equivalent ton reduction becomes $300, $213, and $519 respectively.  All of these CO2 

reduction costs are far higher than the $50 (or less) per ton value of the reduction benefits, and 

suggest a very poor environmental return across the entire PV solar GIVC.   

Figure 2 about here 

 

3.6 Summary of the PV Solar Green Innovation Value Chain 
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This GIVC case analysis reflects current cost and emission projections for PV solar and 

natural gas generated electricity in the United States, and the results are not supportive of most 

PV solar investments and subsidies.  Although U.S. government subsidies for PV solar are 

almost 100 times higher than subsidies to natural gas, they are still inadequate to overcome the 

PV solar profit disadvantages and achieve less than $50 per ton emission reduction costs.  As 

shown in figure 2, achieving emission cost reductions that are less than $50 per ton will require 

reductions in the PV solar GIVC financial deficits from the current -$111.22 to -$8.40 in the 

worst case and -$20.50 in best case, which translates into 92% and 82% financial deficit 

reductions respectively.  Thus a key follow-up question is whether foreseeable technology 

improvements and/or changing market conditions are likely to greatly reduce current PV solar 

financial deficits, and thereby justify continued private and public investment in the industry.    

Although solar panel prices have dropped dramatically in recent years due to growing 

economies of scale and technology improvements, many analysts attribute the majority of the 

reductions to overcapacity induced price competition that have eliminated all industry profits and 

resulted in several high profile bankruptcies (Styles, 2011).  Higher solar panel efficiency levels 

might also reduce the financial deficits displayed in table 2, and experimental panels have been 

tested that double the energy conversion rates of current panels, but when they become available 

they will likely be competing with more efficient gas-turbines also under development (Smil 

2012).  Furthermore, until some cost effective systems can be developed for the storage of excess 

power generation during the sunniest hours, solar power is unlikely to reach complete parity with 

natural gas generated electricity due to the need for system redundancy in the form of 

conventional power plant backups for periods when the sun doesn’t shine (St. John, 2012).   
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Higher than anticipated solar power costs have led many countries such as Germany, 

Spain, Italy, and the UK to dramatically reduce their industry support, yet even a continuation or 

expansion of generous solar subsidies may not be enough to protect industry profits from 

hydraulic fracturing (a.k.a. fracking) technology that has unleashed vast new natural gas 

supplies.  As a result, the U.S. price of natural gas has been reduced from $15 per thousand cubic 

feet in 2005 to less than $2 in 2012, with consequent dramatic reductions in the price of gas-

generated electricity (Smil, 2012).  The lower gas prices have also had a dramatic negative 

impact on most PV solar financial projections, because they have previously assumed ever-rising 

prices on carbon-sourced electricity that would reduce current solar cost disadvantages (Brady, 

2012).   

 The GIVC case analysis shows that the largest part of PV solar’s total financial deficit 

comes from the high relative cost of PV solar power generation, and lower cost natural gas only 

magnifies this disadvantage.  This would suggest that PV solar investments and subsidies should 

focus primarily on R&D that might lead to quantum leaps in solar panel efficiency and 

dramatically lowered hardware and energy storage costs that could ultimately provide the 

attractive financial returns that would spur widespread adoption of this clean energy source 

(Hargadon and Kenney, 2012, Lomborg, 2011).  Yet most government support for the PV solar 

industry, including tax breaks, loan guarantees, price guarantees, and renewable mandates have 

been used to encourage and/or force solar hardware manufacturing and power plant construction 

using uncompetitive technology (Lipton and Krauss, 2011).  For example, the government loan 

guarantees provided to solar panel producer Solyndra were allocated to the construction of a new 

plant for the mass-production of the firm’s cylindrical shaped panels, which were expected to be 

less expensive and more efficient than conventional flat panels (Leonig and Stephens, 2011; 
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Wald, 2011).  The subsequent bankruptcy was in large part due to the failure of the new panels to 

achieve the hoped for advantages, yet even if the Solyndra panels had attained their theoretical 

levels of performance and cost, they would have offered only incremental improvements over 

previous panel designs.  Thus even under best case scenarios, commercializing Solyndra’s design 

would have had very little impact in closing the PV solar’s current financial gaps with natural 

gas generated electricity that might wean the industry off government subsidies anytime soon.     

 Lowering the cost of PV solar is also the key to increasing customer preference for solar 

power, because otherwise the technology offers no non-green benefits, such as lower energy 

consumption, that might make it worth a price premium.  Yet until there is a cost savings 

associated with the adoption of PV solar, the lack of benefits also means that rebound effects are 

less likely to be an issue because lower costs will not encourage the increased electricity 

consumption that would lead to reductions in expected environmental benefits (Hermann, Kroeze 

and Jawjit, 2006).  On the other hand, more widespread customer adoption of PV solar could 

create other sources of environmental degradation, such as the loss of farmland and wildlife 

habitat caused by the large footprints of PV solar power plants (Miller, 2013).  Thus future LCA 

and GIVC studies of the industry will need to include any such emerging externalities, as well as 

the effects of technical advances, which might impact the relative environmental and financial 

attractiveness of PV solar.  

4.0 Discussion and Conclusion 

A comparison of PV solar power with more widely adopted green technologies from a 

variety of industries, such as hydroelectricity, video-conferencing, e-books, and LED TVs, 

provides a number of lessons that are relevant to the overall discussion of green technology 

diffusion.   First, none of these more popular green technologies relies on system redundancy for 
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reliability, which eliminates an important financial handicap versus conventional technologies. 

Second, all the more widely adopted green technologies also provide non-green user benefits 

compared to conventional alternatives.  For example, hydroelectricity is generally less expensive 

than carbon-fueled sources, and video-conferencing is faster, cheaper, and more convenient than 

traditional business travel (Biello, 2009; Morgan, 2010).  LED TVs provide the highest picture 

quality and use less electricity than other screen technologies, while e-books can be purchased 

instantly online to eliminate a lengthy trip to a bookstore (Olson 2013b; Owen 2012).  Thus these 

more successful green technologies all provide a ‘demand-side’ reason for the customer link to 

adopt them, which in turn makes them more financially attractive to the ‘supply-side’ links in 

their GIVC chains without the need for government subsidies.  This is important because only 

green technologies that widely displace conventional alternatives can potentially have a 

significant positive impact on the environment (Pujari et al., 2003).  The PV solar case and these 

more successful green technologies also illustrate the systems perspective of GIVC analysis, as 

changes in public policy, relative technology performance, or market conditions that effect one 

link are likely to also increase or decrease the relative attractiveness of the green technology 

throughout the rest of the chain.   

This case also illustrates the importance of applying GIVC analysis to other green 

technologies and markets, particularly in cases where they have achieved smaller than hoped 

market success to determine where the problem(s) are before committing major investments as a 

shareholder, manager, customer, or government policy maker. Analysis that finds financially 

unattractive propositions at each link using reasonable assumptions, should serve as a warning 

regarding the green technology’s low likelihood of widely displacing conventional alternatives.  

On the other hand, analysis for some green technologies might show poor financial returns for 
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only one or two links in the chain, in which case targeted investments by industry and/or 

government might significantly reduce or eliminate the deficit and dramatically improve 

diffusion prospects.   

Given the relatively low market penetration of many other green technologies, such as 

electric cars, biofuels, and wind power, critical questions should be raised about the realism of 

case parameters when GIVC analysis suggests highly profitable results among all or most of the 

chain links.  As with any tool, the quality of the analysis and resulting conclusions is dependent 

on its appropriate use, and when dealing with green technologies there may be strong pressure to 

be ‘politically correct’ and create pro-green scenarios that show only the best possible financial 

and environmental results.  Thus it is important that comparison parameters are not chosen based 

on a desire to support pro-green (or anti-green) biases that hinder objective financial and 

environmental assessments.  Such biases might include unrealistic assumptions about 

development costs, product life, profit margins, adoption speed, government subsidies, and use 

of theoretical or ideal performance values rather than ‘real world’ values.  Unrealistic GIVC link 

assumptions are likely to be most problematic when dealing with totally new green technologies 

that do not have well-established performance and cost data available.  Yet even in the case of 

new technologies, the analysis displayed in figure 2 demonstrate that GIVC analysis can provide 

useful investor and policy-maker guidance by determining the maximum size of the financial 

gaps across the links that will provide economically justified environmental benefits versus 

existing competitors.  Thus realistic and objective financial and environmental GIVC scrutiny 

can help stakeholders to focus limited resources on green technologies that are likely to achieve 

the attractive financial and environmental returns that will increase their chances of widespread 

adoption.     
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(1) source: U.S. Energy Information Agency (EIA 2010)

(2) source: EIA 2010 + avg. U.S. green power premium (Environmental Leader 2010)

Gas % of
PV solar  natural gas PV solar

 
US Share of Electricity generation 2010 (1) 0.03%  24% 80000%
US Government Subsidies: $ per MWh (1) $24.34  $0.25 1%
US Power generation cost: $ per MWh (1) $152.70  $63.10 41%
US retail price: $ per MWh (1,2) $115.76  $98.26 85%

Table 1

U.S. market data for PV Solar Power and Natural Gas Generated Electricity
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Table 2

PV Solar Green Innovation Value Chain Results

Notes:  Unless otherwise indicated the source data is from the EIA. (1) Column values based on PV solar column figure –
natural gas column figure, negative figures indicate PV solar deficit vs. natural gas generated. (2) sources: Styles, 2011; Nye,
2012. (3) PV solar revenue based on: (98% non-green power subscribers * $98.26) + (2% green power subscription rate * 
$17.50 green power price premium). (4) source: Environmental Leader, 2010. (5) sources: LCA estimates from Lenzen, 
2008; Sovacool, 2008. (6) sum of Profit Totals from sections 1 to 3.  (7) same as note 6 + section 4 value of subsidies.

Section 1:
Manufacturer Link

Section 2:
Distributor Link

Section 3:
Customer Link

Section 4:
Government Link

Section 5:
Environmental Link

Section 6:
All Links

$ Profit per MWh (2)

$ Revenue from power sales per MWh (3)
$ Cost of power generation  per MWh
$ Cost of backup power per MWh
$ Profit Total per MWh

$ Green Program Fee per MWh (4)
$ Profit Total per MWh

$ Value per MWh of Government Supports

CO2 equivalent emission tons per MWh (5)

$ Profit per MWh throughout chain without subsidies (6)
$ Profit per MWh throughout chain with govt. subsidies (7)

solar vs.
PV solar natural gas gas (1)

$0.00 $0.47 -$0.47

$98.61 $98.26
-$152.70 -$63.10

-$4.00
-$58.09 $35.16 -$93.25

-$17.50 $0.00
-$17.50 $0.00 -$17.50

$24.34 $0.25 $24.09

0.29
.03 to .22 .39 to .44 0.41

0.17

-$75.59 $35.63 -$111.22
-$51.25 $35.88 -$87.13
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PV best case 
PV worst case 
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