

This file was downloaded from BI Open, the institutional repository (open access) at
BI Norwegian Business School https://biopen.bi.no.

It contains the accepted and peer reviewed manuscript to the article cited below. It
may contain minor differences from the journal's pdf version.

Cheng-Hung Wu, Fang-Yi Zhou, Chi-Kang Tsai, Cheng-Juei Yu & Stéphane

Dauzère-Pérès (2020) A deep learning approach for the dynamic dispatching of

unreliable machines in re-entrant production systems, International Journal of

Production Research, 58:9, 2822-2840, DOI: 10.1080/00207543.2020.1727041

Copyright policy of Taylor & Francis, the publisher of this journal:

'Green' Open Access = deposit of the Accepted Manuscript (after peer review but prior
to publisher formatting) in a repository, with non-commercial reuse rights, with an
Embargo period from date of publication of the final article. The embargo period for
journals within the Social Sciences and the Humanities (SSH) is usually 18 months

http://authorservices.taylorandfrancis.com/journal-list/

doi:%2010.1080/00207543.2020.1727041
http://authorservices.taylorandfrancis.com/journal-list/

1

A Deep Learning Approach for the Dynamic Dispatching of
Unreliable Machines in Re-entrant Production Systems

Abstract
This research combines deep neural network (DNN) and Markov decision processes (MDP) for the

dynamic dispatching of re-entrant production systems. In re-entrant production systems, jobs enter the same

workstation multiple times and dynamic dispatching oftentimes aims to dynamically assign different priorities

to various job groups to minimize weighted cycle time or maximize throughput. MDP is an effective tool for

dynamic production control, but it suffers from two major challenges in dynamic control problems. First, the

curse of dimensionality limits the computational performance of solving large MDP problems. Second, a

different model should be built and solved after system configuration is changed. DNN is used to overcome

both challenges by learning directly from optimal dispatching policies generated by MDP. Results suggest that

a properly trained DNN model can instantly generate near-optimal dynamic control policies for large problems.

The quality of the DNN solution is compared with the optimal dynamic control policies through the standard

K-fold cross-validation test and discrete event simulation. On average, the performance of the DNN policy is

within 2% of optimal in both tests. The proposed artificial intelligence algorithm illustrates the potential of

machine learning methods in manufacturing applications.

Keywords: Deep Learning, Deep Neural Network, Dynamic Dispatching, Markov Decision Processes

1. Introduction
Recent manufacturing technologies enable the use of sensors on network-connected machines and make

production control increasingly complex. Additional sensors allow more uncertain events to be monitored,

and network connection capabilities allow machines to be remotely controlled in real time. Markov decision

processes (MDP) are the most widely used tools for dynamic decision-making. Applying MDP to model

additional status information and dynamically adjust manufacturing decisions provides opportunities for

performance improvement. In a production environment, however, it remains unclear how the additional

information could be efficiently modeled due to the following challenges.

1. Curse of dimensionality in large-scale MDP problems

The well-known curse of dimensionality of MDP refers to the fact that the computational time required

to solve MDP models increases rapidly with the dimensions of state and action variables. In production

systems, numerous sensors imply that many machine and system state variable dimensions are being

monitored. Given that each state variable represents a dimension of the state space, the total number of

elements in the state space quickly increases with the number of sensors. The dimension of action variables

also increases because the number of real-time control decisions allowed in network-connected machines

rises. The computational complexity of solving MDP models is proportional to the number of possible

2

combinations of state and action variables; thus, the required time for solving optimal dynamic dispatching

problems increases exponentially with the number of machines when machine failures are considered, Wu

et al. (2006).

2. Frequent need to rebuild MDP models: the barriers between dynamic programming models

The barriers between dynamic programming models also prevent the use of dynamic control in the

production environment. The optimal control policy of an MDP model can be found by iteratively solving

the optimality equation of the MDP model. The optimality equation depends on the state space, action space,

transition probability between states, and state- and action-dependent cost functions. Given that the state

space, action space, transition probability, and cost functions depend on system configuration, a new MDP

model with a new optimality equation is required after every change in system configuration. For example,

when a new machine is introduced, machine availability state changes accordingly. In another example,

when a new product is introduced, differences among production processes change production rates.

Building a different MDP model and solving this new model are always necessary after system parameter

or configuration is changed. Given that short product life cycles and high product varieties are common

nowadays, system configuration frequently changes. Such changes lead to the repeated building and solving

of new MDP models. Experienced engineers and programmers are frequently required to modify computer

codes to develop and implement new models due to the lack of general-purpose solvers for MDP problems.

Therefore, the complexity of solving MDP models hinders the adoption of MDP in dynamic production

control.

Although the use of optimal dynamic control in production systems considerably improves operational

efficiency in research(e.g. Ahn et al. (1999)), realizing dynamic production control in practice remains unclear

due to the curse of dimensionality and the barrier between MDP models. For example, a typical semiconductor

fabrication plant (hereafter referred to as “semiconductor fab”) is a highly dynamic environment where

configuration changes frequently. In the facility of an industry partner, product mix changes nearly every week

and the number of available machines for each operation changes daily with machine qualification processes.

Given that the computational time for solving MDP models increases exponentially with system size, solving

the dispatching problem may take days or even weeks, which is computationally inefficient for large systems.

Therefore, solving a new MDP model after every configuration change is infeasible in semiconductor

manufacturing.

The objective of the current research is to combine MDP with deep learning (DL) to construct an efficient

dynamic control policy generator for a variety of dynamic dispatching problems. The proposed deep neural

network (DNN) approach is a particularly viable option in a dynamic production environment that is subject

to frequent configuration changes. The training data of the proposed DNN model are the optimal control under

hundreds of different system configurations. From the training data under different system configurations, the

DNN learns how optimal control policies will vary with system configuration. Thus, when a new system

configuration is introduced, the proposed DNN model can quickly predict new control policies and eliminate

the need to frequently solve new MDP models. Accordingly, collecting new training data and retraining the

3

DNN are unnecessary after every configuration change. In our numerical study, the proposed method is

validated in reentrant manufacturing systems, such as semiconductor manufacturing systems and the

numerical results indicate that the performance of the DNN policy is within 2% of optimal on average.

2. Literature Review
To satisfy ever-changing customer needs, companies are currently producing various products and

product life cycles are becoming shorter. The adoption of multifunctional machines is critical for fulfilling the

varying production requirements of different products. On the one hand, the additional flexibility of

multifunctional machines allows the flexible use of valuable capacity under uncertain demands. On the other

hand, additional machine flexibility makes dynamic production control an emerging challenge for production

systems. In the literature, researchers have developed dynamic production control methods through queuing

system analysis and MDP to efficiently use the additional flexibility of machines. Gershwin (1987) and Chang

and Gershwin (2010) evaluate the performance of serial finite buffer production systems with and without

machine failures. Ahn et al. (1999) study a two-stage tandem queuing system with two multifunctional

machines. They present an optimal control policy that is monotone to the amount of work in process (WIP) in

a queue. Although machines are unreliable, Wu et al. (2006) prove the optimality of threshold-type dispatching

policies in two-stage flexible production systems. Kirkizlar (2008) compares fully flexible with partially

flexible machines and finds a similarity between their corresponding optimal control policies. Wu et al. (2010)

develops efficient algorithm for the dynamic production control in tandem lines, where the waiting time of

jobs subjects to time window constraints. Choi and Kim (2012) develop a neural-dynamic programming

method for the scheduling problems in re-entrant production systems with limited capacity. All the

aforementioned studies show an optimal dispatch policy that depends on the real-time queue length and

reliability status of machines. Thus, the resulting optimal control decisions depend on the real-time status of

a system.

When researchers attempted to solve large control problems through queuing and dynamic optimization

methods, they started to encounter the curse of dimensionality of MDP. To address this phenomenon, an

effective approach is to decompose a large system into several subsystems. Meyn (2005) finds that a

deterministic workload for stochastic network models provides the upper and lower bounds for controlled

Brownian motion. Archibald (2007) uses transshipment policies as a means to decompose large decision

problems. Wu et al. (2008) propose a decomposition algorithm to break down serial production lines into

several two-stage subsystems. For a sustainable hybrid flow shop, Shi et al. (2019) develop a genetic algorithm

(GA) for multi-objective dynamic scheduling problems through the multi-agent approach. Xia et al. (2019)

propose a decomposition method using generalized exponential distribution to analyze a transfer line. The

decomposition method considers unreliable buffer with time-dependent failures.

However, solving dynamic production control problems in large systems remains computationally

infeasible even with a decomposition algorithm (Puterman, 1994). Therefore, researchers have used neural

networks to study the applicability of simple heuristic dispatching rules. Mouelhi-Chibani and Pierreval (2010)

4

propose a real-time dispatching method using an artificial neural network. Olafsson and Li (2010) study a

learning method to choose optimal dispatching rules through a decision tree. Shiue (2009) uses support vector

machines to develop a dynamic dispatching mechanism for shop floor control problems. Priore et al. (Priore,

Parreno, Pino, Gomez, & Puente, 2010) propose a neural network approach to learn scheduling rules from

simplified production systems. Zhang and Wang (2016) develop a multi-agent hierarchical heuristic for the

scheduling of re-entrant manufacturing systems. For distributed manufacturing systems, a cloud-based

framework allowing effective planning and scheduling is proposed in Mishra et al (2016). Instead of learning

from optimal dynamic control policies, the aforementioned studies use heuristic approach and are bound to

performance loss due to the limited information brought by simple heuristics.

Reinforcement learning (RL) is another machine learning approach for the dynamic control of large

systems. RL, also known as approximate dynamic programming, starts by estimating the value functions of

dynamic programming. In this area, many researchers have used neural networks as their supervised value

function approximation tool. Marbach and Tsitsiklis (2001) propose an approximation of policies by Q-factors

through neural networks, but their method may suffer from slow convergence. Tsitsiklis and Van Roy (1999)

develop a linear approximation to fit value function instead of using a restriction-fixed policy. RL is also used

in control problems. For example, Marbach, Mihatsch, and Tsitsiklis (2000) use a classic neural network as a

simulator to solve the admission control problem in single-link service networks. Simester, Sun, and Tsitsiklis

(2006) use RL to find the optimal mail order, and the model converges to the long-run optimal solution. Aydin

(2000) presents an RL method for dynamic job-shop scheduling problems using the agent search method.

Zhou et al. (Zhou, Wu, & Yu, 2017) combine RL and DNN in a dispatching problem, in which DNN is used

to evaluate the value function. All the aforementioned studies on RL learn from the value function or the Q

function of an MDP model. However, their limitation is that the learning process must be repeated after system

configuration changes due to the barrier between MDP models. The same remodeling issue also exists in these

RL studies; thus, modeling and solving a large dynamic optimization problem are frequently required.

While manufacturing efficiencies are oftentimes hampered by configuration changes and various

uncertain factors, our research shows the potential of artificial intelligence methods in dynamic production

control. To eliminate the need for frequent model solving, the major contribution of the current research is to

develop a new artificial intelligence (AI)-based method that instantly generates new control policies after

system configuration is changed. By combining DNN with MDP, we establish neural networks to learn from

the optimal dynamic control policies generated by MDP. The relationship between optimal control policies

and system configurations is characterized by the trained DNN. When a new system configuration is

introduced, the trained DNN model becomes an effective predictor for the new optimal policy.

Compared with the existing literature, the major contributions of the current research are as follows.

1. The proposed AI method is effective in overcoming problems caused by the curse of dimensionality. In

contrast with typical RL approaches that learn from value functions, the proposed DNN is formulated to

learn directly from the control policy space that represents the optimal dynamic control of small systems.

The DNN is demonstrated to be fast and effective in predicting optimal policies in large problems.

5

2. The proposed AI method is reusable after system configuration is changed. Thus, the AI method

overcomes the drawback of traditional MDP methods that are required to build and solve new models

after system parameters are changed.

3. Instead of learning from human decision makers, the proposed DNN learns directly from optimal control

policies generated by dynamic programming. Thus, it prevents the possible bounded rationality of human

decision makers. The DNN can generate near-optimal control policies in large systems. In our numerical

validation, the average gap is less than 2% compared with that of optimal control policies.

4. The proposed AI approach can immediately generate dynamic production control policies and allow easy

integration into existing manufacturing execution systems. Thus, high-quality dynamic control is possible

in the production environment.

3. Problem and Model Formulation
In this research, MDP is used to generate optimal dynamic dispatching policies in a re-entrant workstation

with dedicated and flexible machines. The objective of the MDP model is to minimize the long-run weighted

average cycle time when machines are unreliable and subject to random failures. In the re-entrant line, all jobs

visit the workstation twice to finish two different operations (Fig. 1).

Fig. 1 Dispatching of flexible machines in a re-entrant system

Nattaf et al. (Nattaf, Dauzere-Peres, Yugma, & Wu, 2019) report that in semiconductor and other reentrant

production systems, not every machine is qualified for all operations due to quality constraints and other

process considerations. Thus, in our MDP model, several machines are dedicated to either the first or second

operation, whereas other machines are flexible and can be dynamically allocated to process both operations.

To minimize weighted average cycle time in dynamic dispatching problems, different priorities are assigned

to upstream and downstream jobs depending on the real-time status of a system. In consideration of machine

failures, dispatching decision not only depends on real-time queue length but also on machine health status.

In the literature, MDP is an effective tool for the dynamic dispatching problem and can save average cycle

time by up to 70% compared with several simple heuristics that are commonly used in production systems

(C.-H. Wu et al., 2006).

6

Given that the MDP and DNN models require a clear definition of state and action variables, the MDP

model should be defined first before we can introduce the proposed DNN approach. The major contribution

of this research is the AI-based approach, and the MDP dispatching model is similar to that of Wu et al. (C.-

H. Wu et al., 2006). Thus, although the MDP model is defined clearly in the next section, it is not discussed

in detail. Interested readers may refer to Wu et al. (C.-H. Wu et al., 2006) for an in-depth discussion of the

MDP dispatching model.

3.1 MDP model for the dynamic dispatching problem
System parameters are defined as a combination of pivotal features, such as the maximum number of

parallel machines in each workstation, the service rate of machines, the reliability of machines, and the arrival

rate of jobs. The notations used in our model are summarized in Table 1.

Table 1 Nomenclature

Notation Introduction

𝑖 𝑖 ∈ ሼ1,2,3ሽ, machine groups 𝑖 = 1, dedicated machines for upstream operation 1 𝑖 = 2, dedicated machines for downstream operation 2 𝑖 = 3, flexible machines for operations 1 and 2

𝑗 𝑗 ∈ ሼ1,2ሽ, operations 𝑗 = 1, upstream operation 1 𝑗 = 2, downstream operation 2 𝑇 Planning horizon 𝑇 ∈ ሼ1,2, … ሽ 𝑄௝ Queue length for operation 𝑗, 𝑗 ∈ ሼ1,2ሽ 𝑄௝௠௔௫
 Upper bound of queue length 𝑗, 𝑗 ∈ ሼ1,2ሽ

𝐶௛

Waiting cost rate of downstream operation 2

(Without losing generality, the waiting cost rate of upstream operation 1 is

assumed to be 1.) 𝜆 Job arrival rate at operation 1 𝜇௜ Service rate for machines in group 𝑖

𝑏௜ Failure rate for machines in group 𝑖, 𝑏௜ = ଵெ்஻ி೔
defined by the mean time between failures (MTBF) of a machine

𝑟௜ Repair rate for machines in group 𝑖, 𝑟௜ = ଵெ்்ோ೔
defined by the mean time to repair (MTTR) of a machine 𝑅𝐿௜ Reliability of machines in group 𝑖

(portion of time when a machine is available in the long run) 𝑀௜ Number of available machines in group 𝑖, 𝑀௜ ∈ ሼ0,1, … ,𝑀௜௠௔௫ሽ 𝑀௜ changes in real time with machine health

7

𝑀௜௠௔௫ Number of machines in machine group 𝑖

𝑎௧ Dispatching decision for flexible machines:

If 𝑎௧ = 0, then assign a higher priority to upstream operation 1.

If 𝑎௧ = 1, then assign a higher priority to downstream operation 2.

Remark: Mean time between failures (MTBF), mean time to repair (MTTR), and reliability of machines are

interchangeable on the basis of the following equation: 𝑅𝐿௜ = ெ்஻ி೔ெ்஻ி೔ାெ்்ோ೔ ,∀𝑖 ∈ {1,2,3} .

In the current research, manufacturing decisions are made in real time after every manufacturing event.

To perform real-time control after manufacturing events, Lippman (Lippman, 1975) recommends adopting

uniformization to transform a continuous-time control problem into a discrete-time equivalent model that can

be solved efficiently. The uniformization rate 𝜑 used to derive the transition probabilities is defined as

𝜑 = 𝜆 + ෍𝑀௜௠௔௫ ∙ (𝜇௜ + 𝑏௜ + 𝑟௜)ଷ
௜ୀଵ .

In the discrete-time equivalent model, the time index 𝑡 represents a decision epoch that corresponds to

each manufacturing event, which includes job arrival, service completion, machine failure/repair, and dummy

events required by uniformization. The discrete-time equivalent MDP model is then solved through the

commonly used value iteration algorithm with a time resolution that reaches the level of each manufacturing

event. In accordance with Proposition 6.6.3 of Sennott (Sennott, 1998), the value iteration algorithm converges

under our model assumptions to an optimal stationary control policy that assigns an optimal decision for every

possible state at each decision epoch. As pointed out by Serfozo (Serfozo, 1978), the solution of the discrete-

time model is equivalent to the optimal control policies of the continuous-time problem and can be adopted

for the state-dependent real-time control of manufacturing systems.

Other key elements of the MDP model are defined as follows:

 Infinite planning horizon: 𝑡 ∈ {1,2, … }

 The state at time t is denoted as 𝑆௧ = (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧).

 Probability of job arrival: 𝑃ଵ = 𝜆/𝜑

 Probability of job completion of dedicated machines in group 1: 𝑃ଶ = (min {𝑄ଵ,𝑀ଵ} ∙ 𝜇ଵ)/𝜑

 Probability of job completion of dedicated machines in group 2: 𝑃ଷ = (min {𝑄ଶ,𝑀ଶ} ∙ 𝜇ଶ)/𝜑

 Probability of job completion of flexible machines in group 3 when 𝑎௧ = 0: 𝑃ସ = (min {𝑄ଵ,𝑀ଷ} ∙ 𝜇ଷ)/𝜑

 Probability of job completion of flexible machines in group 3 when 𝑎௧ = 1: 𝑃ହ = (min {𝑄ଶ,𝑀ଷ} ∙ 𝜇ଷ)/𝜑

 Probability of machine breakdown among group 1 dedicated machines: 𝑃଺ = (𝑀ଵ ∙ 𝑏ଵ)/𝜑

 Probability of machine breakdown among group 2 dedicated machines: 𝑃଻ = (𝑀ଶ ∙ 𝑏ଶ)/𝜑

 Probability of machine breakdown among group 3 flexible machines: 𝑃 = (𝑀ଷ ∙ 𝑏ଷ)/𝜑

 Probability of repair completion among group 1 dedicated machines: 𝑃ଽ = ((𝑀ଵ௠௔௫ − 𝑀ଵ) ∙ 𝑟ଵ)/𝜑

 Probability of repair completion among group 2 dedicated machines: 𝑃ଵ଴ = ((𝑀ଶ௠௔௫ − 𝑀ଶ) ∙ 𝑟ଶ)/𝜑

8

 Probability of repair completion among group 3 flexible machines: 𝑃ଵଵ = ((𝑀ଷ௠௔௫ − 𝑀ଷ) ∙ 𝑟ଷ)/𝜑

 Probability of the state remaining unchanged (dummy transition probability): 𝑃ௗ௨௠௠௬ = 1 − ∑ 𝑃௜ଵଵ௜ୀଵ

The cost function consists of the holding costs at each of the queue and can be denoted as C(𝑆௧) = 𝑄ଵ + 𝐶௛ ∙𝑄ଶ.

Then, the boundary condition, 𝑉ேାଵ∗ (𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ) = 0, is defined. The backward optimality equation

can be iteratively defined as

 𝑉௧∗(𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧) = 𝐶(𝑆௧) + min௔೟∈{଴,ଵ} ൜{(1 − 𝑎௧) ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧))+𝑎௧ ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ − 1,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧)) ൠ +𝑃ଵ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ + 1,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ଶ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧) +𝑃ଷ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ − 1,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃଺ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ − 1,𝑀ଶ௧ ,𝑀ଷ௧) +𝑃଻ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ − 1,𝑀ଷ௧) + 𝑃 ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧ − 1) +𝑃ଽ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ + 1,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ଵ଴ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ + 1,𝑀ଷ௧) +𝑃ଵଵ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧ + 1) + 𝑃ௗ௨௠௠௬ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧).

 The backward value iteration algorithm is then used to compute the optimal dynamic dispatching solution

for each group of system parameters following Puterman (1994). The optimal action 𝑎௧∗(𝑆௧) of the current

state can be formulated as 𝑎௧∗(𝑆௧) =argmin௔೟∈{଴,ଵ} ൜{(1 − 𝑎௧) ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧))+𝑎௧ ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ − 1,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧)) ൠ.
Then, we present two numerical examples with the model parameters listed in Table 2 to illustrate the

optimal dispatching policies generated from the MDP model.

Table 2 System parameters used in the illustrative examples

System Parameter Set 1: (corresponds to the optimal policy in Fig. 2)
Job Arrival Rate, 𝜆 10
Upstream Holding Cost 1
Downstream Holding Cost Ratio, 𝐶௛ 0.67
 𝑀𝑇𝐵𝐹௜ Service Rate (𝜇௜) Reliability (𝑅𝐿௜) Number of Machines

(𝑀௜௠௔௫)
Group 1 Machines 40 5 0.95 2
Group 2 Machines 40 5 0.95 2
Group 3 Machines 40 5 0.95 2

System Parameter Set 2: (corresponds to the optimal policy in Fig. 3)
Job Arrival Rate, 𝜆 8.58
Upstream Holding Cost 1
Downstream Holding Cost Ratio, 𝐶௛ 0.75
 𝑀𝑇𝐵𝐹௜ Service Rate (𝜇௜) Reliability (𝑅𝐿௜) Number of Machines

(𝑀௜௠௔௫)
Group 1 Machines 35 4 0.85 2
Group 2 Machines 35 4 0.85 2

9

Group 3 Machines 35 4 0.85 2

To plot higher-dimension optimal policies into 2D graphs, we need to reduce the dimension by fixing the

number of available machines in each machine group. After fixing the number of machines, we can then plot

optimal decisions that correspond to changes in queue lengths. In both examples, the number of available

machines varies from 0 to 2 because the maximum number of machines per machine group is two. Therefore,

the visualization method introduced earlier provides 3 × 3 × 3 = 27 decision graphs for both examples. In Figs.

2 and 3, the X-axis represents the queue length of upstream operation 1 and the Y-axis represents the queue

length of downstream operation 2. We can then visualize the optimal policy under different numbers of

available machines in Figs. 2 and 3. Each sub-decision graph shows the optimal decision under different

combinations of available machines. In Figs. 2 and 3, the optimal action is to assign higher priority to operation

1 in darker areas. Notably, the number next to each sub-decision graph represents the number of available

machines in each machine group, as shown in Fig. 2.

 Illustrative sub-decision graph (222): All machine groups have two available machines.

222 machines are available in machine

groups 1, 2, and 3.

Higher priority to operation 1

(dark-colored area)

Downstream operation 2 queue

length

Upstream operation 1 queue length

Higher priority to operation 2

(light-colored area)

10

Fig. 2 Visualization of the optimal dispatching policy (system parameter set 1)

Fig. 3 Visualization of the optimal dispatching policy (system parameter set 2)

The barrier between dynamic programming models is a major challenge in dynamic production control.

This barrier can be visualized by comparing the optimal policy graphs in Figs. 2 and3. The comparison of the

two system parameter sets in Table 2 indicates that the numbers of machines in each machine group are the

same, but other parameters are changed by 10%–20% in the second parameter set. Given that both systems

11

have six machines, the state space contains 140,454 states when the queue capacity is set to 50 for operations

1 and 2. Among the 140,454 states, 95% of the optimal decisions are the same. However, Fig. 4 shows that

when no machine, 2 machines, and 1 machine are available in machine groups 1, 2, and 3, respectively, the

dispatching decisions vary. Such difference is the so-called barrier between dynamic decision models. This

barrier is observable after a mere 10% change of parameters.

Optimal decisions for parameter set 1

Optimal decisions for parameter set 2

Fig. 4 Barrier between MDP models: Optimal decisions vary with system parameters

(0/2/1 machines are available in machine groups 1/2/3, respectively)

As shown in Figs. 2–4, minor changes in system parameters may lead to different optimal dispatching

decisions. Given that the number of machines remains unchanged, the state space remains the same in Figs. 2

and 3. However, if we install another machine or change the qualification of machines, then the state space

will differ, the barrier between models will be even more significant, and the computer code for solving the

model may require rewriting.

Moreover, due to the curse of dimensionality of MDP, the required computational time for solving the

dynamic dispatching problems increases exponentially with the number of machines as shown in Fig. 5. When

configuration changes are frequent, both the curse of dimensionality and the barrier between dynamic

programming models limit the use of dynamic control methods in the production environment.

12

Fig. 5 Computational time increases with the number of machines in dynamic dispatching problems

3.2 DL approach for the dynamic dispatching problem
This research plans to develop a DL approach that can overcome the barrier between models and the

curse of dimensionality shown in Figs. 2–5. We introduce the DL approach for the dynamic dispatching

problem in this section. We begin by explaining why DNN can be used as an efficient predictor for optimal

policies under different system configurations. Then, we describe how hyper-parameters, or parameters set

prior to training, are selected and how training processes are implemented. This study uses various designs of

optimal policy training samples to construct different DNNs. Discrete event simulation models are used to

determine the performance difference between the dispatching policies predicted by the DNN and the optimal

dispatching policies generated by dynamic programming. The standard K-fold cross-validation test (K-cv test)

for machine learning is also used to test the prediction accuracy of the DL result.

The major difference between a classical artificial neural network (CANN) and DNN is uncomplicated.

A commonly used CANN is a feedforward architecture with three fully connected layers: the input, hidden,

and output layers. Backpropagation and stochastic gradient descent are used as the major algorithms to update

weights between any linked neurons. Hornik, Stinchcombe, and White (1989) prove that the neural network

is a universal approximator on the basis of this architecture. Compared with CANN, DNN introduces

additional hidden layers and enables better fit to a complex nonlinear problem. However, given that we

increase number of hidden layers, the performance of the model does not improve because of the vanishing

gradient problem. Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014) propose an extremely

effective method of training a neural network with many hidden layers without suffering from the vanishing

gradient problem by randomly dropping out neurons while training. DL has achieved remarkable results in

many fields following the aforementioned research. First, DL is widely used in image processing and

classification. Krizhevsky, Sutskever, and Hinton (2012) construct a deep convolutional layer network with

five convolutional layers to classify more than one million high-resolution images. Szegedy et al. (2015)

propose a deep convolutional network with 22 layers for image classification. DNN is also used in

optimization applications. Martens and Sutskever (2011) present an application of Hessian-free optimization

using DL.

As shown in Fig. 6, we use DNN to learn from a large optimal policy dataset that contains low-

dimensional optimal dispatching policies. If DNN can characterize the influence of model parameter changes

on the optimal policy, then it can be used to predict optimal policies after a change occurs in system

configuration. Moreover, the trained weights of DNN can be recorded, stored, and reused. Once a DNN for

predicting an optimal policy is built, it can yield the best control action for each state depending on the real

time system state. Hence, the barrier of being unable to reuse different dynamic programming models is

overcome. When more machines are added, the state space of the MDP model increases and the curse of

13

dimensionality prevents the efficient resolution of the MDP model. An effective DNN policy predictor may

rapidly generate predicted policies and eliminate the need to solve a time consuming large scale MDP model.

Fig. 6 DL framework for predicting the optimal control policies of different systems

In the proposed DNN model, the training data are the optimal dispatching policies under different system

configurations. System configurations refer to the parameters or settings of a system, such as the

MTBF/MTTR of machines, product mix, demand arrival processes, number of machines installed, and

product–machine dedications. Optimal control policies assign a state-dependent dispatching decision for each

and every possible system state in the state space, which is defined by the real-time WIP distribution and

machine availability/reliability status, as shown in Figs. 2 and 3. When a new product or system configuration

is introduced or observed, the optimal control problem must be solved again frequently to generate the

corresponding new control policy.

In modern low-volume and high-mix (LVHM) production environments, training data should be readily

available. Given that configuration changes, such as product mix changes or new product introduction, are

frequent in LVHM systems, control problems under different configurations have been solved many times in

the past. These historical control policies can serve as the required training data for the DNN model. By

contrast, if historical control policies are not readily available, then training data can be generated by solving

the MDP control problems under different synthetic configurations by increasing/decreasing the numbers of

machines, MTBF, MTTR, or product mix. In this research, for example, our industry partner cannot provide

all the historical control policies; thus, training data are generated by solving the MDP model under different

configurations.

 3.3 Representing Dynamic Policy Space: Training Dataset for DNN
 To illustrate the potential of the DNN approach in dynamic production control, we build a knowledge

space that allows DL to predict the best decisions for large systems (each workstation has four to five machines)

by learning the optimal decisions for small-scale systems (each workstation has one to three machines). To

14

generate the training dataset, we use the Taguchi (1986) mixed orthogonal experimental design to generate a

number of system parameter sets with one to three machines in each machine group. We then use the MDP

model to solve the optimal dispatching problem for each set of system parameters and merge the results into

a data file to construct the low-dimension optimal policy space. The low-dimension policy space can then be

used by the DNN to learn the variations in system parameters by changing preconditions.

The sets of system factors and parameters with one to three machines in each machine group are provided

in Table 3. The factors in Table 3 are used to generate the optimal policy space with 300 different systems.

Dataset 1: We generate 150 sets of small-scale system parameters with less than three machines in each

machine group using the factors in Table 3 and a near-orthogonal experimental design.

Dataset 2: Another set of 150 near-orthogonal system parameters that emphasizes the number of

machines in systems is generated because predicting optimal policies in large systems with more

machines is a major objective of this study. Among the 150 additional systems, 3 sets of 50 systems are

generated with exactly (1,1,1), (2,2,2), and (3,3,3) machines in machine groups 1, 2, and 3, respectively.

Table 3 Factors considered in the experiment

Factor Levels

{low,relatively low,medium,relatively high,high}

Arrival rate λ

(in terms of system utilization)

𝜆 ∈ {0.7, 0.75, 0.8, 0.85, 0.9} of the capacity

MTBF of machine group 1 𝑀𝑇𝐵𝐹ଵ ∈ {20, 25, 30, 35, 40}

MTBF of machine group 2 𝑀𝑇𝐵𝐹ଶ ∈ {20, 25, 30, 35, 40}

MTBF of machine group 3 𝑀𝑇𝐵𝐹ଷ ∈ {20, 25, 30, 35, 40}

Reliability of machine group 1 𝑅𝐿ଵ ∈ {0.85, 0.875, 0.9, 0.925, 0.95}

Reliability of machine group 2 𝑅𝐿ଶ ∈ {0.85, 0.875, 0.9, 0.925, 0.95}

Reliability of machine group 3 𝑅𝐿ଷ ∈ {0.85, 0.875, 0.9, 0.925, 0.95}

Service rate of machine group 1 𝜇ଵ ∈ {1, 2, 3, 4, 5}

Service rate of machine group 2 𝜇ଶ ∈ {1, 2, 3, 4, 5}

Service rate of machine group 3 𝜇ଷ ∈ {1, 2, 3, 4, 5}

Holding cost ratio, hC 𝐶௛ ∈ {0.6667, 0.8, 1, 1.25, 1.5}

max
1M , number of machines in machine

group 1

𝑀ଵ௠௔௫ ∈ {1, 2, 3}

max
2M , number of machines in machine

group 2

𝑀ଶ௠௔௫ ∈ {1, 2, 3}

max
3M , number of machines in machine

group 3

𝑀ଷ௠௔௫ ∈ {1, 2, 3}

15

We solve the dynamic dispatching problems for all the 300 systems using Microsoft Visual C# on a

desktop PC with Intel Core i7 (3.5 GHz), 32 GB DDR3 memory to construct the optimal policy space as

training data. We then explain how the DNN was implemented to characterize the optimal policy space.

3.4 DL approach for dynamic dispatching
The optimal policy space is a vector space that contains millions of states with its different systems and

state features and the corresponding optimal action. To extract knowledge from the optimal policy space, we

use TensorFlow as the policy approximator to predict the near-optimal policy of large-scale systems. The

architecture of the DNN model is illustrated in Figs. 6 and 7.

The feature vector of the optimal policy space includes the following variables: (𝜆,𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫ ,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ)௧;
where the DNN approximates the optimal policy via nonlinear mapping 𝑎௧෥ as follows: (𝜆,𝜇ଵ,𝜇ଶ,𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ)௧ → 𝑎௧෥ (𝜆, 𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ);

and 𝜃௧ denotes all the parameters and weights of the DNN. The training goal is to find 𝜃௧ that minimizes

loss from the optimal dispatching decision 𝑎௧∗ to the nonlinear mapping 𝑎௧෥ : 𝑎௧∗(𝜆,𝜇ଵ, 𝜇ଶ,𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ) → 𝑎௧෥ ((𝜆, 𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ|𝜃௧) .

For the DNN structure, we refer to the literature and use the following settings.

 Activation function: The activation function of hidden layer neurons is the rectified linear function (ReLU)

provided in Nair and Hinton (2010). ReLU is a piecewise linear function that is commonly used in

classification problems. ReLU can overcome the vanishing gradient problem in deep neural networks

(DNNs) (Arora, Basu, Mianjy, & Mukherjee, 2016; Ramachandran, Zoph, & Le, 2017). The successive

use of the nonlinear ReLU function in several hidden layers also allows the DNN to approximate any

nonlinear function with an arbitrary precision (Leshno, Lin, Pinkus, & Schocken, 1993). In addition, we

investigated the use of several activation functions, including the hyperbolic tangent and sigmoid

functions and the combination of activation functions in different layers. Since the numerical results also

suggest the superiority of ReLU in this specific application of DNN, ReLU is adopted for all the hidden

layers in the proposed DNN model.

 Loss function: In this research, cross entropy is adopted as the loss function and the DNN model is trained

to predict the optimal decision for every state in the state space. Given that each distinct dispatching

decision can be represented by a different class, the prediction of the optimal decision can be considered

classification problems. For the classification problems, the cross-entropy loss function is frequently used

to measure the loss of classification models.

 Batch normalization: In densely connected DNNs, finding the conditional distribution of a hidden layer

is difficult given a training data vector. This difficulty leads to an internal covariate shift and hampers

16

training performance. In our research, batch normalization is applied to accelerate training and reduce

the impact of an internal covariate shift following Ioffe and Szegedy (Ioffe & Szegedy, 2015).

 Learning rate and random dropout: To prevent overfitting, a random dropout mechanism is used with a

rate of 0.25 and the batch size of the input vectors is 125 based on Srivastava et al. (2014). We set an

initial learning rate of 0.25 in DNN training and apply callbacks to save the neural network model before

it becomes overfitted. Callback is implemented by reducing the learning rates by 30% as shown in Fig.

7.

Fig. 7 Reducing learning rate to prevent overfitting

 Optimizers, hidden layers, and number of neurons: Using the first datatset of 150 near-orthogonal systems,

we test three commonly adopted DNN optimizers, namely, stochastic gradient descent (SGD), adaptive

moment estimation (ADAM) from Kingma and Ba [32], and RMSprop from Tieleman and Hinton [33],

to optimize the categorical cross-entropy loss function. We measure the performance of DL by using a

K-cv test with 30% of the training data for validation. The learning result using different optimizers is

shown in Figs. 8.a and 8.b, which indicate that ADAM outperforms the other optimizers. Therefore,

ADAM is selected as our optimizer for DL.

For the layers and neurons, Heaton [32] states that the optimal hidden layer size is at most the size of the

input layers and at least the size of the output layers. By using a K-cv test with 30% of the training data

for validation, Fig. 8.c shows how different structures of DNN influence K-cv accuracy. From the results

in Fig. 8.c, a DNN with 8 hidden layers with each layer containing 90 neurons is found better performing.

This DNN achieves 95.12% accuracy, and its structure is used for our remaining computational studies.

17

In the succeeding section, we use discrete event simulation to test the actual performance of the control

policy and compare dynamic programming with DL.

a. K-cv accuracy

 (Dataset 1: 150 near-orthogonal systems)

 b. Cross-entropy loss under ADAM, SGD, and RMSProp

(Dataset 1: 150 near-orthogonal systems)

c. Accuracy under different DNN structures

(Dataset 1: 150 near-orthogonal systems)

d. Accuracy using a combined dataset of 300 systems

(Datasets 1 and 2: 150 near-orthogonal systems and additional

150 systems)

Fig. 8 Training performance of different optimizers, DNN configurations, and datasets

Using the hyperparameters selected earlier, we train the same DNN with 8 hidden layers using the

complete dataset of 300 systems with Datasets 1 and 2. Learning performance is shown in Fig. 8.d. With GPU

acceleration via nVidia GTX 1060, the computational cost of 1 epoch is 360 s on average when using the

complete dataset and the overall training time is less than 20 h for 200 epochs. Notably, the performance of

the trained DNN model improves only slightly after the first 50 epochs, as shown in Fig. 8.d. This finding

suggests that training time can be reduced further to 5 h if it is a consideration.

Compared with the learning performance with only 150 sets of near-orthogonal system parameters, the

K-cv test score improves to 99% in Fig. 8.d from the maximum of 95.12% in Fig. 8.c. Given that the same

DNN is used, such improvement is achieved by including training Dataset 2. This result suggests that training

dataset selection and the structure of a neural network are important in knowledge extraction through DNN.

18

4. Evaluation of Model Accuracy and Performance
In this section, we analyze the similarity between the near-optimal policy generated by the DNN and the

real optimal policy determined by dynamic programming. Thereafter, we construct a discrete event simulator

to further observe the difference between DL and dynamic programming.

We randomly generated 15 test systems using the machine and production parameters listed in Table 3.

Table 4 shows the system parameters used in the 15 test systems. Although the training of the DNN considers

only up to three machines in each machine group (i.e., 𝑀௜௠௔௫ ≤ 3), the number of available machines can be

increased to five in each machine group in the 15 test systems. The number of machines M୧୫ୟ୶ in systems 1–

5 uses the same range as that in the training dataset (i.e., 𝑀௜௠௔௫ ranging from one to three in each machine

group). Test systems 1–5 are named the interpolation test group because the number of machines is

interpolated within the range of the training dataset. Systems 6–10 are used for the extrapolation test because

the number of machines 𝑀௜௠௔௫ is randomly generated between four and five although the training data only

allow up to three machines. Test systems 11–15 are named the complete testing set because the number of

machines in each machine group is randomly selected from one to five. The interpolation and extrapolation

of the number of machines are both possible in systems 11–15. In summary, the interpolation test group

assesses the performance of the DNN model when the system parameters are interpolated within the range of

the training dataset, whereas the extrapolation test group validates the DNN model performance when the

system parameters are extrapolated beyond the range of the training dataset.

 Table 4 Model parameters of the 15 test systems

4.1 Accuracy of the DNN approach
The accuracy of the DNN approach is measured by the similarity between the policies generated by the

DNN and the optimal policies generated by MDP. For all 15 test systems, we use the DNN shown in Fig. 8.d,

which is trained by a complete dataset of 300 systems with 8 hidden layers and 90 neurons in each layer, to

generate predicted optimal control policies. As shown in Table 5, the DNN takes 10.23 s to generate a predicted

policy, which is considerably faster than the MDP model, which requires more than 10,000 s to solve large

problems (e.g., test systems 6–10). As illustrated in Fig. 5, the required computational time is more than 1,000s,

No. λ u 1 MTBF 1 RL 1 u 2 MTBF 2 RL 2 u 3 MTBF 3 RL 3 Cost2 Mmax 1 Mmax 2 Mmax 3

Interpolation 1 0. 84 1 29 0. 95 4 40 0. 88 1 20 0. 95 1. 13 3 1 1
2 0. 76 3 24 0. 86 5 32 0. 94 2 36 0. 92 1. 22 2 1 2
3 0. 79 1 32 0. 95 1 21 0. 9 1 24 0. 92 1. 49 2 1 3
4 0. 87 5 22 0. 89 2 22 0. 87 1 29 0. 86 1. 35 2 2 1
5 0. 76 3 32 0. 87 1 29 0. 91 3 26 0. 9 0. 86 2 3 2

Extrapolation 6 0. 76 5 39 0. 88 1 23 0. 94 3 20 0. 89 1. 03 5 4 4
7 0. 71 5 24 0. 87 4 30 0. 85 3 23 0. 93 1. 03 4 5 5
8 0. 82 4 28 0. 85 4 38 0. 85 5 26 0. 92 1. 31 4 5 5
9 0. 78 2 32 0. 87 3 35 0. 87 3 24 0. 91 0. 91 4 4 5
10 0. 9 4 28 0. 91 2 26 0. 9 4 29 0. 86 0. 99 4 5 4

Complete Set 11 0. 75 4 35 0. 92 2 23 0. 95 4 23 0. 92 0. 9 3 4 3
12 0. 78 3 39 0. 86 1 30 0. 91 2 26 0. 83 0. 83 4 1 5
13 0. 81 1 39 0. 93 3 24 0. 86 4 20 0. 94 0. 83 3 2 5
14 0. 82 5 23 0. 91 4 32 0. 89 4 23 0. 88 0. 71 4 1 4
15 0. 77 2 20 0. 9 4 38 0. 94 1 25 0. 89 0. 92 4 5 3

19

even for small systems with only one machine per machine group, which is still 100 times the DNN output

time. Thus, in terms of computational efficiency, the DNN provides dynamic control policies nearly instantly

in our numerical study and is 100–1,000 times faster than MDP models in generating dynamic control policies.

In addition to computational efficiency, the DNN approach performs well in solution quality. Among the

15 test systems, the overall similarity between the DNN policy and the optimal policy is 98.36%. In the worst

case scenario, accuracy is 96.16% in test system 15.

Table 5 Computation time and accuracy of DNN policy prediction

Notably, the difference between DNN and optimal policies is mostly located at the boundary of dark and

light areas. Using test system 1 (with an average accuracy of 97.46%) as an example, we plot the comparison

of the DNN policy and the optimal policy in Fig. 9, where the red areas indicate the difference between the

two policies. Wu et al. (C.-H. Wu et al., 2006) show that the optimal dispatching decisions switch from one

action to another after the queue length reaches a certain threshold value because the cost difference between

two decisions is monotone to queue length. Thus, the boundary areas indicate the region where the cost

difference between the two decisions is small and predicting the optimal action is relatively difficult for the

DNN. Given that prediction errors mostly appear at the boundary states where the cost difference is small, we

strongly believe that the cost difference between the DNN policy and the optimal policy is minimal. Therefore,

we construct a discrete event simulation model to compare the costs of the two policies.

Similarity to Optimal DNN output time Correct Prediction Incorrect Prediction
(Accuracy, %) (seconds) # of states # of states

1 97.46% 2.77 40563 1053
2 96.82% 2.99 45328 1490
3 99.82% 3.59 62316 108
4 99.44% 2.93 46557 261
5 99.34% 4.81 93014 622
6 98.29% 16.91 383466 6684
7 98.24% 20.08 459959 8221
8 97.01% 19.94 454206 13974
9 97.47% 17.04 380298 9852
10 97.97% 16.77 382236 7914
11 98.51% 9.47 204969 3111
12 99.85% 7.41 155833 227
13 99.41% 8.66 186181 1091
14 99.59% 6.31 129521 529
15 96.16% 13.74 300150 11970

Average 98.36% 10.23 Total 3234137 Total 79537

System

20

Fig. 9 Visualized erroneous decision of the DNN model: Test system 1 in Table 5

(Please refer to Fig. 2 for the details on the legends and captions of subgraphs.)

4.2 Performance evaluation using discrete event simulation
 In addition to model accuracy, the performance of the DNN policy is compared with the optimal policy

through simulation. We use the eM-plant to implement our discrete event simulator to further verify the

performance of near-optimal policies. We apply the policies produced from dynamic programming and DNN

to a plant simulation model. The simulation time is set to 90 days with a 7-day warm-up period. Each

simulation is repeated 50 times, and the average results are listed in Table 6. The weighted cycle time (i.e.,

inventory holding costs) is the key performance index.

The results in Table 6 indicate that the holding cost (weighted cycle time) difference between DL and

dynamic programming is 1.33% on average in the 15 systems. Overall, the difference in weighted cycle time

is lower than 1% in 8 of the 15 systems, and the difference is less than 5% in all the systems. Given that the

solution gap is small in all the systems, we can conclude that the DNN model is effective in generating

dynamic control policies for large systems that may suffer from the curse of dimensionality of MDP. Moreover,

we conclude that the DNN approach can also break the barrier among MDP models shown in Fig. 5 because

new policies can be generated instantly after each system configuration is changed. Consequently, the frequent

requirement to solve MDP models can be eliminated.

21

Table 6 Simulation results: Difference in performance between the DNN policy and the optimal DP policy
(The 95% confidence interval of the holding costs/weighted cycle time is included)

Up-Queue Down-QueuUp-stream down-Stream Flexible

DP 50286.9 13285.1 3062.7 955.1 933.4 1538557 ± 9458

NN 51183.7 13578.3 3104.7 981.8 899.4 1546780 ± 8660

Difference 1.75% 2.16% 1.35% 2.72% -3.78%

DP 951.4 973.2 708 362.6 258.4 101691 ± 2913

NN 899.2 1035.9 704.1 365.2 256.1 102966 ± 2006

Difference -5.81% 6.05% -0.55% 0.71% -0.90%

DP 8601.6 6321.5 2854.6 1549.4 2849.9 247341 ± 11301

NN 8338.4 6394.2 2825.9 1564.2 2789.2 249459 ± 10256

Difference -3.16% 1.14% -1.02% 0.95% -2.18%

DP 588.3 3824.5 719.9 1266.7 482.3 186293 ± 9485

NN 612.2 3777.6 722 1261.7 479.9 187005 ± 6690

Difference 3.90% -1.24% 0.29% -0.40% -0.50%

DP 28529.3 4488 1146.5 1710.2 863.5 1346038 ± 1698

NN 28507.6 4939.9 1145.5 1711.7 864.2 1362536 ± 1937

Difference -0.08% 9.15% -0.09% 0.09% 0.08%

DP 65.6 1735.8 784.9 1283.5 939.8 131571 ± 2389

NN 63.9 1827.9 735.4 1292.6 941.6 138127 ± 2666

Difference -2.66% 5.04% -6.73% 0.70% 0.19%

DP 163.7 220.7 523.9 813.4 661.8 44013 ± 903

NN 133.7 260.9 495.1 845 665.4 45119 ± 1259

Difference -22.44% 15.41% -5.82% 3.74% 0.54%

DP 9271.3 1158.3 746.8 921.1 762.3 1378230 ± 738

NN 9261.9 1259.8 746 922.8 762.6 1395556 ± 699

Difference -0.10% 8.06% -0.11% 0.18% 0.04%

DP 18.7 95.4 1056.7 1221.8 724.5 2707 ± 104

NN 11.1 131.4 1009.3 1268.2 723.5 2824 ± 132

Difference -68.47% 27.40% -4.70% 3.66% -0.14%

DP 10782.6 1683.1 885.5 1106.1 660.9 1345999 ± 3230

NN 10795.8 1676.8 885.1 1105.9 662.1 1348163 ± 3937

Difference 0.12% -0.38% -0.05% -0.02% 0.18%

DP 740.8 1318.8 804.5 1351.3 868.5 114454 ± 3574

NN 659.5 1466.4 789.72 1375.8 869.5 117448 ± 3262

Difference -12.33% 10.07% -1.87% 1.78% 0.12%

DP 1525.9 6649.5 1355.3 468.9 1747.1 349126 ± 10813

NN 1512.6 6471 1351.4 458.4 1794.8 349530 ± 11267

Difference -0.88% -2.76% -0.29% -2.29% 2.66%

DP 17791.4 1539.4 1071.7 666.5 838.7 1269054 ± 507

NN 17858.8 1507.7 1076 668.3 842.3 1267095 ± 427

Difference 0.38% -2.10% 0.40% 0.27% 0.43%

DP 14.3 1901.1 574.5 535.8 644.2 37299 ± 2234

NN 20.3 1790.6 604.7 544.1 661.2 37384 ± 2218

Difference 29.56% -6.17% 4.99% 1.53% 2.57%

DP 792.8 26.7 1411.2 946.4 1226.6 40405 ± 1594

NN 784.9 25.9 1406.5 945.4 1223.8 40514 ± 1423

Difference -1.01% -3.09% -0.33% -0.11% -0.23%

1.24%

Holding Costs ± 95% C.I.

(Weighted Cycle Time)

0.27%

0.23%

-0.15%

2.55%

0.16%

4.16%

2.45%

4.75%

1.21%

0.38%

0.85%

1.24%

0.53%

0.12%

15

4

5

6

7

8

9

10

11

12

13

14

3

Group
Average Waiting Time Average Process Time

1

2

22

5. Conclusion and Future Research
This research combines DNN and MDP for the fast generation of near-optimal policies in large dynamic

dispatching problems that are traditionally difficult to solve. MDP is used to generate a set of optimal training

policies in small systems. To construct a meaningful set of training systems, an orthogonal experimental design

technique is adopted. In contrast with other RL or Deep Q-learning research that learns the characteristics of

value functions, the proposed DNN learns directly from the representative policy space and serves as an

effective predictor of near-optimal control policy for larger systems.

To verify solution quality against optimal policies, the K-cv test is used to examine accuracy and discrete

event simulation is adopted to compare costs. Compared with the optimal control policies, the overall accuracy

of the DNN control policies is 98.36% on average. Moreover, the simulation results suggest a cost difference

lower than 5% between the DNN and optimal policies in all test systems and less than 1.33% on average. The

findings suggest that the policy produced by the DNN is similar to the optimal policy. The AI approach

generates policies nearly instantly and is considerably more efficient than the traditional MDP approach.

This research demonstrates the potential of machine learning in dynamic production control; however, it

is merely a first step toward the intelligent control of systems. The proposed DNN model learns from existing

optimal control policies, and can be quickly extended to systems with more than two product types when the

training data is available. The optimal control for systems with more than two products is itself a research

challenge and most existing control methods use simple control heuristics for such systems. As a result, the

optimal control policies that serve as the training data of the DNN cannot be efficiently generated by existing

methods yet. Thus, although our preliminary numerical results have shown the potential of the proposed DNN

approach in systems with more products, we limit our numerical analysis to two-product examples. In the

future, we plan to implement our methods to consider more product types by developing an efficient

decomposition algorithm for such systems.

Another limitation of the proposed DNN approach is the 2% gap in solution quality caused by the

interpolation or extrapolation of system parameters. Further reducing the gap by fine-tuning the DNN model

is difficult, and the possibility of using different neural network structures can be explored to improve model

accuracy. Thus, we plan to combine the off-line DNN approach with online RL. After a quick adoption of off-

line policies generated by the DNN model along with configuration changes, an online learning approach will

be developed in the future to improve solution quality and eliminate the solution gap over time.

Moreover, in this study, we investigated a two-station production system with a fixed routing. Some of

the machines are flexible and can be assigned to each of the two workstations. The proposed DNN is trained

to effectively predict the optimal dynamic dispatching decisions of flexible machines. After adding new

machines or introducing new products, the DNN generates predicted policies that are within 2% of the optimal

range, thereby eliminating the need to solve large MDP problems. However, the DNN model needs to undergo

the model training processes again when there are changes in the production system layout, such as additional

workstations. DNN retraining can help in capturing new optimal control characteristics under the new

23

production system layout. We will develop transfer learning methods in future studies to accelerate DNN

retraining.

References
Ahn, H. S., Duenyas, I., & Zhang, R. Q. (1999). Optimal stochastic scheduling of a two-stage tandem queue

with parallel servers. Advances in Applied Probability, 31(4), 1095-1117. doi:Doi
10.1017/S0001867800009642

Archibald, T. W. (2007). Modelling replenishment and transshipment decisions in periodic review
multilocation inventory systems. Journal of the Operational Research Society, 58(7), 948-956.

Arora, R., Basu, A., Mianjy, P., & Mukherjee, A. (2016). Understanding Deep Neural Networks with
Rectified Linear Units. ArXiv: 1611.01491.

Aydin, M. E., & Oztemel, E. (2000). Dynamic job-shop scheduling using reinforcement learning agents.
Robotics and Autonomous Systems, 33(2-3), 169-178. doi:Doi 10.1016/S0921-8890(00)00087-7

Chang, S. H., & Gershwin, S. B. (2010). Modeling and analysis of two unreliable batch machines with a
finite buffer in between. Iie Transactions, 42(6), 405-421. doi:10.1080/07408170903228934

Choi, J. Y., & Kim, S. B. (2012). Computationally efficient neuro-dynamic programming approximation
method for the capacitated re-entrant line scheduling problem. International Journal of Production
Research, 50(8), 2353-2362. doi:10.1080/00207543.2011.578596

Gershwin, S. B. (1987). An Efficient Decomposition Method for the Approximate Evaluation of Tandem
Queues with Finite Storage Space and Blocking. Operations Research, 35(2), 291-305. doi:DOI
10.1287/opre.35.2.291

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer Feedforward Networks Are Universal
Approximators. Neural networks, 2(5), 359-366. doi:Doi 10.1016/0893-6080(89)90020-8

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. ArXiv: 1611.01491, 11.

Kirkizlar, H. E. (2008). Performance improvements through flexible workforce. Georgia Institute of
Technology,

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Paper presented at the Advances in neural information processing systems.

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer Feedforward Networks with a
Nonpolynomial Activation Function Can Approximate Any Function. Neural networks, 6(6), 861-
867. doi:Doi 10.1016/S0893-6080(05)80131-5

Lippman, S. A. (1975). Apply a New Device in the Optimization of Exponential Queueing Systems.
Operations Research, 23(4), 24.

Marbach, P., Mihatsch, O., & Tsitsiklis, J. N. (2000). Call admission control and routing in integrated
services networks using neuro-dynamic programming. IEEE Journal on selected areas in
communications, 18(2), 197-208. doi:Doi 10.1109/49.824797

Marbach, P., & Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov reward processes. IEEE
Transactions on Automatic Control, 46(2), 191-209. doi:Doi 10.1109/9.905687

24

Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with hessian-free optimization.
Paper presented at the Proceedings of the 28th International Conference on Machine Learning
(ICML-11).

Meyn, S. P. (2005). Workload models for stochastic networks: Value functions and performance evaluation.
IEEE Transactions on Automatic Control, 50(8), 1106-1122. doi:10.1109/Tac.2005.852564

Mishra, N., Singh, A., Kumari, S., Govindan, K., & Ali, S. I. (2016). Cloud-based multi-agent architecture
for effective planning and scheduling of distributed manufacturing. International Journal of
Production Research, 54(23), 7115-7128. doi:10.1080/00207543.2016.1165359

Mouelhi-Chibani, W., & Pierreval, H. (2010). Training a neural network to select dispatching rules in real
time. Computers & Industrial Engineering, 58(2), 249-256. doi:10.1016/j.cie.2009.03.008

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. Paper
presented at the Proceedings of the 27th international conference on machine learning (ICML-10).

Nattaf, M., Dauzere-Peres, S., Yugma, C., & Wu, C. H. (2019). Parallel machine scheduling with time
constraints on machine qualifications. Computers & Operations Research, 107, 61-76.
doi:10.1016/j.cor.2019.03.004

Olafsson, S., & Li, X. A. (2010). Learning effective new single machine dispatching rules from optimal
scheduling data. International Journal of Production Economics, 128(1), 118-126.
doi:10.1016/j.ijpe.2010.06.004

Priore, P., Parreno, J., Pino, R., Gomez, A., & Puente, J. (2010). Learning-Based Scheduling of Flexible
Manufacturing Systems Using Support Vector Machines. Applied Artificial Intelligence, 24(3), 194-
209. doi:10.1080/08839510903549606

Puterman, M. L. (1994). Markov Decision Processes. J. In: Wiley and Sons.
Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for Activation Functions. ArXiv: 1710.05941.
Sennott, L. I. (1998). Stochastic Dynamic Programming and the Control of Queueing Systems: John Wiley

& Sons.
Serfozo, R. (1978). An equivalence between continuous and discrete time Markov decision processes.

Operations Research, 27(3), 5.
Shi, L., Guo, G., & Song, X. (2019). Multi-agent based dynamic scheduling optimisation of the sustainable

hybrid flow shop in a ubiquitous environment. International Journal of Production Research, 1-22.
doi:10.1080/00207543.2019.1699671

Shiue, Y. R. (2009). Data-mining-based dynamic dispatching rule selection mechanism for shop floor
control systems using a support vector machine approach. International Journal of Production
Research, 47(13), 3669-3690. doi:10.1080/00207540701846236

Simester, D. I., Sun, P., & Tsitsiklis, J. N. (2006). Dynamic catalog mailing policies. Management Science,
52(5), 683-696. doi:10.1287/mnsc.1050.0504

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1),
1929-1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper
with convolutions. Paper presented at the Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes.

25

Tsitsiklis, J. N., & Van Roy, B. (1999). Optimal stopping of Markov processes: Hilbert space theory,
approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE
Transactions on Automatic Control, 44(10), 1840-1851. doi:Doi 10.1109/9.793723

Wu, C.-H., Lewis, M. E., & Veatch, M. (2006). Dynamic allocation of reconfigurable resources ina two-
stage Tandem queueing system with reliability considerations. IEEE Transactions on Automatic
Control, 51(2), 309-314.

Wu, C. H., Down, D. G., & Lewis, M. E. (2008). Heuristics for allocation of reconfigurable resources in a
serial line with reliability considerations. Iie Transactions, 40(6), 595-611.
doi:10.1080/07408170701744819

Wu, C. H., Lin, J. T., & Chien, W. C. (2010). Dynamic production control in a serial line with process queue
time constraint. International Journal of Production Research, 48(13), 3823-3843.
doi:10.1080/00207540902922836

Xia, B., Wang, C., Gao, Y., Peng, Y., & Liu, L. (2019). A new approach to the analysis of homogeneous
transfer lines with unreliable buffers subject to time-dependent failure. International Journal of
Production Research, 1-17. doi:10.1080/00207543.2019.1685700

Zhang, J., & Wang, X. (2016). Multi-agent-based hierarchical collaborative scheduling in re-entrant
manufacturing systems. International Journal of Production Research, 54(23), 7043-7059.
doi:10.1080/00207543.2016.1194535

Zhou, F.-Y., Wu, C.-H., & Yu, C.-J. (2017). Dynamic Dispatching for Re-entrant Production Lines - a Deep
Learning Approach. 2017 13th IEEE Conference on Automation Science and Engineering (CASE),
1026-1031.

