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A Deep Learning Approach for the Dynamic Dispatching of 
Unreliable Machines in Re-entrant Production Systems  

Abstract 
This research combines deep neural network (DNN) and Markov decision processes (MDP) for the 

dynamic dispatching of re-entrant production systems. In re-entrant production systems, jobs enter the same 

workstation multiple times and dynamic dispatching oftentimes aims to dynamically assign different priorities 

to various job groups to minimize weighted cycle time or maximize throughput. MDP is an effective tool for 

dynamic production control, but it suffers from two major challenges in dynamic control problems. First, the 

curse of dimensionality limits the computational performance of solving large MDP problems. Second, a 

different model should be built and solved after system configuration is changed. DNN is used to overcome 

both challenges by learning directly from optimal dispatching policies generated by MDP. Results suggest that 

a properly trained DNN model can instantly generate near-optimal dynamic control policies for large problems. 

The quality of the DNN solution is compared with the optimal dynamic control policies through the standard 

K-fold cross-validation test and discrete event simulation. On average, the performance of the DNN policy is 

within 2% of optimal in both tests. The proposed artificial intelligence algorithm illustrates the potential of 

machine learning methods in manufacturing applications. 

 
Keywords: Deep Learning, Deep Neural Network, Dynamic Dispatching, Markov Decision Processes  

 

1. Introduction 
Recent manufacturing technologies enable the use of sensors on network-connected machines and make 

production control increasingly complex. Additional sensors allow more uncertain events to be monitored, 

and network connection capabilities allow machines to be remotely controlled in real time. Markov decision 

processes (MDP) are the most widely used tools for dynamic decision-making. Applying MDP to model 

additional status information and dynamically adjust manufacturing decisions provides opportunities for 

performance improvement. In a production environment, however, it remains unclear how the additional 

information could be efficiently modeled due to the following challenges. 

1. Curse of dimensionality in large-scale MDP problems  

The well-known curse of dimensionality of MDP refers to the fact that the computational time required 

to solve MDP models increases rapidly with the dimensions of state and action variables. In production 

systems, numerous sensors imply that many machine and system state variable dimensions are being 

monitored. Given that each state variable represents a dimension of the state space, the total number of 

elements in the state space quickly increases with the number of sensors. The dimension of action variables 

also increases because the number of real-time control decisions allowed in network-connected machines 

rises. The computational complexity of solving MDP models is proportional to the number of possible 
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combinations of state and action variables; thus, the required time for solving optimal dynamic dispatching 

problems increases exponentially with the number of machines when machine failures are considered, Wu 

et al. (2006).  

2. Frequent need to rebuild MDP models: the barriers between dynamic programming models  

The barriers between dynamic programming models also prevent the use of dynamic control in the 

production environment. The optimal control policy of an MDP model can be found by iteratively solving 

the optimality equation of the MDP model. The optimality equation depends on the state space, action space, 

transition probability between states, and state- and action-dependent cost functions. Given that the state 

space, action space, transition probability, and cost functions depend on system configuration, a new MDP 

model with a new optimality equation is required after every change in system configuration. For example, 

when a new machine is introduced, machine availability state changes accordingly. In another example, 

when a new product is introduced, differences among production processes change production rates. 

Building a different MDP model and solving this new model are always necessary after system parameter 

or configuration is changed. Given that short product life cycles and high product varieties are common 

nowadays, system configuration frequently changes. Such changes lead to the repeated building and solving 

of new MDP models. Experienced engineers and programmers are frequently required to modify computer 

codes to develop and implement new models due to the lack of general-purpose solvers for MDP problems. 

Therefore, the complexity of solving MDP models hinders the adoption of MDP in dynamic production 

control.  

Although the use of optimal dynamic control in production systems considerably improves operational 

efficiency in research(e.g. Ahn et al. (1999)), realizing dynamic production control in practice remains unclear 

due to the curse of dimensionality and the barrier between MDP models. For example, a typical semiconductor 

fabrication plant (hereafter referred to as “semiconductor fab”) is a highly dynamic environment where 

configuration changes frequently. In the facility of an industry partner, product mix changes nearly every week 

and the number of available machines for each operation changes daily with machine qualification processes. 

Given that the computational time for solving MDP models increases exponentially with system size, solving 

the dispatching problem may take days or even weeks, which is computationally inefficient for large systems. 

Therefore, solving a new MDP model after every configuration change is infeasible in semiconductor 

manufacturing.  

The objective of the current research is to combine MDP with deep learning (DL) to construct an efficient 

dynamic control policy generator for a variety of dynamic dispatching problems. The proposed deep neural 

network (DNN) approach is a particularly viable option in a dynamic production environment that is subject 

to frequent configuration changes. The training data of the proposed DNN model are the optimal control under 

hundreds of different system configurations. From the training data under different system configurations, the 

DNN learns how optimal control policies will vary with system configuration. Thus, when a new system 

configuration is introduced, the proposed DNN model can quickly predict new control policies and eliminate 

the need to frequently solve new MDP models. Accordingly, collecting new training data and retraining the 
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DNN are unnecessary after every configuration change. In our numerical study, the proposed method is 

validated in reentrant manufacturing systems, such as semiconductor manufacturing systems and the 

numerical results indicate that the performance of the DNN policy is within 2% of optimal on average.  

2. Literature Review 
To satisfy ever-changing customer needs, companies are currently producing various products and 

product life cycles are becoming shorter. The adoption of multifunctional machines is critical for fulfilling the 

varying production requirements of different products. On the one hand, the additional flexibility of 

multifunctional machines allows the flexible use of valuable capacity under uncertain demands. On the other 

hand, additional machine flexibility makes dynamic production control an emerging challenge for production 

systems. In the literature, researchers have developed dynamic production control methods through queuing 

system analysis and MDP to efficiently use the additional flexibility of machines. Gershwin (1987) and Chang 

and Gershwin (2010) evaluate the performance of serial finite buffer production systems with and without 

machine failures. Ahn et al. (1999) study a two-stage tandem queuing system with two multifunctional 

machines. They present an optimal control policy that is monotone to the amount of work in process (WIP) in 

a queue. Although machines are unreliable, Wu et al. (2006) prove the optimality of threshold-type dispatching 

policies in two-stage flexible production systems. Kirkizlar (2008) compares fully flexible with partially 

flexible machines and finds a similarity between their corresponding optimal control policies. Wu et al. (2010) 

develops efficient algorithm for the dynamic production control in tandem lines, where the waiting time of 

jobs subjects to time window constraints. Choi and Kim (2012) develop a neural-dynamic programming 

method for the scheduling problems in re-entrant production systems with limited capacity. All the 

aforementioned studies show an optimal dispatch policy that depends on the real-time queue length and 

reliability status of machines. Thus, the resulting optimal control decisions depend on the real-time status of 

a system.  

When researchers attempted to solve large control problems through queuing and dynamic optimization 

methods, they started to encounter the curse of dimensionality of MDP. To address this phenomenon, an 

effective approach is to decompose a large system into several subsystems. Meyn (2005) finds that a 

deterministic workload for stochastic network models provides the upper and lower bounds for controlled 

Brownian motion. Archibald (2007) uses transshipment policies as a means to decompose large decision 

problems. Wu et al. (2008) propose a decomposition algorithm to break down serial production lines into 

several two-stage subsystems. For a sustainable hybrid flow shop, Shi et al. (2019) develop a genetic algorithm 

(GA) for multi-objective dynamic scheduling problems through the multi-agent approach. Xia et al. (2019) 

propose a decomposition method using generalized exponential distribution to analyze a transfer line. The 

decomposition method considers unreliable buffer with time-dependent failures. 

However, solving dynamic production control problems in large systems remains computationally 

infeasible even with a decomposition algorithm (Puterman, 1994). Therefore, researchers have used neural 

networks to study the applicability of simple heuristic dispatching rules. Mouelhi-Chibani and Pierreval (2010) 
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propose a real-time dispatching method using an artificial neural network. Olafsson and Li (2010) study a 

learning method to choose optimal dispatching rules through a decision tree. Shiue (2009) uses support vector 

machines to develop a dynamic dispatching mechanism for shop floor control problems. Priore et al. (Priore, 

Parreno, Pino, Gomez, & Puente, 2010) propose a neural network approach to learn scheduling rules from 

simplified production systems. Zhang and Wang (2016) develop a multi-agent hierarchical heuristic for the 

scheduling of re-entrant manufacturing systems. For distributed manufacturing systems, a cloud-based 

framework allowing effective planning and scheduling is proposed in Mishra et al (2016). Instead of learning 

from optimal dynamic control policies, the aforementioned studies use heuristic approach and are bound to 

performance loss due to the limited information brought by simple heuristics.  

Reinforcement learning (RL) is another machine learning approach for the dynamic control of large 

systems. RL, also known as approximate dynamic programming, starts by estimating the value functions of 

dynamic programming. In this area, many researchers have used neural networks as their supervised value 

function approximation tool. Marbach and Tsitsiklis (2001) propose an approximation of policies by Q-factors 

through neural networks, but their method may suffer from slow convergence. Tsitsiklis and Van Roy (1999) 

develop a linear approximation to fit value function instead of using a restriction-fixed policy. RL is also used 

in control problems. For example, Marbach, Mihatsch, and Tsitsiklis (2000) use a classic neural network as a 

simulator to solve the admission control problem in single-link service networks. Simester, Sun, and Tsitsiklis 

(2006) use RL to find the optimal mail order, and the model converges to the long-run optimal solution. Aydin 

(2000) presents an RL method for dynamic job-shop scheduling problems using the agent search method. 

Zhou et al. (Zhou, Wu, & Yu, 2017) combine RL and DNN in a dispatching problem, in which DNN is used 

to evaluate the value function. All the aforementioned studies on RL learn from the value function or the Q 

function of an MDP model. However, their limitation is that the learning process must be repeated after system 

configuration changes due to the barrier between MDP models. The same remodeling issue also exists in these 

RL studies; thus, modeling and solving a large dynamic optimization problem are frequently required.  

While manufacturing efficiencies are oftentimes hampered by configuration changes and various 

uncertain factors, our research shows the potential of artificial intelligence methods in dynamic production 

control. To eliminate the need for frequent model solving, the major contribution of the current research is to 

develop a new artificial intelligence (AI)-based method that instantly generates new control policies after 

system configuration is changed. By combining DNN with MDP, we establish neural networks to learn from 

the optimal dynamic control policies generated by MDP. The relationship between optimal control policies 

and system configurations is characterized by the trained DNN. When a new system configuration is 

introduced, the trained DNN model becomes an effective predictor for the new optimal policy.  

Compared with the existing literature, the major contributions of the current research are as follows. 

1. The proposed AI method is effective in overcoming problems caused by the curse of dimensionality. In 

contrast with typical RL approaches that learn from value functions, the proposed DNN is formulated to 

learn directly from the control policy space that represents the optimal dynamic control of small systems. 

The DNN is demonstrated to be fast and effective in predicting optimal policies in large problems.  
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2. The proposed AI method is reusable after system configuration is changed. Thus, the AI method 

overcomes the drawback of traditional MDP methods that are required to build and solve new models 

after system parameters are changed.  

3. Instead of learning from human decision makers, the proposed DNN learns directly from optimal control 

policies generated by dynamic programming. Thus, it prevents the possible bounded rationality of human 

decision makers. The DNN can generate near-optimal control policies in large systems. In our numerical 

validation, the average gap is less than 2% compared with that of optimal control policies. 

4. The proposed AI approach can immediately generate dynamic production control policies and allow easy 

integration into existing manufacturing execution systems. Thus, high-quality dynamic control is possible 

in the production environment.   

3. Problem and Model Formulation  
In this research, MDP is used to generate optimal dynamic dispatching policies in a re-entrant workstation 

with dedicated and flexible machines. The objective of the MDP model is to minimize the long-run weighted 

average cycle time when machines are unreliable and subject to random failures. In the re-entrant line, all jobs 

visit the workstation twice to finish two different operations (Fig. 1). 

 
Fig. 1 Dispatching of flexible machines in a re-entrant system  

Nattaf et al. (Nattaf, Dauzere-Peres, Yugma, & Wu, 2019) report that in semiconductor and other reentrant 

production systems, not every machine is qualified for all operations due to quality constraints and other 

process considerations. Thus, in our MDP model, several machines are dedicated to either the first or second 

operation, whereas other machines are flexible and can be dynamically allocated to process both operations. 

To minimize weighted average cycle time in dynamic dispatching problems, different priorities are assigned 

to upstream and downstream jobs depending on the real-time status of a system. In consideration of machine 

failures, dispatching decision not only depends on real-time queue length but also on machine health status. 

In the literature, MDP is an effective tool for the dynamic dispatching problem and can save average cycle 

time by up to 70% compared with several simple heuristics that are commonly used in production systems 

(C.-H. Wu et al., 2006). 
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Given that the MDP and DNN models require a clear definition of state and action variables, the MDP 

model should be defined first before we can introduce the proposed DNN approach. The major contribution 

of this research is the AI-based approach, and the MDP dispatching model is similar to that of Wu et al. (C.-

H. Wu et al., 2006). Thus, although the MDP model is defined clearly in the next section, it is not discussed 

in detail. Interested readers may refer to Wu et al. (C.-H. Wu et al., 2006) for an in-depth discussion of the 

MDP dispatching model. 

3.1 MDP model for the dynamic dispatching problem 
System parameters are defined as a combination of pivotal features, such as the maximum number of 

parallel machines in each workstation, the service rate of machines, the reliability of machines, and the arrival 

rate of jobs. The notations used in our model are summarized in Table 1.  

Table 1 Nomenclature 

Notation Introduction 

𝑖 𝑖 ∈ ሼ1,2,3ሽ, machine groups 𝑖 = 1, dedicated machines for upstream operation 1 𝑖 = 2, dedicated machines for downstream operation 2 𝑖 = 3, flexible machines for operations 1 and 2 

𝑗 𝑗 ∈ ሼ1,2ሽ, operations 𝑗 = 1, upstream operation 1 𝑗 = 2, downstream operation 2 𝑇 Planning horizon 𝑇 ∈ ሼ1,2, … ሽ 𝑄௝ Queue length for operation 𝑗, 𝑗 ∈ ሼ1,2ሽ 𝑄௝௠௔௫
 Upper bound of queue length 𝑗, 𝑗 ∈ ሼ1,2ሽ 

𝐶௛ 

Waiting cost rate of downstream operation 2 

(Without losing generality, the waiting cost rate of upstream operation 1 is 

assumed to be 1.) 𝜆 Job arrival rate at operation 1 𝜇௜ Service rate for machines in group 𝑖  

𝑏௜ Failure rate for machines in group 𝑖, 𝑏௜ = ଵெ்஻ி೔ 
defined by the mean time between failures (MTBF) of a machine  

𝑟௜ Repair rate for machines in group 𝑖, 𝑟௜ = ଵெ்்ோ೔ 
defined by the mean time to repair (MTTR) of a machine 𝑅𝐿௜ Reliability of machines in group 𝑖  

(portion of time when a machine is available in the long run) 𝑀௜ Number of available machines in group 𝑖, 𝑀௜ ∈ ሼ0,1, … ,𝑀௜௠௔௫ሽ 𝑀௜ changes in real time with machine health 
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𝑀௜௠௔௫ Number of machines in machine group 𝑖  

𝑎௧ Dispatching decision for flexible machines:  

If 𝑎௧ = 0, then assign a higher priority to upstream operation 1.   

If 𝑎௧ = 1, then assign a higher priority to downstream operation 2. 

Remark: Mean time between failures (MTBF), mean time to repair (MTTR), and reliability of machines are 

interchangeable on the basis of the following equation: 𝑅𝐿௜ = ெ்஻ி೔ெ்஻ி೔ାெ்்ோ೔ ,∀𝑖 ∈ {1,2,3} . 
 

In the current research, manufacturing decisions are made in real time after every manufacturing event. 

To perform real-time control after manufacturing events, Lippman (Lippman, 1975) recommends adopting 

uniformization to transform a continuous-time control problem into a discrete-time equivalent model that can 

be solved efficiently. The uniformization rate 𝜑 used to derive the transition probabilities is defined as 

𝜑 = 𝜆 + ෍𝑀௜௠௔௫ ∙ (𝜇௜ + 𝑏௜ + 𝑟௜)ଷ
௜ୀଵ . 

In the discrete-time equivalent model, the time index 𝑡 represents a decision epoch that corresponds to 

each manufacturing event, which includes job arrival, service completion, machine failure/repair, and dummy 

events required by uniformization. The discrete-time equivalent MDP model is then solved through the 

commonly used value iteration algorithm with a time resolution that reaches the level of each manufacturing 

event. In accordance with Proposition 6.6.3 of Sennott (Sennott, 1998), the value iteration algorithm converges 

under our model assumptions to an optimal stationary control policy that assigns an optimal decision for every 

possible state at each decision epoch. As pointed out by Serfozo (Serfozo, 1978), the solution of the discrete-

time model is equivalent to the optimal control policies of the continuous-time problem and can be adopted 

for the state-dependent real-time control of manufacturing systems. 

Other key elements of the MDP model are defined as follows: 

 Infinite planning horizon: 𝑡 ∈ {1,2, … } 

 The state at time t is denoted as 𝑆௧ = (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧). 

 Probability of job arrival: 𝑃ଵ = 𝜆/𝜑   

 Probability of job completion of dedicated machines in group 1: 𝑃ଶ = (min {𝑄ଵ,𝑀ଵ} ∙ 𝜇ଵ)/𝜑 

 Probability of job completion of dedicated machines in group 2: 𝑃ଷ = (min {𝑄ଶ,𝑀ଶ} ∙ 𝜇ଶ)/𝜑         

 Probability of job completion of flexible machines in group 3 when 𝑎௧ = 0: 𝑃ସ = (min {𝑄ଵ,𝑀ଷ} ∙ 𝜇ଷ)/𝜑 

 Probability of job completion of flexible machines in group 3 when 𝑎௧ = 1: 𝑃ହ = (min {𝑄ଶ,𝑀ଷ} ∙ 𝜇ଷ)/𝜑 

 Probability of machine breakdown among group 1 dedicated machines: 𝑃଺ = (𝑀ଵ ∙ 𝑏ଵ)/𝜑 

 Probability of machine breakdown among group 2 dedicated machines: 𝑃଻ = (𝑀ଶ ∙ 𝑏ଶ)/𝜑 

 Probability of machine breakdown among group 3 flexible machines: 𝑃 = (𝑀ଷ ∙ 𝑏ଷ)/𝜑 

 Probability of repair completion among group 1 dedicated machines: 𝑃ଽ = ((𝑀ଵ௠௔௫ − 𝑀ଵ) ∙ 𝑟ଵ)/𝜑 

 Probability of repair completion among group 2 dedicated machines: 𝑃ଵ଴ = ((𝑀ଶ௠௔௫ − 𝑀ଶ) ∙ 𝑟ଶ)/𝜑 
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 Probability of repair completion among group 3 flexible machines: 𝑃ଵଵ = ((𝑀ଷ௠௔௫ − 𝑀ଷ) ∙ 𝑟ଷ)/𝜑 

 Probability of the state remaining unchanged (dummy transition probability): 𝑃ௗ௨௠௠௬ = 1 − ∑ 𝑃௜ଵଵ௜ୀଵ  

The cost function consists of the holding costs at each of the queue and can be denoted as C(𝑆௧) = 𝑄ଵ + 𝐶௛ ∙𝑄ଶ.                 

Then, the boundary condition, 𝑉ேାଵ∗ (𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ) = 0, is defined. The backward optimality equation 

can be iteratively defined as  

 𝑉௧∗(𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧) = 𝐶(𝑆௧) + min௔೟∈{଴,ଵ} ൜{(1 − 𝑎௧) ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧))+𝑎௧ ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ − 1,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧)) ൠ +𝑃ଵ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ + 1,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧) +   𝑃ଶ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧) +𝑃ଷ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ − 1,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧) + 𝑃଺ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ − 1,𝑀ଶ௧ ,𝑀ଷ௧) +𝑃଻ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ − 1,𝑀ଷ௧) + 𝑃 ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ ,𝑀ଷ௧ − 1) +𝑃ଽ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ + 1,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ଵ଴ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧ + 1,𝑀ଷ௧) +𝑃ଵଵ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧ + 1) + 𝑃ௗ௨௠௠௬ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧). 

 The backward value iteration algorithm is then used to compute the optimal dynamic dispatching solution 

for each group of system parameters following Puterman (1994). The optimal action 𝑎௧∗(𝑆௧) of the current 

state can be formulated as 𝑎௧∗(𝑆௧) =argmin௔೟∈{଴,ଵ} ൜{(1 − 𝑎௧) ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ − 1,𝑄ଶ௧ + 1,𝑀ଵ௧,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧,𝑀ଶ௧ ,𝑀ଷ௧))+𝑎௧ ∙ (𝑃ସ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ ,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧) + 𝑃ହ ∙ 𝑉௧ାଵ∗ (𝑄ଵ௧ ,𝑄ଶ௧ − 1,𝑀ଵ௧ ,𝑀ଶ௧,𝑀ଷ௧)) ൠ. 
Then, we present two numerical examples with the model parameters listed in Table 2 to illustrate the 

optimal dispatching policies generated from the MDP model.  

Table 2 System parameters used in the illustrative examples 

System Parameter Set 1: (corresponds to the optimal policy in Fig. 2) 
Job Arrival Rate, 𝜆 10 
Upstream Holding Cost 1 
Downstream Holding Cost Ratio, 𝐶௛ 0.67 
 𝑀𝑇𝐵𝐹௜ Service Rate (𝜇௜) Reliability (𝑅𝐿௜) Number of Machines 

(𝑀௜௠௔௫) 
Group 1 Machines 40 5 0.95 2 
Group 2 Machines 40 5 0.95 2 
Group 3 Machines 40 5 0.95 2 
 
System Parameter Set 2: (corresponds to the optimal policy in Fig. 3) 
Job Arrival Rate, 𝜆  8.58 
Upstream Holding Cost 1 
Downstream Holding Cost Ratio, 𝐶௛ 0.75 
 𝑀𝑇𝐵𝐹௜ Service Rate (𝜇௜) Reliability (𝑅𝐿௜) Number of Machines 

(𝑀௜௠௔௫) 
Group 1 Machines 35 4 0.85 2 
Group 2 Machines 35 4 0.85 2 
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Group 3 Machines 35 4 0.85 2 
 

To plot higher-dimension optimal policies into 2D graphs, we need to reduce the dimension by fixing the 

number of available machines in each machine group. After fixing the number of machines, we can then plot 

optimal decisions that correspond to changes in queue lengths. In both examples, the number of available 

machines varies from 0 to 2 because the maximum number of machines per machine group is two. Therefore, 

the visualization method introduced earlier provides 3 × 3 × 3 = 27 decision graphs for both examples. In Figs. 

2 and 3, the X-axis represents the queue length of upstream operation 1 and the Y-axis represents the queue 

length of downstream operation 2. We can then visualize the optimal policy under different numbers of 

available machines in Figs. 2 and 3. Each sub-decision graph shows the optimal decision under different 

combinations of available machines. In Figs. 2 and 3, the optimal action is to assign higher priority to operation 

1 in darker areas. Notably, the number next to each sub-decision graph represents the number of available 

machines in each machine group, as shown in Fig. 2. 

 
 Illustrative sub-decision graph (222): All machine groups have two available machines.  

 

222 machines are available in machine 

groups 1, 2, and 3. 

Higher priority to operation 1 

(dark-colored area) 

Downstream operation 2 queue 

length 

Upstream operation 1 queue length  

Higher priority to operation 2 

(light-colored area) 
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Fig. 2 Visualization of the optimal dispatching policy (system parameter set 1) 

 
Fig. 3 Visualization of the optimal dispatching policy (system parameter set 2) 

The barrier between dynamic programming models is a major challenge in dynamic production control. 

This barrier can be visualized by comparing the optimal policy graphs in Figs. 2 and3. The comparison of the 

two system parameter sets in Table 2 indicates that the numbers of machines in each machine group are the 

same, but other parameters are changed by 10%–20% in the second parameter set. Given that both systems 
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have six machines, the state space contains 140,454 states when the queue capacity is set to 50 for operations 

1 and 2. Among the 140,454 states, 95% of the optimal decisions are the same. However, Fig. 4 shows that 

when no machine, 2 machines, and 1 machine are available in machine groups 1, 2, and 3, respectively, the 

dispatching decisions vary. Such difference is the so-called barrier between dynamic decision models. This 

barrier is observable after a mere 10% change of parameters.   

 
Optimal decisions for parameter set 1 

 
Optimal decisions for parameter set 2 

Fig. 4 Barrier between MDP models: Optimal decisions vary with system parameters 

(0/2/1 machines are available in machine groups 1/2/3, respectively) 

 

As shown in Figs. 2–4, minor changes in system parameters may lead to different optimal dispatching 

decisions. Given that the number of machines remains unchanged, the state space remains the same in Figs. 2 

and 3. However, if we install another machine or change the qualification of machines, then the state space 

will differ, the barrier between models will be even more significant, and the computer code for solving the 

model may require rewriting.  

Moreover, due to the curse of dimensionality of MDP, the required computational time for solving the 

dynamic dispatching problems increases exponentially with the number of machines as shown in Fig. 5. When 

configuration changes are frequent, both the curse of dimensionality and the barrier between dynamic 

programming models limit the use of dynamic control methods in the production environment. 
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Fig. 5 Computational time increases with the number of machines in dynamic dispatching problems 

 

3.2 DL approach for the dynamic dispatching problem 
This research plans to develop a DL approach that can overcome the barrier between models and the 

curse of dimensionality shown in Figs. 2–5. We introduce the DL approach for the dynamic dispatching 

problem in this section. We begin by explaining why DNN can be used as an efficient predictor for optimal 

policies under different system configurations. Then, we describe how hyper-parameters, or parameters set 

prior to training, are selected and how training processes are implemented. This study uses various designs of 

optimal policy training samples to construct different DNNs. Discrete event simulation models are used to 

determine the performance difference between the dispatching policies predicted by the DNN and the optimal 

dispatching policies generated by dynamic programming. The standard K-fold cross-validation test (K-cv test) 

for machine learning is also used to test the prediction accuracy of the DL result. 

The major difference between a classical artificial neural network (CANN) and DNN is uncomplicated. 

A commonly used CANN is a feedforward architecture with three fully connected layers: the input, hidden, 

and output layers. Backpropagation and stochastic gradient descent are used as the major algorithms to update 

weights between any linked neurons. Hornik, Stinchcombe, and White (1989) prove that the neural network 

is a universal approximator on the basis of this architecture. Compared with CANN, DNN introduces 

additional hidden layers and enables better fit to a complex nonlinear problem. However, given that we 

increase number of hidden layers, the performance of the model does not improve because of the vanishing 

gradient problem. Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014) propose an extremely 

effective method of training a neural network with many hidden layers without suffering from the vanishing 

gradient problem by randomly dropping out neurons while training. DL has achieved remarkable results in 

many fields following the aforementioned research. First, DL is widely used in image processing and 

classification. Krizhevsky, Sutskever, and Hinton (2012) construct a deep convolutional layer network with 

five convolutional layers to classify more than one million high-resolution images. Szegedy et al. (2015) 

propose a deep convolutional network with 22 layers for image classification. DNN is also used in 

optimization applications. Martens and Sutskever (2011) present an application of Hessian-free optimization 

using DL.  

As shown in Fig. 6, we use DNN to learn from a large optimal policy dataset that contains low-

dimensional optimal dispatching policies. If DNN can characterize the influence of model parameter changes 

on the optimal policy, then it can be used to predict optimal policies after a change occurs in system 

configuration. Moreover, the trained weights of DNN can be recorded, stored, and reused. Once a DNN for 

predicting an optimal policy is built, it can yield the best control action for each state depending on the real 

time system state. Hence, the barrier of being unable to reuse different dynamic programming models is 

overcome. When more machines are added, the state space of the MDP model increases and the curse of 
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dimensionality prevents the efficient resolution of the MDP model. An effective DNN policy predictor may 

rapidly generate predicted policies and eliminate the need to solve a time consuming large scale MDP model.  

 
Fig. 6 DL framework for predicting the optimal control policies of different systems 

 

In the proposed DNN model, the training data are the optimal dispatching policies under different system 

configurations. System configurations refer to the parameters or settings of a system, such as the 

MTBF/MTTR of machines, product mix, demand arrival processes, number of machines installed, and 

product–machine dedications. Optimal control policies assign a state-dependent dispatching decision for each 

and every possible system state in the state space, which is defined by the real-time WIP distribution and 

machine availability/reliability status, as shown in Figs. 2 and 3. When a new product or system configuration 

is introduced or observed, the optimal control problem must be solved again frequently to generate the 

corresponding new control policy. 

In modern low-volume and high-mix (LVHM) production environments, training data should be readily 

available. Given that configuration changes, such as product mix changes or new product introduction, are 

frequent in LVHM systems, control problems under different configurations have been solved many times in 

the past. These historical control policies can serve as the required training data for the DNN model. By 

contrast, if historical control policies are not readily available, then training data can be generated by solving 

the MDP control problems under different synthetic configurations by increasing/decreasing the numbers of 

machines, MTBF, MTTR, or product mix. In this research, for example, our industry partner cannot provide 

all the historical control policies; thus, training data are generated by solving the MDP model under different 

configurations.  

 3.3 Representing Dynamic Policy Space: Training Dataset for DNN 
 To illustrate the potential of the DNN approach in dynamic production control, we build a knowledge 

space that allows DL to predict the best decisions for large systems (each workstation has four to five machines) 

by learning the optimal decisions for small-scale systems (each workstation has one to three machines). To 
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generate the training dataset, we use the Taguchi (1986) mixed orthogonal experimental design to generate a 

number of system parameter sets with one to three machines in each machine group. We then use the MDP 

model to solve the optimal dispatching problem for each set of system parameters and merge the results into 

a data file to construct the low-dimension optimal policy space. The low-dimension policy space can then be 

used by the DNN to learn the variations in system parameters by changing preconditions.  

The sets of system factors and parameters with one to three machines in each machine group are provided 

in Table 3. The factors in Table 3 are used to generate the optimal policy space with 300 different systems.  

Dataset 1: We generate 150 sets of small-scale system parameters with less than three machines in each 

machine group using the factors in Table 3 and a near-orthogonal experimental design.  

Dataset 2: Another set of 150 near-orthogonal system parameters that emphasizes the number of 

machines in systems is generated because predicting optimal policies in large systems with more 

machines is a major objective of this study. Among the 150 additional systems, 3 sets of 50 systems are 

generated with exactly (1,1,1), (2,2,2), and (3,3,3) machines in machine groups 1, 2, and 3, respectively. 

Table 3 Factors considered in the experiment 

Factor Levels

{low,relatively low,medium,relatively high,high} 

Arrival rate λ  

(in terms of system utilization) 

𝜆 ∈ {0.7, 0.75, 0.8, 0.85, 0.9} of the capacity  

MTBF of machine group 1 𝑀𝑇𝐵𝐹ଵ ∈ {20, 25, 30, 35, 40} 

MTBF of machine group 2 𝑀𝑇𝐵𝐹ଶ ∈ {20, 25, 30, 35, 40} 

MTBF of machine group 3 𝑀𝑇𝐵𝐹ଷ ∈ {20, 25, 30, 35, 40} 

Reliability of machine group 1 𝑅𝐿ଵ ∈ {0.85, 0.875, 0.9, 0.925, 0.95} 

Reliability of machine group 2 𝑅𝐿ଶ ∈ {0.85, 0.875, 0.9, 0.925, 0.95} 

Reliability of machine group 3 𝑅𝐿ଷ ∈ {0.85, 0.875, 0.9, 0.925, 0.95} 

Service rate of machine group 1 𝜇ଵ ∈ {1, 2, 3, 4, 5} 

Service rate of machine group 2 𝜇ଶ ∈ {1, 2, 3, 4, 5} 

Service rate of machine group 3 𝜇ଷ ∈ {1, 2, 3, 4, 5} 

Holding cost ratio, hC  𝐶௛ ∈ {0.6667, 0.8, 1, 1.25, 1.5} 

max
1M , number of machines in machine 

group 1  

𝑀ଵ௠௔௫ ∈ {1, 2, 3} 

max
2M , number of machines in machine 

group 2 

𝑀ଶ௠௔௫ ∈ {1, 2, 3} 

max
3M , number of machines in machine 

group 3 

𝑀ଷ௠௔௫ ∈ {1, 2, 3} 
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We solve the dynamic dispatching problems for all the 300 systems using Microsoft Visual C# on a 

desktop PC with Intel Core i7 (3.5 GHz), 32 GB DDR3 memory to construct the optimal policy space as 

training data. We then explain how the DNN was implemented to characterize the optimal policy space. 

3.4 DL approach for dynamic dispatching 
The optimal policy space is a vector space that contains millions of states with its different systems and 

state features and the corresponding optimal action. To extract knowledge from the optimal policy space, we 

use TensorFlow as the policy approximator to predict the near-optimal policy of large-scale systems. The 

architecture of the DNN model is illustrated in Figs. 6 and 7. 

The feature vector of the optimal policy space includes the following variables: (𝜆,𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫ ,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ)௧; 
where the DNN approximates the optimal policy via nonlinear mapping 𝑎௧෥  as follows: (𝜆,𝜇ଵ,𝜇ଶ,𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ)௧ → 𝑎௧෥ (𝜆, 𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ); 

and 𝜃௧ denotes all the parameters and weights of the DNN. The training goal is to find 𝜃௧ that minimizes 

loss from the optimal dispatching decision 𝑎௧∗ to the nonlinear mapping 𝑎௧෥ : 𝑎௧∗(𝜆,𝜇ଵ, 𝜇ଶ,𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ) → 𝑎௧෥ ((𝜆, 𝜇ଵ, 𝜇ଶ, 𝜇ଷ,𝑀𝑇𝐵𝐹ଵ,𝑀𝑇𝐵𝐹ଶ,𝑀𝑇𝐵𝐹ଷ,𝑅𝐿ଵ,𝑅𝐿ଶ,𝑅𝐿ଷ,𝐶௛,𝑀ଵ௠௔௫,𝑀ଶ௠௔௫,𝑀ଷ௠௔௫,𝑄ଵ,𝑄ଶ,𝑀ଵ,𝑀ଶ,𝑀ଷ|𝜃௧) . 

For the DNN structure, we refer to the literature and use the following settings.  

 Activation function: The activation function of hidden layer neurons is the rectified linear function (ReLU) 

provided in Nair and Hinton (2010). ReLU is a piecewise linear function that is commonly used in 

classification problems. ReLU can overcome the vanishing gradient problem in deep neural networks 

(DNNs) (Arora, Basu, Mianjy, & Mukherjee, 2016; Ramachandran, Zoph, & Le, 2017). The successive 

use of the nonlinear ReLU function in several hidden layers also allows the DNN to approximate any 

nonlinear function with an arbitrary precision (Leshno, Lin, Pinkus, & Schocken, 1993). In addition, we 

investigated the use of several activation functions, including the hyperbolic tangent and sigmoid 

functions and the combination of activation functions in different layers. Since the numerical results also 

suggest the superiority of ReLU in this specific application of DNN, ReLU is adopted for all the hidden 

layers in the proposed DNN model. 

 Loss function: In this research, cross entropy is adopted as the loss function and the DNN model is trained 

to predict the optimal decision for every state in the state space. Given that each distinct dispatching 

decision can be represented by a different class, the prediction of the optimal decision can be considered 

classification problems. For the classification problems, the cross-entropy loss function is frequently used 

to measure the loss of classification models.  

 Batch normalization: In densely connected DNNs, finding the conditional distribution of a hidden layer 

is difficult given a training data vector. This difficulty leads to an internal covariate shift and hampers 
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training performance. In our research, batch normalization is applied to accelerate training and reduce 

the impact of an internal covariate shift following Ioffe and Szegedy (Ioffe & Szegedy, 2015).  

 Learning rate and random dropout: To prevent overfitting, a random dropout mechanism is used with a 

rate of 0.25 and the batch size of the input vectors is 125 based on Srivastava et al. (2014). We set an 

initial learning rate of 0.25 in DNN training and apply callbacks to save the neural network model before 

it becomes overfitted. Callback is implemented by reducing the learning rates by 30% as shown in Fig. 

7.  

 
Fig. 7 Reducing learning rate to prevent overfitting 

 Optimizers, hidden layers, and number of neurons: Using the first datatset of 150 near-orthogonal systems, 

we test three commonly adopted DNN optimizers, namely, stochastic gradient descent (SGD), adaptive 

moment estimation (ADAM) from Kingma and Ba [32], and RMSprop from Tieleman and Hinton [33], 

to optimize the categorical cross-entropy loss function. We measure the performance of DL by using a 

K-cv test with 30% of the training data for validation. The learning result using different optimizers is 

shown in Figs. 8.a and 8.b, which indicate that ADAM outperforms the other optimizers. Therefore, 

ADAM is selected as our optimizer for DL.  

For the layers and neurons, Heaton [32] states that the optimal hidden layer size is at most the size of the 

input layers and at least the size of the output layers. By using a K-cv test with 30% of the training data 

for validation, Fig. 8.c shows how different structures of DNN influence K-cv accuracy. From the results 

in Fig. 8.c, a DNN with 8 hidden layers with each layer containing 90 neurons is found better performing. 

This DNN achieves 95.12% accuracy, and its structure is used for our remaining computational studies. 
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In the succeeding section, we use discrete event simulation to test the actual performance of the control 

policy and compare dynamic programming with DL. 

 

  
a. K-cv accuracy 

 (Dataset 1: 150 near-orthogonal systems) 

 
 b. Cross-entropy loss under ADAM, SGD, and RMSProp 

(Dataset 1: 150 near-orthogonal systems) 

 
c. Accuracy under different DNN structures  

(Dataset 1: 150 near-orthogonal systems) 

 
d. Accuracy using a combined dataset of 300 systems 

(Datasets 1 and 2: 150 near-orthogonal systems and additional 

150 systems) 

Fig. 8 Training performance of different optimizers, DNN configurations, and datasets 

Using the hyperparameters selected earlier, we train the same DNN with 8 hidden layers using the 

complete dataset of 300 systems with Datasets 1 and 2. Learning performance is shown in Fig. 8.d. With GPU 

acceleration via nVidia GTX 1060, the computational cost of 1 epoch is 360 s on average when using the 

complete dataset and the overall training time is less than 20 h for 200 epochs. Notably, the performance of 

the trained DNN model improves only slightly after the first 50 epochs, as shown in Fig. 8.d. This finding 

suggests that training time can be reduced further to 5 h if it is a consideration.  

Compared with the learning performance with only 150 sets of near-orthogonal system parameters, the 

K-cv test score improves to 99% in Fig. 8.d from the maximum of 95.12% in Fig. 8.c. Given that the same 

DNN is used, such improvement is achieved by including training Dataset 2. This result suggests that training 

dataset selection and the structure of a neural network are important in knowledge extraction through DNN. 
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4. Evaluation of Model Accuracy and Performance 
In this section, we analyze the similarity between the near-optimal policy generated by the DNN and the 

real optimal policy determined by dynamic programming. Thereafter, we construct a discrete event simulator 

to further observe the difference between DL and dynamic programming.  

We randomly generated 15 test systems using the machine and production parameters listed in Table 3. 

Table 4 shows the system parameters used in the 15 test systems. Although the training of the DNN considers 

only up to three machines in each machine group (i.e., 𝑀௜௠௔௫ ≤ 3), the number of available machines can be 

increased to five in each machine group in the 15 test systems. The number of machines M୧୫ୟ୶ in systems 1–

5 uses the same range as that in the training dataset (i.e., 𝑀௜௠௔௫ ranging from one to three in each machine 

group). Test systems 1–5 are named the interpolation test group because the number of machines is 

interpolated within the range of the training dataset. Systems 6–10 are used for the extrapolation test because 

the number of machines 𝑀௜௠௔௫ is randomly generated between four and five although the training data only 

allow up to three machines. Test systems 11–15 are named the complete testing set because the number of 

machines in each machine group is randomly selected from one to five. The interpolation and extrapolation 

of the number of machines are both possible in systems 11–15. In summary, the interpolation test group 

assesses the performance of the DNN model when the system parameters are interpolated within the range of 

the training dataset, whereas the extrapolation test group validates the DNN model performance when the 

system parameters are extrapolated beyond the range of the training dataset. 

 Table 4 Model parameters of the 15 test systems   

 

4.1 Accuracy of the DNN approach 
The accuracy of the DNN approach is measured by the similarity between the policies generated by the 

DNN and the optimal policies generated by MDP. For all 15 test systems, we use the DNN shown in Fig. 8.d, 

which is trained by a complete dataset of 300 systems with 8 hidden layers and 90 neurons in each layer, to 

generate predicted optimal control policies. As shown in Table 5, the DNN takes 10.23 s to generate a predicted 

policy, which is considerably faster than the MDP model, which requires more than 10,000 s to solve large 

problems (e.g., test systems 6–10). As illustrated in Fig. 5, the required computational time is more than 1,000s, 

No. λ u 1 MTBF 1 RL 1 u 2 MTBF 2 RL 2 u 3 MTBF 3 RL 3 Cost2 Mmax 1 Mmax 2 Mmax 3

Interpolation 1 0. 84 1 29 0. 95 4 40 0. 88 1 20 0. 95 1. 13 3 1 1
2 0. 76 3 24 0. 86 5 32 0. 94 2 36 0. 92 1. 22 2 1 2
3 0. 79 1 32 0. 95 1 21 0. 9 1 24 0. 92 1. 49 2 1 3
4 0. 87 5 22 0. 89 2 22 0. 87 1 29 0. 86 1. 35 2 2 1
5 0. 76 3 32 0. 87 1 29 0. 91 3 26 0. 9 0. 86 2 3 2

Extrapolation 6 0. 76 5 39 0. 88 1 23 0. 94 3 20 0. 89 1. 03 5 4 4
7 0. 71 5 24 0. 87 4 30 0. 85 3 23 0. 93 1. 03 4 5 5
8 0. 82 4 28 0. 85 4 38 0. 85 5 26 0. 92 1. 31 4 5 5
9 0. 78 2 32 0. 87 3 35 0. 87 3 24 0. 91 0. 91 4 4 5
10 0. 9 4 28 0. 91 2 26 0. 9 4 29 0. 86 0. 99 4 5 4

Complete Set 11 0. 75 4 35 0. 92 2 23 0. 95 4 23 0. 92 0. 9 3 4 3
12 0. 78 3 39 0. 86 1 30 0. 91 2 26 0. 83 0. 83 4 1 5
13 0. 81 1 39 0. 93 3 24 0. 86 4 20 0. 94 0. 83 3 2 5
14 0. 82 5 23 0. 91 4 32 0. 89 4 23 0. 88 0. 71 4 1 4
15 0. 77 2 20 0. 9 4 38 0. 94 1 25 0. 89 0. 92 4 5 3
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even for small systems with only one machine per machine group, which is still 100 times the DNN output 

time. Thus, in terms of computational efficiency, the DNN provides dynamic control policies nearly instantly 

in our numerical study and is 100–1,000 times faster than MDP models in generating dynamic control policies. 

In addition to computational efficiency, the DNN approach performs well in solution quality. Among the 

15 test systems, the overall similarity between the DNN policy and the optimal policy is 98.36%. In the worst 

case scenario, accuracy is 96.16% in test system 15.  

Table 5 Computation time and accuracy of DNN policy prediction  

 
Notably, the difference between DNN and optimal policies is mostly located at the boundary of dark and 

light areas. Using test system 1 (with an average accuracy of 97.46%) as an example, we plot the comparison 

of the DNN policy and the optimal policy in Fig. 9, where the red areas indicate the difference between the 

two policies. Wu et al. (C.-H. Wu et al., 2006) show that the optimal dispatching decisions switch from one 

action to another after the queue length reaches a certain threshold value because the cost difference between 

two decisions is monotone to queue length. Thus, the boundary areas indicate the region where the cost 

difference between the two decisions is small and predicting the optimal action is relatively difficult for the 

DNN. Given that prediction errors mostly appear at the boundary states where the cost difference is small, we 

strongly believe that the cost difference between the DNN policy and the optimal policy is minimal. Therefore, 

we construct a discrete event simulation model to compare the costs of the two policies.  

Similarity to Optimal DNN output time Correct Prediction Incorrect Prediction
(Accuracy, %) (seconds) # of states # of states

1 97.46% 2.77 40563 1053
2 96.82% 2.99 45328 1490
3 99.82% 3.59 62316 108
4 99.44% 2.93 46557 261
5 99.34% 4.81 93014 622
6 98.29% 16.91 383466 6684
7 98.24% 20.08 459959 8221
8 97.01% 19.94 454206 13974
9 97.47% 17.04 380298 9852
10 97.97% 16.77 382236 7914
11 98.51% 9.47 204969 3111
12 99.85% 7.41 155833 227
13 99.41% 8.66 186181 1091
14 99.59% 6.31 129521 529
15 96.16% 13.74 300150 11970

Average 98.36% 10.23 Total  3234137 Total  79537

System
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Fig. 9 Visualized erroneous decision of the DNN model: Test system 1 in Table 5  

(Please refer to Fig. 2 for the details on the legends and captions of subgraphs.) 

4.2 Performance evaluation using discrete event simulation 
 In addition to model accuracy, the performance of the DNN policy is compared with the optimal policy 

through simulation. We use the eM-plant to implement our discrete event simulator to further verify the 

performance of near-optimal policies. We apply the policies produced from dynamic programming and DNN 

to a plant simulation model. The simulation time is set to 90 days with a 7-day warm-up period. Each 

simulation is repeated 50 times, and the average results are listed in Table 6. The weighted cycle time (i.e., 

inventory holding costs) is the key performance index. 

The results in Table 6 indicate that the holding cost (weighted cycle time) difference between DL and 

dynamic programming is 1.33% on average in the 15 systems. Overall, the difference in weighted cycle time 

is lower than 1% in 8 of the 15 systems, and the difference is less than 5% in all the systems. Given that the 

solution gap is small in all the systems, we can conclude that the DNN model is effective in generating 

dynamic control policies for large systems that may suffer from the curse of dimensionality of MDP. Moreover, 

we conclude that the DNN approach can also break the barrier among MDP models shown in Fig. 5 because 

new policies can be generated instantly after each system configuration is changed. Consequently, the frequent 

requirement to solve MDP models can be eliminated. 

  



21 
 

Table 6 Simulation results: Difference in performance between the DNN policy and the optimal DP policy 
(The 95% confidence interval of the holding costs/weighted cycle time is included)  

 
 

Up-Queue Down-QueuUp-stream down-Stream Flexible

DP 50286.9 13285.1 3062.7 955.1 933.4 1538557 ± 9458

NN 51183.7 13578.3 3104.7 981.8 899.4 1546780 ± 8660

Difference 1.75% 2.16% 1.35% 2.72% -3.78%

DP 951.4 973.2 708 362.6 258.4 101691 ± 2913

NN 899.2 1035.9 704.1 365.2 256.1 102966 ± 2006

Difference -5.81% 6.05% -0.55% 0.71% -0.90%

DP 8601.6 6321.5 2854.6 1549.4 2849.9 247341 ± 11301

NN 8338.4 6394.2 2825.9 1564.2 2789.2 249459 ± 10256

Difference -3.16% 1.14% -1.02% 0.95% -2.18%

DP 588.3 3824.5 719.9 1266.7 482.3 186293 ± 9485

NN 612.2 3777.6 722 1261.7 479.9 187005 ± 6690

Difference 3.90% -1.24% 0.29% -0.40% -0.50%

DP 28529.3 4488 1146.5 1710.2 863.5 1346038 ± 1698

NN 28507.6 4939.9 1145.5 1711.7 864.2 1362536 ± 1937

Difference -0.08% 9.15% -0.09% 0.09% 0.08%

DP 65.6 1735.8 784.9 1283.5 939.8 131571 ± 2389

NN 63.9 1827.9 735.4 1292.6 941.6 138127 ± 2666

Difference -2.66% 5.04% -6.73% 0.70% 0.19%

DP 163.7 220.7 523.9 813.4 661.8 44013 ± 903

NN 133.7 260.9 495.1 845 665.4 45119 ± 1259

Difference -22.44% 15.41% -5.82% 3.74% 0.54%

DP 9271.3 1158.3 746.8 921.1 762.3 1378230 ± 738

NN 9261.9 1259.8 746 922.8 762.6 1395556 ± 699

Difference -0.10% 8.06% -0.11% 0.18% 0.04%

DP 18.7 95.4 1056.7 1221.8 724.5 2707 ± 104

NN 11.1 131.4 1009.3 1268.2 723.5 2824 ± 132

Difference -68.47% 27.40% -4.70% 3.66% -0.14%

DP 10782.6 1683.1 885.5 1106.1 660.9 1345999 ± 3230

NN 10795.8 1676.8 885.1 1105.9 662.1 1348163 ± 3937

Difference 0.12% -0.38% -0.05% -0.02% 0.18%

DP 740.8 1318.8 804.5 1351.3 868.5 114454 ± 3574

NN 659.5 1466.4 789.72 1375.8 869.5 117448 ± 3262

Difference -12.33% 10.07% -1.87% 1.78% 0.12%

DP 1525.9 6649.5 1355.3 468.9 1747.1 349126 ± 10813

NN 1512.6 6471 1351.4 458.4 1794.8 349530 ± 11267

Difference -0.88% -2.76% -0.29% -2.29% 2.66%

DP 17791.4 1539.4 1071.7 666.5 838.7 1269054 ± 507

NN 17858.8 1507.7 1076 668.3 842.3 1267095 ± 427

Difference 0.38% -2.10% 0.40% 0.27% 0.43%

DP 14.3 1901.1 574.5 535.8 644.2 37299 ± 2234

NN 20.3 1790.6 604.7 544.1 661.2 37384 ± 2218

Difference 29.56% -6.17% 4.99% 1.53% 2.57%

DP 792.8 26.7 1411.2 946.4 1226.6 40405 ± 1594

NN 784.9 25.9 1406.5 945.4 1223.8 40514 ± 1423

Difference -1.01% -3.09% -0.33% -0.11% -0.23%

1.24%

Holding Costs ± 95% C.I.

(Weighted Cycle Time)

0.27%

0.23%

-0.15%

2.55%

0.16%

4.16%

2.45%

4.75%

1.21%

0.38%

0.85%

1.24%

0.53%

0.12%
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5. Conclusion and Future Research 
This research combines DNN and MDP for the fast generation of near-optimal policies in large dynamic 

dispatching problems that are traditionally difficult to solve. MDP is used to generate a set of optimal training 

policies in small systems. To construct a meaningful set of training systems, an orthogonal experimental design 

technique is adopted. In contrast with other RL or Deep Q-learning research that learns the characteristics of 

value functions, the proposed DNN learns directly from the representative policy space and serves as an 

effective predictor of near-optimal control policy for larger systems.  

To verify solution quality against optimal policies, the K-cv test is used to examine accuracy and discrete 

event simulation is adopted to compare costs. Compared with the optimal control policies, the overall accuracy 

of the DNN control policies is 98.36% on average. Moreover, the simulation results suggest a cost difference 

lower than 5% between the DNN and optimal policies in all test systems and less than 1.33% on average. The 

findings suggest that the policy produced by the DNN is similar to the optimal policy. The AI approach 

generates policies nearly instantly and is considerably more efficient than the traditional MDP approach.  

This research demonstrates the potential of machine learning in dynamic production control; however, it 

is merely a first step toward the intelligent control of systems. The proposed DNN model learns from existing 

optimal control policies, and can be quickly extended to systems with more than two product types when the 

training data is available. The optimal control for systems with more than two products is itself a research 

challenge and most existing control methods use simple control heuristics for such systems. As a result, the 

optimal control policies that serve as the training data of the DNN cannot be efficiently generated by existing 

methods yet. Thus, although our preliminary numerical results have shown the potential of the proposed DNN 

approach in systems with more products, we limit our numerical analysis to two-product examples. In the 

future, we plan to implement our methods to consider more product types by developing an efficient 

decomposition algorithm for such systems. 

Another limitation of the proposed DNN approach is the 2% gap in solution quality caused by the 

interpolation or extrapolation of system parameters. Further reducing the gap by fine-tuning the DNN model 

is difficult, and the possibility of using different neural network structures can be explored to improve model 

accuracy. Thus, we plan to combine the off-line DNN approach with online RL. After a quick adoption of off-

line policies generated by the DNN model along with configuration changes, an online learning approach will 

be developed in the future to improve solution quality and eliminate the solution gap over time. 

Moreover, in this study, we investigated a two-station production system with a fixed routing. Some of 

the machines are flexible and can be assigned to each of the two workstations. The proposed DNN is trained 

to effectively predict the optimal dynamic dispatching decisions of flexible machines. After adding new 

machines or introducing new products, the DNN generates predicted policies that are within 2% of the optimal 

range, thereby eliminating the need to solve large MDP problems. However, the DNN model needs to undergo 

the model training processes again when there are changes in the production system layout, such as additional 

workstations. DNN retraining can help in capturing new optimal control characteristics under the new 
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production system layout. We will develop transfer learning methods in future studies to accelerate DNN 

retraining. 
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