

Betwixt and between

Software in telecommunications and the programming
language Chill, 1974 - 1999

by

Gard Paulsen

A dissertation submitted to BI Norwegian Business School
for the degree of PhD

PhD specialisation: Innovation and Entrepreneurship

Series of Dissertations 8/2011

BI Norwegian Business School

Gard Paulsen

Betwixt and between: Software in telecommunications and the programming
language Chill, 1974 - 1999

© Gard Paulsen
2011

Series of Dissertations 8/2011

ISBN: 978-82-8247-031-5
ISSN: 1502-2099

BI Norwegian Business School
N-0442 Oslo
Phone: +47 4641 0000
www.bi.no

Printing: Nordberg Trykk

The dissertation may be downloaded or ordered from our website
www.bi.no/en/Research/Research-Publications/

iii

Contents
TABLE OF FIGURES .. V

ACKNOWLEDGMENTS .. VI

1. INTRODUCTION ... 1

HISTORIOGRAPHY ... 7
THEORIES ... 15
METHODS ... 29
SOURCES .. 33
OUTLINE ... 37

2. WHEN SWITCHES BECAME PROGRAMS:
TELECOMMUNICATION AND COMPUTING, 1965 - 1974 39

PROGRAMMING LANGUAGES IN SCIENCE AND INDUSTRY 40
SOFTWARE ENGINEERING ... 47
PROGRAMMING SWITCHES .. 50
INTERFACES AND INTERACTION .. 54
CLOSER TO THE MACHINE ... 57
COMPUTING AND THE INTERNATIONAL TELECOMMUNICATION REGIME 62
STATE OF THE ART .. 67
SOME CONCLUSIONS ... 69

3. CONTESTED DESIGNS: AGREEING ON A PROGRAMMING
LANGUAGE FOR TELECOMMUNICATION .. 71

A TEAM OF SPECIALISTS? ... 72
COORDINATING CONTESTATIONS.. 80
MAINTAINING COMPATIBILITY ... 85
ORCHESTRATING AGREEMENTS .. 87
DESCRIPTIONS AND ALIGNMENTS ... 89
POSTPONED DEADLINES AND DELAYED CONCEPTS ... 92
THE STRUCTURE OF COLLABORATION... 96
SOME CONCLUSIONS ... 103

4. COMPROMISE AND COMPLEXITY: THE IMPLEMENTATION OF
A PROGRAMMING LANGUAGE ... 107

DESIGN, IMPLEMENTATION AND FEEDBACKS .. 108
IMPLEMENTING STRUCTURE ... 113
COMPILING CHILL .. 121
NORDIC COOPERATION AND COMPETITION ... 124
COMPILATION IN THE ITT ... 128
CONCURRENT PROCESSES AND DECISIONS .. 130
FORMAL DEFINITION ... 137
TRAVELLING IN CHILL .. 141

iv

“THERE NEED NOT BE A CONFLICT” – CHILL MEETS ADA 143
SOME CONCLUSIONS ... 149

5. LARGE ORGANISATIONS AND LARGE SYSTEMS: THE USE OF
CHILL IN LARGE TELECOMMUNICATION MANUFACTURERS 151

PROGRAMMING SYSTEMS ... 152
CHILL IN THE ITT ... 154
ENCOUNTERING C – CHILL, PHILIPS AND THE AT&T ... 160
EARLY ADOPTERS AND EVOLUTIONS AT SIEMENS .. 168
TAKING ON THE WORLD ... 170
SOME CONCLUSIONS ... 174

6. ADVANCES AND REJECTIONS: ADMINISTRATIONS,
COMMUNITIES AND THE STRUGGLE FOR DIFFUSION 177

COMMITMENTS ... 177
AMBIGUITY AND NEGATIVITY... 181
BETRAYED FROM WITHIN ... 183
MODULAR IMPROVEMENTS... 189
COORDINATED EMERGENCE ... 194
THE CIRCULATION OF KNOWLEDGE .. 201
CROSSING BOUNDARIES? .. 206
SOME CONCLUSIONS ... 208

7. POSSIBILITIES AND OPPORTUNITIES: ENTERING MARKETS
WITH CHILL .. 211

THE “ANCIEN REGIME” AND THE NEW BEGINNING .. 211
NEW VENTURES AND NEW ENVIRONMENTS .. 213
ENTREPRENEURSHIP, COMMUNITIES AND KNOWLEDGE 218
SPINNING OFF ... 221
ENTERING THE MARKET .. 228
HARD TIMES ... 234
THE VIABILITY OF INDEPENDENT VENDORS .. 240
THE LONG POSTLUDE .. 242
SOME CONCLUSIONS ... 246

8. CONCLUSIONS ... 249

THE DIRECTION OF TECHNOLOGICAL CHANGE .. 252

APPENDIX 1 ... 259

APPENDIX 2 ... 260

ARCHIVAL SOURCES ... 263

INTERVIEWS ... 264

PRINTED SOURCES .. 265

v

Table of figures
Figure 2.1 Programming languages and the levels of abstractions 42
Figure 2.2 Machine-oriented higher-level languages 47
Figure 3.1 The Team of Specialists. ... 79
Figure 3.2 The CCITT Study Group XI meeting in 1976. 95
Figure 3.3 Participants in the Team of Specialists. 101
Figure 3.4 The Team of Specialists, affiliations to meetings...................... 102
Figure 4.1 Phases of compilation .. 111
Figure 4.2 Frequent participants in the Implementors’ Forum. 117
Figure 4.3 Participants and meetings in the Implementors’ Forum. 118
Figure 5.1 Temptations in research and realities of telecommunications. .. 163
Figure 5.2 The bridge that almost was. ... 166
Figure 7.1 Chipsy as of 1993 .. 230

Figure 3.1 is reproduced with the permission of Kristen Rekdal.
Figure 3.2 is reproduced with the permission of Remi Bourgonjon.
Figures 5.1 and 5.2 are reproduced with the permission of Kees Smedema.
Figure 7.1 is reproduced from Telektronikk 2/3 (1993), with permission of
the article author, Kristen Rekdal.
Figures 2.1, 2.2 and 4.1 were created by Magnus Voll Mathiassen.

vi

Acknowledgments
For one who has spent most of his life listening to sounds, noises and music,
it is a strange feeling handing in a thesis about a subject that is, in many
respects, mute: neither history nor software reverberates much by itself,
regardless of their perceived weight. Luckily, this thesis has not been made
in silence or in an anechoic chamber. To those who have listened to my often
confused ideas and questions, and to those who have given answers, advice
and encouragement, I wish to express my gratitude. Without you, neither the
history nor I would have been able to make much of an utterance.

This thesis has been supported by a scholarship from the BI
Norwegian Business School. The department of Innovation and Economic
Organisation has been a most stimulating working environment. All the
members of the Center for Business History have provided me with inspiring
discussions, insights and good spirits. The indefatigable Knut Sogner has
supervised my work. His knowledge, encouragement and sheer work ethic
have been incredibly motivating. Lars Thue, who has supported my work
from the day I started out as a masters’ student at the University of Oslo, has
been an ever-present inspiration. My peer doctoral scholars in BI’s doctoral
programme have been great sources of encouragement and assistance.

Throughout the years, I have been helped by many. At the ITU
archive in Geneva, I was given important help and advice from the head of
the library and archive service, Kristine Clara. In Trondheim, Pål Tonstad
Sandvik hosted me at the Norwegian University of Technology and Science
(NTNU) when I was looking for sources. Svein Henrik Pedersen, also at the
NTNU, voluntarily put boxes upon boxes of archival material in the back of
his car and got them safely to Oslo, some 500 kilometres south. Also at the
NTNU, the historian Ola Nordal helped me trace down lost files.

Throughout the process of research, I have received comments and
advice from a number of eminent scholars. My loose association with the
Tensions of Europe’s SOFT-EU project provided me with numerous chances
to receive comments from and listen to scholars with a keen interest in the
history of software, often in great locations like Grenoble, Amsterdam and
Lisbon. Gerard Alberts and David Nofre have been ever so kind to
accommodate me in this group. At the annual conference of the Society of
the History of Technology (SHOT), I have received important comments on
very rough drafts from a number for commentators. Pascal Griset and Tom
Haigh read a sketch of what became a chapter in this thesis. Their advice
was invaluable. Peter B. Meyer, whom I also met at SHOT, was a great
discussant and our long mail exchanges were always stimulating.

Long before this thesis found its subject, I received help from and was
allowed generous interviews with Erick Chambe-Eng and Paul Olav Tvete,
then of the Norwegian software firm Trolltech. While the subject of my

vii

thesis led me astray from Trolltech, these early interviews were a huge
inspiration. The many changes at Trolltech after these early interviews were
conducted have also been an invaluable reality check for an historian,
constantly reminding me of how quickly things change and how long a year
can be, when experienced in real time.

Throughout the process of writing this thesis, I have received plenty of
help related to writing, as I quickly found out that English was not as easy to
write as I had first envisioned. At an early stage, Knut Kirknes and Marius
Bakke corrected my faulty language to great effect. In the last round, Simon
Niziol has brought the language up to scratch. His effort and professionalism
have been very important and greatly appreciated. Erik Aadland, a peer
doctoral fellow at BI, helped me out when I had to grasp a completely
different language, namely that of statistics and structured equation
modelling. I would have been lost without his help.

Most importantly, many participants in the history I have looked into
have been very helpful and generous with their time. Many hours have been
spent in conversations with interesting and knowledgeable people, both in
Norway, in the Netherlands and over the wires. All help, answers and
comments have been greatly appreciated. Most importantly was the
generosity shown by Kristen Rekdal. Without his collection of papers,
documents and communications, this thesis would have been something
completely different. The trust he showed me when allowing me
unconditional access to this material will remain unsurpassed.

The care, encouragement and patience showed by my friends, family
and loved ones have meant the world to me. Just like the sounds, noises and
music of the everyday, I could not have survived without them.

viii

1

1. Introduction

This thesis studies the creation, use and ultimate demise of a rather peculiar
high-level programming language named Chill.1 It was peculiar in its origin,
a United Nations specialised agency. It was peculiar in its application area,
which was programming of large-scale telecommunication switches. It was
also peculiar in its process of realisation, which was done within an
international committee, consisting of a number of computer scientists,
telecommunication experts and bureaucrats from different organisations and
countries. The negotiations went on inside the committee for almost six
years before the language was unleashed in 1980, as an official
recommendation of the International Telecommunication Union (ITU).2

By 1990, Chill was the only programming language that was common
to more than one of the major public telecom switching systems that were in
use. By that time, more than 12,000 programmers had used the language in
one way or another.3 20 years after its inception, by the late 1990s, Chill was
a marginal technology. It was almost close to extinction. No new software
developments were made with the language and by 1999 the ITU published
what was to be the last maintained version of Chill.4 Still, legacy Chill code
lives on in telecommunication systems that continue to run today. This thesis
explains how and why the telecommunication industry first handed over the
responsibility for a key technology to a group of programming language
designers, and then how it readily would apply the results, only to abandon
the technology a few years later.

1 CHILL is an acronym for CCITT High Level Language. CCITT was, in turn, an
abbreviation for Comité Consultatif International Télégraphique et Téléphonique
(the International Telegraph and Telephone Consultative Committee), which was the
technical wing of the International Telecommunication Union (ITU). CCITT is now
the ITU’s Telecommunication Standardization Sector (ITU-T), but I will use the
term CCITT throughout this thesis. For reasons of readability, I will not capitalise
the name Chill in the running text. This follows the typographical conventions for
the rest of the thesis: names that are more or less pronounceable are treated as proper
names and written as ‘Chill’, whereas unpronounceable acronyms are written in a
capitalised form. In direct quotation, however, the style adopted by the original
source is preserved. An example of Chill code is given in Appendix 1.
2 CCITT High Level Language (CHILL), CCITT Recommendation Z.200, (1980).
3 Chill was used in some of the most successful switches on the market, like the
System 12 by the ITT (later Alcatel) and the EWSD switches by Siemens. On the
use and status of Chill in the early 1990s, see Kristen Rekdal, "CHILL - The
International Standard Language for Telecommunications Programming",
Telektronikk, 89, no. 2/3 (1993).
4 CHILL - The ITU-T Programming Language, ITU-T Recommendation Z.200
(1999).

2

The peculiar programming language Chill was neither a total failure nor a
total success. This in-between status was reflected in its features, its
background and its process of realisation. Technologically, Chill was a
programming language that was one out of many. It tried to reconcile the
particular needs of real-time communication systems with the generality of
high-level programming language principles, an aim shared by many other
programming languages designed in the 1970s.5 It also extended on the
design practices common to programming languages of an older vintage, like
the pioneering high-level programming languages of the 1960s. On an even
more general level, Chill was part of a larger shift towards programming as a
dominant activity in the telecommunication industry, where balls of wires
were replaced by loops of programming code.6 Historically, it was created
within the vicinity of what was perceived as the anchor of an oligopolistic
regime of telecommunication administrations and manufacturers, the ITU,
right before a comprehensive organisational transformation of the
telecommunication industry. Organisationally, it was created by a committee
torn between the agendas of several communities of technological
practitioners, telecommunication administrations and manufacturers. It was
really “betwixt and between”.7

This thesis studies this peculiar technology, from its inception in the
first half of the 1970s and up until the last maintained publication of the
standard by the ITU in 1999.8 I approach this through a detailed study of
how Chill was shaped during its life cycle. I explain which priorities gained

5 A comparison could be the programming language Ada, which was commissioned
by the American Department of Defence in the mid-1970s. For an overview, see
William A. Whitaker, "Ada—the project: the DoD high order language working
group", ACM SIGPLAN Notices 28, no. 3 (1993).
6 A contemporaneous review is M. T. Hills and S. Kano, Programming electronic
switching systems - real-time aspects and their language implications, IEE
Telecommunications Series (Stevenage: Peter Peregrinus Ltd, 1976).
7 I have appropriated the term “betwixt and between” from a classic essay by the
anthropologist Victor Turner, which was concerned with initiation rituals and
transition ceremonies from one social status to another. My use of Turner’s
expression is intended as an illustration of transition periods of a rather different
kind than those of initiation and social transition and carries no further empirical or
theoretical denotations to Turner’s work. On the direct meaning of the expression,
see Victor Witter Turner, The forest of symbols; aspects of Ndembu ritual (Ithaca,
N.Y.: Cornell University Press, 1967), 93-111.
8 While long-term studies of the industrial structure as a consequence of life-cycle
developments have flourished, few studies of a specific technology life cycle have
been published. On this problem, and an effort to somewhat rectify this, see William
Walker, "Entrapment in large technology systems: institutional commitment and
power relations", Research Policy 29, no. 7-8 (2000).

3

prominence in which period, by which mechanisms and who carried them
through. Furthermore, I consider how the changing political economy of the
telecommunication industry and the strategies of administrations and
manufacturers shaped the fate of the language. Together, the technical
features and the use of the language are understood as the direction of
technological change that was constituted by Chill. In particular, I am
interested in the move towards a common and standardised hybrid high-level
programming language: general, yet specialised, high level, yet efficient,
common, yet atypical.

I approach the question of the direction of technological change
through an analysis of the technical diplomacy throughout the phases of
emergence, use and demise. This diplomacy was related to both its technical
features and its use. The diplomacy happened both on the level of quarrelling
over language concepts as well as on an organisational level about how
binding the supporting organisation saw their commitment to Chill. This
approach to technological change, as a diplomatic process, combines
research into decision-making at the individual level, negotiations at
community level, firm-level strategising and the role of institutional regimes.
I particularly look into how shared norms and ideals held in communities of
technological practitioners shaped Chill and how the changing political
economy of telecommunications intervened in its life.9 I also investigate how
different strategies on the division of programming labour among
telecommunication administrations and manufacturers influenced the design
and use of the programming language. This makes it possible to analyse
processually how, to what extent and in which periods the various sources of
influence dominated the Chill life cycle.

The main period under investigation, from the early 1970s to around
1990, was one of substantive technical change and an emerging
organisational transformation of the telecommunications field. The
introduction of digital transmission and computer-controlled switching
transformed the telecommunication infrastructures dramatically over the
course of two decades, moving the industry from the analogue to the digital
domain. The organisational principles of telecommunications were also
about to undergo radical changes, as the dominant pattern of a strongly
regulated industry was put under increasing pressure, although the real
liberalisation of the industry was still some years away. This coincided with
what has been proposed to be a general shift in business, where the role of

9 The term “communities of technological practitioners” builds on Edward W.
Constant, The origins of the turbojet revolution, Johns Hopkins studies in the history
of technology (Baltimore: Johns Hopkins University Press, 1980). A more refined
definition and clarification regarding similar concepts is developed in a later section
of this chapter.

4

the large multidivisional firm as a generator of innovation and growth
diminished, a change in the direction of “deverticalisation”.10 Furthermore, it
concurred with the emergence of what has been described as the
“knowledge-based economy”, a term used to describe the centrality of
science and technology within sectors such as pharmaceuticals and
information and communication technologies, and the term has increasingly
been used to describe economies where the importance of the information
sectors is high and the “share of intangible capital is greater than that of
tangible capital in the overall stock of real capital”.11 However, the 1970s
and early 1980s were also something in between. It was a period of
transition between the numbing stability before the 1970s and the raucous
revolutions that turned the industry upside down in the 1990s. The period
was more like what Victor Turner found to be a common phase in initiation
rituals, a “liminal period” where things were “betwixt-and-between”, both
technically and organisationally.12

To those involved in the development of software for
telecommunication systems at the time, the 1970s and early 1980s were also
a period of “fruitful darkness”, where “king and people are closely
identified”, to paraphrase Victor Turner’s anthropology once again.13 In this
darkness, decisions about new and novel technologies like programming
languages were of a different kind than in projects of “normal engineering”
or of radical inventive development. The practitioners and scientists
involved in the Chill project knew a lot about programming languages before
designing one for telecommunication systems. This was based on prior
experience in general computing – but the combination of computing and
telecommunications was still uncharted territory, unknown and untested.14 It
was somewhat risky, but not completely uncertain, made by daring

10 Richard N. Langlois, "The vanishing hand: the changing dynamics of industrial
capitalism", Industrial and Corporate Change 12, no. 2 (2003).
11 Dominique Foray, Economics of knowledge (Cambridge, Mass.: MIT Press,
2004), ix. Foray, Economics of knowledge; Robin Cowan, Paul A. David, and
Dominique Foray, "The Explicit Economics of Knowledge Codification and
Tacitness", Industrial and Corporate Change 9, no. 2 (2000). For critical
discussions, see Richard N. Langlois, "Knowledge, Consumption, and Endogenous
Growth", Journal of Evolutionary Economics 11, no. 1 (2001).
12 Turner, The forest of symbols; aspects of Ndembu ritual.
13 Ibid., 110
14 The foundations of programming language design were laid in the late 1950s and
1960s. In 1969, it was already time to release a tome on the history of programming
languages. See Jean E. Sammet, Programming languages: history and
fundamentals, Prentice-Hall series in automatic computation (Englewood Cliffs,
N.J.,: Prentice-Hall, 1969).

5

technological practitioners rather than heroic inventors.15 As in the rituals
investigated by Turner, technological change under liminality can be
characterised by a duality, where the process was ambiguous but still goal-
directed at its outset and depended on successful reintegration into the
economic and technical system at its end. This thesis analyses the
combination of telecommunication knowledge and computer knowledge and
explicates how individuals, communities and organisations acted under
liminality and how they tried to reintegrate the combinatory knowledge into
stable arrangements.

Chill originated in the early 1970s when the ITU drummed together
experts from the telecommunication industry and the computer field, and put
them to work on solving the mounting difficulties related to programming
telecommunication equipment. The prospect of one common programming
language, a technology that could be shared between manufacturers and
administrations, gathered support. Several large manufacturers, like the
multinational firm ITT, the Swedish company L. M. Ericsson, Siemens of
Germany and the Dutch firm Philips, put their weight behind the proposal
early on. During the design process, the technologically leading company,
the American AT&T, participated through its research branch Bell
Laboratories. European administrations backed the initiative from the outset
and the Japanese NTT followed suit. The organisations’ decisions to
participate in the Chill project were rooted in different agendas, in particular
about who should control the programming of new telecommunication
equipment, but also in strategies of international expansion and exports.

In retrospect, the fate of Chill looks almost inevitable. Why would
anyone in their right mind design a programming language especially for the
application domain of telecommunication switching, from the ground up, in
an international committee, right before the comprehensive organisational
transformation of the telecommunication industry? According to Remi
Bourgonjon, who led the committee in the ITU that was responsible for
Chill, a common programming language was perhaps not the best of ideas:
“In hindsight it was totally stupid,” he said when I interviewed him. 16
However, at the time the project made sense to the participants involved in
the project and to its sponsors. “It made perfect sense,” Bourgonjon told
me.17 What apparently looked like a rather bad idea in retrospect was also
part of a general trend, as projects with similar technical aims and

15 On risk and uncertainty, see Frank H. Knight, Risk, uncertainty and profit (Boston
and New York,1921).
16 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.
17 Ibid.

6

organisational background were initiated in comparable industries a few
years both before and after the Chill initiative.18

 An historical understanding of Chill’s fate must be rooted in the
context of the project itself, how it was understood by its participants and
contemporaries and how it was related to the actions and strategies of
telecommunication manufacturers, administrations and international
organisations at the time. A proper account of the creation, use and demise
of the language as it appeared at the time will allow an historical
understanding of the technology. Subsequently I analyse whether what can
appear as failures to us now was a result of decisions made within the project
or shaped by factors external to the participants control and understanding.
This might also contribute towards a better understanding of technical
change in software development in telecommunications in general.

This thesis also has a general ambition: it aims at explaining how and
why the telecommunication industry started to use high-level programming
languages in the development and production of telecommunication
equipment. It seeks out an understanding of the direction of this technical
change and its organisational underpinnings and results. There are three
reasons for this ambition. Firstly, the empirical context of international
cooperation and transnational collaboration makes it possible to understand
how technological choices were made through technical diplomacy at a level
beyond local circumstance. By accounting for the international context of
technological change, it is possible to analyse the general conditions and
priorities that directed the particular evolution of Chill. Secondly, the unruly
and peculiar nature of Chill encourages such general ambitions: Chill
involved, in some way or another, almost all large telecommunication
manufacturers and most telecommunication administrations of importance in
the period and allows a detailed understanding of how programming with
specialised, yet high-level, languages was perceived as a viable route in the
sector at large. The sources available in the study of this one programming
language highlight the development and use of programming languages in
telecommunication at large. The third reason for this general ambition is
theoretical: this thesis tries to search out the limits of established models of
product life cycles at both the particular and the product group level of
programming languages for telecommunication systems. This necessitates a

18 The US Department of Defense embarked on a very similar project when they
tried to standardise the programming language Ada in many of their operations from
the late 1970s. See Whitaker, "Ada—the project: the DoD high order language
working group". Before that, similar projects were initiated and standardised in the
technical field of process control. See I. D. Hill and B. L. Meek, Programming
language standardisation, Ellis Horwood series in computers and their applications
(Chichester, Eng., New York: E. Horwood ; Halsted Press, 1980).

7

general understanding of the direction of the technical change that the turn to
high-level programming languages constituted in telecommunications, and
an understanding of through what means this turn was sought.

Historiography
Chill was a programming language similar to many others. It shared both
technological and organisational similarities to other so-called real-time,
parallel or concurrent programming languages. Such similarities can only be
understood if we approach the subject in a manner that steps beyond local
circumstance and the peculiarities of Chill. Consequently, I approach the
development of Chill and high-level programming languages in a different
way than the one that dominates in the history and sociology of technology.
In this thesis, there is greater focus on international cooperation and local
circumstance is less in the foreground than is usual. 19 Causes of the
technological change and the similarities between high-level languages of
the time are sought at the level of international communities of technological
practitioners as well as embedded in the strategies of telecommunication
administrations, equipment manufacturers and research establishments.
Ultimately, these interests were reconciled at the level of an international
organisation, bound together in what can be understood as the international
telecommunication regime. This moves the thesis away from the internalistic
approaches that have dominated the history of programming languages for a
long time, where the development and design of such technologies often is
considered as solely an intellectual undertaking rooted in the academic
discipline of computer science, or as responses to needs caused by advances

19 The view that science and technology are predominantly about local and
contingent practices is a claim that permeates much of the so-called constructivist
writing on science and technology. See, for example, many of the contributions in
Edward J. Hackett et al., The Handbook of Science and Technology Studies, Third
Edition (Cambridge, Mass.: The MIT Press, 2007). It would be unfair to accuse the
large body of work of constructivist writing as completely ignoring the international
level. See, for example, how issues of locality and international networks are
integrated in David Wade Chambers and Richard Gillespie, "Locality in the History
of Science: Colonial Science, Technoscience, and Indigenous Knowledge", Osiris
15(2000). Furthermore, a turn towards the transnational has recently emerged also in
the history of technology, in a move that resonates well with tendencies in general
history. See for example Alexander Badenoch and Andreas Fickers, Materializing
Europe : transnational infrastructures and the project of Europe (New York:
Palgrave Macmillan, 2010).

8

in computer hardware.20 Still, the thesis aims at a goal common to much of
this literature, as it explicitly tries to open up the black box of technology
and render what is typically impermeable more or less transparent.21

Earlier research on the history of Chill can be accused of being kept
well within a black box, although the available publications are not without
strengths. In the Robert J. Chapuis and Joel E. Amos tome on telephone
switching technology from 1960 to 1985, one of a few publications where
the history of Chill is analysed by someone outside the Chill project, the
technical details of the programming language are kept to a minimum.22
Chill is instead briefly presented as an efficient technology, but also as a
standard that enjoyed “relatively limited spread of use”.23 However, as the
chapter was published in 1990, Chapuis and Joel argue that more widespread
use of Chill might happen as a consequence of the radical concentration of
the switching industry that was observed at that time, while the limited
appeal of the language up until 1990 was generally explained by the
popularity of one of Chill’s competitors, the programming language C.
Chapuis and Joel place the development of Chill in an international
framework, presenting the programming language as a part of ITU’s move
towards the standardisation of other computer-related standards.24

20 On the internalistic bent in the historiography of programming languages, see Jan
Rune Holmevik, Educating the machine : a study in the history of computing and
the construction of the SIMULA programming language, STS rapport ; nr 22
(Dragvoll: Senter for teknologi og samfunn, Universitetet i Trondheim, 1994); Peter
Mark Priestley, "Logic and the development of programming languages, 1930 -
1975" (University College London, 2008). The literature in question is largely
available through the proceedings of the three “history of programming languages“
conferences (HOPL) held in 1981, 1996 and 2007.
21 The black box metaphor has been persistently used in both economic and
sociological approaches to technology. See Nathan Rosenberg, Inside the black box
: technology and economics (Cambridge [Cambridgeshire] ; New York: Cambridge
University Press, 1982); Bruno Latour, Science in action : how to follow scientists
and engineers through society (Cambridge, Mass.: Harvard University Press, 1987).
22 See Robert J. Chapuis and Amos E. Joel, Electronics, computers and telephone
switching: 1960-1985, 2 vols., vol. 2, Studies in telecommunication (1990), 267-90;
Kristen Rekdal, "CHILL - The Standard language for Programming SPC Systems",
IEEE Transactions on Communications 30, no. 6 (1982); Rekdal, "CHILL - The
International Standard Language for Telecommunications Programming"; C. H.
Smedema, "Some Issues in the International Standardization of CHILL and Ada",
Computers & Standards 4, no. 2 (1985).
23 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
283.
24 This is no coincidence, as Robert Chapuis was very much part of the CCITT
community. On his background, see Robert Chapuis, an oral history conducted in
1993 by Frederik Nebeker, IEEE History Center, New Brunswick, NJ, USA.

9

The opposite of this international outlook is found in a comprehensive
historical investigation of the computer department of the Norwegian
University of Science and Technology, where the historian Ola Nordal
explicates the Norwegian setting of Chill in some detail, highlighting the
particular organisational framework of the Norwegian contributions to the
CCITT project.25 The way Chill is presented here, as a part of a trajectory of
programming language research at one particular organisation, makes
Nordal’s analysis part of a local history, and consequently presents only a
part of the Chill history. Still, this is one of the few publications that present
the wider implications of Chill for Norwegian industry, as it studies a
Norwegian effort to commercialise knowledge obtained through the
Norwegian participation in the Chill project as part of a broader study of
spin-offs and commercialisations from the technical university of Norway
related to computing.

Some of the participants in the Chill project have also published brief
overviews of the history of Chill.26 The general view put forward in these is
that Chill was a viable language with some particular technological and
organisational strengths. While these publications offer some good
overviews of how Chill was realised, none of them follows the technology
up until its end.

On the history of the ITU, Chill’s organisational origin, a more
comprehensive literature exists that highlights the development of the
organisation.27 The ITU was created in 1932 by joining the International
Telegraph Union (founded in 1865) and the signatories of the International
Radio Telegraph Convention of 1906. By the late 1960s, the main bodies of

25 See Ola Nordal, Verktøy og vitenskap: datahistorien ved NTNU (Trondheim:
Tapir akademisk, 2010), 172-78.
26 For some noteworthy examples of work by insiders from the Chill project, see
Rekdal, "CHILL - The International Standard Language for Telecommunications
Programming"; Smedema, "Some Issues in the International Standardization of
CHILL and Ada"; C. H. Smedema, P. Medema, and M. Boasson, The programming
languages : Pascal, Modula, CHILL, and Ada (Englewood Cliffs, N.J.:
Prentice/Hall International, 1983).
27 The standard history of the ITU is Harold K. Jacobson, "ITU: A potpurri of
Bureaucrats and Industrialists", in The Anatomy of Influence, ed. Robert Cox and
Harold K. Jacobson (New Haven, Conn.: Yale University Press, 1973). See also
George A. Codding and Anthony M. Rutkowski, The International
Telecommunication Union in a changing world (Dedham, MA: Artech House,
1982); George A. Codding, The International Telecommunication Union; an
experiment in international cooperation (Leiden,: E. J. Brill, 1952). For a more
recent overview, see William J. Drake, "The Rise and Decline of the International
Telecommunications Regime", in Regulating the Global Information Society, ed.
Christopher T. Marsden (London: Routledge, 2000).

10

the ITU were the International Consultative Committee for Telegraph and
Telephones (CCITT), the International Consultative Committee for Radio
(CCIR) and the International Frequency Registration Board. These bodies
were responsible for developing recommendations about
telecommunications standards, developing telecommunications facilities and
networks, establishing the lowest possible rates consistent with efficient
service, allocating the radio frequency spectrum, registering radio frequency
assignments, coordinating orbital slots for communications satellites and
helping developing countries to improve their telecommunications
equipment and networks. The system was based on a one vote, one nation
principle, basically meaning the vote of the national telecommunication
administration, which often held monopolistic power over
telecommunication services in this period. A few studies have successfully
engaged in analysing the regulatory regime of international
telecommunications within the political sciences and sociology. 28 In
particular, Peter Cowhey has claimed there was a strong relationship
between the national monopolies and the international telecommunication
organisation, and has claimed that the ITU and the CCITT sustained “one of
the most lucrative and technologically significant international cartels in
history”.29 According to Cowhey, the CCITT was “the anchor of a regime
that facilitated bilateral monopolistic bargains, reinforced national
monopolies, and limited the rights of private firms in the global market”.30
To Cowhey, the CCITT was also an “epistemic community devoted to the
idea of a ‘natural monopoly’ for telephone services”. 31 This community
would pervert technologies into something that would be beneficial for the
established regime. To the CCITT veteran Gerd Wallenstein, the CCITT was
something completely different. It was “a transnational subculture held
together by technical expertise and a specialised language of their own
making”.32 It was a suprapower in the transnational structure of standards,
although fraught with infighting and difficulties. Its mission was the creation

28 See Drake, "The Rise and Decline of the International Telecommunications
Regime"; Peter F. Cowhey, "The international telecommunications regime: the
political roots of regimes for high technology", International Organization 44, no.
169-199 (1990); Eli Noam, "International Telecommunications in Transition", in
Changing the Rules: Technological Change, International Competition, and
Regulation in Communications, ed. Robert W. Crandall and Kenneth Flamm
(Washington, D.C.: The Brookings Institution, 1989).
29 Cowhey, "The international telecommunications regime: the political roots of
regimes for high technology".
30 Ibid.: 176.
31 Ibid.: 173.
32 Gerd Wallenstein, Setting Global Telecommunication Standards: The Stakes, The
Players & The Process (Norwood, MA: Artech House, 1990), 1.

11

of non-binding technical recommendation through “mutually distrustful
bedfellows”, which Wallerstein believed fostered standards and technologies
that works as the law in civil law countries, “presumably fair, equitable, and
common property of mankind”.33 To Wallerstein, the system was a safeguard
against the problems that Cowhey ascribed to it.

Few of these studies have been concerned with technological
development, but remained focused on regulatory issues. Furthermore, much
of this work has seldom been concerned with the actor level and how
individuals act within the boundaries of regimes and organisations.34 The
institutional orientation common to much of this research has rendered the
individuals active in the international telecommunication organisations as
captive to the national stratified logic of the industry. In this thesis, I analyse
how regime logics and community norms are interrelated in some periods
and opposed to each other in other periods. As such, I develop an historical
understanding of regimes and community norms that goes beyond the simple
handcuffs of the international telecommunication regime of Cowhey,
without succumbing to the technocratic rule envisioned by Wallerstein.

As part of the history of software in general and programming
languages in particular, the history of Chill adds to the available literature in
several ways: at the outset of the Chill project, some three-quarters of the
productive energies of the computer industry were going into software.35
Nevertheless, the historical literature has been slow in recognising this point.
What is more, the specialised history of computing has been slow in
recognising the importance of software altogether.36 Historical explorations
of the software industry and professions have been published, and a recent
emphasis on applications and the societal changes resulting from software

33 Ibid.
34 One notable exception to both concerns is Susanne K. Schmidt and Raymund
Werle, Coordinating technology : studies in the international standardization of
telecommunications, Inside technology (Cambridge, Mass.: MIT Press, 1998).
35 Barry W. Boehm, "Software and its Impact: A Quantitative Assessment",
Datamation 19, no. 5 (1973). Here referred from Michael S. Mahoney, "Software:
The Self-Programming Machine", in From 0 to 1: An Authoritative History of
Modern Computing, ed. Atsushi Akera and Frederik Nebeker (Oxford: Oxford
University Press, 2002).
36 Mahoney, "Software: The Self-Programming Machine", 92.

12

are slowly emerging. 37 Some important contributions to the history of
software have also integrated this into research on more general historical
interest. One example is found in Atsushi Akera’s book Calculating a
natural World. 38 Another example is the historically oriented sociologist
Donald MacKenzie’s book Mechanizing Proof, in which through research
into the history of software the author makes a significant contribution to the
sociology of knowledge.39 My thesis tries to follow suit, although the general
context is that of international cooperation and collaboration in the 20th
century.40

The rather specialised field of the history of programming languages
has been one of the best-covered themes within the history of computing.
This literature has, however, remained largely internalistic and has largely
been written by specialists in the field.41 A typical tendency is the way they
have imposed a logic and coherence that was typically absent at the time,

37 A more recent historiographical overview is Martin Campbell-Kelly, "The History
of the History of Software", IEEE Annals of the History of Computing 29, no. 4
(2007). On the history of the software industry, see ———, From airline
reservations to Sonic the Hedgehog : a history of the software industry, History of
computing (Cambridge, Mass.: MIT Press, 2003). On the use of software, see
JoAnne Yates, Structuring the information age : life insurance and technology in the
twentieth century, Studies in industry and society (Baltimore, Md.: Johns Hopkins
University Press, 2005). On the professions of software workers, see Nathan
Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise, History of computing (Cambridge, Mass.: The MIT
Press, 2010).. See also Thomas Haigh, "How Data Got its Base: Information Storage
Software in the 1950s and 1960s", IEEE Annals of the History of Computing 2009.
38 Atsushi Akera, Calculating a natural world : scientists, engineers, and computers
during the rise of U.S. cold war research, Inside technology (Cambridge, Mass.:
MIT Press, 2007).
39 Donald A. MacKenzie, Mechanizing proof : computing, risk, and trust, Inside
technology (Cambridge, Mass.: MIT Press, 2001).
40 On the historical role of international organisations in general, see Akira Iriye,
Global Community: The Role of International Organizations in the Making of the
Contemporary World (Berkeley: University of California Press, 2002). International
organisations and relations have also attracted interest within the history of science
and technology, for a recent example, see John Krige and Kai-Henrik Barth, Global
power knowledge: science and technology in international affairs (Chicago, Ill.:
University of Chicago Press, 2006).
41 Sammet, Programming languages: history and fundamentals; Richard L.
Wexelblat, History of programming languages (New York: Academic Press, 1981);
Thomas J. Bergin and Richard G. Gibson, History of programming languages II
(New York: ACM Press; Addison-Wesley Pub. Co., 1996); Thomas J. Bergin, "A
history of the history of programming languages ", Communications of the ACM 50,
no. 5 (2007).

13

and that they render the evolution of programming languages as a genealogy
separate from its context. This does not, however, mean that this internalistic
body of work is without strengths. A particularly important contribution is a
recent study on the relationship between software engineering and
programming language design, which has shown how various application
domains and the research field of software engineering shaped programming
language design in the 1970s.42 Empirically, this is closely related to the
study of the design and use of programming languages in
telecommunications. However, a particular emphasis in terms of theoretical
orientation or dominant contextualisation is difficult to find. Two notable
exceptions are Jan Rune Holmevik’s study of the programming language
Simula and Mark Priestley’s study of the role of logic in what he calls the
Algol research programme. 43 Both approach the history of programming
languages with an ambition of going beyond the internalistic tendencies.
Where Priestley grounds his study in theoretical approaches common to the
traditional history of science, Holmevik's study reflects the wider history of
research funding, research politics and the understanding of the computer in
Norwegian society.

The business history of the software industry has been engaged with
an economic approach to software, although it has seldom been engaged
with programming languages. This is primarily evident in the books and
articles of Martin Campbell-Kelly. 44 In his survey of the history of the
software industry, From airline reservation to Sonic the Hedgehog, he
highlights the dynamics of the software industry from its early days and up
until the mid-1990s. Campbell-Kelly is explicitly focusing on the software
industry as a whole, while I am concentrating of a part of the industry that
existed on the fringes of both telecommunications and computing.

42 Barbara G. Ryder, Mary Lou Soffa, and Margaret Burnett, "The Impact of
Software Engineering Research on Modern Programming Languages", ACM
Transactions on Software Engineering and Methodology 14, no. 4 (2005).
43 Priestley, "Logic and the development of programming languages, 1930 - 1975";
Holmevik, Educating the machine : a study in the history of computing and the
construction of the SIMULA programming language; Jan Rune Holmevik, Inside
innovation: The Simula Research Laboratory and the History of the Simula
Programming Language (Oslo: Simula Research Laboratory, 2004).
44 Most prominently, Campbell-Kelly, From airline reservations to Sonic the
Hedgehog : a history of the software industry. For an examination of more recent
trends, see Martin Campbell-Kelly and Daniel D. Garcia-Swartz, "From Products to
Services: The Software Industry in the Internet Era", Business History Review 81,
no. Winter 2007 (2007). Another effort is found within Knut Sogner, En liten brikke
i et stort spill : den norske IT-industrien fra krise til vekst 1975-2000 (Bergen:
Fagbokforl., 2002).

14

The role of innovation in software production and development has been
analysed by scholars working on a different level of analysis than Campbell-
Kelly, namely within the “national innovation systems” approach pioneered
by Christopher Freeman, Richard Nelson, and Bengt-Åke Lundvall.45 Two
different studies, conducted more or less within this approach, has
approached the software sector in general: David Mowery has compared the
development of the U.S and Japanese software industries, where a number of
systemic differences such as financial systems and intellectual property
rights regimes are used as explanatory factors of different development
paths. Mowery’s study is relevant to understand the industrial dynamics of
new entrants in the software industry, but is not concerned with software as
an activity of other industries, such as telecommunications.46 Furthermore,
Mowery highlights national characteristics and national innovation systems,
rather than the transnational and international character of the knowledge
communities examined in this project. Secondly, Ed Steinmueller has written
two historically oriented articles on the American and the European software
industries.47 According to Steinmueller, “the sites of knowledge generation
in the software industry are extremely dispersed among disciplines and
organisations”. 48 Knowledge is gained through imitation and
experimentation, in problem-solving related to specific and situated
bottlenecks or innovative ideas, but also from basic research into computer
science and software engineering.49 This dispersed nature is readily present
in the history of software development in telecommunications.

The existing history of Chill, software development and programming
languages can be summarised as partly too internalistic, and while the
general literature has recently turned towards issues such as how external
factors can shape emergence and use, it has only to a limited extent been
interested in economic aspects of this history. The considerable literature on
the evolution of telecommunications, on the other hand, abounds with

45 For an overview of the literature, see Jan Fagerberg, "Innovation: A guide to the
literature", in The Oxford Handbook of Innovation, ed. Jan Fagerberg, David C.
Mowery, and Richard Nelson (Oxford: Oxford University Press, 2005).
46 David C. Mowery, The international computer software industry : a comparative
study of industry evolution and structure (New York: Oxford University Press,
1996).
47 W. Edward Steinmueller, "The US Software Industry: An Analysis and
Interpretive History", in International Computer Software Industry, ed. David C.
Mowery (Oxford: Oxford University Press, 1996); ———, "The European software
sectoral system of innovation", in Sectoral Systems of Innovation: Concepts, Issues
and Analyses of Six Major Sectors in Europe, ed. Franco Malerba (Cambridge:
Cambridge University Press, 2004).
48 Steinmueller, "The European software sectoral system of innovation", 221.
49 Ibid.

15

research into organisational aspects, almost to an extent that other issues
have been overlooked. In particular, the relationship between the
institutional setting of the industry and the direction of technological change
under its control has received little attention. Furthermore, parts of this
literature are too nationally oriented, in particular when concerned with
technology, and those few concerned with international cooperation have
largely regarded this level as captive to the national monopolistic systems,
and consequently give little agency to the participants in projects such as
Chill.

Theories
My analysis of Chill is grounded in some general conceptualisations and
theoretical assumptions. Below, I provide some clarifications and definitions
regarding terminology. Following this, I discuss how my application of these
concepts is related to larger theoretical concerns.

Changes in programming technologies are cases of technical or
technological change, and should be grounded in established theoretical
conceptualisations of this.50 Here, it makes sense to understand change in the
broadest possible sense, as something that necessitates novel ideas and the
application of them, which makes it comparable to the commonly held
distinction between invention and innovation, although here I restrict it to
the realm of technology.51 Technological change, consequently, is something
that implies use, as there has simply not been a change in technology if it has
not been put into use.

The term technological change has, at least throughout the last
century, been given a meaning that predominantly includes changes in
knowledge, practices and artefacts, the word technical change has often been
confined to more narrowly defined works within economics.52 That term has
first and foremost been used to describe situations where firms choose

50 For a philosophical exposition on roughly the same issues, see Jon Elster,
Explaining Technical Change, ed. Jon Elster and Gudmund Hernes, Studies in
Rationality and Social Change (Cambridge: Cambridge University Press, 1983).
51 The distinction between invention and innovation is typically attributed to the
influential economist Joseph Schumpeter. See in particular chapters three and four in
Joseph Alois Schumpeter, Business cycles; a theoretical, historical, and statistical
analysis of the capitalist process, 1st ed. (New York, London,: McGraw-Hill Book
Company, inc., 1939). For a discussion, see Vernon W. Ruttan, "Usher and
Schumpeter on Invention, Innovation, and Technological Change", The Quarterly
Journal of Economics 73, no. 4 (1959).
52 On the changing meaning of the word technology, see Eric Schatzenberg,
"Technik Comes to America: Changing Meanings of Technology before 1930",
Technology and Culture 47, no. 3 (2006); Leo Marx, "Technology - the Emergence
of a Hazardous Concept", Technology and Culture 51, no. 3 (2010).

16

different techniques when producing a given output. In the following, I will
use the two terms more or less interchangeably, where technological change
includes, but is not restricted to, technical change in the production of
telecommunication equipment. The term direction of technological change
has traditionally been confined to the same constituencies of economic
research that limit the term technical change to choice of techniques
producing a given output. Here, the direction of the change has been
restricted to the factor bias, typically restricted to whether it saves on labour,
capital or energy.53 In the following, I apply the term direction to understand
the technological specificities of programming language design and use,
where it has been typical to argue that the technology evolved towards
higher levels of abstractions and degrees of modularity through time. Other
directional concepts, like increased reliability and testability of software,
should also be considered part of this broader concept of the direction of
technological change. Chill was a change towards a relatively high-level
hybrid language, especially designed for telecommunication systems, and
intended as a common and standardised language.

The term direction is thus applied to highlight choices, which implies
that by other design decisions the technological change would have looked
different. Design should here, in the way proposed by Edward Layton, be
understood as the purposeful and value-laden application of technological
means, integrating technological knowledge with social and economic
aims.54 Use is understood as intertwined with design decisions and equally
purposeful. Chill was a language designed to reduce variety, as a standard,
and it opted for a technical solution that can be described as a hybrid,
catering towards high levels of abstractions as well as the computing
efficiency of lower level code.

I approach the fate of Chill through its full life cycle. Still, it has been
important to step away from the rigid conceptualisation of product life
cycles, where innovation happens in one distinct period of a technology’s

53 Elster, Explaining Technical Change.
54 Edward T. Layton, "Technology as Knowledge", Technology and Culture 15, no.
1 (1974).

17

life.55 In particular, I have highlighted how innovation was made possible as
well as limited by decisions influenced by the community of technological
practitioners and by the strategising among interconnected firms and
organisations in all three phases of life: birth, maturity and death. Still, the
phase of birth was the main design phase of Chill, from around 1974 to
1980. I will typically refer to this phase as emergence. The period where the
language diffused and was used equals the period of maturity, roughly
spanning the years between 1980 and 1990. I often refer to these years as the
years of diffusion or use. The years where the language was more or less
confined to legacy systems, from 1991 to 1999, I refer to as the years of
demise.

In many ways, Chill was not a typical technology understood as an
artefact. Chill was also an effort of creating a legislative binding agreement
on how a programming language for telecommunication equipment should
be and by whom it should be used, embodied as a text – almost a legal
document. Its fate was very much dependent on how this recommendation
was received and how it was put into action. As a whole, the process was an
exercise of standardisation, a sub-case of institutionalisation.56 Furthermore,
programming languages can be regarded as institutionalisation per se, as
they always involve ways of codifying programming techniques into a set of
rules and procedures, rules and procedures that can be tools when
programming – which is the act of creating programs. Consequently, it

55 The way I use the term ”life cycle” is different from the product life cycle concept
common in some quarters of economics and marketing. Where the product life cycle
concept of economics has mainly been concerned with the product group level and
the industrial structure underpinning it, I am solely focused on the changes over the
course of one technology’s life cycle. However, I do adopt the three-pronged
characterisation of technology development – birth, maturity, death (without any
claims about the natural passing of such periods) – but hold the questions on
innovation, shaping and standardisation of the product more open than what is
common in the “conventional model” of product life cycles, which is more geared
towards mass market commodity goods. For an introduction to the product life cycle
literature in economics, see James M. Utterback and William J. Abernathy, "A
dynamic model of process and product innovation", Omega 3, no. 6 (1975).
56 On the role of standardisation in history, see Andrew L. Russell, "Standardizing in
History: A Review Essay with an Eye to the Future", in The Standards Edge: Future
Generations, ed. Sherrie Bolin (Ann Arbor: Sheridan Press, 2005); ———,
""Industrial Legislatures": Consensus Standardization in the Second and Third
Industrial Revolutions" (The Johns Hopkins University, 2007); Amy Slaton and
Janet Abbate, "The Hidden Lives of Standards: Technical Prescriptions and the
Transformation of Work in America", in Technologies of power: essays in honor of
Thomas Parke Hughes and Agatha Chipley Hughes, ed. Michael Thad Allen and
Gebrielle Hecht (Cambridge, Mass.: MIT Press, 2001).

18

makes sense to also understand programming language technology as tools
and, in essence, capital goods.57

Following this, it should be possible to reconcile Chill’s life cycle
with the life cycle pattern typical to capital goods. However, programming
languages are also a very peculiar type of capital good: they are intangible,
abstract and at first highly malleable. When diffused, however, changes to
the language are an intricate matter, as they could easily break existing
implementations and code. As such, innovation and obsolesce of this
technology appears similar to that of complex products and services. 58
Andrew Davies has suggested that complex systems evolve through two
phases of innovation. First, the development of new systems architecture
comes prior to commercialisation of the product and another where the rate
of components and systemic innovation increases and new products and
components are introduced, without fundamentally altering the established
architecture. Following this, it is argued that innovation happens through a
long period of time. In many ways, programming languages are similar to
such architectures or platforms that a technological system forms around or
is built on top of.

Throughout the thesis I refer to the combined process of
institutionalisation and technological change as bound up in processes of
technical diplomacy. Here, both the figurative and the direct meaning of the
term diplomacy are applied to the task. The concept refers to the extensive
negotiations that went on among technological practitioners and scientists,
discussed at an international level within the ITU, a process very much
similar to that of diplomatic negotiations of international relations:
bargaining, standoffs, coercion and ratification of agreements were all part
of the process. I also apply the term diplomacy to the general process of
directing and shaping the future of programming languages in the
telecommunication industry, here including strategic positioning among
telecommunication organisations that went on outside the ITU arena and the
small-scale negotiations on technicalities that happened at technical
conferences and symposia around the world. As such, the concept includes
diplomacy at large and diplomacy of the daily routine, beyond the phases of

57 On the role of software as capital, see Howard Baetjer, Software as capital : an
economic perspective on software engineering (Los Alamitos, Calif.: IEEE
Computer Society, 1998).
58 On the historical importance of capital goods, see Nathan Rosenberg,
"Technological Change in the Machine Tool Industry, 1840 - 1910", The Journal of
Economic History 23, no. 4 (1963). On complex products and services, see Andrew
Davies, "The life cycle of a complex product system", International Journal of
Innovation Management 1, no. 3 (1998); Mike Hobday, Howard Rush, and Joe Tidd,
"Innovation in complex products and system", Research Policy 29, no. 7-8 (2000).

19

emergence. As such, the diplomacy related to whether the programming
languages should be used is understood to be as important as the initial
positioning.

The processes of technical diplomacy were shaped by the international
telecommunication regime, which in turn influenced norms held among the
participants in communities of technological practitioners and by the
strategies and actions of telecommunication organisations such as
telecommunication administrations, equipment manufacturers and research
organisations. In the following, I will define each in turn.

Traditionally, the ITU has been described as the main key in an
international telecommunication regime, a system that in retrospect has been
named the “ancien regime” by some scholars.59 This regime was protecting a
system of national telecommunication monopolies and controlled by the
telecommunication administrations.60 Typical to writers analysing the ITU as
part of such regimes is that they allow the individual participants little room
for manoeuvre and little room for technical norms that would transgress the
boundaries of the interest. This thesis questions this approach, as it assigns at
least some agency to communities of technological practitioners, without
making these communities independent of the established political and
economic structure of the international telecommunication regime.
Furthermore, as the organisation of telecommunications to some extent
varied beyond the typical monopolistic regime described by Cowhey, in
particular in the Nordic countries, there are further reasons to be cautious
about accepting this description in full.61 Still, the structural description of
Cowhey is a valid one, just as the term “ancien regime” for
telecommunications is an historical fact. What it questions in this thesis is
the mechanisms assigned to this “ancien regime”.

A community of technological practitioners is understood as a
structure of both social and epistemological character, where its body of
knowledge and its social dimensions are intertwined. Such communities
form around a communally defined problem, which is gradually redefined by
the practitioners who are attracted to it. They are often quite small, although
varying over time, and non-exclusive. As such, their members might be
active in several different communities. The non-exclusivity, problem-

59 Drake, "The Rise and Decline of the International Telecommunications Regime".
60 Cowhey, "The international telecommunications regime: the political roots of
regimes for high technology".
61 A pertinent reminder of the variety of organisational principles in the
telecommunication industry is Andrew Davies, Telecommunications and Politics:
The Decentralised Alternative (London: Pinter Publishers, 1994).

20

orientation and small size and informal membership process is what
separates a community from a profession.62

The economist Dominique Foray has underscored the importance of
the community as an organisational system allowing the exploitation of the
properties of knowledge in his book The Economics of Knowledge. 63
According to Foray, knowledge-based communities, which are similar to my
conceptualisation of communities of technological practitioners, are
networks of individuals striving, first and foremost, to produce and circulate
new knowledge, and working for different, even rival organisations. He has
described their workings as the “machineries of knowing”.64 Foray claims
that the relevance of these communities is increasing. However, it is obvious
that such communities were also very much in effect in radical technological
transformations, such as the transition towards computer-controlled
switching systems in telecommunications. The historian of technology
Edward W. Constant argued in the early 1980s about the importance of
specialised, differentiated, well-defined communities of technological
practitioners. To Constant, focusing on a technological community helped
him explain and account for the turbojet revolution in aviation.65 While
Constant was inspired by sociological studies of the “invisible colleges” in
science, he drew a sharp line between how community structures worked in
relation to science and to technology. In my review of the interaction and
intersections of various software communities, these boundaries seem less
clear. The communities of technological practitioners do not exclude
researchers, designers or users. The term “technological practitioners” has to
be understood rather broadly.

Over time, these communities are held together by norms, understood
as a set of common understandings or values that allow members of the
communities of technological practitioners to choose among a set of options.
These norms addressed what was held as important attributes of

62 A similar application of the community term is found in Ann Johnson’s
application of the “knowledge community” framework in her study of anti-lock
braking systems, where the basic argument is that communities are the basic locus of
knowledge production in design engineering and much science. See Ann Johnson,
Hitting the brakes : engineering design and the production of knowledge (Durham:
Duke University Press, 2009).
63 Foray, Economics of knowledge.
64 Ibid., 183.
65 Constant, The origins of the turbojet revolution.

21

programmers, be it a rigour, systemic thinking, creativity or speed.66 In this
particular setting, I refer to these norms as development virtues, and when
practiced, the communities would inevitably refer to these practices as good
programming. These norms created dispositions towards certain
technologies or tools, and were able to attract or direct processes of
technological change. Still, the term development virtue is solely an
analytical concept that I use for reasons of explanatory power and clarity. It
is not a concept that can be found explicitly in the vicinity of software
developers, either in the historical period I investigate or today. However, it
is not without precedents: just as objectivity has been deemed the most
important epistemic virtue in western science, that is to say that objectivity
has been understood as the most important moral attribute of scientists,
several ways of programming have been elevated as virtuous ways of
programming. In particular, programmers driven by ideals such as elegancy,
minimalism and formalism have been held in high esteem, although the
elevation has often been contested and is a source of conflict.67 Development
within different “communities of computing” differed, just as software
development for finance institutions and military operations varied in
strikingly different manners.68 As these differences became obvious, new
development virtues were established through community processes and
directed communities and participants in their continued struggle with
changing their ways of developing software. When moving software
development into telecommunications, norms would have to be adapted to
this new application domain, which in turn made room for heated debates.
Typical of those opposing development virtues were some who wished for
software development as a formal undertaking, or at least one that was
rigorous and systematic, a view that often clashed with those inclined to a

66 Here, I appropriate parts of the terminology used by the historian of science Peter
Galison when studying what he calls epistemic virtues. See Lorraine Daston and
Peter Galison, Objectivity (New York: Zone Books, 2007). Furthermore, I include
the core concept of agendas found in work by Michael S. Mahoney, a historian of
science that has written extensively on the history of software. See Mahoney,
"Software: The Self-Programming Machine"; Michael S. Mahoney, "Software as
Science - Science as Software", in History of Computing: Software Issues, ed.
Reinhard Keil-Salwik Ulf Hashagen, Arthur L. Norberg (Berlin: Springer Verlag,
2002); ———, "Finding a history for software engineering", Annals of the History
of Computing 26(2004); ———, "The histories of computing(s)", Interdisciplinary
Science Reviews 30, no. 2 (2005).
67 Such discussions are everywhere in contemporary literature, both from trade and
from the sciences. For an illustrative overview, see Ensmenger, The computer boys
take over : computers, programmers, and the politics of technical expertise.
68 On the “communities of computing,” see Mahoney, "The histories of
computing(s)".

22

more artisan approach to software development. Such sets of norms could be
shared across professional identities, be it computer scientists, professional
programmers or software engineers.69 In the following, I treat these various
groups as part of different communities of technological practitioners.

Processes where technical features were decided on through
diplomacy between community members were not the only ones that shaped
Chill, as technological development is seldom enclosed to such a technical
realm alone. It was just as much influenced by the organisational linkages of
the participants and a number of factors more external to the Chill project.
This includes the strategies and actions of telecommunication
administrations and manufacturers in relation to common programming
languages in general as well as to the Chill project more specifically. In
particular, the strategies on the future division of programming labour,
among administrations, manufacturers and independent firms, would
influence language design. Throughout this thesis, I try to discern between
how such strategising was acted upon by the very same participants who
held strongly shared norms, and by actions carried out above their level of
authority.

The main period under investigation, from the early 1970s to around
1990, was one where the organisational principles of telecommunications
were also about to undergo radical changes, as the dominant pattern of a
strongly regulated industry was put under increasing pressure. However, this
did not imply a unification of strategies among telecommunication
administrations or manufacturers. On the contrary, the general shift towards
“deverticalisation” was not one adhered to by all organisations. 70 By
focusing on a particular piece of the game, this thesis highlights the unruly
strategic landscape that led to the dissolution of the “ancien regime” of
telecommunications.71

In this thesis, I analyse how the relative strength of the two factors, the
strategising of the telecommunication organisations and the norms of the
communities of technological practitioners, oscillated throughout the periods
of emergence, use and eventually demise – in short the full life cycle of the
specific technology. Furthermore, I analyse how the unruly relationship
between the dissolving international telecommunication regime, the
communities of technological practitioners and the telecommunication
organisations changed over time, and shaped Chill.

69 Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise.
70 Langlois, "The vanishing hand: the changing dynamics of industrial capitalism".
71 Drake, "The Rise and Decline of the International Telecommunications Regime";
Cowhey, "The international telecommunications regime: the political roots of
regimes for high technology".

23

The theoretical apparatus accounted for above is related to three streams of
research that are found within various incarnations of economic, sociological
and historical theories of the direction of technical change, broadly defined.
This involves theories that account for technological design as well as use,
either by pointing out how the two phenomena differ or how they might be
interrelated. I call these broad traditions “contingentism”, “institutionalism”
and “rationalism.” By contingentism, I lump together theories that explain
technical change by pointing to local processes that easily could have ended
up differently, or different processes that could have ended up instigating the
same result.72 This view is shared in theories such as the social construction
of technology and actor-network theory, both mainstays within so-called
science and technology studies (STS).73 By institutionalism, I expand the
theoretical category of new institutional theory to comprise theories that
explain technical change by trial and error processes and technological
paradigms, including evolutionary economics and neo-Schumpeterian
theories of innovation.74 By rationalism, I group together theories that apply
economic or technical rationality as a determining factor when explaining
which technologies are being developed among a set of feasible changes,
and typically conflate the question of diffusion to the same rational decision
process.75

The move towards high-level programming languages for
telecommunications, in general, can be explained by a rationalistic
framework, as it successfully accounts for how a particular price structure
induced innovations to follow route. Two traditions of this way of reasoning
are typical. The first, following the lead of John Hicks, is a stream of
research within what is generally known as the theory of induced innovation
that dominated the 1960s and 1970s.76 Secondly, and more recently, research
associated with the so-called endogenous growth models has tried to seek

72 Fittingly, the term contingency has been defined in a number of different ways in
different research traditions. Most typically, it involves either the modal logic
understanding of “neither necessary nor impossible”, or the more casual
interpretations of the word meaning either dependency or chance. In general, all the
conceptualisations share a focus on indeterminacy and unpredictability.
73 One early example of this is found in Wiebe E. Bijker and John Law, Shaping
technology/building society : studies in sociotechnical change, Inside technology
(Cambridge, Mass.: MIT Press, 1992).
74 For an overview of the literature, see Fagerberg, "Innovation: A guide to the
literature".
75 See for example Vernon W. Ruttan, Technology, growth, and development : an
induced innovation perspective (New York: Oxford University Press, 2001).
76 For a short presentation and comparison of the institutional theories laid out
above, see ———, "Induced Innovation, Evolutionary Theory and Path Dependece:
Sources of Techncial Change", The Economic Journal 107, no. 444 (1997).

24

out how research and development can influence growth across countries –
and as a part of this strived towards modelling technological change as a
consequence of intentional actions taken by people who respond to market
incentives.77 The most explicit effort to explain the direction of technical
change is associated with the Hicksian induced innovation theory, where the
core idea was that “a change in the relative prices of factors of production is
itself a spur to innovation and to invention of a particular kind – directed at
economising the use of a factor which has become relatively expensive”.78
Following this, innovation was understood as a rational, goal-seeking
activity, helped forward by an exogenously created knowledge frontier. The
major limitation of this model was pretty obvious, also to its main
proponents: the internal mechanism, such as the learning, search, research
and development, remained unexplained – exogenous to the economic
system. These mechanisms have recently been rectified, either through the
integration of evolutionary theories, or through endogenous growth
theories.79 In the latter incarnations, the price effect that creates incentives
for innovations in the familiar Hicksian way is supplemented by other
factors when explaining technological direction, such as the market size
effect, “which encourages the development of technologies that have a larger
market”.80 Following this, the diffusion of innovations follows almost in an
automatic fashion, whereas rational actors would apply the most effective
technique available, and since innovations are understood as only happening
if they save a given factor. In the case of Chill, such theorising can, to some
extent, explain the initiative, as a common programming language could be a
labour-saving technology. However, its sudden fall from grace would
necessitate either the appearance of a more effective technology or radically
changing factor prices. None of these explanations are very convincing. The
explanation must take into account the changing strategies of established
organisations, emergent communities of technological practitioners and the
changing political-economic regime surrounding telecommunications.

The study of the technical diplomacy that shaped Chill throughout its
life, be it the small-scale diplomatic bickering about programming language
features or the large-scale diplomacy regarding the adherence to the Chill
“treaty”, is at the centre of this thesis. At first sight, this seems related to
what is commonly held as important tenants of any variant of contingentism,
where the negotiability of technologies has been a main concern. This is

77 The new growth models stems, in large parts, from Paul M. Romer, "Endogenous
Technological Change", Journal of Political Economy 98(1990).
78 John Hicks, The theory of wages (London,: Macmillan, 1932), 124-25.
79 See for example Daron Acemoglu, "Directed Technical Change", The Review of
Economic Studies 69, no. 4 (2002).
80 Ibid.: 793.

25

often found within work in what is now known as social studies of
technology, and often also related to sociological studies of science.81 Here,
technology development is perceived as the outcome of interactions and
negotiations between various social groups, but ordinarily eschews economic
superiority and technical efficiency as criteria for change and choice.
Innovation, the shaping of technologies and their use are understood as an
outcome of controversies stemming from interests, strategies and knowledge
among actors. 82 It is theorised that within these controversies, a
technological framework emerges and is gradually shared among relevant
social groups and then directs the process towards closure. This process is
understood as contingent, which basically implies that the technology would
have ended up rather different given other constellations of actors, while the
shared set of technological frameworks is understood as fairly rigid and
difficult to overcome. The latter is something that is built alongside the
technological project and hence not predetermined.

However, I am not convinced that it is really necessary to eschew
economic and technical rationality to favour contingent negotiations. I find
that the explanatory power can be strengthened if one reconciles parts of the
literature focused on the contingent aspects of technology with literature
oriented towards the institutional aspects of technological change.83 Within
the stream I labelled institutionalism, the direction design and use of new
technology stems from norms, technological trajectories, paradigms, and
routines that can all be understood as institutions influencing decision-
making. 84 All these concepts have been applied as explanations of the
direction of technical change: In the evolutionary tradition following Nelson
and Winter, routines and technological trajectories push evolution in given
directions.85 In another variant, Dosi has extended the Kuhnian notion of

81 For an overview, see the various contributions in Bijker and Law, Shaping
technology/building society : studies in sociotechnical change.
82 Wiebe E. Bijker, Of bicycles, bakelites, and bulbs : toward a theory of
sociotechnical change, Inside technology (Cambridge, Mass.: MIT Press, 1995).
83 An attempt to reconcile the sociology of scientific knowledge, an important
stream of research within the field of science and technology studies, is put forward
in D. Wade Hands, "The Sociology of Scientific Knowledge: Some Thoughts on the
Possibilities", in New Directions in Economic Methodology, ed. Roger Backhouse
(London: Routledge, 1994).
84 Here institutions imply the humanly devised rules of society, to paraphrase the
economist and historian Douglass North, a main character in traditional institutional
thinking and theorising. Douglass C. North, Institutions, institutional change and
economic performance, The Political economy of institutions and decisions
(Cambridge: Cambridge University Press, 1990).
85 Richard R. Nelson and Sidney G. Winter, An evolutionary theory of economic
change (Cambridge, Mass.: Belknap Press of Harvard University Press, 1982).

26

paradigms to encompass the field of technology, where the search for new
products or processes is formed by an “outlook” that directs the efforts of
technologists and engineers. To Dosi, “a technological paradigm embodies
strong prescriptions on the directions of technical change to pursue and those
to neglect”.86 A similar Kuhnian outlook is found in Edward W. Constant’s
historical research, which I already quoted as an influence when stressing the
importance of understanding the community level of technological change.
In his research, knowledge and norms held by communities of technological
practitioners are the level where technical change emerges and its fate is
decided upon.

Constant explicitly applied the concept of normal technology as an
analogy to Kuhn’s normal science, where the improvement of the accepted
tradition or its application under new or more stringent conditions is akin to
the “puzzle solving” of Kuhn. It is functional failures and anomalies in
periods of normal technology that direct the emergence of novelty, and the
model firmly places the directional element within the stable practice. In
many ways, Constant shares this with the prominent historian of technology
Thomas Hughes, whose outlook on the dynamic element in the evolution of
large technical systems is innovation caused by reverse salients – understood
as bottlenecks or weak spots observable in technical arrangements.87

When I emphasise the importance of norms at the level of the
communities of technological practitioners, I also draw on another branch of
the institutionalist literature. Within so-called neo-institutionalism, studies of
how actors or organisations follow norms to gain legitimacy have been an
important strand. 88 Parts of this literature have tried to explicate how
collectively valued purposes can influence normative or moral legitimacy. In
some ways, this can be reconciled with the Kuhnian outlook of Constant that
I discussed above, as it adds a mechanism for understanding individual and
organisational behaviour within paradigms, as the value of gaining or
retaining legitimacy are understood as what directs actions.

Although the similarities between my approach to the design and
diffusion of Chill is similar to many institutionalist theories, it does not share

86 Giovanni Dosi, "Technological paradigms and technological trajectories",
Research Policy 11(1982): 158.
87 Thomas Parke Hughes, Networks of power : electrification in Western society,
1880-1930 (Baltimore: Johns Hopkins University Press, 1983).
88 The new institutionalism’s interest in legitimacy started with John W. Meyer and
Brian Rowan, "Institutionalized organizations: Formal structure as myth and
ceremony", American Journal of Sociology 83, no. 2 (1977). Following this, a huge
literature has emerged and expanded in many directions. See for example David L.
Deephouse and Mark Suchman, "Legitimacy in Organizational Institutionalism", in
The Sage Handbook of Organizational Institutionalism, ed. Royston Greenwood, et
al. (London: Sage Publications, 2008).

27

this approach towards periodisation: macro-based periodisation is a
demarcation strategy common to much historical thinking, and similarly
something held by many institutionally oriented scholars. Typically, some
periods are thought to be characterised by a dominant technology such as
“the age of steam” or “the internet era”. Others periods are characterised by
radical change and a particular technical breakthrough, such as the industrial
revolution or the rapid electrification of the late 1800s. Such an
understanding of technological periods is bound up in an idea that basic
innovations cluster in time, which again has resulted in the popular idea that
the appearance and diffusion of innovations and technical change as an
uneven process, sometimes gradual and sometimes explosive.89 This model
is shared by many writers within the Schumpeterian tradition of studies of
innovation, and the more institutional approaches in general.90 It was also
popular in particular in the so-called “long-wave” theories that were
somewhat in vogue from the late 1970s and into the 1980s.91 Typically, such
period frameworks are based on the stability of “normal technology” versus
periods of revolutionary innovations. 92 At the micro-level, similar two-
pronged models are just as common, often putting up sharp dichotomies
between phases of innovation and phases of diffusion within technological
life cycles.93

In this thesis, I argue that this two-pronged pattern is unsatisfactory, at
the micro- as well as at the macro-level. I put forward the proposition of a
three-pronged model, where one can argue that decision-making about new
and novel technologies can be shaped by various “period specificities”,
either in forms of stable technological paradigms, to use Kuhn’s term
describing normal science, revolutionary upheaval or Turnerian liminality.94
To the practitioners involved in processes of technical change, some periods
are not mainly about “puzzle solving” or decision-making under complete
uncertainty. Somewhere in between lie periods of transition between

89 This is the very heart of the writings of Joseph Schumpeter. On the clustering of
basic innovations in time, see Schumpeter, Business cycles; a theoretical, historical,
and statistical analysis of the capitalist process, 75.
90 On a direct appropriation of the Kuhnian model of change in sciences, see Dosi,
"Technological paradigms and technological trajectories".
91 For a recent example and a summary, see Christopher Freeman and Francisco
Louçã, As time goes by : from the industrial revolutions to the information
revolution (Oxford ; New York: Oxford University Press, 2001).
92 On normal engineering, see Constant, The origins of the turbojet revolution.
93 See, for example, Steven Klepper, "Entry, Exit, Growth, and Innovation over the
Product Life Cycle", The American Economic Review 86, no. 3 (1996).
94 On scientific paradigms, see Thomas S. Kuhn, The structure of scientific
revolutions, 2nd ed. (Chicago,: University of Chicago Press, 1970).

28

somewhat stable states.95 Such periods are perhaps best compared to periods
where one navigates towards a somewhat known goal, but where the waters
are uncharted. At the micro-level, such uncharted waters are typically found
when new technology is moved from a phase when one goal dominates, to
another phase, where more and more new targets emerge. Such phases are
found in the period of time when a new process is moved from the testing
laboratory to the production line, or when a programming language for
telecommunication switching undergoes extensive trial implementations,
after a period of innovative design. Such liminality is a common feature in
processes of technical change and innovation, perhaps more so than in other
types of social activities. Periods of liminality mean complex and novel
decision-making for technological practitioners, not necessarily fitting the
grand scheme of things made up by historians and social scientists. It is this
category of periods that is the focus of this thesis. Here, periods and
technologies are understood less in terms like monarchic successions, but
more as “new stars twinkling into existence, not replacing old ones but
changing the geography of the heavens”, to paraphrase an imaginative
illustration of the way modes of scientific reasoning have changed over
time.96

Chill was initiated in what might perhaps best be described as such a
liminal phase at the macro level, at the outset of the knowledge-based
economy, where the meaning of programming as an activity to both
manufacturers and administrations was unknown. It was really “betwixt and
between” positions assigned by prior knowledge, technical solutions and
organisational patterns.

At the micro level, it is possible to recognise similar “betweenness,”
typical in periods moving on from inventive design to implementing use and
from rapid growth to stagnating diffusion. In the following, I apply a three-
pronged micro-periodisation when comparing how Chill was shaped through
periods of invention, innovation and diffusion, but pay particular attention to
the periods in between these well-defined phases.

Many of the discussions over the last three decades on social
scholarship on the direction of technological change have been about the
apparent gulfs between the three main streams pointed out above, the

95 Turner, The forest of symbols; aspects of Ndembu ritual.
96 Daston and Galison, Objectivity, 18.

29

“contingentism”, the “rationalism” and the “institutionalism”. 97 Changes
within social studies of technology during the last three decades have almost
altogether rejected the notion of a direction of technical change (and even
more so, trajectories) as a plausible term when considering technological
change, mainly because of its implication of technological determinism. On
the other hand, the traditional concept of directed technical change within
economics has been revived, in particular as economics has turned towards
the problems of technological solutions to climate change.98 In the following,
I am equally interested in the possibilities inherent in these established
theoretical streams as in their limitations.

Methods
The following presentation of the methodology is organised around three
general principles, concerned with the design of the investigation, its level of
analysis and the sources used in the analysis. Although they are formulated
in rather general terms, they are intended for the applicability to the project
at hand rather than generality.

Sticking point number one is to reconstruct the historical sequence of
events by following the technology through primary sources. Principle two is
to compare across time and space. The third principle is to validate the
historical reconstruction and the comparison through secondary sources and
contemporary data. I will deal briefly with each principle in turn.

The methodological principle number one is concerned with the level
of analysis and the sources used in the analysis, as it states that I should
reconstruct the historical sequence of events by following the technology
through primary sources. By this, I imply that the study follows the
technology rather then a set of predetermined set of actors. I have tried to
reconstruct the constantly changing communities and organisations that
exerted influence over Chill over time. This implies that the theoretical
model sketched out above is primarily sought out at a level of individual

97 On the gulf between evolutionary and mainstream economics regarding
technological change, see Fulvio Castellacci, "Evolutionary and new growth
theories: Are they converging?", Journal of Economic Survey 21, no. 3 (2007). On
the differences between social construction of technology and evolutionary
approaches, see Odd Einar Olsen and Ole Andreas Engen, "Technological change as
a trade off between social construction and technological paradigms", Technology in
Society 29(2007).
98 Most explicitly rejected in the introduction in Bijker and Law, Shaping
technology/building society : studies in sociotechnical change. On the interest in
directed technical change and its relation to climate change, see the various
contributions in Arnulf Grübler, Nebojša Nakicenovic, and William D. Nordhaus,
Technological change and the environment (Washington, DC: Resources for the
Future ; International Institute for Applied Systems Analysis, 2002).

30

actors rather than one where the strategies of firms and the institutional
framework can be appreciated from a vantage point high above the heads of
the participants. On the contrary, the way I have chosen to follow the
technology allows an understanding of organisational strategies and
institutional regimes as they appear at the level of individual participants.
This makes this history almost a history from below, regardless of its
insistence on not following a prescribed set of actors.

This principle renders the investigation of little use if I were to explain
differences in how groups of actors behave, or the variance in the level of
competitiveness or performance of some firms or nations. However, I find
the principle all the more fitting when concerned with explaining the
direction of technical change, although such a strategy might have some
unfortunate consequences when dealing with something as esoteric as a
programming language. The technical vocabulary might seem alien even to
technically gifted readers, and impenetrable to those not well versed in the
lingo of programming. I have tried to keep the discussion as non-technical as
possible. However, the aim of opening the black box of something as
heterogeneous and specialised as programming language design prevents me
from bypassing technological arguments and conflicts as something wholly
esoteric.99

The historical reconstruction is based on an extensive use of primary
archival sources. They are mainly of two kinds: One category of sources
embodies the technological project, such as working documents and plans,
and is of a descriptive character. These sources originated in the technical
project itself. Another type of documentation says something about its
originator and author, like travel reports and written correspondence between
developers and users, which can in some cases reveal intentions, hopes and
values, information that is important to the historical accounts. Such sources
embed part of the social fabric that the participants were woven into.
Together, the breadth and number of sources makes a detailed reconstruction
possible. I discuss the limitations and possibilities of the available sources
more directly in a specific section below.

It is also worth noting that although I rely primarily on archival
sources, I also activate a slightly broader methodological apparatus
throughout the thesis. Interviews have been used to some extent as part of
the reconstruction, which I will deal with more extensively below. When
analysing relationships between participants in the ITU design and
implementation projects, I utilise so-called social network analysis (SNA) to

99 On the black box metaphor in relation to technology, see Rosenberg, Inside the
black box : technology and economics.

31

discern patterns of cooperation and alliances. 100 Here, I focus on the
relationships formed through mutual participation in the official meetings
and the contributions made by team members, or their parent organisation, to
different meetings. This makes it possible to distinguish between importance
(or centrality, to use the lingo of SNA) won through participation and the
willingness to exert influence through contributions to the various meetings.
The former is understood as a position in a network made up of ties between
the participants and the latter is understood as an indication of a willingness
to exert influence over the decisions made at each individual meeting.
Throughout chapters three and four, I measure participation networks and
the willingness to influence decisions through such methods. More thorough
discussions on the methodological possibilities and limitations of such
network analysis and its measures are carried forward throughout the
relevant chapters.

The social network analysis is coupled with a close to complete
analysis of various written contributions to the programming language,
which makes it possible to compare how linkages between participants were
reflected in contributions, beliefs and behaviour in the committee work,
which adds to the gains from the social network analysis. It is worth noting
that the social network analysis is only appropriate when analysing and
comparing the shaping of the programming language that was going on
within the boundaries of the ITU, and is not applicable when analysing the
later stages of Chill’s life cycle. The analysis of its wider use and adaptation
has to rely on other methods, like comparing patterns of use across various
organisations.

The second methodological principle is to compare through time and
space. The purpose is to come up with a descriptive explanation of the
problem at hand, an explanation that is inherently historical and dynamic in
the sense that I amplify the contextual and the period specifics of the events
analysed. The time-oriented comparison is based on a periodisation of the
development of the Chill project, and tries to compare the directional push
towards a specialised, yet high-level programming language, along the two
sources of influence discussed above.

The “life cycle” of the Chill programming language lends itself to
quite distinct periodisation, as the institutional base of Chill, the ITU, was
strictly organised around a principle of pre-planned “study periods” with an
interval of four years. The organising principle of the time-based comparison

100 SNA is generally considered a well-established method within the social sciences
that is particularly useful when considering community structures and analysing
relational data. For an introduction, see Linton C. Freeman, The development of
social network analysis: a study in the sociology of science (Empirical Press, 2004).

32

is, as such, internal to the study object, rather than based on a broad and
externally originated period or phase.

The period-oriented comparison is also, more inherently, a
comparison across space. The level of analysis, including communities of
technological practitioners, the international organisation ITU and nationally
bound administrations and manufacturers, allow me to seek out common
concerns and actions across boundaries typical to national-oriented analysis
of innovation.101 As such, my approach allows for the international and
transnational aspects of technology development as well as use to come to
the foreground. However, it also makes it possible to compare how actors
coming from widely different organisational and national backgrounds acted
at that international level, and thus being able to answer whether the
convergence upon some technical features was a result of tough negotiations
or common agendas.

The third methodological sticking point is basically a safety valve: I
have tried to validate my findings and my interpretations of primary sources
through secondary sources. This includes an extensive use of
contemporaneous technical and scientific literature and retrospective
interviews with some of the key actors in the Chill project. In this regard, I
have relied on interviews with important actors in the Chill project to
strengthen my analysis. This includes some important Norwegian, Swedish,
Dutch, Japanese and American participants, but includes nowhere near what
would be demanded of a representative population of interviewees.102 As
such, it is important to stress that the way I have utilised these interviews has
mainly been to validate information found in archival sources, or to point out
relationships that were not evident from the primary sources in the first
place. As such, there are parts of the analysis that rely more heavily on
interviews than others. In these cases, I have tried to support the evidence
with other interviews and secondary sources as much as possible.

These interviews have been done orally and in an unstructured way,
except in some cases, where conversations by electronic mail have been used
due to distance and time. Some of the interviews and conversations have,
following the validation criteria, taken place late in the research process. In
some parts of the text, these interviews have provided me with unique
knowledge and information, which in turn has informed my understanding in

101 On the deficiencies of a national-oriented approach to innovation and use of
technology, I find David Edgerton’s arguments convincing. See David Edgerton,
The shock of the old : technology and global history since 1900 (Oxford ; New
York: Oxford University Press, 2007), 103-37.
102 For more details, see list of interviews in the appendix. In the running text,
references to interviews have been given the following form: Name of interviewee,
interviewed by author, date of interview, and place of interview.

33

a considerable way, although they appear infrequently in the referring
footnotes.

When I have used direct quotes from interviewees in the text, the
quotations have been approved by the interviewees. The evidence used for
most parts of this thesis has been in written form and from the time they
cause concern. The unwillingness to rely more on interviews and oral history
methods is based on the considerable problems with the reliability of such
interviews, in particular due to the sketchy reliability of memory and the
problem of retrospective interpretation. This is, however, not due to the
specific informants available to this specific project, but a general scepticism
towards the use of interviews as evidence on my behalf. The interviews
conducted for this thesis have also played a significant role in identifying
written sources and provided access to private collections of papers and
communications. As such, the interplay between interviews and written
sources has to some extent gone beyond the validation-oriented principle
stressed above.

Summing up, the methodology applied aims at reconstructing the
Chill project through the use of mainly archival sources; it compares the
directional push to the technology through its life cycle, and validates the
specifics and general implications through secondary and contemporary data.
Let me briefly consider the strengths and weaknesses of the archival sources
in a separate section below.

Sources
As discussed above, the historical reconstruction is based on an extensive
use of primary sources. These are sources that embody the technological
project, such as working documents and plans, and are of a descriptive
character, or documentation that says something about its originator and
author, like travel reports and written correspondence between developers
and users that can in some cases reveal intentions, hopes and values of their
originator. The two categories of source material have been found in a
number of different archives and private collections. First, the official
archive of the ITU has made available the official documentation from the
Chill project, meaning the working documents from the study group from
around 1973.103 The ITU material in this period consists of approximately 22
metres of shelving, and includes material from all working groups active
during the study periods, but not the final publications. However, only a
small fraction of this material is relevant for my study. They lack detail,
because of ITU’s policy of archiving only documents of the official working
group and the documents submitted to them within a particular timeframe.

103 International Telecommunication Union Archive, Geneva, Switzerland (hereafter
cited as ITUA).

34

As such, what the ITU termed delayed contributions is not held by the
archive. Reports on meetings within the working group structure are also
found within ITU’s journal, the Telecommunication Journal, which has been
consulted for all periods analysed. Official documents from ITU’s plenary
assemblies have been examined for the relevant periods and the final
publications of the Chill recommendation.104 Furthermore, I have also used
some periodicals relevant to the subject matter. First, the ITU publication,
the Telecommunication Journal, which was published monthly in Geneva,
has been looked through for the years 1975 to 1985.105

Secondly, I have looked into material in the archival holdings of the
Norwegian Telecommunication Administration (NTA) held at the
Norwegian National Archive. 106 This includes material held by the
administrative department of the administration as well as its research
establishment, the Norwegian Telecom Research (NTR).107 In addition, I
have studied records from the technical department as well as copybooks and
journals from the central administration. The NTR coordinated the common
Nordic efforts in the ITU on Chill, but the archival holdings are sporadic and
incomplete. Some valuable insights into the administration’s view on
programming and its importance for future telecommunication networks are
nevertheless possible to find here. This archive also held invaluable material
for the later years of my study, in particular regarding efforts to
commercialise Chill-related products.

Thirdly, I have enjoyed full access to the private collection of Kristen
Rekdal, who was the main Norwegian researcher active in the Chill
development work from 1975 and headed the international standardisation
work from 1980 to 1984. He started the firm Urd and Kvatro, which
commercialised some Chill products from 1983.108 This archive amounts to
roughly three metres of shelving, related to the CCITT project, as well as a

104 Revisions to the original recommendation were issued in 1984, 1988, 1992, 1996
and 1999.
105 The Telecommunication Journal was previously called the Journal
Télégraphique, which had been issued from 1869. The Telecommunication Journal
was launched in 1933.
106 Norwegian Telecommunication Administration (Teledirektoratet in Norwegian),
Norwegian National Archive (Riksarkivet in Norwegian), Oslo (hereafter cited as
NTA).
107 The latter is held in the following archive: Norwegian Telecom Research
(Teledirektoaretet, Televerkets forskningsinstitut in Norwegian, hereby cited as
NTR), Norwegian National Archives, Oslo.
108 Private collection of Kristen Rekdal (hereby cited as KRC). The archive is about
to be handed over to the archive of the Norwegian University of Science and
Technology, Trondheim. I have named the boxes and binders in full, as they appear
now, to ease finding the sources in any future reorganization of this collection.

35

supporting project done within Nordtel, an organisation for cooperation
between telecommunications administrations of Norway, Denmark, Finland,
Sweden and Iceland. Part of the archive also holds official material from the
ITU - far more material than is available in the official archives of the ITU.
The archive also holds several series of travel reports and commentaries
about the progress of the work, material that has be harnessed to understand
the ideals, beliefs and plans of its Norwegian originator.

Fourthly, I have looked briefly into the private collections of two
Dutch participants in the Chill project, Remi Bourgonjon and Kees
Smedema.109 In the first case, this helped me complete the series of ITU-
issued material, while in the latter case, internal documents of the Dutch firm
Philips was made available. Both holdings were fragmentary and of a
personal nature, and consequently they did not lend themselves to any
systematic investigation. Information about decisions made within Philips
and the organisational setting of the participants from Philips in the ITU
project was obtained through these consultations. For more details about the
archival sources utilised in this thesis, see the list of sources at the end of the
thesis.

Additionally, this thesis makes use of a large number of journal
papers, conference papers and technical reports to highlight how many
organisations used and regarded Chill. In an industry that in this period
remained fairly closed to outside observers, such sources have proven
invaluable. In particular, I have looked into the complete proceedings from
the Software Engineering for Telecommunication Switching Systems
(SETSS) conferences, from its first incarnation in 1973 and up until 1992.
Eight conferences with about 30 papers each have been indexed and
analysed.110 Furthermore, the proceedings of the larger industry meeting of
the International Switching Symposium (ISS) have been analysed from 1972
to 1990.111 Another important venue was the Chill conferences, five of which
were held five times from 1981 to 1990. The papers given at these
conferences has been analysed in detail and have revealed many details
about the diffusion and use of Chill in almost all of the organisations that

109 Both Remi Bourgonjon and Kees Smedema live in Heeze in the Netherlands.
110 The Software Engineering for Telecommunication Switching Systems
conferences were held in 1973, 1976, 1978, 1981, 1983, 1986, 1989 and 1992. They
were organised by the Electronics Division of the Institution of Electrical Engineers
(IEE), which became the Institution of Engineering and Technology in 2006. The
various SETSS conferences were organised together with various other European
institutes and associations around Europe and all the proceedings were published by
the IEE.
111 In this period, the ISS were held in 1972, 1974, 1976, 1979, 1981, 1984, 1987
and 1990 at various venues around the world. All the proceedings have been
published.

36

used the programming language.112 The specific articles that have been used
are listed in the bibliography while a full article index of the Chill
conferences, the proceedings of which were not widely circulated, has been
included as an appendix.

One weak point in the sources that have been available to me is the
lack of corporate archives from some of the large telecommunication
manufacturers that were active in the Chill project. Such archives could have
strengthened the understanding of the strategic manoeuvring of these firms
and how that translated into actions within the Chill project. However, parts
of the source material that have been available to me have gone some way to
rectify the lack of corporate sources. First of all, by utilising the material
submitted to the working groups within the ITU, it was possible to get
information from a much larger set of manufacturing firms than a single
corporate archive could offer. Secondly, due to the tangled nature of the
telecommunication industry of the time, material from some manufacturers
was available in the NTA archives. This does not, however, make up for the
lack of corporate archives. In some special cases, in particular in the case of
the multinational ITT and Philips, I have had to rely on interviews and
conversations with people with a background in the Chill project, and the use
of private collections of papers, notes and communications. For information
about the Swedish firm L. M. Ericsson, I have also been able to make use of
source material from the Nordic Chill compiler project, where Ericsson
played a minor part. This has also been supplemented by source material
made available through a large research project on Swedish IT history
between 1950 and 1980, which has produced a number of transcribed
witness seminars where former Ericsson employees have been extensively
interviewed.113 The public availability of these sources has, together with
systematic study of the technical journal Ericsson Review, been able to
further my knowledge about what went on in L. M. Ericsson.114

112 The Chill conferences were held in 1981, 1983, 1984, 1986 and 1990. The
proceedings very not officially published, but have been made available to me
through the Kristen Rekdal collection, except for the proceedings of the first
conference in 1981, which I have not been able to allocate.
113 In particular, the following transcripts of witness seminars have been utilised: Per
Lundin, "Tidlig programmering : Transkript av ett vittnesseminarium vid Tekniska
museet i Stockholm den 16 mars 2006", (Stockholm: Filosofi och teknikhistoria,
2007); Mikael Nilsson, "Staten och kapitalet: Betydelsen av det dynamiska
samspelet mellan offentligt och privat för det svenska telekomundret : Transkript av
ett vittnesseminarium vid Tekniska museet i Stockholm den 18 mars 2008", (2008).
114 The Ericsson Review was published four times a year and contained technical
articles written in a fairly approachable manner. The journal was first published in
1923. I have looked at volumes 46 to 76.

37

The lack of corporate archival sources points out what can also be perceived
as a methodological weakness, namely that the contextualisation of the Chill
project in general and the approach to organisational strategies in particular
rely, to a large extent, on secondary sources. When approaching projects
involving as many organisations and participants as Chill, such problems are
almost unavoidable. Constraints in time and space make a more detailed
study of each and every organisation difficult to achieve. In this thesis, the
main approach has been to use source material that originated between the
participating organisations, close to the project that is. As such, what is
studied is strategising as it appeared from below, which is the vantage point
that this thesis has favoured. Still, I have tried to reconcile this with an
extensive use of secondary sources, sources that are not only interviews, but
also the large and extensive historical literature mentioned above.

Outline
In this introduction, I have presented my subject and research problems, my
methods and the theoretical orientation of my study. I have also briefly given
a historiographical overview of relevant research. The rest of the thesis is
organised as follows. The thesis is organised around three main parts, where
each part is concerned with one of the three periods in the life cycle of the
programming language Chill: its emergence, diffusion and demise.

The second chapter presents the broad technological and
organisational background of the influence of programming and computing
in the world of telecommunication administrations and manufacturers. Here,
I also discuss differences between the two domains and put these into an
historical perspective, in particular focusing on the years leading up to the
Chill initiative, from around the mid-1960s. In particular, this chapter
describes the state of affairs at the very first years of the 1970s, and outlines
the invention of high-level and real-time programming languages.
Furthermore, I seek out the first seeds of the communities of technological
practitioners that shaped Chill, and analyse their institutional boundaries.

Chapters three and four are concerned with the period of emergence of
high-level programming languages in telecommunications in general and the
design of the Chill programming language in particular. This period is
studied in detail, as decisions on programming language design is sought
both in the internal dynamics of the international standardisation effort and
in the external pressure from the participating organisations as well as
external experts and knowledge communities. Chapter three is focused on
programming language design, while chapter four focuses on how the
language was implemented early on, and how this rubbed off on the
language design.

Chapter five is an analysis of the early diffusion, use and
implementation of the programming language Chill in large industrial firms.
Chapter six focuses on the diffusion among administrations as well as how a

38

community of core language developers and more peripheral industrial users
tried to influence the future of the programming language during the 1980s.
Together, these two chapters study the phase where Chill matured into a
language that was put into real use.

Chapter seven is concerned with the final diffusion phase and the
ultimate demise of Chill. Here, I discuss a number of organisational
alternatives for diffusion, in particular through small start-ups and the
emergence of independent tool suppliers. I also discuss the way the impetus
behind the language waned, and how it ultimately disappeared as a
maintained ITU standard in 1999. Chapter eight presents my conclusions.

39

2. When switches became programs:
telecommunication and computing, 1965 - 1974

In late 1974, delegates to the CCITT decided that a special purpose
programming language for telecommunication switches should be created
under the auspices of a committee appointed by the organisation. A common
and internationally standardised programming language was thought to be an
important way of unifying forces against the towering difficulties
experienced when programming the very first generations of computer-
controlled telecommunication switches.1 No existing programming language
fitted the bill drawn up by the members of the CCITT. Not technically, not
economically, not politically. It was simply not possible to match the ideals
and expectations that the delegates had of a special purpose programming
language for telecommunication switching systems.

Programming language design was a field where the CCITT delegates
and the employees of telecommunication administration held little
experience or knowledge. The knowledge of the telecommunication
manufacturing industry was also limited. 2 Programming a
telecommunication switch was considerably different to programming a
general computer, and little knowledge on how to do it existed even within
the general computer industry.

The effort of standardising a programming language within the
CCITT was just one of many ventures into the unknown waters of
programming language design for telecommunication equipment. In many
ways, such programming languages became “boundary objects”, spanning
and mediating the borders of different technological and scientific
communities and explicating different means of managing the complexity of
programming telecommunication switches.3

1 In the terminology of telecommunications, this first generation of switches was
often referred to as Stored Program Controlled (SPC) telephone exchanges.
2 The first computer-controlled switching system, the AT&T “Number One
Electronic Switching System” (No. 1 ESS), is described in numerous sources. See
for example the contemporary description in Bell System Technical Journal 43, no.
5 (1964). The Bell System Technical Journal is available in its entirety online, see
http:// bstj.bell-labs.com/
3 The concept of “boundary objects” was first used in Susan Leigh Star and James R.
Griesemer, "Institutional Ecology, 'Translations' and Boundary Objects: Amateurs
and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39", Social
Studies of Science 19, no. 3 (1989). It has recently been applied in the theoretical
field of communities of practice. For an example, see Etienne Wenger, Communities
of practice : learning, meaning, and identity, Learning in doing (Cambridge, U.K. ;
New York, N.Y.: Cambridge University Press, 1998).

40

This chapter sketches out the background of the decision to create a CCITT-
approved programming language for telecommunication switching. It charts
the waters of designing and governing programming languages in general
and outlines the challenges and solutions to programming switches sought
during the first 10 years of computer-controlled switching, up until the
CCITT decision in the mid-1970s.

Drawing on the framework established in chapter one, I stress the
community as an organisational principle for understanding the development
of programming languages. Consequently, I pay simultaneous attention to
the social dimension of the community formation and how new knowledge
was produced within it, the development virtues held by different
communities, and how the borderlines between the two industrial sectors of
computing and telecommunications became a zone where virtues clashed
and new ones were established – virtues that again would influence the
development of the CCITT-approved programming language.

Programming languages in science and industry
In the early days of computing, software was not identified as a particular or
isolated aspect of it. This changed in the late 1950s. As pointed out by the
historian Paul Ceruzzi, computer programming, and consequently the whole
software concept, was something contingent and emergent which came to
the fore around 1959:

The activity known as computer programming was not foreseen by the pioneers
of computing. During the 1950s they and their customers slowly realized: first,
that it existed; second, that it was important; and third, that it was worth the
effort to build tools to help do it. These tools, combined with the applications
programs, became collectively known as ‘software,’ a term that first came into
use around 1959.4

This realisation was closely related to the emergence of computer use
outside the laboratory, in industry and businesses. This had two implications:
New applications of computing meant that programming became an activity
that translated real-world problems into computable terms. It also meant that
the programming activity of computers became an activity of the many. This
caused the birth of a profession of programmers as well as an interest in
building tools to help the programmers with programming software. In
particular, this caused an interest in programming languages that could
bridge real-world problems into computable expressions and constructions.
These languages became the primary means of managing the complex

4 Paul E. Ceruzzi, A history of modern computing, History of computing
(Cambridge, Mass.: MIT Press, 1998), 108.

41

process of programming computer systems.
Initially, programming was a task requiring an understanding of

obscure machine codes, a language few were to master. To ease the tedious
and esoteric work of machine code, various types of notations were created,
which was what we now call programming languages. That gave way to a
more general notion of high-level computer languages, which implied that
they were somewhat more readable to a human than to a machine, and that
there existed a hierarchical system of programming languages, where the
high-level programming languages were understood as something “above”
the machine code and the intermediate level of so-called assembly
languages. The high-level languages’ expressions and constructions
represented an abstraction of the computer, and were closer to the real-world
problems than obscure machine codes. The instructions written by a
programmer in a high-level language could be translated into machine code
by the computer, by generating (or compiling, in computer lingo) machine
code based on a careful analysis of what the programmer specified in such a
high-level language.5 This came, however, at a price: high-level language
brought inevitable penalties in terms of size and performance of the
compiled code and could run slowly on limited computing powers. The
gains were increased programmer productivity, fewer bugs in the compiled
code and better communication among programmers. Some degrees of
machine independence of the code could be achieved, as solutions to specific
computable problems could move more or less freely between specific
computers. 6 For a casual illustration of the hierarchy of programming
languages as of the 1960s, see below.

5 To be precise, the code could either be compiled or interpreted. Compiled code
means that the programming language expressions have been translated into “object
code” that can run on a specific machine. Interpreted code is, on the other hand,
executed on a step-by-step basis as each statement is translated into object code “on
the fly” rather than in one batch. On the definitions, see Sammet, Programming
languages: history and fundamentals, 12.
6 On the early history of programming languages, see Ibid.

42

Figure 2.1 Programming languages and the levels of abstractions

The design of such high-level programming languages was a heterogeneous
activity involving people from radically different backgrounds. Different
agendas were followed when designing programming languages, agendas
that were rooted in different software development virtues and ideals about
how programming should be done. Some communities were interested in the
efficiency of the code, held fast calculations as an ideal and the way
programming should be done was considered secondary to the code. Others
were mainly interested in applying mathematical algebra to the task,
idealising programming as some sort of mathematical activity. As
programming language design became an activity that attracted people with
rather different backgrounds, the programming languages became boundary
objects spun off and shared between communities of technological
practitioners, scientists and other types of experts. Such a boundary object
meant different things to different people. At one of the very first discussions
of the programming language concept, a 1954 conference on programming
organised by the US Navy, differences in the understanding of what a
programming language should be were very apparent.7 Most of the papers
delivered at the conference were concerned with techniques for
programming specific computers, while a few approached the task with the

7 Mathematical Computing Advisory Panel United States Navy, Symposium on
automatic programming for digital computers, 13-14 May 1954. (Washington,: U.S.
Dept. of Commerce, Office of Technical Services, 1955). I was made aware of this
conference and its illustrative powers in discussions with, and from article drafts by
Gerard Alberts and David Nofre.

43

aim of liberating the programmer from the specificities of one machine, by
applying more universal formal notation. In a paper by Saul Gorn, this was
spelled out rather explicitly:

As an alternative to the commercial capture of the computer and data processing
field by one make of machine, or arbitrary ruling on machine specifications by
government fiat, one now has the interesting possibility of a common, universal,
external language arrived at by mutual agreement and persuasion.8

The solution, to Gorn and to a few other participants, was to root this
universal language in the language of mathematics.9 Not only that, Gorn
invoked the tools of mathematics as a way of abstracting away the
manufacturers’ control over computer machinery. In the following years,
those two issues, the application of mathematical logic and algebra to
programming language design and the way of abstracting away the concrete
machinery through universal language concepts, would form a central part of
what basically became known as computer science in the USA and
informatics in many European countries. 10 As the historian Michael
Mahoney has argued, computer science formed upon an amalgam of a
number of knowledge fields, such as numerical analysis, algebra, automata
theory and computational complexity.11 An overreaching issue for computer
scientists was, regardless of the amalgamate background, to separate the
issues of software from engineering and to strengthen the understanding of
programs as mathematical expressions that could be proved right.12 One way
that academic computer scientists tried to enforce their particular view about
what should be understood as good programming was through the design of
programming languages. By injecting a particular logic and vocabulary into
the most important capital good in programming, one could achieve the aims

8 Saul Gorn, "Planning Universal Semi-Automatic Coding", in Symposium on
automatic programming for digital computers, 13-14 May 1954. , ed. Mathematical
Computing Advisory Panel United States Navy (Washington: U.S. Dept. of
Commerce, Office of Technical Services, 1954), 75.
9 J. Brown and J. Carr III, "Automatic Programming and its Development on the
MIDAC", in Symposium on automatic programming for digital computers, 13-14
May 1954. , ed. Mathematical Computing Advisory Panel United States Navy
(Washington: U.S. Dept. of Commerce, Office of Technical Services, 1954).
10 On the formation of computer science and informatics, see Paul E. Ceruzzi,
"Electronics Technology and Computer Science, 1940-1975: A Coevolution", IEEE
Annals of the History of Computing 10, no. 4 (1989); Mahoney, "Software as
Science - Science as Software"; Ensmenger, The computer boys take over :
computers, programmers, and the politics of technical expertise, 111 – 36.
11 Mahoney, "Software as Science - Science as Software".
12 On the issue of provability in the history of computing, see MacKenzie,
Mechanizing proof : computing, risk, and trust.

44

of virtuous programming. However, the formalistic development virtue that
dominated computer science was an approach that was not shared by most
working programmers. As historian Nathan Ensmenger has argued,
computer programming was generally regarded as an undisciplined and
unscientific activity throughout the 1950s. By the early 1960s, computer
scientists and professional programmers looked upon each other in a
mutually suspicious manner. Ensmenger has argued that “computer scientists
expressed disdain for professional programmers, and professional
programmers responded by accusing computer science of being overly
abstract or irrelevant”.13 Consequently, programming languages designed by
computer scientists would not always be understood as injecting virtuous
deeds and rules by professional programmers, but rather would be seen as
impractical and cumbersome. In contrast, programming languages designed
by industrial researchers were looked upon by equal suspicion by computer
scientists, who argued they were inconsistent and nothing but short hacks.
Programming languages were designed by scientists aiming at universality,
but also by industrial researchers wanting efficient coding for particular
machines and by local hacks making local machinery more approachable.
Programming languages were really something that came about in widely
different ways, with widely different objectives.

The different approaches to programming languages, and
programming in general, were reflected in their first popular incarnations.
The first widely known programming language was Fortran, developed by
IBM and standardised in 1957. It was soon followed by the first Algol
version in 1958, which was standardised in 1960.14 Cobol, issued by the US
Department of Defense followed suit in 1962, developed jointly by a
committee of European and American scientists.15 While Fortran and Cobol
succeeded as widely used programming languages, and are still used in some
quarters, Algol was less successful in practice but became important
scientifically.16 Of the early languages, the universality and formalistic virtue
wished for by Gorn, Brown and Carr in 1954 were most evident in the Algol
programming language, created by high-profile computer scientists like the

13 Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise, 129.
14 On Fortran, see IEEE Annals of the History of Computing. vol. 6 (1984). On
Algol, see David Nofre, "Unraveling Algol: US, Europe, and the Creation of a
Programming Language", IEEE Annals of the History of Computing 32, no. 2
(2010).
15 On Cobol, see IEEE Annals of the History of Computing. vol. 7 (1985).
16 Mark Priestley has argued that Algol became a paradigmatic example within
computer science and computer language design, influencing technical and
organisational decisions throughout the 1960s and the early 1970s. See Priestley,
"Logic and the development of programming languages, 1930 - 1975".

45

Dutch Edsger W. Dijkstra, the Dane Peter Naur and the American John W.
Backus.17 With Algol, a transatlantic committee put their heads together to
create a programming language, independent of any manufacturer,
documented and specified so that it could be used on a wide variety of
machinery and mathematical in its form, so that it could express almost any
computable algorithm. The objectives behind Cobol had some resonance
with this, as it was deliberately constructed in a way that encouraged
portability from one type of machine to another, even though the
implementers struggled to meet this criterion. Cobol was also a deliberate
effort to make a programming language English-like and readable, in stark
contrast to the mathematical virtuosity put into Algol. Algol cohort Edsger
W. Dijkstra even wrote that Cobol “cripples the mind” because of what he
perceived as its linguistic ugliness and inconsistencies. 18 The different
perceptions of what constituted good programming and software
development were obvious: the humanly readable Cobol and the formalism
of Algol represented different approaches to achieve virtuous programming,
and would typically appeal to different communities of computing.
Obviously, other differences between the two approaches existed, like their
different national and institutional origins, intended application domains and
the level of commercial and industrial support. These differences were no
less important than how the languages reflected different approaches to
programming. For reasons of clarity it is, however, sufficient to argue that
the basic two-pronged categorisation could be upheld regardless of the
demarcation criterion, although some reservations about this must be
maintained.19

Throughout the 1960s, a whole range of new programming languages
appeared, some from the halls of computer science, some from the computer
industry. The development of hundreds, or even thousands, of programming
languages created a situation comparable to the Tower of Babel: confusion
caused by a scattering of numerous languages. 20 Once again, calls for
universality and machine independence appeared, similar to those initial
concerns in the 1950s. At the end of the 1960s, scientific communities as
well as the computer industry strived toward the creation of a single,

17 J. Perlis Alan, "The American side of the development of Algol", SIGPLAN Not.
13, no. 8 (1978); Naur Peter, "The European side of the last phase of the
development of ALGOL 60", SIGPLAN Not. 13, no. 8 (1978).
18 Here quoted from Ensmenger, The computer boys take over : computers,
programmers, and the politics of technical expertise, 100.
19 In particular, the popular view that Algol and its formalism were particularly
European has been challenged recently. See Nofre, "Unraveling Algol: US, Europe,
and the Creation of a Programming Language".
20 Jean Sammett’s landmark survey from 1969 reviewed or described about 120
languages. See Sammet, Programming languages: history and fundamentals.

46

powerful, programming language to cater for as wide a range of applications
as possible, much like a programmer’s lingua franca. IBM’s PL/1 and new
versions of Algol (Algol 68) were created with this in mind. However, both
failed to replace the “twin towers” of Fortran and Cobol – universalism
prevailed by other means than PL/1 and Algol68, but by sheer path
dependence.21

Considering systems programming, which involves software that is
designed to operate the hardware and to provide a platform on which to run
application software, the situation was somewhat similar. Here, the
efficiency of the compiled code was of even greater importance, and the idea
of one particular all-embracing language like PL/1 and Algol 68 was not
viable. However, the design of languages for system implementation was
still influenced by the idea of aiming at higher levels of abstraction, and the
ideal of one systems implementation language that could replace a whole
slew of others gained support.

As a result, a hybrid entity of so-called “machine-oriented higher level
languages” was introduced when the 1960s turned into the 1970s.22 The goal
was to achieve almost assembler-level performance as well as a high level of
abstraction. One of the first examples of this was PL/360, created by the
Swiss computer scientist Niklaus Wirth in 1968. Wirth would later on
greatly influence the history of programming languages more in general,
when he created the programming language Pascal. 23 However, PL/360
would influence the sub-discipline of systems programming language
design, a field that was also close to the telecommunication industry, which
also relied on highly efficient code in its systems.

21 Ceruzzi, A history of modern computing, 107.
22 See W. L. van der Poel, L. A. Maarssen, and International Federation for
Information Processing. Technical Committee 2., Machine oriented higher level
languages : proceedings of the IFIP Working Conference on Machine Oriented
Higher Level Languages, Trondheim, Norway, August 27-31, 1973 (Amsterdam;
New York: North-Holland Pub. Co. ; American Elsevier, 1974).
23 Niklaus Wirth, "A Brief History of Software Engineering", IEEE Annals of the
History of Computing 30, no. 3 (2008).

47

Figure 2.2 Machine-oriented higher-level languages

During the early 1970s, the balance between abstraction and performance
was sought in development along the lines of “machine-oriented higher-level
languages,” which provided abstract constructs that would easily compile
into effective machine code. Another important change in the development
of software and the design of programming languages came about at the end
of the 1960s, with the emergence of the hotly contested field of software
engineering. This would also influence programming language design
throughout the 1970s.

Software engineering
Programming has always seemed to play catch-up on the advances in
hardware. The technical, managerial and organisational challenges related to
programming seemed to be in a constant turmoil, inspiring widespread
discussions on the roots of the problem. Typically, these discussions would
be wrapped up in the concept of the software crisis, a term used to describe
the various troubles with software, as in always being late, over budget and
below expectations. According to the historian Nathan Ensmenger, the years
between 1968 and 1972 were a major turning point in the history of
programming and the understanding of its problems, as “the existence of a
looming software crisis [was] widely and enthusiastically embraced within

48

the popular and industry literature”. 24 The problems and one proposed
solution came to a head in 1968, when it was the subject of a Nato-sponsored
conference held in Garmisch, an event that has taken on almost mythical
proportions in terms of importance in the literature. 25 The conference
introduced the term “software crisis” to describe the problems related to the
fact that software was almost “[…] never produced on time, never meets
specification, and always exceeds its estimated cost”. 26 Secondly, the
conference proposed a cure. The term “software engineering” was brought
up and according to the organisers it implied “the need for software
manufacture to be based on the types of theoretical foundations and practical
disciplines that are traditional in the established branches of engineering”.27
Various interpretations of what this software engineering concept should
consist of and which established engineering concepts it should be based on
have been a dominant strand in debates in the software field ever since.28

The very conference was, at least to some of its participants, a
continuation of the early Algol effort. One of the organisers was Friedrich L.
Bauer, which had held a prominent position in the Algol programming
language effort. To Bauer and his compatriots at the Nato conference, the
solution to the software crisis was closely aligned with the mathematical
discipline they had strived for in programming language design. They
basically moved the formalistic development virtue from the scientific
approach of designing programming languages to a similar approach to the
art of creating software.

24 Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise, 195.
25 Over the years, this conference has been used in a number of historical accounts.
In particular, see Donald MacKenzie, "A View from the Sonnenbichl: On the
Historical Sociology of Software and System Dependendability", in History of
Computing: Software Issues, ed. Reinhard Keil-Salwik Ulf Hashagen, Arthur L.
Norberg (Berlin: Springer, 2002); MacKenzie, Mechanizing proof : computing, risk,
and trust; Mahoney, "Software as Science - Science as Software"; ———, "Finding
a history for software engineering". See also the proceedings of the conference,
"Software Engineering", (Garmisch, Germany, 7 - 11 October 1968).
26 The discussions about the terminology are reported in the proceedings, see
"Software Engineering", 119 - 25.
27 Ibid., 13.
28 Michael S. Mahoney’s search for a history of software engineering is made along
the lines drawn up at the Garmisch conference. He looks at how various competing
agendas for the emerging software engineering profession were essentially tied in
with managerial, social and political ideals and furthermore, how these were tied in
with models of other engineering professions. According to Mahoney, mechanical
engineering, applied science and industrial engineering were evoked to shape
software engineering. See Mahoney, "Finding a history for software engineering".

49

Another important contribution of the Nato conference was an increased
attention to concepts that could facilitate modularisation in the software
development process, ranging from structured programming approaches to
modularisation techniques. Modular techniques in software development
meant that one piece of programming code could be written with little
knowledge of the code in another module, and secondly, techniques that
allowed “[…] modules to be reassembled and replaced without reassembly
of the whole system”.29 Finding solutions to the dilemma of “mathematical
rigor for small programs against the intractability of large programs” were
high on the agenda.30 Whereas the rigour that Bauer, Dijkstra and their likes
idealised was tractable when approaching small programs, it was all the
more difficult to achieve when working on large and complex systems.
Nevertheless, “mathematical rigour” was still the guiding principle for a
large community of technical and scientific experts interested in
programming.

This would soon feed back into the subject of programming language
design, making the development virtue go full circle. While the issue of
abstractions was prominent in the 1960s, concepts for facilitating
modularisation in programming language design were actively sought in the
1970s, following up the issues at hand when building the software
engineering discipline. 31 As such, it was no coincidence when Jack B.
Dennis of MIT lectured on modularity in an advanced course in software
engineering in the winter of 1972 – and that one of the issues that he
approached was how existing programming languages lacked facilities for
“proper” modularisation.32 The advanced course was a follow up of the
Nato-sponsored events of the late 1960s, and organised by Friedrich L.
Bauer, the chairman of the 1968 conference at Garmisch. 33 As such,
Dennis’s concern with modularity tied in with Bauer’s prior interest in
structured programming and mathematical virtuosity – and how this should
be tied in with programming language design and software engineering.34

According to a recent study on the relationship between software
engineering and programming language research by Barbara G. Ryder, Mary
Lou Soffa and Margaret Burnett, “Software engineering research and

29 David Lorge Parnas, "On the Criteria To Be Used in Decomposing Systems into
Modules", Commun. ACM 15, no. 12 (1972): 1053.
30 Wirth, "A Brief History of Software Engineering".
31 Ibid.
32 Jack B. Dennis, "Modularity", in Advanced Course on Software Engineering, ed.
F. L. Bauer (Berlin: Springer-Verlag, 1973).
33 The lectures are compiled in F. L. Bauer, ed. Advanced Course on Software
Engineering, Lecture Notes in Economics and Mathematical Systems (Berlin:
Springer-Verlag,1973).
34 Dennis, "Modularity".

50

programming language design have enjoyed a symbiotic relationship, with
traceable impacts since the 1970s, when these areas were first distinguished
from one another.” 35 This symbiotic relationship was found to have
influenced several major features of modern programming languages, like
data abstractions and modularity concepts. This relationship first
necessitated a separation of the two fields, a separation the study traces to
the early 1970s and the advent of two separate conferences: the first
Symposia on Principles of Programming Languages, held in 1973, and the
first International Conference on Software Engineering, held in 1975.

Summing up, two particular concerns dominated the early discussions
and developments within computer science and the computer industry when
entering the 1970s: abstractions and modularisation. While the first concern
was evident in high-level languages that appeared in the late 1950s, the latter
emerged as a greater concern during the 1970s. The former was mainly
related to the move from scientific computing towards real world
applications that took place during the 1960s. The latter was related to the
influence of the emerging software engineering discipline, as indicated and
initiated at the Garmisch conference. Both changes were shaped by technical
communities that valued the mathematical development virtue, in particular
the participants in the community of computer scientists.

Programming switches
In May 1965, after seven years of intensive research and development, the
American AT&T introduced the very first software-controlled computer in
telecommunication switching by putting their “Number One Electronic
Switching System” (No. 1 ESS) into service.36 By 1975, over 800 switching
systems controlled by electronic computers were in operation worldwide,
and numerous telecommunication administrations were planning on
introducing computer-controlled switching in their networks over the next
few years.37 During this 10-year period large electromechanical switches
were being replaced by switches that, essentially, were software programs –
switches became programs. The production and development of this
equipment was very different to the way electromechanical switches were
put together. Balls of wires were increasingly replaced by loops of
programming code at the development and production facilities of many a

35 Ryder, Soffa, and Burnett, "The Impact of Software Engineering Research on
Modern Programming Languages": 431.
36 No. 1 ESS is analysed in numerous sources. See for example the articles in Bell
System Technical Journal, 43:5, September 1964. The Bell System Technical
Journal is available in its entirety online. See http:// bstj.bell-labs.com/
37 Hills and Kano, Programming electronic switching systems - real-time aspects
and their language implications.

51

telecommunication manufacturer, and computer programmers were hired at
a great rate.

This was a radical technological change where software were
introduced into the very centre of telecommunication, as switches and
exchanges are the hubs in the communication networks, connecting
telephone calls and providing the transfer of speech from one phone to
another. By introducing computer-controlled switching and later digital
transmission of speech and communication into the networks, the efficiency
and potentiality of network operations increased dramatically.

Computer-controlled switching systems evolved considerably in the
10 years between the first public uses of the technique in 1965. By the mid-
1970s, AT&T was rolling out their fourth incarnation of their ESS series.
Challengers like L. M. Ericsson, ITT, Siemens, Northern Telecom, NTT and
Philips were all steaming ahead developing their own computerised switches
on a large scale by this time, and only a few years later, fully digital
switching saw the light of day.38

Programming a telecommunication switch was considerably different
to programming applications for a general computer. The general
development of programming languages, towards higher levels of
abstraction and concepts that would facilitate higher degrees of modularity
was not immediately of use to those grappling with the very first computer-
controlled switches in the late 1960s. It was strongly believed that the trade
off between machine performance and coding efficiency was too great when
using general high-level languages.

However, other objectives valued in telecommunications were more
compatible with high-level languages, in particular the idea that high-level
languages could foster more reliable programming. If there was one common
ideal in telecommunications, it was the idea of the telecommunication
system as critical, needing high reliability and availability. While operations
of a general computer may be stopped without any serious consequences,
telecommunication systems relied on “service continuity”, meaning that few
interruptions were tolerated.39 The standard applied for telecommunication
systems at the time was that a two-hour break in the operation of an
exchange was tolerated during its expected 40 years of service, something

38 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
283-90.
39 The difference between general computing and computing in switching systems
was already highlighted in the first description of the pioneering No. 1 ESS by the
AT&T. See W. Keister, R. W. Ketchledge, and H. E. Vaughan, "No. 1 ESS: System
Organization and Objectives", Bell System technical Journal 43, no. 5 (1964).

52

completely different to the fast changing world of computing. 40 These
availability standards would necessitate extremely reliable software, which
again was understood as a good reason to use high-level languages and
software engineering practices.

Both concerns, the low efficiency of code from high-level
programming languages and the higher reliability of coding done with high-
level languages opened up for a new hybrid or boundary object, so-called
machine-oriented languages and even more specifically, telecommunication-
oriented languages. 41 Both were touted as the solution to the mounting
programming troubles at telecommunication manufacturers related to the
development of software. The main idea was to combine the general
knowledge of high-level programming languages and the reliability it could
enforce with that of efficient utilisation of computing resources that lower
level coding could provide.

The problem associated with programming large telecommunication
switches attracted telecommunication engineers, computer scientists and
computer programmers, many of them interested in designing these specific
programming languages. These people formed a distinct community of
technological practitioners in the cracks between engineering and science,
telecommunications and computing. From the late 1960s, this community
gathered around organisational novelties like conferences on “Software
Engineering for Telecommunication Switching Systems”, which were first
held in 1973 (SETSS), and within tracks in already established channels, like
the International Switching Symposium, and eventually within the technical
wing of the ITU.42

Up until the mid-1970s, the programming of computer-controlled
systems was, with few exceptions, done with assembly-level languages, but
the development of machine-oriented and telecommunication-oriented
languages was in the making. This could look like a local tower of Babel: in
a widely read survey conducted by M. T. Hills at the University of Essex and
S. Kano from the Japanese NTT (the Japanese telecommunication
administration) in 1975, 25 different programming languages were
considered suitable for programming switching systems, and several

40 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
262.
41 See, for example, the Poel, Maarssen, and International Federation for Information
Processing. Technical Committee 2., Machine oriented higher level languages :
proceedings of the IFIP Working Conference on Machine Oriented Higher Level
Languages, Trondheim, Norway, August 27-31, 1973.
42 See, for example, the proceedings of the first SETSS conference: "Software
Engineering for Telecommunication Switching Systems", (Stevenage, 2 - 5 April
1973).

53

machine-oriented, real-time and specifically telecommunication-oriented
languages were analysed in detail. 43

In the Bell System, assembly languages were used up until the more
evolved EPL programming language was introduced when the fourth
incarnation of their ESS switches was developed. 44 The Canadian Bell
Northern used their own Protel programming language for the DMS family
of switches. In France, the research institute CNET (the French National
Center for Telecommunication Research) had created Pape (also named
LP2), a programming language that was used for most exchanges created by
various French manufacturers. Pape was tailor-made for programming
telecommunication equipment, as part of what was to become a future
Alcatel switching system.45

The Swedish company L. M. Ericsson had created their own
programming language Plex, which was used throughout the 1970s and
1980s in their Axe series of switches.46 In Japan, the administration NTT had
developed a programming language called DPL, which was used to program
early computerised switches produced by NTT’s preferred manufacturers
NEC, Hitachi, Oki and Fujitsu.47 Finally, the European companies in the ITT
conglomerate used a programming language called ESPL/1, which in some
respects looked like IBM’s PL/1 language. All of the manufacturers
augmented their programming language with the possibility of inserting
assembly and machine code, and was as such not a complete replacement of
their old ways.

43 A survey of this is given in Hills and Kano, Programming electronic switching
systems - real-time aspects and their language implications.
44 Later on, the programming language C became the standard when programming
telecommunication equipment in the Bell system. For an overview, see Chapuis and
Joel, Electronics, computers and telephone switching: 1960-1985, 283-89.
45 M. Martin, "Utilization of the high level language Pape for the E12 siwtching
system software", in Third International Conference on Software Engineering for
telecommunciation Switching Systems (Helsinki, Finland: Institution of Electrical
Engineers, 1978).
46 Plex is described in Göran Hemdal, "AXE 10 - Software Structure and Features",
Ericsson Review 53, no. 2 (1976). On Axe, see also Mats Fridlund, "Switching
Relations and Trajectories: The Development Procurement of the Swedish AXE
Switching Technology", in Public Technology Procurement and Innovation, ed.
Charles Edquist, Leif Hommen, and Lena Tsipouri, Economics of Science,
Technology and Innovation (Norwell, Mass.: Kluwer Academic Publishers, 1999).
47 Details about DPL and the early Japanese computer switches are found in Shinji
Takamura et al., Software design for electronic switching systems, IEE
telecommunications series 8 (Stevenage Eng. ; New York: P. Peregrinus on behalf
of the Institution of Electrical Engineers, 1979).

54

Did these early examples of firm-specific programming languages bear any
resemblance to programming languages that originated in computer science?
Technical inspiration from computer science in terms of generalities was
obvious in most of these languages. For example, IBM’s PL/1 programming
language was a main source of inspiration, in particular at firms like the ITT
and the NTT.48 Furthermore, in terms of governance, all these programming
languages were considered the property of the telecommunication firms, in
contrast to the commons approach typical to many computer science
programming languages.49

Interfaces and interaction
Up until the late 1960s, little interaction existed between those interested in
telecommunication and those concerned with general computer systems.
They were parallel worlds, separated by high walls, technologically,
culturally and organisationally. By the early 1970s, this changed, as more
manufacturers developed computer-controlled switching systems and
computer networks and interactive systems became of great interest to the
computer specialists.

Furthermore, a new “family” of programming languages specialised
for the use in telecommunications appeared, facilitating interactions between
communities interested in programming language design and those working
on switching systems. The challenges of programming telecommunication
switches attracted various groups and communities, and interfaces between
established communities of computer practitioners and telecommunication
engineers emerged gradually.

The Nato conferences on software engineering offers a glimpse of the
complex composition of the international computer and software community
at that time, and more implicitly a way to understand the interactions (or the
lack of such) with the international telecommunication community and
industry.50 As the editors of the conference report made clear, the Garmisch
conference was special in the way it gathered both practitioners and
academics:

48 See for example the various contributions of the NTT and the ITT to the CCITT
organised Team of Experts, detailed out in chapter three in this thesis.
49 Algol is the most obvious example.
50 "Software Engineering"; "Software Engineering Techniques", (Rome, 27 - 31
October 1969).

55

The Garmisch conference was notable for the range of interests and experience
represented amongst its participants. In fact the complete spectrum, from the
inhabitants of ivory-towered academe to people who were right on the firing line,
being involved in the direction of really large scale software projects, was well
covered.51

However, none of the groups was homogenous. Some represented large
computer firms such as IBM, while others general electronics firms like
AEG. This was more obvious at the 1969 conference, where companies such
as Boeing, Siemens and General Electric also were present.52 The conference
was an invitation-only meeting, gathered together by the main organisers’ of
the event, the German computer scientist Fritz Bauer, H. J. Helms, a Danish
member of Nato’s science department, and the French computer scientist
Louis Bolliet.53 Few participants from the established telecommunication
industry were present at both conferences. At the meetings in Garmisch and
in Rome, representatives of the American Bell Telephone Laboratories were
participating, but that was about it for the communication industry.54 As Bell
was the pioneering firm in terms of computer-controlled switching systems,
with the introduction of the computer-controlled Number 1 Electronic
Switching System (No. 1 ESS) in 1965, their participation was no surprise.55
At the 1968 conference, the software development of Bell’s No. 1 ESS was
presented as an example of the particular difficulties faced when
programming large, complex and real-time systems.56

While the two Nato-sponsored conferences are considered watershed
events within the history of software, no similar event has a similar status
within the history of telecommunications. Two examples still illustrate its
emergence. In 1966, the very first International Switching Symposium (ISS)
in Paris was marked by the appearance of the first lectures on software used

51 "Software Engineering", 7.
52 It should be noted that General Electric was at the time one of the major computer
manufacturers as well as part of the general electric industry. See for example H.R.
Oldfield, "General Electric enters the computer business-revisited", IEEE Annals of
the History of Computing 17, no. 4 (1995).
53 The information on the organizing of the Garmisch conference is found in
MacKenzie, Mechanizing proof : computing, risk, and trust, 34 - 35.
54 Some of the participants from the general electronics industry were involved with
telecommunications, like Dr. F. Hofman from Siemens, an attendee of the 1969
conference. However, this is impossible to tell from the details available.
55 At the 1968 Garmisch conference, Dr. E. E. David, Dr. M. D. McIllroy and Mr. J.
A. Harr from Bell Labs participated. At the 1969 Rome conference, Dr. W. S.
Brown, Dr. E. E. David and Dr. W. Ulrich from Bell Labs participated.
56 Peter Naur et al., Software engineering : concepts and techniques : proceedings of
the NATO conferences (New York: Petrocelli/Charter, 1976).

56

for programming telecommunication switches. 57 A large conference
arranged by the Institution of Electrical Engineers (IEE, a British
professional organisation, now a part of the Institution of Engineering and
Technology (IET)) on switching techniques for telecommunication networks
was held in London in 1969, which also included presentations about
software-specific problems when creating computer-controlled switching
systems.58

While a large number of computer scientists at various academic and
research institutions were present at the Nato-sponsored conferences on
software engineering, the IEE conference on switching drew participants
almost exclusively from industry and various telecommunication
administrations-run organisations. 59 The issues discussed, however, had
some overlap with those at the software engineering conferences. One
example was one session devoted to various aspects of Bell’s No. 1 ESS.60
One paper touched on the very essence on the software crisis, but within a
telecommunications project. The problems associated with delivering the
software necessary for the pioneering ESS system on time and according to
expectations were presented in some detail in a paper by E. Earle Vaughan.61
Another mutual concern was discussed in a session on “Control and
Software”, 62 where two of the papers were discussing programming
techniques and languages in a telecommunication context.63 In this session,
one of the few academia-affiliated participants was to be found: M. T. Hills
and H. Constantine from the University of Essex, which was an important
academic partner to the British telecommunication administration at the time
and would organise special conferences about software in
telecommunication systems.

These two conferences marked the beginning of a period where
software rose in importance for both administrations and manufacturers.
Four years later, this was all the more obvious, as the IEE considered
software engineering for telecommunications systems worthy of a
conference on its own: Software Engineering for Telecommunication

57 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
265.
58 "Switching Techniques for Telecommunication Networks", (London, 1969).
59 While the reports from the Nato software engineering conferences offer lists of
participants, the IEE conference only lists paper authors in its proceedings. 103
papers and 129 individual authors are listed. See Ibid.
60 Eight papers were presented. See Ibid., 447 – 75.
61 E. Earle Vaughan, "Development history of No. 1 ESS - Software", in Switching
Techniques for Telecommunication Networks (London, 1969).
62 "Switching Techniques for Telecommunication Networks", 190 - 212.
63 Hills and Kano, Programming electronic switching systems - real-time aspects
and their language implications.

57

Switching Systems (SETSS) was held for the first time in 1973 at the
University of Essex, with 64 authors presenting 36 papers, all on different
aspects of software in telecommunications. 64 This change illustrates the
growing importance and interest in software in the telecommunication
industries, as well as how this coincides with the maturation of computer
science and emergence of software engineering.

SETSS was not the only intersection or contact zone for interaction
between software and communications. A parallel arena for discussion,
knowledge sharing and creation on software systems similar to those
employed in telecommunications, grew out of the programming language
community within the International Federation for Information Processing
(IFIP), which was set up under the auspices of UNESCO in 1960.65 A
conference on so-called machine-oriented languages was held in the
Norwegian city of Trondheim in 1973, which proved to be the starting point
of a particular working group within IFIP working on machine-oriented
higher-level languages, the 2.4 working group.66 This is the subject of the
next section.

Closer to the machine
Contact zones like transnational working groups or international conferences
do not appear by themselves. Sometimes they emerge due to the mobility of
people. The 1973 conference on machine-oriented higher-level languages
and the IFIP 2.4 working group can be attributed to one such move: in the
winter of 1970, the American Mark Rain arrived in Trondheim, Norway.67
Previously, he had worked as a programmer at the American computer
manufacturer Burroughs, a company particularly known for using a
particular subset of Algol as their main programming language. In 1970,
Rain got a position at Sintef, the foundation of scientific and industrial
research at the Norwegian Institute of Technology (today named NTNU, the
Norwegian University of Science and Technology), where he started
working on the design of a machine-oriented language, later to be named

64 "Software Engineering for Telecommunication Switching Systems".
65 On the history of IFIP, see Ksenia Tatarchenko, "Cold War Origins of the
International Federation for Information Processing", IEEE Annals of the History of
Computing 32, no. 2 (2010).
66 Poel, Maarssen, and International Federation for Information Processing.
Technical Committee 2., Machine oriented higher level languages : proceedings of
the IFIP Working Conference on Machine Oriented Higher Level Languages,
Trondheim, Norway, August 27-31, 1973.
67 The following details are found in the transcriptions of a panel session at the IFIP
conference. See Ibid., 400 - 01.

58

Mary. 68 According to Rain, his interest in this had already begun at
Burroughs, but it was still very much an undefined field with only some
vague predecessors:

At the time when I came to Norway and started with the MARY project, in the
winter of 1970, PL/360 had been published. There were rumours that there were
a language called PASCAL but I could not find any reference to it. BLISS had
just been published, and there was some interest in what I am calling machine-
oriented languages, certainly it was nebulous and no one knew what was going
on or how.69

By 1972, Rain had set up a printed bulletin, which drew more than 500
subscribers around the world. By 1973, the nebulous conditions would drift
away and clarity would swathe the field at the conference on so-called
machine-oriented languages, held in Trondheim. According to Rain, it
seemed that “we have tapped off a running wave that nobody really knew
existed”.70 The running wave was partly formed around problems related to
how one could programme efficient code, yet still retain the readability of
high-level programming languages. At first, such an intersection between
machine orientation and machine independence seemed to be quite
impossible. However, and this would become the premise for the future
interest in machine-oriented higher level languages, certain machine-
independent tasks could be approached in a machine-oriented manner,
reaching the machine a little better than what was deemed possible in high-
level languages of the ordinary kind. The interest was, consequently, to
figure out whether these tasks could be programmed close to the machine, by
applying general principles. If so, one could approach the problem of
systems programming in a more or less machine-independent way.

To many of the participants at the 1973 conference, these aims were
coupled with the question of so-called “portability”, which implies that a
machine-oriented language should “make possible transportation of

68 On Mary, see Mark Rain, "Some formal language aspects of Mary or Algol X
revistited", Algol Bulletin 1972.
69 Poel, Maarssen, and International Federation for Information Processing.
Technical Committee 2., Machine oriented higher level languages : proceedings of
the IFIP Working Conference on Machine Oriented Higher Level Languages,
Trondheim, Norway, August 27-31, 1973, 400. PL/360 was Niklaus Wirth’s
groundbreaking implementation and extension of the PL/1 programming language.
Pascal was his later effort on creating a high level language. Bliss was a system
programming language created at Carnegie-Mellon for use in writing compiler and
operating systems for the PDP-10 computer created by the computer scientist
William Allan Wulf.
70 The full session is transcribed in Ibid., 209 - 26.

59

programs between different machines and diverse configuration of the same
machine”. 71 This ideal of portability was very much the same that was
brought into the Algol effort, which basically was to free software from the
machine. However, when considering systems implementation, which was
the most obvious target for the use of such machine-oriented languages, the
problems were far greater then when considering the portability of other
types of applications.

The Trondheim conference in 1973 was dominated by academia, but
nevertheless drew participants from various large computer companies.
Indeed, even a separate panel discussion on the industry’s views of “the
MOL [Machine-Oriented Languages]-problem” were arranged with
discussants from Xerox, Univac, IBM and the small Swedish computer
manufacturer SAAB Scandia.72 To the academically oriented participants,
great interest was shown in how to combine the insights won through
computer science with the question of providing portability at a level close
to the machine.

To the participants from the industry, the ideals that were upheld by
the academic participants at the conference were not in line with their own
priorities: Troost, a manager at the American computer manufacturer Univac
and head of their internal programming language developments, was
particularly harsh in his condemnation of the academics’ interests: “What I
have heard you talk about are toys, not tools.”73 To Troost, the issues of
portability were of little interest. “The points that other people have stressed
as of high interest frequently have a low interest for us. […] Portability is
nice, but again it is not that important. From our point of view, the most
important thing is the ease of maintenance.”74 The maintenance question
would greatly divide the approaches found within academically oriented
researchers and those working within industrial firms, as all the panellists in
the industry panel agreed that their systems programming language would be
an in-house language, and not released to a wider community, mainly
because of the fear of costs related to the maintenance of a programming
language.75

Was the telecommunication community as alienated from the
scientific computing field as the computer manufacturers represented at the

71 See William A. Wulf’s introduction in Ibid., 7-18.
72 SAAB Scandia was better known as a car and bus manufacturer.
73 Poel, Maarssen, and International Federation for Information Processing.
Technical Committee 2., Machine oriented higher level languages : proceedings of
the IFIP Working Conference on Machine Oriented Higher Level Languages,
Trondheim, Norway, August 27-31, 1973, 212 - 13.
74 Ibid., 213.
75 Ibid., 216 - 17.

60

IFIP conference? None of the presented papers at the IFIP conference dealt
with the particularities in programming telecommunication switching
systems. However, before Mark Rain participated and helped organise the
IFIP conference in Trondheim, he participated in the aforementioned SETSS
conference. While Rain was a typical participator at the IFIP conference, he
was one of the few academics at SETTS.

Nevertheless, Rain presented Mary to an audience where it would
seem tailor-made, as it was a machine-oriented language with a goal of
portability – which greatly could enhance the possibility to move software
from one switching system to another. To Rain, that would make it a viable
alternative to a series of both high-level languages and macro-languages
used in a wide range of switching systems. Did it resonate? Programming
languages, administration and maintenance of software are some examples
of the issues dealt with at the conference, and the problem Rain was
concerned with was both explicitly and implicitly discussed in numerous
papers.76 One issue that dominated was that of programming languages, and
in particular the challenges in using high-level languages in an application
area where performance and reliability were of the essence. Out of 36
presentations, 14 papers dealt with language specific problems. And out of
these, nine papers discussed explicitly the use of either high-level or
machine-oriented higher-level languages in the setting of telecommunication
switching. Rain was in all likelihood one of the few attendees using the
vocabulary of machine-oriented languages, a vocabulary frequently used at
the IFIP conference. However, it was clear that programming switching
systems was believed too special, that it had other characteristics than that of
regular programming.

The special needs when programming telecommunication equipment
were not without precedence. Telecommunications shared this in-between
role with a number of industries concerned with real-time issues, like those
involved with computer control of industrial processes and machinery.
Programming languages that combined the machine-oriented features with
parallel constructs were first made in the process-control area, pioneering the
move discussed at the Trondheim conference. Well-known examples were
the programming languages Pearl and Coral66. 77 The communities of
technological practitioners interested in the intersection between real-time
process control and programming language design had a similar international
footing as those discussed above, and in some respect they shared the same
arenas. The international discussions on these issues took place primarily
within the International Federation of Automatic Control (IFAC) and in

76 "Software Engineering for Telecommunication Switching Systems".
77 All three are mentioned in Hills and Kano, Programming electronic switching
systems - real-time aspects and their language implications.

61

conjunction with the above-mentioned IFIP. 78 Quite early on, the
communities involved in real-time programming languages oriented
themselves towards the possibility of international standardisation, as
evident from the first international conference on programming languages
for machine tools, Prolamat for short, which was held in Rome in 1969. The
standardisation efforts were first done through the accommodation of
existing high-level languages like Fortran, and later on through concerted
efforts towards the development of a so-called Long Term Procedural
Language (LTPL), which sprang out of the European branch of the
International Purdue Workshop in the early 1970s.79 Also the International
Organization for Standardization (ISO) was involved in the quest for a
programming language for machine tools, already from the late 1960s.80
Also here, the development of specialised and standardised programming
languages was seen as a remedy for the mounting problems with software.
Theodore J. Williams of the Purdue Laboratory for Applied Industrial
Control argued in the early 1970s that:

78 Examples are the joint IFAC and IFIP workshops on real-time programming and
programming languages for numerical control. See for example William Henderson
Paterson Leslie, "Numerical control programming languages: proceedings of the 1st
International IFIP/IFAC PROLAMAT Conference, Rome 1969" (Amsterdam,
1970); J. Hatvany, "Computer languages for numerical control: proceedings of the
Second IFIP/IFAC International Conference on Programming Languages for
Machine Tools, PROLAMAT '73,Budapest, April 10-13, 1973" (Amsterdam, 1973);
P. D. Griem, "Real time programming 1975: proceedings of the IFAC/IFIP
Workshop Boston/Cambridge, Mass" (Oxford, 1976); C. H. Smedema, "Real time
programming, 1977: proceedings of the IFAC/IFIP Workshop, Eindhoven,
Netherlands, 20-22 June 1977" (Oxford, c1978). The history of IFAC is dealt with in
Christopher Bissell, "Control in the technical societies: a brief history.",
Measurement and Control 43, no. 7 (2010).
79 The LTPL effort is briefly mentioned in Whitaker, "Ada—the project: the DoD
high order language working group". See also M. Kronental et al., "The LTPL-E
tasking proposals", Software: Practice and Experience 11, no. 1 (1981).
80 Werner B. Mangold, "N/C Language Standardization in I.S.O", in The Second
IFIP/IFAC International Conference on Programming Languages for Machine
Tools, PROLAMAT '73, ed. J. Hatvany (Budapest: North-Holland Publishing
Company, 1973).

62

Misjudgements by project personnel concerning project software requirements
and capabilities have resulted in a high percentage of late and incomplete
computer process control projects. By easing programming requirements through
the promotion of use of special high level languages and specific program
packages, programming standardization activities promise to greatly ease the
above mentioned difficulties.81

Many of the efforts in process control and machine tools programming
would later on be conflated with the already mentioned large-scale effort
towards standardising the programming language Ada. 82 Where the
standardisation of programming languages for process control systems was
first made within a quite heterogeneous institutional framework, the IFAC
was a free-standing international body, the Purdue workshop was a
voluntarily organised interest group spun off from a university seminar and
the industrial real-time Fortran standard was issued by the Instrument
Society of America (ISA), the move towards a standardised programming
language in telecommunication involved a rather different kind of authority.
To gain momentum in the world of telecommunication, the technical
community interested in programming languages for these systems would
have to be aligned with the interests of the international telecommunication
regime. This is the subject of the next few pages.

Computing and the international telecommunication regime
At the first International Switching Symposium (ISS) in 1966, some of the
first lectures on software used for programming telecommunication switches
were presented. ISS was the first intersection between telecommunications
and software. At the same venue, the idea of involving the technical flank of
the International Telecommunication Union (ITU) in studies on this new
subject was launched during informal talks.83 This meant that the nascent
field was considered important to the main organisation in the international
telecommunication regime, and something that the organisation could
spearhead.

By the 1970s, the ITU was often mentioned as an organisation
unlikely to be spearheading anything. ITU’s standards were increasingly

81 Theodore J. Williams, "CAM and NC Software Systems: Needs for and Benefits
From Generalized and Multi-Industry Standardized Languages", in The Second
IFIP/IFAC International Conference on Programming Languages for Machine
Tools, PROLAMAT '73, ed. J. Hatvany (Budapest: North-Holland Publishing
Company, 1973), 1.
82 See Kronental et al., "The LTPL-E tasking proposals".
83 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
265.

63

looking like “hybrid monsters,” to use an expression by Raymond Croze,
director of the CCITT from 1972.84 The standards were considered bloated,
inconsistent and often arriving too late to make a difference. As digital
technology and techniques became more and more applicable in the world of
telecommunications in the late 1960s, this tendency could be argued to be all
the more visible. While the international computing community was
discussing the evolution towards high-level programming languages and the
formation of the discipline of software engineering, the ITU was discussing
telex tariffs. To be fair, the digital era was gradually making its mark on the
ITU from around 1968, as both digital signalling systems and data
communication protocols were part of the technical discussions and
workings of the CCITT. 85 However, the general impression was of an
organisation with considerable difficulties in adjusting to the new realities of
digital communications.

What were the people interested in programming languages for
telecommunication systems getting themselves into if they were to tag along
with the CCITT? Was it the start of a technocratic exercise in technical
collaboration or the start of a process to forge the newly won academic and
industrial interest in systems implementation languages, so called “machine
oriented higher level languages”, into a tool for what could be understood as
a telecommunication cartel?

Programming was a very different subject from those traditionally
covered by CCITT. For a time, there was even doubt to whether the ruling
authority of the CCITT, that is its Plenary Assembly, would allow a move
that far off the regular path. From 1968, a study group within the CCITT was
given the task to report on, among other things, programming languages.
The suggestion came from the Swedish telecommunication administration,
Televerket. Here, it was seen as important that in the future, the
administration could move programs freely between switches made by
different manufacturers. In short, they wanted portability. A common
programming language was envisioned as an important tool to achieve this.86
This coincided with a general proactive approach to international
standardisation by the Swedish telecommunication administration, in

84 Raymond Croze used this term on a large number of CCITT recommendations in
a speech made to the CCITT Plenary Assembly, the same event where he used the J.
G. Thompson article referenced above. See “Minutes of the Plenary Meetings,”
CCITT Plenary Assembly 6 Orange Book Vol. I - IV 1976, 23, CCITT, ITUA.
85 A short summary of this is found in Chapuis and Joel, Electronics, computers and
telephone switching: 1960-1985.
86 The background for the Swedish proposal is described in Bertil Forss, in
Autobiographies, “From Computing Machines to IT” (Stockholm: National
Museum of Science and Technology, Sweden, 2007).

64

particular by its technical director Gösta Lindberg, who together with Bertill
Forss was directly responsible for raising the issue of programming
languages at the CCITT in 1968.87 Chapuis and Joel, two close observers of
the process, have described it as follows:

First, its regularly attending delegation of faithful experts had to make room for
newcomers, experts in the new discipline of software. This took some time. It is
thus hardly surprising if the 1968 – 1972 period was little more than exploration
since the CCITT was venturing into virtually unknown waters.88

After a period in these unknown waters, the organisation considered moving
more actively into the area of programming languages. At the 1974
International Switching Symposium, held in Munich, the chairman of
CCITT’s 11th study group, Mr. J. S. Ryan, commented on what were
perceived as a new role for the CCITT:

In the past, the International Consultative Committee for Telegraph and
Telephone (CCITT) has made only minimal recommendations concerning
international switching systems, and very few concerning national signalling and
switching systems. […] is this minimal role in signalling and switching adequate
in the future? […] It is obvious that the switching engineer whether he is
designing international or local exchanges and signalling systems will be directly
affected by CCITT Recommendations more in the future than in the past. The
question that has been raised is just how far the CCITT can or should go in
making Recommendations for national systems and at what point in time.89

With the advent of a programming language not only approved by the
CCITT, but also created within its ranks, it was obvious that the purpose was
to penetrate quite deeply into the switching systems inner workings. In fact,
by creating a CCITT recommendation on a programming language, the
impression was immediately that telecommunication administrations could
impose this tool on manufacturing firms. This caused tensions, which were
both an obstacle towards a functional language definition, as well as a
necessary frictional element towards a forward-looking language.

While the picture Cowhey paints of the ITU was one where the
interests of telecommunication administrations and the many nationally

87 Lindberg also initiated the Nordic participation in Chill as well as the
administration’s work on data communication standards such as X.21 and X.25. I
have previously looked into this in Gard Paulsen, "Samarbeidets protokoll:
utviklingen av et nordisk datanett, 1971 - 1981" (G. Paulsen, 2004).
88 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
265.
89 J. S. Ryan, “The Role of the ITU and CCITT in telecommunications” in
"International Switching Symposium", (Kyoto, October 25-29 1976).

65

limited manufacturers were in harmony, this was not always the case.90 A
tension between the interests of the administrations and that of various
manufacturers was evident in many smaller countries around the world,
while in some larger markets the ties were stronger than ever. In the UK, the
Post Office directed their favoured manufacturers on their route to digital
switching through the System X project throughout the 1970s, and in Japan,
the administration, the NTT, applied a so-called coordinated competition
system among their favoured manufacturers.91

One early indication of the conflict is found in a questionnaire
circulated by the CCITT in 1970. 92 This questionnaire tried to gather
information on how various administrations looked on the particular
challenges of computer-controlled switches, and in particular how the
administrations looked on the role of software. 11 administrations replied to
the questionnaire. No general consensus existed on how the administrations
should organise and act on the new technological reality. The majority of the
replying administrations stated that they obviously needed new capabilities
to be able to assume responsibility for the management and maintenance of
switching systems software. However, one administration in particular held a
view that was quite contrary to the others, namely that the administrations
should employ a team of specialists that would be responsible for managing
and producing programs for new switches on their own. One other reply
refers to the question of the separate supply of hardware and software for
SPC exchanges. In this case the hardware would be purchased from the
telephone equipment manufacturers and the software sub-contracted to
software firms. The report given on the questionnaire concludes on this by
stating that:

90 Peter Cowhey’s conceptualisation of the international telecommunication regime
and its national underpinnings was presented in chapter one. See Cowhey, "The
international telecommunications regime: the political roots of regimes for high
technology".
91 On System X, see Geoffrey Owen, From Empire to Europe (London: Harper
Collins, 1999), 282-88. On NTT, see Martin Fransman, The market and beyond :
information technology in Japan (Cambridge England ; New York: Cambridge
University Press, 1990); ———, Japan's computer and communications industry :
the evolution of industrial giants and global competitiveness (Oxford ; New York:
Oxford University Press, 1995).
92 The findings of this questionnaire are reported in COM XI 1-E (1973 – 1977),
CCITT, ITUA. The individual answers are not in the ITU archive.

66

To facilitate the work of these specialists, the organizations would be in favour
of CCITT recommendations on the presentation, specification and
documentation of the hardware and software functions in SPC exchanges. In
particular, the majority of them are ready to participate in a CCITT study of an
advanced-level programming language.93

A questionnaire the following year tried to sound the administrations on
what they understood by “an advanced-level programming language”. While
only seven organisations replied, a considerable difference of opinion was
evident on what an advanced-level programming language meant to them.
Based on the replies, a high-level language at the level of Algol was wanted
by a number of administrations. Some other replies favoured a specification
language coupled with advanced assembly techniques. In the previous
questionnaire, one responding PTT also argued in favour of using
“assembly-level languages in order to not lower the real-time call handling
capacity of systems”.94 Regardless of belief in abstraction-based languages,
the CCITT reported that there was a general agreement that a standardised
high-level language could be justified “on the grounds of maintenance,
education of staff, administration and software modification”. 95 Others
mentioned information transfer, accuracy and readability as reasons to work
in this direction. Nevertheless, it coincided nicely with the first SETTS
conference (held in 1972) and the mainly academic affair at the IFIP-
organised conference on machine-oriented higher-level languages held in
Trondheim in 1973.

Would the interest in programming languages among the
administrations reinforce the “ancien regime”, or would it crack it open?
Would it align them with the interests of the manufacturers or could they
bank on the support of the computer science community? In this early phase,
the CCITT’s interest in programming language was unfocused. It was
neither dependent on the “ancien regime” nor about to crack it open. It was
an indication of the growing concern of a community of technological
practitioners interested in the programming of telecommunication switches,
a community that were embraced by the CCITT. From about 1973, this
unfocused approach changed. A more active and pronounced policy towards
programming languages was put into motion by the CCITT when it started a
review of a number of existing programming languages, with the intention of
elevating the best to the status of a CCITT standard.

93 COM XI no. 1-E, Annex 4, 33 - 35, CCITT (1973 – 1976), CCITT, ITUA.
94 COM XI no. 1-E, Annex 4, 35, CCITT (1973 – 1976), CCITT, ITUA.
95 Ibid., 36.

67

State of the art
From 1973, the CCITT was engaged in reviewing a number of existing
programming languages, with the intention of elevating the best to the status
of a CCITT recommendation. Participants from AT&T, ITT, Siemens, the
UK Post Office and the French administration got busy teasing out the
strengths and weaknesses of a total of 27 programming languages that had
been submitted for review. The review process was based on 15 loosely
defined requirements spun around concerns such as machine independence
and program portability, the logical structuring of programs, modularisation
and extensibility.96 All in all, the requirements were casually defined and
inspired by general tendencies in programming language design at the time,
in particular the academic interest in machine independence and program
portability and the industrial interest in modularisation were important
criteria.97

Among the contenders were a host of general programming languages
such as Algol 68, Pascal and PL/1, as well as proprietary languages
developed by telecommunication manufacturing companies such as ITT and
L. M. Ericsson.98 Quite early on Algol 68 and IBM’s attempt on a general
programming language, PL/1, were scrapped, supposedly because they were
not considered suitable for switching systems.99 Eventually, seven language
were shortlisted as possible candidates: ESPL/1, DPL, Mary, Pascal, Pape,
Plex and TPL2. ESPL1, from the international conglomerate ITT and PLEX,
from the Swedish company L. M. Ericsson, were two specialist languages
with no other aims than that of programming telecommunication switches.
Two languages had their origin at technical universities: TPL2 from the
University of Essex (created in cooperation with the British Post Office
Research Department) and Mary, from the computer centre (RUNIT) at the
Norwegian Institute of Technology. Both languages were created with
machine orientation, and implicitly efficiency of the compiled code, in mind,
and stemmed from the interest towards low-level system implementation

96 For an overview, see COM XI-No.74-E, Annex E to “Progress report of sub group
XI/3-2, High-level programming language for SPC telephone exchanges.” COM XI
1973 – 1977, CCITT, ITUA.
97 “Record of programming exercises and experts’ comments” (The “Yellow
Document”), COM XI 1973 – 1977, CCITT, ITUA.
98 The evaluation process is described in the following documents: COM XI-No.74-
E, Part IV, “Progress report of sub-group XI/3-2” and COM XI-No.135-E, “Report
on the meeting held in Geneva from 18 September to 25 September 1974”, CCITT,
Period 1973 – 1976, CCITT, ITUA.
99 COM XI-No. 73-E, “Extracts from the minutes of an informal C.C.I.T.T. meeting
held in London from 25 – 27 March 1974”, CCITT, Period 1973 – 1976, CCITT,
ITUA.

68

languages that had been a concern of the computer science milieu since the
late 1960s.

Pascal, another of the shortlisted programming languages, was a
general purpose programming language designed by the Swiss computer
scientist Niklaus Wirth, and had been used in various computer platforms
since its first publication in 1970.100 DPL and Pape were languages with an
explicit link to telecommunications, created by the Japanese and French
telecommunication administrations, respectively.

The reviewers found a number of deficiencies in all the shortlisted
languages. In particular, the review panel put great emphasis on the strengths
in the specialist programming languages rather than the more generalist
languages like Mary and Pascal. However, such technical strengths, due to
their particular orientation towards telecommunication switching, were not
compatible with the diplomatic nature of the CCITT, where it was deemed
impossible to elevate a technology developed and owned by a single
manufacturer as to the status of a recommendation. Furthermore, this would
have undermined the possibility of using the programming language as a tool
for creating telecommunication administrations less dependent on their
manufacturers when it came to programming. According to Joel and
Chapuis, there “was no way that a language adopted by a given manufacturer
could be selected as the sole universal CCITT language”.101

The working group that was to decide on the question based on the
review panel’s discussion was put together in such a way that a consensus
decision was unlikely. The result was, predictably enough, that: “[…] it was
found that it was not possible to obtain a consensus for any one language in
either a modified or unmodified form”, to quote the original report.102 Even
the two languages that were free of such baggage, Mary and Pascal, were
unable to gather enough support. Mary was directly related to the academic
interest in machine-oriented higher-level languages and designed by Mark
Rain, who, as previously noted, was one of the organisers of the IFIP
conference on this subject. Pascal had a similar academic background,
designed by Niklaus Wirth, who also had pioneered the move of such
implementation languages with his PL360 a few years before the design of
Pascal. Pascal ended up being described as not particularly suited to so-

100 The document COM XI-No-74-E lists ESPL/1, DPL, Mary, Pascal, Pape, Plex
and TPL2 as the seven shortlisted languages. The evaluation is reported in Working
Party XI/3, Language Descriptions, The “Pink Document”, CCITT, ITUA.
101 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
274.
102 COM XI-No. 135-E, “Report on the meeting held in Geneva from 18 September
to 25 September 1974”, CCITT Period 1973 – 1976, CCITT, ITUA.

69

called “real-time processing”. 103 Wirth did not disagree with this, as he
added his own comments to the language description, and found them both
“objective and quite accurate”. 104 As such, the ITU participants brushed
aside the straight academic route as well as the path laid down by
manufacturers. By rejecting the existing, it was up to CCITT to design a new
language, something completely new to the organisation and most of its
members. This is the subject of the next chapter.

Some conclusions
What could be gained by opting for a common and standardised
programming language? The decision made by the CCITT rested on the
strategies of the telecommunication administrations: the idea was first put
forward by representatives of the Swedish telecommunication administration
in 1968. It was the administrations that were sounded out in the early 1970s,
through questionnaires and by common working groups organised by the
CCITT. It was their votes that decided that a group of experts should design
a new programming language from the ground up in the end of 1974. As
such, the decision to study and move forward on the question regarding an
international standardised programming language was completely in line
with the logics attributed to the international telecommunication regime.
Nevertheless, many a manufacturer submitted their favoured programming
language to the CCITT review panel, letting outsiders in on one of their
ways of managing the complexities of switching software. However, there is
little evidence that the manufacturers that submitted their existing
programming language altruistically shared their proprietary secrets for the
greater good of the technical community. They were simply banking on
gaining an advantage if their language could be approved as a CCITT
recommendation. In this first round of technical diplomacy and
institutionalisation efforts no such advantage was given to any of the
manufacturers. The way forward was envisioned along the lines of a new
programming language, aligned with the academic interest in machine-
oriented higher-level languages. The manufacturers would continue to strive
for influence, and some of their representatives would soon be closely
aligned to technical communities working together on programming
language design.

This chapter has also argued that by the early 1970s, a number of
other issues concerning programming coalesced: the ideal of universality
through mathematics had grown in legitimacy through the normalisation of
computer science. The conceptualisation of software engineering as a

103 Working Party XI/3, “Language descriptions”, The “Pink Document”, CCITT,
Period 1973 – 1976, 95.
104 Ibid., 91.

70

solution to the software crisis, influenced by the mathematical development
virtue, appeared in the years from 1968 to 1972, and would gradually
influence programming language design in the period that followed. The
possibility of machine-oriented higher-level languages emerged in the same
period. At the same time, computer-controlled switches were coming of age,
maturing into a large and extremely demanding field. Together, these
developments led to the formation of a distinct community of people
interested in programming languages for telecommunication equipment.
This community was organised around conferences like the IFIP conference
on machine-oriented higher-level languages and the SETSS conferences. In
the end, this triggered the interest of participants in the ITU, the main
organisation of the international telecommunication regime. Programming
languages were boundary objects in which different communities held an
interest.

Above, I have claimed that the agendas of these communities were
informed by a set of development virtues, ideals about the act of
programming. In particular, I have identified how a mathematical oriented
development virtue was important to many programming language designers
and theorists in the late 1960s. Another agenda was rooted in programming
as a way of English-like expressions and more pragmatic in terms of how the
act of programming should be managed. Both were understood, by their
supporters, as necessary approaches to a set of difficult and complex
problems. While the adjective mathematical certainly can be understood as
impractical, this was hardly the case here. To be mathematically precise was
indeed understood as a virtue, even a practical one.

In the area of systems implementation and machine-oriented higher
level languages, two competing development virtues were evident: One was
embedded in the agenda promoting portability of machine-oriented
languages, an agenda mainly in line with what was considered typical to
computer science. The second agenda promoted maintainability and minimal
languages, rooted in a more pragmatic development virtue.

I have also highlighted how the virtues of computer science and
software engineering influenced telecommunications through a number of
intersections and encounters. These existed at an international level, such as
the Nato-sponsored conferences on software engineering, conferences
organised by IFIP, and more specialised telecommunication conferences
such as ISS and SETTS. When CCITT got involved with this, many of these
technical issues resonated with the logics of the international
telecommunication regime. Could this resonance be extended when
approaching a brand new programming language design? This leads us into
the next chapter, which is concerned with the first real round of technical
diplomacy concerning the design of this programming language.

71

3. Contested designs: agreeing on a programming
language for telecommunication

From January 1975, a group of programming language researchers,
telecommunication bureaucrats and telecommunication industry experts
started to design a programming language from scratch, a language that
could be used by telecommunication administrations and manufacturers to
programme future equipment. The group, named the High Level Language
Team of Specialists, was set up by the CCITT to create this new and special
purpose programming language. Five years later, the final recommendation
was approved by the CCITT Plenary Assembly and became CCITT
Recommendation Z.200.1

The programming language was designed within the Team of
Specialists until the summer of 1977, when the “Implementors’ Forum”
replaced the small circle of the specialist group. The initial design was then
ready, while the actual implementation and practical tests of the language
were the work of the Forum. This chapter is devoted to the Team of
Specialists, who they were, where they came from, the ideas and opinions
they shared and, most importantly: how did they design the programming
language?2

In retrospect, the leader of the Team of Specialists has described part
of the life of the group as “a period of chaos”. 3 Sharp disagreements,
conflicts and communication problems characterised much of what went on.
Some of the participants even felt that the rifts within the team were too
great and that it would be impossible to agree on a coherent language

1 CCITT High Level Language (CHILL), CCITT Recommendation Z.200 (1980).
2 The account in this chapter is based on sources from mainly two archives: The ITU
archive in Geneva (ITUA) and the private collection of Kristen Rekdal (KRC).
Since the Team of Specialists was not part of the official CCITT hierarchy, none of
their communications are held by the official ITU archive. However, their reports to
the working group XI 3/2 are available. “COM XI-No.19-E,” Period 1977 – 1980,
CCITT, ITUA, gives a review and a list of the documents. None of the so-called late
contributions to the working groups were kept by the ITU. However, the Kristen
Rekdal collection holds more complete series of documents from early 1975 and
forwards, containing both reports from the Team of Specialists, communication
between its members as well as late contributions to the official CCITT process, and
the numbered working documents.
3 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.

72

proposal.4 The differences were mainly about features of the programming
language. They appeared as clashes between strongly held ideas about how
programming should be done, and how such ideas could be embedded into a
programming language. However, it was also a game of strategic positioning
involving the team participants’ parent organisations, which ranged from
manufacturing firms, administrations to research organisations. The design
process was one of intense technical diplomacy among specialists coming
from a community of technical practitioners as well as delegates strategically
positioning the large organisations that employed them. Diplomacy shaped
by strongly held virtues as well as industrial strategy was the result.

This chapter delves into issues concerning programming language
design, standardisation and diplomatic bickering in detail through a
description of the processes. Following this, it answers how the team was
able to traverse a number of hurdles and arrive at a coherent proposal. First, I
describe the composition of the team, before I pay particular attention to the
diplomatic process within Team of Specialists and how, gradually, they were
able to align the rather different perspectives of the team participants
towards a common proposal. In the end, I arrive at a social network analysis
(SNA) of the collaboration and conflicts in the period from January 1975 to
the summer of 1977, which I compare to the findings from the qualitative
assessments preceding it.

A Team of Specialists?
The Team of Specialists was unlike CCITT’s heavily structured working
groups, working parties and study groups. It was an ad-hoc group atypical
for the CCITT, in that it was largely autonomous, and it was led by an
industry representative: normally in the CCITT, the only ones with voting
power were administration representatives. Following this, the group leaders
were normally chosen among members with voting power.5

At first, the CCITT had hoped to delegate the design job to a single
specialist, namely the programming expert Niklaus Wirth.6 The Zürich-based
Wirth had previously designed the programming language Pascal, a hugely

4 See for example Svein Hallsteinsen, ”Reiserapport fra møte i CCITT’s
spesialistgruppe for høynivå programmeringsspråk, Bern, 26. januar – 5. februar”,
13 February 1976, box ”CCITT - HLL Team of Specialists - Møtereferater 1974 -
1976, Møte 1-6”, KRC. Svein Hallsteinsen was part of a research group at the
computing centre of the University of Trondheim (Runit) and sponsored by all the
Nordic telecommunication administrations.
5 The formal working group concerned with the design of a programming language
was named XI/3-2, a sub-group of the working party XI/3, which again was a part of
the study group XI.
6 COM XI-No. 135-E, ”Report on the meeting held in Geneva from 18 September to
25 September 1974”, Part IV, Annex A, CCITT, Period 1973 – 1974, ITUA.

73

influential programming language created in the late 1960s and popular right
up into the 1990s. Pascal was also one of the seven shortlisted languages that
the working group considered promising the year before, although it ended
up as being deemed as unsatisfactory. 7 While Wirth’s best-known
contribution to programming language design was deemed unsuitable for the
domain CCITT sought, Wirth had practically ignited the field of machine-
oriented languages with his creation of the PL360 programming language.
PL360 was among the first programming languages to combine exact
machine language instructions with features commonly found in high-level
languages. Wirth had also been involved in the language review conducted
by the CCITT before the decision on creating a programming language.
Wirth had consulted Bertill Forss, the Swede who initially had brought the
programming language question to the CCITT in 1968, as Forss acted on
behalf of the Swiss telecommunication manufacturer Hasler and the Swiss
telecommunication administration, as he reviewed some of the existing
programming languages as candidates for the CCITT.8 With his background,
Wirth looked like a perfect match for the assignment. However, he declined
the offer, after a lengthy process in which the CCITT had tried to facilitate
the unprecedented move of trusting an assignment to someone without any
formal ties to any telecommunication organisations. 9 The task was then
delegated to the Team of Specialists.

On 15 January 1975, a meeting in Bern brought together what was
called a fire brigade of international experts. They were to start what had
been planned for Wirth.10 However, just to come to a mutual understanding
of what that would involve was no easy task. Meetings in January and
February 1975 were held just to agree on a mandate of the Team of
Specialists, before its first official meeting could be arranged. Progress
came, but often at a numbing speed. Disagreements, tangles and conflicts

7 Working Party XI/3, The “Pink Document”, CCITT, Period 1973 – 1976, ITUA,
95.
8 This is explicated in Forss.
9 In retrospect, that does not seem very surprising. In a paper by Wirth from 1974,
”On the design of programming languages”, he lists 11 lessons he had learned as a
programming language designer. The last point reads as follows: ”Keep the
responsibility for the design of the language (and possible changes) confined to a
single person.” The manacles of the CCITT were perhaps not a natural fit for such
an idea. See Niklaus Wirth, "On the Design of Programming Languages" (paper
presented at the Information Processing 74, Stockholm, Sweden, August 5-10 1974).
10 As the report of the meeting explained: ”the meeting was a sort of fire brigade
action as Prof. Wirth unfortunately was not in a position to carry out the task that the
Subgroup had asked of him.” See Subgroup XI/3-2, “Report of an informal CCITT
meeting held in Bern from 15-17 January 1975”, Temporary document No. 4-E,
CCITT Study Group XI, Geneva, 10-19 February, ITUA.

74

came in the way of real technical design. I turn to a report given by a
Norwegian delegate, Kristen Rekdal, to illustrate this:

It was clear from the outset that it was a great deal of disagreements within the
group. This seemed to be due to the fact that not everybody was interested in
developing a language as soon as possible. Some believed the Team of
Specialists should be given a carte blanche and work as fast as possible. Others
wanted that XI/3-2 [the superior work group] should be given more control.
Furthermore, they wanted a larger and broader Team of Specialists. The
Japanese and to some degree the Americans were afraid that the team would be
dominated by Europeans.11

However, Rekdal hoped that a Team of Specialists would be the right forum
to overcome such difficulties. Followed up his description, he added: “By
organising the work within a group of specialists that will work more or less
full time, I have high hopes that the project will be a success. Normally, it is
easier to come to an agreement on professional grounds rather than
political.”12 Which “professional grounds” dominated the team? And could
such a team be exclusively professional?

The team came to be made up of representatives from the Dutch
manufacturer Philips, the NTT of Japan (its administration, with strong
influence over the Japanese telecommunication manufacturing industry), the
Nordic telecom administrations (which cooperated by sending one common
delegate, from a research group at the computing centre of the Norwegian
Institute of Technology in Trondheim, Runit), Siemens of Germany, L. M.
Ericsson of Sweden, the international manufacturing conglomerate ITT, the
British Post Office (then the British post and telecommunication
administration) and the Swiss telecommunication administration. Its
composition came as much from its ad-hoc basis as from political and
industrial strategies, as the team was brought together at a very short
notice.13 Many organisations declined the possibility of being part of the
Team. One should note that apart from the representative of L. M. Ericsson,
none of the industrial participants came from firms particularly close to the
technical leading edge when it came to digital switching. None of them held

11 Kristen Rekdal, ”Reiserapport fra møte i CCITT arbeidsgruppe XI/3 om
Programmeringsspråk for datamaskinstyrte telefonsentraler, Geneve 10. – 19.
februar 1975”, 6 March 1975, box ”CCITT - HLL Team of Specialists -
Møtereferater 1974 - 1976, Møte 1-6”, KRC. My translation.
12 Ibid.
13 Both the UK Post Office and the French administration participated actively in the
review process that preceded the Team of Specialists, but did not actively pursue the
work within the Team. Furthermore, many of the delegates of the parent CCITT
groups represented organisations not present in the Team.

75

positions as early adopters of high-level programming languages in their
programming of computer-controlled switches.

Compared with similar working groups in the CCITT, the Team of
Specialists looked odd. Two comparable groups, one concerned with a so-
called man-machine language (called MML) and a specification and
description language (called SDL) started out in parallel to the programming
language project. The specification language was an effort to standardise the
graphical representations of the functionality of telecommunication systems,
which was rather different than creating a programming language, which
was intended to deliver the functions of the telecommunication systems.
Both the MML and the SDL received far more attention from
telecommunication manufacturers than the Chill group. Furthermore, the
SDL group received more attention from typical CCITT participants, such as
electrical engineers and telecommunication experts. However, the very same
manufacturer that played a role in the Team of Specialists, L. M. Ericsson,
held a high stake in the SDL committee, and just as in the case of
programming languages, L.M. Ericsson had pioneered the use of
specification languages in the process of designing digital switches.14

Who was not part of the Team? Notable absentees were the French as
well as the Americans. The representatives of the ITT were, in earnest,
represented by their French subsidiary, which sent the Americans Beierle
and Parente – indeed a double whammy in terms of making up for
absentees.15 More central French representatives, from the administration or
from a larger French manufacturer, were absent. Pioneers like AT&T’s Bell
Laboratories and the Canadian Bell Northern Research were, as often was
the case in international telecommunication cooperation, not participating in
CCITT activities in any substantial roles, although the parent study group of
the Team of Specialists, Study Group number XI, was led by J. S. Ryan of
the Bell Laboratories.16 None of the actors that participated in the prior
language review continued their work in the Team of Specialists in any
capacity, with the exception of the participants from the British Post Office
(R. T. Boyd).

From spring 1975 until February 1977, the Team of Specialists held
seven lengthy meetings at different locations around the world. In between
meetings, the group relied on informal correspondence and formal
publications of working papers and language proposals submitted by

14 Hemdal, "AXE 10 - Software Structure and Features".
15 On the status of ITT, see Sverre A. Christensen, "Switching Relations: The rise
and fall of the Norwegian telecom industry" (BI Norwegian School of Management,
2006), 38-45; Robert Sobel, I.T.T. : the management of opportunity (New York,
N.Y.: Times Books, 1982).
16 See various reports in COM XI 1973-1977, ITUA.

76

committee members or by their parent organisations. Details of the locations
and dates are summarised in the tables below.

Meeting Dates Place Participants Documents

1 28 April - 9 May 1975 Geneva 9 7

2 25 August - 5 September 1975 Geneva 6 17

3 8 -19 December 1975 Bern 6 17

4 26 January - 5 February 1976 Bern 7 5

5 10 - 21 May 1976 Bern 7 16

6 12 - 22 October 1976 Kyoto 9 18

7 21 - 25 February 1977 London 8 -

Table 3.1: Meetings in the Team of Specialists.

Table 3.2 gives a brief overview of who attended the meetings. What seems
evident is the apparent stability of the group and the little variation in terms
of attendees. In general, the Team of Specialists was dominated by
participants that showed up regularly throughout its life.

 Meeting

Name Country Organization 1 2 3 4 5 6 7

J. D. Beierle France/USA ITT X X X X X X X

R. Bourgonjon Netherlands Philips X X X X X X X

R. T. Boyd UK UKPO X - - - - - X

K. Clements UK UKPO - - - - - X X

S. Hallsteinsen Norway RUNIT - - - X - - -

H. Kvarneby Sweden LME X X X X X - X

T. Koizumi Japan NEC X - - X - - -

K. Maruyama Japan NTT X X X - X X X

K. Rekdal Norway RUNIT X X X - X X X

L. Sandberg Swiss PTT - - X X X - -

H. Sorgenfrei Germany Siemens X X - X X X X

Table 3.2: Participants in the HLL Team of Specialists, ordered alphabetically.

The mere design of the group heralded difficulties already from the outset. It
was in no way homogenous, consisting of bureaucrats representing
administrations, researchers as well as representatives of competing
manufacturers, such as Philips, the ITT and L.M. Ericsson. The group leader
Remi Bourgonjon, from Philips Telecommunications, and the Norwegian
researcher Kristen Rekdal were the only group members that could devote

77

almost their full working time to the project, while the others were
participating in addition to their normal work responsibilities within their
parent organisations. As a consequence, Bourgonjon and Rekdal held
positions that could exert considerable influence over the team’s work.
However, it was not only the time spent at work in the team that made
Bourgonjon and Rekdal important actors in the standardising and design
processes. Both had a background in computer science and mathematics and
shared a technical expertise and a specialised language not necessarily
shared by all the other members of the team. This background was indeed
what Rekdal had in mind when he hoped that the professional qualities
would overcome the political tensions and make the group special when
compared with other CCITT-initiated groups.17

Bourgonjon’s role as the convenor of the Team of Specialists
underscored the peculiar role of this group within the CCITT. As a
representative of a manufacturer, Bourgonjon represented a group of
participants that held no voting power within the CCITT, and, consequently,
was not normally entrusted with group leader roles. Tellingly, Bourgonjon
was given the title of convenor rather than chairman. Titles and procedures
had a high standing within the CCITT, and the role of convenor indicated the
otherness that surrounded the team. Another similar indication was the fact
that the first meeting had to be held in Bern rather than in the ITU’s native
Geneva, which was not a coincidence. The team was not deemed a real ITU
group, and was consequently not given a time slot within the ITU tower at
Geneva. Again, formal procedures had a high standing in the ITU.

The Team of Specialists that was drummed together in Bern, in early
1975, had considerable less experience and expertise than Niklaus Wirth.
When I interviewed Remi Bourgonjon about his role in the group, he
invoked the saying that “in the land of the blind the one-eyed man is king”
when asked about his own background and his role in the Team of
Specialists.18 In 1975, Bourgonjon was a young programmer employed at
Philips Telecommunications at Hilversum in the Netherlands. He had never
previously thought about designing a programming language. For two years,
he had worked as a programmer assigned to a small computerised exchange
project – a project that was brought to an abrupt end in 1974. As one of the
first employees with a background in the emerging field of computer
science, Bourgonjon had lobbied for the use of a high-level language within

17 Kristen Rekdal, ”Reiserapport fra møte i CCITT arbeidsgruppe XI/3 om
Programmeringsspråk for datamaskinstyrte telefonsentraler”, Geneve, 10 – 19
february 1975”, 6 March 1975, box ”CCITT - HLL Team of Specialists -
Møtereferater 1974 - 1976, Møte 1-6”, KRC. My translation.
18 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.

78

Philips, which was still relying on assembler code in their software
production. This lobbying did not immediately change the practice at
Hilversum, but led Bourgonjon to a rather unsuspected career change:
Almost by accident, he found himself given the responsibility of leading
CCITT’s Team of Specialists, even though his superiors were sceptical about
its economic implications. According to Bourgonjon, Philips was,
nevertheless, in a position where the CCITT activities could pay off, since
the adoption of a high-level programming language was very much in the air
at that moment, and Philips had come late to the party. If the CCITT
standard would lead the telecommunication administrations to make this
specific programming language a requirement, Philips wanted to have a head
start. They had nothing to lose, since they were still programming in
assembly. Disregarding the scepticism within Philips, Bourgonjon was given
the opportunity to work on the CCITT assignment almost full time for the
coming years. Before his appointment as the convenor of the Team of
Specialists, Bourgonjon had participated in some of the early preparatory
meetings in the CCITT. According to Bourgonjon, this participation was the
reason behind his choice as group leader. Over the course of these meetings,
Bourgonjon had raised his voice over what he considered to be rather
uninformed comments made by other group members. These comments
made people take notice, and when Wirth declined, the CCITT thought their
next best option was Bourgonjon. According to Bourgonjon, he was both
honoured and shocked at the same time, considering his age and
experience.19

Figure 3.1 below is a picture of the core group, meeting in London in
1977 at the end of the study period, showing eight of the most active
specialists working on the programming language. What is evident from this
picture is, among other things, the age difference between the core members.
Bourgonjon was really the youngest of all the team members, at 29, while
the administration representatives, like Ken Clements of the UK Post Office,
was a veteran when it came to international standardisation work and in his
50s.

19 Remi Bourgonjon, telephone interview with author, 17 March 2011.

79

Figure 3.1 The Team of Specialists.20

Not all the participants had the same possibilities as Bourgonjon – some
participated in the expert group part time, while others had a considerably
narrower mandate. Furthermore, the participants were not equal in terms of
expertise. This unevenness, in terms of time and expertise, contributed
substantially to a design process that was fraught with difficulties. In
addition, the fact that none of the key members of the group had English as a
mother tongue and mastered the language to varying degrees contributed
substantially to this unevenness. According to Bourgonjon, the first period,
lasting for the whole of 1975 and well into 1976, was essentially “a period of
chaos”.21 Conflicts of interest, as well as the difference in knowledge as well
as communication skills, all contributed to this. The task of developing a
programming language within an international team was an uphill battle,
especially within a tight timeframe. Bourgonjon summarised this in a note to
the team members:

20 Back row: Jack Beierle (ITT), Heiko Sorgenfrei (Siemens), Hans Kvarneby (L M
Ericsson), Trevor Boyd (UK Post Office), Katsumi Maruyama (NTT). Front row:
Remi Bourgonjon (Philips), Ken Clements, (UK Post Office), Kristen Rekdal
(RUNIT).
21 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.

80

[…] this task is far from trivial. Experiences with comparable projects have
shown that either, with an international team not working directly together, it
will cost rather much time, or else the work must be done in a small group,
working closely together. We are facing the problem of developing a
programming language in an international team, not working very closely
together, in a reasonable time.22

The anatomy and specific problems of this team are the subject of the
coming pages, where I first sketch the structure of the cooperation, and then
look into a few key issues in the technical design of the programming
language.

Coordinating contestations
From 26 January 1976 seven programming specialists met for ten days at the
Swiss telecommunication administration headquarters in Bern to discuss the
development of the standardised programming language for telephone
switches. During the January meeting, tensions between the group members
rose, as they were unable to agree on almost anything about the new
programming language. The Norwegian researcher Svein Hallsteinsen
participated and reported on the tensions to his supervisors:

The impression after this meeting is that it will be impossible to agree on one
language, unless it really consists of two languages. This is unacceptable to most
of the participants. It is more likely that we will end up with two proposals, one
European and one Japanese (PL/1 like).23

Hallsteinsen believed that the project could turn into what the CCITT’s
director Raymund Croze had called “hybrid monsters” at the general
assembly of the organisation the year before, a bloated amalgam of every
programming language that existed.24 If not, the CCITT would have to vote
on two different proposals, one coming from a broad group of European
delegates and another one from the Japanese delegates that represented the
NTT, the Japanese telecommunication administration. The sharp
disagreement that Hallsteinsen had observed, between two wings within the

22 Remi Bourgonjon to all members of the Team of Specialists, 6 March 1975, box
“CCITT arbeidsdokumenter”, KRC.
23 The quote is from Svein Hallsteinsen, ”Reiserapport fra møte i CCITT’s
spesialistgruppe for høynivå programmeringsspråk, Bern, 26. januar – 5. februar”,
13 February 1976, box ”CCITT - HLL Team of Specialists - Møtereferater 1974 -
1976, Møte 1-6”, KRC. My translation.
24 Minutes of the Plenary Meetings, CCITT Plenary Assembly 6 Orange Book Vol. I
- IV 1976, CCITT, ITUA. 23. See chapter three for more about Raymond Croze’s
concerns about the development of technical standards within the CCITT.

81

expert group, was about features of the programming language. This tension
between Japanese and European participants existed from the first meeting
of the Team of Specialists, a tension felt by many of the participants
throughout the project. 25 The number of documents contributed by the
participating organisations illustrates these blocks, as the NTT, Philips and
Runit were the main contributors.

Organisation Meeting Total

 1 2 3 4 5 6 7

NTT 1 6 3 1 5 7 - 23

UKPO 1 3 - - - - - 4

Swiss PTT 1 - 2 - - - - 3

Philips 2 4 6 - 4 3 - 19

ITT - 1 - 1 - - - 2

Siemens - 2 - - - 2 - 4

LME - - 1 - - - - 1

Dutch PTT - - 1 - - - - 1

Runit 2 2 4 3 6 3 - 20

Runit/LME/Philips - - - - 1 1 - 2

The Team of Specialists - - - - - 1 - 1

Table 3.3: Number of working documents. 26

Where the European participants, in general, could agree on some main
features derived from existing programming languages similar to Algol, the
Japanese would often come up with arguments that ran counter to the
perceived wisdom among the other participants. Their favourite among
existing programming languages was IBM’s effort to create an ultimate
high-level programming language for almost all purposes, the PL/1.27 This
message was reiterated time and time again by the main participant from the
NTT, Katsumi Maruyama.

Both Algol and PL/1 were significant markers of different
professional identities. Algol was, as discussed in chapter two, an important
output of computer science, by some considered a paradigmatic exemplar of

25 This is based on interviews with some of the participants, reviewing reports from
the Norwegian delegates and official reports from the meetings.
26 The documents are listed in COM-XI No. 19-E, Annex A, box Period 1977 –
1980, CCITT, ITUA.
27 PL/1 held some technical similarities to Algol. On the history of PL/1, see George
Radin, "The early history and characteristics of PL/I", ACM SIGPLAN Notices 13,
no. 8 (1978); Sammet, Programming languages: history and fundamentals, 540-82.

82

the scientific approach to programming language design.28 PL/1 had been
created by the IBM and its user groups, called SHARE, in the mid-1960s. It
was considered a multipurpose programming language that should cater for
all uses, including systems programming and real-time systems, but in many
ways it was considered an optimal substitute for Fortran.29 Many technical
similarities existed between the two, but the governance models that
underpinned Algol and PL/1 were considerably different. Algol was in many
ways a commons, a programming language governed by a self-appointed
and self-regulating community of scientists, while PL/1 was the property of
the IBM. However, there were also technical differences. One example of
the schism came to the surface at the fourth meeting of the Team of
Specialists, and was related to technicalities. The Norwegian researcher,
Svein Hallsteinsen, commented on it in the following manner:

It is a sharp disagreement within the Team of Specialists about whether security
is an important property for a programming language for telephone switches.
The PL/1 supporters consider the consistent use of variables a responsibility of
the individual programmer and that security checks on compilation would
severely reduce the flexibility of the language and consequently reduce
programmer’s productivity.30

The Japanese representatives wanted a less strict, and apparently less secure,
solution, while the Europeans wanted something stricter – where the
programmers’ hands were tied considerably tighter than in the Japanese case.
This was part of a wrangling over professional identity as well as strategic
efforts to maintain the compatibility of already existing programming
languages, where the European and the Japanese representatives held widely
differing views and agendas. The main European representatives were
steeped in mathematical computer science and its development virtues while
the Japanese representatives were less concerned about such goals.
While the NTT was arguing for a PL/1-like language, Remi Bourgonjon
from Philips and the Nordic telecommunication administrations wanted the

28 Priestley, "Logic and the development of programming languages, 1930 - 1975".
29 See Sammet, Programming languages: history and fundamentals, 547. On the
history of SHARE, see Atsushi Akera, "Voluntarism and the Fruits of
Collaboration", Technology and Culture 42, no. 4 (2001).
30 Svein Hallsteinsen, ”Reiserapport fra møte i CCITT’s spesialistgruppe for høynivå
programmeringsspråk, Bern, 26. januar – 5. februar”, 13 February 1976, box
”CCITT - HLL Team of Specialists - Møtereferater 1974 - 1976, Møte 1-6”, KRC.
This view is supported by the official document by the Sub-working party XI/3-2,
“Progress report of the HLL Team of Specialists Fourth meeting: 26 January – 5
February 1976”, Temporary document No. 29-E, box ”CCITT - HLL Team of
Specialists - Møtereferater 1974 - 1976, Møte 1-6”, KRC.

83

standard to become an Algol-inspired language, which implied a more
theoretical and mathematical foundation.31 This was of no great surprise, as
Algol was a dominating force in European computer science at the time,
although generally shunned by the European computer industry.
Furthermore, Bourgonjon was backed by the Belgium research laboratory of
Philips, called the MBLE, which was considered to contain some of the best
Algol specialists around.32 The very first proposals stemming from Philips
were written by Georges Louis, Paul Branquart and Paul Wodon of the
MBLE.33 The cooperation between Bourgonjon and the Belgian laboratory
continued throughout the work on Chill, and according to Bourgonjon, the
close cooperation with the researchers was a great inspiration and resource
for him.34

The researchers hired by the Nordic telecommunication
administrations, based at the research group at the computing centre of the
Norwegian Institute of Technology in Trondheim (Runit) had a background
in designing the programming language Mary, some sort of an Algol
derivate.35 The local team engaged in the CCITT work, people like Svein
Hallsteinsen and Kristen Rekdal, had all been involved to some degree in the
work on Mary. This had a lasting influence on the documents submitted by
the Runit group, especially in the early period of the committee work, which
often would use examples and experience gained through the Mary project
as a point of departure.36 The result was a series of small skirmishes between
the Norway-based group and the Philips group. One example is the
following quote:

31 Peter, "The European side of the last phase of the development of ALGOL 60";
Alan, "The American side of the development of Algol".
32 See, for example, P. Branquart et al., "The composition of semantics in Algol 68",
Commun. ACM 14, no. 11 (1971).
33 P. Branquart, G. Louis, P. Wodon, “Segments, a means for specifying access
authorization”, Document A4, April 1975, box “Arbeidsdokumenter”, KRC.
34 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.
35 Rain, "Some formal language aspects of Mary or Algol X revistited".
36 One example is Svein Hallsteinsen, Kristen Rekdal, Per Holager, ”Macros for
CCITT HLL”, 4 December 1975, Document C2, box “CCITT Arbeidsdokumenter”,
KRC.

84

A parameterized text substitution mechanism like the one in MARY offers a
reasonable implementation for several highly recommendable language features.
However, it is a very flexible tool that requires some discipline on the part of the
programmer. The alternative is an assortment of special constructs as proposed
in (1), which will be safe and structured in use, but harder to learn and to
implement. 37

The latter alternative (denoted as 1) was proposed by Remi Bourgonjon.
Here, it was presented in a discussion about how much flexibility the
programmers would get in terms of so-called macros when using the future
programming language, something mirroring some of the arguments used in
the European versus Japanese discussions mentioned above. In some
respects, the Runit proposal, which was largely inspired by the experience
with Mary, and the general “machine-oriented higher-level languages” field
in computer science, was more oriented towards efficiency of the compiled
code rather than security. Again, the very design of the programming
language was tied in with how the future user was conceived by the various
parties of the quarrel.

When looking back at this debacle, Hallsteinsen, Bourgonjon and
Rekdal all reinforced the impression of a particular tense relationship
between the European participants and the Japanese one.38 What about the
Japanese themselves: did they share this impression? I have only been able
to get in contact with Norio Sato, who served in the CCITT working group
from around 1981.39 The two Japanese participants in the original Team of
Specialists, K. Maruyama and T. Koizumi, both attended some, but not all,
of the meetings held in the team. I have not been able to interview them.
However, the impression I got from Sato was that none of the Japanese
participants was altogether happy with the results of the international
cooperation.40

The tensions influenced the behaviour of the participants. In an
interview with Rekdal conducted almost 30 years after the start of the Chill
project, he commented on the process in the following way: “Of course, you
never talk politics in groups like these. Everything is formulated in technical
terms. Every problem is converted into technical problems, so they sound
factual. It was a big challenge for an engineer, to manage the political

37 Ibid., 13 – 14. (1) is a reference to R. H. Bourgonjon, “Macros and High level
language”, August 1975, Document B9, box “CCITT Arbeidsdokumenter”, KRC.
38 Interviews with Svein Hallsteinsen, Remi Bourgonjon and Kristen Rekdal. See the
list of interviews at the back for details.
39 Norio Sato, e-mails to the author, November 2008.
40 Ibid.

85

problems in all this.”41 This process of translating everything into technical
lingo found favourable conditions in the geographically widespread team
organisation. Similarly, Bourgonjon underscored that forming alliances
through mutual contributions in the form of written documents would ease
the tensions, something that appeared for the very first time at the sixth
meeting of the Team of Specialists in a document cooperatively prepared by
Hallsteinsen, Rekdal, Bourgonjon and Kvarneby.42 This came into being
after several informal meetings of members of the Team of Specialists.

Apparently, this strategy worked well. In Kristen Rekdal’s report from
the fifth meeting of the Team of Specialists, the tone far more positive than
the earlier gloomy reports. “This is one of the best meetings we have had.
The Japanese attitude is considerably more flexible and ITT has declared
support for the work. For the first time, we also got through the full
agenda.”43 These positive signs marked the ending of the “period of chaos”
and also implied that the framework for the end product, Chill, was
emerging through the work of a real manual for the programming language.
This change was based on an effort to orchestrate agreements, or to
coordinate congestions, in particular between the two groups that worked
full time on the project, at Philips and Runit.

Maintaining compatibility
Professional identities aside, the wrangling over which existing
programming language should provide the blueprint for the future CCITT
programming language influenced the strategic manoeuvring of the large
industrial organisations that participated through their delegates. Maintaining
compatibility between the future proposal and an already existing
programming language could greatly reduce the cost of compliance for any
of the firms involved.

In one of the very first documents submitted by the NTT, which was
actually a full proposal for a programming language, filed at the second
meeting of the Team of Specialists in August and September 1975, these
priorities were evident. The aim was to maintain compatibility with their
own DPL language and PL/1, as well as a “basic feature integration of
Pascal, ESPL-1, Pape, DPL, Mary, PLEX and TPL-2, taking standard

41 Kristen Rekdal, interview by Lars Thue and Gard Paulsen, 13 September 2004,
Trondheim, Norway. My translation.
42 R. H. Bourgonjon, S. Hallsteinsen, H. Kvarneby, K. Rekdal, “Some proposed
modifications to the revised manual”, Document F2, box “CCITT
Arbeidsdokumenter II”, KRC.
43 Kristen Rekdal, ”Reiserapport fra 5. Møte i CCITTs spesialistgruppe for høynivå
programmeringsspråk, Bern 10. – 21. mai 1976,” 22 July 1976, box “CCITT-HLL
Team of Specialists Møterapporter mote 1-6”, KRC. My translation.

86

electronic switching systems into considerations”.44 This proposed amalgam
language was based on a PL/1 notation, but added a few unique features
found in all the seven shortlisted languages. In essence, though, it was 80%
DPL, the proposed and specialised language of the NTT, hence the dual
lopsidedness.45

The NTT’s initial efforts can be understood as a defence of their own
position and their own programming language, DPL, rather than a full-on
support for PL/1, even though they believed in the general purpose
programming language from IBM. According to Kristen Rekdal, the
Japanese participants would repeatedly invoke the following line of
arguments: since Algol 60 and 68 were developed mainly within academia,
Algol was therefore perceived as an academic language; PL/1, on the other
hand, was developed by IBM, and was therefore an industrial language.
Since the new CCITT language was to be used for developing industrial
products, it had to be an industrial language, and therefore it had to be PL/1-
like.46 To the Japanese, the PL/1 language implied efficiency, both in terms
of learning and execution. However, this line of argument did not convince
everyone. For one thing, it did not consider the fact that PL/1 had some
distinct Algol flavours thrown into its mix.

Is there any evidence, in writing, that the other participants defended
their own programming language in a similar way? L. M. Ericsson was
represented in the group by Hans Kvarneby. L. M. Ericsson's programming
language Plex had, just like the DPL-language of the NTT, been considered
a viable candidate by the CCITT in the review round. Nevertheless,
Kvarneby submitted only one sole-authored working document, “On
separately compiled modules”, in 1975. 47 This document cannot be
interpreted as an effort to shift the standardisation effort in the direction of
Plex, as it is more or less a paper that supports a technical solution proposed
by Remi Bourgonjon and Philips.48

The ITT, which had their ESPL/1 language favourably reviewed in the
initial assessment, submitted one document in 1975 and another in 1976.49
The 1975 paper was only two pages long, and did not contribute or argue in
any particular direction. The paper cannot in any way be understood as an

44 NTT, “A proposal of a programming language for electronic switching systems”,
Document B18, box “CCITT Arbeidsdokumenter”, KRC.
45 “Remarks on the language proposed by N.T.T.”, Temporary Document No. 201-
E, box “CCITT Arbeidsdokumenter”, KRC.
46 Kristen Rekdal, interview with author, 18 June 2008, Oslo, Norway.
47 Hans Kvarneby, L. M. Ericsson, “On separately Compiled Modules”, Document
C10, box “CCITT Arbeidsdokumenter”, KRC.
48 Ibid.
49 R.J. Parente, “Comments on separately Compilable Modules and debugging
tools”, Document B12, box “CCITT Arbeidsdokumenter”, KRC.

87

argument for particular functions found in their own programming language
ESPL-1. The second paper submitted by ITT was called “Use of Based
Variables in Systems written in ESPL-1.”50 As evident from the title of the
paper, this hand-written and rather short document was based on the use of
ITT’s programming language ESPL-1. However, it reads more as a comment
on a very particular technical question, rather than a solid proposition for
how this question should be tackled in the new programming language.

The fourth manufacturer represented in the group, Siemens, did not
have a programming language reviewed by the CCITT in 1974. They
submitted only two working documents in 1975, “Proposed flow of control
statements” and “I/O functions in a HLL for electronic switching”.51 Neither
can be understood as an attempt to swing the development effort in any
particular direction, as it reads more as an investigation of the seven
shortlisted languages and contains only very general propositions.

As pointed out earlier, Kristen Rekdal acted on behalf of the research
establishment Runit and the Nordic telecommunication administrations. The
origin of this cooperation was the early proposal of Mary as a contender
language in the CCITT review process. As such, the actions of Rekdal and
Runit could be understood as a similar compatibility-seeking manoeuvre like
those discussed above, although the vested interests in Mary were
considerably smaller compared with those of the manufacturers that had
applied in-house programming languages in existing products. Nevertheless,
Mary had a lasting influence on the documents submitted by the Runit
group, especially in the early period of the committee work, which often
would use examples and experience gained through the Mary project as a
point of departure.52

Orchestrating agreements
In 1976 agreements replaced tensions, quarrels and disputes on several
levels. The Team of Specialists became more unified and finally agreed on a
proposal for a CCITT recommendation, which was filed as “the blue

50 D. Copen, January 23 1976, “Use of Based variables in Systems written in ESPL-
1. Some examples”, Document D4, box “Arbeidsdokumenter II”, KRC.
51 Siemens Aktiengesellschaft, “Proposed Flow-of-Control Statements for the
CCITT HLL”, 7 august 1975, and “I/O functions in a HLL for electronic switching
systems”, 7 august 1975, Document B13 and B14, both in box “CCITT
Arbeidsdokumenter”, KRC.
52 One example is Svein Hallsteinsen, Kristen Rekdal, Per Holager, ”Macros for
CCITT HLL”, 4 December 1975, Document C2, box “CCITT Arbeidsdokumenter”,
KRC.

88

document” in May 1977.53 This document compiled all the different ideas
about what a programming language should be into one rough draft. The
document was approved by the formal CCITT hierarchy, which agreed to
prolong the programming language project until 1980. This ensured that the
language would be developed further from the rough draft of the “blue
document” to a more capable programming language three years later.
During and between the fourth, fifth and sixth meetings of the Team of
Specialists, from late 1975 to autumn 1976, a coherent framework was
agreed and supported by most of the group’s members. The “period of
chaos” was replaced by a year of agreements. This was a period of practical
work, as the team had to decide how they should describe, formulate and
define the programming language they had argued about for the last year, in
essence an exercise in writing down everything about the language, such as
its syntax and its intended semantics. The practical work on the manual
forced the participants into a more concrete way of working. This finally
turned this awkward squad into something of a top-level troop, more
effectively dealing with their differences than ever before. However, a real
platoon it was not.

Still, disputes could escalate quickly. As they more or less followed a
common pattern, this made them easier to avoid. Some of the most intense
debates and quarrels could be postponed, while others were bypassed by
making compromises: some of these compromises were even in the direction
of the dreaded possibility of being PL/1-like, proposed by the ever more
unlikely group of Europeans.54 Since the two only participants that worked
more or less full time on this project were Remi Bourgonjon and Kristen
Rekdal, the majority of the manual writing was done in Hilversum and
Trondheim.

On which direction did they agree? The committee tried, as they
worked their way through each and every language concept, to strike a
balance between the need for efficiency and flexibility on the one side, and
reliability on the other – inset with the overall goal of achieving machine
(and, inherently, manufacturer) independence and program portability. At an
overall level, this balance was sought by aligning the background in
computer science that many of the team members shared with the virtues of
the community of electrical engineers that dominated the CCITT and the

53 The HLL Team of Specialists, ”Proposal for a recommendation for a C.C.I.T.T
High-level programming language”, The Blue Document, May 1977. The document
is available at the ITUA.
54 Kristen Rekdal, Svein Hallsteinsen, Per Holager, ”CCITT HLL and Based
Variables”, 22 January 1976, Document D2, box ”CCITT Arbeidsdokumenter II”,
KRC. This note explored the possibilities of fitting the based variable concept of
PL/1 into the CCITT HLL.

89

telecommunications world in general. By arguing that certain features of the
programming language could contribute to the production of more reliable
software, the programming language would at least appear to be very much
in line with the reliability focus with which the telecommunication world
was preoccupied.

The group would agree on specific language features that were
believed to be related to high reliability, such as the possibility to check as
much as possible at the time of compilation, or in other words, at the
moment the programming code was translated into machine code. Efficiency
was also deemed to be one of the most important requirements at a time
when computing power was very much a limited resource. The obvious way
to achieve this was to bypass the high-level constructs and dip into machine
code. Mechanisms that allowed for such toe dipping were consequently a
major discussion point at the team meetings. It would most certainly
contradict the philosophy of a high-level language in the first place – and
make it less portable. More importantly, extensive use of low-level features
was believed to degrade the program reliability. Too many programmers
would bypass the programming language and design fast but erroneous low-
level hacks. To marry efficiency and reliability was impossible.
Consequently, the language had to strike a fine balance and reach a number
of compromises. However, to be able to reach a number of agreements, some
of the most debatable topics were postponed, in particular those related to
low-level constructs.

The end result was a manual that described the vocabulary of the
proposed language, including a formal syntax and informal semantics. This
was not, however, something that came by itself. The first set of drafts of the
manual was “inconsistent both in syntactic and semantic description”.55 The
inconsistency was seen as highly unsatisfactory, not only from a scientific
point of view, but also because the goal of making this language a standard.
As Bourgonjon had stated, “for standardisation reasons, the descriptions
should be unambiguous and complete”. The real question then, is how could
the group create consistency when progress by compromise was the ‘plate de
jour’?

Descriptions and alignments
During the summer of 1976 the first substantive draft manual was finished.
The inconsistencies were gradually ironed out in meetings throughout 1976

55 Remi Bourgonjon to the members of the HLL Team of Specialists, Hilversum, 7
September 1976, Document F1, box “CCITT Arbeidsdokumenter II”, KRC.

90

and one last editorial meeting in London in February 1977.56 By applying
what was described as an extended Backus-Naur Form syntax, the work was
eased out by applying the state of the art in computer science concerning
syntax description. The Backus-Naur Form was a metasyntax used to
express context-free grammars: that is, a formal way to describe formal
languages. It was created by John Backus as part of the creation of the
programming language Algol in the late 1950s. The Danish computer
scientist Peter Naur simplified Backus’s initial design, which became known
as the BNF during the 1960s.57 Again, the team went along with ongoing
concerns in the wider community of computer scientists to be able to achieve
the goals set by themselves as well as the CCITT: a consistent programming
language.

The moves leading towards a provisional and more consistent
language description were also a result of a growing alignment of the
different attitudes towards programming languages by the members of the
Team of Specialists. However, these alignments also depended on local
“support teams”, in particular work within the MBLE in Belgium, which was
the Belgian subsidiary of Philips, and at Runit in Trondheim. During 1976,
the involvement with the MBLE would not only influence the thinking of
Bourgonjon, but would also function as a meeting place between the
Norwegian researchers involved in the Runit-led project and the Dutch
researchers and language designers, as meetings between these actors were
held at the MBLE.58 Furthermore, similar meetings were arranged at L. M.
Ericsson in Sweden in August 1976. These meetings that were held outside
the team’s official agenda would result in co-written contributions to that
agenda, which dramatically increased their possibility of being approved by
the others.

By the end of 1976, the Team of Specialists had agreed on the central
features of the language and the “Crozian monster” envisioned by Svein
Hallsteinsen was avoided. The next step would be to gather support for the
language beyond the participating organisations. One particularly telling
example was the last “official” meeting of the Team of Specialists, held in
Kyoto, Japan, in October 1976. The meeting was devoted to the “syntax for
the full CCITT HLL language proposal”, and the participants were able to

56 For reports on the meetings, see the official report: The HLL Team of Specialist,
“Progress report of the HLL Team of Specialists”, March 1977, COM XI No. 19-E,
COM XI 1978 – 1980, ITUA.
57 See the contribution of John Backus and Peter Naur in Wexelblat, History of
programming languages.
58 Kristen Rekdal, “Reiserapport fra uformelt møte om CCITT’s høynivåspråk i
Brüssel 6. 8. april 1976”, 21 April 1976, box “CCITT-HLL Team of Specialists
Møterapporter mote 1-6”, KRC.

91

agree on how the syntax should be described in the language manual.59 The
meeting in Kyoto was held at the same venue as the large International
Switching Symposium (ISS), a major trade meeting and technical conference
held biannually at various locations throughout the world.60 Just days after
agreeing upon the syntax on their new programming language, the team
could discuss it with other interested parties in the larger telecommunication
world. Here, the group could gather support and align their proposal – or for
that matter, they could also risk receiving a blatant rejection from the
important decision makers.

Remi Bourgonjon presented the progress of the Team of Specialists in
a session devoted to the concept of high-level languages in
telecommunication systems, together with presentations from researchers
from the NTT, the ITT and the French CNET laboratory.61 Bourgonjon’s
paper made the influence from computer science explicit with references to
publications by well-known figures from the computer science field, such as
Niklaus Wirth, Per Brinch Hansen, Tony Hoare, David Parnas and Jean
Ichbiah.62

That manufacturing firms like ITT, L. M. Ericsson, Bell and Siemens
all presented various papers on aspects of the use and creation of software in
telecommunication systems confirmed the importance that programming and
software development steadily gained within the field of
telecommunications. However, there were few other signs of formal backing
of the CCITT initiative at the ISS. Only Bourgonjon could break the news
that it was decided that Philips would use the programming language at the
ISS.63 The NTT, which had participated in the Team of Specialists, however
uncooperatively, presented their continued work on the programming
language DPL at ISS. 64 The NTT did, however, agree that they would
modify DPL to a certain extent so that it would be in accordance with the

59 HLL Team of Specialists, “Progress report of the sixth meeting of the HLL Team
of Specialists, Kyoto, 12-22 October 1977”, box “CCITT - HLL Team of Specialists
- Møtereferater 1974 - 1976, Møte 1-6”, KRC.
60 "International Switching Symposium".
61 Raymond Hubert Bourgonjon, “A High-level programming language for SPC
Software Systems.” Printed in Ibid.
62 All names well known in the computer science field, although some of these
would gain greater recognition a little later.
63 This was reported by Kristen Rekdal. See Kristen Rekdal, “Reiserapport fra møte i
CCITT’s spesialistgruppe for høynivå programmeringsspråk, Kyoto, Japan 11. – 22
okt. 1976,” 18 November 1976, box ”CCITT - HLL Team of Specialists -
Møtereferater 1974 - 1976, Møte 1-6”, KRC.
64 M. Kakuma, K. Maruyama, and T. Koizumi, "DPL-A High Level Programming
Language for Electronic Switching Systems", in International Switching Symposium
(Kyoto1976).

92

CCITT high-level language. 65 This underlined that a CCITT-approved
programming language would enter a crowded “market”.

The first public discussion of the work within the Team of Specialists
was an indication of an agreement at the level of the technical community
concerned with programming telecommunication systems. The 1976 ISS
even coincided with the 100th anniversary of the invention of the telephone.
In a celebratory article written by the chairman of the CCITT’s study group
XI (the parent group of the Team of Specialists), J. S. Ryan of the Bell
Laboratory, acknowledged that “the programming of switching processors”
had “become a separate art”.66 The Team of Specialists was perhaps not that
interested in turning the programming of telecommunication into an “art,”
but separate it certainly was. Nevertheless, their work was duly noted as
something of importance for the second century of the telephone. The
endorsement from the study group leader, who presided over the work of the
Team of Specialists in the CCITT, was an indication that the organisation
looked on the Team’s work with some satisfaction.

Postponed deadlines and delayed concepts
The team had worked on the fringes of CCITT’s hierarchical system for
most of 1975 and 1976. The fringe status implied that they needed to gather
support for their work within the ranks of the CCITT as they were closing in
on their target. Since there was no way that a finished programming
language could be expected before the deadline for proposals to the plenary
meeting of the CCITT in 1977, the team was in need of a temporary seal of
approval and a go ahead to further their work beyond this study period.

Long before the draft manuals were getting into any shape that would
resemble anything useful, the Team of Specialists would have to report their
results to the formal CCITT hierarchy. All the various parenting groups
declared themselves “pleased at the progress made by the Team of
Specialists”, even though they had not come very far.67 They also realised
that a satisfactory proposal only could be fulfilled in the next plenary period.
The Team of Specialists received an endorsement to continue, but only with
some new and modified work assignments. One was that they would have to
publish their preliminary results as a semi-official CCITT publication in
1977, which again forced the group to put their ideas down on paper sooner
rather than later. In the end, the 1977 Plenary Assembly stated that work in

65 Kristen Rekdal, “Reiserapport fra møte i CCITT’s spesialistgruppe for høynivå
programmeringsspråk, Kyoto, Japan 11. – 22 okt. 1976”, 18 November 1976, box
”CCITT - HLL Team of Specialists - Møtereferater 1974 - 1976, Møte 1-6”, KRC.
66 J. S. Ryan, "Signalling and Switching as we enter the second century",
Telecommunication Journal 43, no. 3 (1973).
67 COM XI-Temp. 2-E, box ”Arbeidsdokumenter 2”, KRC.

93

the next study period would be concentrated on three particular issues.
Firstly, experience from evaluation and implementation had to be gained,
which was also something that was proposed by the members of the Team of
Specialists. Secondly, there had to be efforts to strengthen the relation
between the three different languages created by the CCITT: the high-level
programming language Chill, the specification and description language
SDL and the man-machine language MML. Finally, the Plenary asked the
working groups to consider “the aim of establishing a common standard
terminology over the entire field of telephony and computer sciences “.68

The first point was obvious: before unleashing a programming
language as a standard for the telecommunication world, it had to be used in
a setting beyond small academic exercises conducted by a small number of
players. The effect was the formation of the Implementors’ Forum from
1977, which replaced the narrowly focused Team of Specialists. The two last
points, however, stressed a tension that I have not considered in any
substantial way previously: the tensions between different working groups
within the CCITT hierarchy. While the last point only hints at a wish for
greater linguistic coherence, the second one proved all the more serious, and
one that I have not dealt with in any great detail previously: integration
between Chill, SDL and MML.

The study group 11 of the CCITT and ultimately the CCITT’s Plenary
Assembly decided that the two other languages should be closely integrated
with the work on the programming language, which in the period studied in
this chapter was an almost non-existent consideration. The SDL language
was an effort to standardise the graphical representations of the functionality
of telecommunication systems. During the study period, the participants
from L. M. Ericsson pushed the SDL group in the direction of a high-level
description language, rather than standardised pictograms for advanced flow
charts. This direction made the working group envisage a tighter integration
of the programming language and the description language, or even a full
integration. This triggered the idea of closely aligning the two languages –
an idea that had not been discussed widely within the Team of Specialists.
Such an alignment would mean a closer cooperation between the electrical
engineers of the SDL group and the computer scientists dominating the Chill
group.69 Whether this move was part of a grand scheme by L. M. Ericsson,
which would have to involve the inactivity in the Team of Specialists and
their high ambitions of the work on SDL and the eventual proposal to
integrate the two efforts, is not known.70 Anyway, the call for integration

68 COM XI-No. 1-E, 110, CCITT, Period 1977 – 1980, ITUA.
69 Hemdal, "AXE 10 - Software Structure and Features".
70 Later activities of L. M. Ericsson representatives in the subsequent study period
do not indicate such a strategy. See chapter four for details.

94

was largely ignored by the two groups, partly because of the technical
difficulties, but mostly because each group had enough to deal with already,
and could not take on the extra load of further coordination.

The Team of Specialists had on purpose left out some important issues
that needed decisions. Firstly, the bargaining process about whether and
ultimately how the language should provide access to very low-level
constructs was put off beyond the life of the group itself. Secondly, the issue
of concurrency was also delayed, partly because of internal wrangling as
well the state of the art. Concurrency, which basically implied the possibility
of several operations executing and overlapping in time, and potentially
interacting with each other, was at the time little understood or developed in
the computer science field, and was perhaps best left for later.71

Consequently, when the so-called Blue Document was issued in May
1977, the group had come one step closer to creating a general purpose
programming language, but created with a rather particular interest in mind,
namely that of telephone switching systems. The group had argued that the
range of applications used in a switching system was so broad that what was
needed was a language with general capabilities. However, it was lacking in
a number of areas. It was not integrated with other CCITT technologies that
were developed in parallel, like SDL. It lacked concepts for handling
concurrency in the language. In addition, several of the language constructs
were inconsistent. All this was left to the group’s successor, the
Implementors’ Forum.

71 The first programming language that has been credited with incorporating
concurrency at a fundamental level was Concurrent Pascal, created by the
Danish/American computer scientist Per Brinch Hansen in 1974. See Per Brinch
Hansen, "The invention of concurrent programming", in The Origin of concurrent
programming: From Semaphores to Remote Procedure Calls, ed. Per Brinch
Hansen (New York: Springer-Verlag, 2001).

95

Figure 3.2 The CCITT Study Group XI meeting in 1976.72

What did the participants think of the results? In the beginning of May 1977,
Kristen Rekdal delivered his report on Runit’s participation in the CCITT
Team of Specialists to the Norwegian Telecommunication Administration.
Here, he outlined his experiences and the results of the projects. He argued
that the group was riddled with “contentions both between manufacturers
and administrations, and between the individual manufacturers”. 73
According to Rekdal, the administrations favoured standardisation in
general, as it could ease the operation of their networks and perhaps reduce
costs. The manufacturers were interested in better tools, but only if it put
them ahead of the competition. Thus, standardisation for its own sake was of
little interest, and was seen as bad if it costs anything. If one could arrive at
some sort of compatibility between the programming languages already used
by the manufacturers and the future recommendation, it would obviously be
a fortunate position for a manufacturer. Another reason for the
disagreements was the background of the team’s members. Rekdal noted the

72 Remi Bourgonjon, in the middle. The picture is reproduced with the permission of
Remi Bourgonjon
73 Kristen Rekdal, ”Nordic participation in the development of The CCITT High
Level Language – Final Report”, 3 May 1977, Runit report STF14 A77016, box
”Nordisk Chill-prosjekt”, KRC.

96

following to his superiors:

Both in cultural background, education and knowledge of English, the Team was
inhomogeneous. Sometimes disagreements were caused by pure
misunderstandings. In the beginning, this was a problem. In spite of these
differences and many heated discussions, personal relations within the Team
have been good. We are still friends and on talking terms.74

When the Team was finally dissolved after its final meeting in London in
February 1977, it had survived a “period of chaos”, to use the Bourgonjon’s
expression, and had escaped with a language description that merited further
work. The consensus that the Team arrived at was a result of aligning the
very different backgrounds of the team members, and the difficulty of
gaining any strategic position within the Team by running solo. The
alignments and the alliances were the key to the progress, as none of the
efforts towards retaining compatibility between Chill and existing
programming languages used in telecommunications was successful.

The structure of collaboration
The account of the Team of Specialists has so far focused on the process of
technical diplomacy. The route towards the interim halt of the programming
language project that was the Blue Document could do with a second
approach: one concerned with the structure of the negotiations, but one that
can retain the processual outlook. A further investigation of who held
prominent positions in the group and who was “in the thick of things” is
pertinent.75 In the following, I apply a social network analysis (SNA) to the
task of teasing out a number of structural features of the work done in the
Team of Specialists, which supplements as well as questions parts of the
story told above.

The specific case of the structure of the Team of Specialists is of
limited complexity, and a full-blown and formal SNA study might seem
unnecessarily complicated when dealing with something that can be
highlighted through simple frequency counts, such as the number of
contributions made by different organisations to each meeting. However, a
network analysis provides a more robust measurement of the work that went
on within the Team, measurements that are possible to compare with the
structure of the collaboration in later periods.

Only 11 participants were represented in the group, and there were
never more than eight representatives at the same meeting. The number of

74 Ibid.
75 Linton C. Freeman, "Centrality in social networks conceptual clarification", Social
Networks 1, no. 3 (1978).

97

official contributions, in form of written and submitted proposals and
working documents, were about 70 distributed across seven meetings. I
focus on two measurements. Firstly, the relationships formed through mutual
participation in official meetings are measured in the joint appearance
model. Secondly, the importance of contributions made by team members, or
their parent organisation, to different meetings is measured in a model that
estimates the participants’ willingness to influence each meeting.

This makes it possible to distinguish between importance (or
centrality, to use the lingo of SNA) gained through participation and an
apparent centrality due to the willingness to exert influence through
contributions to the various meetings. Both the joint appearance network and
the influence model are based on measurements of the number of relations
each individual has formed and the strength of these ties. However, there is
an important difference: The joint appearance network has been projected
onto a one-mode network where the tie strengths are measured by co-
participation at each meeting during the study period of the Team of
Specialists (meaning that the “heaviest” ties come from the most co-
appearances). The influence network measures the strength of the ties as
stemming from the number of contributed documents to each meeting by the
parent organisation or the participant, joined with co-appearances. To be
able to calculate the centrality indices, the original affiliation network has
been projected onto a one-mode network, where the sum of the number of
documents and the appearances is the weight of the different ties in the
network, rather than just the multiplied co-appearance measure used
before.76 The crucial question when applying this measure is the relative
importance of tie weights to the number of ties in weighted networks. In the
following, I have viewed the tie weights as the most important, so that the
ties with large weights are considered to have a greater impact than ties with
only small weights.

76 Contributions made by organisations that did not have any representatives at the
meetings are, as a consequence, not included. I have also excluded documents
credited to the whole Team of Specialists, while documents written by more than
one organisation have been included in the count. This is because the document in
question, the one credited to the Team of Specialists, was the full language proposal
and not a document used in the discussion in the group.

98

 Participants Meetings Ties Density

ToS 14 8 314 0.765

Table 3.4: Descriptive statistics of the Team of Specialists measured as a
network.77

The high density, which measures the cohesion of the two-mode affiliation
network and the clustering co-efficient, pays testimony to the tight
integration that was evident in the Team of Specialists.

The centrality of nodes has always been the key issue in SNA.78
Degree centrality has been a particularly important measure, being defined
as the number of nodes to which a focal node is connected.79 It is somewhat
difficult to apply degree centrality to the influence-measuring model, as it
was designed for binary networks and would disregard the weighted
information. Although a number of attempts to apply this centrality measure
to weighted networks, these attempts have focused on tie weights only,
going too far in the opposite direction.80 Even though I consider tie weights
more important in both networks, disregarding the number of ties completely
would be unfortunate. In an attempt to combine both degree and strength, I
apply a measure recently defined by Tore Opsahl to ease the analysis of
weighted networks.81 This applies a tuning parameter to assess the relative
importance of the number of ties compared to tie weights, and report a
degree centrality measure, which is the product of the number of nodes to
which a focal node is connected, and the average weight to these nodes
adjusted by the tuning parameter. Following this, I report the normal degree
centrality, and the variant of degree centrality that takes both the number of

77 The density of the two mode networks is calculated in Ucinet. See Steve Borgatti,
Martin Everett, and Lin Freeman, Ucinet 6 for Windows: Software for Social
Network Analysis Ver. 6.0, Analytic Technologies, Harvard.
78 Freeman, The development of social network analysis: a study in the sociology of
science.
79 Other measures exist. Typically, closeness and betweenness centrality are
considered important. Closeness centrality is the inverse sum of shortest distances to
all other nodes from a focal node, measuring how quickly a participant could reach
others. Betweenness assesses how a node is able to channel the flow of a network as
it calculates the degree to which a node lies on the shortest path between two other
nodes. Both defined in ———, "Centrality in social networks conceptual
clarification".
80 Examples are listed in Tore Opsahl, Filip Agneessens, and John Skvoretz, "Node
centrality in weighted networks: Generalizing degree and shortest paths", Social
Networks 32, no. 3 (2010).
81 Ibid.

99

ties and the tie weight into consideration.82 Furthermore, a normalised degree
centrality score is presented in the case of the joint appearance network,
which is calculated from the raw binary affiliation matrix. This is primarily
intended as a comparative measure, used more extensively in the next
chapter.83

 Joint appearance Willingness to influence
Participant Degree Degree

(Alpha)
Degree
(norm)

Degree Degree (Alpha)

J. D. Beierle 43 78.20 1.000 55 113.13
R. Bourgonjon 43 78.20 1.000 156 540.40
R. T. Boyd 7 7.00 0.143 21 34.02
K. Clements 14 17.46 0.286 15 18.37
S. Hallsteinsen 6 6.00 0.143 24 48.00
H. Kvarneby 35 65.48 0.857 47 101.89
T. Koizumi 13 15.62 0.286 20 29.81
M. Kakuma 8 8.00 0.143 8 8.00
K. Maruyama 37 64.97 0.857 75 187.50
S. Ogawa 8 8.00 0.143 8 8.00
K. Rekdal 37 64.97 0.857 137 462.90
L. Sandberg 17 24.78 0.429 27 49.60
H. Sorgenfrei 38 64.97 0.857 65 145.34
T. Wakamoto 8 8.00 0.143 8 8.00

Table 3.5 Centrality measures of the Team of Specialists.

The joint appearance network highlights the presence and ties between three
important industrial participants, Bourgonjon of Philips, Sorgenfrei of
Siemens and Beierle of the ITT. It also highlights less active participants
from telecommunication administrations, except the appointed mutual
representation of the Nordic administrations through the researcher Kristen
Rekdal and the strong presence of Japanese participants representing the

82 This follows Ibid. The joint measurement includes a tuning parameter, α, to
control for the relative importance of the number of ties and the weight of the ties.
The α parameter is set to 1.5, which weights tie weights as the most important.
83 Normalised degree centrality on the co-appearance network normalises the scores
against the maximum possible scores in an equivalently sized connected two-mode
network and hence provides appropriately scaled measures. The score is calculated
in Ucinet. See Borgatti, Everett, and Freeman, Ucinet 6 for Windows: Software for
Social Network Analysis. Alpha-justified scores calculated with R and tnet. See
Tore Opsahl, Structure and Evolution of Weighted Networks (University of London
(Queen Mary College), London, UK, 2009); R Development Core Team, (Vienna,
Austria: R Foundation for Statistical Computing, R: A Language and Environment
for Statistical Computing).

100

NTT.84 By considering the centrality indices, Beierle and Bourgonjon are
ranked as the most central participants when considering co-appearances, but
when taking the influence measurements into consideration, a somewhat
different pattern emerges. The obvious lack of influence-gaining
contributions from centrally positioned actors such as Sorgenfrei of Siemens
and Bierle of the ITT render their ties in the network as weak, even though
their appearance at all the meetings makes the number of ties (to meetings,
this time) high. This also becomes clear when inspecting two comparable
illustrations of the two networks, one based on the projected one-mode
network of co-appearances, the other a joint display of meetings and
participants based on the weighted influence network. 85 In the first
illustration, the tie between participants is based on the number of co-
appearances, while the weight of each tie in the latter illustration is
calculated as a sum of participation and the number of written contributions
made to each meeting rather than the total score, which is used in the
centrality measures above. This makes it possible to get an impression of the
variance of influence-seeking actions through time, and the intensity of
document submission at various meetings coupled with who was present.

84 On the setup of the telecommunication industry in Japan, see Fransman, Japan's
computer and communications industry : the evolution of industrial giants and
global competitiveness.
85 Katherine Faust, "Using Correspondence Analysis for Joint Displays of Affiliation
Networks", in Models and Methods in Social Network Analysis, ed. Peter J.
Carrington, John Scott, and Stanley Wasserman (Cambridge: Cambridge University
Press, 2005).

10
1

F

ig
u

re
 3

.3
 P

ar
ti

ci
p

an
ts

 in
 t

he
 T

ea
m

 o
f

Sp
ec

ia
li

st
s,

 w
it

h
 t

ie
s

w
ei

gh
te

d
 b

y
co

-a
p

p
ea

ra
n

ce
.86

86

 T
he

 i
nd

iv
id

ua
ls

 l
is

te
d

in
 t

he
 f

ig
ur

e
pa

rt
ic

ip
at

ed
 t

og
et

he
r

w
ith

 t
he

 i
nd

iv
id

ua
ls

 t
o

w
hi

ch
 t

he
y

ar
e

lin
ke

d.
 T

he
 w

id
th

 o
f

th
e

lin
ks

 i
llu

st
ra

te
s

th
e

nu
m

be
r

of
 c

om
m

on
 m

ee
ti

ng
s.

 D
ar

k
gr

ey
 c

ir
cl

es
 d

en
ot

e
pa

rt
ic

ip
an

ts
 f

ro
m

 t
el

ec
om

m
un

ic
at

io
n

ad
m

in
is

tr
at

io
ns

,
an

d
w

hi
te

 t
ri

an
gl

es
 a

re

re
se

ar
ch

 i
ns

ti
tu

ti
on

s
or

 o
th

er
 a

ca
de

m
ic

 i
ns

ti
tu

ti
on

s.
 L

ig
ht

 g
re

y
sq

ua
re

s
ar

e
fr

om
 m

an
uf

ac
tu

ri
ng

 f
ir

m
s.

 T
he

 p
os

it
io

n
in

 t
he

 d
ia

gr
am

ill

us
tr

at
es

 t
he

 m
ea

su
re

d
ce

nt
ra

lit
y

of
 t

he
 p

ar
tic

ip
an

t,
ba

se
d

on
 t

he
 s

pr
in

g
em

be
dd

in
g

la
yo

ut
 t

ec
hn

iq
ue

.
F

ig
ur

e
cr

ea
te

d
us

in
g

N
et

dr
aw

.
S

ee

S
te

ve
n

P
. B

or
ga

tti
, N

et
D

ra
w

: G
ra

ph
 V

is
ua

liz
at

io
n

S
of

tw
ar

e.
 V

er
. 2

.0
97

, A
na

ly
tic

 T
ec

hn
ol

og
ie

s,
 H

ar
va

rd
.

H
.

Kv
ar

ne
by

H
.

So
rg

en
fr

ei

J.
 D

.
Be

ie
rle

K.
 C

le
m

en
ts

K.
 M

ar
uy

am
a

K.
 R

ek
da

l

L.
 S

an
db

er
g

M
.

Ka
ku

m
a

R.
 B

ou
rg

on
jo

n

R.
 T

.
Bo

yd

S.
 H

al
lst

ei
ns

en

S.
 O

ga
w

a

T
.

Ko
izu

m
i

T
.

W
ak

am
ot

o

10
2

F

ig
u

re
 3

.4
 T

h
e

T
ea

m
 o

f
S

p
ec

ia
li

st
s,

 p
ro

je
ct

ed
 a

s
af

fi
lia

ti
on

s
to

 m
ee

ti
n

gs
 w

it
h

 w
ei

gh
te

d
 t

ie
s.

87

87

 T
he

 w
id

th
 o

f
th

e
lin

ks
 i

llu
st

ra
te

s
th

e
nu

m
be

r
of

 w
ri

tte
n

co
nt

ri
bu

tio
ns

 m
ad

e
by

 a
n

in
di

vi
du

al
 w

ho
 a

ls
o

pa
rt

ic
ip

at
ed

 a
t

th
e

m
ee

ti
ng

.
T

he

si
ze

 o
f

th
e

sq
ua

re
s

ill
us

tr
at

es
 c

on
tr

ib
ut

io
ns

 a
nd

 p
ar

tic
ip

at
io

ns
 a

t
th

e
m

ee
tin

g.
 D

ar
k

gr
ey

 c
ir

cl
es

 d
en

ot
e

ad
m

in
is

tr
at

io
n

pa
rt

ic
ip

an
ts

;
w

hi
te

tr

ia
ng

le
s

ar
e

re
se

ar
ch

 i
ns

ti
tu

ti
on

 p
ar

ti
ci

pa
nt

s
an

d
lig

ht
 g

re
y

sq
ua

re
s

ar
e

te
le

co
m

m
un

ic
at

io
n

ad
m

in
is

tr
at

io
n

de
le

ga
te

s.
 T

he
 p

os
iti

on
 i

n
th

e
di

ag
ra

m
 i

llu
st

ra
te

s
th

e
m

ea
su

re
d

ce
nt

ra
lit

y
of

 t
he

 p
ar

tic
ip

an
t

an
d

th
e

m
ee

tin
g,

 b
y

th
e

sp
ri

ng
 e

m
be

dd
in

g
te

ch
ni

qu
e.

 F
ig

ur
e

cr
ea

te
d

us
in

g
N

et
dr

aw
. S

ee
 I

bi
d.

J.
 D

.
Be

ie
rle

R.
 B

ou
rg

on
jo

n

R.
 T

.
Bo

yd

K.
 C

le
m

en
ts

S.
 H

al
lst

ei
ns

en

H
.

Kv
ar

ne
by

T
.

Ko
izu

m
i

M
.

Ka
ku

m
a

K.
 M

ar
uy

am
a

S.
 O

ga
w

a

K.
 R

ek
da

l

L.
 S

an
db

er
g

H
.

So
rg

en
fr

ei

T
.

W
ak

am
ot

o

M
ee

tin
g

1
M

ee
tin

g
2

M
ee

tin
g

3

M
ee

tin
g

4
M

ee
tin

g
5

M
ee

tin
g

6

M
ee

tin
g

7

 103

Summing up, based on analyses of joint appearances and influence
ambitions, some structural features of the cooperation seem evident. Some
participants had a strong presence at the group meetings but contributed little
to the work in terms of written documents. This could be rooted in two
different reasons. Either the actors participated in the work in order to
observe what went on, but held no real interest in directing the work in any
particular direction, or they held so little expertise that any meaningful
contributions were impossible. I will consider each of these possibilities in
the qualitative analysis below.

Both measurements have a number of other shortcomings. First of all,
the simple metric of the number of contributions might indicate a willingness
to influence, but it says little about whether this effort was successful or not.
The number of contributions cannot be considered a part of some sort of out-
numbering game. Second, the individual-oriented participation network does
not take into the account the fact that some of the organisations sent different
participants to different meetings, but retained continuity through local
teams. Furthermore, it is important to stress that the SNA glances over
important qualitative dimensions of the contributions, such as the quality of
the argument, its consistency and so forth.

Co-affiliations illustrate the opportunities to influence the decision
processes in the team, and the ability to form relationships through joint
appearances made such influence all the more effective. The coupling of
appearances and contributions reveals a number of actors who were less
active than their position made possible. This is particularly so for the
representatives of Siemens and the ITT, Sorgenfrei and Bierle. As such, the
network analysis has revealed some additional features of the Team of
Specialists that have not been evident in the archival material and interviews
that formed the basis of the rest of the chapter. However, more importantly,
it has strengthened the impression that the main players in the Team of
Specialists were participants that shared a similar technical background in
computer science, in particular Bourgonjon and Rekdal.

Some conclusions
In this chapter I have described how the Team of Specialists traversed a
number of hurdles towards a first sketch of a CCITT-recommended
programming language. Professional differences and strategic manoeuvring
were overcome through technical diplomacy, as a set of problems and
difficulties were managed. This was more due to an alignment of the
participants’ ideas on programming language design than processes in the
parent organisations of the participants. I have argued that many of these
realignments were due to a shared understanding, a common development
virtue if you like, that ran prior to the work in the Team of Specialists.
However, a number of the finer ingredients in the diplomatic process were
bound up in compromises made in a pragmatic fashion.

 104

The first set of problems that faced the Team of Specialists was related to
whether the future programming language should be an amalgam of existing
languages used in telecommunications, or whether the group should try to
build on the cutting edge of programming language design. Throughout the
“period of chaos” much of the diplomatic negotiations stemmed from the
strategic manoeuvring of administrations and manufacturers that had already
invested in programming language technologies, wishing to regain
compatibility with that and the future recommendation. Later on, this was
replaced by more focused technical decision-making, which gradually
bypassed the arguments for solutions grounded in the wider technical
community. However, existing languages were not only technologies that
held industrial ramifications, but were also markers of different professional
identities. One of the most pronounced arguments within the team was the
combined issue of the compatibility problem and the professional identity
markers, as the struggle between the PL/1-supporting Japanese
representatives and the Algol-oriented Europeans illustrated. Hurdle number
three was related to the special needs in a telecommunication programming
language, like how to handle parallelism and the relationship to SDL. In this
chapter, I have highlighted the process and structure of the technical
diplomacy that went on within the Team of Specialists, and how each of
these three difficulties was managed

First of all, the period from 1975 to 1977 was about how a number of
contestations were brought under control through a number of
orchestrations: First, by aligning the work of Remi Bourgonjon at Philips
and Kristen Rekdal at Runit, the Team of Specialists was able to produce a
proposal for a recommendation on how a CCITT high-level programming
language could look. Secondly, by engaging the full team in the practical
work of writing a description and a manual for the language, the work
became more practically oriented and consequently more consensus-based.

The structural analysis of the technical diplomacy in the Team of
Specialists revealed additional aspects of the project. Important and visible
participants in the Team, the actors habituating central positions in the
network, were representatives of manufacturing firms.
The influence analysis revealed that a number of these central participants
were, however, more observers than contributors. They were centrally
positioned, but showed little willingness to influence.

This underlines the impression of the Team of Specialists as untypical
of the CCITT. It was not dominated by representatives of administrations,
even though they had been instrumental in its formation. The most effective
participants were those who formed alliances based on a shared outlook on
how programming should be done, and consequently, how a programming
language should promote such virtuous programming. These alliances were,
however, not only internal to the Team, but also pulled together external

 105

participants, like Bourgonjon’s contact with researchers in Philips’ Belgian
research laboratory MBLE and the support of the CCITT hierarchy.

Knowledge creation and knowledge adaptation at the crossroads of
computer science and electrical engineering, within a bureaucratic
organisation in transition, were never straightforward. Technical
considerations on flexibility, security, efficiency and portability were all part
of the design process. Some of them were postponed for later consideration,
like the integration of the programming language and the description
language (SDL), the creation of concepts allowing for concurrency and the
availability of low-level constructs for hardware level access. All in all,
during 1976 and early 1977, compromise and postponements led the project
towards a partial fulfilment and the subsequent dissolution of the Team of
Specialists.

During those two years, the Team of Specialists drew support for their
work from outside resources, like non-committed firms and international
organisations. In the summer of 1977, the Team of Specialists was to be
dismantled. A new organisational entity, the so-called Implementers Forum,
was about to embark on perhaps an even more difficult task than designing
and agreeing on a high-level programming language: they were about to
make it work in practice. This is the subject of the coming chapter.

 106

 107

4. Compromise and complexity: the
implementation of a programming language

Starting in the summer of 1977 the programming language designed by the
Team of Specialists was put through the hoops in extensive field trials. It
was finally approved by the CCITT Plenary Assembly in November 1980 as
an official recommendation.1 During this period, new features were added to
the language, existing ones were refined and the language was implemented
through the construction of a set of compilers. Implementation and
programming language design were combined and allowed to feed back into
each other, as the participants in the CCITT made the language ready for
programming duty. Throughout this period the language designers of Chill
met with prospective users of the programming language in the
Implementors’ Forum, which was the continuation of the Team of
Specialists.2

The Forum was characterised by collaboration, conflict, compromise
and complexity. The participants in the Forum were able to collaborate on
practical projects beyond the common language they were set to design, in
particular on the construction of compilers. Still, there were heated debates
and conflicts, in particular on unresolved programming language design
issues that were bound up with conflicting development virtues and ideals.
The way out of the first set of deadlocks was found in compromises,
typically by aligning different actors through mutual contributions.
However, some of the compromise solutions also added to the complexity of
the programming language, duplicating features and constructs, so much that
a leading computer scientist declared that Chill was “by far the most
complex, uneven and compromise-ridden programming language the world
has yet seen”, when he first encountered it.3 Such complexity added to the
difficulty of implementing the language in any effective fashion, although
several parties succeeded in developing compilers for Chill by the end of the
period of the Implementors’ Forum. Most implementors dealt with this
duplication and complexity by implementing only those subsets of Chill that
were suitable for the compilers’ intended application.

1 The language definition was published as CCITT High Level Language (CHILL),
CCITT Recommendation Z.200 (1980). On the ratification, see Minutes of the
Plenary Meeting, 10 – 21, November 1980, ITUA.
2 The progress reports from the Implementors’ Forum are attached to COM XI-No.
270-E, Period 1977-1980, CCITT, ITUA.
3 Dines Bjørner and Peter L. Haff, “A formal ‘denotational’ semantics definition of
CHILL”, Technical report ID888, September 14, 1979, ix, box “NTT 72-2/NT-P
1979 – 1980”, KRC.

 108

Despite the complexity, compromises and conflicts, the period also fostered
a small community, and in the end, a language specification worthy of
publication. What had been a small project partly embedded in a community
of technological practitioners interested in programming telecommunication
systems soon became a community on its own, the Chill community if you
like. Considering the infighting, the tangles and the tensions that had marred
the Team of Specialists and the Implementors’ Forum, this was no small
achievement. After the last meeting of the Implementors’ Forum in
Melbourne, in late September 1979, Rekdal noted they had “achieved what
very few believed was possible five years ago”, concluding with: “Chill is
finished!” 4 The result was, he claimed, “a language with several novel
features, and it is a very comprehensive language”.5

This chapter tracks the last years of the Chill project before its
ratification as an official recommendation by the CCITT in 1980.6 It focuses
on language design decisions, implementation issues, how the field trials
were organised and how feedback was allowed into the language design
process. I also analyse how the Chill community was developed and
extended in the period from around the summer of 1977 until the
programming language was published as a standard in 1980. Throughout the
chapter, I investigate how community-level norms and organisational level
strategies influenced the fate of Chill up until its final ratification.

Design, implementation and feedbacks
Before we look into the activities of the Implementors’ Forum in more
detail, it can be useful to recapitulate the distinction between language
design, implementations and systems programming. Programming language
design is commonly understood as the efforts of putting together the
definition of the lexical, syntactical and semantic elements of a language,
hopefully fulfilling some sort of design criteria. The majority of the
programming language design of Chill was done within the Team of
Specialists. Here, the key features of the language, such as key words,
concepts and capabilities, were decided. In particular, the design goals that

4 Kristen Rekdal, Travel report, Melbourne 24 – 29 September 1976, CCITT –
Implementors Forum SWP XI/3-2, WP/3 Melbourne, Sept. 1979, box
“Implementors Forum 9. møte Melbourne, Sept. 1979, Serie O”, KRC. My
translation.
5 Kristen Rekdal, "The Nordic CHILL Project", in Runit Report (Trondheim: Runit,
1980), 1.
6 The account is again based on mainly two collection of sources, the ITU archive
(ITUA) and the Kristen Rekdal Collection (KRC). Some documents not available in
the KRC were complemented by the private collection of Remi Bourgonjon (hereby
cited as RBC), which holds a complete set of official documents for the
Implementors’ Forum period.

 109

made their way into the language already in the 1977 specification from the
Team of Specialists were concerned with enhancing reliability by making
the language constructs possible to check when compiling the code, placing
severe restrictions on the intermixing of data types (so called strong typing,
again to ensure reliability), to permit the generation of efficient machine
code by adopting features from so-called machine-oriented higher level
languages and still be flexible enough to cover a wide range of applications
and different types of hardware.

However, the Forum would have to sort out some of the
inconsistencies in the draft language sketched out by the Team of
Specialists, as well as adding new features necessary for making the
language viable for the telecommunications industry. As such, the Forum
was an extended effort in language design. The ultimate result of the
programming language design activities was the final language specification
– which was published by the CCITT in 1980 as an official
recommendation.7 A language description is, however, nothing but text. To
be able to use the programming language, one would need to implement the
language, which was the main concern of the Forum.

Programming language implementation is most commonly
understood as the creation of compilers. A compiler is a program that
translates code written by programmers into code understandable to the
targeted computers. As described in chapter two, computer hardware does
not interpret code written in a programming language directly, as hardware
deals with sequences of particular instructions in machine code. Therefore,
the code written in a high-level programming language has to be translated
into machine code before it can be processed by a computer. This translation
can be automated and forms a program in itself. Such a translation program
is called a compiler, and the text to be translated is called source code. Such
a program is, in itself, characterised by three languages: its source language,
being the high-level programming language used by the programmer, its
object language, which is given by the target hardware platform, and the
language in which it is written, being the implementation language.

In the 1950s and 1960s, compilers figured among the largest
programming projects of the time, involving large investments and
numerous man-years, and also attracted much research and development.8 In
the late 1970s, the situation was somewhat different. According to the
important textbook on the subject, by Alfred V. Aho and Jeffrey D. Ullman
from 1977, the effort needed to construct a compiler was much less than

7 CCITT High Level Language (CHILL), CCITT Recommendation Z.200 (1980).
8 A reliable source on both the history and technical details of compilers is Niklaus
Wirth, Compiler construction, International computer science series (Harlow,
England ; Reading, Mass.: Addison-Wesley Pub. Co., 1996).

 110

before: “[...] it is not unreasonable to expect a fairly substantial compiler to
be implemented as a student project in a one-semester compiler design
course.” 9 One major reason for this was that the tasks involved in
compilation had been thoroughly understood and that a shared understanding
of the processes of compilation was available.

This typically involved a number of tasks that were common to any
compiler, regardless of the source language or the object language. The
process of compiling source code involved passing the code through several
phases of lexical and syntactical analyses, optimisation and finally code
generation. A figure illustrating the steps involved in the translation of code
normally involved in a compiler as of the second half of the 1970s is
produced below.

9 Alfred V. Aho and Jeffrey D. Ullman, Principles of compiler design, Addison-
Wesley series in computer science and information processing (Reading, Mass.:
Addison-Wesley Pub. Co., 1977), 1.

 111

Figure 4.1 Phases of compilation

Regardless of the common aspects of all compiler design, to implement a
programming language that was still in the making was a more complex
undertaking, and more importantly, the quality of these early compilers had
to be well beyond what was achievable for a single student in a one-semester
course.

 112

Kristen Rekdal, one of the most central participants in the Team of
Specialists and the Implementors’ Forum, described the importance of
implementations and compiler construction in the following way:

The practical usefulness of a programming language can only be demonstrated
by using it for practical programming. Furthermore a language can only be
evaluated together with its compiler. A good language can be rendered useless
by a poor compiler, and a good compiler can compensate for language defects.10

In the end, however, the compiler is just a tool made for the programmers
developing systems and applications. In programming, these two things are
normally understood as quite separate undertakings. Application
programming is the creation of software that provides services to a user
while systems programming provides services to hardware. Considering
Chill, it would be fair to assume the development of programs intended to
solve a specific telecommunication problem, like a routing application or a
billing procedure and so forth, were more similar to systems programming
than applications programming, although the terminology was often mixed
together. In this early phase, the availability of implementations was non-
existent, so to start using the programming language an implementation
project would often be a necessary precondition to take up actual systems or
application programming projects.

Although the creation of a programming language inevitably moves
along a path from design towards systems or application programming, it is
not altogether linear. In reality, the boundaries between the periods were a
lot less distinct and knowledge from implementation efforts and application
programming efforts was allowed to feed back into revisions of the language
design throughout its existence. The period of the Implementors’ Forum
makes this very clear, as the Forum would, at the same time, be active in
compilation design and make numerous language revisions. Inevitably it was
also a considerably larger group. While the members of the Team of
Specialists had been restricted to a selected few, the Forum included a total
of 70 different participants over the whole period.11 The level of activity
grew just as much, an indication being the 174 written contributions made to
the Forum.12 The Forum held nine lengthy meetings during a period of 24
months, clocking in 44 days of discussions, reviews and decision-making in
various locations around the world. The 70 different delegates that
participated in the Forum came from more than 25 different organisations,

10 Rekdal, "The Nordic CHILL Project", 1.
11 The number includes delegates but not observers.
12 Contributed documents were listed in the nine official progress reports that the
Implementors’ Forum made to the official CCITT Working Party (XI/3-2). The total
number includes all types of working documents.

 113

spanning several telecommunication administrations, research organisations
and industrial firms, and representing 16 different countries. In comparison
to the period from 1975 to 1977, the Forum was certainly a lot more
comprehensive and ambitious, both in terms of the number of participants
and the activity level. The amount of work done on Chill-related projects in
this period can be characterised as substantial and widespread. I have
summarised some of the details about the Implementors’ Forum in the table
below.

Meeting Dates Place Participants Documents

1 12 – 16 September 1977 London 21 12

2 22 – 28 November 1977 Geneva 18 26

3 13 – 17 February 1978 The Hague 19 23

4 5 – 8 June 1978 Geneva 22 24

5 18 – 22 September 1978 Tokyo 18 12

6 12 – 15 December 1978 London 26 24

7 19 -22 February 1979 Geneva 36 18

8 14 – 18 May 1979 Florence 32 23

9 24 – 28 September 1979 Melbourne 31 12

Table 4.1 Meetings in the Implementors' Forum, with number of participants
and number of contributed documents.13

The group was organised outside the formal CCITT hierarchy, but affiliated
with the work of its parent Study Group within the CCITT. In parallel to the
cooperation in the Implementors’ Forum, several participants ran Chill-
projects on the side, like the joint-Nordic compiler project and a cooperative
effort between Philips and the Dutch administration, racking up the number
of collaborations and the number of participants in Chill-related activities. In
the following, I will look a bit more into the structure of the Implementors’
Forum through the concepts of social network analysis, before I analyse how
compilation construction and language design was intertwined in the period
of the Forum.

Implementing structure
The actors that had been active in the Team of Specialists dominated the
Implementors’ Forum. Remi Bourgonjon of Philips continued as the
convenor of the group, with Kristen Rekdal of Runit working as the vice-

13 Information from the official reports written by Remi Bourgonjon, most of which
are available in KRC, except for reports on meetings number one and two, where the
reports are only found in the RBC.

 114

convenor. A number of manufacturing firms were present throughout the
period, some new to the group, and others with experience from the Team of
Specialists. The ITT, L. M. Ericsson, Western Electric, Siemens, Philips,
Hasler, AT&T, as well as a couple of Japanese manufacturing firms were
active participants.14 Another group attending the meetings were researchers
and scientists. One example was Dines Bjørner, a computer scientist from
the Technical University of Denmark and acting as a specialist on behalf of
the Danish telecommunication authority. Other participants with a similar
background came from the Italian research organisation CSELT. Kristen
Rekdal had held a similar position since the work started in the Team of
Specialists, working on behalf of the Nordic telecommunication
administrations, but based at the computer centre of the Norwegian Institute
of Technology of Trondheim, Norway. The number of passive observers
grew, including a number of sporadic attendees from the telecommunication
administrations of Brazil, Hungary and the GDR, making up a fairly
inconsistent and heterogeneous group. How was this group different to the
Team of Specialists?

Following the social network analysis in chapter three, it is possible to
review the structure of the Forum through the analysis of joint appearances
and document contributions, as well as comparing some descriptive statistics
of the Team of Specialists with the Implementors’ Forum.

 Participants Meetings Ties Density
ToS 14 8 314 0.765
IF 70 9 4636 0.319

Table 4.2: A comparison of network measures of the Team of Specialists and
the Implementors’ Forum.15

Whereas the Team was small and dense, in terms of frequencies as well as
the density measures, the Forum was dispersed and much larger. 16 This
structure is mirrored in the individual measures of centrality, which gives an
indication of who were “in the thick of things”, both in terms of a position
where it could be possible to influence the network through affiliations and

14 Study Group XI, Sub working party XI/3-2,“Progress report on the ninth meeting,
Melbourne, 24 – 24 September 1979,” Melbourne, 1-11 October 1979, Temporary
Document No. 201, box “Implementors Forum 9. møte Melbourne, Sept. 1979,
Serie O”, KRC.
15 The calculations follow the conventions established in chapter three.
16 The density measure is highly sensitive of the size of the network. See Noah E.
Friedkin, "The development of structure in random networks: an analysis of the
effects of increasing network density on five measures of structure", Social
Networks 3, no. 1 (1981).

 115

in actual documented contributions.17 A larger group of participants held
high scores in terms of centrality in the Implementors’ Forum, but relatively,
the core group was smaller than in the Team of Specialists, due to the large
group of participants attending only a few meetings of the Forum. In terms
of organisational affiliations, the core members of the Forum, both in terms
of participation and influence-seeking activities, were largely from
manufacturing firms, with a few important exceptions. In particular, the
representative of the Dutch telecommunication administration, R. W. Meijer,
was an active member of the Forum.

The figures also highlight the general impression of the continuity
between the Implementors’ Forum and the participants in the Team of
Specialists. The individuals listed in the figure participated in three meetings
or more, together with the participants with which they are linked. We
recognise the centrality of former Team of Specialists members Bourgonjon,
Rekdal, Sorgenfrei and Clements. Some new individuals, such as the Italians
Martucci and Benevolo, the Dutch telecommunication administration
representative Meijer and the important participants Bjørner and Jacobson
also figure in the social network analysis illustrations. The main group of
new participants were European, coming from both manufacturers and
administrations. In the Italian case, Benevolo represented the operator-
owned research establishment CSELT while Martucci was from the
manufacturing company SIT-Siemens, soon to be renamed Italtel.18 Below,
figures and tables that underline these general points are presented. The
displays articulate the complexity of the Forum, while the tables make it
possible to compare some of the centrality measures used in the study of the
Team of Specialists. To recapitulate a bit, the measurements are focused on
different ways of measuring degree centrality, which is the number of nodes
to which a specific node is connected and indicate who were the most
centrally positioned and active members of the network that was the
Forum. 19 As discussed in the previous chapters at some length, all the
measures have a number of deficiencies, although the set of general degree
centrality, normalised scores and the tuned alpha-score were considered
useful to the task at hand. Now, the normalised degree centrality scores of

17 Freeman, "Centrality in social networks conceptual clarification".
18Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
432.
19 Other measures exist. Typically, closeness and betweenness centrality are
considered important. Closeness centrality is the inverse sum of shortest distances to
all other nodes from a focal node, measuring how quickly a participant could reach
others. Betweenness assesses how a node is able to channel the flow of a network as
it calculates the degree to which a node lies on the shortest path between two other
nodes. Both defined in Freeman, "Centrality in social networks conceptual
clarification".

 116

the joint appearance network are particularly interesting, as they are more
directly comparable to the numbers put forward in the previous chapter.20 As
discussed before, it is not viable to calculate a similar score on the
willingness to influence scores, because of its inherent weighted nature.

20 This follows Opsahl, Agneessens, and Skvoretz, "Node centrality in weighted
networks: Generalizing degree and shortest paths". The joint measurement includes
a tuning parameter, α, to control for the relative importance of the number of ties
and the weight of the ties. The α parameter is set to 1.5, which weights tie weights as
the most important.

11
7

F

ig
u

re
 4

.2
 F

re
q

u
en

t
p

ar
ti

ci
p

an
ts

 in
 t

h
e

Im
p

le
m

en
to

rs
’

F
or

u
m

.21

21

 T
he

 i
nd

iv
id

ua
ls

 l
is

te
d

in
 t

he
 f

ig
ur

e
pa

rt
ic

ip
at

ed
 t

og
et

he
r

w
it

h
th

e
in

di
vi

du
al

s
to

 w
hi

ch
 t

he
y

ar
e

lin
ke

d
in

 a
t

le
as

t
th

re
e

m
ee

ti
ng

s.
 T

he

co
m

pl
et

e
ne

tw
or

k
co

ns
is

ts
 o

f
70

 in
di

vi
du

al
s.

 T
he

 w
id

th
 o

f
th

e
lin

ks
 il

lu
st

ra
te

s
th

e
nu

m
be

r
of

 m
ee

tin
gs

 in
 c

om
m

on
 to

 th
e

pa
rt

ic
ip

an
ts

. D
ar

k
gr

ey
 c

ir
cl

es
 d

en
ot

e
pa

rt
ic

ip
an

ts
 f

ro
m

 t
el

ec
om

m
un

ic
at

io
n

ad
m

in
is

tr
at

io
ns

,
w

hi
le

 w
hi

te
 t

ri
an

gl
es

 a
re

 r
ep

re
se

nt
at

iv
es

 o
f

re
se

ar
ch

 i
ns

tit
ut

io
ns

or

 o
th

er
 a

ca
de

m
ic

 i
ns

ti
tu

ti
on

s.
 L

ig
ht

 g
re

y
sq

ua
re

s
de

no
te

 m
an

uf
ac

tu
ri

ng
 f

ir
m

s.
 A

 d
ia

m
on

d
in

di
ca

te
s

an
 u

nc
le

ar
 o

r
un

id
en

ti
fi

ed
 a

ff
ili

at
io

n
st

at
us

. F
ig

ur
e

cr
ea

te
d

us
in

g
N

et
dr

aw
. S

ee
 B

or
ga

tti
, N

et
D

ra
w

: G
ra

ph
 V

is
ua

liz
at

io
n

S
of

tw
ar

e.

A.
 R

oc
ks

tr
öm

C
. B

re
eu

s

C.
 G

. D
en

en
be

rg
C
. L

an
gl

oi
s

D.
 A

.
Se

da
r

D.
 B

jø
rn

er

D.
 C

ha
pp

el

D.
 C

om
be

lic

E.
 B

en
ev

ol
o

G
. E

rc
ol

an
i

H.
 D

.
Ro

ve
ng

o

H.
 R

. S
or

ge
nf

re
i

I.
Ja

co
bs

on

J.
 A

m
in

of
f

J.
 D

ev
oi

l

J.
 S

jö
di

n

K.
 F

. C
le

m
en

ts

K.
 M

ar
uy

am
a

K.
 R

ek
da

l

P.
 W

. D
el

l

R.
 H

. B
ou

rg
on

jo
n

R
. M

ar
tu

cc
i

R
. R

ee
d

R.
 W

. M
ei

je
r

T
. B

in
ge

rf
or

s

T
. D

en
vi

r

T.
 K

oi
zu

m
i

11
8

F

ig
u

re
 4

.3
 P

ar
ti

ci
p

an
ts

 a
n

d
 m

ee
ti

n
gs

 in
 t

h
e

Im
p

le
m

en
to

rs
’

F
or

u
m

.22

22

 T
he

 w
id

th
 o

f
th

e
lin

ks
 i

llu
st

ra
te

s
th

e
nu

m
be

r
of

 w
ri

tte
n

co
nt

ri
bu

ti
on

s
m

ad
e

by
 a

n
in

di
vi

du
al

 w
ho

 a
ls

o
pa

rt
ic

ip
at

ed
 a

t
th

e
m

ee
tin

g.
 D

ar
k

gr
ey

ci

rc
le

s
ar

e
ad

m
in

is
tr

at
io

n
pa

rt
ic

ip
an

ts
;

w
hi

te

tr
ia

ng
le

s
ar

e
re

se
ar

ch

in
st

itu
tio

n
pa

rt
ic

ip
an

ts

an
d

lig
ht

gr

ey

sq
ua

re
s

ar
e

te
le

co
m

m
un

ic
at

io
n

ad
m

in
is

tr
at

io
n

de
le

ga
te

s.
 T

he
 p

os
iti

on
 i

n
th

e
di

ag
ra

m
 i

llu
st

ra
te

s
th

e
m

ea
su

re
d

ce
nt

ra
lit

y
of

 t
he

 p
ar

tic
ip

an
t

an
d

th
e

m
ee

tin
g,

 b
y

th
e

sp
ri

ng
 e

m
be

dd
in

g
te

ch
ni

qu
e.

 F
ig

ur
e

cr
ea

te
d

us
in

g
N

et
dr

aw
. S

ee
 I

bi
d.

J.
 A

m
in

of
f

G.
 B

ar
be

ry
e

O
.
de

 B
ac

ht
in

K.
 K

. B
as

u

E.
 B

en
ev

ol
o

T.
 B

in
ge

rf
or

s

D.
 B

jø
rn

er

R.
 H

.
Bo

ur
go

nj
on

P.
 B

ra
nq

ua
rt

C.
 B

re
eu

s

E.
 B

rig
st

ed

K.
 B

ry
n

E.
 C

am
ar

ot
to

D
. C

ha
pp

el

K.
 F

. C
le

m
en

ts

D.
 C

oh
en

D.
 C

om
be

lic

M
.
Ci

cc
ot

ti

A.
 C

ul
le

n

P.
 W

.
De

ll

C
. G

.
De

ne
nb

er
g

T.
 D

en
vi

r

J.
 D

ev
oi

l

G
. E

rc
ol

an
i

W
. F

er
re

au

B.
 F

or
ss

V.
 G

ia
rr

at
an

a

K.
 H

ar
w

oo
d

R.
 H

ay
lo

ck

D.
 J

ac
ob

I.
 J

ac
ob

so
n

T
. K

an
da

H
. K

at
ze

nd
er

L.
 K

ot
t

T
. K

oi
zu

m
i

H
. K

va
rn

eb
y

C.
 L

an
gl

oi
s

R.
 L

au
fe

nb
ur

ge
r

G.
 L

ou
is

N
. A

. M
at

re
llo

tto

R
. M

ar
tu

cc
i

K.
 M

ar
uy

am
a

R.
 W

. M
ei

je
r

G.
 M

itc
he

ll

P.
 M

ol
na

r

J.
 M

ol
on

ey

H
. N

ag
at

a

P.
 N

eu
m

an
n

J.
 D

.
Ni

es
se

n

J.
 R

. R
as

m
us

se
n

R
. R

ee
d

K.
 R

ek
da

l

D.
 R

itc
hi

e

B.
 R

ob
in

et

G.
 R

oc
hl

in

A
. R

oc
ks

tr
öm

H.
 D

.
Ro

ve
ng

o

N
. M

. R
ot

ho
n

G.
 R

ou
ca

iro
l

T.
 S

at
o

D
. A

.
Se

da
r

J.
 S

jö
di

n

J.
 R

. W
.
Sm

ith
P.

 S
m

ithH.
 R

. S
or

ge
nf

re
i

S
. S

uz
uk

i

D
. T

an
n

M
.
Yo

sh
io

ka

H.
 V

an
oo

te
gh

em

R
. W

ir
th

M
ee

tin
g

1
M

ee
tin

g
2

M
ee

tin
g

3

M
ee

tin
g

4

M
ee

tin
g

5

M
ee

tin
g

6
M

ee
tin

g
7

 M
ee

tin
g

8

M
ee

tin
g

9

 119

 Co-appearance
Name Organization Degree Degree (Alpha) Degree (norm.)
R. W. Meijer PTT Netherlands 192 320.28 1.000
K. Rekdal RUNIT 192 320.28 1.000
R. Martucci S. I. T Siemens 192 320.28 1.000
C. Breeus Philips (MBLE) 176 285.25 0.889
H. R. Sorgenfrei GEC 174 280.41 0.889
R. H. Bourgonjon Philips 173 275.94 0.889
K. F. Clements UKPO 165 271.37 0.889
E. Benevolo CSELT 159 248.68 0.778
D. Combelic ITT 158 246.34 0.778
I. Jacobson LME 142 220.30 0.778
R. Reed GEC 143 218.95 0.667
D. Bjørner Tech.Uni. Denmark 141 210.94 0.667
T. Denvir ITT 108 149.98 0.444
C. G. Denenberg ITT 84 136.10 0.556
P. W. Dell UKPO 86 132.92 0.556

Table 4.3: Top 15 by joint appearance, sorted by the parameterised alpha-
measure.

Comparing the normalised degree centrality scores with the ones of the
previous study period, it is evident that in real numbers, the well connected
were a much larger group in the Team. 16 members of the Team scored
above 0,5 on normalised degree centrality, while six comparable members
were active in the period of the Team. Proportionally, 16 out of a total
number of 70 delegates, was, however, a far smaller share.

 120

 Influence
Name Organisation Degree Alpha
C. Breeus Philips (MBLE) 891 3249.22
R. H. Bourgonjon Philips 838 2941.79
R. W. Meijer PTT Netherlands 697 2215.26
K. Rekdal RUNIT 521 1431.63
C. G. Denenberg ITT 368 1247.95
R. Reed GEC 423 1113.90
D. Combelic ITT 361 850.75
H. R. Sorgenfrei GEC 335 749.08
K. F. Clements UKPO 324 746.71
I. Jacobson LME 296 663.00
D. Bjøner Tech. Univ. Denmark 281 593.46
G. Louis Philips (MBLE) 251 592.79
K. Maruyama NTT 209 581.48
R. Martucci S. I. T Siemens 247 467.33
J. R. W. Smith GEC 170 380.13

Table 4.4: Top 15 by willingness to influence, sorted by parameterised alpha-
score.

When analysing the scores that measure document contributions, the team of
Camille Breeus and Remi Bourgonjon, both from Philips (MBLE in the case
of Breeus) emerges as the most active in the Forum. All in all, the measures
indicate a very strong Dutch group, as the administration representative
Meijer emerges in the top three in both tables, while Breeus and Bourgonjon
score particularly highly when considering document contributions.

In the previous period, the working documents were typically from
Philips, Runit and the NTT (with some notable exceptions). Working
documents issued in the Forum included contributions from 20 different
organisations, ranging from the Italian research institute CSELT to the
Finnish telecommunication administration (the full listings are available in
the appendix). All in all, the number of representatives of manufacturing
firms was still the largest, just as in the Team of Specialists, but with a larger
number of researchers with ties to administrations attending and influencing
the direction of the work.23

Co-authored documents indicated an alliance between the participants
in the forum. These alliances were important in the Forum, more so than in
the Team of Specialists. 17 of 164 working documents were co-authored by
delegates from different organisations. This type of contribution strategy was
used by the veteran players, such as the participants from the Nordic
telecommunication administrations, Philips, the Dutch administration and
Runit. The main actors in the Forum in terms of activity were the
representatives of Philips, who contributed to 34 working documents, either

23 For the complete listing, see Appendix 2.

 121

as sole authors or in collaboration with other contributors. Remi Bourgonjon
also issued 16 documents as the convenor of the group.

The contributed documents can be grouped into three categories. One
type dealt with inconsistencies of the language proposal and correcting
errors, large and small. Another type was concerned with refinements of the
language, often dealing with issues that had been postponed within the Team
of Specialists or which they had left in a fairly preliminary state. Together,
these two groups of documents were concerned with programming language
design. A third group of documents were reports of various implementation
projects, often reporting on various compilation design techniques.

Most documents concerning new features, refinements and correction
of errors were submitted by organisations that had been active in the Team
of Specialists. The latter group of documents, reports of progress in ongoing
implementation projects, were issued by various participants. All in all, most
contributions were issued by organisations that had been involved in the
project from its start.

The idea behind a forum of implementers was to let practical
experience feed back in to the language proposal. Practical experience with
the programming language was mainly gained through the creation of
compilers. The Implementors’ Forum was extended by of a set of local
initiatives and networks concerned with specific compiler construction
projects. The Forum functioned as a central hub where information about the
progress of local projects was reported, commented on and dealt with. There
was much local variation in terms of host machines, target machines, level of
commitment, competence, and investments. This variation was important for
the development of the programming language itself, since a lot of this
feedback pointed out ambiguities and errors in the language. Much activity
in the Forum was dedicated to the issues that were raised when creating the
compilers, which is the subject of the next few pages.

Compiling Chill
The development of compilers, programs capable of translating code written
in Chill into machine code understood by various telecommunication
switches and computers, was a large part of what went on in the
Implementors’ Forum. 11 different implementation projects were embarked
upon during the four-year period of the Forum, although not every one was
carried out or could be described as successful.24 Some of the projects were
very limited in scope, producing nothing but a compiler for a small subset of
the programming language to a specific hardware platform. Others were
large and ambitious as they tried to design flexible compilers that could

24 An overview is found in Chill Bulletin 1, no. 1 (1981), 39. This gives a status as of
August 1981, a year after the official endorsement of Chill by the CCITT.

 122

accommodate different hardware targets and host machines. Six projects
were started at the outset of the Implementors’ Forum. Siemens, ITT,
Philips, the Nordic telecommunication administration, the Dutch
administration and the NTT all started on constructing new compilers
immediately. Others embarked on similar undertakings as the Forum period
progressed. An overview of the compiler projects, large and small, is given
in the table below. The compilers listed were either finished or under
development as of August 1981. Projects that never got off the planning
stage have been left out. Host computer implies the computer that ran the
compiler and the target computer implies the computer or processor type for
which the compiled code was intended. In this period of trials, the target
computer did not always imply a computer platform used in switching
products, but could be a general computer architecture, like Intel’s
revolutionary 8086 system introduced in 1978, which was the target of four
of the projects.25

25 Intel’s 8086 processor holds a special place in computer history, as it eventually
resulted in 30 years of successful chip designs that have allowed Intel to dominate
microcomputers, like the 386, 486 and Pentium processors. On the history of Intel’s
8086, see Stanley Mazor, "Intel's 8086", IEEE Annals of the History of Computing
32, no. 1 (2010).

 123

Participating organsations Host computer Target computer
Runit, The Nordic and British
telecommunication
administrations

Nord-100 APZ-210,
Intel 8086

NTT DC-10 DC-10
ITT IBM 370 and IBM 3033 Intel 8086
Siemens Siemens 7000, IBM 370 S7000, IBM 370

SSP103, SSP303
Intel 8086

CSELT, SIP, Italtel PDP 11/VAX PDP11/VAX, PDP11/MIC-
20

Technical University of Denmark
and the Danish
telecommunication
administration

VAX-11 VAX-11

CNET (French PTT) IRIS 80 Unknown
Philips DEC-20 TCP 36, TCP 16/Z 8000
GTE IBM 3033 Intel 8086
Dutch PTT DEC-10, DEC-20 PDP-11
British Telecom ICL 2900 GEC Mark II BL

Table 4.5: Implementation projects started in the period of the CCITT
Implementors’ Forum.26

How extensive were these projects? Economic details about the extent of
investments in the implementation projects in terms of man-years or real
sums are available only through sporadic evidence and casual reports of such
to the Implementors’ Forum. We know, for example, that ITT invested about
five staff-years in their initial compiler project.27 Other estimations indicated
that Siemens, which in conjunction with the development of a Chill compiler
also developed high-level debugging tools, had devoted in the region of 13
to 20 man-years to their early implementation project. Philips, which had
been the most active manufacturing firm in the project overall, was supposed

26 Information primarily found in various reports circulated in the Implementors’
Forum, all documents found in KRC. On the compiler constructed by the Dutch
PTT, see R. W. Meijer and G. H. te Sligte, "Status report of CCITT HLL
implementation at the Dr Neher Laboratory of the Netherlands PTT", in Software
Engineering for Telecommunciation Switching Systems (Helsinki, Finland:
Institution of Electrical Engineers, 1978). On the Nordic Chill compiler, see Rekdal,
"The Nordic CHILL Project". On the NTT, see K. Maruyama, N. Sato, and K.
Konishi, "NTT CHILL implementation aspects and its application experience", in
Software Engineering for Telecommunciation Switching Systems (University of
Warwick, Coventry: Institution of Electrical Engineers, 1981). On the ITT compiler,
see C. G. Denenberg, "CHILL Implementation techniques", in Software Engineering
for Telecommunciation Switching Systems (Helsinki, Finland: Institution of
Electrical Engineers, 1978).
27 Denenberg, "CHILL Implementation techniques".

 124

to have financed about 10-12 man-years for their initial implementation
project.28 The Nordic compiler project was perhaps the most wide-ranging,
at least in terms of participating organisations. It involved the
telecommunication administrations of Denmark, Sweden, Finland and
Norway, and the Norwegian research establishment Runit. However, in
terms of manpower, this project actually amounted to little more than 5-6
man-years, being fairly modest when compared with the industry-sponsored
projects reviewed above. The Danish telecommunication administration also
sponsored another project. The more sporadic projects, like compiler
projects embarked upon in Italy and in France, were far more limited, even
though details are hard to come by.

Summing up, the implementation projects embarked upon in the
period of the Implementors’ Forum were characterised by a small number of
extensive and ambitious ventures, particularly led by firms that had already
committed themselves to the cause through their active participation in the
design phase, like the ITT, Siemens and Philips.

Nordic cooperation and competition
Many of the compiler projects were organised within one firm or body, but
one project tried to mimic the cooperative spirit of the Implementors’ Forum
at a regional level. The Nordic Compiler project was formally organised
within the framework of the Nordic telecommunication conference, which
initially was a biannually meeting of the administrations of the five Nordic
countries. From 1969, the conference had broadened its mandate and
organisation to a set of steering committees cooperating on technical
matters.29 Delegates of the telecommunication administrations in the Nordic
countries would meet in a special working group from 1977. They met nine
times until 1979 to follow up on questions regarding the Nordic compiler
project and general Chill matters. The group worked well into the 1980s with
further meetings and ultimately organising conferences about programming
telecommunication equipment.30 A considerable amount of information
circulated among the groups’ seven regular members and their parent

28 All these estimates are based on information found in Knut Bryn, ”Report of
meeting no. 7 in Trondheim”, 29/6 1979, NTT 77-2 Report no. 7, box “NTT 77-2
1977-1979”, KRC.
29 On the Nordic telecommunication cooperation, see Ari T. Manninen, "Elaboration
on NMT and GSM Standards" (Univeristy of Jyväskylä, 2003), 39-41.
30 See the proceedings of the NT-P Symposium on Languages and Methods for
Telecommunications Applications, Turku, Finland, 6 – 8 March 1984, box “L 0135,
Samarbeid,” series “Da, 1961 – 1996”, NTR.

 125

organisations.31 From 1978, the British Post Office joined the Nordic ranks
and participated in the compiler project, strengthening the impression of a
project oriented towards the administrations and the software knowledge
they needed.

The administrations were supposed to create code tests and examples
and carry out educational programs. This was something that was done with
varying degrees of commitment, as the administrations in Sweden and
Denmark were the most active ones, while the Norwegian administration
participated in the code trials only in a very limited sense. The Norwegian
research establishment Runit was responsible for the creation of the compiler
and assisting the administrations with test runs of their code examples.
However, the Nordic compiler project was not exclusively geared towards
the administrations. At first, Runit was to cooperate with L. M. Ericsson and
produce a compiler for their computer APZ-210, which was the computer
used in the hugely successful AXE switch.32

The APZ-210 had been developed by Ericsson and the Swedish
telecommunication administration. It was a “natural” target for the Nordic
cooperation on Chill compilers, because of its Nordic origin, its ties to both
Ericsson and the Swedish administration and because it was considered
technically very advanced. However, the target for the Nordic compiler
project changed as it soon became evident to the developers at Runit that the
APZ-210 was so peculiar and esoteric that very close cooperation with L.M.
Ericsson was needed. As technical information about the processor was hard
to come by and no test machine was regularly made available to the Nordic
group, the project never took off.

Initially, Runit’s compiler was hosted on computers produced by the
Norwegian computer manufacturer Norsk Data and the compiled code was
transferred by modem to be tested out on an APZ-210 in Sweden. The
participating administrations could submit their code examples for
compilation on Runit’s machine through a similar setup. However, the
transfer of the test code was cumbersome and unsatisfactory.33 Then Runit,
in accordance with their sponsoring administrations, changed their target to a

31 On 9 June 1980, an overview of all documents, publications and correspondence
that had been circulated among the members of the Nordic working group, since its
inception in 1975, was published. Here, 414 documents were listed. See Chill
dokumentoversikt, 9 June 1980, box “NTT 77-2 1979-1980”, KRC.
32 The AXE system was developed by a joint research and development company
called Ellemtel, owned by both L. M. Ericsson and Televerket, Sweden’s state-
owned PTT, from 1970. On the development of AXE, see Fridlund, "Switching
Relations and Trajectories: The Development Procurement of the Swedish AXE
Switching Technology"; Bengt-Arne Vedin, Teknisk revolt: Det svenska AXE-
systemets brokiga framga ̊ngshistoria (Stockholm: Atlantis, 1992).
33 Kristen Rekdal, interview with author, 28 November 2007, Oslo, Norway.

 126

general Intel 8086 architecture, which had been released on the market in
1978. This made the compiler project of interest to other manufacturers, like
the Swiss company Hasler and the Norwegian ITT subsidiary STK, which
both planned on using the Intel architecture in future switching equipment.
STK and Hasler started to invest in the project by issuing development
contracts to the Runit group, to which I will return in chapter seven. Here it
is sufficient to note that the Nordic compiler project appeared interesting and
viable to the industry already at its inception.

The two most active participants in the initial Nordic compiler project,
beside the contractor Runit, were the Swedish and the Danish
administrations. The latter sat up a local contact group that coordinated the
Danish participation in the Nordic project and carried out experiments at a
local exchange in Kolding.34 The feedback was not all positive or supportive.
In Denmark, there was a distinct reaction from some of the electrical
engineers involved in the project that the language was too far removed from
conventional telecommunication practices. Two members of the contact
group, the engineers Ove Færgmand and Jørn Johansen, both of the
telecommunication research establishment (TFL) run by the Danish
telecommunication authority, and the three Danish telecommunication
operators, all expressed views that the language was not satisfactory. Too
little effort, according to Færgmand and Johansen, had been spent on
practical problems like “reliability and error messages”.35 Such impressions
were not uncommon. Remi Bourgonjon has, in retrospect, referred to a
similar type of response in Philips:

I remember that, when the first CHILL language documents became available, a
manager at my company, experienced in telephony applications, was very
disappointed with the result. He had expected that a telephony language, as
CHILL was announced to be, would have statements such as “switch path from
A to B” and “give ringing tone”.36

These arguments give a good impression of the encounters between the
language designers and the potential users (typically electrical engineers),
and that they were not always straightforward. The expectations of what a
programming language should be were widely different. Typically, issues
like reliability and the possibility of portable code were high on the agenda
of many administration-employed electrical engineers.

34 Jens R. Rasmussen,”Mødereferat, 4 april 1978”, box ”NTT 77-2 (1977-1978)”,
KRC.
35 Ibid.
36 Remi Bourgonjon, “Programming languages, Environments and CHILL,” Chill
Bulletin 3, no. 1, (1983), 3 – 8.

 127

The Danish contact group not only mediated interests between the Runit
project and the Danish authorities. It also followed a separate Danish
compiler project started at the Technical University of Denmark. This
project was led by Dines Bjørner and was carried out by the Technical
University of Denmark and the Research Laboratory of Telecommunication.
From the outset, this project relied heavily on a formal and mathematically
oriented approach to compiler design. This was a natural to Bjørner, who
was a professor at the Technical University of Denmark, but had working
experience at the IBM Vienna Lab from 1973 to 1975. This laboratory
spearheaded the development of formal development methods and
definitions during the late 1960s and throughout the 1970s. In particular, the
years when Bjørner was actively involved with the work in Vienna have
been considered of great importance when it comes to the history of formal
programming language descriptions.37 For example, the very first formal
definition of programming language semantics was created for the
programming language PL/1 (which was created by the IBM) at the
laboratory in 1974.38 As such, it should be of no great surprise that Bjørner’s
project was strictly focused on formalism: he applied what was known as the
Vienna Development Method (VDM) to the Chill compiler project, a method
he had partly developed when based in Vienna. To Bjørner, the ideal was
that formal definitions of a programming language should presuppose the
compiler design:

We believe, seemingly contrary to all textbooks on compiler design that the very
initial stages of any compiler development must concentrate first on a precise
description of the source language and the target language, to be followed by a
precise description of the compiling algorithm.39

37 An overview is found in Kurt Walk, "Roots of Computing in Austria:
Contributions of the IBM Vienna Laboratory and Changes of Paradigms and
Priorities in Information Technology", in Human choice and computers: Issues of
Choice and QUality of Life in the Information Society, ed. Klaus Brunnstein and
Jacques Berleur (Dordrecht: Kluwer Academic Publishers, 2002).
38 D. Bjørner and C. B. Jones, The Vienna development method : the Meta-language,
Lecture notes in computer science 61 (Berlin ; New York: Springer-Verlag, 1978).
39 Dines Bjørner, "Programming Languages: Formal Development of Interprenters
& Compilers", in International Computing Symposium, ed. E. Morlet and D.
Ribbens (Liege, Belgium: North-Holland, 1977). Bjørner’s contribution was one of
a few invited papers to the conference, and was published alongside a paper by
Edgser Dijkstra entitled “Programming: From Craft to Scientific Discipline“, a title
that gives an idea of the issue at stake. See Edsger W. Dijkstra, "Programming:
From Craft to Scientific Discipline.", in International Computing Symposium, ed. E.
Morlet and D. Ribbens (Liege, Belgium: North-Holland Publishing Compnay,
1977).

 128

These precise descriptions should be mathematical in character, and should
make it possible to prove correctness, again according to Bjørner:

First, and independently of each other, one must have a precise, unquestionable,
terse and formal definition of the source (CHILL) and target (IBM series/1).
Formality is required so that one is able to prove properties of e.g. the CHILL
compiler (like correctness!), CHILL programs (like their correctness!), and the
runtime system on the IBM series/1 enabling single CHILL programs, consisting
of multiple co-ordinated processes, to be scheduled, to share logical resources, to
be allocated physical resources, and to communicate and be synchronized.40

Bjørner’s approach contrasted substantially with that of the other projects, by
not being geared towards the practical use of the finished compiler but
towards proving the applicability of the formal methodology to compiler
design more in general. The electrical engineers of the Danish
telecommunication administration would not encounter practical trials and a
focus on reliability and errors in the Danish compiler project. Instead, they
came up against semantic formalism. None of the other compiler projects
approached the issue of compiler design with the scrutiny of the team led by
Bjørner. Compiler designs more concerned with the performance of the
compiler and the effectiveness of the compiled code, rather than its
correctness, were typical. One such example was the efforts led by the ITT,
which is the subject of the next section.

Compilation in the ITT
One substantial compiler project developed by the ITT is worth noting. The
ITT project had a large geographical scope, because of the freestanding
company’s multinational character: in the 1970s ITT had operations in 10
countries (not including the United States) that were concerned with the
development and/or supply of telecommunication switching systems.41 The
ITT’s advanced technology centre in Connecticut had the mandate to create
a compiler that could take the considerable diverse needs of ITT’s
subsidiaries into account. The research centre had been set up in the mid-
1970s, with the main task of developing the System 12 switch. The compiler
development was part of the same project, even though the compiler was
intended to service multiple ITT installations, and as such had to cater for a
variety of target machines as well as being portable between host machines.
The particular needs of the ITT were communicated in the following manner
to the Implementors’ Forum:

40 Dines Bjørner, ”The ID/L/CHILL Project – An overview”, April 7 1978, SJ1,
KRC.
41 C. G. Denenberg, ”Chill Implementation techniques.” box “CCITT IF
Arbeidsdokumenter 6, Serie J”, KRC.

 129

Particular consideration was given to questions of compiler portability to
different host machines, code generation for different target machines, the mixed
usage of CHILL and ESPL-1 (The ITT HLL for SPC) in existing SPC system
developments, and compiler maintenance at various locations. These questions
of technology transfer influenced both the project objectives and the final
compiler design.42

While a formal approach like the one proposed by Bjørner could be
understood as a method towards portability, which also was needed in the
ITT, this project was much more conventional in its approach than that of
Bjørner’s team. The ITT focused on designing what was essentially a
modular compiler with what could be described as an interchangeable back-
end, which ITT hoped would cater for the different needs of the various
subsidiaries. The design decisions implied a compiler designed in a way that
should enhance its portability, as the interchangeable back-end would cater
for different hardware platforms, while retaining the Chill-specific front-
end.43 However, the in-house design of a compiler by the ITT’s advanced
technology centre did not produce an effective compiler. In around 1980, it
was decided that a more effective compiler, in terms of the object code it
produced, had to be developed. This time, the ITT hired an outside firm, the
Massachusetts Computer Associates, to develop the compiler that would
eventually produce the code for the System 12 switch.44 The lofty goals of
portability had previously got in the way of an effective code. According to
Tom Love, formerly of the ITT and directly involved in the decision to
contract for a new compiler outside the ITT walls, this piece of the system
was crucial, as he noted: “Had a fast enough and correct enough compiler
not been provided, the 1240 [the System 12] could not have succeeded.”45

Summing up, the above analysis of compiler projects reveals the
variety in organisational principles, commitment and technical approach to
the issue. In terms of organisational form, the Nordic compiler project was
special, as it consisted of a network between the research organisation Runit,
the Nordic telecommunication administrations and some interaction with the
manufacturer L.M. Ericsson. The more typical projects were the in-house
development at Siemens, Philips and the ITT. In terms of technical
approach, I have highlighted how the Danish project led by Dines Bjørner

42 Ibid.
43 On the development of compiler structure, see Aho and Ullman, Principles of
compiler design; Wirth, Compiler construction.
44 Here, I rely on email conversations with Tom Love (formerly of ITT), February
2011 and his short account of this in Tom Love, Object lessons : lessons learned in
object-oriented development projects, Advances in object technology 1 (New York:
SIGS Books, 1993), 81.
45 Tom Love, e-mail to author, 15 February 2011.

 130

mirrored a formal development virtue that characterised parts of European
computer science, while the others were more geared towards performance
aspects, on both host and target machines.

Problems that emerged locally when trying to design the compilers fed
back into the language design processes in the CCITT group. This was
particularly so in two areas: the implementation of language concepts of so-
called concurrent programming and the creation of a formal definition of the
programming language. The former was directly linked to programming
language design, while the latter only implicitly so. Concurrency had popped
up as a challenge in many of the implementation projects: ITT, for example,
would spend a considerable amount of time working on their implementation
of language constructs for process handling in their implementation
project.46 Formal descriptions were, in particular, related to the work done by
Dines Bjørner and his team. It was first and foremost understood as a part of
their take on compilation – and only implicitly associated with the design of
the programming language. The formal description was believed to make it
easier to construct compilers, and could also help in getting rid of
inconsistencies in the language itself by explicating relationships that were
difficult to come by through other descriptions.

In the following pages, I will account for both of these issues, which
dominated much of the activity in the Forum during this period. Both cases
highlight how decisions made in the Implementors’ Forum were a
continuation of the alliances between actors subscribing to what I have
called a relatively formal and mathematically oriented development virtue,
regardless of whether they had a background in computer science or the
emerging field of software engineering.

Concurrent processes and decisions
Concurrency drew a lot of interest from computer scientists from the mid-
1960s and onwards, and is again receiving renewed attention nowadays.47
Basically, concurrency means parallelism. At the machine level, operations
are sequential if they occur one after another in time. Operations are
concurrent if they overlap in time. At the software level, concurrency
involves the notations for expressing potential parallelism so that operations
may be executed in parallel at the machine level. Concurrent programming
languages are programming languages that use language constructs for

46 C. G. Denenberg, ”Chill Implementation techniques,” box “CCITT IF
Arbeidsdokumenter 6, Serie J”, KRC.
47 As a result of multi-core processors gaining in popularity in regular PCs,
concurrency has become a major issue in contemporary programming language
discussions. For a casual overview, see the interviews in Federico Biancuzzi and
Shane Warden, eds., Masterminds of Programming (Beijing: O'Reilly,2009).

 131

execution of computational operations in parallel, rather than in sequence.
These constructs may involve concepts such as multi-threading, support for
distributed computing, message passing and shared resources such as
memory.48 Furthermore, they include concepts for passing information from
one concurrent process to another. Such capabilities would be an obvious
boon to a language intended for usage in a real-time system such as
telecommunication switching, which almost per definition involves
parallelism, or to put another way, the real world phenomena with which the
telecommunication software was to engage was concurrent by nature. One
may think of the thousands of calls switched at the same time in such a
system to understand this.

The CCITT group started to consider concurrency seriously as they
entered the implementation phase. Such concepts had also been discussed in
the Team of Specialists, but were intentionally left for the Implementors’
Forum to work on. The overall state of concurrent programming language
design in the mid-1970s was an important reason for this.

According to pioneer Per Brinch Hansen, the first steps towards an
understanding of concurrent programming were taken in the mid-1960s, but
then developed fundamentally in the 1970s.49 In 1971, Tony Hoare claimed
that the search for language features that would allow for parallelism and
concurrency was “one of the major challenges to the invention, imagination
and intellect of computer scientists of the present day”.50 Concurrency had
been achieved by employing a number of different techniques since the
1960s, but was not understood in any solid theoretical way before the 1970s.
Several landmark articles had been published before the Team of Specialists
was drummed together in 1974, but all in all, the efforts made in the
Implementors’ Forum to create language concepts that would allow for
concurrency were made just shortly after the publication of important
research on the subject matter, and in some aspects in parallel to
fundamental theoretical research. The first concurrent programming
language was in fact only developed in 1975, by the aforementioned Dane,
Per Brinch Hansen. Furthermore, the first book on concurrent programming
was only issued in 1977, the very same year that the Chill designers started
discussing their interpretations of the issue.

It is worth noting that great scientific strides in this field were done by
computer scientists who have been held in high esteem in computer science

48 An overview of abstractions for concurrency that also discusses their
implementation in Chill is J. M. Bishop, Data abstraction in programming
languages, International computer science series (Wokingham, England ; Reading,
Mass.: Addison-Wesley, 1986), 102-34.
49 Hansen, "The invention of concurrent programming".
50 Here quoted from Ibid., 16.

 132

in general. When Per Brinch Hansen collected what he regarded as the
classic papers in concurrent programming almost 30 years later their initial
publication, he was surprised to see that every single paper turned out to
have been written by Edsger Dijkstra, Tony Hoare or himself.51 Dijkstra and
Hoare have already been mentioned as influential actors in a move towards
the mathematically oriented computer science. They also made particular
important contributions to the development of concepts facilitating
concurrent programming. According to Judy Bishop, their simultaneous
interest in the topic was unrelated, but spurred by a similar set of agendas:

The swing away from assembly language gained genuine momentum during the
seventies was slow to affect the area of concurrent systems – operating systems,
embedded control systems, and the like. What happened was that three people –
Edsger Dijkstra, Tony Hoare and Per Brinch Hansen – independently developed
key abstractions which were taken up by researchers worldwide, realized in
experimental languages, reported on, adapted and refined. In this way, the
problems of concurrency could be expressed in well understood notation, and
solutions and principles gradually evolved.52

This was in full motion in the late 1970s, and informed the designers of
Chill. In typical committee fashion, the issues of concurrency would take a
considerable amount of time to resolve and involved a number of
compromises affecting the finished language, not least because concurrent
processing principles touched upon concepts quite familiar to those engaged
with traditional telecommunication technologies.

The first proposal regarding concepts for concurrency in Chill was
made by Charlotte Denenberg of the ITT, at the very first meeting of the
Implementors’ Forum in September 1977.53 Following this “tentative
agreements were reached upon this subject” at this meeting.54 At the second
meeting, in November 1977, Denenberg made further proposals.55 A
contribution from GEC and two from L. M. Ericsson were also put forward

51 Ibid.
52 Bishop, Data abstraction in programming languages, 103.
53 C. D. Denenberg, ”Proposed HLL Primitives for Process Handling”, document
number G4, RBC.
54 CCITT HLL Implementors Forum, “Progress report on the first meeting, London,
12 – 16 September 1977”, RBC.
55 C. D Denenberg, “A higher level set of synchronization primitives”, document
number H7, RBC; C. D. Denenberg, “Additions to the process handling primitives”,
document number H8, RBC; C. D. Denenberg, “Comments on ‘proposal for
monitor-like feature’”, H9, RBC.

 133

at this meeting.56 The two contributions from the Swedish firm sparked a
long and winding discussion. L. M. Ericsson had not been particularly active
in the development of Chill before the issue of concurrency came up, but
they put a lot of weight behind their proposals on concurrency. This was
related to the fact that L. M. Ericsson had previous experience in using one
specific concurrency concept, often referred to as the signals concept, in
their programming language Plex. Representatives of the firm had also been
heavily engaged in moving this concept into the other language that was
developed by the CCITT at that time, the specification and description
language SDL.57 At the time, pressure was also being put on the convenor of
the Implementors’ Forum, Remi Bourgonjon, to strive for harmonisation
between SDL and Chill.58 With L. M. Ericsson’s entrance into the debate
and the increased pressure towards linking SDL and Chill, diplomatic
negotiations became complicated and were being conducted on multiple
fronts. In general, the main contestants were a constellation of Philips, the
Dutch administration and the Nordic delegates from Runit on the one side,
ITT on another and the Swedish manufacturer L. M. Ericsson on yet another
side. How they would eventually end up with a proposal that everyone was
able to agree on was in itself a combination of concurrent processes and
diplomatic adjustments.

An important participant in this debate was Ivar Jacobson, who started
participating in the Implementors’ Forum from their second meeting.59
Jacobson had experience of hardware design and telecommunication
software systems and applications development.60 He had, however, no
education in the field of computer science, nor any experience in
programming language design or compiler programming. He described his
own role as “a cat among ermines”, the odd one out, when interviewed about
his role in the CCITT group, and said this was because his background was
different from that of many of the participants in the Implementors’ Forum.61
The representatives of L. M. Ericsson argued that the world of

56 GEC, “Substring handling”, document number H15, RBC; L. M. Ericsson,
“Proposed HLL concepts for process handling and interprocess communication”,
document number H17, RBC; L. M. Ericsson, “Proposed addition to the HLL for
process handling and interprocess communication”, document number H18, RBC.
57 Ivar Jacobson, telephone interview with author, 22 February 2011.
58 Remi Bourgonjon, telephone interview with author, 21 March 2011.
59 CCITT HLL Implementors Forum, “Progress report on the first meeting, London,
12 – 16 September 1977”, RBC.
60 Ivar Jacobson had, by 1978, been working on the AKE and AXE switching
systems as what can be called a software architect, for about 10 years. On his
background, see Vedin, Teknisk revolt: Det svenska AXE-systemets brokiga
framgångshistoria 101-06.
61 Ivar Jacobson, telephone interview with the author, 22 February 2011.

 134

telecommunications in particular, and electrical engineering in general, had
something to teach computer scientists, programming language experts and
software engineers, when it came to concurrency. In a working document by
the participants from L. M. Ericsson, it was argued that telecommunication
switching systems would need special attention and that the general
techniques developed by computer scientists were insufficient.62 Coming
from this, the L. M. Ericsson representatives presented the Forum with their
signals concept for inclusion in the language proposal. L. M. Ericsson’s
signals concept, however, met with scepticism. It was argued that the
favoured Ericsson solution was too high level and abstract, and would tax
the limited hardware resources too much.63 According to Jacobson, the other
participants would repeatedly claim that what Jacobson (and L. M. Ericsson)
wanted to introduce to the standard was “semantically equivalent” to what
they already had.64 Regardless of these specific objections, it seems likely
that the members of the Forum had a hard time grasping what Jacobson and
L. M. Ericsson actually tried to get into the programming language, in
particular the exact semantic meaning of the concept.65 The different
background of the contestants was a large part of the reason for this. By
January 1978, Charlotte Denenberg, Ivar Jacobson and Remi Bourgonjon
held an informal meeting in the Netherlands, to get an agreement on these
issues.66 The outcome of this meeting was a reconciled proposal that would
include the ideas from Philips, ITT and the signals concept so much argued
for by Jacobson and L. M. Ericsson.67

However, this compromise was not enough. The disagreements flared
up yet again at the third and fourth meetings of the Forum. After a whole day
of debating how to implement concurrent concepts in the language at the
meeting of the Forum in June 1978, the group’s vice-convenor, Kristen
Rekdal, was pessimistic. He reported the following to his sponsors, the
Nordic telecommunication administrations: “One whole day was devoted to
the subject of concurrent processing. Sorry to say, no agreement could be
reached this time either. There is still some hope, however, because the

62 L. M. Ericsson, ”Process intercommunication”, document I-9 in appendix C in
”Progress report on the third meeting, the Hauge, 13-17 February 1978”, box
“Arbeidsdokumenter 5, Serie I”, KRC.
63 Kristen Rekdal, email to author, 14 July 2009.
64 Ivar Jacobson, telephone interview with author, 22 February 2011.
65 Ibid.
66 “Minutes of the informal meeting (23-25 January 1978) about the SDL semantics
and concurrent processing concepts for the HLL”, RBC.
67 Remi Bourgonjon, “Language aspects of process
communication/synchronisation”, I4, RBC.

 135

disagreements were smaller this time.”68 In particular, Jacobson was not
content with the results of the informal meeting, nor the subsequent
discussions in the Forum. L. M. Ericsson and Ivar Jacobson eventually found
an unlikely ally in the concurrency debate, as they teamed up with Dines
Bjørner. At the fourth meeting of the Forum, in June 1978, the new allies
presented a new proposal.69 Bjørner used the concurrency debacle as a way
to prove the usefulness of formal descriptions, and by creating a formal
description he really translated Jacobson’s signals concept into a
terminology that could be accepted by the other group member. However, L.
M. Ericsson and the Danish administration developed a common proposal
that completely sidelined the prior proposals from Bourgonjon, Denenberg
and Jacobson.70 Here, the representatives from L. M. Ericsson and Bjørner
argued the following:

The underlying ideas of the proposals are not new. Thus they e.g. resemble very
closely the basic concepts of C. A. R. Hoares’ “Communicating Sequential
Processes.” The authors of the proposal are also pleased to note a very striking
one-to-one correlation to basic concepts of SDL. Whereas the buffer/semaphore
based constructs have been around for more than 10 years, the currently
proposed constructs appear to form a much needed replacement of these older
ideas.71

This quote reveals a set of relationships that somewhat breaks down the
dichotomous set of development virtues sketched out in the introduction: On
the one hand, it signifies a link to cutting edge research on concurrency by
aligning themselves with researchers such as Tony Hoare and Brinch
Hansen, but at the same time identifying this route as something tied to
electrical engineering thinking, as it notes the relationship to the description
language SDL that was under development in the CCITT at the time.
Furthermore, the authors noted that the existing proposals on the table in the
Chill project were rather old fashioned, as the last line of their statement
argued.72

How did the revised proposal go down with the other participants?
The replacement strategy proposed by Bjørner and Jacobson did not succeed
in its entirety. Still, L. M. Ericsson’s favoured concept, the signals concept,

68 Kristen Rekdal “The third meeting of the CCITT Implementors Forum,” 20
February 1978, box “Arbeidsdokument 5, Serie I”, KRC.
69 Danish P&T, L. M. Ericsson, “Process communication in CHILL; a set of
proposals”, J3, box ““Arbeidsdokumenter 6, Serie J”, KRC.
70 On the second page of the proposal, this is made explicit: “The set of proposals
should be seen as a complete, substitute replacement [...].” See Ibid, 2.
71 Ibid, 2.
72 Ibid, 2.

 136

had crept its way into the language recommendation, already before the joint
proposal by Bjørner and Jacobson. The final recommendation would still
look similar to the one sketched out before Bjørner’s intervention to
formalise the signals concept. However, according to Ivar Jacobson, the
Bjørner-led definition was crucial to get the signals concept properly
understood by the other members.73 To reach an agreement, the committee
would still have to arrive on a compromise by the method of an informal
meeting: this time, the agreement was reached at an informal meeting
between the actors in the late summer of 1978. Remi Bourgonjon, Ivar
Jacobson, Kristen Rekdal, Oleg de Bachtin and Anders Rockström were the
participants. Here, they finally came to an agreement on harmonising the
concurrency concepts agreed on at the previous Forum meetings.74 The
results of the meeting, and its reception in the Forum, made Kristen Rekdal
optimistic. He reported the following after the subsequent meeting in the
Forum:

Again [concurrency] consumed a large part of the meeting. This time there was
luckily, agreement on most of the semantics, and even a provisional syntax. The
agreement largely follows the document submitted by RUNIT, LME and Philips.
It is hoped that the topic can now be settled at the next meeting.75

The settlement was, in other words, a hybrid. It did not opt for the complete
revised proposal that Bjørner and Jacobson brought to the table, but
Jacobson’s favoured signals concept got into the final recommendation,
perhaps in a more properly understood manner than without the alliance
between Bjørner’s formalism and Jacobson’s ideas.

Would such a hybrid degrade the result? In retrospect, this aspect of
Chill has been regarded as one of its real strengths. Kristen Rekdal, who
initially had been sceptical about the concepts, has stated that he is happy it
was added, and that it became one of the most powerful constructs in the
language. Furthermore, with the great strides made in hardware design and
capacity, the feared lack of efficiency was largely overcome.

All in all, the concurrency debate highlights the way compromises
were not always such a bad thing. Kees Smedema, which participated in the
CCITT work on Chill in the early 1980s on behalf of Philips, stressed this
point:

73 Ivar Jacobson, telephone interview with author, 22 February 2011.
74 Noted in O. de Bachtin, R. H. Bourgonjon, I. Jacobsson, K. Rekdal, A.
Rockström, “Review of Concurrent Processing”, K5, box “Arbeidsdokumenter 7,
Serie K”, KRC.
75 Kristen Rekdal, “The fifth meeting of the CCITT Implementors Forum, Tokyo 18-
22 September 1978”, box “Arbeidsdokumenter 7, Serie K”, KRC.

 137

[Chill] was designed by a committee, which has the well known disadvantage of
having to compromise between the various preferred concepts of committee
members, resulting in non-orthogonal language design. However, it has also an
advantage: the experience of many people is shared. In the case of designing the
facilities for concurrency in Chill it was definitively a great advantage that the
people involved were experienced in software for switching systems […].76

Formal definition
In parallel to the concurrency debate, some members of the Implementors’
Forum started work on a more formal definition of the semantics of the
language, meaning a model describing the possible computations by the
language. Such a definition would add to the formal syntax and semiformal
semantics already produced, and would create a description of each phrase in
the language in some sort of other language, usually through mathematical
formalism rather than another computer language.

Again, the main inspiration as well as the initiative came from actors
rooted in computer science. An important catalyst was Dines Bjørner. To
Bjørner, Chill was already too complex and riddled with compromises.77
One way out of the quagmire was to impose a so-called formal denotation of
the semantics of the language. To Bjørner, such a definition of the language
could ease its way towards the finished article, into the real world of
language implementation and compilers. This was particularly so since such
a formal definition of the language semantics could help prove that a
particular compiler implementation was correct. It would also reconcile Chill
with the mathematical and formal virtues that dominated the constituencies
of computer science.

Bjørner had started work on a Chill compiler prior to his involvement
in the Implementors’ Forum and had experienced that the design of a Chill
compiler could be helped by the use of what was known as “denotational
semantics,” a field Bjørner had considerable knowledge of from his
involvement with the IBM research laboratory in Vienna in the early 1970s.
The outcome of Bjørner’s effort would go well beyond the limited problems
of compiler construction, as it spun off an effort to formalise the language
semantics within the Implementors’ Forum. The aim of denotational
semantics was to formalise the programming language by constructing
mathematical objects (called denotations) that would describe the meanings

76 C. H. Smedema, "CHILL: Facilities for Concurrency", in COMPSAC (Chicago:
IEEE Computer Society Press, 1983).
77 Dines Bjørner and Peter L. Haff, “A formal ‘denotational’ semantics definition of
CHILL”, Technical report ID888, September 14, 1979, ix. Available in box “NTT
72-2/NT-P 1979 – 1980”, KRC.

 138

of expressions from the languages – a large step towards full formalism from
the more common route of formally defining the syntax of a language.

There were high hopes. In 1978, it was noted that the denotational
semantics would be “a very valuable contribution to the development of
CHILL”.78 Some devotion was put towards formal definitions in 1979, hot
on the heels of the agreement reached on concurrency by the detour of
formal definition description of L. M. Ericsson’s signals concept. The efforts
were pushed forward by two parties, one group led by Dines Bjørner and
another that involved researchers at the Belgian Philips laboratory of
research, the MBLE, primarily Paul Branquart, George Louis and Paul
Wodon. The latter group had already been involved with the work in the
Team of Specialists, through their affiliation with Philips, and held
substantial experience of work on the programming language Algol 68. After
a short period where both definitions competed for the attention of the
Forum members, the MBLE group decided to continue their work as an aid
for the compiler group of Philips, and not to pursue the larger goals of
Bjørner’s group.79

Bjørner hoped that the formal definition would “gain confidence in the
language design, to check its completeness and consistency”.80 Bjørner
expressed a sincere belief “that with the advent of this formal document a
basis has been established for an orderly control of future developments of
the language”.81 As such, it was a tool to minimise the ambiguity of the
complex language, but also a tool that could point out deficiencies in the
casually described language. This was not only something that Bjørner
believed, but a view shared by many of the members of the Implementors’
Forum. As many discussions in the group were oriented towards ambiguities
in the existing and at best semi-formal description of the semantics, it was
believed that some of the ambiguities could have been avoided to some
degree with a formal description.82

Bjørner’s approach was rooted in a belief that a disciplined software
development methodology, based on proof and formalisation, was a

78 Kristen Rekdal “The third meeting of the CCITT Implementors Forum”, 20
February 1978, box “Arbeidsdokument 5, Serie I”, KRC.
79 The formal description created by the Belgian group was published by Springer
Verlag in 1982, as part of their Lecture Notes in Computer Science series. See Paul
Branquart, Georges Louis, and Pierre Wodon, An Analytical Description Of CHILL,
the CCITT High Level Language, ed. G. Goos and J. Hartmanis, Lecture Notes in
Computer Science (Heidelberg: Springer-Verlag, 1982).
80 Dines Bjørner and Peter L. Haff, “A formal ‘denotational’ semantics definition of
CHILL”, Technical report ID888, September 14, 1979, i.
81 Ibid.
82 Confirmed by Kristen Rekdal in e-mail to author, 14 July 2009.

 139

necessity.83 Software development should be drenched in the virtues of
computer science. The formal definition was not ready to be published as a
supplement to the official recommendation. Instead, it was published in
1981, as a result of repeated delays. As such, the arrival of the formal
definition was too late to influence or help the budding compiler designers,
who would be the main users of such a definition.84 In this respect, the high
point of the influence of the mathematical development virtue became
nothing but a delayed supplement to the official CCITT recommendation.
This was due to the extreme complexity involved in creating and
understanding such a definition. It was full of rigour and clarity, but it was
not something that was well understood in the higher ranks of the CCITT
hierarchy, or in telecommunication organisations. Still, with the formal
description, Chill became the first industrial and widespread programming
language to have, as part of its recommended standard, a rigorous definition.
The result, however, was a disappointment. According to Bourgonjon, all
forms of formal descriptions have a drawback: “There are several tools
known to formally describe the context-free syntax, the static semantics, and
the dynamic semantics [....]. Unfortunately, all those tools are hampered by
the fact that they are very difficult to understand for non-experts.”85 When
discussed in hindsight, Remi Bourgonjon argued that the formal description
also did not help in vindicating errors in the language proposal: “The formal
definition did not help anyone. I, for one, found the same errors in the formal
definitions as I found it in the semi-formal description.”86 He followed by
adding that he often found errors, other than those already noted by the
Danish team, by applying the semi-formal approach.87 It also proved to be
very difficult and time consuming to verify the equivalence between Z.200
and the formal definition. This could only be done by experts on both Chill
and VDM carefully and meticulously reading both documents side by side.

83 Kristen Rekdal wrote that “VDM is more formal than BLW” in “Informal meeting
on “CHILL Formal definition, Hilversum 22 – 23 March 1979,” box “Implementors
Forum, serie M”, KRC.
84 The definition was issued as a manual to the Recommendation Z.200, but was
only made available on request. Its prelude was published in the Chill Bulletin. See
Peter Haff, “Chill Formal Definition”, Chill Bulletin 2, no. 1 (1982), 11 – 22. It was
also published as Peter Haff, "A Formal Denition of CHILL - A Supplement to the
CCITT Recommendation Z.200", in Technical Report (Lyngby, Denmark: Dansk
Datamatik Center, 1980).
85 Remi H. Borugonjon, "The CCITT High Level Programming Language", in
Software Engineering for Telecommunciation Switching Systems (Helsinki, Finland:
Institution of Electrical Engioneers, 1978), 39.
86 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands.
87 Remi Bourgonjon, telephone interview with author, 17 March 2011.

 140

Even the maintenance of the formal definition proved impossible. Every
time there was a change in the recommendation document, the formal
description had to be updated and re-verified.

Even to the supporters of formal definition, the Chill report was
lacking in some respects. According to the “official” VDM annotated
bibliography, the report “features an attractive style of presentation of
operational intuition but fails to have been given a satisfactory semantics”.88
Still, it was a starting point for more work on how to provide a formal
description of concurrency, and thus spurred further refinements in the
formal approach that the Danish computer science community were so fond
of.

To Bourgonjon, formal semantics was one step too far. Progress
towards a more unambiguous language was made through logical thinking
and extensive collaboration rather than through the use of a formal
denotational semantics and a formal development method. This highlights
how the project was a true intersection between formally oriented computer
science and more practical concerns, and how some ideas about strictness
and formal languages did not pave out. In another way, one would believe
that such a definition would enhance the image of Chill in the formal
computer science camp. It did not. Chill continually met with scepticism or
blatant ignorance from actors in the computer science camp.

It is worth noting that the cases of concurrency and formal definitions
reveal two general mechanisms regarding the relationship between computer
science and engineering in the development of Chill. Firstly, both
implementations hinged on an active involvement of the computer science
community: The implementation of concurrency was highly dependent on
the applications of theoretical arguments advanced by influential scientists
like Tony Hoare and Edgser Dijkstra. The application of formal descriptions
was obviously another offspring of European computer science, highlighted
by Dines Bjørner’s prior involvement with the IBM research laboratory in
Vienna. However, these applications of theoretical computer science were
just as dependent on fitting in and realigning with the concerns of
telecommunication professionals and electrical engineers. The case of L. M.
Ericsson’s relative high-level concepts for concurrency is most revealing:
Here, the formal definitions of Dines Bjørner helped the idea translate into a
vocabulary understandable and tolerable to the rest of the Forum’s members.

I have interpreted these oscillations as processes of alignment of
development virtues and ideals. However, it is also important to note that the
process of creating a standardised programming language was a process of
codification of practical experience and the assimilation of external pressure.

88 Peter Gorm Larsen, "The VDM Bibliography", (Odense: The Institute of Applied
Computer Science, 1996).

 141

In the next sections, I discuss the externalities of Chill, in the form of
stakeholders such as the telecommunication administrations and its
programming language competitors, in particular the emergence of a
standardised programming language for embedded real-time systems made
for the American Department of Defense, Ada, and C, created at AT&T.

Travelling in Chill
In September and October 1979, Kristen Rekdal travelled extensively around
the world with what was to be the final reference manual of Chill in his
suitcase.89 First, he attended what was the last meeting in the Implementors’
Forum in Melbourne, Australia. After that, he participated in the official
CCITT meeting of the sub-working party XI/3, which officially nominated
the work of the Implementors’ Forum to the CCITT Plenary the coming
year. Along the way, he visited the headquarters of the Australian
administration, Telecom Australia, and the University of Canterbury in
Christchurch, New Zealand. On his way back from the other side of the
world, Rekdal visited the Indian Hill Bell Laboratories at Naperville, Illinois,
where he gave a presentation of Chill before a large audience.

In Australia and New Zealand, Rekdal met with representatives of the
telecommunication administrations, and discussed the experience of using
Chill in the Nordic administrations, as well as general aspects of
programming expertise in telecommunications. In his travel reports, Rekdal
noted that representatives of the Australian telecommunications
administration, as well their counterparts in New Zealand, had expressed an
interest in software as a means to become more independent of their
suppliers, echoing some of the thinking behind the programming language.
Representatives of both administrations expressed an interest in the use of
Chill to achieve such a position. 90

At his visit to Bell Laboratories at Naperville, Rekdal encountered
what at the time was widely acknowledged as the leading research and
development organisation in the field of computing as well as
telecommunications. Rekdal’s mission was to gather information about how
the organisation was administered as well as their activities on software
development and use. With evident awe, Rekdal noted: “During the summer
of 1979, it was decided to erect a new building to house 2000 people all
working on various software aspects. The planning took only two months
and the building will be finished in the summer of 1980!” 91 Furthermore, he

89 Kristen Rekdal, “Reiserapport fra CCITT Implementors Forum, CCITT WP XI/3,
TELECOMM Australia, University of Canterbury, Bell Labs, 20/9 – 16/10 1979,”
box “Implementors Forum 9. møte Melbourne, Sept. 1979, Serie O”, KRC.
90 Ibid.
91 Ibid.

 142

also noted: “50 per cent of the 1600 researchers and engineers at Indian Hill
work with software. In the future, about 70-80 per cent will be working on
software.”92 Obviously, he was no less impressed with these numbers.

The Indian Hill establishment of Bell Labs was at the time involved in
the development of the software for the Bell’s new switching system, called
No. 5 ESS.93 This involved much novel technology, some of which Rekdal
noted. He mentioned the use of mini-computers in place of mainframe IBM
computers, all fitted with the Unix operating system, developed at Bell Labs,
and the use of the programming language C, also developed in-house, which
warranted a particular description in Rekdal’s report: “[C] is a middle level,
partly machine dependent, systems implementation language.”94 At this
time, C and Unix were almost unknown quantities to Rekdal, the community
in the CCITT and the world at large. In hindsight, C became the dominant
programming language in systems development during the 1980s and
beyond.95 Without possessing the technical refinements of language such as
Chill, C would nevertheless go on to achieve a status almost of a de facto
standard, even though it was, according to its creator, “quirky, flawed, and
an enormous success”.96 While C was unknown in 1979, Rekdal and his
compatriots would encounter C numerous times; more often than not viewed
as a direct competitor of the programming language he had been
instrumental in creating. Both in technical and organisational terms, the
differences between Chill and C were considerable. C did not strive for a
high level of abstraction; it was fairly low level and could consequently
produce fairly efficient code. Furthermore, its association with the operating
system Unix made the environment of the programming language explicit,
something not possible with Chill.

On his travels Rekdal made contacts, gathered information and tried to
understand whether the future of Chill was looking promising or grim. As

92 Ibid.
93 On the history of No. 5 ESS, see Chapuis and Joel, Electronics, computers and
telephone switching: 1960-1985, 379-89.
94 Kristen Rekdal, “Reiserapport fra CCITT Implementors Forum, CCITT WP XI/3,
TELECOMM Australia, University of Canterbury, Bell Labs, 20/9 – 16/10 1979,
box “Implementors Forum 9. møte Melbourne, Sept. 1979, Serie O”, KRC.
95 The history of C has been described by its main creator, Dennis Ritchie, in a paper
from the second History of Programming Languages conference. See Dennis M.
Ritchie, "The Development of the C Language", in History of programming
languages II, ed. Thomas J. Bergin and Richard G. Gibson (New York; Reading,
Mass.: ACM Press; Addison-Wesley Pub. Co., 1996). An evidence of the tangled
nature of programming languages and telecommunications is the fact that Ritchie
participated in one of the meetings in CCITT’s Implementors’ Forum. For details
about participation, see chapter five in this dissertation.
96 Ibid.

 143

evident above, two aspects were of particular interest: the role of the
telecommunication administrations and the technological choices of the
manufacturers – in particular the role of competing programming languages,
like C. However, at the time of writing, Rekdal was more concerned about a
competing programming language named Ada, which increasingly looked
like a viable contender to Chill for programming telecommunication
equipment.

“There need not be a conflict” – Chill meets Ada97
From around 1977, Chill had a competitor. The US Department of Defense
embarked on standardising a programming language for the creation of real-
time and embedded software systems. 98 The language would later be named
Ada and attracted a lot of interest and investment, also from European
actors. Some of those who became involved with Ada were also involved
with Chill, creating conjunctions between the two projects during the period
of the Implementors’ Forum. In 1979 and 1980, the participants of the Chill
project often encountered the Ada project, either in the form of arguments
against their own project or through common projects or meeting places.
Sometimes the encounters were outright skirmishes, though others were of a
more collaborative character. While the Chill designer Kristen Rekdal
claimed, “there need not be a conflict” when asked about the relationship
between Ada and Chill in 1980, an impression of competition and conflict
remained.99 On the following pages, I am concerned with the meetings and
encounters between Chill and Ada in the period when the Implementors’
Forum was active, that is, up until 1980.100 Particularly, I am concerned with
how the competition influenced decisions and directions concerning
programming language design and implementation. I will return to how Ada
influenced the diffusion of Chill in chapter six.

The design process of Ada differed somewhat from that of Chill.
Whereas the CCITT did not manage to lure an expert of the standing of
Niklaus Wirth to take on the project, the Department of Defense opted for a
competition between four contractors to produce a prototype language. By

97 The quote is from Kristen Rekdal, ”CHILL, ADA and ESL”, RUNIT Notat, 3
March 1980, box “NTT 77-2 NT-Programmspråk 1979 – 1980”, KRC.
98 Whitaker, "Ada—the project: the DoD high order language working group".
99 Kristen Rekdal, ”CHILL, ADA and ESL”, RUNIT Notat, 3 March 1980, box
“NTT 77-2 NT-Programmspråk 1979 – 1980”, KRC.
100 The following account is based on two types of sources. One is the retrospective
article by William A. Whitaker, who chaired the Department of Defense’s working
group on high-level programming languages. Secondly, I have utilised a number of
documents, reports and notes made by or made available to actors involved in the
Chill project, many stored in KRC.

 144

May 1979, the department decided to go forward with a proposal from the
French company CII Honeywell Bull. The language was developed by the
French company under contract to the United States Department of Defense
during 1979 and 1980, a somewhat peculiar alliance if one considers
France’s considerable nationally oriented industrial policy towards
telecommunications and computing up until at least the early 1980s and its
hostility towards American initiatives in general.101 That Ada would also
attract considerable support from the European Economic Community
(EEC) from the 1980s only supports the description of Ada as a somewhat
peculiar alliance.

The final reference manual of Ada was delivered in July 1980, and
consequently finished just about the same time as the CCITT high-level
language was getting its final seal of approval from the CCITT. The project
was led by Jean D. Ichbiah, a founding member of the IFIP working group
2.4, a group of computer scientists who under the auspices of UNESCO
discussed issues of system programming languages, grew out of the
conference on machine-oriented higher-level languages (which was a term
disliked by Ichbiah) in Trondheim, Norway in 1974.

Choosing Ichbiah’s group as the language designers also meant that a
large group of European computer scientists was engaged, both as reviewers
of the language proposals on behalf of the DoD, and later on as part of what
was to be an emerging Ada community. Even some of the participants in the
CCITT project would be engaged on Ada. However, the relationship
between Ada and Chill in the early phase of Ada was not one of collegiate
spirit. Whitaker, who led the work on behalf of the Department of Defense,
has made one comment about this:

The CCITT developed a common high order language for international use in
communications. This was done at the same time as the HOLWG effort, and I
was told off-line by members of the developing committee that they made a
policy not to communicate with the competition. In any case they never
answered any of my letters. CHILL was the product of that development.102

Did the Chill camp view Ada as competition? Did they deliberately not
communicate with them? The two efforts shared a great deal of common
antecedents and meeting points. The IFIP was one, where Remi Bourgonjon
met with Jean Ichbiah in the 2.4 working group. Dines Bjørner would,
almost at the same time he was about to produce the formal definition of

101 This is an altogether too simplistic argument, although it at least grasps part of
the essence. For a brief, but more balanced view, see Philippe Mustar and Philippe
Larédo, "Innovation and research policy in France (1980-2000) or the disappearance
of the Colbertist state", Research Policy 31, no. 1 (2002).
102 Whitaker, "Ada—the project: the DoD high order language working group".

 145

Chill, embark on a similar project with Ada. So non-communication could
hardly have been the case. However, the Chill group certainly felt the
pressure.

The Chill group did not give up without a fight: and in 1979, they had
a head start: According to Rekdal, it seemed “that CHILL has more practical
experience and a wider commitment behind it compared to ADA. CHILL
has been through a shakedown period which ADA is still lacking. There is
no reason to believe that ADA will pose fewer problems in this respect than
CHILL has.”103 Furthermore, the Chill group believed in peaceful co-
existence, since the backing from the telecommunications industry was
secured:

There need not be a conflict: To be viable a language needs the support of a
sufficiently large user community with homogeneous objectives. Trying to
incorporate basically diverging objectives may ultimately erode user support.
CHILL is, in this respect, in a fortunate position. The potential use community
consists of all members of the CCITT. These members have declared their
common objectives by joining the CCITT.104

This “fortunate position” was not guaranteed for the future. Chill’s
supporters feared that the Ada project would deflect attention and support
from their programming language, and worried about the consequences: “If
support wavers at this time, the current momentum will be lost and the
language will die.”105 To the Chill group, the differences between the two
projects were both technical and political: the Ada project put the
Department of Defense in control of language development. To the CCITT
representatives, this fact meant that it served US national interests rather
than those of the international community. Chill advocates underlined the
contrast: “CHILL on the other hand has been developed by the CCITT
which is a truly international body working under the auspices of the United
Nations.”106 It would also have been politically impossible for the CCITT to
standardise a language over which it had no control.

Nevertheless, Chill’s momentum was wavering, and the spotlight was
firmly on Ada, although the EEC first considered finding a third way
towards programming real-time systems. In 1978, the EEC started
investigating the possibility of creating a new European programming

103 Kristen Rekdal, ”CHILL, ADA and ESL”, RUNIT Notat, 3 March 1980, box
“NTT 77-2 NT-Programmspråk 1979 – 1980”, KRC.
104 Ibid.
105 Ibid.
106 Ibid.

 146

language, tentatively called the European Systems Language.107 The German
Siemens and French CII Honeywell Bull carried out the study, and
concluded that rather than opting for a new programming language, the Ada
programming language should be chosen. The European Commission
followed this up by granting funds for specific European Ada-related
projects during the early 1980s. The EEC actively encouraged the formation
of the interest group Ada Europe in late 1979, before the Ada language was
even finished and fully defined. At the inception of the Ada Europe group in
March 1980, more than 40 individuals or organisations had an active interest
in the language. The group drew considerable interest from general computer
manufacturers as well as the computer science community. Already at its
outset, 16 projects involved either in direct language design activities,
feasibility studies or implementation projects were underway in Europe,
involving technical universities, research establishments and computer
companies.108 Much of the interest in the language came from the formidable
backing of the US Department of Defense, as a prospective standard
language in the development of many military systems would mean a huge
market. The backing also stemmed from the choice of the French language
designers, in particularly Jean Ichbiah, who had a high standing within
European computer science circles and the constituency of the IFIP.
Furthermore, the language was considered technically advanced. As the
initiator of the European group, Brain Wichmann of the UK National
Physics Laboratory, stated in his opening remarks to the group’s first
meeting:

Even if Ada had nothing special to recommend it, concentrating on one language
to avoid the inevitable duplication of effort would be a worthwhile gain.
However, the package concept in Ada should allow tailor made systems to be
built largely from standard components – components which are pre-compiled
and whose is checked for type validity by the compiler.109

By 1982, the EEC had actively pursued and sponsored projects related to
Ada as a major part of the community’s data processing programme. In
particular, the sum of 6.4 million ECU was put into two large Ada compiler
projects from 1980, along with a number of smaller projects also given

107 For this, I rely on ”Community Data-processing Policy”, Communication from
the Commission to the Council, Brussels, 22. July 1982. Available from Archive of
European Integration (AEI), hosted by University of Pittsburgh at http://aei.pitt.edu/
108 List of identified projects on 4 December 1979, attached to B. A. Wichmann and
R. Gilbert, Proposal for a WGS-ADA-Europe activity, 5 December 1979, box “NTT
77-2 NT-Programmspråk 1979 – 1980”, KRC.
109 B. A. Wichmann, “Ada-Europe: Some opening remarks,” 1 February 1980, box
“NTT 77-2 NT-Programmspråk 1979 – 1980”, KRC.

 147

resources by the EEC.110 The extent of support and investment behind Ada
was in another league compared with Chill. Where the Chill project
depended on local networks for compiler projects, the Ada project was
coordinated and published on the Arpanet, the US DoD-sponsored
forerunner of the modern-day Internet.111

At the establishment of Ada Europe, Remi Bourgonjon was invited to
discuss the possibility of harmonising the two programming languages.
Bjarne Däcker, who participated on behalf of L. M. Ericsson at the inaugural
meeting of Ada Europe, remarked that the discussions between Bourgonjon
and Ichbiah were not particularly constructive: the Ada supporters argued
that it would be a waste of resources to create two standardised
programming languages for almost the same type of users, and that Chill
should be disbanded. The Chill supporters, on the other hand, thought that
they had a head start, since they already had some compilers working at this
time.112

Däcker was impressed by the Ada effort in general, and believed that
L. M. Ericsson should reconsider their contribution to Chill. The Swedish
firm had participated in both the Team of Specialists and the Implementors’
Forum, but the emergence of Ada made Däcker believe that their future
projects should be based on that programming language. This was based on
two observations. Firstly, that the functionality of the language would be
able to match the needs of L. M. Ericsson, if the representatives of L. M.
Ericsson were able to influence the final design of the language. Secondly,
that the level of backing for the language would ensure that a significant
amount of supporting tools and resources would be available from other
companies.

110 The European currency unit (ECU) was an artificial currency that was used by
the member states of the EEC as their internal accounting unit. It was conceived in
1979. To compute the real value of the Ada support to a present value is
complicated, as it would necessitate taking into consideration the rate of price
changes in the EEC member countries, and in the end, the conversion into a present-
day currency. The composite nature of the ECU makes this conversion difficult.
Furthermore, it would also be necessary to take into account that there exist different
Later in this thesis, where investments based on a single currency are given I will
provide measures in 2010 US dollars, adjusted with the Consumer Price Index.
Here, such an adjusted and converted measure is not possible to present.
111 Janet Abbate, Inventing the Internet, Inside technology (Cambridge, Mass: MIT
Press, 1999).
112 This is revealed in a travel report by Bjarne Däcker, which was made available to
the Nordic Chill project. See Bjarne Däcker, “Processkommunikation i Ada –
resrapporter”, 6 March 1980, box “NTT 77-2 NT-Programmspråk 1979 – 1980”,
KRC.

 148

During late 1979 and 1980, L. M. Ericsson made moves towards influencing
the implementation of concurrent language constructs in Ada, and became
increasingly involved in the Ada project. If everything fell into place, L. M.
Ericsson were willing to drop all other programming language activities, as
both their own Plex and Chill were believed to be inferior to the coming Ada
language.113 According to Däcker, L. M. Ericsson’s participant in the Ada
process, there was one danger in dropping Chill in favour of Ada, and that
was related to the possibility of Chill receiving some sort of exclusive
monopoly in telecommunications. Däcker called the representatives of L. M.
Ericsson in the CCITT to do everything they could to prevent such a
monopoly, and also to discuss Ada in the CCITT.114

Other industry actors shared L. M. Ericsson's growing scepticism
towards Chill, and some of the participating manufacturer active in Chill
would soon defect. John C. D. Nissen of the British General Electric
Company (GEC) was appointed by the Ada Europe group to be responsible
for issues concerning Ada in telecommunications.115 The French
administration felt a strong push towards Ada, as it was strongly related to
the French Honeywell-Bull consortium and the language designer Jean
Ichbiah. At the executive level of the CCITT, the chairman of the CCITT
Study Group XI, which was responsible for the Chill project, held
discussions with people in the US Department of Defense on the issue of
Chill versus Ada during the spring of 1980.116 However, none of these
efforts would lead to the immediate disintegration of the implementation part
of the Chill project, as it was not until later into the 1980s that Ada really
started to gain support.

Summing up, during the last months of 1979 and first months of 1980,
a number of actors tried to shelve Chill in favour of Ada. However, the
CCITT did not change its mind: the CCITT plenary assembly unanimously
approved the language in 1980 and it was then formally endorsed as the
language to use for telecommunication applications worldwide. Furthermore,
the CCITT was not interested in taking part in the harmonisation of other
languages. However, the adoption of Chill would be seriously hampered by

113 The arguments was made explicit in Bjarne Däcker, “Processkommunikation i
Ada – resrapporter”, 6 March 1980, box “NTT 77-2 NT-Programmspråk 1979 –
1980”, KRC.
114 Ibid.
115 John Nissen, “The current state of ADA tasking and application in
communication.” 1 February 1980 (Sent to Ada UK Telecomms Subgroup, Ada UK
Tasking Subgroup, Ada Europe), box “NTT 77-2 NT-Programmspråk 1979 – 1980”.
KRC.
116 J. S. Ryan to P. Sterndorff, 14 May 1980, box “NTT 77-2 NT-Programmspråk
1979 – 1980”, KRC.

 149

the continuing discussions along the Chill versus Ada lines. I will return to
this in the next chapter.

Some conclusions
Chill was approved by the CCITT Plenary Assembly in November 1980.117
The slow-moving ITU had finally got its programming language. To the
ITU, Chill was an UFO created in the outer spheres of the CCITT. To many
of the participants in the Forum and the Team of Specialists, the ITU was an
alien landscape. Nevertheless, the language was finished, much to the
surprise of even its creators. Summing up the final part of the Implementors’
Forum, Kristen Rekdal made the following remarks:

The conclusion is that we have achieved what few thought possible five years
back: Chill is finished. The definition is better and more thorough than most. 10
– 12 compilers are already in progress or planned. More than a hundred
programmers have been educated in Chill. Chill will be used for at least four
new, large-scale computer controlled telephone exchanges that will be put into
the market in the first half of the 1980s.118

Evidently, there were high hopes. However, there were also lots of
uncertainties. The emergence of Ada meant that Chill had a competitor,
backed by the large and powerful US Department of Defense, a competitor
that was considered a real challenge to the life of Chill. According to a
comparison between the two languages made in 1981, both languages were
adequate for their stated purpose, although with slightly different strengths
and weaknesses. Still, as the comparison concluded: “There is considerable
evidence that Ada will become a well-supported standard in virtually all
embedded computer applications.”119

This chapter has highlighted how community-level norms and
organisational level strategies influenced the fate of Chill up until its final
ratification. I have in particular argued that the processes of knowledge
codification, where knowledge about software design and
telecommunications was spelled out and turned into syntax and semantics,
should be understood as a process of alignments of different development
virtues: in the case of the implementation of concurrency concepts, the
alignment of the ideas of Bourgonjon and Rekdal on the one hand, and the

117 Minutes of the Plenary Meeting, 10 – 21. November 1980, CCITT, ITUA.
118 Kristen Rekdal, ” Reiserapport fra CCITT’s Implementors forum, Melbourne 24
– 29 September 1976”, box “Implementors Forum 9. møte Melbourne, Sept. 1979,
Serie O”, KRC. My translation.
119 R. T. Boute and M. I: Jackson, "A joint evaluation of the programming languages
Ada and CHILL", in Software Engineering for Telecommunciation Switching
Systems (Coventry, United Kingdom: Institution of Electrical Engineers, 1981).

 150

proposals from L.M. Ericsson depended on the intervention of formal
computer science. In the case of formal definitions, the practical concerns of
the implementation group aligned themselves with what they believed would
be the virtues of formal definitions. However, this did not go as well as
planned. The formal definition was late on arrival and did not assist the
compiler designers to any large extent.

This is not to say that these realignments were independent of
business strategies. The sudden interest in concurrency showed by the
Ericsson representatives is just one example of how intertwined these
considerations were at the time. Ericsson’s growing affinity towards Ada
further underlines how the rapidly fluctuating business strategies were able
to shape the life of Chill beyond the norms of the community of technical
practitioners that had dominated its early emergence.

The period of the Implementors’ Forum was also a period marked by
prospective users and compiler designers. Compilers were made in
companies like the ITT, Philips and Siemens. The Nordic administrations
sponsored an ambitious compiler project contracted to Runit, which later
would evolve into a project involving a number of manufacturing firms.
Through these encounters with prospective users, the language designers
gained knowledge about how various language concepts would be used. As
shown above, not everyone was impressed. The external pressure from
prospective users was further fuelled by the debate about the future of Chill
in the wake of the Ada project.

As a whole, the work of the Team of Specialists and the
Implementors’ Forum framed the period of emergence and the initial birth of
the programming language Chill, which involved both programming
language design and trial implementations through the constructions of
compilers. The close-knit community of technical practitioners never
dominated the scene fully. Already at the very initiation of Chill, strategies
formulated at the organisational level were of great importance. As shown in
this chapter, the feedback from the field trials was allowed back into both
programming language design and implementation, but to some extent, this
also hinged on various strategies made at the organisational level of many a
telecommunication manufacturer.

By 1980, it was time for using Chill in real systems and application
programming, as the language was about to diffuse beyond its initial set of
early adopters. This is the subject of the next two chapters.

 151

5. Large organisations and large systems: the use
of Chill in large telecommunication
manufacturers

During the 1980s, Chill was used by large industrial manufacturers that
developed and manufactured large and complex switching systems. The ITT,
Siemens and Philips all applied the programming language to develop large-
scale public switches. Chill was used when programming switches that were
widely used, making one participant of the CCITT project remark: “Since
large companies as e.g. Alcatel and Siemens sell their systems all over the
world, Chill is passively used by hundreds of millions of people.” 1
Eventually, switches developed in Chill would be put into operations in
countries as different as Germany, Pakistan, Norway, Indonesia, Brazil and
many more along the way. Implicitly, the diffusion was impressive.

This chapter is concerned with the pattern of Chill’s use and diffusion
among industrial manufacturers of telecommunication equipment. It starts
out with three reasonably detailed case studies of the use in the ITT, Philips
and Siemens, which each highlight different reasons and patterns of use. In
the Philips case, the study also involves the American AT&T, as Philips and
the American AT&T formed a European joint venture to produce
telecommunication equipment in 1983, named AT&T and Philips
Telecommunications.

The ITT’s telecommunication division also became a joint venture. It
was sold off to the French company Alcatel in the mid-1980s, also initially
as a part of a joint venture.2 I follow the use of Chill in the new combined
company of Alcatel and ITT. Following this, I present a study of the use of
Chill by the German manufacturer Siemens in their switching system, the
EWSD.3 Rounding off this chapter, a more comprehensive survey of the use
and implementations of Chill in the first half of the 1980s is presented. I
consider how some of the firms that had taken part in the early phases of the
CCITT cooperation defected from the Chill party. Given these mergers and
acquisitions, this chapter casts light on how the changing corporate
environment and the political economy of telecommunications influenced
and shaped the diffusion and use of Chill throughout the 1980s. The lack of
use of Chill by L. M. Ericsson, which had participated in the Chill project
extensively until 1980, will be more thoroughly analysed in chapter six,

1 Jürgen F. H. Winkler, "CHILL 2000", Telektronikk, no. 4 (2000).
2 Rand V. Araskog, The ITT wars (New York: Holt, 1989); Christensen, "Switching
Relations: The rise and fall of the Norwegian telecom industry".: 259 - 266.
3 EWSD was an acronym for Elektronisches Wählsystem Digital, or in English,
Digital Electronic Switching System.

 152

together with the stance of the Swedish telecommunication administration on
the use of Chill.

Programming systems
In chapter four, I reviewed early implementations of Chill and the creation of
programs that translated code written in Chill to machine code, the
compilers. When concerned with Chill use in this chapter, we are primarily
interested in use beyond implementations, meaning the use of Chill when
programming telecommunication systems or prototypes of such. This is what
often is referred to as systems programming. 4 In the particular case of
programming telecommunication systems, such programming involved the
development of software that would perform a few dedicated functions with
real-time computing constraints, on hardware that was tightly integrated or
embedded with the software systems. Compared with the more conventional
programming of applications that a normal user would interact with, so-
called applications programming, systems programming was “closer to the
machine”. Systems programming had more severe hardware constraints than
what typically restricts application programming, but at least the limits were
known in advance.

Such systems programming was considered very different when
compared with application programming: so much so that programmers and
their tools tended to be specialised in one or the other. However, the
programming of switching systems was considered even more esoteric than
normal computer systems programming.5 So-called time-sharing techniques
that had been developed for real-time computers used in scientific or
business applications were also considered to have “little relevance to the
requirements of electronic switching systems”.6 Consequently, the use of
Chill we analyse in this chapter was related to the development of a very
peculiar type of systems and not comparable with what is normally
considered as systems programming. In some respects, various elements of
such telecommunication systems were even considered as a variant of
applications programming, like the programming of the important call-

4 To my knowledge, there is no established and overarching classification scheme
for programming languages, but the term systems programming is often used in
references and textbooks.
5 One contemporary and rather exotic source, which describes the Japanese D-10
switching system and its software, is Takamura et al., Software design for electronic
switching systems.
6 Ibid., 16.

 153

processing application.7 Nevertheless, in the following, I will use the term
systems programming in relation to the use of Chill, as I consider it closer to
what is conventionally understood as systems programming than anything
else.

While programming telecommunication switches was characterised by
the same limited programming facilities that characterised more
conventional systems programming, its uniqueness was related to the fact
that it had to be capable of dealing with very large numbers of simultaneous
calls and process these calls in parallel. Furthermore, the reliability with
which it should be able to deal with these concurrent calls was almost
extreme, as the example of two hours of total disruption of service in the life
span of 40 years, as pointed out in chapter two. One would have to organise
the software accordingly. In the early days of computer-controlled switching
systems, the software typically came of two kinds, programs involved in the
execution of the switching functions and programs involved in various
administrative processes. The programs would typically be provided for by
an execution environment, an operating system, holding everything,
including data transfer, memory management and timekeeping, in check.
The main part of the execution part would be the call-processing program,
which controlled the switching operation of the calls originating from
telephones or trunk lines and the routing of the calls to the correct receiver.
The administrative program would be involved in collecting charging
information used for billing, monitoring the grade of service the system
could provide, and facilitating the modification of the data stored for
particular subscribers or lines, like directory numbers and other features. In
addition to these, a number of maintenance programs, which only came into
operation if faults had been detected, were necessary.

All in all, the programming involved in the development of a full-
scale switching system was extensive and varied. A full-blown switch like
the EWSD from Siemens could have 100 million lines of code inside, which
would require 10,000 man-years to produce.8 Chill was intended to be a
general programming language that should be able to assist the programming
of programs. An important aspect of systems programming of this type was
also its managerial aspects, in particular how to make it possible for a large
number of programmers, often in the 100s or even 1000s, to work on the

7 One example of this naming convention is Mark W. Clark, Hans-Joachim Hey, and
Gerd-Arnold Schlaffke, "EWSD software modularity - smoothing the way for
performance increases", in Global Telecommunications Conference (Hollywood,
Florida: IEEE 1988).
8 Hans-Eugen Binder, "A telecommunication development: Siemens' digital
switching system, EWSD", in Proceedings of the 18th international conference on
Software engineering (Berlin, Germany: IEEE Computer Society, 1996).

 154

same systems, and in some cases, on the very same code. The large numbers
of programmers were necessary to be able to deliver the systems quickly.
Consequently, a major undertaking when applying Chill to the development
of the above-mentioned systems programs, be they administrative programs
or operational ones, was to provide for such large-scale efforts. Between the
process of writing the code and handing it over to the compiler, another set
of tools can be applied to ease the work associated with software
development. This part of the tool chain, including the compiler, has often
been called the software development environment.9 In the following, we
will often encounter such programming tools that existed as part of a larger
software development environment built around the programming language
Chill. In chapter six I will further analyse how the experience from creating
programming systems fed back into the language design.

Chill in the ITT
ITT was one of the original collaborators in the Chill project and had been
active in both the Team of Specialists and in the Implementors’ Forum,
although their role in both groups was always somewhat peripheral. The ITT
participants were often more observers than active contributors, although we
noted the pioneering contributions of the ITT in relation to the concurrency
debate in chapter four. Nevertheless, it came as no great surprise that ITT
would be one of the first major switching manufacturers that adopted Chill.
In fact, already from 1977, ITT was committed to using the programming
language, at a point in time the language was only early in its
implementation phase.

The early commitment would be put under pressure as the whole
organisational framework of the ITT telecommunication operations changed
in the mid-1980s, as the ITT’s telecommunication division was sold off to
the French company Alcatel, initially as a part of a joint venture, but later as
a full merger.10 At that point, the ITT had used Chill extensively when
developing their large-scale switching system, System 12.11 Alcatel would
stick with Chill when they continued to produce the System 12. The new

9 The terminology of software development environments was, to some extent, a
thing of the 1980s, where the term proliferated in conference proceedings, like those
from the International Conference on Software Engineering, and in journals such as
the Software Engineering Journal. As such, the term is historically correct when
discussing the period under consideration, although it might not be in vogue at the
moment. A similar term, so-called programming environments, appeared earlier, in
the late 1970s, and implied much of the same thing.
10 Araskog, The ITT wars; Christensen, "Switching Relations: The rise and fall of
the Norwegian telecom industry", 259 - 266.
11 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
415 - 24.

 155

firm would also port part of the software for another Alcatel switching
system, the E10, to Chill.12 Furthermore, during the ITT years and after the
Alcatel merger, a number of the company’s subsidiaries were involved in
their own Chill-based development projects, for example in Austria and in
Norway, independent of the System 12 and the E10 projects.

The development of ITT’s major switching system, System 12, was
programmed in Chill and introduced to the market in the mid-1980s. This
involved the development of implementations and systems at a number of
places in the USA, UK, Germany and Belgium. The French system E10, first
developed by Alcatel and later a part of the portfolio of the outcome of the
merger between Alcatel and ITT’s telecommunication activities, would
gradually use Chill in its software development, after starting out with a
number of other programming languages. Initially, the E10 was a result of an
earlier merger between the civilian telecommunication division of Thomson
and CIT, owner of Alcatel, which were put together just before the joint
venture between Alcatel and ITT.13 The local initiatives to use Chill were
going on within national subsidiaries, most notably in Norway and in
Austria. The development of the so-called nodal switch system, a military
switching system, in the Norwegian ITT subsidiary STK was done in Chill, a
project that would later spur the development of a fairly successful private
branch exchange called Digimat.14 STK had been active in the Nordic Chill
implementation projects from the late 1970s, and was an early adaptor of the
Nordic Chill compilers in many of their development projects. In the
following, I will dwell on the reasons to use Chill in all these three settings,
within the System 12 project, within the Alcatel merger and in the
Norwegian subsidiary STK.

The history of the System 12 switch is rather vague. The authoritative
text on everything about digital switching, Chapuis and Joel’s second
volume of 100 years of Telephone Switching, has even reverted to the
narrative structure of a “fairy tale” to sketch the upbringing of the System
12.15 The authors make it clear that there are many different versions of the
history of the System 12, versions that involve technical wrangling and
financial difficulties within and between various parts of the ITT.
Eventually, both the financial problems and the technical difficulties led to
the sale of ITT’s telecommunication divisions to Alcatel in 1987. However,
one thing stands out in the Chapuis and Joel account, regardless of its vague

12 Ibid., 319-31.
13 To be precise, Thomson-CSF Téléphone was taken over by “Compagnie
Industrielle des Télécommunciations” (CIT) in 1983.
14 Christensen, "Switching Relations: The rise and fall of the Norwegian telecom
industry", 175-205.
15 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985.

 156

and “fairy tale” structure: the plethora of ITT subsidiaries involved in the
System 12 development, and in particular how this was the case with its
software development. This distributed and international mode of software
development has also been confirmed in conversations with software
developers associated with the project.16 In the early 1980s, 10 locations in
different countries plus the USA were concerned with the development
and/or the supply of switching systems in the ITT and about 800
programmers were involved in the development, spread across a large
number of these locations.17 As described in chapter four, the early software
developments related to the System 12 project were initiated from two of the
ITT’s central research establishments in the USA, the ITT Programming
Technology Center in Stratford, Connecticut, and the Advanced Technology
Center in Shelton, Connecticut. Over time, the programming migrated from
the USA to Europe. The Americans kept the development of the operating
system of the switch, further tools were developed by the subsidiary in the
UK, the database of the switch was worked on in Germany while all
software maintenance was handed over to the BTM company in Belgium.
Subsidiaries in other European countries developed the call handling
routines for the systems deployed in their own country.18 By that time, the
numbers of people engaged in software development related to System 12
had grown far beyond the initial 800.19

ITT committed itself early to the use of the Chill programming
language, mainly because it was in a hurry. Only Siemens and Philips
embarked on similar “early adopter” projects, all three trying to bring out a
new generation of digital switches in the early 1980s. The decision to put
their weight behind Chill was also about striking a balance: the status of an
international standard was an asset to the multinational company that wanted
to coordinate development efforts across multiple local subsidiaries. It was,
on the other hand, also a possibility to adapt it to the needs of the local ITT
companies, like the possibility to accommodate it to a variety of target
machines and building tools that would be portable between host machines.
Furthermore, when the decision was made in 1977, the Chill definition was
still in a state of flux, lacking in several respects features that would be part
of the finished recommendation in 1980. Consequently, this created an

16 Neil Olsen, Tom Love and Capers Jones in various emails to the author, February
2011.
17 R. W. Daley and T. A. Haque, "ITT 1240 Digital Exchange – CHILL
programming Environment", in Second CHILL Conference (Lisle, Illinois1983).
18 Neil Olsen, in various emails to the author, February 2011.
19 Neil Olsen, who moved from being a junior software developer to become a
software architect at the ITT in this period, estimated the number of programmers to
be about 2000 at its high point.

 157

understanding of an apparent flexibility of the standard: the ITT could fill in
the blanks themselves, as well as make restrictions of it into their own
subset.

Another reason for this early backing of the CCITT programming
language was also the lack of a future for the existing high-level
programming language used by the ITT, the ESPL-1, which was a PL/1-like
language created within the company.20 Summing up, local conditions at the
different ITT development and supply sites combined with the lack of
technological unity around the existing programming language ESPL/1
created the opportunity to adapt to the CCITT recommendation very early
on. The ITT also believed that the technological choice to use Chill would be
a valuable asset in the varied national markets they targeted with their new
switching system, assuming the standard to be enforced as a requirement for
bidding for new tenders.

In use, Chill had considerable shortcomings. Within the ITT, this led
to the development of several improvements and local modifications. Two
issues proved particular problematic, as explained below by Wen from the
ITT Technology Center in Shelton, Connecticut:

ITT 1240 is made up of different software modules to enable separate
compilation. These different software modules have to communicate with each
other, or at least, the interfaces across these software modules have to be well
defined so that there will be no gaps between these modules. However, CHILL
as a programming language does not address these interface mechanism
problems. In addition, CHILL does not address the problem of configuration
management which is a crucial in a system as big as ITT 1240. This is especially
critical since ITT 1240 is developed across multiple design centers around the
world.21

Consequently, the ITT would put considerable weight behind efforts to
improve their toolkits to remedy these shortcomings, leading to the
development of their own environments, capable of handling the division of
labour they needed. Consequently, ITT’s use of the programming language
was never “pure.” To the ITT, it simply was not a “high enough” language.22
As a consequence, ITT developed a series of extensions and so-called
problem-oriented languages on top of it.

20 Hills and Kano, Programming electronic switching systems - real-time aspects
and their language implications, 143-46.
21 W. Wen, "Problem Oriented Languages", in Second CHILL Conference (Lisle,
Illinois1983).
22 Neil Olsen, in various emails to the author, February 2011.

 158

The ITT embarked on the construction of a new Chill compiler, the so-called
Chill2, from late 1981.23 As was the case with the ITT’s first Chill compiler,
this involved the use of outside contractors. This time around, the firm
Intermetrics, a firm from Cambridge, Massachusetts, was the contractor,
although some of the work was also retained within the ITT. The
maintenance of this compiler was eventually moved to the UK, to the ITT
Programming Support Centre in Harlow, Sussex. By the early 1990s,
however, the Chill compiler was maintained, developed and supported by an
outside company, Richard Daley Associates, and their improvements made
to the Chill tools used by the ITT represented one of the few continued
efforts in Chill tool developments in the 1990s.

The use of Chill in the development of the Alcatel-developed switch
E10 was an afterthought. The software in E10 was originally coded in three
different programming languages. The call handling was programmed in
machine code, the operation and maintenance software in PL/1-like language
CPL/1 and the signalling system was coded in PL/M, a language originally
created as the implementation language for the operating system CP/M.
After Alcatel incorporated the ITT telecommunication operations, it was
decided that the next E10 switch should use the same software as the old
version, but that the code should be in Chill – the programming language
favoured by the newly acquired ITT. To achieve this, Alcatel decided to port
the existing software on the E10 switch – and not develop new software.
Since the new generation of E10 switches, cryptically named OCB 283,
would be based on the Motorola 68020 processor, a completely new set of
compilers and tools would be developed. At the same time, tools that would
try to automatically translate the code in CPL/1 and PL/M were developed.
In the end, the software porting project would involve the development of
new compilers, translation tools and manual translation. All together, Alcatel
would use 83 man-months to port all the software to Chill, with an additional
66 man-months used to port the machine code used in the call handling to a
usable machine code for the new target processor.24

The effort towards integration and concentration on Chill within the
newly formed Alcatel system had various technical reasons. The mixture of
machine code, PL/M and CPL/1-developed parts in the original E10 design
were a result of a similar mixture of hardware, using three different
processor families within the same switch. The new E10 design was based
on a single processor, the Motorola 68020. Consequently, this change
created an opportunity to focus on a single programming language (and a
single compiler, respectively).

23 The following section is based on Richard Daley, emails to author, April 2011.
24 F. Hamonno et al., "Switching System Software Base Portage to Chill", in Fifth
CHILL Conference, ed. Antonio Palma (Rio de Janeiro, Brazil1990).

 159

In the case of the Norwegian military switching system, the adoption of Chill
as the programming language had a number of different causes than those
discussed above. At the same time as ITT decided to use Chill
internationally in 1977, the Norwegian subsidiary STK made the same
choice, but within a rather different context: In 1973 STK got a contract
from the Norwegian Defence Research Establishment (NDRE, FFI in
Norwegian) to develop a small digital switch called the nodal switch.25 This
project was a local initiative based on a number of local relations, between
STK and the NDRE and between STK and the research establishment within
the Norwegian telecommunication administration. Today, the nodal switch
forms one of the technological and commercial bases to the Norwegian
subsidiary of the defence company Thales, and during the 1970s and 1980s it
was an important part of the operations of STK.26

From 1977, it was decided that the software part of this project should
be developed in Chill. Here, the fear of an enforced standard could not have
been imperative, since the market for the nodal switch was not that of public
switching and telecommunication administrations, but that of the military.
National relations were important, as the close relations between Runit in
Trondheim and STK in Oslo paved the way for a close collaboration on
software development within the nodal switch project. The compiler created
by Runit within the Nordic Chill project was adopted and sold to STK,
which bypassed the internationally coordinated compiler project within its
parent, the ITT. STK was, in fact, the first real user of Runit’s compiler and
the first customer of the soon-to-be-spun-off company Urd.27 As such, the
decision to use Chill within STK was influenced by the nationally oriented
relationships of the firm. The technical difficulties were, however, fairly
similar to those that were experienced within the System 12 project
internationally: the adoption of Chill at a very early point in time meant
several of its features had still not been decided, and were not available to
the Norwegian implementers. Still, STK relied on the relationship with Runit
rather than with their parent company when developing the software and the
tools.

Two paths within the ITT, and, from 1987, a third path within the
newly formed Alcatel organisation, led to Chill. Within the ITT, this
included both the multinational use of Chill within the System 12 project and
the local development project of the Norwegian Nodal switch. These two
paths were continued within the Alcatel system, after the French

25 The following is based on Christensen, "Switching Relations: The rise and fall of
the Norwegian telecom industry", 180-85.
26 Ibid., 175.
27 Stein Erik Ellevseth, "The SDS Software system", in Third CHILL Conference
(Cambridge University1984).

 160

procurement of the ITT’s telecommunication assets in 1987. This acquisition
led towards the third path of Chill use, one concerned with porting the
existing code of the E10 switch to Chill and the development of new E10
software in this programming language.

Encountering C – Chill, Philips and the AT&T
Philips was one of the main participants in the creation of Chill. Their young
programmer Remi Bourgonjon had led the work in both the Team of
Specialists and the Implementors’ Forum. His successor, Kees Smedema,
continued the strong presence of Philips within the CCITT in the study
period right after the standard was made an official CCITT recommendation,
from 1981 to 1984.28 Smedema was also actively promoting the use of Chill
within the telecommunication division of Philips. One of the largest
undertakings of Chill compiler design was begun; a project that continued
well beyond early implementation experiments and was put into real use in
the early 1980s. However, Philips joined the AT&T in a European joint
venture from late 1983, radically altering the possibilities to use Chill in the
development of new switching systems – and more generally, radically
altering the possibilities to continue the development of a Philips-led
switching project altogether.29

The joint venture meant a complete halt in the development of the
Philips telecommunication systems – as the strategy of the venture was to
use the Philips organisation to market the AT&T-developed No. 5 ESS
system in Europe. As such, the whole impetus of the Philips involvement in
the Chill project seemed out of place. Some of the development and
production of AT&T’s ESS system was continued in Europe, and in
particular in its development laboratory in Brussels, Belgium, the
Programming Languages Support Group. One of the efforts was to develop a
European or international version of the software of AT&T’s switching
system, a version based on Chill. The joint venture and the decision to create
an internationalised software version for the AT&T’s switching system
created an opportunity to muscle out the credentials of the C programming

28 Information about the two projects has been obtained through two extensive
interviews: Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands; Kees Smedema, interview with author, 20 January 2010, Heeze, the
Netherlands.
29 The joint venture has been discussed in Farok J. Contractor and Peter Lorange,
Cooperative strategies in international business (Lexington, Mass.: Lexington
Books, 1988). The following chapter is particularly informative: Karen J. Hladik,
"R&D and International Joint Ventures", in Cooperative strategies in international
business, ed. Farok J. Contractor and Peter Lorange (Lexington, Mass.: Lexington
Books, 1988).

 161

language, used in the No. 5 ESS favoured by the AT&T, and the Chill
programming language.30 However, the joint venture would soon crumble. In
1990, Philips withdrew from the public telecommunications market all
together, exiting the joint venture with AT&T. 31 As such, the wrestling
match was a short one. However, it was still an important moment in the
diffusion of Chill.

To understand the skirmish and the outcome of the clash of
programming languages within the joint venture, we need to understand a bit
more about what went on within Philips before the joint venture, as well as
the activities within the joint venture between Philips and the AT&T.
Regarding programming languages, the practices within Philips in the 1970s
were as diverse as those outside Philips. A plethora of programming
languages and low-level coding practices flourished in the various product
divisions involved in computer use and development at Philips. While Remi
Bourgonjon had envisioned his participation in the CCITT as way to change
the low-level coding of assembly-like languages to a more high-level
language in the telecommunication division, spurred on by working long
hours with the troublesome code in his initial job as a programmer, such a
shift could also be fulfilled by applying another existing programming
language, a policy favoured by other product divisions within Philips. The
computer industry division of Philips were also heavy users of programming
languages. PL/1 and Fortran were popular at the time. In the middle of this,

30 The general understanding of the telecommunications division of Philips has
benefited from Herman Oosterwijk, "Switching Technology through Five Decades:
Dutch Telecommunications under Change", in Buidling bridges between ideas and
markets, ed. Frans van Waarden, Report to the European Commission (2002). See
also Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
240-42. On the relationship between the research department and the product
divisions, the detailed history of Philips’ Natuurkundig Laboratorium has provided
invaluable insight. See Marc de Vries, 80 years of research at the Philips
Natuurkundig Laboratorium (1914-1994): the role of the Nat.Lab. at Philips, ed.
Kees Boersma (Amsterdam: Pallas Publications, 2005). On the development of
Philips Computer Industry, see Jan van den Ende, Nachoem Wijnberg, and Albert
Meijer, "The Influence of Dutch and EU Government Policies on Philips'
Information technology Product Strategy", in Information Technology Policy: An
International History, ed. Richard Coopey (Oxford: Oxford Unievrsity Press, 2004).
31 AT&T itself spun off its technology company, composed of the remains of
Western Electric and Bell Labs, on 30 September 1996, into what became Lucent.
On Western Electric and Bell Labs, see Stephen B. Adams and Orville R. Butler,
Manufacturing the future : a history of Western Electric (Cambridge ; New York:
Cambridge University Press, 1999); Kenneth Lipartito, "Rethinking the invention
factory: Bell Laboratories in Perspective", in The Challange of Remaining
Innovative, ed. Sally H. Clarke, Naomi R. Lamoreaux, and Steven W. Usselman
(Stanford, California: Stanford Business Books, 2009).

 162

Philips Research Laboratory was actively promoting the use of more modern
(when compared with Fortran) and less complex (when compared with PL/1)
programming languages, like Pascal or Modula.

On the one hand, the scientific credentials were favoured by the
Research Laboratory. On the other, industry favourites like PL/1 and Fortran
were held in high esteem in the computer industry division. Between these
two, the bastard child that was to become Chill would eventually become the
choice of the telecommunication division.

Initially, Kees Smedema was a researcher at the research laboratory,
and not that keen on Chill. The research lab in which Smedema was working
tried to persuade the different product divisions to switch to what Smedema
described as “a decent language”,32 more or less hoping for the adoption of
Pascal or Modula as the internal standard. This effort was directed towards
the computer industry division and the telecommunication industry division.
In January 1979 Philips installed a “Committee on Pascal-like languages”,
which was usually known as the Pascal Group. The group held a mandate to
advise on the use of different programming languages within various product
divisions, and the setup of an in-house educational facility in programming.33
This committee grew partly out of the active advocacy of the research
laboratory, and consequently the group continued its effort to persuade the
product divisions to switch to Pascal and Modula. The committee
represented an important boundary-spanning unit, as it transgressed the
corporate research laboratory and the product divisions, involving people
like Remi Bourgonjon. After a while, Chill was included among the
“favoured languages” of the Pascal Group, and from 1980, Kees Smedema,
one of the central members of the Pascal Group, joined Bourgonjon at the
Telecommunications division. The strong belief in the virtues embodied in
Pascal and Modula had to be replaced by the much more unruly Chill. To the
colleagues of Smedema in the research laboratory, the move to
telecommunications was likened to the giving up of beautiful women for an
old hag. See the figure on the next page for this.

32 Kees Smedema, interview with author, 20 January 2010, Heeze, the Netherlands.
33 The committee is described in Smedema, Medema, and Boasson, The
programming languages : Pascal, Modula, CHILL, and Ada. The committee also
published a quarterly newsletter named Compas (Communication on Pascal-like
computer languages). Copies of this internal publication have been loaned from the
private collection of Kees Smedema (hereafter cited as KSC).

 163

Figure 5.1 From lightly dressed temptations in research to the strict realities of
telecommunications.34

Despite the turning up of noses at the research laboratory over Chill, the
programming language was used in the development of two new switches
that were to be introduced during the mid-1980s: a small local exchange
called TCP 16 and a large trunk exchange called TCP 36. Both were
developed from around 1979.35 The TCP 16 was forcefully stopped fairly

34 This cartoon was drawn when Kees Smedema left the Philips Research Lab for
Philips Telecommunications Systems. It depicts his room in the Laboratory, and
illustrates his relationship with the two programming languages Modula and Ada,
while his future looms in the background as a strict aunt with the rolling pin of Chill.
The books with O.R. referred to Smedema’s activities as chairman of the employee
representative council. The picture on the wall (voor Cees (wrong spelling) Dries)
refers to the Dutch Prime Minister Dries van Agt, which was born in the town in
which Smedema lived. Smedema was at the time a member of the Town Council,
which wanted to make van Agt an Honorary Citizen, a proposition Smedema
opposed. The cartoon was drawn by Alan Martin, a member of the so-called
Tuesday Afternoon Club, led by the luminary computer scientist Edsger Dijkstra.
35 Some details about the software aspects of the TCP 16 are given in D. Hammer,
FG. Franken, and P. C. Green, "A distributed operating system for the TCP16
system", in Fifth International Conference on SOftware Engineering for
Telecommunciation Switching Systems (Lund, Sweden: Institution of Electrical
Engineers, 1983).

 164

early in its development, while the latter was continued up until a field trial
in the summer of 1983.36 The early commitment did not pay off, as the joint
venture with AT&T changed the playing field completely, stopping all future
development of Philips switches, and consequently putting the lid on the
TCP 36 project as well.

Despite the joint venture with AT&T, the software developers of the
Philips switches did not give up on Chill. This hinged on a different kind of
argument than that of using a “decent language”, which had led to the
adaptation of Chill within Philips in the first place.37 The crossroads that
were the AT&T Philips joint venture opened up the possibility of using Chill
in the development of AT&T’s new line of switches, the No. 5 Electronic
Switching System (5ESS for short). This involved a close encounter with a
programming language that was about to make a big stir in the world of both
computing and telecommunications: C.38

AT&T had during the 1970s developed the programming language C,
which they used in all their development projects at the time of the merger.
To the developers in Philips, C spelt trouble, as it threatened to replace Chill
completely. However, it also created an opportunity to continue their Chill
development. As Kees Smedema recalled:

We tried to use every argument in order to persuade AT&T that they should do
different in a European context than in an American context: C is American -
Chill is international. You will be confronted with telecommunication
administrations which will force you to use Chill. So you better make sure to
have Chill in your switches, because otherwise you will be excluded from
tenders. Of course we also used technical arguments: C was definitely a lower-
level language and less reliable than Chill.39

This was, apparently, a sufficient argument, as the joint venture would
support and pay for the use and development of Chill-related tools for a few
years. The AT&T had to enter the emergent European market because of its
loosening grip on the American market due to liberalisation. To get a foot in
this market would require humility regarding what were believed to be the
future specifications of their new customers, European telecommunication
administrations. As a result, the AT&T Philips Telecommunications tried to
create a bridge between C and Chill at their Programming Language Support
Group in Brussels, both in technical and organisational terms. In
organisational terms, the project involved people on both sides of the

36 Remi Bourgonjon, interview with author, 16 January 2009, Heeze, The
Netherlands.
37 Kees Smedema, interview with author, 20 January 2010, Heeze, The Netherlands.
38 Ritchie, "The Development of the C Language".
39 Kees Smedema, interview with author, 20 January 2010, Heeze, The Netherlands.

 165

Atlantic, like the designated group in Brussels (an AT&T Philips
Telecommunications operation) and at Bell Labs Software Development
Systems Department in Naperville.40 A group of 15 people on both sides of
the Atlantic worked on a technical solution to bridge the two programming
languages, C and Chill.

Technically, this resulted in a set of tools that facilitated the
translation of C code to Chill, and the integration of Chill-programmed code
into the 5ESS system. 41 The result was an integrated development
environment for both Chill and C programming, including a continuation of
the compiler implementation projects that were already underway before the
joint venture, although with a different set of target machines.42 This was
achieved without hampering the capabilities of Chill, nor altering the
components in the 5ESS development environment. This latter part was the
biggest challenge, according to Tom Hornbach of AT&T in Indian Hills:
“One thing we discovered is that interfacing two high-level language isn’t
necessary very difficult. The challenges arise when you take into account a
pre-existing software environment.”43 At the time, it was believed that the
way Chill was integrated into the C environment of the AT&T provided a
model for others interested in implementing transparent interfaces between C
and other high-level languages, like Ada and Modula.44

40 “CCITT Languages Shape Products, Development”, AT&T Technical Report,
May 1986, KSC.
41 Mary J. Rowe, "Interfacing Chill with existing C-based systems", in Third CHILL
Conference (Cambridge University: ITT Europe, 1984).
42 “Chill compiler released on Unix/370”, 5ESS Export News Flash, 26 February
1985, KSC.
43 Ibid.
44 Ibid.

 166

Figure 5.2 The bridge that almost was. 45

Mary Jo Rowe of Bell Labs summarised parts of the project and its future as
follows:

This work has shown the compatibility and the ease of interfacing the C and
CHILL languages. Moreover, it demonstrates that an evolutionary approach is
possible to provide a multi-lingual software environment that will allow a
graceful introduction of CHILL into current and future C-based software
systems.46

In 1987, only two years after the full release of a compiler for AT&T’s Unix
system, the Chill programming environment and the Chill compiler were
ended. 47 The legacy of the Chill environment in Philips was summarised in
an internal note circulated from Hilversum in 1987: “The CHILL
programming environment provided a sound and healthy, though resource
intensive method of developing software. It will go into history as a major
positive contribution to quality software development.” 48 Technically, its
legacy was a mixed blessing. Organisationally, the project was one of many
signs of a crumbling partnership: the AT&T Philips joint venture soon

45 Unix/C and Chill was about to be bridged in AT&T Philips Telecommunications.
This picture was a poster made for the AT&T Philips joint venture.
46 Rowe, "Interfacing Chill with existing C-based systems".
47 Erik Helbo, untitled note, Hilversum, KSC.
48 Ibid.

 167

disintegrated and Philips would leave the venture and telecommunications
altogether. For the people involved in Chill and software development for
telecommunications systems in Philips, this meant reallocations and new
pastures: Smedema and Bourgonjon moved to the centre for software
technology at Philips, set up at corporate level and led by Remi Bourgonjon.
Here, work on software improvement techniques was put into use and
developed; highlighting the move away from the belief in particular
technologies like a programming language as a sole driver of improvements.
AT&T would, on the other hand, continue its reliance on C.

The failed partnership marked the end of the telecommunications
division of Philips, a transition towards digital switching and computerised
systems. At the outset, the company had sought partnership within the
CCITT to help ease the transformation. In the end, another partnership, with
an American technological leader, would mark its end. On a technological
level, this also marked the end of the strong presence of Dutch engineers and
computer scientists within the Chill community. Kees Smedema ended his
involvement with the core Chill community when the new study period
started in 1985. Another indication of this was the total absence of Dutch
participants at the fifth Chill conference in 1990.49 However, some of its
legacy continued within the company, as the importance and centrality of
programming and software development in other product divisions would
only increase during the 1980s and 1990s. In this way, the arguments
favoured by those wishing to orient the software engineering practice in the
direction of a mathematically oriented computer science would continue to
exert influence of the coding practices within Philips.

49 Apparently, the use of Chill continued in Philips Kommunikations Industrie AG, a
part of Deutsche Philips GmbH. At the fifth conference, one paper by authors
affiliated with this subsidiary was presented. See A. Bergmann, T. Letschert, and A.
Lingen, "CHILL/tss – a System Development Environment for Telephone Switching
Systems", in Fifth CHILL Conference (Rio de Janeiro: Telebras, 1990).

 168

Early adopters and evolutions at Siemens
One of the largest systems developed in Chill was created by Siemens, with
their switching system EWSD.50 The first EWSD switch was put into service
in November 1980 in South Africa, and by 1982 the system was installed in
eight other countries.51 Throughout the 1980s and 1990s, the system was
widely exported, making the EWSD one of the most widely adopted
switching systems, together with ITT/Alcatel’s System 12.52

The use of Chill coincided with an extensive effort to expand into new
markets by Siemens. Most notably, it coincided with Siemens opening a
development facility in Boco Raton, Florida, in 1979, targeting the so-called
Bell Operating Companies, an effort that increased after the AT&T
divestiture in 1984.53 The development of the EWSD switching software was
spread around various locations in Europe and the USA.

The first version of the EWSD system was already at the market at the
very same moment that the CCITT ratified the Chill proposal as an official
recommendation, making use of Chill as the main programming language for
the programming of the switching system’s central processor. This early
adoption was in the similar mode as Philips, the ITT and the NTT, which all
committed to the use of Chill in the period of the Implementors’ Forum. Just
as with these other early adopters, Siemens had been an active participant in
and contributor to the work within the CCITT, in particular through Heiko
Sorgenfrei, who held prominent positions in both the Team of Specialists
and the Implementors’ Forum.

Throughout the 1980s and 1990s, Siemens continued to be committed
to Chill.54 By the mid-1990s, it was estimated that Siemens had spent 25,000
staff-years on software engineering at around 20 development centres around
the world to develop the software. More than one billion gross lines of code

50 On the EWSD in general, see Chapuis and Joel, Electronics, computers and
telephone switching: 1960-1985, 409-14.On EWSD and its software, see Dietrich
Botsch and Hans Eberding, "EWSD, A Real-Time Communication System with
High-Level Language Software", IEEE Transactions on Communications 30, no. 6
(1982).
51 On the sale to South Africa, see David Kaplan, "State Policy and Technological
Change-The Development of the South African Telecommunications Industry",
Journal of Southern African Studies 15, no. 4 (1989).
52 By 1988, the EWSD system had been sold to 32 countries, to a total of 80
telecommunication agencies and had 8 million lines in service. Chapuis and Joel,
Electronics, computers and telephone switching: 1960-1985, 413.
53 Ibid.
54 Clark, Hey, and Schlaffke, "EWSD software modularity - smoothing the way for
performance increases".

 169

were, by that time, contained in the EWSD Configuration Management
Database, a major proportion of this being Chill code.55

The use of Chill at Siemens was extensive, probably more so than at
any other manufacturer. It was used in the development of the switching
execution programs, in the administrative applications and in the
development of a number of support and software development tools. This
latter category, where Siemens chose to develop support software such as
library routines, linkers and testing aids all in Chill, even though they were
tools used when developing software rather than tools used in
telecommunication systems, was novel and considerably more extensive
than in any of the other examples of use. 56 This was no small feat.
According to Erwin Reithmaier, a Siemens engineer, it paid testimony to the
generality of the CCITT language:

We think there is no better proof for the general applicability of CHILL […] than
the EWSD support system executing now for more than three years under most
severe development and mass production conditions.57

According to reports in technical journals and at conferences, the
experiences were generally positive. One example was a paper presented in
the American IEEE’s journal Transactions on Communications in 1982:
“The overall experience of using Chill in a telephone switching system is
very positive.”58 In particular, this was related to the effect the programming
language had on eliminating errors in the software:

The main advantage was found in the number of software errors still present in a
large software package. A considerable reduction, on the order of one magnitude
compared to assembly language programming, was experienced at the point of
time when developers, after module and functional test, hand over their product
to the integration team for final integration and stabilization. On average, only
two errors per 100 lines of code have been found by integration teams. The
number of latent faults in a system, which is an indication of stability and failsafe
operation, can therefore be estimated to be remarkably small.59

Apart from the better error rate provided by the application of Chill, the head

55 Numbers from Binder, "A telecommunication development: Siemens' digital
switching system, EWSD".
56 Botsch and Eberding, "EWSD, A Real-Time Communication System with High-
Level Language Software": 1341.
57 Erwin Reithmaier, "Compilation Control in a Large CHILL Application", in
Second CHILL Conference (Lisle, Illinois: Bell Laboratories, 1983).
58 Botsch and Eberding, "EWSD, A Real-Time Communication System with High-
Level Language Software": 1337.
59 Ibid.: 1342.

 170

of the EWSD project and its chief software developer, Dietrich Botsch and
Hans Eberding, emphasised two important aspects of Chill: the portability of
the code that made it possible to provide software for different switching
processors without extensive recoding, and the concurrency concepts built
into Chill. As put forward in chapters three and four, these two were
important design criteria when the Chill project was started. In terms of
concurrency, it was also a hotly debated subject within the Implementors’
Forum. As the EWSD project evolved throughout the 1980s and 1990s,
Siemens would increase their stake in the Chill developments within the
CCITT. Although the Siemens role in the Team of Specialists and in the
Implementors’ Forum had been of some importance, they were not the most
significant of contributors. Later on, and in particular in the latter half of the
1980s and in the early 1990s, Siemens participants spearheaded several
important language design improvements in the CCITT.60 I will return to
these advances in chapter six.

Taking on the World
To account for the diffusion of Chill beyond the efforts mentioned above, a
general survey of its diffusion has been conducted. In the following, I
account for both the implementations and the system programming efforts
that emerged after Chill was ratified by the CCITT in 1980. In 1984, more
than 25 different organisations had implanted or were developing compilers
for Chill. A much smaller number were developing telecommunication
systems with it in terms of programs and applications deployed in
telecommunication equipment. The organisations ranged from small
research establishments to large telecommunication manufacturers. In
general, a large number of compilers were created, while the numbers of
actual systems created with Chill were fewer.

Only ITT (through various subsidiaries) and Siemens used Chill in the
production of software for switching systems that were put into full
operation on a global scale. Philips had, up until the creation of a joint
venture with AT&T in the end of 1983, used Chill in the creation of two new
switching systems, but the projects were stopped as the joint venture was put
into action.61

Furthermore, the NTT of Japan used Chill in various ways in the
creation of a number of switching systems. From 1979, the NTT had used
Chill when developing the D10 switch, which was later followed up in a

60 Winkler, "CHILL 2000".
61 Information about the two projects has been obtained through two extensive
interviews: Remi Bourgonjon, interview with author, 16 January 2009, Heeze, the
Netherlands; Kees Smedema, interview with author, 20 January 2010, Heeze, the
Netherlands.

 171

series of other switches.62 The international telephone carrier of Japan, the
Kokusai Denshin Denwa (KDD), also applied Chill in switching projects in
cooperation with NEC.63 NTT, NEC, Hitachi, Fujitsu and Oki Electric were
all cooperating in producing the D10/D50/D60/D70 range of switching
systems programmed in Chill, using a compiler developed by the NTT.

Chill was first and foremost used and implemented by organisations
that had participated in the initial design process: ITT, Siemens and Philips
had all been important contributors in the Implementors’ Forum and were
continuing their backing of the programming language in the early 1980s.
However, the language also spread to a number of new markets and
countries like Korea, Brazil, China and India, which all embarked on their
own switching systems development projects in the 1980s. The Swedish firm
L. M. Ericsson, which had participated in both the Team of Specialists and
the Implementors’ Forum, is the most notable exception to this. By the early
1980s, L. M. Ericsson opted to not use Chill at all, continuing their use of
their own programming language Plex and applying the competing Ada
programming language in smaller projects, which is something I will return
to in the next chapter.

Below, I have compiled an overview of the use of Chill from 1980
onwards. For the period up to 1984, it draws on official reports from the
CCITT. For the later years I have added projects that have been reported on
at the Chill conferences. Consequently, the survey is most complete for those
first four years, while not that all-inclusive for the period until 1990.
I make the distinction between implementations and systems: an organisation
involved in an implementation would typically be working on the creation of
a compiler, a linker and various other tools that would assist the
development of applications written in Chill. For reasons of completeness,
some of the projects that are discussed in more detail in the next two
chapters are included in the survey below. In particular, this is the case of
use of Chill within independent tools suppliers, which is the subject of
chapter seven, and the use of Chill within telecommunication
administrations, which is the subject of chapter six.

62 Maruyama, Sato, and Konishi, "NTT CHILL implementation aspects and its
application experience". See also Lars-Göran Larsson, "Future Telecommunications
in Japan - Policy and Technology", in Utlands rapport från Sveriges Tekniska
Attachéer (Stockholm: Sveriges Tekniska Attachéer, 1984).
63 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
426.

 172

Country Organisation Implem. System Switching System

USA ITT/ATC X X System 12

 CTE X

Austria ITT Austria X X 5200 BCS (Amanda)

 Siemens Austria X EWSD

Brazil Telebras / Embratel X X Tropico RA, EX

Poland Technical University
of Warsaw

X

Japan KDD X X XE10, XE20

 NTT / Hitachi,
Fujitsu, NEC and Oki

X X D10 ESS, D50, D60, D70

 Fujitsu X X Fetex 2000/3000

China Nanjing Institute of
Communication
Engineering

X X PXAJ-500/2000

 10th Research Institute
of China

 X PXAJ-500/2000

Romania ITCI X

South Korea ETRI, Daewoo,
Samsung, LG,
Hanwha

X X TDX-1, TDX10

Portugal INESC X

India Tata X

 C-Dot X X DSS (M680X0-based switches)

Italy Telettra X

 SIP-CSELT X

 Italtel-SIT X X UT-100, LINEA UT

 FACE (ITT) X X System 12

Germany Siemens X X EWSD, ETS, EMS, AIGFON,
BIGFON

 Tekade (Philips) X

 173

 Standard Electric L.
(ITT/SEL)

X X System 12, 5600 BCS

Norway STK (ITT) X X 5500 BCS, Digimat 2000,
Tadkom

 Norwegian Telecom
Administration

X

 Runit / Urd / Kvatro X

USSR Moscow Institute of
Telecommunication

X

 Moscow State
University

X

Netherlands Administration X X

 AT&T & Philips
Telecom

X X TCP 16, TCP 36

Denmark Technical University
of Denmark /
Administration /
Imperial Software
(UK)

X

Switzerland Hasler X TTCF Telex switch

Table 5.1 Chill implementations and applications.64

As can be seen, most of the table is made up of organisations that had
committed themselves to Chill through their active participation in its
development. It also tells us that few administrations were directly involved
in using Chill, even though some implementations were carried out by
administration-affiliated research institutes, such as the Italian SIP-CSELT.
A few administrations, such as the Nordic and the Dutch, were directly

64 Based on information in “Reply to Question 8/XI – Maintenance, training,
compliance and environment aspects of CHILL”, CCITT Plenary Assembly 7
Yellow Book Vol. 1-3 1980, CCITT, ITUA. Other sources are Svein Hallsteinsen,
“Overview of projects and contracts at RUNIT dealing with CHILL and CHIPSY”,
20 November 1985; Kristen Rekdal “CHIPSY – Reference List”, 6 March 1986,
URD Information technology A/S; Kristen Rekdal, “Report from fourth Chill
Conference”, 8 October 1986, all in ”L 0136 Samarbeid”, series ”Da, 1961 – 1996”,
NTR. Some details of the outcomes of the joint venture between AT&T and Philips
Telecom draw on interviews with Remi Bourgonjon and Kees Smedema. On the
Korean use of Chill, see Kwon Yong Rai, "Software technology and industry of
Korea: widening horizon and emerging presence" (Orlando, FL, USA). Additional
information are drawn from Rekdal, "CHILL - The International Standard Language
for Telecommunications Programming".

 174

involved in implementation projects.
The survey reveals broad diffusion of the programming language in

geographical terms, as its use spread from the countries first involved in its
design to countries with limited involvement in the early period of Chill.
Also notable is that the language spread to a number of projects outside the
area of public switching for which Chill was originally mandated, like the
military communication switch of the Norwegian ITT subsidiary STK. Some
of this diffusion was partly due to the reorganisation of firms like Philips and
the ITT, involving subsidiaries in various countries and new joint ventures
like AT&T Philips Telecommunications and the sale of ITT’s
telecommunication division to Alcatel. However, its diffusion to countries
like India, South Korea, Brazil and China reveals a geographically
expanding community: new implementations and applications sprung up in
these countries, in particular in the fourth study period within the CCITT,
running from 1985 to 1988. The Indian, Brazilian and Korean efforts were
also on a large scale, involving the programming of what would eventually
become commercially available switching systems.

Some conclusions
In terms of use by large manufacturers, Chill was a moderate success and a
relative failure. Since its inception in the mid-1970s, more than 12,000
programmers worked with the language. Some of the most successful
telecom switching systems on the world market until the early 1990s were
engineered with Chill, like the System 12 family of switches from the ITT
and the EWSD switches from Siemens.65 If one counted the number of
installed lines of public exchanges by the early 1990s, one would find that
Chill dominated as the language used by the most installed switches, with
the programming language Protel, used by Northern Telecom, and C, used
by AT&T, the next most important. 66 Chill was, at that time, the only
programming language common to more than one of the major public
telecom switching systems.

Chill became the tool of choice in a number of extremely large
programming projects, involving large teams, spanning numerous user sites
and in organisations that spread their programming across national
boundaries, resulting in technically large systems. Furthermore, Chill was

65 Statistics and numbers are found in Rekdal, "CHILL - The International Standard
Language for Telecommunications Programming". The main switching system
programmed in Chill was System 12, produced by ITT and Alcatel, and EWSD by
Siemens. See Chapuis and Joel, Electronics, computers and telephone switching:
1960-1985.
66 Rekdal, "CHILL - The International Standard Language for Telecommunications
Programming".

 175

adopted by researchers and manufacturers in emerging economies, in
particular in China, India and Brazil. Following this, in 1993 Kristen Rekdal
concluded: “It is safe to say that CHILL has largely achieved its original
objective of becoming a standard language for the programming of public
telecom switching systems.”67 However, most of the manufacturers that used
Chill were part of the Chill project from its outset, with the exception of the
more specialised application of Chill in newly industrialised countries.

The evolution of the telecommunication equipment market fostered,
as well as hindered, the widespread use of Chill in the 1980s. For example,
the use of Chill in ITT and later on, in Alcatel, was intimately related to the
expanding international market, as well as the acquisition of ITT’s
telecommunication division by Alcatel. An example of the opposite was the
case of Philips. In 1983, Philips joined the American AT&T in a joint
venture, a move that would eventually halt the use of Chill in that company,
although not without a fight: the American AT&T first agreed on developing
a system for translating existing software and integrating new Chill-based
software into their new switching system. The Siemens use of Chill can be
understood in a similar fashion, as it coincided with a sustained effort to
export the Siemens systems beyond the company’s typical markets, in
particular to the US market after the AT&T divestiture in 1984. The
adoption of Chill within the ITT was, on the other hand, related to their
strategy to commit early to Chill as a way to gain market shares. However,
the difference in strategies between ITT subsidiaries highlights the
considerable amount of independence lent to technical expertise in technical
decisions, and as such at least implicitly underscores the importance of the
resonance Chill had among some technical practitioners.

All in all, Chill was really neither a success nor a failure: it was
something in between, something that did not really take off, but neither did
it fall flat. Most discouraging was the relative failure of the vision of Chill
as a tool that would increase the administrations’ control over their own
equipment and procurements, which would simply disintegrate during the
1980s. Few of the users documented in the survey above had any clear
relationship with the administrations, and few administrations would enforce
the use of Chill upon their manufacturers, even though many of them acted
upon a fear of such enforcement. This limited appeal to the
telecommunication administrations is the subject of the next chapter.

67 Ibid.: 6.

 176

 177

6. Advances and rejections: administrations,
communities and the struggle for diffusion

Throughout the 1980s, Chill was improved and made more capable. The
language specification was refined and new language features were added. In
particular, the language was made more advanced and efficient when used in
large projects. Despite these advances, the language did not attract any real
interest from telecommunication administrations, either as a tool or as a
mandatory requirement in their procurement. Consequently, its impact and
diffusion was more restricted than the initial success had suggested. This
chapter looks at why the national administrations abandoned the language.

Following the rejection by the administrations, the Chill community of
language designers became even more dominated by participants from
manufacturing firms. Still, the community expanded in real term and went to
improve the language considerably. This community was underlined by an
infrastructure of conferences, user groups and a circulated bulletin.

This chapter explores the duality of technical improvements and
limited diffusion among the administrations, from around 1980 and up until
the late 1980s. In particular, I trace the reasons why the administrations
rejected the language, and the reasons to continue improving the language
within the CCITT and the wider Chill community. Following this, this
chapter answers the question on how the pattern of diffusion directed the
advances and improvements made to the language.

Commitments
In December 1980, the telecommunication administrations of Austria,
Belgium, Finland, France, the Federal Republic of Germany, Norway, the
Netherlands, the United Kingdom, Sweden and Switzerland released a
statement on their continued support for Chill in preference to any other high
level language for telecommunication applications.68 The signatories to the
agreement stated that “since Recommendation Z.200 was approved
unanimously and since the Administrations concerned invariably seek
harmonization in agreement with the CCITT, CHILL is the approved

68 The agreement was revealed in a letter from the president of the responsible CEPT
committee, D. Gagliardi, to the European Commission, February 1982. D. Gagliardi
to Commissions des Communautés, 3 February 1981, Rome, in Annex 6 to Doc.
T(81) 4 Add, “Télecommunications” Réunion extraordinaire de la Commission
Innsbruck 11 – 20 mai 1981, Tome II, Documents présentés á la Commission (T
(81) 1 á (81) 28).” box “L0022 – Telekomiteen, 1979 – 1984”, series “Dbc
Utenlandskontoret,” Archive “Administrasjonsavdeling”, NTA. A report on the
meeting is also given in Kristen Rekdal, “Report from CEPT/CCH meeting on
CHILL vs Ada, Helsinki 5 December 1980,” box “NT-P 1980-1981”, KRC.

 178

language within their countries”. 69 Evidently, these 10 European
administrations wanted to put their weight behind Chill, by stating it was the
approved programming language in their territories. The agreement was
released after a meeting in a special working group of the CEPT, the
European Conference of Postal and Telecommunications Administrations,
which until the early 1990s was engaged in cooperation on commercial,
operational, regulatory and technical standardisation issues, in many ways a
European ITU, even more “administration dominated” than the CCITT.70
Support from the CEPT reaffirmed the initial impression of Chill as a tool
favoured by the administrations, and also hinted towards the idea of
programming as an activity carried out by the administrations. The statement
is also in line with those made at the inception of the Chill project, when it
was proposed that the administrations should take larger responsibility for
the software of their switching equipment. By the late 1970s and early
1980s, similar tendencies were reported as emerging in Australia, New
Zealand and in smaller countries like Singapore.71 In a paper presented at the
1981 SETSS conference, the importance of gaining control over the software
was emphasised by Finnish administration representatives: “Trying to gain
independence from the manufacturers, the administrations are very interested
in the production and maintenance of the software they need.”72

The CEPT statement was, however, not only an expression of the
proactive vision of the administrations. It was also a response to increasing
pressure to commit to the programming language Ada. During the first years
of the 1980s, the momentum behind Ada was increasing, as it gathered
support from the European Economic Community (EEC) and a number of
industry actors, and it was believed to be paramount to the future of Chill to
fend off the competition. It was clear that in technical terms, the two

69 ”Programming languages for telecommunication applications”, COM-XI
Temporary Document No. 36-E, Geneva, 6-16 April 1981. Published in Chill
Bulletin 1, no. 1 (1981), 40.
70 On CEPT, see Gerhard Fuchs, "Policy-making in a system of multi-level
governance-the Commission of the European Community and the restructuring of
the telecommunications sector", Journal of European Public Policy 1, no. 2 (1994).
71 Kristen Rekdal, “Reiserapport fra CCITT Implementors Forum, CCITT WP XI/3,
TELECOMM Australia, University of Canterbury, Bell Labs, 20/9 – 16/10 1979,”
box “Implementors Forum 9. møte Melbourne, Sept. 1979, Serie O”, KRC. On the
Singaporean case, see Kristen Rekdal, “Travel report from 1. Telecoms, Singapore,
2. CCITT WP VII/3, Melbourne, 3. Nord Computers, Melbourne, 4. Intel Corp,
Santa Clara”, Runit notat, 13 April 1982, box “NT-P 1982”, KRC.
72 J. Hirvensalo, A. Myllkangas, and K. Rahko, "Quality standardization of
telecommunciation swicthing system software", in Software Engineering for
Telecommunication Switching Systems (University of Warwick, Coventry, United
Kingdom: Institution of Electrical Engineers, 1981), 16.

 179

languages were quite similar and that the battle for credentials was just as
much a battle for political and commercial support.73

One month before the CEPT meeting, the plenary assembly of the
CCITT had finally approved the Chill recommendation. However, neither
here, nor at the CEPT meeting in December 1980 did this happen without a
quarrel. While the recommendation was approved without any problem, the
new mandate for the working group responsible for Chill caused trouble.
The French administration had filed a proposal that would instruct the new
working group to reconsider the “technical and economic criteria for
determining the preferential applications of Chill” given that “other high
level languages for similar purposes already exist and action has been taken
to extend the field of use of one of them, namely Ada, to
telecommunications”.74 In non-diplomatic terms, this proposal implied that
the CCITT should consider in which cases, if any, Chill would be given
preferential treatment. After numerous rounds of corridor diplomacy, the
choice of words was altered slightly, as Ada was only mentioned as an
example and references to technical and economic criteria were deleted.75
While Ada had crept into the CCITT papers, it was not longer the reason for
further study into which areas Chill would be a preferred technology.

Yet, only a month after the skirmish at the CCITT plenary assembly,
the same strategic manoeuvre was repeated at the CEPT meeting mentioned
above. Once again, the French administration was eager to promote Ada as a
viable alternative to Chill. Their preferred route of action was through the
constitution of a working group that should report on the possibility of
“harmonisation” of the two languages. 76 Three official documents were
presented at the meeting, one by the French administration, one by the
Norwegian and one by the Dutch. The two latter documents presented pro-

73 Some comparisons are found in Smedema, Medema, and Boasson, The
programming languages : Pascal, Modula, CHILL, and Ada; Erik Meiling and
Steen U. Palm, "A Comparative Study of CHILL and Ada on the Basis of
Denotational Descriptions", in Second CHILL Conference (Lisle, Illinois: Bell
Laboratories, 1983).
74 ”Draft addendum to new question 8/XI”, 18 November 1980, Temporary
Document No. 18-E/COM B, box “NT-Programspråk 1980-81”, KRC.
75 Nic Knutzon, ”VII CCITT plenarforsamling, Behandling av CHILL spørsmålet”,
24 November 1980, box “NT-Programspråk 1980-81”, KRC.
76 Administration francaise, ”Harmonisation de langages de programmation de haut
niveau”, box “NT-Programspråk 1980-81”, KRC.

 180

Chill views.77 The outcome was the agreement mentioned above, as the
delegates to the CEPT meeting concluded that the organisation was not
“interested in, or in a position to, take part in the harmonisation of other
languages”.78 The report by Kristen Rekdal, who participated at the CEPT
meeting, stated that the French administration felt very strong pro-Ada
pressure from French industry, which was perhaps no surprise, given that the
language was developed at CII Honeywell Bull. The atmosphere was also
influenced by the EEC, as the Commission encouraged the setting up of a
specific interest group, called Ada-Europe, which brought together technical
expertise at a European level and exerted certain influence over the
development of the language. The hope of the European Commission was
that these activities and support programmes would:

encourage the European industry would commit itself more firmly to the
development of completely new software technology stemming from Ada, on the
same line as the energetic efforts being made by the American industry, research
institutions and universities.79

As discussed in chapter four, the funding directed towards Ada-oriented
projects was substantial. One of the projects that benefited was carried out
by GEC telecommunications in the UK and the Dansk Datamatics Center,
which had been started by Dines Bjørner. This was to study the support for
Chill regarding a future “Ada programming support environment.”80 Despite
this small conciliatory gesture, the telecommunication administrations and
the industrial partners involved in the Chill project looked on the EEC
initiatives with scepticism. In a reply to a letter sent by the Dane Jens
Rasmussen, of the Nordic Chill project, one of the Commission’s
bureaucrats replied that they were “aware of Chill”, but their support for Ada
was based on its “standards aspects and potential effects on market and
industrial structure”.81 Accordingly, Chill was not regarded as a language
that could provide the same effects. The letter continued as follows:

77 Administration francaise, ”Harmonisation de langages de programmation de haut
niveau”, box “NT-Programspråk 1980-81”, KRC. Netherlands PTT, “Harmonization
in the field of SPC programming: CHILL, Ada, or both?”, Doc T/CCH (80) 17, box
“NT-Programspråk 1980-81”, KRC. Norway, “CHILL, ADA and ESL”, Doc
T/CCH(80)18, box “NT-Programspråk 1980-81”, KRC.
78 Kristen Rekdal, “Report from CEPT/CCH meeting on CHILL vs. ADA”, 5
December 1980, box “NT-Programspråk 1980-81”, KRC.
79 ”Community Data-processing Policy”, Communication from the Commission to
the Council, Brussels, 22 July 1982, 23.
80 Ibid., 40.
81 H. Hünke to Jens R. Rasmussen, Brussels 30 August 1982, box ”NT-P 1982”,
KRC.

 181

Our requirements for standards come from one of the major goals of the
European Economic Community for open markets and free (i.e. unhindered)
exchange of goods and services. Only standards assuring a very high degree of
portability can be expected to contribute towards this goal.82

Obviously, open markets and free exchange of goods and services would not
be considered as a likely outcome if Chill were made mandatory as a
standardised programming language for telecommunications, according to
the EEC insiders. In brief, it was considered a property of the “ancien
regime” of telecommunications rather than a technology that could break it.
The pressure from the EEC would, at first, force the CEPT to encourage the
industry to use Chill, and did not alter its preference for Ada, quite contrary
to the intentions of the EEC.

The attitude of the administrations was a lot more ambiguous than the
CEPT agreement made it seem. The stipulation of Chill as a prerequisite for
tenders was generally not followed up. Neither was the idea of software
development and maintenance done within the administrations. In the next
section, I will closely follow this ambiguity in the case of the Norwegian
administration, and contrast this with the Swedish administration, which
abandoned all links to Chill in the mid-1980s and embraced Ada
wholeheartedly. Both administrations had been particularly important in the
first years of the Chill project, and therefore make up an interesting pair of
cases when considering the ambiguity and negativity that the
telecommunication administrations felt towards Chill in the first half of the
1980s.

Ambiguity and negativity
The case of the Norwegian telecommunication administration (NTA)
illustrates both the hopes the onset of ambiguity. In late 1979 the policy of
the administration was that of enforcing Chill on its prospective suppliers. A
policy note circulated within the administration in October 1979, stated: “We
find it important to make clear that [the NTA] wants to use Chill in future
switches and other processing equipment for the telecommunication network
and that we will make this a requirement in future specifications of such
equipment.”83 The note added a hope that the Norwegian industry would
follow and use Chill as its programming language. This started a long
discussion about the role of Chill in a future tender for the digital backbone

82 Ibid.
83 TAS/79/Kha, ”Vedr. CCITT høynivå programmeringsspråk, CHILL” 3 October
1979, Notat fra Teledirektoratet, box ”NTT 72-2/NT-P 1979 – 1980”, KRC. My
translation.

 182

of the Norwegian telecommunications network.84 In this discussion in the
early 1980s, the ideal of a Chill-programmed system was put to a real test: L.
M Ericsson had made it clear they did not intend to offer a system
programmed in Chill. They would stick with the proprietary language Plex
for the moment but might opt for Ada at a later time. L. M. Ericsson was
also the favourite supplier of many in the technical division of the
Norwegian telecommunication administration, not least after the problems
the administration had experienced with their last large-scale procurement of
switches from the ITT. The technical director of the NTA, Ole Petter
Håkonsen, wrote the following:

Even if we introduce a requirement in terms of use of Chill in our specifications
on digital switches now, it seems obvious that we are not in a position where we
can exclude well known systems developed in another language. However, such
a requirement should indicate to our supplier that the next generation of their
systems should preferably be made with Chill.85

In the same note, Håkonsen also admitted that if they were to choose a
supplier that did not use this international standard, it would be a failure:

As particularly active in this field, it would hurt our credibility if we do not use
this recommendation. A lot of manufacturers of telecommunication equipment
have already implemented it and it is only fair that they get the support of the
administrations.86

By 1982, the NTA was ready to sign a contract to purchase a number of new
digital switches, after much political and economic wrangling. According to
historian Lars Thue, the decision marked the beginning of a new type of
industrial telecommunication policy in Norway, as the tender was open to
international bidders and not just the two national, although internationally
owned, producers Elektrisk Bureau (EB) and STK.87 This decision involved
technical conflicts in the administration as well as a large political shift,
which involved a newly formed conservative government in 1981. The
choice would eventually be System 12 from the ITT. However, the contract

84 Detailed chronicles of the various projects leading up to the digitalisation of the
Norwegian telecommunication network are found in Christensen, "Switching
Relations: The rise and fall of the Norwegian telecom industry"; Lars Thue, Nye
forbindelser: 1970-2005 (Oslo: Gyldendal, 2006).
85 Ole Petter Håkonsen, ”(Hvorfor Chill?)”, box ”L0048, Indig-prosjektet, 1981 –
1983”, series ”Da Teletjenesteavdeling (T), 1968 – 1992”, Archive ”Teknisk
avdeling / Teletjenesteavdeling (T),” NTA. My translation.
86 Ibid. My translation.
87 Thue, Nye forbindelser: 1970-2005, 147.

 183

was not won through a tender from which L. M. Ericsson had been excluded
due to their choice of programming language. EB was invited to submit a
tender based on the Ericsson-produced switch AXE, programmed in their
own proprietary language Plex. The choice of the ITT had, in the end, very
little to do with choice of programming language. Still, the technical director
Håkonsen managed not to lose face since the administration ended up with a
switch that was programmed in Chill.

Coincidentally, the Norwegian administration would continue to
support the Nordic Chill project and eventually Urd, the company spun off
from their partner, Runit, to which I will return in the next chapter. At face
value, the Norwegian administration was backing the international standard
Chill, through procurement as well as research and development. However,
the realities were far more ambiguous. Throughout the 1980s, the “Chill
question” was raised within the Norwegian administrations numerous times.
It was proposed in 1986 that the Norwegian telecommunication
administration should “concentrate” on Chill and the specification language
SDL, a proposition coming from the research establishment of the
administration. The SDL policy was actually adopted, but concerning Chill,
the technical division of the administration was lukewarm. 88 Again, the
possibility of excluding technology from L. M. Ericsson made such a policy
unpopular. In 1989 a multidivisional working group within the
administration cooperated with industry players, and developed a policy of
focussing on Chill within the areas of broadband communication and
management networks. The results were meagre – as it continued to be a
policy of little more than wishful thinking and had few implications. The
Norwegian Telecommunication Administration was ambiguous about Chill
throughout the 1980s, even though the impression was that the
administration held the language in high esteem.89

Betrayed from within
A comparable story is that of Sweden, although in that case the ambiguity
was replaced by outright negativity. Sweden had been one of Norway’s
partners in the Nordic Chill projects from the mid-1970s and in many ways it
was also the main initiator of the CCITT’s surge in interest in language
design in the late 1960s. The Swedish administration had also sponsored the
Nordic compiler projects – and had sponsored the Nordic representative in
the CCITT, Kristen Rekdal, throughout his stint there. Still the Swedish
telecommunication administration and L. M. Ericsson abandoned Chill
almost altogether right after the language was officially endorsed by the

88 F89/u/949, ”Foreløpig anbefaling om bruk av Chill in Televerket”, 23 August
1989, box ”L 0136 Samarbeid”, series ”Da, 1961 – 1996”, NTR.
89 Ibid.

 184

CCITT in 1980. In the following, I will analyse this together, which makes
sense in the case of Sweden, where the cooperation between the national
champion Ericsson and the telecommunication administration was so
extensive that they had a joint research establishment, Ellemtel.

L. M. Ericsson had made a considerable contribution to Chill by
adding the signals concept to its repertoire of concurrency-related concepts.
This concept was, again, derived from their own proprietary programming
language, Plex. However, the designer of Plex, Göran Hemdal, was never
interested in Chill. In retrospect, he would denounce the project on the basis
that it had turned into something completely dominated by computer
scientists and programming language theoreticians. To Hemdal, Chill lacked
features that would make it work in a telephony setting, and this was due to
the composition of the working groups.90 To Hemdal, the success of Plex
was related to the fact that he, as the language designer, really did not know
what programming was.91

By 1979, Hemdal had moved on to ITT and it was time for change
when the APN 167 processor was introduced to the Axe system.92 However,
the result was EriPascal, a Pascal-inspired language, and not a fully fledged
Chill adoption. According to Bjarne Däcker, who designed EriPascal, this
happened in a rather arbitrary manner: EriPascal was really similar to a
subset of Chill, but with a Pascal-like syntax. It included the signals concept
from Chill, but not all the other concurrency-related features of the language.
The Pascal syntax was chosen because the group responsible for
programming technology at L. M. Ericsson was in a hurry and adopted a
compiler developed for a Pascal dialect called San Diego Pascal. Instead of
making the compiler accept Chill code, they created a programming
language that looked like Pascal. The idea was to make the compiler work
on Pascal-like code, but also to make it accept “something that looked like
Chill”.93 The plan was also to move gradually to a more proper Chill subset
and a precompiler for Chill, known as EriChill, “but there were no user
requests for it”, according to Däcker.94 Däcker would go on to be a founder
of the Ada user group in Sweden in 1983, but would later work on a new
specialised programming language for telecommunication inside Ericsson, a

90 Vedin, Teknisk revolt: Det svenska AXE-systemets brokiga framgångshistoria
159.
91 Ibid.
92 Peter Magneli, "Communications Computer APN 167 with ERIPASCAL",
Ericsson Review 63, no. 4 (1986).
93 Lundin, "Tidlig programmering : Transkript av ett vittnesseminarium vid
Tekniska museet i Stockholm den 16 mars 2006", 38.
94 Bjarne Däcker, "Concurrent Functional Programming for Telecommunications: A
Case Study of Technology Introduction" (Royal Institute of Technology, 2000), 11.

 185

language called Erlang.95 By 1981, the interest in Chill at L. M. Ericsson was
close to zero, as was explained in a meeting between representatives of the
company and participants in the Nordic Chill, coming from the
administrations. L. M. Ericsson made it clear the company would not change
its programming language to either Chill or Ada, unless it was forced to do
so.96

Ada caused a stir not only with Bjarne Däcker in Ericsson, but also in
Ericsson's close ally, the Swedish telecommunication administration. One
paradoxical figure who was instrumental in the change of policy towards
Chill was the Swedish electrical engineer Kurt Katzeff, who was one of the
main designers behind Ericsson’s Axe switches in the 1960s. 97 Katzeff
moved on to the ITT’s European headquarters in Belgium in the early 1970s,
and was their chief technical officer until he returned to be deputy head of
the technical division of the Swedish telecommunication administration from
1980. As Katzeff returned to Sweden, the Swedish administration opted
against the use of Chill on his recommendation. Obviously, his stint at the
ITT had not made him warm to the idea of Chill as a standard, even though
the company was one of Chill’s main supporters and came to be one of its
main users. Instead, Katzeff argued that the Swedish administration could
not “introduce Chill”. 98 He felt it was unimportant which programming
language was used in future switching systems, as long as the system was
well supported and documented by its manufacturer. He claimed it was not
the programming language that should be the decisive factor. “Given the
alternatives of one system coded in Chill with no support system and one
assembly coded system with a powerful support system available, the choice
is not difficult,” Katzeff wrote, implying that the assembly-coded system
would win hands down every time. 99 As such, it was all up to the
manufacturing firm. Furthermore, Katzeff was altogether uncertain about the
necessity of such programming languages as Ada and Chill:

95 The Swedish Ada-user group was started in 1983. See Lundin, "Tidlig
programmering : Transkript av ett vittnesseminarium vid Tekniska museet i
Stockholm den 16 mars 2006", 34.
96 Knut Bryn, ”Diskusjon mellom L. M. Ericsson og NT (Samordningskomitéen for
Teletekniske spørsmål unntatt readiotekniske) vedrørende CHILL,” 5 October 1981,
box ”NT-P møte 8 og 9”, KRC.
97 See Lundin, "Tidlig programmering : Transkript av ett vittnesseminarium vid
Tekniska museet i Stockholm den 16 mars 2006", 31.
98 Kurt Katzeff, ”The use of high level programming languages in the field of
telecommunications”, Tele 1981(2), 7-11.
99 Kurt Katzeff and Anders Rickström, "Software standards in the field of
telecommunications", in Fifth International Conference on Software Engineering for
Telecommunication Switching Systsems (Lund, Sweden: Institution of Electrical
Engineers, 1983).

 186

[…] the apparent conclusions of most comparisons to date are, that the computer
world does not need two such similar languages as Chill and Ada, and that they
may not be ready for practical use until it is too late, as advances in specification
and description language, support tools and systems architecture, may well make
both languages redundant.100

Despite this, the Swedish telecommunication administration would soon put
all its weight behind Ada. In 1983, the Swedish administration and Katzeff
spun out a company named Telelogic, a research and development company
focusing on software and development tools.101 At the same time, a policy of
adopting Ada, with an exception for the Axe sphere of L. M. Ericsson
switches, in all future products, was put in place. 102 Two years later,
Telelogic acquired parts of the American company Telesoft – an
independent developer of Ada tools - to strengthen their position as an
important player in the market of firms making tools for Ada. In 1984,
Ericsson sat up the Computer Science laboratory – which would be engaged
in the design of an altogether new programming language, Erlang, which
was planned to be a successor of Plex for the Axe sphere.103 Both events
were strong indications of the Swedish reluctance towards Chill, which
manifested itself in the non-use of Chill in every part of the Swedish
telecommunication system. Taken together, the Swedish case is one of
abandonment. By 1984, the Nordic cooperation on a common Chill policy
ended, and according to the Swedish administration representatives, the
compiler developed by Runit had “so far found no use in the Swedish
administration”.104

Still, two years later, in 1986, Ericsson would reconsider the use of
Chill in Axe.105 This time around, the idea would be dismissed not because
of enthusiasm for Ada, but because of Ivar Jacobson, inspired by object
orientation. 106 Jacobson had participated in the Chill work on behalf of

100 Kurt Katzeff, ”The use of high level programming languages in the field of
telecommunications”, Tele 1981(2), 7-11.
101 Lundin, "Tidlig programmering : Transkript av ett vittnesseminarium vid
Tekniska museet i Stockholm den 16 mars 2006", 31.
102 Tele, 1988 (2), 22 – 25.
103 On Erlang, see Däcker, "Concurrent Functional Programming for
Telecommunications: A Case Study of Technology Introduction".
104 A. Rockström, ”Future work-items for NT-P: Swedish point of view”, 2 February
1984, box “L 0135, Samarbeid”, series “Da, 1961 – 1996”, NTR.
105 Ivar Jacobson, interview with the author, 22 February 2011.
106 I will return to the subject of object orientation later in the chapter. Here, it
suffices to say that this way of programming differed substantially to what was
common practice at the time.

 187

Ericsson in the late 1970s, most significantly contributing the concurrency-
related signals concept to the language.

By 1983, Jacobson spent a year at MIT on sabbatical leave, preparing
for his doctoral thesis, by reading up on the latest advances in computer
science, in particular object orientation. This would significantly influence
Jacobson’s later work, also his doctoral thesis, which was defended at the
Swedish Royal Institute of Technology in 1985.107 By 1986 he had met Tom
Love, who had just developed the language Objective-C (together with Brad
Cox), an object-oriented extension of C.108 Inspired by Love and a lot of
reading about Smalltalk and object-oriented programming during his year at
MIT, Jacobson started working on a proposal to extend the existing Ericsson
programming language Plex into Objective-Plex. On his return to Sweden,
Jacobson was consulted on the issue of using Chill in the AXE line of
switches. Ericsson had, as noted above, got their way in terms of
communication mechanisms in Chill and in some parts of the firm they were
now apparently eager to use the CCITT standard. Jacobson remarked that it
would be much cheaper, faster and more effective to go for Objective-Plex.
Following this, Ericsson put the lid on any future Chill plans, and worked on
the Objective-Plex path. Objective-Plex was a simple extension of Plex, and
could have yielded rapid results. However, after the beginning of the work to
objectify Plex, another path was selected towards C++. All in all, Jacobson’s
arguments to objectify Plex were what really ended all possibilities of the
use of Chill at L. M. Ericsson.

A similar tendency to the Swedish experience was under way in Japan
by the mid-1980s. The role of the telecommunication administration of
Japan, the NTT, had been highly visible in the development of Chill from the
beginning. As noted in the previous chapter, Chill was used by the NTT and
some of its industrial partners in the development of switching equipment.
From 1979, the NTT had used Chill when developing the D10 switch.109 The
international telephone carrier of Japan, the Kokusai Denshin Denwa
(KDD), also applied Chill in switching projects in cooperation with NEC.110

However, there is also evidence that the Japanese telephone
companies faltered in their support for Chill. While the D10 switch was

107 Ivar Jacobson, "Concepts for Modeling Large Real Time Systems" (The Royal
Institute of Technology, 1985).
108 At the time Objective C was not really a separate language, but a language
extension with a pre-compiler for C.
109 Maruyama, Sato, and Konishi, "NTT CHILL implementation aspects and its
application experience". See also Larsson, "Future Telecommunications in Japan -
Policy and Technology".
110 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
426.

 188

developed in Chill, there was still widespread uncertainty within the NTT on
what to do with Chill after it was ratified as a standard in 1980. Future
support for the language could easily ceased right after that, according to
Norio Sato, who became the NTT’s delegate to the CCITT from 1981. Real
uncertainty about the future of Chill existed. However, it was decided to
develop its use further towards more modern environments, microprocessors
and new switching equipment, which continued throughout much of the
1980s.111

However, from the mid-1980s, the NTT’s interest in Chill waned.
This was related to two major events: the privatisation of the NTT in 1985
and the initiation of the large research project Tron in 1984.112 While the
former only influenced the use of Chill in the NTT indirectly, the latter had a
more direct and severe influence. I will deal briefly with each.

Traditionally, the government-owned NTT had designed, developed
and operated the Japanese domestic telecommunication network. At the
same time, the NTT played an important role in researching and developing
new telecommunication technologies. To some extent, this role was
performed in cooperation with the group of competing suppliers like NEC,
Fujitsu, Hitachi, and OKI Electric, which over time had been engaged in
some sort of coordinated competition. To some extent, the 1984 part-
privatisation and the introduction of competition in both long-distance and
local telecommunication services changed the “NTT way”, both in terms of
operations and in terms of research and development. In the long term this
meant that the supplier companies would have to rely on their own research
and development rather than that done by the NTT. The R&D expenditure of
the NTT actually increased in the aftermath of the privatisation and the
opening up to competition. However, the NTT’s R&D priorities changed
from equipment to network planning, design, operations and new services,
which at least indirectly influenced the switching projects to which Chill had
been applied, which were tied to equipment development.113

111 On this, I rely on Norio Sato, emails to author, March 2011.
112 On the privatisation of the NTT, I rely on Fransman, Japan's computer and
communications industry : the evolution of industrial giants and global
competitiveness; ———, The market and beyond : information technology in Japan.
To the best of my knowledge, no real comprehensive discussion of the TRON
project exists. For fragmentary descriptions and discussions, see Marie
Anchordoguy, "Japan's software industry: a failure of institutions?", Research Policy
29, no. 3 (2000); Takuma Takahashi and Fujio Namiki, "Three attempts at "de-
Wintelization": Japan's TRON project, the US government's suits against Wintel,
and the entry of Java and Linux", Research Policy 32, no. 9 (2003).
113 Fransman, Japan's computer and communications industry : the evolution of
industrial giants and global competitiveness.

 189

The fate of Chill in the NTT was apparently more directly influenced by the
initiation of the so-called Tron project, a large and ambitious research
project introduced with great fanfare in 1984.114 The project’s general goal
was to replace American software and hardware technologies with home-
grown ones, involving everything from an operating system to integrated
circuits and processors. The project was initially a collaboration between a
number of private companies and was led by professor Ken Sakamura of the
University of Tokyo. However, it also influenced a number of choices made
at the NTT. Among them was the decision to develop an operating system
for switching systems based on technologies and specifications defined by
the Tron project, a project that was in turn named CTRON.115 This meant
that future switches would have to rely on the programming language C and
not Chill. This was quite a paradox since C was an American programming
language directly related to the Unix operating system, controlled by the
AT&T. The Unix system was one of the direct causes behind the anti-
American objectives of the whole TRON project. 116 Nevertheless, the
overarching concepts and rationales behind the TRON project led meant less
work was put into Chill diminished and future programming on new
switching projects would be done in C. By December 1993, Chill
developments within NTT were almost at an end.117

Summing up, it seems fair to describe the position of the
administrations as more passive in terms of enforcement than what was
hoped in the 1970s, and feared by the manufacturers in the 1980s. As such,
Chill failed as an administration-driven wedge between operators and
manufacturers. However, this wedge was thoroughly enforced by political
bargaining, as efforts to liberalise and reorganise the sector swept across
Europe, America and Japan during the 1980s and 1990s.

Modular improvements
Despite the gradual defection of the administrations, Chill was continually
worked on and improved in the first part of the 1980s, resulting in a
significantly improved version published as a new recommendation in

114 A hyperbolic description of the project written by the project leader is Ken
Sakamura, "The TRON Project", Information and Software Technology 38, no. 3
(1996).
115 Information about this is of limited availability. A virtual computer museum set
up by the Information Processing Society of Japan (IPSJ) holds some information
about the NTT’s involvement in the TRON project. "NTT CTRON", IPSJ Computer
Museum, http://museum.ipsj.or.jp/en/computer/os/ntt/0078.html. (retrieved 8 April
2011).
116 Norio Sato, e-mails to the author, 30 September 2008.
117 Norio Sato, e-mails to author, March 2011.

 190

1984. 118 In practical terms, improvements made to Chill were discussed
within a sub-working party in the CCITT, which came up with a revised
language definition, which in turn was ratified by the CCITT plenary in
1984. This resulted in the publication of the revised edition of the language
specification, the Z.200 document. The sub-working party responsible for
Chill improvements, the “Sub-Working Party XI/3-2” in the CCITT
hierarchy, had several agendas and goals. Improvements made the language
more capable in large-scale projects. Furthermore, standardised facilities for
input and output were added, meaning a set of language features that would
make it easier to provide data transfer between Chill programs and its
environment. While all this might sound trivial – both were big deals. Both
areas were considered weak spots by the large firms that already had used
the language, as evident in the ITT story discussed in the previous chapter.

These improvements pay testimony to the considerable influence the
firms using the language in the development of real switches held at the
time. The addition of facilities for input and output meant that set features
would make it easier to provide data transfer between Chill programs and its
environment. This included features for the manipulation of files and records
within files, which in general would make it easier to use Chill in real-world
projects, or at least would make it unnecessary to create such facilities time
and time again.119 The second area of improvement concerned facilities for
separate compilation. In the lingo of the language designers these was called
facilities for “piecewise programming”. This involved the possibility of
separate compilation of program modules. 120 Piecewise programming
allowed independent development and compilation of pieces of a program,
something that was important for the use of the programming language in
projects involving a large number of programmers, who could now safely
code away on their respective bits and pieces. Thus piecewise programming
was a technological improvement that allowed the possibility to the division
of labour in large programming projects.

The details about the processes leading up to these improvements are
sketchy. Both areas of improvements added functionality and concepts that
had long been discussed within the Team of Specialists and in the
Implementors’ Forum. In the two previous periods (from 1974 and up until
1980), the separate compilation element was thought of as a technological
hurdle of such proportions that it could not be dealt with adequately in the
available time. It was a deliberate leftover and something that the language

118 CCITT High Level Language (CHILL), CCITT Recommendation Z.200 (1984).
119 “Draft Proposal for Basic Input/Output Facilities in CHILL,” Chill Bulletin 3, no.
2 (1983).
120 “Report on CCITT SWP XI/3-2 Meeting in Geneva December 1981,” Chill
Bulletin 2, no. 1 (1982).

 191

designers thought could be treated on a level different from the language
definition. By 1981, the language designers would think differently in the
last respect, namely that the issue of separate compilation was something
that would have to be implemented in the language itself. The problem of
using Chill when doing “programming-in-the-large” was very much the
constituting agenda when discussing separate compilation facilities.121

From 1981, compilation issues were given considerable attention in
the CCITT meetings. Initial contributions were made by the French and the
Italian administrations, Runit of Norway and the NTT in Japan. Other
propositions came from AT&T (this was before the joint venture with
Philips), British Telecom and Philips, which quickly formed an alliance to
create a common platform.122 The alliance formed around three different
proposals, which all tried to rectify the shortcomings in the programming
language in terms of dealing with the development of large programs: AT&T
proposed some extensions for controlling the visibility of names and
enhancing the facilities for libraries in Chill. British Telecom was about to
embark on a project involving multisite development and the design of a
programming support environment for both Chill and Ada and proposed
extending Chill with Ada-like facilities for separate compilation. Philips
proposed extending Chill with a set of facilities that provided for the
specification, decomposition and manipulation of large pieces of code.
Before a meeting in Geneva in December 1982 the three organisations
agreed on a common proposal that incorporated the different propositions,
which eventually received a wide acceptance from the participants in the
working group. 123 Here, the experience and learning of different
organisations fed back into the core Chill development group and clearly
influenced the final solutions. This was a reiteration of a common strategy in
the Team of Specialists: alignment through alliances and common proposals.
However, this time around, the proposals stemmed from organisations that
either had gained experience from using the language in systems
programming, or at least in implementing the language and not by aligning
ideals and virtues.

It is worth highlighting that at this time, some administrations were
still taking part in the CCITT work, as the presence of British Telecom, the
French and Italian administration-run research establishments and the

121 “Report on CCITT SWP XI/3-2 Meeting in Geneva December 1981,” Chill
Bulletin 2, no. 1 (1982).
122 R. Bishop et al., "Separate Compilation and the Development in Large Programs
in CHILL", in Fifth International Conference on Software Engineering for
Telecommunication Switching Systems (Lund, Sweden: Institution of Electrical
Engineers, 1983).
123 Ibid.

 192

administration-allied Runit of Norway. Furthermore, participants from the
Danish administration-run research establishment was an important part in
the work on the piecewise compilation work. Still, the impetus behind these
changes was very much rooted in the needs of large programming efforts by
the manufacturing firms.

The propositions that in the end led to these improvements were very
much also a part of the larger Chill community. Some of the papers at the
Chill Conference in 1983 and at the larger International Conference on
Software Engineering for Telecommunication Switching Systems the same
year dealt with these issues.124

Beyond the first half of the 1980s, Chill was revised continuously up
until the late 1990s. 125 Again, a dominance of industry participants was
evident. One of the most decisive changes was the gradual evolution of so-
called object-oriented language concepts in the standard, a major influence
on almost all programming language designs from about the early 1980s.
What exactly entails the term object-orientation is disputed. 126 That it
signified a considerable shift in programming language design is, however,
quite obvious: the historian of programming languages, Mark Priestly, has
argued that a definite shift in programming language design happened with
the advent of object-oriented programming languages in the early 1980s.127
This was bound up in an underlying change in what was considered virtuous
programming, a change in the dominant programming virtue. Much of the
mathematical computer science had been spun around the Algol
programming language and originated in the tradition of scientific
programming carried out in the 1950s. The background for the constitutive
object-oriented programming language, Smalltalk, on the other hand, was a
completely different conception of what programming should be. As
Priestley has argued for Smalltalk: “Programming was conceived not as the
production of code following an engineering-like process, but as an ongoing
interaction with a complex and reactive system.”128 This would, eventually,
radically influence the practices of software engineering, and by the 1990s:
“Object-oriented technology has become a dominant – if not the dominant –

124 Reithmaier, "Compilation Control in a Large CHILL Application"; A. Rudmik
and B. G. Moore, "The Seperate Compilation of Very Large CHILL Programs", in
Second CHILL Conference (Lisle, Illinois: Bell Laboratories, 1983); Jurgen
Winkler, "A New Methodology for I/O and its Application in CHILL", in Second
CHILL Conference (Lisle, Illinoise: Bell Laboratories, 1983).
125 Described in Winkler, "CHILL 2000".
126 Deborah J. Armstrong, "The quarks of object-oriented development", Commun.
ACM 49, no. 2 (2006).
127 Priestley, "Logic and the development of programming languages, 1930 - 1975".
128 Ibid., 214.

 193

software technology.”129 To some of the practitioners in the field, it had
proportions similar to that of Kuhn’s paradigm shifts. To Brian Cox, who
developed Objective C together with Tom Love at the ITT, it was a
“paradigm shift – a software industrial revolution”.130 The euphoria of the
rhetoric was related to the perceived otherness of object-oriented
programming when compared with regular programming – and the otherness
in terms of programming language design: basically, object orientation
meant that data structures and the algorithms used to manipulate the data
could be presented to programmers as a single entity. However, this little
distinction had larger implications. In traditional programming languages,
the structure of the language closely modelled the computer, as it split
features for expressing algorithms and features for describing data structures,
mirroring the split between the data store and the control and arithmetic units
in the dominant computer architecture.131 In object-oriented programming,
the form of the programming languages differed profoundly from those
developed to mirror the scientific computing models of the Algol kind.

The object-oriented approach made inroads in the Chill community by
1984, four years after Smalltalk had reached its definitive form. 132
Subsequently, both Siemens and Alcatel (after its acquisition of the
telecommunication division of the ITT) developed their own variants of
Chill that included object orientation features. 133 By the mid-1990s, this
interest was reworked into the official language definition of Chill.134 All in
all, the addition of object orientation to the repertoire of Chill pays testimony
to two elements: the changing virtues of computer science and the growing
interest in object orientation in industry. The move towards object
orientation could be understood as a move away from the dominant doctrines
of the 1960s and 1970s.

By the time Chill officially got object-oriented concepts in its official
recommendation, the language was, however, far less viable than 10 years
before. By this time, most telecommunication administrations were

129 Hugh Robinson and Helen Sharp, "The emergence of object-oriented technology:
the role of community", Behaviour & Information Technology 28, no. 3 (2009).
130 Brian Cox, "There is a silver bullet", Byte 1990.
131 Priestley, "Logic and the development of programming languages, 1930 - 1975",
219.
132 J. F. H. Winkler, "The Realization of Data Abstractions in CHILL", in Third
CHILL Conference (Cambridge University: ITT Europe, 1984).
133 A. Scrotesse, "OO_CHILL: Integrating the object paradigm into CHILL", in Fifth
CHILL Conference (Rio de Janeiro1990); Georg Diebl, Georg Schulz, and Jürgen F.
H. Winkler, "Object-CHILL: The Road to Object Oriented Programming with
CHILL", in Fifth CHILL Conference (Rio de Janeiro1990).
134CHILL - The ITU-T Programming Language, ITU-T Recommendation Z.200
(1999).

 194

transformed into network operators competing in a liberalised market, with
considerably different strategic priorities than integrating more technical
expertise into their organisations.

The first wave of improvements made to Chill, made in the first half
of the 1980s, was made in a period where some administrations still
followed the CEPT agreement on continued support for Chill in preference
to any other high level language for telecommunication systems.135 In the
case of piecewise compilation, the agreement that was necessary involved
work by participants from administration-related research establishments, in
particular the Runit and the Danish telecommunication laboratory, and some
direct involvement of the British telecommunication administration.
Nevertheless, the technical diplomacy behind the improvements made in the
first half of the 1980s was intimately related to implementations and
knowledge gained through use, which was dominated by implementation by
the large manufacturers, in particular the ITT, Siemens, Philips (later on
together with AT&T). This dominance would be reflected in the Chill
community, which is the subject of the next section.

Coordinated emergence
In the Team of Specialists and the Implementors’ Forum, identities and
virtues clashed. The period beyond 1980 was one of more unity, with the
emergence of what can be described as the Chill community. The Chill
community can be envisioned as being made up of two parts. Firstly, the
actors associated with the formal CCITT working group were at its core.
Secondly, actors that were involved in the use and development of Chill
outside the ITU tower of Geneva were part of the wider Chill community.
Both the core and the periphery of the Chill community consisted of actors
working for telecommunication administrations, manufacturing firms or
research institutions, some of them even working in competing organisations
at the local level. The international and transnational meeting points of the
CCITT, conferences and transnational user groups made up a level for
interaction where the local user sites were less important and explicit than
they otherwise would have been, although the local user sites were the
starting point for the interactions and the decisions made within the Chill
community.

The Chill community of users, prospective users, language designers
and researchers was partly constructed by the CCITT. Coordinated efforts

135 D. Gagliardi to Commissions des Communautés, 3 February 1981, Rome, in
Annex 6 to Doc. T(81) 4 Add, “Télecommunications” Réunion extraordinaire de la
Commission Innsbruck 11 – 20 mai 1981, Tome II, Documents présentés á la
Commission (T (81) 1 á (81) 28)”, box “L0022 – Telekomiteen, 1979 – 1984”,
series “Dbc Utenlandskontoret”, Administrasjonsavdeling, NTA.

 195

structured the way the community functioned, as the CCITT set up a number
of community initiatives, like conferences and the publication of the
technical journal. However, the community was not fully subordinated to the
CCITT, but came about through what can be described as “coordinated
emergence” – partly structured, partly unorganised.

In the theoretical literature on communities and the commons it is
typically held that communities must possess the ability to self-organise, and
consequently to shape the supporting and institutional arrangements, to
effectively govern a common resource. 136 The participants in the Chill
project lacked many of these possibilities. They were bound by the
formalities of the CCITT process, even though there were many ways to by-
pass these. The use of delayed contributions and the organising principles of
special teams and forums are good examples of such actions in the previous
periods. Now, the by-pass operations were all the more evident: the Chill
community organised local user groups and collaborative projects beyond
the CCITT framework. Yet, the Chill community was one of the official
objectives delegated to a part in the CCITT named the “Sub-Working Party
XI/3-2” in the study period that ran from 1981 to 1984. The group had
previously been responsible for the organising of the Team of Specialists and
Implementors’ Forum in the preceding two study periods. Now, the
boundary-spanning entities like the Team of Specialists and the
Implementors’ Forum were dropped and the main Chill activities were
brought into the formal hierarchy of CCITT working groups. In 1981 the
agenda of the group was formulated as follows: “The objective of Sub-
Working Party XI/3-2 in the 1981-1984 study periods is to encourage and
facilitate the widespread use of CHILL as a standardized basis for
engineering reliable software in telecommunication.” 137 The subject
(“engineering reliable software in telecommunications”) and the intent
(“facilitate the widespread use”) were clear. The group was to facilitate
training in Chill and promote it by presenting papers on Chill at conferences
and in journals, establish a Chill users’ conference, establish a Chill bulletin
and investigate the possibilities of making Chill documents more easily
available to a larger audience.

The core group looked fairly similar to that of previous CCITT study
periods, although somewhat smaller and less active than in the
implementation phase. The group was made up of some veterans, like

136 The standard reference is Elinor Ostrom, Governing the commons : the evolution
of institutions for collective action, The Political economy of institutions and
decisions (Cambridge ; New York: Cambridge University Press, 1990).
137 Sub-Group XI/3-2, 6-16 April 1981, “Study programme for the period 1981-1984
for CCITT Sub-working party XI/3-2 (Question 8/XI)”, COM XI 25-E. COM XI
1981-1984, CCITT, ITUA

 196

Kristen Rekdal, as well as newcomers, like the successor of Remi
Bourgonjon in Philips, Kees Smedema. Organisations that had actively
participated in the Team of Specialists and the Implementors’ Forum, like
Philips and the NTT, started out in a fresh spirit and with new participants.138
Some of the members represented telecommunication administrations, while
others came from research establishments or manufacturing firms.139

Several coordinated initiatives were started in the first half of the
1980s. This included the creation of the Chill Bulletin and the initiation of a
series of Chill Conferences. The CCITT would also publish an official user’s
manual to the language. The manual was intended as an elementary
introduction to the language, much more approachable than the official
CCITT language definition and not least, compared with the mathematically
rigorous approach of the “Formal definition of Chill”, which finally hit the
shelves in the early 1980s. Both were published as so-called CCITT
manuals. Tellingly, the language was “described fairly informally using
prose and a number of examples”.140

Furthermore, a variety of tutorial sessions took place inside
telecommunication companies, schools of engineers, universities and
professional societies. The sessions entailed the production of educational
materials such as slides and exercises, material that would circulate among
participants of the community afterwards. The CCITT summed up the
activities of the Chill community in May 1984 and produced the following
data about their extent and frequency:

138 Remi Bourgonjon of Philips, who had led both of the special task forces from
1975 until 1980, was succeeded by Kees Smedema from 1981. Smedema was active
in the CCITT until 1984. The NTT was represented by Norio Sato, who succeeded
Katsumi Maruyama. The ITT was, as in previous periods, represented by various
people.
139 The available documentation on what went on within the CCITT in the study
period from 1981 to 1984 is a lot scarcer than in previous periods. The amount of
information found in the private archive of Kristen Rekdal is sporadic and less
systematic than those for previous periods. Full details are only available on the
meetings held up until early 1982, including contributed documents and lists of
participants. The limited amount of material found in the ITU archives in Geneva is
comparable to that of previous study periods, which means no delayed contributions
or temporary documents. As such, analysis that necessitates details on participation
and document contribution, like the social network analysis undertaken in chapters
four and five, is not possible for the period analysed here. However, some of the
events were reported in the Chill Bulletin, which also published the official reports
to the CCITT.
140 CCITT, Introduction to CHILL – The CCITT High Level Language (1980), 2.

 197

Year Press
releases

Conferences, seminars, tutorial
sessions

Total number of
participants

1982 10 20 945
1983 5 15 1290
1984141 1 2 210
Total 16 37 2445

Table 6.1: The frequency and extent of Chill-related activities, 1982-1984.

These numbers included everything big and small, but still give a good
indication of what appeared to be a rising interest in Chill in the first half of
the 1980s. The number for 1984 includes only activities for the first quarter
of that year, and there are reasons to believe that the numbers for the year in
full would match those of the two previous years. Such a trend is comparable
with a number of similar indices, like the number of subscribers to the Chill
Bulletin and the participation in the Chill conferences. The Chill Bulletin
was issued between September 1981 and May 1984. It increased its
circulation from about 180 in 1981 to about 400 subscribers in 1984.142 Five
Chill conferences were held during the 1980s and one in 1990. The first was
held in Lyngby, Denmark in 1981. The second was held in Lisle, Illinois in
1983, the third in Cambridge in 1984, and the last two in Munich and Rio de
Janeiro in 1986 and 1990, respectively.143 The number of active participants
and an estimate of general participation are given in the table below.

141 This number contains only information about the first quarter of 1984, due to the
sources used.
142 Information about these aspects is found in “Reply to Question 8/XI -
Maintenance, training, compliance and environment aspects of CHILL”, COM XI
1981 - 1984, CCITT, ITUA.
143 The conference proceedings utilised here were found in KRC. Some of the
proceedings can also be located in various libraries. No information has been
retrieved about the first conference, held in Lyngby, Denmark.

 198

 1983 1984 1986 1990

Papers 32 33 31 42

Authors and co-authors 49 47 60 99

Contributing organisations 19 22 19 22

Estimated number of participants 70 130 140 Unknown

Table 6.2 The Chill conferences.144

The Chill conferences were initiated by the CCITT, but organised by some
of the most active users of the programming language, like the ITT, AT&T
(after the joint venture with Philips), Siemens and Telebras. As the table
above reveals, the conference grew in scale, although the number of active
organisations represented by contributing authors or co-authors seems stable
throughout the whole period. Furthermore, the conference programming
seems fairly stable for the three first conferences, with a similar amount of
papers and sessions.

The organisations that were active in the CCITT in the 1970s came to
dominate the Chill conferences. The ITT, Philips and Siemens were the only
organisations being present with papers at all four conferences, although a
number of organisations took part in all the conferences through direct
participation or by acting as session chairmen throughout the period.145 Some
of the organisations that were active in the two former periods of the Chill
projects did not participate actively in any way on the four conferences: most
notable was the absence of L. M. Ericsson, which was not very surprising
given the defection of L. M. Ericsson and the Swedish administration from
the Chill cause early in the 1980s.

The conferences were dominated by manufacturing organisations. The
only administration with a large presence at the conference was the Brazilian
Telebras. A third group of participating organisations were scientific
organisations or research establishments, like CSELT of Italy and the South
Korean ETRI. These organisations typically held tight links to their
respective administrations. Small start-up companies like the Norwegian Urd
were also active at the conferences, which is something I will return to in the
next chapter.

144 Overview of papers presented at the Chill Conference, number of authors and
estimated number of participants, 1983 – 1990. Sources: Conference proceedings.
The estimated numbers of participants are drawn from “Reply to Question 8/XI,
1984”, and list of participants for the Fourth Chill Conference, 1986, in the KRC.
145 The KRC contains a participant list for the fourth Chill conference in Munich in
1986. 142 participants from 29 different countries are listed, with 60 authors or co-
authors being present.

 199

Affiliation Country 1983 1984 1986 1990
Bell Labs (prior to AT&T Philips) USA 3 1 - -
CpqD – Telebras Brazil - - 3 17
CSELT Italy 2 5 - -
Dansk Datamatik Center Denmark 3 2 - -
ETRI South Korea - - 2 11
GEC Telecommunications UK - - 1 2
GTE USA 2 3 - -
Hasler Switzerland - 1 3 -
ITALTEL Italy - - 6 3
ITT / Alcatel UK, USA, Belgium,

Norway, Austria,
France

10 11 2 7

Nanjing Communications
Engineering Institute

China - - 4 4

NTT Japan 3 2 3 2
Philips (including AT&T from
1986)

The Netherlands,
Belgium, Germany

7 5 4 3

Telecommunication administration The Netherlands 1 - 1 -
Runit Norway 3 - - 2
Scandpower Norway 1 1 - -
Siemens Germany, Austria 2 4 7 10
Technical University of Warsaw Poland - - 6 6
Telecommunication Research Lab Denmark 1 2 - 2
Telletra Italy - - 3 2
Universidade Técnica de Lisboa Portugal - - - 2
University of Berne Switzerland - 1 1 -
URD / Kvatro Norway - - 2 2

Table 6.3: Number of Authors and co-authors at Chill conferences, 1983 – 1990
(ordered alphabetically).146

146 Organisations included in the table provided authors or co-authors at more than
one conference. The grouping of parent organisations is as follows. For the ITT,
Philips and Siemens, authors are ascribed to their parent organisation regardless of
their personal host country. In the case of Philips, this includes authors from Philips
Telecommunication Industry, the joint venture of AT&T and Philips, the Belgian
MBLE and the German Philips Kommunikationsindustrie. For the ITT, the numbers
for 1990 include authors affiliated to Alcatel CIT, after Alcatel acquired ITT’s
European telecommunication operations in 1986. Before that, the ITT numbers also
included authors affiliated to the Norwegian ITT subsidiary Standard Telefon og
kabelfabrikk (STK) and Bell Telephone Manufacturing (BTM), Antwerp, the
Belgian subsidiary of the ITT. The numbers include keynote speeches.

 200

The community of Chill designers, developers and users grew throughout the
1980s. Its growth reflected the use of the language within a few large
industrial firms and the ambiguity and negativity shown by a large number
of administrations. While some of the veterans of the design and
implementation period stayed on, new recruits were also won. In particular,
participants from Asian and South American countries came to dominate the
community at the end of the decade. Some of the old hats retired from the
community or went on to greener pastures during the early 1980s. One
example was the lead designer of the language, Remi Bourgonjon, who bid
farewell to the community with his keynote speech at the Chill conference in
1983.147 Here, he summarised his experiences, but also looked forward and
in particular described a vision of what would be the important steps to
tackle “the software crisis”. As discussed in chapter two, the software crisis
had been an all-inclusive tag used to describe the problems associated with
the software practice since the late 1960s. To Bourgonjon, Chill was only a
partial solution:

There are several approaches to tackle the software problem. High-level
programming languages such as CHILL form one such approach. Although the
most established approach, it still has to mature to exploit its full power. The
CHILL level of programming languages is not expected to be surpassed by new
techniques, at least not for many years. Programming environment, incorporating
CHILL, will become operational and will further contribute to increased
software productivity. The problems here lie not in the interface to the
programming language but with the interface to the target system. Most new
results from research are to be expected in the area of specification and design
techniques. They can be a big step in reduction and mastery of software
complexity.148

In his “thanks and farewell” speech, Bourgonjon pointed out two areas
where new developments would make large contributions to software
development: programming environments and most importantly,
specification and design techniques. In particular, he betted on the advances
in specification and design techniques, implying techniques for describing
the properties of a telecommunication system and the structure of its
implementation. 149 Implicitly, this meant that huge improvements in
programming language design were a thing of the past.

147 Remi Bourgonjon, ”Programming languages, environments and Chill”, Chill
Bulletin 3, no. 1 (1983), 3 – 8.
148 Ibid.
149 Bourgonjon would go on to manage large software projects within Philips and
claimed he did not follow the fortunes of Chill after the mid-1980s. Remi
Bourgonjon, interview with author, 16 January 2009.

 201

Did this implicitly point towards a change in the type of knowledge that was
circulated in the Chill community at the time, or was this particular
language-oriented community confined to incremental changes in language
technology – and thus, already passé? According to Bourgonjon, he had by
now started to consider Chill, and programming languages in general, in a
different light. “I started to realise that the choice of programming
languages, or their design, was not that relevant as when we designed Chill,”
he told me.150

The circulation of knowledge
The proceedings of the five Chill conferences held during the 1980s and in
1990 give good indications of what type of information and knowledge was
circulated and distributed in the Chill community. The published bulletin
adds to this material. In the following, I analyse this material to characterise
the effectiveness of the Chill community and to capture whether the gradual
withdrawal of the administrations somewhat changed the dynamics of the
community.

A thorough content analysis of all 138 conference papers and 30
authored bulletin contributions and informational pieces would be difficult
and time consuming. Consequently, I have applied a simple classification
scheme to reveal some of the characteristics of the knowledge that circulated
in the Chill community at the time. Of central interest is to what extent
prescriptive knowledge about how to use the programming language was
circulated, or whether the information circulated was purely about language
extensions and changes in the language design.151 A second issue is the one
raised by Bourgonjon in the quote above: whether the community was able
to extend itself in terms of its subject matter, and whether important fields of
knowledge about specification techniques and programming environments
were “allowed” to circulate within the language-specific community of Chill
practitioners.

Two classification schemes have been applied to answer the questions.
The main classification scheme tries to determine what type of knowledge
the articles contain, while the second tries to single out articles concerned
with specification techniques and programming environments, the very same
categories that Bourgonjon singled out in his article from 1983.
The main classification scheme is made up of three main article types.
Firstly, articles presenting prescriptive knowledge about how to use the
programming language, or reports on the experience of use of the

150 Remi Bourgonjon, telephone interview with author, 17 March 2011.
151 On the terminology of prescriptive and propositional knowledge, see Joel Mokyr,
The gifts of Athena : historical origins of the knowledge economy (Princeton, [N.J.]:
Princeton University Press, 2002).

 202

programming language containing real-world examples, either in natural
language or in code, are singled out. This group includes articles including
real code examples and illustrations of use. This is knowledge that typically
is described as “knowing how”. Furthermore, purely informational articles,
either concerning coming or past events, implementations or related
technical projects are grouped together. The last group of articles concerns
language development and language specific concepts and features, either as
formal propositions or information about extensions, modifications or
propositions to either the recommendation or a subset of the language. This
category might look superficial or overlapping with the two broader
categories, as propositions to change the programming language could be
envisioned as some sort of prescriptive knowledge. However, the articles in
question are so distinct and mainly about programming language design
rather than prescriptive knowledge about language implementation or
application or systems programming that singling them out is warranted.
This type of knowledge is propositional, in a way they are of a “knowing
why” kind.

The scheme applied consists of mutually exclusive categories, which
means that an article can either contain prescriptive knowledge or
information. The main demarcation line has been what is perceived as the
major part or point in the article at hand, or what is presented as such in its
abstract. If the content in general is prescriptive in nature, but also includes
specific informational aspect about the implementation or technique, I have
categorised it as prescriptive. The other way around, if the prescriptive
elements are minor when compared with the larger parts of the article, it is
categorised accordingly. Some articles are, however, not possible to
categorise within this scheme. Typical examples are broad discussions about
standardisation or programming at large. Such general addresses have been
left unclassified. This also goes for articles that are impenetrable and
incomprehensible.

It is not straightforward to apply such a classification scheme to a
wide range of rather esoteric articles. Naturally, this exercise is hinged on
subjective constructed criteria and my own interpretation of the content of
the articles in question. A typical problem involves the technical nature of
many of the articles, making them hard to read and difficult to understand.
Furthermore, many of the articles are complex in nature, containing both
informational aspects and novel technological knowledge. As such, drawing
the line between informational articles and those circulating more codified
knowledge is fraught with difficulties.

The classification scheme still has possibilities that more than make
up for its difficulties. First of all, it makes it possible to discuss the real
content of the knowledge circulations within the Chill community somewhat
more precisely. Furthermore, it makes it possible to discuss whether the
bulletin and the conferences really distributed and circulated knowledge in

 203

“codified” form, meaning rather precise and tight know-how, or only papers
of an informational character. 152 Below, I present the findings after
surveying all papers printed in the conference proceedings for the four
conferences where I have been able to track them down, as well as from the
issues of the Bulletin running from 1981 to 1984.

Prescriptive
knowledge

Information
Language
development

Unclassified

Bulletin 5 (15.6 %) 16 (50%) 9 (28.1%) 2

Conference ‘83 10 (32.3%) 11 (35.5%) 8 (25.8%) 2

Conference ‘84 11 (35.5%) 7 (22.6 %) 10 (32.3 %) 3

Conference ‘86 16 (50%) 11 (34.4 %) 5 (15.6 %) 0

Conference ‘90 15 (37.5) 18 (45 %) 5 (12.5 %) 2

Table 6.4: Articles from the Chill Bulletin and Chill Conferences, categorised.

Regarding the results, I will address the content of the conference
proceedings first. The numbers reveal no obvious pattern dynamic and no
article category dominates, except the diminishing relative numbers of
articles primarily concerned with programming language issues. As revisions
and additions to the programming language occurred less regularly past the
third study period of Chill-related work within the CCITT, this tendency was
natural. The relatively large number of articles concerned with language
development or programming language issues at the conferences in 1983 and
1984 concerning language development was related to ongoing discussions
in the CCITT, in particular piecewise programming and compilation.

The articles containing prescriptive knowledge in one form or another
are a plenty, at all four conferences. In 1986, 50 per cent of all the papers
presented were dominated by prescriptive knowledge in some way or
another. Generally, it seems that these papers were mainly concerned with
compilation techniques in various ways. At the 1986 conference this
accounted for nine out of 16 articles. The typical issues discussed in these
compilation-oriented articles are concerned with compilation design
combined with the newly added piecewise compilation feature in the 1984

152 On the codification of knowledge, see Margherita Balconi, Andrea Pozzali, and
Riccardo Viale, "The 'codification debate' revisited: a conceptual framework to
analyze the role of tacit knowledge in economics", Industrial and Corporate Change
16, no. 5 (2007); Cowan, David, and Foray, "The Explicit Economics of Knowledge
Codification and Tacitness"; Björn Johnson, Edward Lorenz, and Bengt-Åke
Lundvall, "Why all this fuss about codified and tacit knowledge", Industrial and
Corporate Change 11, no. 2 (2002); Paul Nightingale, "If Nelson and Winter are
only half right about tacit knowledge, which half? A Searlean critique of
'codification'", Industrial and Corporate Change 12, no. 2 (2003).

 204

version of the Chill recommendation. As such, they tied in nicely with a
concern that was common to both the core and periphery of the Chill
community, namely how to facilitate the use of the programming language
rather than its use per se. The prescriptive knowledge that circulated within
the Chill community was, in general, implementation knowledge.
Knowledge that could ease the implementation of the programming language
in various settings was readily available, and typically it was related to issues
like portability between target systems, or its close cousin, portability among
host systems. Another issue that was debated was how new language
features influenced compilation techniques. On the other hand, almost none
of the articles contained knowledge or examples of systems programming, as
those articles touching on these issues are all informational in character, with
precious few including real-world examples or code.

Let us now turn to the Chill Bulletin. Both official reports from the
CCITT and authored articles were featured in the four volumes and six
numbers I looked into, but editorial content like the editor’s introduction and
listings of coming events are not part of the survey above. All in all, the
Bulletin was dominated by official reports or output from the core Chill
community within the CCITT. Draft proposals on new language features,
information about CCITT meetings and so on took up a large proportion of
the material in the Bulletin.

Only a handful of articles on particular aspects of the programming
language can be said to contain prescriptive knowledge, and when that was
the case, they were mainly concerned with implementation issues like
compiler validation. All in all, the bulletin reported on the function of the
Chill community rather than the knowledge held by it. The Chill Bulletin
drew inspiration from other informal publications related to specific
programming languages, like the Algol Bulletin and the Simula Newsletter.153
Compared with the Algol Bulletin, which was published by the Association
for Computing Machinery (ACM) from March 1959 till August 1988, the
Chill Bulletin was a blip, a short-running publication containing little of real
interest to the members of its community. Where the Algol Bulletin
published informal papers and discussion from a wide range of authors, the
contributions to the Chill Bulletin were limited to a few authors and the
journal had to include a number of official CCITT documents to fill its
pages. The Algol Bulletin ran for 52 issues containing high quality articles,
although in a pretty informal manner quite unlike a scholarly journal.

153 For the former, see the 52 issues of the Algol Bulletin, from 1959 to 1988. The
Algol Bulletin is available in its entirety from the ACM library, see
http://portal.acm.org/ For the latter, see sporadic information in Holmevik,
Educating the machine : a study in the history of computing and the construction of
the SIMULA programming language.

 205

However, the comparison would also reveal that the Algol Bulletin was
preoccupied with language development like propositions on changes in the
programming language itself, which also were themes that made up nearly
30 per cent of the articles featured in the Chill Bulletin.

As a further extension to this survey, I have also identified which
articles were concerned with the relationship between Chill and the two
promising fields pointed out by Bourgonjon in his keynote speech at the
second Chill conference: programming environments and specification and
design techniques.154 Here, the schemes are obviously not exclusive in terms
of the previous three categories, and applied only to a subset of articles to the
total.

 Specification and design techniques Environments

Conference ‘83 2 2

Conference ‘84 6 6

Conference ‘86 4 9

Conference ‘90 2 12

Table 6.5: Articles and papers concerning environments and specification
techniques in the Chill Bulletin and at the Chill conferences

Discussions about the framework in which Chill would be used, typically
called the environment, started to draw attention as the programming
language went into use. This triggered a series of discussions about the
toolbox that the use of Chill would necessitate, especially within large
organisations. This tendency is evident in the subjects tackled at the Chill
conferences. Articles concerned with specification techniques were fewer.
They were mainly confined to discussions about the use of the specification
language SDL, the CCITT specification description language. Often, the
articles were also about various environment issues, and therefore more of
an indication of the perceived importance of this issue.

The prescriptions on how to compile Chill, or how to develop a
compiler for Chill, which dominated the circulations of the Chill community,
are examples of codified procedural knowledge. Within the literature on the
economics of knowledge, it is widely held that linear procedures are quite
easy to codify, and that this would lead to rapid established and codified
practices. 155 Another issue is the fact that compiler techniques were
perceived as something within the domain of computer science. The

154 Remi Bourgonjon, “Programming languages, environments and Chill,” Chill
Bulletin 3, no. 1 (1983), 3 – 8.
155 Cowan, David, and Foray, "The Explicit Economics of Knowledge Codification
and Tacitness".

 206

development of systems would be less general, and less likely to be codified
and available as prescriptive knowledge within the knowledge community.

Crossing boundaries?
Did the conferences facilitate knowledge circulation among participants that
worked for different and competing organisations? Conference papers can
only be that much in terms of knowledge circulation. In a practice where the
actual output of work is written code, there was at least a possibility of the
transmission of prescriptive knowledge through conference proceedings.

As shown above, participants from Siemens, ITT and Philips
continued to be present at the conferences, and contributed a substantial
share of the papers. To some extent, they continued to influence the
technical changes made to the language through the CCITT. However, to
what extent were they interested in being open about implementation,
specification and systems programming within the wider community present
at the conferences? Let me briefly consider the content the papers presented
by participants from Siemens at the conferences in 1983, 1984, 1986 and
1990, as an example. As one of the largest, earliest and most successful
manufacturers using Chill, participants from Siemens were always present at
the conferences. However, the firm was never a huge presence at the
conferences, as they presented just a modest number of papers at each of the
four conferences.

 1983 1984 1986 1990

Papers in total 32 33 31 42

Siemens 2 4 5 4

Table 6.6: Siemens at the Chill conferences

In 1983, Siemens was present with two authors, presenting papers on what
were the two most important advances in the next version of Chill language:
piecewise compilations and the input-output facilities in the language. Both
dealt with what were, at the time, concerns related to programming language
design, and reported on practical experiences from the Chill use in the
EWSD system development. In particular, the paper on piecewise
compilation involved an exposition on how the issue of separate compilation
had been dealt with before the programming language itself had any strict
rules about the way to make this possible.156

In 1984, of the four papers presented by Siemens employees, one was
still concerned with language design, and another followed up on their

156 Reithmaier, "Compilation Control in a Large CHILL Application"; Winkler, "A
New Methodology for I/O and its Application in CHILL".

 207

interest in input-output facilities by reporting on how to implement the
newly established rules in the 1984 version of the Z.200 language
definition.157 One was a proposition of how to integrate various tools into a
coherent programming environment or tool chain and the last paper reported
on the experiences of using Chill in an experimental switch called Bigfon.158

The 1986 conference was organised by Siemens in Munich and one
common thread bound together the five Siemens papers: the portability of
software written for one line of switches (processors) to another. 159 The
background to this was the introduction of new types of processors into the
EWSD lines of switches, the Motorola MC68020 processors. This
necessitated, at least, the recompilation of the software, and put one of the
main design criteria of Chill to test: the ability to write programs in a
“machine independent manner”.160 One of the papers was about a specific
compilation technique for a new processor Siemens was about to use in their
EWSD systems, making explicit implementation knowledge accessible.161
Others were partly about language design, partly about other implementation
issues.162

In 1990, the 10-man delegation of authors from Siemens presented
four papers in total. One of the papers was again concerned with

157 Winkler, "The Realization of Data Abstractions in CHILL"; T. Mehner and J. F.
H. Winkler, "An Implementation of the New CHILL-I/O", in Third CHILL
Conference (Cambridge University: ITT Europe, 1984).
158 Peter Meyer, "A CHILL-based Systems Development for BIGFON", in Third
CHILL Conference (Cambridge University: ITT Europe, 1984); T. Mehner, R.
Tobiasch, and J. F. H. Winkler, "A Proposal for an Integrated Programming
Environment for CHILL", in Third CHILL Conference (Cambridge University: ITT
Europe, 1984).
159 NM. Clark, K. Neuhaus, and G. Walter, "Support Software Environment for a
Multi-Processor-Development", in Fourth CHILL Conference (Munich: Simenes
AG, 1986); H. Hey and K. Neuhaus, "CHILL Semaphore technique for
Multiprocessing", in Fourth CHILL Conference (Munich: Simenes AG, 1996); J.
Holden and A. Pink, "A Globally Optimizing CHILL Code Generator for the
Motorola MC68020", in Fourth CHILL Conference (Munich: Simenes AG, 1986);
Peter Meyer, "Process Communication in a CHILL Environment", in Fourth CHILL
Conference (Munich: Simenes AG, 1986); M. Clark and G. Walter, "CHILL
Language Solutions for Mixed Data Formats", in Fourth CHILL Conference
(Munich: Simenes AG, 1996).
160 CHILL - The ITU-T Programming Language, ITU-T Recommendation Z.200
(1999), 1.
161 Holden and Pink, "A Globally Optimizing CHILL Code Generator for the
Motorola MC68020".
162 In particular Hey and Neuhaus, "CHILL Semaphore technique for
Multiprocessing"; Clark and Walter, "CHILL Language Solutions for Mixed Data
Formats".

 208

programming language design, this time on object-oriented aspects.163 One
was concerned with compilation design; another more broadly on
compilation techniques and the last one was about the use of the
specification language SDL together with Chill, reinforcing the impression
that the papers stemming from Siemens were largely concerned with
implementation issues. 164 Some of these papers were fairly explicit and
propositional in character, opening up to the circulation about, largely, new
compilation techniques, which was something held in common by many of
the papers presented by other participants from other manufacturing firms. It
seems that many of the ideas in the papers by Siemens participants travelled
and were picked up by others. The papers on piecewise compilation
techniques are the most prominent example of this.

The community formed around the programming language Chill was,
to some extent, able to circulate and create knowledge, both within and
outside the formal boundaries of the CCITT as well as across firm
boundaries. Where the CCITT meetings were focused on standardisation and
language development, the conferences reported on real implementations
and systems programming. However, the function of the community was
also limited: one indication of this was the strong focus on implementation
issues rather than application or systems issues. Furthermore, while
knowledge of a prescriptive type was circulated to a certain extent, it seems
that the effect of this circulation was fairly limited: few new organisations
that were “recruited” to the Chill community would apply the programming
language to large-scale switching development projects, and even fewer
would circulate knowledge about such projects within the community. With
the telecommunication administrations leaving much of the community to its
own devices, the kind of knowledge that was shared was strongly related to
the large industrial firms that were actively using Chill.

Some conclusions
This chapter has explored the general lack of interest in Chill shown by
many telecommunication administrations in the 1980s, the development of
the technical community of Chill designers, users and developers and the

163 Diebl, Schulz, and Winkler, "Object-CHILL: The Road to Object Oriented
Programming with CHILL".
164 J. Schefer, J. Schiffer, and J. Weiser, "A Machine Independent Model for
Flexible Construction of CHILL Code Generators", in Fifth CHILL Conference (Rio
de Janeiro: Telebras, 1990); A. Pink, "Fault Correction in a Running CHILL
System", in Fifth CHILL Conference (Rio de Janeiro: Telebras, 1990); G. A.
Schlaffke, J. Lantermann, and G. Becker, "A CHILL Procedure Tracer For a Real
Time Multiprocessor Environment", in Fifth CHILL Conference (Rio de Janeiro:
Telebras, 1990).

 209

subsequent technical improvements made to Chill after its ratification as an
official CCITT recommendation in 1980. All in all, this has revealed a rather
paradoxical setting: the CCITT, the organisation that had been described as
“the anchor of a regime that facilitated bilateral monopolistic bargains,
reinforced national monopolies, and limited the rights of private firms in the
global market”, facilitated the creation and subsequent improvements to a
tool that became all the more controlled by a set of manufacturers striving
for new international markets. 165 The limited appeal to the
telecommunication administrations, which at the outset had seen Chill as a
strategically and technologically important project, was most discouraging.
When even the Norwegian administration did not find it important to
demand Chill when purchasing new digital switches – it seemed highly
unlikely that anyone else would do so. In this regard, the use of Chill within
administrations was a real failure. The main initiators of the Chill project
were the first to withdraw from it. Furthermore, as the technological
practitioners started to realise that the choice of programming language was
perhaps not the most important issue through which to express their
development virtues, the impetus behind Chill started to seem futile.

The pattern of rejection and adoption among administrations were
clearly bound up in the shifting strategies of the division of programming
labour among administrations and manufacturers throughout the 1980s. The
prospective status of a Lingua Franca was more likely when the
administrations moved towards technical independence by moving
programming within their own realms, while Chill became an obscure
dialect as soon as the administrations left much of the technical development
to the manufacturers.

In terms of development and refinements, the early 1980s were a
period where closer interaction with users fed back into improvements to the
language design, and in particular improved the few software engineering
elements that existed in the language. These changes were considerably less
difficult to get approved in the CCITT working group than what had been
the case under the modus operandi in the two previous study periods of
CCITT work. This hinged on a change in the decision-making structure
within the core Chill community, which was less tense and conflicting than
in previous periods, as the group was “united” around a real object: the Chill
recommendation. As such, while the prospects of a functioning and effective
core Chill community were quite meagre at the end of the Implementation
Forum period, the prospects of the Chill community seemed considerably
more positive in the mid-1980s.

165 Cowhey, "The international telecommunications regime: the political roots of
regimes for high technology": 176.

 210

The Chill community expanded during the first few years of the 1980s as it
drew interest from countries that had been peripheral at best during the
inception years, like China, India and Brazil. However, few new
manufacturing firms participated in the community, as it was still dominated
by firms like the ITT, Philips and Siemens. As will be made clear in the
coming chapter, where I analyse the use of Chill in large organisations, this
was all due to Chill’s limited appeal to existing manufacturers that had
already come a long way in applying other programming languages to their
development programs.

 211

7. Possibilities and opportunities: entering
markets with Chill

The defection of the national administrations from the Chill cause coincided
with rapidly changing conditions for many telecommunication equipment
manufacturers. The ties between what often had been nationally confined
manufacturers and administrations fell apart and trade in telecommunication
equipment surged internationally, in particular in the second half of the
1980s. Previously closed markets were opened up to outside contenders as
“national champions” lost their footing and home base.166 Paradoxically, this
could have put Chill in the ascendant once again. However, this time around
the diffusion had to involve independent tool vendors that catered for the
users of the programming language rather than the established
manufacturers.

This chapter analyses the possibilities for new Chill use that emerged
in the second half of the 1980s and tries to answer why particular
entrepreneurial firms were created to seize these opportunities. In particular,
I focus on the ideas and knowledge that were commercialised. I try to
answer why some ideas were brought to the market by new and
entrepreneurial firms, while others would depend on already established
firms and still others would never reach outside large manufacturers.167 I
focus on the possibility to commercialise products related to Chill
programming. In addition to this, I explore how these possibilities were
pursued and to what extent the ventures were successful or not. I focus in
particular on the commercialisation of the Nordic compiler project through
the firm Urd, the most extensive entrepreneurial effort related to Chill. In the
end, I conclude on whether the extensive re-regulation and liberalisation of
the telecommunication industry from the second half of the 1980s
represented a new possibility for further diffusion of Chill or whether it was
a set of rather unfeasible opportunities. This includes a review of the fate of
Chill throughout the 1990s until the last maintained recommendation
published by the ITU in 1999.

The “ancien regime” and the new beginning
By the late 1980s Chill’s status as a standard was severely weakened. The
faltering position of formal international agencies of the “ancien regime,”

166 An overview of the changes in the trade of telecommunication equipment of the
time is OECD, "Telecommunications Equipment: Changing Markets and Trade
Structures, No. 2", in OECD Digital Economy Papers (OECD Publishing, 1991).
167 This question mirrors the general concern raised in Nicholas Dew, S.
Ramakrishna Velamuri, and Sankaran Venkataraman, "Dispersed knowledge and an
entrepreneurial theory of the firm", Journal of Business Venturing 19(2004).

 212

like the CCITT, followed the liberalisation of the telecommunication
administrations. This made the possibility of Chill as a mandatory
requirement seem all the more unlikely. 168 However, as established
manufacturers started to target new markets and start-ups tried to wrestle
their way into the rough seas of the international telecommunication
equipment market, Chill could play a new role. To compete in the
international markets, new demands were put on the equipment
manufacturers, demands that could be met by developing software more
effectively. Chill was not without technical merit and in the mid-1980s it
was more capable then before. Tools were made available to supplement the
language and suddenly Chill looked like an attractive offer again, despite its
faltering status as a standard approved by the CCITT. These tools were
products, in contrast to the early example of the ITT’s hiring of the firm
Massachusetts Computer Associates, an outside software contractor, to
create a compiler for the System 12 switch. ITT’s further reliance on outside
contractors for new developments and maintenance of their Chill tools, like
the compiler development with Intermetrics and the services and further
developments made by Richard Daley Associates, followed this model of
using sub-contractors rather than products bought through market
exchange.169

In a paradoxical way, the technical merits of Chill were reinvigorated
and strengthened just as the ties between governing agencies and the
manufacturers loosened, and the possibility to release software tools as
products to the market was emerging. As the ties between manufacturers and
administrations were severed, firms that had previously been limited to
operations in their national market tried to establish new ties, but of a
different kind: strategic alliances, mergers, acquisitions and eventually the
increasing use of outside suppliers became increasingly common throughout
the decade. The joint ventures by ITT and Alcatel and by the AT&T and
Philips are important examples, and by the late 1980s, these were joined by
the merger of the two British manufacturing firms, the telecommunication
division of General Electric Company (GEC) and Plessey, an organisational
entity that eventually would end up in the joint acquisition of Plessey by

168 The concept of an “ancien regime” in telecommunications, and how the ITU
supported this regime, was explained in chapters one and two. See also Drake, "The
Rise and Decline of the International Telecommunications Regime".
169 Richard Daley, emails to author, April 2011.

 213

GEC and Siemens in 1989. 170 The number of similar large-scale
reorganisations in the telecommunication equipment industry only
accelerated in the 1990s.171 These reorganisations created an opening for
outside suppliers of software tools and programming services. New
businesses could target the telecommunication equipment industry by selling
compilers and other programming tools as products to the industry. Before
this, these products had been made by the large manufacturers that had
already committed themselves to Chill and to research establishments with
strong ties to the telecommunication administrations.172 The early examples
of reliance on outside aid have already been mentioned, where the most
international of all the manufacturing firms, the ITT, contracted out the
development of a new compiler for Chill to the specialist firm Massachusetts
Computer Associates in the early 1980s.173 However, this early example was
one of contracting, as the compiler was never traded openly in a market, but
was limited to the one customer, the ITT.

New ventures and new environments
A programming language and its accompanying set of compilers are only
part of what is needed to develop software. The programming language is
only a set of rules for writing programs and the compiler is what transforms
this writing into executable computations. Between the process of writing
the code and handing it over to the compiler, other tools can be applied to
ease the work associated with software development. This part of the tool
chain, including the compiler, has often been called the software

170 On the considerable differences between the equipment markets in various
Europe countries, see Enzo Pontarollo, "Procurement and market structure in the
telecommunications industry : A European survey", European Journal of
Purchasing & Supply Management 1, no. 2 (1994). On the reorganisation of GEC
and Plessey, see Owen, From Empire to Europe, 282-88.
171 Fernand Amesse et al., "The telecommunications equipment industry in the
1990s: from alliances to mergers and acquisitions", Technovation 24, no. 11 (2004).
172 As noted in chapter one, the similarity to the changes in the production of
machine tools in America, which were first made on an ad hoc basis by their users
and later on spawned the emergence of firms devoted to machine production from
about 1840 to 1880, is striking. See Rosenberg, "Technological Change in the
Machine Tool Industry, 1840 - 1910".
173 See chapter five.

 214

development environment.174
Some elements of these environments could be language independent,

making way for generic tools. One example is sophisticated code editors, the
word processors of software development if you like. Other elements would,
to some extent, have to integrate the programming languages into their midst
to be effective, like the compiler. In addition to the compiler – which forms
an important element in any programming environment - these tools could
be so-called debuggers, which is a type of software used to find the cause of
an error (a so-called bug) that exists in a program. Other valuable tools in
such environments could be linkers, which tied together separately compiled
modules. Many other types of tools were available to the software developer
in the 1980s, a point in time that generally marked a shift in focus from a
past centred on the programming language.

Programming languages for telecommunication were something
special, and accordingly, the elements in the software development
environments were peculiar to the telecommunication industry. Furthermore,
as Chill was a very peculiar programming language, so the environments
would have to be rather language-centred. According to Remi Bourgonjon,
what such environments should consist of was also a difficult question:

In large system developments, such as SPC switching systems, it is [....] difficult
to decide what should be in the programming environment. For example, in SPC
systems development almost everything is related to everything else. The
compiler has a strong relation with the debugger, which has a relation the
operating system, file system, telephony test system etc. The telephony test
system has a relationship to the telephony programs etc.175

Accordingly, the environments used in telecommunication programming
were often tightly integrated with the telephony systems, something that
gave those directly involved with such systems a head start. Large firms
using Chill, like the ITT, Siemens and Philips, had already in the early 1980s
developed a number of tools to strengthen and complete their own software

174 The terminology of software development environments was, to some extent, a
thing of the 1980s, where the term proliferated in conference proceedings, like those
from the International Conference on Software Engineering, and in journals like the
Software Engineering Journal. As such, the term is historically correct when
discussing the period under consideration, although it might not be in vogue at the
moment. A similar term, so-called programming environments, appeared earlier, in
the late 1970s, and implied much of the same thing.
175 Here, Bourgonjon used the terminology of programming environments in place
of software development environments. See Remi H. Borugonjon, "Programming
Languages, Environments and Chill", Chill Bulletin 3, no. 1 (1983).

 215

development environments.176
The entrepreneurial efforts to commercialise knowledge gained

through the Chill project were geared towards the needs of strengthening
such development environments, meaning that they targeted openings in the
environments of established firms. At first, the primary focus was the
development of compiler technology, which is the most language-specific
part of a development environment, but other tools were also made available
through entrepreneurial firms. Consequently, they targeted a market where
in-house developments already had been going on for a number of years.
However, the entrepreneurial ventures were not without their own history.
They were, in some way or another, related to already existing Chill users or
researchers.

Three “and a half” ventures tried to commercialise products or
services related to Chill through market exchange, meaning that the product
or service was made available from more than one contracting customer.177
All the ventures started out by selling compilers and providing services to
users of compilers, although Urd would eventually branch out into a series of
different implementation tools, eventually ending up offering a complete
software development environment. The ventures under consideration in this
chapter were primarily involved in the introduction of tools to the market,
but I do also briefly consider some additional service offers that were made
by firms not offering products. Only one of these ventures relied completely
on Chill-oriented products.

The first and largest venture to introduce products that could assist in
using the Chill programming language was first introduced to the market by
Urd Information Technologies. Urd Information Technologies was
established in Trondheim, Norway, as a direct result of the Nordic Chill
Compiler project. It was established in 1984. It was started by Kristen
Rekdal, who had held prominent positions within the CCITT Chill project
for a long time, and was set up to commercialise Chipsy (an acronym for
Chill Programming System), the programming environment that had been
developed by Runit for the Nordic telecommunication administrations since
1978. Starting out as a compiler for a limited number of target hardware
platforms, the programming system now included other tools, such as testing

176 See for example Ibid; Clark, Neuhaus, and Walter, "Support Software
Environment for a Multi-Processor-Development"; Mehner, Tobiasch, and Winkler,
"A Proposal for an Integrated Programming Environment for CHILL"; Meyer,
"Process Communication in a CHILL Environment".
177 On the difference between software contractors and products, see Campbell-
Kelly, From airline reservations to Sonic the Hedgehog : a history of the software
industry; Campbell-Kelly and Garcia-Swartz, "From Products to Services: The
Software Industry in the Internet Era".

 216

tools and tools for simple configuration management, meaning the task of
tracking and controlling changes in the software. In short, it gradually filled
in the space in a Chill-oriented software development environment.178

The second product that was tried and sold through a market was a
Chill compiler by the British company Imperial Software Technologies,
which had been funded in 1982 as a spin-off from the Imperial College of
Science and Technology in London. Imperial’s Chill compiler was, however,
not a result of work done at the Imperial College, but a product developed
through a Danish-British relationship. The British telecommunication
manufacturer GEC, the Dansk Datamatik Center (DDC), which was founded
by Dines Bjørner in 1979 as a sideline of the technical university in Lyngby,
and the Danish Telecommunication Research Laboratory extended the
formal approach to compiler design that Bjørner had pioneered throughout
the 1970s, by developing a Chill compiler.179 The main architecture of the
GEC-commissioned compiler stemmed from this work, while the code
generator was eventually coded by Imperial Software Technology. The
project also involved the use of a Chill compiler in a proposed Ada
programming environment, making it possible to combine programming
projects that used both languages. GEC was one of the main participants in
this project, which was sponsored by the EEC.180

This compiler was put on the market by Imperial Software from
around 1986, making the technology available to customers other than
GEC.181 The main person behind the work at Imperial Software was Peter J.
Smith, who had previously worked for the ITT creating a compiler for their
System 12 switch. Smith had also been active in the CCITT on behalf of the
ITT in the study period from 1981 to 1984, contributing a number of papers
on the revisions of Chill.182 By the time the GEC compiler was put to use,
the company was locked into a dogfight with the second British

178 On Urd and Chipsy, see various documents available in the NTR archives, which
contain extensive material on Urd and Chipsy. See in particular boxes “L 0135
Samarbeid” and “L 0136”, series “Da, 1961 – 1996,” NTR.
179 Peter Haff and Søren Prehn, "The TFL/DCC CHILL System Development", in
Second CHILL Conference (Lisle, Illinois: Bell Laboratories, 1983).
180 Meiling and Palm, "A Comparative Study of CHILL and Ada on the Basis of
Denotational Descriptions".
181 Peter J. Smith, "Experiences in Achiving A Full Implementation of CHILL", in
Fourth CHILL Conference (Munich: Siemens AG, 1986); D. R. Johnson and C. P.
Miller, "Testing a CHILL Compiler", in Fourth CHILL Conference (Munich:
Siemens AG, 1986). See also Kristen Rekdal, ”Report from forth Chill conference,
Munich, 29/9 1986 – 2/10 1986”, 8 October 1986, box “L 0136 Samarbeid”, series
“Da, 1961 – 1996”, NTR.
182 Details given in the biographies section of the conference proceedings of the third
CHILL Conference (Cambridge: ITT, 1984).

 217

manufacturer, Plessey, and the System X switching system, which had
previously been a joint development programme between the two companies
and the British telecommunication administration, was in disarray. The now
privatised telecommunication division of the Post Office, now named British
Telecom, bought a substantial number of System X switches, but by 1985,
Ericsson was let into the British network. By the late 1980s, GEC, together
with Siemens, bought the remains of Plessey. System X, on the other hand,
did not experience any major success, as its diffusion was largely confined to
the British Isles. The Chill compiler did not, however, survive the constant
upheavals at GEC in the late 1980s, or at Imperial Software.183

The “half” in the “three-and-a-half” was the Dutch telecommunication
administration, which sold their Chill compiler on ad hoc basis. 184 The
compiler had been developed throughout the period of the Implementors’
Forum, where the Dutch PTT was one of the most active participants.185 In
the 1980s, this compiler was developed into a software development system,
consisting of a set of tools such as compilers for different target computers, a
formatting tool for the source code and a debugger.186 The effort to sell the
compiler or the development environment did not develop beyond the
preliminary and ad hoc basis.

In the 1990s, the American company Cygnus pioneered the open
source business model by providing software developer tools as open source
software and delivering services to their users. 187 A Chill compiler was
developed by Cygnus in the early 1990s, and it was later included in what
became the GNU Compiler Collection (GCC), an open source collection of

183 Information about GEC and System X is briefly given in David Parker, The
Official History of Privatisation Vol. I: The formative years 1970-1987 (Routledge,
2009), 260. See also Owen, From Empire to Europe, 282-88.
184 Details about this are found in Kristen Rekdal, ”Report from fourth Chill
conference, Munich, 29/9 1986 – 2/10 1986”, 8 October 1986, box “L 0136
Samarbeid”, series “Da, 1961 – 1996”, NTR.
185 On the technical background of this project, see G. H. te Sligte, "A cross-
implementation of Chill on existing hardware under a commercial operating
system", in Software Engineering for Telecommunciation Switching Systems
(University of Warwick, Coventry: Institution of Electrical Engineers, 1981); Meijer
and Sligte, "Status report of CCITT HLL implementation at the Dr Neher
Laboratory of the Netherlands PTT".
186 G. H. te Sligte, "A programming environment for Chill", in Second CHILL
Conference (Lisle, Illinois: Bell Laboratories, 1983).
187 On Cygnus, see Michael Tiemann, "The future of Cygnus Solutions : and
entrepreneur's account", in Open sources : voices from the open source revolution,
ed. Chris DiBona, Sam Ockman, and Mark Stone (Beijing ; Sebastopol, CA:
O'Reilly, 1999).

 218

compilers for various programming languages.188 This made the core of any
Chill implementations available for free. Nevertheless, the Chill part of
Cygnus was never extensive: quite the contrary. By the late 1990s, The GNU
Chill implementation was no longer being actively developed. Cygnus had at
that point only one customer for whom they were maintaining the Chill
compiler. Subsequently, the Chill compiler was pulled back from the GCC
collection due to little interest.189 The Cygnus venture, although intimately
tied in with the availability of a free and open source version of a Chill
compiler, points towards the possibility of other service-oriented Chill
ventures. Such cases would be much harder to track down, in particular if
they were small and mainly dealing with one or a very limited set of
customers. Following this, and the fact that the Cygnus effort was developed
quite some time after the others, I will in this chapter focus on the efforts to
commercialise Chill tools in the latter half of the 1980s. Another case that I
do not consider any further was the compiler developed by the NTT, which
had made their Chill compiler available to their favoured cooperative
manufacturers, NEC, Hitachi, Fujitsu and Oki. I consider this more in line
with the old telecommunication regime and not as a result of new
opportunities and market exchange.190

Entrepreneurship, communities and knowledge
As seen above, the Chill community was not exactly bursting with
entrepreneurship. The few examples that existed were limited. The
entrepreneurial activities were initiated by or associated with people who
held central positions within the Chill community and concentrated on
implementation technologies like compilers and other parts of the
development environments.

The three main efforts to sell Chill-related products originated with
people with central positions in the Implementors’ Forum: Rekdal, who
founded Urd, Bjørner, who was central in the Danish compiler project that
would be transferred to Imperial Software, and Meijer, who led the work of
Dutch administration on Chill, were all important actors in the early
development and implementation efforts of Chill. Rekdal would go on to be
the chairman of the CCITT working group in the 1980-84 study period and

188 “Chill Front End”, August 29, 1998, http://gcc.gnu.org/news/chill.html (retrieved
5 April 2011).
189 The Chill compiler was omitted from the 3.0 version of the GCC, which was
released in 2001. It was removed from the GCC source tree on 15 April 2002. See
http://gcc.gnu.org/news/ (retrieved 5 April 2011).
190 As noted in chapters five and six, the details on the use of Chill in Japan are
scarce and hard to come by. An overview is found in Chapuis and Joel, Electronics,
computers and telephone switching: 1960-1985, 425-30.

 219

held a prominent position within the CCITT throughout the Chill project,
while Bjørner, and his related research group, were active and vocal in the
development of both Ada and Chill. Furthermore, Peter J. Smith, who led the
Chill work at Imperial Software, had previously represented the ITT in the
CCITT in the early 1980s.

Another similarity between the entrepreneurial efforts was their
networked nature outside the CCITT community: Rekdal’s work spanned the
CCITT, the Nordic compiler project and various positions in academia. The
same goes for the Imperial Software Technology project, which involved a
number of companies, like GEC, and the research institute DDC and the
Danish Telecommunication Research Laboratory, and implicitly, through the
prior employment of Peter J. Smith, also the ITT. All in all, the early efforts
to commercialise Chill tools were spun out from cooperative networks of
various kinds, releasing the entrepreneurial potential of the networks
established within the boundaries of the “ancien regime” of
telecommunications.

However, they were also carved out by technical experts who held a
rather independent position. It was no coincidence that the two main
entrepreneurial efforts that I have discussed in this chapter, Urd and the
Danish compiler transferred to Imperial Software, were fruits of research
done at fairly independent research establishments, in countries with no
dominant telecommunication manufacturer, Norway and Denmark. The
central position in the Chill community held by Kristen Rekdal and Dines
Bjørner was a consequence of the same free-standing positions, and would
go a long way towards explaining their specific possibility to realise
commercial products from their Chill activities. Furthermore, both Rekdal
and Bjørner had expressed affinity for elements of formally oriented
computer science. Bjørner and his partners at DDC and the Danish
telecommunication research laboratory extended this towards the
construction of compilers, with an explicit focus on correctness-proving of
compilers aided by his formal description methods.191

All the cases discussed above tried to commercialise knowledge about
how to implement the programming language Chill, first by offering
compilers for various host computers and hardware targets – and in the case
of Urd by eventually providing elements of complete software development
environments. They were, in other terms, not products already available in
the market. There are reasons to believe that Rekdal, Bjørner and the Dutch
telecommunication administration were ahead of the curve in terms of
acquiring such knowledge early on in the Chill development, providing

191 One example is Flemming Andersen and Karsten Nyblad, "Compiler testing,
theory and experiences", in Third Chill Conference (Cambridge University: ITT
Europe, 1984).

 220

access to advanced and comprehensive compiler solutions. In particular
Bjørner and Rekdal had considerable experience in compiler design, also for
other languages and towards various hardware platforms.

The community in itself could be deemed an obstacle to market
creation, as the network facilitated the exchange or transfer of knowledge
without the need of monetary exchange and there existed few reasons for
people holding central positions within the community network to act
entrepreneurially, since the knowledge available to the central actors would
be much the same as to those in more peripheral positions within its borders.
To people outside the Chill community, however, the knowledge was so
difficult to grasp, in some ways because of the astute formalism of some of
the technology, that they were not able to effectuate on it.

Compared with the continuous activities around the programming
language Ada, the number of Chill-related products and services exchanged
in market-like structures was meagre. As of June 1986, there were 47
compilers from 19 different vendors developed to serve the Ada market.
Together with the substantial amount of other Ada-related activity within a
slew of established firms, this creates the impression of an expanding
market.192 The activities in Europe expanded throughout the 1980s as well.193

By the late 1980s, the number of Chill compilers was not all that
meagre: I accounted for 29 of them in chapter five. However, many of those
were not available from vendors, but held as in-house tools by large
manufacturers or created as proof-of-concepts by research establishments. A
software tools exhibition was held at the 1990 Chill conference. Five
organisations took part. The Warsaw University of Technology exhibited
their Chillit programming environment (about which I have no further
information). Kristen Rekdal showed off the Chipsy system by Urd, now
named Kvatro. Karsten Nyblad of the Danish Telecommunications Research
Laboratory displayed their compiler and interpreter, which had previously
been developed and marketed by Imperial Software. The NTT demonstrated
their software development environment and the Brazilian hosts, the CPqD,
revealed a number of development tools. 194 If the exhibition was
representative to what was available at the time, and there are good reasons
to believe it was, it was a long way from the 19 Ada compiler vendors in
1986. Furthermore, it is not given that these exhibitors were vendors of
anything, apart from the Urd/Kvatro team.

192 The numbers are taken from Jean E. Sammet, "Why Ada is not just another
programming language", Commun. ACM 29, no. 8 (1986).
193 See for example Ada Language (Great Britain) Ltd., "Ada yearbook", (London:
Chapman & Hall, 1991).
194 The exhibition is listed in the final programme leaflet of the 5th Chill conference.

 221

The opportunity to commercialise Chill-oriented tools rested on the opening
up of established manufacturers to outside tool vendors. GEC’s involvement
with Imperial Software was one signal of this. Another signal was the
extensive cooperation between the administration-sponsored Nordic
compiler project and the ITT subsidiary STK in Norway, which was
described in chapter five. Here, the key technology to the development of the
so-called nodal switch was delivered by an outside party. In the same period,
the ideal of Chill as something preferred by administrations was also not
without merit: Siemens used Chill as a part of their campaign to get into
markets like Pakistan in the second half of the 1980s. However, the signals
off an opening in the market to target existing and large-scale switching
manufacturers did not last. The following section looks into these dynamics
in detail through a case study of the setting up and development of Urd.

Spinning off
The most comprehensive and extensive case of Chill-related
entrepreneurship was the creation of the Norwegian firm Urd Information
Technologies. 195 It was definitely a case of an insider from the Chill
community – in many ways one of the most ardent supporters of the Chill
cause – entering the market through a new venture.

Urd was set up to commercialise products developed within the
Nordic Chill compiler project, which the Nordic telecommunication
administrations had started in 1977. This activity expanded substantially in
the early 1980s, and was related to a larger development system called
Chipsy (the Chill Integrated Programming System), a full software
development environment. The project also included the British
administration, and continued up until the mid-1980s. Eventually, the
product would be marketed under the name Chipsy and comprised a set of
tools in addition to the compiler first developed, some developed within the
realms of Urd, some originating from the continuation of the Nordic
compiler project in the early 1980s.196

195 The following is based on extensive interviews with Kristen Rekdal, but also the
material available in the NTR archives, which contains regular reports on the
fortunes on Urd’s sales of their Chill technologies, as the administration was one of
the owners of the product due to their sponsorship of the Nordic Chill Compiler
project. See in particular the two following boxes “L 0135, Samarbeid” and “L
0136, Samarbeid”, series “Da, 1961 – 1996”, NTR. Furthermore, additional
information about the relationship between Runit and Urd was obtained from Svein
Hallsteinsen, interview with the author, 21 January 2009, Trondheim, Norway.
196 For an overview of the Nordic compiler projects, see Rekdal, "The Nordic
CHILL Project".

 222

Three exits predated the establishment of Urd. At the micro level, the start-
up coincided with Rekdal’s exit from the CCITT, as he left his role as
chairman of the working group that had been responsible for Chill
development in 1984. Furthermore, it coincided with Rekdal’s departure
from his position at Runit and technical research. At an organisational level,
a prerequisite for the creation of Urd was the unwillingness of the Nordic
administrations to continue their coordination of the Chill activities, and
their unwillingness to market the Chill tools they had developed with Runit.
At the macro level, the firm’s creation overlapped with the coming of what
the historian Lars Thue has described as “the neo-liberal order”, a broad
transformation of Norwegian politics towards market orientation and the
downsizing of the role of the state. This involved the abandonment of the
social democratic consensus that had prevailed since the post-war period.197
The Labour Party left government in 1981, to be replaced by the first
majority Conservative government since 1928. More directly, this initiated a
change in industrial policy and an increased focus on how applied technical
research could be commercialised through spin-offs and firm creation.198

In the following, I will substantiate my description of each of these
three exits on the political, organisational and individual level. I will also
discuss how each exit created an opportunity to commercialise the Chill
knowledge that existed at Runit and introduce Chipsy to the marketplace.
Let me start at the bottom, at the level immediately experienced by the
people involved in the Chill projects.

Kristen Rekdal’s exit from Runit came after he had realised that he
would not be able to develop Chipsy further at Runit.199 Runit had “severe
problems with funding” and it was believed that the only possibility to
develop Chipsy into a more mature product was to commercialise it and spin
it off into a separate entity.200 The increasing maintenance responsibility for
the early Chipsy users was in conflict with the research objectives of Runit.
By exiting Runit, Rekdal also left the possibility of an academic career as
well as the possibility to continue a more theoretical interest in programming

197 The conception of the neo-liberal order has pervaded Thue’s work for a number
of years, largely in Norwegian. It has also been substantiated in Lars Thue,
"Norway: a resource-based and democratic capitalism", in Creating Nordic
capitalism: the business history of a competetive periphery (Basingstoke: Palgrave
Macmillan, 2008).
198 This is extensively treated in the Norwegian historiography. For an introduction
in English, see ———, "Norway: a resource-based and democratic capitalism", in
Creating Nordic Capitalism: The business history of a competetive periphery, ed.
Susanna Fellman, et al. (Basingstoke: Palgrave MacMillan, 2008).
199 Kristen Rekdal, interview with author, 11 November 2008, Oslo, Norway.
200 ”CHIPSY information meeting”, Oslo 15 January 1985, box “L 0135,
Samarbeid”, series “Da, 1961 – 1996”, NTR.

 223

languages and software development, since just before the formation of Urd,
Rekdal was appointed as professor at the Norwegian Institute of Technology
in Trondheim, a position he never took up.201

Rekdal’s exit from Runit coincided with the end of his stint as a
chairman of the CCITT group that had refined the 1980 version of Chill. By
this time, he had also closely watched how the group was unable to fulfil an
initial concern towards creating a standardised Chill environment and, more
modestly, a standard compiler. He had first-hand experience of the limits of
cooperation within the CCITT. He also possessed an almost complete
overview of how Chill was used and by whom, since this was reported
regularly in the Chill Bulletin, of which he was the editor until 1984. If the
market for Chill-based tools existed, Rekdal would be the man to know.

To be able to effectuate on this knowledge, ending his liaison with the
telecommunication administration, which he represented in the CCITT,
while being able to maintain his close relationship with the same
organisations, was important. The telecommunication administration had put
substantial weight behind the development at Runit. In total, through
financing from the Nordic administrations and various industry contracts, the
investment totalled 25 million Norwegian kroner between 1975 and 1985.202
The product, Chipsy, was developed and marketed by Runit, and already in
1979 had been sold to the Norwegian ITT subsidiary STK. In 1981, the sales
of Chipsy escalated, with two major orders, one from STK and one from the
Swiss company Hasler.203 In 1982 and 1983 development on Chipsy was
substantially influenced by these contracts, and 1984 saw more new
customers, in this case the No. 10 Research Institute of the Ministry of Post

201 ”Statsråd ble holdt på Oslo slott 28. oktober 1983”, Aftenposten, 29 October
1983.
202 Stipulations made from Svein Hallsteinsen, “Overview of projects and contracts
at RUNIT dealing with CHILL and CHIPSY”, 20 November 1985, box “L 0135,
Samarbeid”, series “Da, 1961 – 1996”, NTR. Costs related to the participation in the
CCITT are not included and all investments are given in current prices. In prices for
2010 (adjusted with CPI), this would amount to 52 million NOK or 8,605,032 in
2010 US dollars.
203 In total, these two sales were worth two million Norwegian kroners, and triggered
maintenance and development contracts worth 7.7 million Norwegian kroners, in a
period from 1981 to 1985. All numbers taken from Svein Hallsteinsen, “Overview
of projects and contracts at RUNIT dealing with CHILL and CHIPSY”, 20/11 1985,
box “L 0135, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961 –
1996”, NTR.

 224

and Telecommunications of China, and smaller licenses to the Korea
Advanced Institute of Science and Technology.204

These activities created a mismatch between the institutional setting
and the project. It was stretched between the interests of the owners (the
telecommunication administrations) the research institute, Runit, and the
commercial activities. This caused concern. In a report from the steering
committee in February 1982, this was expressed in the following way:

The activities inside and outside Runit are now so complex that it is difficult to
distinguish between the interests of NT-P [The Nordic coordination group on
programming languages, basically the steering committee of the Nordic Chill
project], Runit, The Norwegian industry and others. Runit’s main activities are
neither basic research nor pure industrial projects, but rather applied research and
development. Runit must raise money in order to survive, which means that
Runit’s interest goes where the money is.205

The economic squeeze at Runit was well known to the participants in the
Nordic Chill project. The steering committee would often report on the
economic problems of various sub-projects, which were caused by too
ambitious technical goals and contracts with industry partners like STK and
Hasler that pushed the project in a direction not necessarily in line with the
wishes of the administrations. Generally, Runit lacked both resources and
expertise in dealing with commercially applied research and development,
which the development of Chipsy resembled more and more, as the
increasing amount of maintenance that was involved in the various Chipsy
installations would seriously stretch the resources available.

The organisational stretch escalated during the period up until 1984,
when the administrations felt that the Chipsy project had run its course and
considered cutting the project altogether. In a report from the owners’
coordination group, it was argued that:

204 “Rapport no 7 to NT from NT-P for the period 84-03-01—84-09-01”, 31 August
1984, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961
– 1996”, NTR.
205 Søren Werner, “Report from the 10th Meeting on NT-Programming Languages,
British Telecom, London, February 9-10, 1982”, 10 May 1982, box “NT-
Programspråk 1982”, KRC.

 225

CHIPSY has served its purpose. It has been giving experience with CHILL
matters to the Nordic countries in their CHILL activities in CCITT. It has
supported the common Nordic financed chairman of SWP XI/3-2. Contributions
from Nordic delegates in CCITT have also been supported. Furthermore RUNIT
as a scientific organization has seen that the administrative tasks of CHIPSY
including marketing and selling have become too man consuming in order to
continue the way CHIPSY deserves. Therefore CHIPSY could be stopped
now.206

Despite these objections, there was also considerable interest in continuing
the project. Three arguments were used in support. Firstly, Chipsy had
attracted far more interest from industry than had been foreseen. The feeling
was that while Runit was not able to market and sell Chipsy professionally,
it could be “sold to a greater extent if it were taken care of by a professional
company”. 207 Secondly, there were some indications that the
telecommunication administrations in Norway and Finland were planning to
use Chipsy for in-house software development. Thirdly, contracts with
industrial partners like STK and Hasler obliged Runit to maintain Chipsy for
a number of years. The steering committee of the Nordic Chill project
concluded: “Chipsy should be kept alive – but handled in an easier way than
is the case today.”208 That easier way was to license the rights to Chipsy to
an existing firm willing to take it on, or by supporting the creation of a new
firm dedicated to marketing, selling and developing Chipsy. Consequently,
the committee started searching for an agent. At this point in time, Urd was
already in planning.209

Even though a tender to “take over” Chipsy was circulated to a
number of prospective and existing companies, it was no surprise that the
Nordic administrations opted for Urd in the end, since Chipsy basically was

206 In an appendix to “Rapport no 7 to NT from NT-P for the period 84-03-01—84-
09-01”, 31 August 1984, NT-213 and NT-P(84)139, box “L 0136, Samarbeid”,
series “Da Sakarkiv ordnet etter arkivnøkkel, 1961 – 1996”, NTR.
207 Ibid.
208 Ibid.
209 Urd was discussed at a board meeting at Sintef on 11 April 1984. The business
plan that was presented was general, but Chipsy was already mentioned as a point of
departure for further product developments in the prospective firm. Ola Nordal, who
has written the history of both the Norwegian University of Science and Technology
(NTNU) and the computer history of Sintef, lent me a copy of the business plan.

 226

a product of Runit and Urd was a Runit spin-off.210 By 1985, the newly
formed company Urd obtained the rights to sell and further develop
Chipsy.211 The agreement meant that Chipsy remained the property of the
administrations involved, and that all sales of Chipsy made by Urd would
yield royalties for these owners. However, the administrations could choose
to reinvest their net income in further Chipsy developments and would be
eligible to use Chipsy free of charge.

The opinion that Runit and the Nordic cooperation was the wrong
environment for further developments of Chipsy was not something felt
within the administrations. It resonated with a shift in general industrial
policy.

In November 1983, the Norwegian minister of labour and local
governance, Arne Rettedal, visited the biannual industry conference in
Trondheim. A notable conservative politician and former mayor of the oil
capital of Norway, Stavanger, Rettedal criticised the dominant attitude in
industry and academia in Trondheim for its general lack of risk-taking and
market-orientation – something contrary to what he believed was the key to
the rise of Stavanger as the dominant city in the rapidly expanding
Norwegian offshore oil industry. 212 To remedy this, Rettedal proposed
increasing funds for applied technical research and initiatives to increase the
efficiency of research and development. In total, the conservative minister
claimed that the knowledge institutions of Trondheim had to serve
commercial interests in a more effective fashion than before.

At the same conference, Johannes Moe, head of the Foundation for
Industrial and Technical Research (Sintef), rhetorically asked whether the
organisations in Trondheim engaged in industrial and technical research
contributed enough in terms of innovations.213 Moe claimed they did not, and
that Sintef could be an important mediator in a more innovative future.

210 On the tender, see ”CHIPSY information meeting”, 15 January 1985, Oslo, box
“L 0135, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961 – 1996”,
NTR; Jens R. Rasmussen ”CHIPSY Marketing, Sales and Distribution Companies in
Denmark”, 17 January 1985, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet
etter arkivnøkkel, 1961 – 1996”, NTR. Here, a Danish alternative to Urd is
mentioned, Danish Telecom International a/s. Apparently, their offer was not as
favourable as that from Urd.
211 “Agreement between URD Information technology A/S, British
telecommunications PLC and Norwegian telecommunications Administration:
CHIPSY sale and development”, 13 August 1985, box “L 0135, Samarbeid”, series
“Da Sakarkiv ordnet etter arkivnøkkel, 1961 – 1996”, NTR.
212 “Rettedalkritikk mot industri og forskning”, Aftenposten, 2 November 1983.
213 “Johannes Moe under Industridagene: - Samlet kan vi få fremgang”, Aftenposten,
2 November 1983.

 227

Trondheim was a prime target for such criticism, as Norway’s largest
organisations engaged in technical and industrial education and research
were located in the city.214 As one of many consequences of these critical
assessments, a fund for seed money (A/S Etablering og
virksomhetsutvikling, Asev for short) was set up in January 1984, only
months after Rettedal’s visit and Moe’s speech.215 Asev was partly funded
by Moe’s Sintef, partly from government money and partly by five private
banks. Asev’s mandate was to help fund and support small spin-offs from
Trondheim’s academic organisations, and rectify the shortcomings pointed
out by Rettedal and Moe.

Only months after Asev’s start, Kristen Rekdal was planning to break
away from Runit and Sintef. With help from Asev, the creation of Urd was a
reality during summer of 1984. The Rettedal and Moe statements in 1983
and the creation of Asev in 1984 illustrate a general shift in research and
industrial policy in the early 1980. This involved a policy in which research
was to prove its worth through innovations and new firm creation. The idea
of creating university spin-offs and subsequently provide knowledge
diffusion through the mobility of academic employees was novel and carried
out with great optimism.216 It is worth noting that this belief in spin-offs was
not necessarily compatible with the crux of a neo-liberal belief in the
effectiveness of markets. One of the prerequisites of this early period of
university spin-offs was its reliance on personnel mobility in place of the
market exchange of ideas or patents, the epitome of what many an observer
has equated with the neo-liberal order.217 Indeed, the policy of providing
institutional and governmental support for spinning off firms from academic
institutions could just as well be understood as a stop-gap for market failure.

Just a year after Asev was founded, the new head of the Norwegian
Research Council (Norsk Teknisk-Naturvitenskapelig Forskningsråd,

214 Two newly published histories of the main organisations in Trondheim are
Thomas Brandt and Ola Nordal, Turbulens og tankekraft: historien om NTNU (Oslo:
Pax, 2010); Nordal, Verktøy og vitenskap: datahistorien ved NTNU.
215 “Har vist at det går an: Flere nye småbedrifter er etablert”, Aftenposten, 12
November 1984.
216 University spin-offs and their role in knowledge diffusion is a field of scholarly
research in its own. See Scott Andrew Shane, Academic entrepreneurship :
university spinoffs and wealth creation, New horizons in entrepreneurship
(Cheltenham, UK ; Northampton, MA: E. Elgar, 2004).
217 For an explicit discussion about changes in policy towards science in this period,
see Philip Mirowski and Esther-Mirjam Sent, Science bought and sold : essays in
the economics of science (Chicago: University of Chicago Press, 2002). Here, the
“globalized privatization regime” is the catch-all phrase, used in a similar sense to
the neo-liberal regime above.

 228

NTNF), Inge Johansen, argued that the last few years had entailed an
important change to Norwegian research:

We have noted a change of attitude among our academics during the last few
years. They are less modest when it comes to founding their own firms. Many
have realized that it is not such a risky undertaking to start on your own. It is
great potential to diffuse research results through young people who wish to fund
new ventures. Venture capital firms seem to flourish in different regions around
the country. These are important instruments to help such entrepreneurs [...].218

Funding new firms was, from the viewpoint of the research council, a way to
diffuse research results. In that way, the new wave of young people who
wished to start on their own was definitively a positive change in terms of
fulfilling Rettedal’s goal of greater risk-taking and market-orientation.
Whether this was down to a change in attitudes or a change in policy
instruments and the availability of capital is not so important. What was
important was that the change was observable in young people who were
eager to start on their own, according to Johansen. One of the examples was
Urd, which was trying to move knowledge from the rather closed realms of
the Chill community to the market.

Entering the market
By the summer of 1984, Urd was about to enter the market with their
developed version of the Nordic Chill compiler, now a comprehensive
programming environment named Chipsy. At the same time, Urd entered the
market for financing. Urd was able to secure financing from the seed capital
fund Asev. Urd also obtained further financing from Sintef, the owner of the
research establishment Runit, and so-called start-up loans from the
Christiania Bank og Kreditkasse. The company raised a modest sum
initially, but had made provision for future capital needs in the region of 20
million Norwegian kroners.219 Both rounds of financing drew on existing
networks and seed capital rather than the venture capital market per se. In
1984, Urd presented itself in the following manner:

218 Inge Johansen, quoted in “Adm. direktør Inge Johansen i NTNF: Unge våger
nyetablering”, Aftenposten, 20 March 1985. My translation.
219 In 2010 prices (adjusted with CPI), this would amount to 43,960,000 NOK or
7,271,764 in 2010 US dollars.

 229

Urd Information Technology A.S has the primary objective of doing marketing,
sales, production, distribution and customer support of advanced software
products and doing consultancy work and development projects in that context.
Urd operates in the international marketplace and will primarily focus on the
telecommunications sector. The initial product line comprises Chipsy – the Chill
Integrated Programming System. Chipsy is a software support environment for
Chill – the CCITT High Level Language.220

The ambitions were high. The company was to be international from the
outset, and it was to base its products on knowledge developed at the same
international level. Furthermore, its expertise was within an advanced area of
software products that involved huge companies and organisations. The
product, Chipsy, had been developed over a number of years and evolved
into an advanced and comprehensive programming system or software
development environment. After developing Chipsy within the Nordic
context from the late 1970s, the product had grown considerably in scope
since its inception as a compiler, and was now described as a “software
support environment”. This meant that a host of different tools was now
included in the Chipsy product, like various debugging tools and a run-time
system for various target computers.221 An illustration of the Chipsy system
as of 1993 is reproduced below:

220 “URD Information Technology- A new Software Company to serve you”, box “L
0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961 – 1996”, NTR
221 For an overview, see Kristen Rekdal, ”Catalogue of CHIPSY Products and
services”, 28 September 1985, box “L 0135, Samarbeid”, series “Da Sakarkiv ordnet
etter arkivnøkkel, 1961 – 1996”, NTR

 230

Figure 7.1 Chipsy as of 1993

Chipsy had been developed into a comprehensive system that included
advanced development technologies. Some of these were unique features,
like the concurrent run-time system and a linker system for separately
compiled modules. The debugger, called chillscope, was also tied in with the
particularities of the programming language, in particular the concurrency
and modular concepts.222

The move from what was basically just a compiler towards a more
integrated support environment mirrored the general shifts in the software
engineering field at the time. One indication of this was the aforementioned
keynote speech made by Remi Bourgonjon at the 1983 Chill Conference,
where he pointed out so-called programming environments as one of four
major technical areas where progress was expected.223 As such, Urd and
Chipsy were part of a technical trend. With regard to its commercial
possibilities, setting up an independent firm like Urd was rooted in the
positive belief and high hopes that the product, Chipsy, would sell in an
emerging market.

222 See Svein Hallsteinsen, "Source level debuggers: Experience from the design and
implementation of chillscope", in Advanced Programming Environments, ed. Reidar
Conradi, Tor M. Didriksen, and Dag H. Wanvik (Trondheim: Springer, 1986).
223 Remi Bourgonjon, ”Programming languages, environments and Chill”, Keynote
address at the second Chill Conference, Chicago, March 1983.

 231

Why did Rekdal believe in an emerging market for Chipsy? To answer this,
one has to review the signals and indications that led Rekdal and the
investors to believe in a market for Chipsy and step back a few years. During
March 1982, Rekdal had been on one of his many trips to a CCITT meeting,
this time in Melbourne, Australia. On his way, he visited the
telecommunication administration of Singapore, some subsidiaries of
Norwegian companies abroad and on his way home, he stepped off the plane
in Santa Clara, California, to visit Intel, the leading microprocessor
manufacturer. Two main impressions stuck out in his report from the trip.
Firstly, when visiting the Singaporean telecommunication administration and
Jeng Yuan Sheng, Rekdal once again got the impression that Chill was a tool
of importance for telecommunication administrations:

Singapore will take delivery of a new digital SPC exchange in September this
year and Singapore had managed to require in the contract that 30 – 40 % of the
software should be written in Chill. They had also tried to convince Hitachi,
which has already installed a SPC system, to reprogram parts of it in Chill.
Hitachi had refused. Even though Singapore is a small country such initiatives
are worth noting. Hopefully they are the start of a trend.224

As noted in chapter six, the Singaporean administration was hardly at the
start of a trend: it was more like they were at the dying end of another one.
However, the impression was still a valid one, as administrations looked
towards international standards when ordering new digital equipment in the
early 1980s. More so, their ability to specify what they wanted from their
procurements was considerably more advanced than before, in many ways
thanks to international coordination and cooperation. That more and more
manufacturers would be interested in a short cut towards Chill-compliant
coding was likely. A product like Chipsy would, therefore, be of interest to
more and more manufacturers.

The second impression was one not from the telecommunications
market, but one from the computer industry. In Santa Clara, Rekdal visited
one of the leading suppliers of microprocessors, semiconductors and

224 Kristen Rekdal, “Travel report from 1. Telecoms, Singapore, 2. CCITT WP
VII/3, Melbourne, 3. Nord Computers, Melbourne, 4. Intel Corp, Santa Clara”,
Runit notat, 13 April 1982, box “NT-P 1982”, KRC.

 232

computer electronics, Intel. 225 Here, the idea of independent software
suppliers and tool-makers had a strong supporter. Intel represented a rather
different type of company, unlike the large integrated firms that dominated
telecommunications, as it encouraged the involvement of independent
software vendors to supply applications and tools for their product. Unlike
most computer manufacturers at the time, Intel did not only encourage
vendors of application software, but “fundamental software as well”, which
implied software development tools like compilers, as made clear by Rekdal
in his report from the visit.226 This meant that Intel, a major supplier of
microprocessor equipment to other computer manufacturers, was open to the
commercial exchange of compilers and development tools from outside
firms, although the firm also supplied their own range of tools.

The impression Rekdal got from his discussions with the company
was that “Intel will not try to compete with [the] independent software
vendors, but rather have a strong cooperation.”227 To Rekdal, this was an
encouragement, and furthermore, he received solid promises of actual
backing from the company. Rekdal noted: “Intel is willing to lend us
hardware and software needed to complete the bootstrapping of Chipsy onto
iAPX86.” 228 This strong support for independent software vendors of
programming tools from one of the leading American firms was another
indication of a future market to Rekdal, as he envisioned
telecommunications as something that would slowly move in the direction of
the computer industry structure. To support the idea of Urd as an
independent tool-making firm in such a future market, the fact that
throughout the 1970s, software development tool-makers had been steadily
able to find independent positions in the American computer market, as

225 In the early 1980s Intel was not a dominant supplier of semiconductors, but rather
a pacesetter and the original microprocessor producer. For an overview of the
history of the semiconductor industry, see Ernest Braun and Stuart Macdonald,
Revolution in miniature : the history and impact of semiconductor electronics, 2nd
ed. (Cambridge Cambridgeshire ; New York: Cambridge University Press, 1982);
Richard N. Langlois and W. Edward Steinmueller, "The Evolution of Competetive
Advantage in the Worldwide Semiconductor iNDUSTRY, 1947 - 1996", in Richard
R. Nelson, ed. David C. Mowery (Cambridge: Cambridge University Press, 1999).
On the history of Intel, see Ceruzzi, A history of modern computing.
226 Kristen Rekdal, “Travel report from 1. Telecoms, Singapore, 2. CCITT WP
VII/3, Melbourne, 3. Nord Computers, Melbourne, 4. Intel Corp, Santa Clara”,
Runit notat, 13. April 1982, box “NT-P 1982”, KRC.
227 Ibid.
228 Ibid.

 233

illustrated by the fact that some of the very first traded software products
were products aimed at software developers, was an encouragement229

Rekdal encountered what he thought to be the two most important
elements of a market for Chipsy on this trip: administrations pushing for
Chill and hardware manufacturers interested in independent software
vendors supplying “fundamental software”. The interest from small
telecommunication manufacturers – like Hasler and STK – had already
created an impression of a specific place in this market for Chipsy. Both
STK and Hasler used Chill and Chipsy to programme systems that would be
part of non-public switching, in the case of Hasler a telex machine, in the
case of STK, a PABX and a military digital telephone switch, equipment
sold in expanding and non-regulated markets. Furthermore, a contract
amounting to somewhere in between two and three million Norwegian
kroners sold Chipsy as part of a deal done by the Norwegian computing
manufacturer Norsk Data to a research establishment in China made the
involved parties optimistic over an international future.230
The belief in entering the market with Chipsy was built on two pillars.
Firstly, experience from selling Chipsy to a number of early adapters, like
the Norwegian ITT subsidiary STK and the Swiss manufacturer Hasler was
understood as an indication of the viability of selling the Chipsy system as a
product. Secondly, the impression of a future in which Chill was something
the administrations would insist on was still realistic until the mid-1980s.
Furthermore, the established structure of the computer industry, where
independent tool-vendors had an important role to play, was feasible in
telecommunications.

The decision-making context in which Kristen Rekdal acted was a
changing environment, a context that moved on the continuum from
uncertainty to risk, but not only in one direction. In 1982, the idea of Chill as
an administration-enforced standard was probable, and there were several
indications that the market for Chill tools was quite viable. Many
manufacturers without prior Chill competence could be forced to programme
their new equipment in Chill, and buying a product that could ease this
would certainly be a viable strategy. This created an opportunity to market
Chill to two types of organisations: administrations with heightened
ambitions and manufacturing firms challenging for new market openings.

229 Applied Data Research’s Autoflow is generally considered one of the first
software products. See Campbell-Kelly, From airline reservations to Sonic the
Hedgehog : a history of the software industry, 89-119.
230 Kristen Rekdal, interview with author, 28 November 2007, Oslo, Norway. In
2010 prices (adjusted with CPI), this would amount to something between 4,675,136
and 7,012,704 NOK or something between 773,376 and 1,160,064 in 2010 US
dollars.

 234

However, as the firm was set into motion, these probabilities changed
dramatically, and the possibility to sell a tool like Chipsy to administrations
became either unrealistic or highly uncertain. Things did not work out.

Hard times
Sales were hard to find after Chipsy was spun off from Runit and into Urd.
The international marketplace and the telecommunication sector were no
easy place to be in and Chipsy was not easy to sell. In other words, Urd had
a rough start. Just eight months after the company started selling Chipsy, the
future looked grim. Kristen Rekdal reported on the problems to the
representatives of the Nordic administrations, which still met regularly in the
group of Chipsy stakeholders:

After having actively marketed CHIPSY for 8 months, there is no sign that the
market will take off soon. Although considerable interest has been shown in the
product and more than 30 potential customers identified, no new customers for
full binary or source licenses have been signed up, so far. There is a great
reluctance in the marketplace to invest in new programming languages or tools
based on technical merits only.231

Obviously, the plans for Chipsy and Urd had not panned out. What had
changed since the inception of Urd and the industrial pressure for
“professional marketing and support”, which had made it impossible to
continue supporting Chipsy within Runit and the supporting administrations?

While the sales of Chipsy to STK and Hasler created a situation where
the Nordic owners wanted to get rid of it due to the administrative workload,
such sales were apparently hard to come by after the creation of Urd. Chipsy
sales during 1986 give us some indications of a lacklustre performance: by
1986, Urd supported 32 Chipsy users, of which 25 had Chipsy supplied from
Urd. The others were delivered by Runit before 1985. However, none of the
25 deliveries made by Urd was to a substantial industrial company that
would be eligible for a so-called full binary license, which would be the
most lucrative customers, but to users that were eligible for discount
licenses. These were either strategic placements of Chipsy at educational
institutions, deliveries to the Chipsy owners (the five administrations that
had financed the project were initially eligible for free licenses), or deliveries
to existing users like STK and Hasler. During 1986 Urd held talks on major
development projects with the German firm Nixdorft AG, the Swedish
company Telenova, the British GEC and the Indian C-DOT research

231 Kristen Rekdal to NT-P (Owner’s reps), ”Status report on CHIPSY Marketing
and Sales”, 31 October 1986, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet
etter arkivnøkkel, 1961 – 1996”, NTR.

 235

establishment, without any luck.232 What caused these problems? Chipsy was
intimately tied in with Chill, which was both its strongest selling point and
its biggest problem. By the mid-1980s, the general market for programming
tools for real-time and telecommunication systems was expanding. Tools for
the competing programming language Ada was popping up regularly.233
However, there was no real impetus for this market to be directed towards
Chill, an obvious problem for Urd. As such, the market was there, but not in
the form envisioned by Rekdal a few years back. Rekdal was, however,
optimistic that such a move would happen, eventually. “Given the general
increase of CHILL activity world wide, the CHILL market is bound to
mature, but the timing is difficult to forecast,” he noted.234 The interest in
Chill came mainly from large industrial firms, such as Siemens, the ITT and
Philips, and rested on the belief that it would become a mandatory
requirement from the administrations. These large firms did not depend on
market exchange to obtain Chill tools. They developed the necessary tools
themselves, much like the origin of the capital tool industry in the USA
during the second industrial revolution. 235 Rekdal marketed Chipsy in a
market that did not exist at the time. As evident from the encounter with the
telecommunication administration of Singapore, his hope was that this
market would be created with the aid of the telecommunication
administrations, either in terms of mandatory requirements for future
procurements or through their use of in-house development (and
consequently, their need for development tools). Rekdal formulated this in
the following way when he addressed the owners of Chill in 1986:

URD Information Technology is a company too small to develop the CHILL
market alone [...] It is necessary to have a much stronger backing from the
telecom administrations, in particular the Owners. Otherwise it is not possible to
generate the income necessary to keep CHIPSY alive while waiting for the
market to expand.236

The ill-fated attempt to sell Chipsy in the market was intimately bound up

232 Kristen Rekdal, “Status report on CHIPSY Marketing and Sales”, 31 October
1986, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961
– 1996”, NTR.
233 Sammet, "Why Ada is not just another programming language".
234 Kristen Rekdal, “Status report on CHIPSY Marketing and Sales”, 31 October
1986, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961
– 1996”, NTR.
235 Rosenberg, "Technological Change in the Machine Tool Industry, 1840 - 1910".
236 Kristen Rekdal, “Status report on CHIPSY Marketing and Sales”, 31 October
1986, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961
– 1996”, NTR.

 236

with the ambiguous policy of the administrations, and in particular the five
that owned Chipsy: the Nordic administrations plus the British one. Rekdal’s
call on the administrations to take a greater interest in Chill and Chipsy
brought about nothing more than uncommitted formulations like the
following, made by the Finish representative Seppo Ylä-Pietila: ”Concerning
backing CHIPSY, all we can do, and have done is to recommend our
organisations to use CHILL.”237 However, Pietila also made it clear that
Rekdal’s summary of the market situation was received “with great
astonishment”. 238 The participants in the Nordic Chill project had also
believed in the prospective market, but could do little to create it themselves.

To Urd, neither uncommitted recommendations nor astonishment
were enough. When the Norwegian telecommunication administration was
considering a tender for their pilot ISDN project in 1986, Urd was hoping for
a change. In a letter to the powerful head of the Norwegian
Telecommunication Research Establishment, Nic Knudtzon, Kristen Rekdal
argued that the ISDN software had to be based on Chill, and that this could
be an important outlet for the Norwegian industry.239 However, no such
preference was articulated by the administration in their invitation to
participate in their ISDN pilot. The lack of a positive response led the Urd
chairman to address the ministry of industry, Finn Kristensen:

The ISDN project represents a unique opportunity to build an internationally
oriented software activity based on existing [Chill] competence. One condition
would be that the government services such as Televerket [the administration],
through high ambitions within the field of software and an extensive use of
international standards, would support such industry activities.240

However, no intervention from the minister was forthcoming and as
discussed in chapter six, the Norwegian administration never took a strong
stance on the issue of programming languages. Urd was left with a market
that did not move in the direction it had planned for.

In 1990, Rekdal would concede: “The market has not at all fulfilled
expectations. License sales have been at best sluggish and are likely to

237 Seppo Yla-Pietila – Kristen Rekdal, Norwich, 27th November 1986, box “L
0136, Samarbeid”, series “Da, 1961 – 1996”, NTR.
238 Ibid.
239 Kristen Rekdal – Nic. Knudtzon, 6 November 1986, box “L 0136, Samarbeid”,
series “Da, 1961 – 1996”, NTR.
240 Erik Amble - Finn Kristensen, 21 November 1986, box “L 0136, Samarbeid”,
series “Da, 1961 – 1996”, NTR.

 237

remain so [...]” 241 Consequently, the license agreement with the Nordic
administrations was cancelled, and Urd (now named Kvatro) would go on to
focus on different products and services. Pietila, summarised the fate of
Chipsy in the following way:

I also have a feeling of disappointment at CHILL and CHIPSY not having had
more general support in the world of telecommunications. May be the main
reason is that manufacturers (many of them) already had their development tools
chosen when CHILL came along. The lack of CHILL training in Universities in
general and lack of widely spread CHILL tools have also had their impact on
decisions made concerning the support of CHILL. De facto standard languages
such as C and Pascal seem to have overrun [the] actual standard language.242

Pietila’s summary seems apt: Chipsy was intimately bound up with Chill. In
the mid-1980s, it experienced strong competition from C and Ada.
Regardless of which programming language triumphed, the viable market
for Chipsy in the second half of the 1980s was limited: the large
manufactures developed the tools they needed in-house, and the possibilities
of them opening up were slim. Furthermore, the administrations never got
around to doing much programming on their own, which made them
unlikely customers. The few customers were the small and medium-sized
companies, like STK and Hasler, companies that had already been recruited
before the firm’s creation.

Could the reason be that Chipsy was not a very good product?
Whether the compilers developed by firms like Philips, Siemens and the
ITT, or the one distributed and sold by Imperial Software, were
“objectively” better than the one developed by Runit and Urd is difficult to
judge in retrospect. Among other things, it would necessitate the availability
of a rather esoteric set of hardware and the availability of a reasonably
complex part of code to be able to judge the compiler’s efficiency (in terms
of compile time and amount of compiled code) and the ability to search out
erroneous code. However, I find few reasons to doubt the quality of the
software: The Urd compiler was a well-tested compiler at the time of its
commercialisation, and was used by many outside Runit, and I think such
use would be improbable had the system not worked. Furthermore, while
user comments about the state of Chipsy were certainly not all positive all
the time, it seems the product was valuable enough to make industrial users
pay for it long before it was introduced to the general telecommunication

241 Kristen Rekdal to NT-P, ”Status Report on Chipsy License Sales 1989”, 30 May
1990, box “L 0136, Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961
– 1996”, NTR.
242 Seppo Ylä-Pietila to Kristen Rekdal, Telefax, 5 November 1990, box “L 0136,
Samarbeid”, series “Da Sakarkiv ordnet etter arkivnøkkel, 1961 – 1996”, NTR.

 238

market. The compiler developed by the Bjørner group and Imperial Software
was known to produce effective code through its translation of the source
code into machine code.243

Despite all the misfortune with Chipsy, Urd continued to hang on, but
the company had to continue to look for new opportunities. While
maintenance and consulting for Chipsy customers continued throughout the
1980s and into the 1990s, the small growth resulting from these activities
was unsatisfactory for both owners and employees. 244 One of the
consequences of this was an owner-led intervention in 1988 that reorganised
the firm substantially. After the initial seed capital financing, the venture
capital fund Origo became one of the owners of Urd. By 1987, Origo
reorganised Urd and merged it into another of its companies called Kvatro
(Kongsberg Våpenfabrikk avdeling Trondheim). Kvatro had been
established as a Trondheim-based outpost of the state-owned armament
factory Konsberg Våpenfabrikk (KV) in the mid-1980s, as a means of
recruiting programmers directly from the city’s technical university. The
main task for Kvatro was programming embedded military systems
produced by KV and it employed about 50 programmers by 1987, when the
state-owned Kongsberg Våpenfabrikk capsized in what has become the
epitome of the failed industrial policy that was associated with the
interventionist Labour party in the 1970s.245 After this a number of the
armament factory’s divisions were reorganised or sold off, including Kvatro.
Kvatro was initially sold off to its employees, but later on helped through by
the venture capital fund Origo, which also had bought parts of Urd
previously.246 One requirement for Origo’s financing of Kvatro was to merge
Kvatro and Urd, a merger that was completed in 1988.

Kvatro and Urd held, at least technically, some similarities. Kvatro
was programming embedded military computer systems, which held many
similarities to telecommunication switching systems. Some of KV’s systems
were even programmed in Mary, the Runit-created precursor to Chill. The

243 A casual comparison between code generated by the Chill compiler and a
standard C compiler is presented in Peter J. Smith, "Experiences in achiving a full
implementation of Chill", in Fourth CHILL Conference (Munich: Siemens AG,
1996). Here it is argued that the Chill programs were 25 per cent faster than a
similar program written in C and compiled by a standard C compiler. Although the
use of benchmarks like this tests the combination of the programming language and
the compiler, in this case it produces a favourable result in both respects.
244 Parts of the following section are based on Kristen Rekdal, interview with author,
28 November 2007, Oslo, Norway.
245 The capsizing of Kongsberg Våpenfabrikk is one of the subjects of a coming
business history of the firm written by Knut Øyangen.
246 Kristen Rekdal, interview with author, 28 November 2007, Oslo, Norway.

 239

result was a merger between Kvatro and Urd, with the former name taking
precedence.

However, the technical similarities were not enough to secure renewed
success and growth. The market for Kvatro’s original military systems
programmers was shrinking rapidly, in particular because of the severe
problems with KV. The business of the telecommunication division
depended on the long-term contracts won by Urd and even Runit before the
merger. However, none of these contracts led to growth.

The envisioned benefits of merging the two lines of business did not
materialise, as the technical similarities were not matched by market
convergence. The consequence was downsizing, in particular in the original
Kvatro part of the company, which ended up with no more than about 30
employees when it finally reached the bottom and started growing again
from 1990.

Despite all the misfortune with Chipsy, Kvatro continued
telecommunication operations, some related to Chill, and even some further
developments to Chipsy. In particular, the developments focused on
targeting new host platforms, meaning the systems on which Chipsy was
able to run. In 1990, several Unix platforms were able to run Chipsy and by
1992, new debugging technologies and modelling tools were integrated into
the Chipsy system.247 The telecommunication division of Kvatro was spared
the downsizing of the late 1980s, as its long-term contracts made it possible
to develop new products. In the early 1990s, it fortunes improved slightly. In
1992 Kvatro signed a substantial contract with the NTT, a contract that led
to Kvatro being awarded a prize for securing exports and was hailed as an
example for an internationally oriented industry in the company’s host town,
Trondheim.248

The development contract was related to an advanced debugging
system for telecommunication systems called Pilot, a product that was
closely related to Chipsy but was still substantially novel and advanced
compared with what the Japanese administration or any of its industrial
partners were able to develop on their own. Later on, contracts for Pilot were
signed with the Korean research institute ETRI and with the companies
Samsung, LG and Hanwha. This product would later on be the main spur for
two buy-outs of the telecommunication part of Kvatro, the first by the Finish
consultancy firm TietoEnator in 1997, and in 1999 by the Swedish company
Telelogic. At the height of the telecommunication bubble in 2001, the

247 Rekdal, "CHILL - The International Standard Language for Telecommunications
Programming".
248 Kristen Rekdal, interview with author, 28 November 2007, Oslo, Norway.

 240

Norwegian subsidiary was first downsized and ultimately closed, and much
of the telecommunication activities finally disappeared.249

The alert reader will immediately see the irony in this: Telelogic was
initially the company created by the Swedish telecommunication
administration to capitalise on the programming language Ada (created for
the American military) and on the SDL definition language that were
developed in the CCITT in parallel with Chill. Telelogic’s development of
Ada tools was toned down and later on scrapped altogether, and eventually
the company was spun off of from its tight relationship with the Swedish
telecommunication administration. When Telelogic bought Kvatro Telecom
in 1999, this development was finally brought full circle. The diffusion of
Chill was once hampered severely by the lack of support from the Swedish
industry, and in particular the way Telelogic preferred to concentrate on
Ada. When buying Kvatro, Telelogic was mainly interested in Kvatro’s SDL
expertise and the debugging system Pilot, which was also what had attracted
TietoEnator in the first place.250

To complete this, Telelogic was itself the subject of an acquisition in
2008, by IBM.251 All in all, the venture founded by Kristen Rekdal in 1984
would implicitly end up in IBM by 2008, through a number of market exits
and entries, buy-outs and mergers.

The viability of independent vendors
Large manufacturers like ITT, Siemens and Philips committed themselves to
a specific Chill subset very early on, which basically left them with fairly
specific implementation tools and incapable of or uninterested in utilising
tools made by independent suppliers. However, firms in the midst of the
upheavals of the equipment industry, like the British GEC, did turn towards
outside vendors for their Chill needs, as exemplified by the involvement of
the Danish Chill compiler, which was eventually further developed by
Imperial Software for GEC. Nevertheless, what had looked like a real
opportunity became unfeasible just a few years later. The chance to sell
Chill-based products did exist, but it was an opportunity far smaller than first
envisioned. It involved selling Chill tools to small equipment manufacturers,
like the Swiss-based Hasler, and to other types of organisations, like Urd’s
sales to Chinese research establishments. This leads inevitably to question
whether the problems of selling such software tools to large
telecommunication manufacturers were specifically related to Chill, or to the
telecommunication industry itself. None of the other tool vendors got far

249 “Sier opp 20 av 55”, Adresseavisen 17 July 2001.
250 Kristen Rekdal, interview with author, 28 November 2007, Oslo Norway.
251 "IBM Completes Acquisition of Telelogic AB," Press release, 3 April 2008,
available at http://http://www.telelogic.com/, (retrieved 3 August, 2008).

 241

with Chill-related tools, although Imperial Software continued and
developed a range of other software development products. Other companies
were, however, able to carve out a niche by delivering tools to
telecommunication manufacturers. The aforementioned Telelogic, with its
SDL products, was just one example. Urd also followed that route, investing
in tools that transformed SDL code into Chill code. A casual analysis would
at least indicate that it was not completely impossible to sell tools to the
manufacturers, while Chill was a particularly difficult realm.

Ada can again serve as a comparative example. Just as the Chill
community and the Chill marked struggled to take off, the DoD-sponsored
Ada project never made the huge impact that had been expected in the
1980s. According to one central participant in the Ada project, there was no
rapid growth of components and tools for that programming language either:

However, upon adoption of the common language, I had envisioned a rapid
growth of components and tools within a cooperating community, an Ada
culture. It did not happen as quickly as I had hoped. ‘Repository’ is now a
universal buzzword, but DoD contracting limits (and the mindset that these have
built up) long strangled the vision for cooperation and growth. I mistakenly
thought that with the influence of the DoD we could pull it of. The thrust of
cooperative development struggled and faded, several times.252

This was experienced by an organisation we have already encountered,
namely the aforementioned Dansk Datamatik Center (DDC). DDC was the
creation of Dines Bjørner, as a sideline to his stint as a professor in computer
science at the Danish technical university. It was set up in the late 1970s, and
was instrumental in developing the Chill compiler that was taken over by
Imperial Software. Its main line of business, however, was related to Ada. In
the early 1980s, DDC was heavily involved in applied research on Ada
compilers, which were eventually sold through DDC International by the
mid-1980s. Compilers were sold to industrial firms like Nokia, Honeywell
and NEC. However, by 1990, DDC was closed down. The company failed to
attract Danish customers to the Ada tools, and the EEC and government
funding were not enough to run the commercial operations of DDC.253

However, the sustainability of the independent tool vendor model of
business was nevertheless more viable for Ada than for Chill. One of the
most successful ones, Rational Machines, ended up in IBM, as did Telelogic,
in 2002. Rational started out as a firm specialising in Ada tools in 1981, and

252 Whitaker, "Ada—the project: the DoD high order language working group".
253 The history of DDC was presented by Dines Bjørner, Christian Gram, Leif
Rystrøm and Ole Oest at the third History of Nordic Computing Conference, 18 – 20
October 2010, Stockholm. The proceedings are to be published by Springer in the
spring of 2011.

 242

by the late 1980s, it was one of many companies selling such tools that were
not involved in hardware developments at the same time. By 2002, IBM
bought Rational Software for about 2.1 billion dollars.254 On its way, it had
bought Ivar Jacobson’s Objectory AB from Ericsson. Ivar Jacobson had, as
described in chapter four, been instrumental in the design of the concurrency
features in Chill.255

This illustrates the viability of firms specialised in software tools for
the telecommunication industry. Chill was, however, seemingly too tied up
in the “ancien regime” to be a viable platform for extensive
entrepreneurship. The opportunities were limited and the eventualities of the
1980s did not pan out in its favour.

The long postlude
The closing down of the remains of Urd in 2001 marked the end of the tool-
selling opportunity for further Chill diffusion. The final closure of Urd was
also the end of all efforts to commercialise Chill-related products. In many
ways it did mark the end of the Chill life cycle, beyond the last ITU-
approved recommendation of 1999. Throughout the hard times of the 1990s,
Chill was still maintained and improved upon in the CCITT. As seen in
chapter six, important technical improvements were made to the language as
late as 1996, when object-oriented features were added. However, by 1999,
CCITT published what was to become the last version of the programming
language. As such, the demise of Urd and the final withdrawal of the Chill
compiler from the free Gnu compiler collection, both in 2001, mark some
sort of closure. By that time, no new developments were done with Chill.

All in all, Chill petered out by the end of the 1990s. It tailed off and
diminished into nothing. However, its demise was far slower than what
would normally be expected for to a failure. Because of the longevity of
many telecommunication systems, the remains of the programming language
are still ticking along in old switching systems still operating around the
world. The legacy code in these systems has to be maintained like other
elements in technological systems, although the maintenance of software is
something completely different from the common repair job. More often,
repairs to Chill software arise from responses to changes in the extended
technical environment of the telecommunication systems, changes that were

254 “IBM Completes Acquisition of Rational Software,” http://www.ibm.com/
(retrieved 8 March 2011).
255 On Ivar Jacobson’s involvement with Rational, see the interview with Jacobson
in Biancuzzi and Warden, eds., Masterminds of Programming 317-74.

 243

not anticipated by the original software developers.256 Dealing with legacy
code written in ancient programming languages like Cobol and Fortran has
been a pervasive part of software development. The Year 2000 debacle,
when the software industry franticly updated old software so it could
distinguish properly between the years 2000 and 1900, is just one of many
recent examples. 257 That similar updates of antiqued telecommunication
equipment programmed in Chill, although not related to the year 2000
problems directly, have been common, is not in doubt. As such, a
programming language never dies, but rather just peters out. In this case, the
fate of Chill seems quite common.

As Chill became legacy code, the idea of so-called concurrent
programming languages also faltered. The general technological change of
languages that catered for the perceived needs of large communication
systems and real-time computing, languages like Modula, Chill and Ada
never gained a solid grounding, at least not to become commonplace in
general computing.

Ada and Chill had other things in common: their early standardisation
and focus on concurrency did not make them the end-all languages of real-
time and embedded computing. When the US Department of Defense
commissioned the Ada programming language in the late 1970s, the idea
was to mandate its use across all the services. Despite this, few programmers
used Ada, and it was finally dropped as a mandate by the Department of
Defense in 1997.258

In contrast, the programming language developed at the AT&T’s Bell
Labs, C, became a huge success throughout the 1980s and 1990s, also as a
systems programming language for embedded and real-time systems. The
success came despite the fact that C was, according to its designer, quirky
and flawed.259 According to another well-known computer scientist, Niklaus
Wirth, C did not represent much of an improvement at all, as it certainly did
not raise the level of abstractions for the programmers.260 Yet C certainly
became a huge success without the huge range of features that Ada and Chill
shared. Its feature set and scope were indeed quite small. Its more advanced

256 The role of software maintenance has been investigated by Nathan Ensmenger.
See Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise, 223-27.
257 On legacy software, see Michael S. Mahoney, "What Makes the History of
Software Hard", IEEE Annals of the History of Computing 2008.
258 The mandate was effectively ended with what is known as the Paige
memorandum. See Emmett Paige, Jr., “Use of the Ada Programming Language,” 29
April 1997, ASD(C3I). The Ada Joint Program Office (AJPO) closed 1 October
1998.
259 Ritchie, "The Development of the C Language".
260 Wirth, "A Brief History of Software Engineering".

 244

and object-oriented sibling, C++, became widely adopted.261 Adoption was,
however, not the same as success. C++ It was famously used in L. M.
Ericsson’s failing second-generation Axe switches, which completely
capsized by 1995.262

An almost paradoxical extension to the C programming language was
Objective C, which was first developed by researchers at ITT’s
programming technology centre in Stratford, Connecticut in conjunction
with the company’s use of Chill. Objective C was eventually used as a
system programming language for the NeXT Computer, Steve Jobs’s project
after quitting Apple. This would later form the base of Apple’s OS X
operating system, and Objective C would be the main programming
language for development for Apple’s iPhone. In a very indirect manner, a
C-based programming language made at a telecommunication manufacturer
became a key technology when Apple entered the market for mobile
telephones in the late 2000s.263

To testify further to the problems of getting the idea of such
specialised programming languages to stick, we can turn to one of the most
radical and late entrants to the pack, the programming language Erlang.264At
the 1990 International Switching Symposium (ISS), the new programming
language was presented hot off the shelves of the Computer Science
Laboratory of L. M. Ericsson, incorporating the latest and greatest strides in
concurrent programming language design.265 After eight years of tentative
use within the firm and on one major switching project, L. M. Ericsson put

261 On the history of C++, see Bjarne Stroustrup, "A history of C++: 1979 - 1991",
ACM SIGPLAN Notices 28, no. 3 (1993); ———, "Evolving a language in and for
the real world: C++ 1991-2006", in Proceedings of the third ACM SIGPLAN
conference on History of programming languages (San Diego, California: ACM
Press, 2007).
262 The AXE-N venture was to be the most expensive industrial project in Sweden
after Saab’s JAS fighter. The project has often been described as a total failure. See
Sven Olof Karlsson and Anders Lugn, Changing the world : the story of Lars
Magnus Ericsson and his successors (Stockholm: Sellin & partner, 2009).
263 The development of Objective C and its relationship to ITT are discussed in
chapter five. See also the interview with Brian Cox and Tom Love, the language
designers, in Biancuzzi and Warden, eds., Masterminds of Programming 241-76.
264 On the history of Erlang, I rely on Däcker, "Concurrent Functional Programming
for Telecommunications: A Case Study of Technology Introduction"; Joe
Armstrong, "A history of Erlang" (New York, NY, USA, 2007).
265 Erlang is, apart from being a programming language with a strong focus on
concurrency, quite different from the aforementioned languages, as it is a so-called
functional programming language. This makes it an odd match for the languages
discussed above. However, it is at least one in a long line of programming languages
initially made for telecommunication systems, which makes it part of the Chill
family.

 245

the lid on the technology and banned it from further use within the company.
By that time, L. M. Ericsson had decided on a policy of outsourcing software
tools development to the American firm Rational, finally opting for a policy
that independent tool vendors like Urd had hoped for 10 years earlier.

Although Erlang would make a strong comeback as an open source
programming language that diffused to a large number of firms in the
following decade, the late 1990s seem like a natural end point of this
story. 266 This is not so only for Chill, but for a host of concurrent
programming languages in general. By that time, the role of the
programming language had also been downgraded in general, and the role of
software methodology and tools was promoted to such a degree that some
would argue that the choice of programming language was the least
important matter. 267 Furthermore, as the re-use of and open sourcing of
important software components became all the more common from the late
1990s, the goals of the CCITT, and the virtues of the technological
practitioners, were fulfilled by other means. However, tools and
methodologies that were too language specific, like Chipsy, would share the
fate of their antiqued languages.

The long postlude of Chill and the general demise of programming
languages that were designed in the mid-1970s with concurrency in mind
pay testimony to the unruly nature of the direction of technological change.
In the mid-1980s, this period was looked upon with awe, as evident in a
book by Judy Bishop from 1986. Here, it is argued that

the period from the mid-1970s to the early 1980s was one of immense change
and development in programming language design. The host of Pascal derivates
launched during this period [..…] all aspired to the three goals of reliability,
understandability and verifiability. The achievement of these goals rested on the
resolution of the new language issues of data abstraction and formal
specification, but also led to a renewed look at accepted features such as data
types, operators, loops, exceptions, input/output and modularity. The culmination
of much of this research is embodied in one language which is destined to
become widely available – Ada.268

In retrospect, this period of “immense change and development” looks more

266 On the surge of interest in Erlang after its separation from Ericsson and the
Computer Science Laboratory, see Däcker, "Concurrent Functional Programming
for Telecommunications: A Case Study of Technology Introduction", 39-44. More
recent indications of this are given in Armstrong, "A history of Erlang".
267 On this move to repudiate the importance of programming languages, see M.
Ben-Ari, Understanding programming languages (Chichester ; New York: Wiley,
1996).
268 Bishop, Data abstraction in programming languages, vii.

 246

like a period of liminality, and to some extent, a period where the importance
of programming language design waned in general.

Some conclusions
The three last chapters have surveyed some paradoxical effects of the re-
regulation and transformation of the telecommunication industries: Most
obviously, the upheavals of the 1980s were followed by a contraction in the
telecommunication equipment industry, as established manufacturers merged
or took part in strategic alliances, effectively reducing the number of market
players. Secondly, the administrations that wished for more control over
their own equipment in the 1970, in particularly those in the smaller markets,
would defect from the cause just as the ties to the strong manufacturers were
severed. Rather then becoming more technically savvy organisations able to
develop the switching software themselves, the network operators of the
1990s became all the more dependent on the technological capabilities of
their suppliers. Thirdly, while new tools that would ease the use of Chill
matured throughout the 1980s, they were bought by smaller manufacturers,
like the Swiss Hasler, firms that did not internationalise to any large extent.
As such, it seemed the market that start-ups like Urd had hoped for did not
materialise.

Urd’s rise and stuttering life was due to the same cause: the re-
regulation of the telecommunication market signalled a substantial
opportunity for commercialisation of Chill-oriented tools, as the early sales
of Chipsy indicated. However, the same re-regulation did not open up the
large established manufacturers to outside vendors, as they instead
contracted and merged with each other. In some ways, Urd was a double
casualty of the upheavals of the 1980s: the entrepreneurial route of an
independent toolmaker was one very much in line with the impetus behind
the re-regulation of the telecommunication industry, but the consequences of
this change did not favour its disciples.

The number of entrepreneurial firms emerging from the Chill
community or exploiting the opportunities of Chill was limited. During the
implementation phase in the late 1970s, about 12 compiler construction
projects were started. That two of these would end up as spin-offs from
applied research settings is, perhaps, not so impressive. However, the limited
number of entrepreneurial firms stemming from the Chill project has partly
been dealt with in the previous chapter, which highlighted the rapid
internalisation of tools within large manufacturing firms. Of the 12 trial
implementations, four would go on be used extensively within firms, and
only a couple of the other projects had a similar organisational footing as the
two that spun off from independent research institutions.

The selection of entrepreneurial ideas was intimately related to a set of
virtues esteemed within the technical community of Chill users. Firstly, both
the Imperial Software system and Chipsy were related to actors with a strong

 247

bent towards computer science and a mathematically oriented software
development virtue. More so in the case of the Danish compiler per se, as it
was based on the work initiated by Dines Bjørner, but the work at Runit was
steeped in European computer science just as much. However, the
entrepreneurial activities were more influenced by a particular understanding
and belief of the strategies towards the division of programming labour
between administrations, manufacturers and independent toolmakers. The
opportunities inherent in the break up of the “ancien regime” were
discovered and acted on in countries with no strong links between a
nationally oriented manufacturer and rather weak administrations, such as
Denmark and Norway.

This involves a paradoxical conclusion: parts of the Chill community
had pursued an approach to software development marked by formalism. In
one way, this would ease technology development as it made knowledge
explicit. The formalism was, indeed, practical. However, this could also be
understood as a hindrance to further entrepreneurship, since the knowledge
was easily diffused within the community and no one would be more “in the
know” than anyone else. On the other hand, the formalism applied was of
such an astute structure that a very strong background in computer science
formalism, or membership of the Chill community, was necessary to be able
to draw on it. As such, entrepreneurship coming from outside the community
never materialised. Those who were able to draw on this were first and
foremost employees of the large manufacturing firms. In some ways, these
firms were really those that were freed from the “ancien regime” in the
1980s and the entrepreneurial possibilities were not for everyone to grasp.

 248

 249

8. Conclusions
In 1974, the ITU decided that the organisation should make a common
programming language for all public telephone exchanges. In 1980, after
more than six years of work, the ITU published their recommended
programming language as an international standard called Chill. In 1990,
Chill was the only programming language used by more than one
manufacturer of public switching equipment. It was used in successful
switching systems like ITT’s System 12 and the Siemens EWSD. More than
12,000 programmers had been acquainted with the programming language.
By 1999 the recommendation was no longer maintained by the ITU. From a
highpoint of somewhat widespread adoption, the language slowly faded out
and diminished into very little. An imagined obituary would have concluded
that it reached the age of 25, that it had led a troubled life but passed away
peacefully. How did this happen?

This thesis has accounted for the emergence, diffusion and demise of
Chill by analysing the changing political regimes of telecommunications, the
role and ideals of different technical communities and the influence of the
strategies of various telecommunication organisations. I have tried to
integrate these levels of analysis into an account of the technical diplomacy
that went on within and around the Chill project. This has highlighted how
and why the programming of telecommunication equipment, in general, was
developed in the direction of high-level languages like Chill. As the process
has been analysed as technical diplomacy, the participants have been
characterised as ambassadors of their professions or smaller technical
communities. They also held loyalties to their organisations, be they
telecommunication manufacturers, administrations or more independent
research establishments. Which loyalties held the highest currency, and at
what time they enjoyed the greatest legitimacy, have been the general mode
of explanation of the direction of technological change analysed in this
thesis. Three periods have been looked into in detail: the design and
implementation phase of emergence, the diffusion years and the long
postlude of demise. Together, these three phases spanned the 25 years
between 1974 and 1999.

The initial phases of the design of Chill started, in its earnest, in the
first half of the 1970s, and were intensified from 1974 to 1976. Together
with the years of trial implementations, officially lasting from 1977 to 1980,
this period makes up the phase of emergence of Chill. In this period, the
Team of Specialists acted independently of many organisational strategies,
often only adhering to norms common to larger communities of
technological practitioners. It did not fit into the customary framework of the
ITU’s technical wing, the CCITT. Contrary to common CCITT practices, the
participants were largely computer specialists and programming language
design theoreticians. The work was often organised in an ad-hoc fashion and

 250

often, they would have to meet outside the ITU tower in Geneva. Still, the
diplomatic bickering inside the Team of Specialists and the Implementors’
Forum could often run along organisational boundaries.

The level of abstraction chosen as appropriate for the future language
drew on computer science research, popularised through IFIP conferences
and made visible through Nicklaus Wirth’s PL/360 programming language.
The reliability and portability concerns were also given high priority, which
pays testimony to the interests of the telecommunication administrations.
During the last years of the 1970s, the interests of manufacturing firms were
given a clearer outing in the diplomatic process: L. M. Ericsson was to some
extent able to influence the direction taken when including concurrency
concepts in the language. Still, formal descriptions trumped most efforts,
again pointing out how the formally oriented development virtue was
activated as a norm in decision-making processes.

Chill has also to be understood as coming from a set of processes
rather than the logics of a stable regime. The dissatisfaction of, in particular,
the smaller state telecommunication administrations with their dependency
on oligopolistic or monopolistic telecommunication manufacturers, in
particular those foreign owned, spurred the initiative of standardising
technologies that could allow the administration to control the procurement
of equipment or the technical abilities of the equipment. Closer connections
between manufacturers and administrations were sought in some markets in
the 1970s, in particular in Britain, Japan and Sweden, but the impetus behind
Chill was, at the outset, an alliance between administrations wishing for
more control over the software in their switches. Paradoxically, this also
included the Swedish telecommunication administration. However, Chill
would soon be dominated by manufacturing firms, and its ultimate fate was
almost completely bound up in how it was perceived by decision-makers in
the dominating incumbent manufacturers of the 1980s: ITT, Siemens and
Philips all used the language in the development of real switching
equipment. The telecommunication administrations that had led the work
abandoned Chill almost completely, with a few minor exceptions being the
financial support from the Nordic administrations and the continued use of it
in the Japanese administration, the NTT. L. M. Ericsson, AT&T and
Northern Telecom, the three other dominant firms at the time, jumped ship,
or in the latter case, they never got on board. The diffusion was tangled with
technical improvements made to the language, as improvement to the
modular capabilities of the language came to the fore. These improvements
were mediated trough a specific Chill community, built around conferences
and the publication Chill Bulletin. Still, these improvements were very much
a result of continued support by a few manufacturing firms, in particular
firms that were challenging for new international markets, like ITT and
Siemens.

 251

The long demise throughout the 1990s can best be explained as an outcome
of the changing political economy of telecommunications, visible both in the
organisational framework of Chill, the ITU, and in the changing
relationships between manufacturers and administrations in many countries.
The independence that the smaller administrations had wished for in the
1970s was won through political re-regulation. Following this, their interest
in a common standard disappeared. As the close connections between
administrations and manufacturers disintegrated in many larger countries,
Chill also lost its institutional potency. Paradoxically, the fate of Chill in the
last years of its life was intimately related to the ITU, the organisation that
had so much trouble integrating Chill’s Team of Specialists in the 1970s.
ITU had never been a comfortable home for Chill. Still, when the ITU lost
some of its powers due to the ongoing reorganisation of telecommunications,
Chill faltered. The ambitions of regulating technological change through
international governance were dismantled as the political economy of the
sector was reframed.

The effort to gain prominence outside the realms of the “ancien
regime” never came to much. The entrepreneurial efforts to spread the use of
Chill beyond its initial adaptors never gained prominence and the
community of Chill practitioners also disintegrated in the early 1990s.
However, even just before the moment where the language was led to rest in
the late 1990s, members of the Chill community were able to add object-
oriented concepts to the programming language, initiated by Chill
developers at Siemens. As such, the ability to develop the language still
existed, even in its last rounds.

Even if it was possible to change the technology even in the 1990s,
certain technical decisions hampered its ability to move beyond its initial
realm. One such example was directly related to the mode of technical
diplomacy that characterised the Chill project, namely the frequent use of
compromises. This created some overlapping concepts in the programming
language, the concepts for communication between concurrent processes
being one example that I have analysed in detail. At first, one could argue
that multiple features for doing (almost) the same thing could promote
flexibility, and that this could ease the diffusion of the language. However,
when all the large manufacturers that started using Chill could create their
own subsets of the language, one ended up with a lot of firms using only
portions of the language, which made entrepreneurial efforts targeting the
large manufacturers difficult. This also made it less likely that those already
on board the Chill ship would update to a newer version of the language,
making the updates beyond 1988 more theoretical than something that was
put to real use.

Furthermore, not all the desires that spurred the design and
standardisation of Chill were something that was possible to achieve. Goals
like increased reliability, portability of software between switches made by

 252

different manufacturers and the possibility to add custom software to any
switch, because of a common programming language, were, in some
respects, ill warranted. While the reliability of programming code certainly
increased by moving from assembly code to high-level languages, this was
already well under way before the design of Chill. Portability did rely on a
lot of other things besides a common programming language, and so did the
possibility of adding software to it for outside vendors. To use a stock phrase
from software development, Chill was not a silver bullet.269

Summing up, Chill was neither a total success nor a total failure. It
was neither a radical innovation, nor just incremental change. Almost all
efforts towards creating high-level programming languages for
telecommunication systems can be characterised by such “betwixt-and-
between-ness”. This thesis has tried to explain this change by stressing the
importance of organisations, norms and regimes, explanations that should go
beyond the specificities of the telecommunication industry. I have
highlighted how arguments that resonated with community norms and the
development virtue common to many computer scientists trumped corporate
strategies in the second part of the emergent phase. Throughout this thesis, I
have showed how technological arguments about programmers’
productivity, software reliability, code portability and program efficiency
were all related to different communities of technological practitioners, and
how the priorities can be understood as a process of technical diplomacy,
involving different negotiators, ambassadors and loyal bureaucrats. The
direction of the technological change towards high-level programming
languages can therefore not be explained without taking the priorities of
these participants into consideration.

The direction of technological change
In the introductory chapter, I denounced the preoccupation with the rate of
technological change evident in much literature on innovation and change.
Regrettably, questions related to the direction of technological change have
attracted less research. I also put forward the argument that to be able study
the direction of technological change in the telecommunication sector, one
would have to go beyond national specificities, technological particularities
and naïve periodisation schemes. In many ways, the case study of Chill has,

269 The expression comes from Fredrick P. Brooks legendary essay, “No Silver
Bullet – Essence and Accident in Software Engineering”, where it is claimed that
“there is no single development, in either technology or in management technique,
which by itself promises even one order-of-magnitude improvement within a decade
in productivity, in reliability, in simplicity.” See Frederick P. Brooks, "No Silver
Bullet - Essence and Accident", in The mythical man month: essays on software
engineering (Addision Wesley Longman, 1995).

 253

regardless of all its peculiarities, been able to address these general concerns:
its unruly becoming has highlighted the international aspects of
technological decisions. Its place in time has confounded any easy
periodisation scheme. I have also tried to render the technological
specificities as transparent and context-free as possible, by pointing out how
Chill was an example of a family of high-level languages particularly made
for real-time and communication systems. This was related to the general
ambitions raised in the introduction of this thesis, namely to explain how and
why most organisations in the telecommunication industry started to use
high-level programming languages by the 1980s in their development and
production of telecommunication equipment.

In the early 1970s, programming telecommunication switches were
regarded as “venturing into virtually unknown waters”.270 The question of
who should be on the navigation bridge was high on the agenda in all types
of telecommunication organisations, as programming was not something
solely in the domain of the equipment manufacturers. In some smaller
countries it was even believed that it could be something that the
administrations could handle themselves. Throughout the 1970s and 1980s,
different telecommunication organisations and communities of technological
practitioners tried to come up with organisational and technological answers
to the programming problem. One of the general answers was the use of
high-level programming languages and more specifically, high-level
programming languages with particular features tailored for
telecommunication systems, so-called concurrent programming languages.
However, this family of concurrent languages was really betwixt and
between the unknown waters of the early 1970s and the more tried and tested
practices of the late 1990s. By the late 1990s, these languages almost
vanished, until they reappeared as important concerns to both academics and
practitioners ten years later. As such, the pioneering concurrent languages
were really liminal languages, but pointing towards a future reintegration.

As argued in the first few chapters of this thesis, the move towards
high-level, yet specialised, programming languages in telecommunications
was tied in with a general concern in both computer science and in
telecommunications about how to produce reliable and efficient software for
telecommunication systems. The interactions between these two domains,
exemplified in chapter two with the analysis of some important conferences,
were important reasons to the directions that were sought. The coincidental
disappearance of many such high-level programming languages for
communication systems was, in time, related to the dismantling of the
“ancien regime.” However, it was also marked by a shift in programming

270 Chapuis and Joel, Electronics, computers and telephone switching: 1960-1985,
265.

 254

language design, where object orientation became the attraction of many
communities of technological practitioners throughout the 1980s.

On a theoretical level, this thesis has tried to explain this direction of
technological change towards the specialised high-level languages by
exploring the interplay of institutions and communities on the one hand side
and strategies and organisations on the other. This has been coupled with an
interest in how regimes at a political economic level meddle and direct lower
level technological decision-making. Another imperative has been to stick to
a denouncement of functional explanations, which implies that the change
towards high-level languages could not be explained by the effects of the
change, be it more reliable code, economic efficiency or more reliable
software. However, that these goals can direct activities and influence
community norms has been revealed throughout this thesis.

Another important theoretical objective has been to explore the limits
of what can be understood as strong regime logics in the existing literature
on telecommunications, the logics of the “ancien regime” if you want. In
particular, I have been interested in to what extent the changes analysed
followed a pattern that mirrored that of the stability of the international
telecommunication regime in the first phase and its upheavals in the latter
stages. When approaching technological change from the bottom up, by
following the technology and processes of technical diplomacy, the
limitations inherent in regime-oriented explanations became increasingly
evident. In the phase of emergence, the ambassadors of computer science
and those with a strong affinity towards a mathematical oriented
development virtue steered the diplomatic processes, however unrelated and
alien they were to the traditional domain of telephony and
telecommunication engineering. In the phase of diffusion, the diplomatic
processes were more unruly. As a result of the weak enforcement by the
ITU, for example by not setting up a formal compilation validation system as
was done with Ada, the shape and fate of the language were more open to
influence of organisational strategies and local circumstance. However, the
ultimate demise of the language, despite both entrepreneurial efforts and
large-scale use at successful telecommunication equipment makers, cannot
solely be ascribed to the internalities of the Chill project. In the end, the
institutional turmoil of telecommunication policy in the early 1990s isolated
Chill in its late stages of life.

All in all, it was not the stable regime of national monopolies and their
prolonged international arm of the ITU that brought Chill to life, despite
wishes for a programming language under the control of the regime, but it
was when this regime were trembling, when it was in a transitional state, that
Chill was brought to an end. One could propose that only a stable regime
could have prolonged Chill’s life and made it more successful: Such a
complex programming language as Chill could quite simply not be widely
adopted without some sort of control mechanism outside a market.

 255

Following this, one could propose that the once dominant development
virtue, influenced by ideals about the mathematically proficient programmer
and affinities towards formalism, was more compatible to an institutional
context where large organisations dominated, and was too complex to
integrate easily into a system of small entrepreneurial start-ups. Still, it was
hardly the natural offspring of such a regime.

On the individual level, Kristen Rekdal is, perhaps, the best example
of how the changing conditions of Chill influenced individual actions. As a
researcher turned technical diplomat and finally a business entrepreneur,
Rekdal had to adapt to the changing conditions throughout the 1970s and
1980s. Rekdal had to decide about new and novel technologies, decisions
that were of a different kind than “normal engineering”, where technological
design follows much the same patterns as Kuhn’s normal science inside a
paradigm. It was also deviant of what can be understood as radical inventive
development, where actions are understood as contingent and highly
uncertain. Rekdal made decisions that were somewhat risky, but not
completely uncertain. They were made by daring technological practitioners
rather than heroic inventors. The process was ambiguous but also goal-
directed at its outset and depended on successful reintegration into the
economic and technical system at its end. However, what it had to be
reintegrated into was something that had changed. There is no better
illustration of these changes than the dismantling of the international
telecommunication regime. While Kristen Rekdal’s move from a practically
oriented research establishment such as Runit to the one of a venturing
entrepreneur does, at first sight, not look all that improbable or remarkable, it
might nevertheless illustrate a key point to much innovation literature: what
is perceived as entrepreneurial action is really a function of its environment.

The classical perception of the Schumpeterian entrepreneur is that of a
unique and creative individual who develops new products, services or
techniques, and brings these developments into the economic system.
Initially, the entrepreneur was perceived by Schumpeter as an individual
bringing novelty into the economic system by setting up his own firm.271
However, and this is very well known from the extensive literature on
Schumpeter, his vision of the role and the importance of the entrepreneur
changed over time. 272 In Schumpeter’s later work, the function of the
individual entrepreneur was replaced by large research laboratories, as

271 Joseph Alois Schumpeter, The theory of economic development; an inquiry into
profits, capital, credit, interest, and the business cycle, Harvard economic studies.
(Cambridge, Mass.,: Harvard University Press, 1934).
272 See, for example, the introduction in Richard Swedberg, Entrepreneurship : the
social science view, Oxford management readers (Oxford ; New York: Oxford
University Press, 2000).

 256

Schumpeter’s analysis of the changes in the capitalistic system underwent a
major transformation. 273 If we interpret Schumpeter’s writings not as a
change of heart, but as a theory of how the institutional framework of
entrepreneurial action changes over time (and in Schumpeter’s lifetime), the
question of how individuals act under liminality could add to our
understanding of the crucial role of entrepreneurial action in different
institutional settings. Rekdal’s changing professional identities resonate with
one such view, although they reveal how programming technologies moved
from the labs to an oligopolistic market place dominated by internationally
oriented incumbent manufacturers. This move was not something that was
easily done for an individual entrepreneur, and in particular with a direction
of technological change based on a software development virtue that was
more compatible with large organisations than small start-ups. However, this
was not something predetermined. The programming language Objective C,
which was developed to create assistance to Chill programmers at ITT, and
later spun out into a small start-up firm and then ended up at Apple and in
the iPhone, highlights this unruly nature of success, technology, and
institutional structures. Both Chill and Objective C were developed in
periods that were essentially betwixt and between, both in an industry-
specific manner and in a more general sense. In telecommunications, the
1970s and 1980s essentially led up to the break up of the “ancien regime”,
but it was temporarily replaced by an oligopoly of even fewer manufacturers
than before. In the 1990s, this was gradually replaced by a deverticalisation,
although the industry was still dominated by a few large firms. The opening
up to outside vendors of programming tools illustrated this neatly, as in the
case where L. M. Ericsson started using tools from the company Rational by
1997. This was also part of the general trend of vertical disintegration,
specialisation and decentralisation that swept many industries in the 1990s
and onwards.274

As proposed by the economist Richard N. Langlois, the
decentralisation and deverticalisation of production was intimately
dependent on the market, but also on institutions that support specialisation
and exchange. One of Langlois’s strongest claims is that many of these
institutions take on the form of standards – and that these standards are a
necessity and a cause for the change towards a market-oriented decentralised
production system: “Decentralisation of production implies an ability to cut
apart the stages of production cleanly enough that they can be placed into
separate hands without high costs of coordination; that is to say,

273 Joseph Alois Schumpeter, Capitalism, socialism, and democracy (New York,
London,: Harper & Brothers, 1942).
274 This is convincingly described and analysed in Langlois, "The vanishing hand:
the changing dynamics of industrial capitalism".

 257

decentralization implies some degree of standardization of ‘interfaces’
between stages.”275 One of the more peculiar characteristics of this change
towards the “knowledge economy” and the decentralisation of production is
the distinct character of one of its most important capital goods, namely the
intangibility and elusiveness of programming languages, and their possibility
to provide such interfaces between stages of production. Some of these
programming languages have lived with us for a very long time, just because
of their role as a standardised interface between organisations. The amount
of legacy Cobol code is a very good indication of this.276 However, as this
thesis has shown, despite these characteristics programming languages are
not malleable. As an effort of institutionalisation and standardisation, Chill
was never able to break out completely of its initial framework, the
international telecommunication regime, even though it never was closely
aligned with it. This illustrates how processes of institutionalisation, like
those concerned with the rules and regulations of programming embodied in
programming languages, are tied in with institutions of many kinds, both
regime-like structures like the ITU and with norms held by groups of
technological practitioners. However, the relationship is never completely
linear, nor altogether contingent.

275 Ibid.: 374.
276 Ensmenger, The computer boys take over : computers, programmers, and the
politics of technical expertise.

 258

 259

Appendix 1
Example of code written in Chill from CCITT High Level Language
(CHILL), Recommendation Z.200, CCITT (1988).

 1 switchboard:
 2 MODULE
 3 /* This example illustrates a swicthboard which queues incoming calls
 4 and feeds them to the operator at an even rate. Every time
 5 the operator is ready one and only one call is let through. This is
 6 handled by a call distributor which lets calls thorugh at fixed
 7 intervals. If the operator is not ready or there are other calls
 8 waiting, a new call must queue to wait for its turn. */
 9 DCL operator_is_ready,
 10 switch_is_closed EVENT;
 11
 12 call_distributor:
 13 PROCESS ();
 14 wait:
 15 PROC (x INT);
 16 /*some wait action */
 17 END wait;
 18 DO FOR EVER;
 19 wait(10 /*seconds*/);
 20 CONTINUE operator_is_ready;
 21 OD;
 22 END call_distributor;
 23
 24 call_process:
 25 PROCESS();
 26 DELAY CASE
 27 (operator_is_ready):/*some actions */;
 28 (switch_is_closed): DO FOR i IN INT (1:100);
 29 CONTINUE operator_is_ready;
 30 OD;
 31 ESAC;
 32 END call_process;
 33
 34 operator:
 35 PROCESS ();
 36 DCL time INT;
 37 DO FOR EVER;
 38 IF time = 1700
 39 THEN CONTINMUE switch_is_closed;
 40 FI;
 41 OD;
 42 END operator;
 43
 44 START call_distributor();
 45 START operator()
 46 DO FOR i IN INT (1:100);
 47 START call_process();
 48 OD;
 49
 50 END swicthboard;

 260

Appendix 2
 Co-appearance Influence

Name Organization Degree alpha Degree alpha

C. Breeus Philips (MBLE) 176 285,25 891 3249,22

R. H. Bourgonjon Philips 173 275,94 838 2941,79

R. W. Meijer PTT Netherlands 192 320,28 697 2215,26

K. Rekdal RUNIT 192 320,28 521 1431,63

C. G. Denenberg ITT 84 136,10 368 1247,95

R. Reed GEC 143 218,95 423 1113,90

D. Combelic ITT 158 246,34 361 850,75

H. R. Sorgenfrei GEC 174 280,41 335 749,08

K. F. Clements UKPO 165 271,37 324 746,71

I. Jacobson LME 142 220,30 296 663,00

D. Bjørner Tech. Univ. 141 210,94 281 593,46

G. Louis Philips (MBLE) 61 71,02 251 592,79

K. Maruyama NTT 52 72,16 209 581,48

R. Martucci S. I. T Siemens 192 320,28 247 467,33

J. R. W. Smith GEC 34 34,00 170 380,13

D. A. Sedar GEC 52 68,46 140 302,43

O. de Bachtin LME 35 45,18 123 297,68

E. Benevolo CSELT 159 248,68 176 289,61

J. Devoil ITT 54 77,82 126 277,38

P. W. Dell UKPO 86 132,92 138 270,19

C. Langlois CNET 89 116,43 151 257,31

J. Sjödin LME 49 70,01 115 251,73

G. Ercolani GTE 89 116,43 145 242,13

J. Aminoff GTE 89 116,43 145 242,13

P. Branquart Philips (MBLE) 28 28,00 112 224,00

H. D. Rovengo ATT 88 123,06 126 210,84

G. Barberye CNET 62 73,60 124 208,16

H. Vanooteghem LME 62 73,60 118 193,24

R. Laufenburger GTE 62 73,60 118 193,24

T. Denvir ITT 108 149,98 127 191,25

 261

D. Tann GEC 55 65,31 111 187,26

P. Smith UKPO 53 61,01 106 172,56

A. Rockström PTT Sweden 88 123,06 107 164,99

T. Bingerfors LME 67 81,75 101 151,31

R. Wirth GEC 28 28,00 84 145,49

D. Cohen ITT 16 16,00 64 128,00

L. Kott CNET 55 65,31 83 121,08

T. Koizumi C.I.A of Japan 93 120,93 93 120,93

A. Cullen GEC 19 19,00 57 98,73

B. Robinet CNET 34 34,00 68 96,17

S. Suzuki LME 34 34,00 68 96,17

T. Sato NTT 34 34,00 68 96,17

D. Jacob ITT 47 54,46 66 90,63

E. Brigsted PTT Denmark 27 27,00 54 76,37

N. A. Matrellotto ATT 27 27,00 54 76,37

G. Mitchell ATT 62 73,60 62 73,60

J. Moloney ITT 61 71,02 61 71,02

D. Chappel ATT 49 70,01 49 70,01

P. Neumann PTT DDR 52 57,86 52 57,86

H. Kvarneby LME 16 16,00 32 45,25

W. Ferreau CSELT 33 42,39 33 42,39

B. Forss Hasler 34 34,00 34 34,00

J. R. Rasmussen PTT Denmark 34 34,00 34 34,00

K. Bryn PTT Norway 34 34,00 34 34,00

P. Molnar PTT Hungary 34 34,00 34 34,00

E. Camarotto ASST 28 28,00 28 28,00

G. Roucairol CNET 28 28,00 28 28,00

M. Ciccotti Telettra 28 28,00 28 28,00

V. Giarratana CSELT 28 28,00 28 28,00

G. Rochlin PTT Australia 27 27,00 27 27,00

H. Nagata KDD 27 27,00 27 27,00

K. Harwood LME 27 27,00 27 27,00

M. Yoshioka GEC 27 27,00 27 27,00

 262

R. Haylock PTT Australia 27 27,00 27 27,00

T. Kanda KDD 27 27,00 27 27,00

D. Ritchie ATT 18 18,00 18 18,00

H. Katzender PTT Brazil 18 18,00 18 18,00

K. K. Basu PTT India 17 17,00 17 17,00

J. D. Niessen GEC 16 16,00 16 16,00

N. M. Rothon UKPO 16 16,00 16 16,00

 263

Archival sources
International Telecommunication Union Archive (ITUA), Geneva,
Switzerland.

Norwegian Telecommunication Administration (NTA - Teledirektoratet in
Norwegian), Norwegian National Archive, Oslo, Norway.

Two separate NTA archives have been used, one containing the material of
the technical department (Teknisk avdeling / Teletjenesteavdeling in
Norwegian), archive number S-2865, and the other covering the department
of administration (Administrasjonsavdeling in Norwegian), archive number
S-2854, Norwegian National Archives, Oslo, Norway

Norwegian Telecom Research (NTR, Teledirektoaretet, Televerkets
forskningsinstitut in Norwegian) archive number S-4173, Norwegian
National Archives, Oslo, Norway.

Private collections
Kristen Rekdal (KRC), Trondheim, Norway.
Remi Bourgonjon (RBC), Heeze, the Netherlands.
Kees Smedema (KSC), Heeze, the Netherlands.

 264

Interviews
Remi Bourgonjon,

interview with author, 16 January 2009, Heeze, the Netherlands.
Telephone interview with author, 17 March 2011.
Emails to author, March 2011.

Richard Daley,

emails to author, April 2011.

Svein Hallsteinsen,
interview with the author, 21 January 2009, Trondheim, Norway.

Ivar Jacobson,

telephone interview with the author, 22 February 2011.

Capers Jones,

emails to author, February 2011.

Tom Love,

emails to author, February 2011.

Neil Olsen,

emails to author, February 2011.

Kristen Rekdal,

interviews with author, 28 November 2007, 8 June 2008, 11
November 2008, Oslo, Norway.
Interview with Lars Thue and Gard Paulsen, 13 September 2004,
Trondheim, Norway.

Norio Sato,

emails to author, November 2008 and March 2011.

Kees Smedema,

interview with author, 20 January 2010, Heeze, the Netherlands.
Emails to author, March 2011.

 265

Printed sources
Abbate, Janet. Inventing the Internet, Inside technology. Cambridge, Mass.:

MIT Press, 1999.
Acemoglu, Daron. "Directed Technical Change." The Review of Economic

Studies 69, no. 4 (2002): 781 - 809.
Ada Language (Great Britain) Ltd. "Ada yearbook." v. London: Chapman &

Hall, 1991.
Adams, Stephen B., and Orville R. Butler. Manufacturing the future : a

history of Western Electric. Cambridge: Cambridge University
Press, 1999.

Aho, Alfred V., and Jeffrey D. Ullman. Principles of compiler design,
Addison-Wesley series in computer science and information
processing. Reading, Mass.: Addison-Wesley Pub. Co., 1977.

Akera, Atsushi. Calculating a natural world : scientists, engineers, and
computers during the rise of U.S. cold war research, Inside
technology. Cambridge, Mass.: MIT Press, 2007.

———. "Voluntarism and the Fruits of Collaboration." Technology and
Culture 42, no. 4 (2001): 710-36.

Alan, J. Perlis. "The American side of the development of Algol." SIGPLAN
Not. 13, no. 8 (1978): 3-14.

Amesse, Fernand, Robert Latour, Claudia Rebolledo, and Louise Séguin-
Dulude. "The telecommunications equipment industry in the 1990s:
from alliances to mergers and acquisitions." Technovation 24, no. 11
(2004): 885-97.

Anchordoguy, Marie. "Japan's software industry: a failure of institutions?"
Research Policy 29, no. 3 (2000): 391-408.

Andersen, Flemming, and Karsten Nyblad. "Compiler testing, theory and
experiences." In Third Chill Conference, 7-12. Cambridge
University: ITT Europe, 1984.

Araskog, Rand V. The ITT wars. 1st ed. New York: Holt, 1989.
Armstrong, Deborah J. "The quarks of object-oriented development."

Commun. ACM 49, no. 2 (2006): 123-28.
Armstrong, Joe. "A history of Erlang." New York, NY, USA, 2007.
Badenoch, Alexander, and Andreas Fickers. Materializing Europe :

transnational infrastructures and the project of Europe. New York:
Palgrave Macmillan, 2010.

Baetjer, Howard. Software as capital : an economic perspective on software
engineering. Los Alamitos, Calif.: IEEE Computer Society, 1998.

Balconi, Margherita, Andrea Pozzali, and Riccardo Viale. "The 'codification
debate' revisited: a conceptual framework to analyze the role of tacit
knowledge in economics." Industrial and Corporate Change 16, no.
5 (2007): 823-49.

 266

Bauer, F. L., ed. Advanced Course on Software Engineering, Lecture Notes
in Economics and Mathematical Systems. Berlin: Springer-Verlag,
1973.

Ben-Ari, M. Understanding programming languages. Chichester; New
York: Wiley, 1996.

Bergin, Thomas J. "A history of the history of programming languages "
Communications of the ACM 50, no. 5 (2007): 69-74.

Bergin, Thomas J., and Richard G. Gibson. History of programming
languages II. New York: ACM Press; Addison-Wesley Pub. Co.,
1996.

Bergmann, A., T. Letschert, and A. Lingen. "CHILL/tss – a System
Development Environment for Telephone Switching Systems." In
Fifth CHILL Conference, 201 - 09. Rio de Janeiro: Telebras, 1990.

Biancuzzi, Federico, and Shane Warden, eds. Masterminds of Programming
Beijing: O'Reilly, 2009.

Bijker, Wiebe E. Of bicycles, bakelites, and bulbs : toward a theory of
sociotechnical change, Inside technology. Cambridge, Mass.: MIT
Press, 1995.

Bijker, Wiebe E., and John Law. Shaping technology/building society :
studies in sociotechnical change, Inside technology. Cambridge,
Mass.: MIT Press, 1992.

Binder, Hans-Eugen. "A telecommunication development: Siemens' digital
switching system, EWSD." In Proceedings of the 18th international
conference on Software engineering, 587. Berlin, Germany: IEEE
Computer Society, 1996.

Bishop, J. M. Data abstraction in programming languages, International
computer science series. Reading, Mass.: Addison-Wesley, 1986.

Bishop, R., E. Bordelon, R. Cheung, N. R. Feay, G. Louis, and C. H.
Smedema. "Separate Compilation and the Development in Large
Programs in CHILL." In Fifth International Conference on Software
Engineering for Telecommunication Switching Systems, 80 - 86.
Lund, Sweden: Institution of Electrical Engineers, 1983.

Bissell, Christopher. "Control in the technical societies: a brief history."
Measurement and Control 43, no. 7 (2010): 217 - 21.

Bjørner, D., and C. B. Jones. The Vienna development method : the Meta-
language, Lecture notes in computer science 61. Berlin: Springer-
Verlag, 1978.

Bjørner, Dines. "Programming Languages: Formal Development of
Interprenters & Compilers." In International Computing Symposium,
edited by E. Morlet and D. Ribbens, 1-21. Liege, Belgium: North-
Holland, 1977.

Boehm, Barry W. "Software and its Impact: A Quantitative Assessment."
Datamation 19, no. 5 (1973): 48 - 59.

 267

Ucinet 6 for Windows: Software for Social Network Analysis Version 6.0.
Analytic Technologies, Harvard.

 NetDraw: Graph Visualization Software. Version 2.097. Analytic
Technologies, Harvard.

Borugonjon, Remi H. "The CCITT High Level Programming Language." In
Software Engineering for Telecommunciation Switching Systems, 36
- 39. Helsinki, Finland: Institution of Electrical Engioneers, 1978.

———. "Programming Languages, Environments and Chill." Chill Bulletin
3, no. 1 (1983): 3 - 8.

Botsch, Dietrich, and Hans Eberding. "EWSD, A Real-Time Communication
System with High-Level Language Software." IEEE Transactions
on Communications 30, no. 6 (1982): 1337 - 42.

Boute, R. T., and M. I: Jackson. "A joint evaluation of the programming
languages Ada and CHILL." In Software Engineering for
Telecommunciation Switching Systems, 214 - 20. Coventry, United
Kingdom: Institution of Electrical Engineers, 1981.

Brandt, Thomas, and Ola Nordal. Turbulens og tankekraft: historien om
NTNU. Oslo: Pax, 2010.

Branquart, P., J. Lewi, M. Sintzoff, and P. L. Wodon. "The composition of
semantics in Algol 68." Commun. ACM 14, no. 11 (1971): 697-708.

Branquart, Paul, Georges Louis, and Pierre Wodon. An Analytical
Description Of CHILL, the Ccitt High Level Language. Edited by G.
Goos and J. Hartmanis, Lecture Notes in Computer Science.
Heidelberg: Springer-Verlag, 1982.

Braun, Ernest, and Stuart Macdonald. Revolution in miniature : the history
and impact of semiconductor electronics. 2nd ed. Cambridge:
Cambridge University Press, 1982.

Brooks, Frederick P. "No Silver Bullet - Essence and Accident." In The
mythical man month: essays on software engineering, 177 - 204:
Addision Wesley Longman, 1995.

Brown, J., and J. Carr III. "Automatic Programming and its Development on
the MIDAC." In Symposium on automatic programming for digital
computers, 13-14 May 1954. , edited by Mathematical Computing
Advisory Panel United States Navy, 84-97. Washington: U.S. Dept.
of Commerce, Office of Technical Services, 1954.

Campbell-Kelly, Martin. From airline reservations to Sonic the Hedgehog :
a history of the software industry, History of computing. Cambridge,
Mass.: MIT Press, 2003.

———. "The History of the History of Software." IEEE Annals of the
History of Computing 29, no. 4 (2007): 40-51.

Campbell-Kelly, Martin, and Daniel D. Garcia-Swartz. "From Products to
Services: The Software Industry in the Internet Era." Business
History Review 81, no. Winter 2007 (2007): 735 - 64.

 268

Castellacci, Fulvio. "Evolutionary and new growth theories: Are they
converging?" Journal of Economic Survey 21, no. 3 (2007): 585-
627.

Ceruzzi, Paul E. "Electronics Technology and Computer Science, 1940-
1975: A Coevolution." IEEE Annals of the History of Computing 10,
no. 4 (1989): 257-75.

———. A history of modern computing, History of computing. Cambridge,
Mass.: MIT Press, 1998.

Chambers, David Wade, and Richard Gillespie. "Locality in the History of
Science: Colonial Science, Technoscience, and Indigenous
Knowledge." Osiris 15 (2000): 221-40.

Chapuis, Robert J., and Amos E. Joel. Electronics, computers and telephone
switching: 1960-1985. 2 vols. Vol. 2, Studies in telecommunication
1990.

Christensen, Sverre A. "Switching Relations: The rise and fall of the
Norwegian telecom industry." BI Norwegian School of
Management, 2006.

Clark, M., and G. Walter. "CHILL Language Solutions for Mixed Data
Formats." In Fourth CHILL Conference, 29 September - 2 October.
Munich: Simenes AG, 1996.

Clark, Mark W., Hans-Joachim Hey, and Gerd-Arnold Schlaffke. "EWSD
software modularity - smoothing the way for performance
increases." In Global Telecommunications Conference, 1389 - 94.
Hollywood, Florida: IEEE 1988.

Clark, NM., K. Neuhaus, and G. Walter. "Support Software Environment for
a Multi-Processor-Development." In Fourth CHILL Conference, 99-
106. Munich: Simenes AG, 1986.

Codding, George A. The International Telecommunication Union; an
experiment in international cooperation. Leiden,: E. J. Brill, 1952.

Codding, George A., and Anthony M. Rutkowski. The International
Telecommunication Union in a changing world. Dedham: Artech
House, 1982.

Constant, Edward W. The origins of the turbojet revolution, Johns Hopkins
studies in the history of technology. Baltimore: Johns Hopkins
University Press, 1980.

Contractor, Farok J., and Peter Lorange. Cooperative strategies in
international business. Lexington, Mass.: Lexington Books, 1988.

Cowan, Robin, Paul A. David, and Dominique Foray. "The Explicit
Economics of Knowledge Codification and Tacitness." Industrial
and Corporate Change 9, no. 2 (2000): 211 - 53.

Cowhey, Peter F. "The international telecommunications regime: the
political roots of regimes for high technology." International
Organization 44, no. 169-199 (1990).

Cox, Brian. "There is a silver bullet." Byte, 1990, 209-18.

 269

Daley, R. W., and T. A. Haque. "ITT 1240 Digital Exchange – CHILL
programming Environment." In Second CHILL Conference, not
paginated. Lisle, Illinois, 1983.

Daston, Lorraine, and Peter Galison. Objectivity. New York: Zone Books,
2007.

Davies, Andrew. "The life cycle of a complex product system." International
Journal of Innovation Management 1, no. 3 (1998): 229-56.

———. Telecommunications and Politics: The Decentralised Alternative.
London: Pinter Publishers, 1994.

Deephouse, David L., and Mark Suchman. "Legitimacy in Organizational
Institutionalism." In The Sage Handbook of Organizational
Institutionalism, edited by Royston Greenwood, Christine Oliver,
Roy Suddaby and Kerstin Sahlin-Andersson, 49 - 77. London: Sage
Publications, 2008.

Denenberg, C. G. "CHILL Implementation techniques." In Software
Engineering for Telecommunciation Switching Systems, 45 - 50.
Helsinki, Finland: Institution of Electrical Engineers, 1978.

Dennis, Jack B. "Modularity." In Advanced Course on Software
Engineering, edited by F. L. Bauer, 128 - 82. Berlin: Springer-
Verlag, 1973.

Dew, Nicholas, S. Ramakrishna Velamuri, and Sankaran Venkataraman.
"Dispersed knowledge and an entrepreneurial theory of the firm."
Journal of Business Venturing 19 (2004): 659 - 79.

Diebl, Georg, Georg Schulz, and Jürgen F. H. Winkler. "Object-CHILL: The
Road to Object Oriented Programming with CHILL." In Fifth
CHILL Conference, 118 - 23. Rio de Janeiro, 1990.

Dijkstra, Edsger W. "Programming: From Craft to Scientific Discipline." In
International Computing Symposium, edited by E. Morlet and D.
Ribbens, 23-30. Liege, Belgium: North-Holland Publishing
Compnay, 1977.

Dosi, Giovanni. "Technological paradigms and technological trajectories."
Research Policy 11 (1982): 147-62.

Drake, William J. "The Rise and Decline of the International
Telecommunications Regime." In Regulating the Global
Information Society, edited by Christopher T. Marsden, 127 - 77.
London: Routledge, 2000.

Däcker, Bjarne. "Concurrent Functional Programming for
Telecommunications: A Case Study of Technology Introduction."
Royal Institute of Technology, 2000.

Edgerton, David. The shock of the old : technology and global history since
1900. Oxford ; New York: Oxford University Press, 2007.

Ellevseth, Stein Erik. "The SDS Software system." In Third CHILL
Conference, 87-92. Cambridge University, 1984.

 270

Elster, Jon. Explaining Technical Change. Cambridge: Cambridge
University Press, 1983.

Ende, Jan van den, Nachoem Wijnberg, and Albert Meijer. "The Influence of
Dutch and EU Government Policies on Philips' Information
technology Product Strategy." In Information Technology Policy: An
International History, edited by Richard Coopey, 187 - 208. Oxford:
Oxford Unievrsity Press, 2004.

Ensmenger, Nathan. The computer boys take over : computers,
programmers, and the politics of technical expertise, History of
computing. Cambridge, Mass.: The MIT Press, 2010.

Fagerberg, Jan. "Innovation: A guide to the literature." In The Oxford
Handbook of Innovation, edited by Jan Fagerberg, David C. Mowery
and Richard Nelson, 1 -26. Oxford: Oxford University Press, 2005.

Faust, Katherine. "Using Correspondence Analysis for Joint Displays of
Affiliation Networks." In Models and Methods in Social Network
Analysis, edited by Peter J. Carrington, John Scott and Stanley
Wasserman, 117 - 47. Cambridge: Cambridge University Press,
2005.

Foray, Dominique. Economics of knowledge. Cambridge, Mass.: MIT Press,
2004.

Forss, Bertil. In Autobiographies, “From Computing Machines to IT”.
Stockholm: National Museum of Science and Technology, Sweden,
2007.

Fransman, Martin. Japan's computer and communications industry: the
evolution of industrial giants and global competitiveness. Oxford:
Oxford University Press, 1995.

———. The market and beyond : information technology in Japan.
Cambridge England ; New York: Cambridge University Press, 1990.

Freeman, Christopher, and Francisco Louçã. As time goes by : from the
industrial revolutions to the information revolution. Oxford: Oxford
University Press, 2001.

Freeman, Linton C. "Centrality in social networks conceptual clarification."
Social Networks 1, no. 3 (1978): 215-39.

———. The development of social network analysis: a study in the
sociology of science: Empirical Press, 2004.

Fridlund, Mats. "Switching Relations and Trajectories: The Development
Procurement of the Swedish AXE Switching Technology." In Public
Technology Procurement and Innovation, edited by Charles Edquist,
Leif Hommen and Lena Tsipouri, 143 - 65. Norwell, Mass.: Kluwer
Academic Publishers, 1999.

Friedkin, Noah E. "The development of structure in random networks: an
analysis of the effects of increasing network density on five
measures of structure." Social Networks 3, no. 1 (1981): 41-52.

 271

Fuchs, Gerhard. "Policy-making in a system of multi-level governance-the
Commission of the European Community and the restructuring of
the telecommunications sector." Journal of European Public Policy
1, no. 2 (1994): 177 - 94.

Gorn, Saul. "Planning Universal Semi-Automatic Coding." In Symposium on
automatic programming for digital computers, 13-14 May 1954. ,
edited by Mathematical Computing Advisory Panel United States
Navy, 74 - 83. Washington: U.S. Dept. of Commerce, Office of
Technical Services, 1954.

Griem, P. D. "Real time programming 1975: proceedings of the IFAC/IFIP
Workshop Boston/Cambridge, Mass." Oxford, 1976.

Grübler, Arnulf, Nebojša Nakicenovic, and William D. Nordhaus.
Technological change and the environment. Washington, DC:
Resources for the Future ; International Institute for Applied
Systems Analysis, 2002.

Hackett, Edward J., Olga Amsterdamska, Michael Lynch, and Judy
Wajcman. The Handbook of Science and Technology Studies, Third
Edition. Cambridge, Mass.: The MIT Press, 2007.

Haff, Peter. "A Formal Denition of CHILL - A Supplement to the CCITT
Recommendation Z.200." In Technical Report. Lyngby, Denmark:
Dansk Datamatik Center, 1980.

Haff, Peter, and Søren Prehn. "The TFL/DCC CHILL System
Development." In Second CHILL Conference, Without pagination.
Lisle, Illinois: Bell Laboratories, 1983.

Haigh, Thomas. "How Data Got its Base: Information Storage Software in
the 1950s and 1960s." IEEE Annals of the History of Computing,
2009, 6-25.

Hallsteinsen, Svein. "Source level debuggers: Experience from the design
and implementation of chillscope." In Advanced Programming
Environments, edited by Reidar Conradi, Tor M. Didriksen and Dag
H. Wanvik, 1-12. Trondheim: Springer, 1986.

Hammer, D., FG. Franken, and P. C. Green. "A distributed operating system
for the TCP16 system." In Fifth International Conference on
SOftware Engineering for Telecommunciation Switching Systems,
178 - 84. Lund, Sweden: Institution of Electrical Engineers, 1983.

Hamonno, F., A. Potin, R. Laeron, and C. Zampoli. "Switching System
Software Base Portage to Chill." In Fifth CHILL Conference, edited
by Antonio Palma, 272 -77. Rio de Janeiro, Brazil, 1990.

Hands, D. Wade. "The Sociology of Scientific Knowledge: Some Thoughts
on the Possibilities." In New Directions in Economic Methodology,
edited by Roger Backhouse, 75-106. London: Routledge, 1994.

 272

Hansen, Per Brinch. "The invention of concurrent programming." In The
Origin of concurrent programming: From Semaphores to Remote
Procedure Calls, edited by Per Brinch Hansen. New York: Springer-
Verlag, 2001.

Hatvany, J. "Computer languages for numerical control: proceedings of the
Second IFIP/IFAC International Conference on Programming
Languages for Machine Tools, PROLAMAT '73,Budapest, April 10-
13, 1973." Amsterdam, 1973.

Hemdal, Göran. "AXE 10 - Software Structure and Features." Ericsson
Review 53, no. 2 (1976): 90 - 99.

Hey, H., and K. Neuhaus. "CHILL Semaphore technique for
Multiprocessing." In Fourth CHILL Conference, 135 - 44. Munich:
Simenes AG, 1996.

Hicks, John. The theory of wages. London,: Macmillan, 1932.
Hill, I. D., and B. L. Meek. Programming language standardisation, Ellis

Horwood series in computers and their applications. Chichester:
Halsted Press, 1980.

Hills, M. T., and S. Kano. Programming electronic switching systems - real-
time aspects and their language implications, IEE
Telecommunications Series. Stevenage: Peter Peregrinus Ltd, 1976.

Hirvensalo, J., A. Myllkangas, and K. Rahko. "Quality standardization of
telecommunciation swicthing system software." In Software
Engineering for Telecommunication Switching Systems, 13 - 18.
University of Warwick, Coventry, United Kingdom: Institution of
Electrical Engineers, 1981.

Hladik, Karen J. "R&D and International Joint Ventures." In Cooperative
strategies in international business, edited by Farok J. Contractor
and Peter Lorange, 187 - 204. Lexington, Mass.: Lexington Books,
1988.

Hobday, Mike, Howard Rush, and Joe Tidd. "Innovation in complex
products and system." Research Policy 29, no. 7-8 (2000): 793-804.

Holden, J., and A. Pink. "A Globally Optimizing CHILL Code Generator for
the Motorola MC68020." In Fourth CHILL Conference, 235 - 44.
Munich: Simenes AG, 1986.

Holmevik, Jan Rune. Educating the machine : a study in the history of
computing and the construction of the SIMULA programming
language, STS rapport ; nr 22. Dragvoll: Senter for teknologi og
samfunn, Universitetet i Trondheim, 1994.

———. Inside innovation: The Simula Research Laboratory and the History
of the Simula Programming Language. Oslo: Simula Research
Laboratory, 2004.

Hughes, Thomas Parke. Networks of power : electrification in Western
society, 1880-1930. Baltimore: Johns Hopkins University Press,
1983.

 273

IEEE Annals of the History of Computing. Vol. 6, 1984.
IEEE Annals of the History of Computing. Vol. 7, 1985.
"International Switching Symposium." Kyoto, October 25-29 1976.
Iriye, Akira. Global Community: The Role of International Organizations in

the Making of the Contemporary World. Berkeley: University of
California Press, 2002.

Jacobson, Harold K. "ITU: A potpurri of Bureaucrats and Industrialists." In
The Anatomy of Influence, edited by Robert Cox and Harold K.
Jacobson, 59 - 101. New Haven, Conn.: Yale University Press,
1973.

Jacobson, Ivar. "Concepts for Modeling Large Real Time Systems." The
Royal Institute of Technology, 1985.

Johnson, Ann. Hitting the brakes : engineering design and the production of
knowledge. Durham: Duke University Press, 2009.

Johnson, Björn, Edward Lorenz, and Bengt-Åke Lundvall. "Why all this fuss
about codified and tacit knowledge." Industrial and Corporate
Change 11, no. 2 (2002): 245-62.

Johnson, D. R., and C. P. Miller. "Testing a CHILL Compiler." In Fourth
CHILL Conference, 209 - 18. Munich: Siemens AG, 1986.

Kakuma, M., K. Maruyama, and T. Koizumi. "DPL-A High Level
Programming Language for Electronic Switching Systems." In
International Switching Symposium. Kyoto, 1976.

Kaplan, David. "State Policy and Technological Change-The Development
of the South African Telecommunications Industry." Journal of
Southern African Studies 15, no. 4 (1989): 565-80.

Karlsson, Sven Olof, and Anders Lugn. Changing the world : the story of
Lars Magnus Ericsson and his successors. Stockholm: Sellin &
partner, 2009.

Katzeff, Kurt, and Anders Rickström. "Software standards in the field of
telecommunications." In Fifth International Conference on Software
Engineering for Telecommunication Switching Systsems, 233.36.
Lund, Sweden: Institution of Electrical Engineers, 1983.

Keister, W., R. W. Ketchledge, and H. E. Vaughan. "No. 1 ESS: System
Organization and Objectives." Bell System technical Journal 43, no.
5 (1964): 1831 - 44.

Klepper, Steven. "Entry, Exit, Growth, and Innovation over the Product Life
Cycle." The American Economic Review 86, no. 3 (1996): 562-83.

Knight, Frank H. Risk, uncertainty and profit. Boston and New York,1921.
Krige, John, and Kai-Henrik Barth. Global power knowledge: science and

technology in international affairs. Chicago, Ill.: University of
Chicago Press, 2006.

Kronental, M., J. W. Roberts, K. H. Timmesfeld, and I. C. Wand. "The
LTPL-E tasking proposals." Software: Practice and Experience 11,
no. 1 (1981): 85-97.

 274

Kuhn, Thomas S. The structure of scientific revolutions. 2nd ed. Chicago,:
University of Chicago Press, 1970.

Langlois, Richard N. "Knowledge, Consumption, and Endogenous Growth."
Journal of Evolutionary Economics 11, no. 1 (2001): 77-93.

———. "The vanishing hand: the changing dynamics of industrial
capitalism." Industrial and Corporate Change 12, no. 2 (2003): 351-
85.

Langlois, Richard N., and W. Edward Steinmueller. "The Evolution of
Competetive Advantage in the Worldwide Semiconductor industry,
1947 - 1996." In Richard R. Nelson, edited by David C. Mowery, 19
- 78. Cambridge: Cambridge University Press, 1999.

Larsen, Peter Gorm. "The VDM Bibliography." Odense: The Institute of
Applied Computer Science, 1996.

Larsson, Lars-Göran. "Future Telecommunications in Japan - Policy and
Technology." In Utlands rapport från Sveriges Tekniska Attachéer.
Stockholm: Sveriges Tekniska Attachéer, 1984.

Latour, Bruno. Science in action : how to follow scientists and engineers
through society. Cambridge, Mass.: Harvard University Press, 1987.

Layton, Edward T. "Technology as Knowledge." Technology and Culture
15, no. 1 (1974): 31-41.

Leslie, William Henderson Paterson. "Numerical control programming
languages: proceedings of the 1st International IFIP/IFAC
PROLAMAT Conference, Rome 1969." Amsterdam, 1970.

Lipartito, Kenneth. "Rethinking the invention factory: Bell Laboratories in
Perspective." In The Challange of Remaining Innovative, edited by
Sally H. Clarke, Naomi R. Lamoreaux and Steven W. Usselman,
132 - 62. Stanford, California: Stanford Business Books, 2009.

Love, Tom. Object lessons : lessons learned in object-oriented development
projects, Advances in object technology 1. New York: SIGS Books,
1993.

Lundin, Per. "Tidlig programmering : Transkript av ett vittnesseminarium
vid Tekniska museet i Stockholm den 16 mars 2006." 43.
Stockholm: Filosofi och teknikhistoria, 2007.

MacKenzie, Donald A. "A View from the Sonnenbichl: On the Historical
Sociology of Software and System Dependendability." In History of
Computing: Software Issues, edited by Reinhard Keil-Salwik Ulf
Hashagen, Arthur L. Norberg, 97-122. Berlin: Springer, 2002.

———. Mechanizing proof : computing, risk, and trust, Inside technology.
Cambridge, Mass.: MIT Press, 2001.

Magneli, Peter. "Communications Computer APN 167 with ERIPASCAL."
Ericsson Review 63, no. 4 (1986): 165 - 69.

Mahoney, Michael S. "Finding a history for software engineering." Annals of
the History of Computing 26 (2004): 8-19.

 275

———. "The histories of computing(s)." Interdisciplinary Science Reviews
30, no. 2 (2005): 119-35.

———. "Software as Science - Science as Software." In History of
Computing: Software Issues, edited by Reinhard Keil-Salwik Ulf
Hashagen, Arthur L. Norberg. Berlin: Springer Verlag, 2002.

———. "Software: The Self-Programming Machine." In From 0 to 1: An
Authoritative History of Modern Computing, edited by Atsushi
Akera and Frederik Nebeker, 91 - 100. Oxford: Oxford University
Press, 2002.

———. "What Makes the History of Software Hard." IEEE Annals of the
History of Computing, 2008, 8-18.

Mangold, Werner B. "N/C Language Standardization in I.S.O." In The
Second IFIP/IFAC International Conference on Programming
Languages for Machine Tools, PROLAMAT '73, edited by J.
Hatvany, 243 - 75. Budapest: North-Holland Publishing Company,
1973.

Manninen, Ari T. "Elaboration on NMT and GSM Standards." Univeristy of
Jyväskylä, 2003.

Martin, M. "Utilization of the high level language Pape for the E12
siwtching system software." In Third International Conference on
Software Engineering for telecommunciation Switching Systems, 173
- 76. Helsinki, Finland: Institution of Electrical Engineers, 1978.

Maruyama, K., N. Sato, and K. Konishi. "NTT CHILL implementation
aspects and its application experience." In Software Engineering for
Telecommunciation Switching Systems, 191-96. University of
Warwick, Coventry: Institution of Electrical Engineers, 1981.

Marx, Leo. "Technology - the Emergence of a Hazardous Concept."
Technology and Culture 51, no. 3 (2010): 561 - 77.

Mazor, Stanley. "Intel's 8086." IEEE Annals of the History of Computing 32,
no. 1 (2010): 75-79.

Mehner, T., R. Tobiasch, and J. F. H. Winkler. "A Proposal for an Integrated
Programming Environment for CHILL." In Third CHILL
Conference. Cambridge University: ITT Europe, 1984.

Mehner, T., and J. F. H. Winkler. "An Implementation of the New CHILL-
I/O." In Third CHILL Conference, 61 - 64. Cambridge University:
ITT Europe, 1984.

Meijer, R. W., and G. H. te Sligte. "Status report of CCITT HLL
implementation at the Dr Neher Laboratory of the Netherlands
PTT." In Software Engineering for Telecommunciation Switching
Systems, 51 - 55. Helsinki, Finland: Institution of Electrical
Engineers, 1978.

 276

Meiling, Erik, and Steen U. Palm. "A Comparative Study of CHILL and Ada
on the Basis of Denotational Descriptions." In Second CHILL
Conference, Without pagination. Lisle, Illinois: Bell Laboratories,
1983.

Meyer, John W., and Brian Rowan. "Institutionalized organizations: Formal
structure as myth and ceremony." American Journal of Sociology
83, no. 2 (1977): 340 - 63.

Meyer, Peter. "A CHILL-based Systems Development for BIGFON." In
Third CHILL Conference, 61 - 64. Cambridge University: ITT
Europe, 1984.

———. "Process Communication in a CHILL Environment." In Fourth
CHILL Conference, 25 - 30. Munich: Simenes AG, 1986.

Mirowski, Philip, and Esther-Mirjam Sent. Science bought and sold : essays
in the economics of science. Chicago: University of Chicago Press,
2002.

Mokyr, Joel. The gifts of Athena : historical origins of the knowledge
economy. Princeton, [N.J.]: Princeton University Press, 2002.

Mowery, David C. The international computer software industry : a
comparative study of industry evolution and structure. New York:
Oxford University Press, 1996.

Mustar, Philippe, and Philippe Larédo. "Innovation and research policy in
France (1980-2000) or the disappearance of the Colbertist state."
Research Policy 31, no. 1 (2002): 55-72.

Naur, Peter, Brian Randell, J. N. Buxton, and NATO Science Committee.
Software engineering : concepts and techniques : proceedings of the
NATO conferences. New York: Petrocelli/Charter, 1976.

Nelson, Richard R., and Sidney G. Winter. An evolutionary theory of
economic change. Cambridge, Mass.: Belknap Press of Harvard
University Press, 1982.

Nightingale, Paul. "If Nelson and Winter are only half right about tacit
knowledge, which half? A Searlean critique of 'codification'."
Industrial and Corporate Change 12, no. 2 (2003): 149-83.

Nilsson, Mikael. "Staten och kapitalet: Betydelsen av det dynamiska
samspelet mellan offentligt och privat för det svenska telekomundret
: Transkript av ett vittnesseminarium vid Tekniska museet i
Stockholm den 18 mars 2008." 46, 2008.

Noam, Eli. "International Telecommunications in Transition." In Changing
the Rules: Technological Change, International Competition, and
Regulation in Communications, edited by Robert W. Crandall and
Kenneth Flamm, 257 - 97. Washington, D.C.: The Brookings
Institution, 1989.

Nofre, David. "Unraveling Algol: US, Europe, and the Creation of a
Programming Language." IEEE Annals of the History of Computing
32, no. 2 (2010): 58 - 68.

 277

Nordal, Ola. Verktøy og vitenskap: datahistorien ved NTNU. Trondheim:
Tapir akademisk, 2010.

North, Douglass C. Institutions, institutional change and economic
performance, The Political economy of institutions and decisions.
Cambridge: Cambridge University Press, 1990.

OECD. "Telecommunications Equipment: Changing Markets and Trade
Structures, No. 2." In OECD Digital Economy Papers: OECD
Publishing, 1991.

Oldfield, H.R. "General Electric enters the computer business-revisited."
IEEE Annals of the History of Computing 17, no. 4 (1995): 46 - 55.

Olsen, Odd Einar, and Ole Andreas Engen. "Technological change as a trade
off between social construction and technological paradigms."
Technology in Society 29 (2007): 456 - 68.

Oosterwijk, Herman. "Switching Technology through Five Decades: Dutch
Telecommunications under Change." In Buidling bridges between
ideas and markets, edited by Frans van Waarden, 75 - 138, 2002.

Opsahl, Tore. Structure and Evolution of Weighted Networks: University of
London (Queen Mary College), London, UK, 2009.

Opsahl, Tore, Filip Agneessens, and John Skvoretz. "Node centrality in
weighted networks: Generalizing degree and shortest paths." Social
Networks 32, no. 3 (2010): 245-51.

Ostrom, Elinor. Governing the commons : the evolution of institutions for
collective action, The Political economy of institutions and
decisions. Cambridge: Cambridge University Press, 1990.

Owen, Geoffrey. From Empire to Europe. London: Harper Collins, 1999.
Parker, David. The Official History of Privatisation Vol. I: The formative

years 1970-1987: Routledge, 2009.
Parnas, David Lorge. "On the Criteria To Be Used in Decomposing Systems

into Modules." Commun. ACM 15, no. 12 (1972): 1053-58.
Paulsen, Gard. "Samarbeidets protokoll: utviklingen av et nordisk datanett,

1971 - 1981." G. Paulsen, 2004.
Peter, Naur. "The European side of the last phase of the development of

ALGOL 60." SIGPLAN Not. 13, no. 8 (1978): 15-44.
Pink, A. "Fault Correction in a Running CHILL System." In Fifth CHILL

Conference, 129 - 36. Rio de Janeiro: Telebras, 1990.
Poel, W. L. van der, L. A. Maarssen, and International Federation for

Information Processing. Technical Committee 2. Machine oriented
higher level languages : proceedings of the IFIP Working
Conference on Machine Oriented Higher Level Languages,
Trondheim, Norway, August 27-31, 1973. Amsterdam; New York:
North-Holland Pub. Co. ; American Elsevier, 1974.

 278

Pontarollo, Enzo. "Procurement and market structure in the
telecommunications industry : A European survey." European
Journal of Purchasing & Supply Management 1, no. 2 (1994): 88-
97.

Priestley, Peter Mark. "Logic and the development of programming
languages, 1930 - 1975." University College London, 2008.

Radin, George. "The early history and characteristics of PL/I." ACM
SIGPLAN Notices 13, no. 8 (1978): 227-41.

Rain, Mark. "Some formal language aspects of Mary or Algol X revistited."
Algol Bulletin, 1972.

Reithmaier, Erwin. "Compilation Control in a Large CHILL Application." In
Second CHILL Conference. Lisle, Illinois: Bell Laboratories, 1983.

Rekdal, Kristen. "CHILL - The International Standard Language for
Telecommunications Programming." Telektronikk, 89, no. 2/3
(1993): 5-10.

———. "CHILL - The Standard language for Programming SPC Systems."
IEEE Transactions on Communications 30, no. 6 (1982): 1318-28.

———. "The Nordic CHILL Project." In Runit Report. Trondheim: Runit,
1980.

Ritchie, Dennis M. "The Development of the C Language." In History of
programming languages II, edited by Thomas J. Bergin and Richard
G. Gibson, 671 - 98 New York; Reading, Mass.: ACM Press;
Addison-Wesley Pub. Co., 1996.

Robinson, Hugh, and Helen Sharp. "The emergence of object-oriented
technology: the role of community." Behaviour & Information
Technology 28, no. 3 (2009): 211-11.

Romer, Paul M. "Endogenous Technological Change." Journal of Political
Economy 98 (1990): 71 - 102.

Rosenberg, Nathan. Inside the black box : technology and economics.
Cambridge [Cambridgeshire] ; New York: Cambridge University
Press, 1982.

———. "Technological Change in the Machine Tool Industry, 1840 - 1910."
The Journal of Economic History 23, no. 4 (1963): 414-43.

Rowe, Mary J. "Interfacing Chill with existing C-based systems." In Third
CHILL Conference, 27 - 33. Cambridge University: ITT Europe,
1984.

Rudmik, A., and B. G. Moore. "The Seperate Compilation of Very Large
CHILL Programs." In Second CHILL Conference. Lisle, Illinois:
Bell Laboratories, 1983.

Russell, Andrew L. ""Industrial Legislatures": Consensus Standardization in
the Second and Third Industrial Revolutions." The Johns Hopkins
University, 2007.

 279

———. "Standardizing in History: A Review Essay with an Eye to the
Future." In The Standards Edge: Future Generations, edited by
Sherrie Bolin, 247 - 60. Ann Arbor: Sheridan Press, 2005.

Ruttan, Vernon W. "Induced Innovation, Evolutionary Theory and Path
Dependece: Sources of Techncial Change." The Economic Journal
107, no. 444 (1997): 1520-29.

———. Technology, growth, and development : an induced innovation
perspective. New York: Oxford University Press, 2001.

———. "Usher and Schumpeter on Invention, Innovation, and
Technological Change." The Quarterly Journal of Economics 73,
no. 4 (1959): 596-606.

Ryan, J. S. "Signalling and Switching as we enter the second century."
Telecommunication Journal 43, no. 3 (1973): 206 - 19.

Ryder, Barbara G., Mary Lou Soffa, and Margaret Burnett. "The Impact of
Software Engineering Research on Modern Programming
Languages." ACM Transactions on Software Engineering and
Methodology 14, no. 4 (2005): 431-77.

Sakamura, Ken. "The TRON Project." Information and Software Technology
38, no. 3 (1996): 239-51.

Sammet, Jean E. Programming languages: history and fundamentals,
Prentice-Hall series in automatic computation. Englewood Cliffs,
N.J.,: Prentice-Hall, 1969.

———. "Why Ada is not just another programming language." Commun.
ACM 29, no. 8 (1986): 722-32.

Schatzenberg, Eric. "Technik Comes to America: Changing Meanings of
Technology before 1930." Technology and Culture 47, no. 3 (2006):
486 - 512.

Schefer, J., J. Schiffer, and J. Weiser. "A Machine Independent Model for
Flexible Construction of CHILL Code Generators." In Fifth CHILL
Conference, 32 - 40. Rio de Janeiro: Telebras, 1990.

Schlaffke, G. A., J. Lantermann, and G. Becker. "A CHILL Procedure
Tracer For a Real Time Multiprocessor Environment." In Fifth
CHILL Conference, 297 - 304. Rio de Janeiro: Telebras, 1990.

Schmidt, Susanne K., and Raymund Werle. Coordinating technology :
studies in the international standardization of telecommunications,
Inside technology. Cambridge, Mass.: MIT Press, 1998.

Schumpeter, Joseph Alois. Business cycles; a theoretical, historical, and
statistical analysis of the capitalist process. 1st ed. New York,
London,: McGraw-Hill Book Company, inc., 1939.

———. Capitalism, socialism, and democracy. New York, London,: Harper
& Brothers, 1942.

———. The theory of economic development; an inquiry into profits,
capital, credit, interest, and the business cycle, Harvard economic
studies. Cambridge, Mass.,: Harvard University Press, 1934.

 280

Scrotesse, A. "OO_CHILL: Integrating the object paradigm into CHILL." In
Fifth CHILL Conference, 111- 17. Rio de Janeiro, 1990.

Shane, Scott Andrew. Academic entrepreneurship : university spinoffs and
wealth creation, New horizons in entrepreneurship. Cheltenham, UK
; Northampton, MA: E. Elgar, 2004.

Slaton, Amy, and Janet Abbate. "The Hidden Lives of Standards: Technical
Prescriptions and the Transformation of Work in America." In
Technologies of power: essays in honor of Thomas Parke Hughes
and Agatha Chipley Hughes, edited by Michael Thad Allen and
Gebrielle Hecht, 95 - 143. Cambridge, Mass.: MIT Press, 2001.

Sligte, G. H. te. "A cross-implementation of Chill on existing hardware
under a commercial operating system." In Software Engineering for
Telecommunciation Switching Systems, 197 - 201. University of
Warwick, Coventry: Institution of Electrical Engineers, 1981.

———. "A programming environment for Chill." In Second CHILL
Conference, Without pagination. Lisle, Illinois: Bell Laboratories,
1983.

Smedema, C. H. "CHILL: Facilities for Concurrency." In COMPSAC.
Chicago: IEEE Computer Society Press, 1983.

———. "Real time programming, 1977: proceedings of the IFAC/IFIP
Workshop, Eindhoven, Netherlands, 20-22 June 1977." Oxford,
c1978.

———. "Some Issues in the International Standardization of CHILL and
Ada." Computers & Standards 4, no. 2 (1985): 95-100.

Smedema, C. H., P. Medema, and M. Boasson. The programming languages
: Pascal, Modula, CHILL, and Ada. Englewood Cliffs, N.J.:
Prentice/Hall International, 1983.

Smith, Peter J. "Experiences in Achiving A Full Implementation of CHILL."
In Fourth CHILL Conference, 245-49. Munich: Siemens AG, 1986.

———. "Experiences in achiving a full implementation of Chill." In Fourth
CHILL Conference, 245-49. Munich: Siemens AG, 1996.

Sobel, Robert. I.T.T. : the management of opportunity. New York, N.Y.:
Times Books, 1982.

"Software Engineering." Garmisch, Germany, 7 - 11 October 1968.
"Software Engineering for Telecommunication Switching Systems."

Stevenage, 2 - 5 April 1973.
"Software Engineering Techniques." Rome, 27 - 31 October 1969.
Sogner, Knut. En liten brikke i et stort spill : den norske IT-industrien fra

krise til vekst 1975-2000. Bergen: Fagbokforl., 2002.
Star, Susan Leigh, and James R. Griesemer. "Institutional Ecology,

'Translations' and Boundary Objects: Amateurs and Professionals in
Berkeley's Museum of Vertebrate Zoology, 1907-39." Social Studies
of Science 19, no. 3 (1989): 387-420.

 281

Steinmueller, W. Edward. "The European software sectoral system of
innovation." In Sectoral Systems of Innovation: Concepts, Issues and
Analyses of Six Major Sectors in Europe, edited by Franco Malerba.
Cambridge: Cambridge University Press, 2004.

———. "The US Software Industry: An Analysis and Interpretive History."
In International Computer Software Industry, edited by David C.
Mowery. Oxford: Oxford University Press, 1996.

Stroustrup, Bjarne. "Evolving a language in and for the real world: C++
1991-2006." In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, 4-1-4-59. San Diego,
California: ACM Press, 2007.

———. "A history of C++: 1979 - 1991." ACM SIGPLAN Notices 28, no. 3
(1993): 271 - 98.

Swedberg, Richard. Entrepreneurship : the social science view, Oxford
management readers. Oxford ; New York: Oxford University Press,
2000.

"Switching Techniques for Telecommunication Networks." London, 1969.
Takahashi, Takuma, and Fujio Namiki. "Three attempts at "de-

Wintelization": Japan's TRON project, the US government's suits
against Wintel, and the entry of Java and Linux." Research Policy
32, no. 9 (2003): 1589-606.

Takamura, Shinji, Hiroshi Kawashima, Hajime Nakajima, and M. T. Hills.
Software design for electronic switching systems, IEE
telecommunications series 8. Stevenage Eng. ; New York: P.
Peregrinus on behalf of the Institution of Electrical Engineers, 1979.

Tatarchenko, Ksenia. "Cold War Origins of the International Federation for
Information Processing." IEEE Annals of the History of Computing
32, no. 2 (2010): 46-57.

Team, R Development Core. Vienna, Austria: R Foundation for Statistical
Computing, R: A Language and Environment for Statistical
Computing.

Thue, Lars. "Norway: a resource-based and democratic capitalism." In
Creating Nordic Capitalism: The business history of a competetive
periphery, edited by Susanna Fellman, Martin Jes Iversen, Hans
Sjögren and Lars Thue, 394 - 493. Basingstoke: Palgrave
MacMillan, 2008.

———. "Norway: a resource-based and democratic capitalism." In Creating
Nordic capitalism: the business history of a competetive periphery,
S. 394-493. Basingstoke: Palgrave Macmillan, 2008.

———. Nye forbindelser: 1970-2005. Oslo: Gyldendal, 2006.
Tiemann, Michael. "The future of Cygnus Solutions : and entrepreneur's

account." In Open sources : voices from the open source revolution,
edited by Chris DiBona, Sam Ockman and Mark Stone, 71 - 90.
Beijing ; Sebastopol, CA: O'Reilly, 1999.

 282

Turner, Victor Witter. The forest of symbols; aspects of Ndembu ritual.
Ithaca, N.Y.,: Cornell University Press, 1967.

United States Navy, Mathematical Computing Advisory Panel. Symposium
on automatic programming for digital computers, 13-14 May 1954. .
Washington,: U.S. Dept. of Commerce, Office of Technical
Services, 1955.

Utterback, James M., and William J. Abernathy. "A dynamic model of
process and product innovation." Omega 3, no. 6 (1975): 639-56.

Vaughan, E. Earle. "Development history of No. 1 ESS - Software." In
Switching Techniques for Telecommunication Networks, 475 -
London, 1969.

Vedin, Bengt-Arne. Teknisk revolt: Det svenska AXE-systemets brokiga
framga ̊ngshistoria Stockholm: Atlantis, 1992.

Vries, Marc de. 80 years of research at the Philips Natuurkundig
Laboratorium (1914-1994): the role of the Nat.Lab. at Philips.
Edited by Kees Boersma. Amsterdam: Pallas Publications, 2005.

Walk, Kurt. "Roots of Computing in Austria: Contributions of the IBM
Vienna Laboratory and Changes of Paradigms and Priorities in
Information Technology." In Human choice and computers: Issues
of Choice and QUality of Life in the Information Society, edited by
Klaus Brunnstein and Jacques Berleur, 77-87. Dordrecht: Kluwer
Academic Publishers, 2002.

Walker, William. "Entrapment in large technology systems: institutional
commitment and power relations." Research Policy 29, no. 7-8
(2000): 833-46.

Wallenstein, Gerd. Setting Global Telecommunication Standards: The
Stakes, The Players & The Process. Norwood, MA: Artech House,
1990.

Wen, W. "Problem Oriented Languages." In Second CHILL Conference, not
paginated. Lisle, Illinois, 1983.

Wenger, Etienne. Communities of practice : learning, meaning, and identity,
Learning in doing. Cambridge, U.K. ; New York, N.Y.: Cambridge
University Press, 1998.

Wexelblat, Richard L. History of programming languages. New York:
Academic Press, 1981.

Whitaker, William A. "Ada—the project: the DoD high order language
working group." ACM SIGPLAN Notices 28, no. 3 (1993): 299-331.

Williams, Theodore J. "CAM and NC Software Systems: Needs for and
Benefits From Generalized and Multi-Industry Standardized
Languages." In The Second IFIP/IFAC International Conference on
Programming Languages for Machine Tools, PROLAMAT '73,
edited by J. Hatvany, 1 - 29. Budapest: North-Holland Publishing
Company, 1973.

 283

Winkler, J. F. H. "The Realization of Data Abstractions in CHILL." In Third
CHILL Conference, 175 - 82. Cambridge University: ITT Europe,
1984.

Winkler, Jurgen. "A New Methodology for I/O and its Application in
CHILL." In Second CHILL Conference. Lisle, Illinoise: Bell
Laboratories, 1983.

Winkler, Jürgen F. H. "CHILL 2000." Telektronikk, no. 4 (2000): 70 - 77.
Wirth, Niklaus. "A Brief History of Software Engineering." IEEE Annals of

the History of Computing 30, no. 3 (2008): 32 - 39.
———. Compiler construction, International computer science series.

Harlow, England ; Reading, Mass.: Addison-Wesley Pub. Co., 1996.
———. "On the Design of Programming Languages." Information

Processing 74, Stockholm, Sweden, August 5-10 1974.
Yates, JoAnne. Structuring the information age : life insurance and

technology in the twentieth century, Studies in industry and society.
Baltimore, Md.: Johns Hopkins University Press, 2005.

Yong Rai, Kwon. "Software technology and industry of Korea: widening
horizon and emerging presence." Orlando, FL, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

