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ABSTRACT
Estimating software development cost

with high accuracy is still a largely
unsolved problem.  Consequently, there is
ongoing, high activity in this research
field; a large number of different
estimation models ranging from
mathematical functions to arbitrary
function approximators (AFA’s) have been
proposed over the last 20+ years.
Unfortunately, the studies do not converge
with respect to the question “which model
is best?” when functions and AFA’s are
compared.  So far, it has not been
understood why this is so.  In this
empirical study, we show that this is due to
inappropriate validation methods as far as
the validation of AFA’s is concerned.  In
fact, the de facto validation method, cross-
validation combined with MMRE, will give
completely arbitrary results for AFA’s.
Obviously, other criteria are called for in
order to appropriately assess the
performance of AFA’s. This should be a
topic of future research.

1. INTRODUCTION

Estimating software development cost
with high accuracy is still a largely
unsolved problem.  Consequently, there is
ongoing, high activity in this research
field.  A large number of different
estimation models ranging from
mathematical functions (e.g. regression
analysis and COCOMO (www)) to
arbitrary function approximators, AFA’s

(e.g. estimation by analogy - EBA,
classification and regression trees - CART,
and artificial neural networks -ANN) have
therefore been proposed over the last 20+
years.

Unfortunately, the studies do not
converge with respect to the question
“which model is best?”  Especially, there
have been reported very contradictory
results in studies comparing an AFA with
a function.  Also, the performance of
AFA’s varies wildly across studies.

Some studies conclude that EBA
models outperform regression models (for
example, Shepperd and Schofield, 1997).
Other studies find the exactly opposite
result, namely that regression models are
superior to EBA models (for example,
Myrtveit and Stensrud, 1999).  Other
studies again find CART models superior
to regression models (Briand et al. 1999b)
whereas other studies report the opposite
result (for example Briand et al. 2000).
Others again find ANN models superior to
regression models (for example,
Srinivasan and Fisher, 1995) whereas
Jørgensen (1995) reports the opposite
result.

So far, nobody has understood why
this is so.  It has been a puzzle to the
research community on software
prediction systems for many years.
Clearly, we need to consolidate the
knowledge on software prediction models;
we need to understand why we have
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obtained so wildly opposing conclusions
on this matter.

In this study, we attempt to
understand the reason why software
researchers obtain so contradictory results.
We examine the validation methods as
well as the measures used to assess the
performance of prediction models.  In
particular, we investigate how the
combined use of cross-validation and the
mean magnitude of relative error (MMRE)
affect the results.

Using a real data set, we empirically
show that MMRE figures may vary wildly,
indeed, from zero to large values for
almost identical data sets when we
evaluate AFA’s like EBA, CART and
ANN.  That is, the MMRE figures are
completely arbitrary for arbitrary function
approximators.  Opposed to this, MMRE
figures for regression models are
consistent across almost identical data sets.
The latter result is as we would expect:  A
small perturbation in the data should yield
small differences in MMRE values.

2. TYPES OF COST ESTIMATION
MODELS

There are several approaches to cost
estimation.  One can group them as in
Figure 1.  Broadly, we may distinguish
between sparse-data methods and many-
data methods.  Sparse-data methods are

estimation methods requiring few or no
historical data.  They include Analytic
Hierarchy Procees, AHP, (Shepperd and
Cartwright, 2001), expert judgment
(Vicinanza et al. 1991) and automated
case-based reasoning - CBR
(Mukhopadhyay et al. 1992).

Many-data methods may be
subdivided into functions and arbitrary
function approximators (AFA).  Functions
are of the general form y=AxB.  Linear
regression models, for example COCOMO
belong to this class.  As opposed to
functions, arbitrary function approximators
do not make any assumptions regarding
the relationship between the predictor and
response variables (i.e. between x and y).
The argument for proposing them is that
“it is very difficult to make valid
assumptions about the form of the
functional relationship between
variables…. [Therefore]… [the] analysis
procedure should avoid assumptions about
the relationship between the
variables….using more complex functional
forms would be difficult since we usually
have a poor understanding of the
phenomena we are studying.”  (Briand et
al. 1992).   EBA, CART and ANN models
belong to the AFA class.

In this paper we only investigate
many-data methods.

AHP Expert Judgment CBR

Sparse-data methods

Regression analysis

Functions

EBA ANN CART

AFA

Many-data methods

Estimation methods

Figure 1.  A taxonomy of SW cost estimation methods

3. PREVIOUS WORK ON ESTIMATION

METHODS

There exists a relatively large number
of empirical studies on software cost
estimation models.  Especially, there is a
large number of studies on regression
analysis models since this model often

serves as the baseline against which the
performance of the other models is
compared.  See the Encyclopedia of
Software Engineering (Briand and
Wieczorek, 2001) for an overview.  It
should be observed that e.g. COCOMO is
a regression model.  Most of the studies
have applied the ordinary least squares
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method.  A few studies have also reported
on various robust regression methods
(Foss et al. 2001; Gray and MacDonell,
1999; Jeffery et al. 2001; Miyazaki et al.
1994; Nesi and Querci 1998; Pickard et al.
1999).

There is also a substantial body of
research on AFAs.  The latter include
CART models  (Briand et al. 1998, 1999b;
Kitchenham, 1998; Srinivasan and Fisher,
1995), OSR - Optimized Set Reduction, a
subtype of CART (Briand et al. 1992,
1993; Jørgensen, 1995), EBA models
(Jeffery and Walkerden 1999; Myrtveit
and Stensrud, 1999; Shepperd and
Kadoda, 2001; Shepperd and Schofield,
1997; Stensrud and Myrtveit, 1998;
Walkerden and Jeffery, 1999) and, finally,
ANN models (e.g. Samson et al. 1997;
Srinivasan and Fisher 1995; Shepperd and
Kadoda, 2001).

4. VALIDATION METHODS

Validation methods commonly
comprise two elements, the validation
procedure and the evaluation criterion (or
measure), respectively.  Cross validation is
a common validation method whereas the
mean magnitude of relative error (MMRE)
is a common evaluation criterion.  We
therefore present and discuss both of them.

4.1 Cross-Validation

Cross-validation is a way of obtaining
nearly unbiased estimators of prediction
error.  The method consists of (a) deleting
the observations from the data set one at a
time; (b) calibrating the model to the n-1
remaining observations; (c) measure how
well the calibrated model predicts the
deleted observation; and (d) averaging
these predictions over all n observations
(Efron and Gong, 1983).  In software
engineering, MRE and MMRE are used as
the de facto standard in steps (c) and (d),
respectively (Briand and Wieczorek,
2001).

Also, in software engineering, a
variant of the cross validation method, v-
fold cross validation, is widespread
(Briand et al. 1993; Briand et al. 1999a).
V-fold cross validation divides the data set
into v subsets, each with approximately k

observations with k>1.  That is, v*k�n.
So, rather than deleting one observation at
a time, k observations are deleted each
time.  In the machine learning
communities within computer science,
these subsets are often termed training sets
and test sets, respectively.

From a practitioner’s standpoint, we
think we need to comment on the validity
of cross validation vs. the v-fold cross
validation assuming a realistic real world
situation.  What, then, is a real world
situation closest to, a normal cross
validation or a v-fold cross validation?

To us, it seems that a realistic scenario
is as follows.  We have a data set with n
historical projects, and we are to estimate a
single new project.  Now, we think it
would be wise to use all the n observations
to calibrate a model before predicting the
effort of the new project.   This situation
seems perfectly approximated by the
normal cross validation procedure where
the model is calibrated with n-1
observations, i.e. one observation less than
we would have in the real world case.  As
opposed to this, the v-fold cross validation
removes k observations at a time, thereby
using a much smaller subset to calibrate
the model than would be available in
reality.

In this study, we have applied normal
cross validation for the AFAs.  For the
regression analysis, we have not used
cross validation at all.  We argue that only
a small error is introduced in the
regression model when we do not remove
one observation at a time.  There are 38
observations in the data set.  Therefore, the
impact of a single observation is likely to
be small.

4.2 MMRE

The most widely used evaluation
criterion to assess the performance of
software prediction models is the mean
magnitude of relative error (MMRE). This
is usually computed following standard
evaluation processes such as v-fold cross-
validation (Briand and Wieczorek, 2001).
Conte et al. (1986) consider MMRE ≤ 0.25
as acceptable for effort prediction models.
MRE is defined as
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where y = actual and ŷ  = prediction.
There exist a number of alleged reasons to
use MMRE.  It is considered a versatile
assessment criterion lending itself to a
number of situations.  The claimed
advantages include the following:
1. Comparisons can be made across data

sets (Briand et al. 2000; Shepperd and
Kadoda 2001).

2. It is independent of units.
Independence of units means that it
does not matter whether effort is
reported in workhours or workmonths.
An MMRE will be, say, 10% whatever
unit is used.

3. Comparisons can be made across all
kinds of prediction model types (Conte
et al. 1986).  This means, for example,
that it is a valid measure to assess the
accuracy of AFA’s.

4. It is scale independent.  Scale
independence means that the expected
value of MRE does not vary with size.
In other words, an implicit assumption
in using MRE as a measure of
predictive accuracy is that the error is
proportional to the size (effort) of the
project (Strike et al., 2001).  For
example, a 1 person-month error for a
10 person-month project and a 10
person-month error for a 100 person-
month will result in equal MREs (10%
for both projects).

In this study, we investigate claim 3 and
show that cross-validation + MMRE is
totally inappropriate to evaluate the
performance of an AFA in terms of
prediction accuracy.

5. DATA USED IN THE STUDY

For the purpose of this study, we use a
univariate data set termed the Finnish data
set.  The predictor variable is function
points (FP) and the response variable is
effort (development hours).  The data set
consists of 40 projects (Table 1).  Two
projects have missing data.  The data
comes from different companies, and the
data collection was performed by a single
person.  The projects span from 460 to

23000 workhours.  Descriptive statistics
are provided in Table 1.

Table 1.  Descriptive statistics for Finnish data set

Variable N Mean Median StDev Min Max
FP 40 761 638 511 65 1814
Effort 38 7573 5430 6872 460 23000

In Figure 2, we have plotted effort
against FP where we observe that the data
are heteroscedastic (increasing variance).
This data set is termed the original data
set.
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Figure 2.  Plot of effort vs. size, original Finnish
data set.

For the purpose of this study, we have
made a slight modification to the original
Finnish data.  In Figure 3, we have plotted
the data after the modification.  We have
paid care not to change the fundamental
characteristics of the data such as variance,
heteroscedasticity, range, and number of
observations (still 38).
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Figure 3.  Plot of effort vs. size, modified Finnish
data set.

To understand what we have done to
the original data, we zoom in on the
observations in Figure 4.  The perturbation
consists of identifying pairs of projects
that are close to each other and modifying
these so that they come slightly closer to
each other.  Specifically, we have
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modified the effort so that the effort of
such a pair of observations is identical.
Furthermore, we have made slight
modifications in the FP dimension to
ensure that e.g. B is closer to A than to C
in the FP dimension.  The modification
therefore rearranges the observations so
they are similar to the pattern in Figure 4.

We would expect such small
perturbations in the data to result in small
changes in the models fitted to the data
and consequently, small changes in the
results in terms of MMRE.  In the study,
we show that only functions like
regression analysis models behave as
expected.  Small changes in the data result
in small changes in the regression model
as well as in small differences in MMRE.
As opposed to functions, the MMRE
figures of AFA models are extremely
sensitive to these perturbations.

A B

C

Effort

Size

Figure 4.  Zoom in of how Finnish data modification
has been performed

6. LINEAR REGRESSION MODELS

Linear regression analysis comprises a
family of techniques for fitting a line (in
the univariate case) to a set of
observations.   Thus, it provides us with an
equation describing the relationship
between FP and effort.  In case the data
points exhibit non-linear effects, this is
discovered by error analysis, analysis of
residuals.  If such effects are found, the
scale may be transformed so the
transformed data exhibit linear
characteristics.  In this way, a linear
regression model may still be used for a
non-linear data set.  For the Finnish data
set, we observe that a log-log
transformation seems satisfactory.
Performing this transformation, the data
comply with the assumptions of OLS

regression.  In particular, the relationship
between FP and effort seem reasonably
linear; the residuals are normal (not
reported); the data are reasonably
homoscedastic.

The model calibrated on the original
data is given in Table 2.  The model
calibrated on the modified data is given in
Table 3.  The OLS regression model for
the original and modified data sets are
reasonably similar, as we would expect for
relatively small perturbations of the data.
From Table 2 and Table 3, we observe that
the coefficients are similar (Coef); the
standard error of the coefficients is similar
(SE coef and T); and the goodness of fit
metric is similar (R2).

The point estimate from an OLS
regression model is the expected value or
mean.  That is, the point estimate is a well-
defined statistic.  The expected value is the
most likely value of the actual effort.  One
desirable property of the mean is that the
probability of exceeding it is 50%.  In
addition, the OLS regression model
supplies prediction intervals (95% PI;
dashed lines in Figure 5).  In this case, we
have shown the 95% prediction intervals.
That means there is a 5% chance of
exceeding the upper bound of the
prediction interval.  For example, suppose
we need to predict the effort of a 1026 FP
project (ln(1026 FP)=6.93).  Then we
obtain mean_effort = 8,100 workhours,
and lower/upper bounds = 1,591/41,237
workhours for the 95% prediction interval.
This information advices the customer to
budget for at least 40,000 workhours if he
is risk-averse, but that the most likely
outcome is 8100 work hours.  In other
words, the worst case may exceed the
expected value by a factor of five based on
this particular historical data set.  Also,
knowing that there is a large uncertainty of
the 8100 workhours expected value, the
customer is better positioned to make an
informed decision of buy/not buy.
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Figure 5.  Log-log linear regression model with 95%
prediction interval (95% PI lines), Finnish data set.

Table 2.  Log-log regression model, original Finnish
data set.

Predict
or

Co
ef

SE
coef

T

const 1.7
0

0.99 1.7
1

ln(FP) 1.0
5

0.16 6.8

R2 0.5
6

Table 3.  Log-log regression model, modified
Finnish data set.

Predict
or

Co
ef

SE
coef

T

const 1.1
2

0.83 1.3
5

ln(FP) 1.1
7

0.13 9.1

R2 0.7
0

7. AFA MODELS

7.1 EBA

EBA methods identify analogues (or
similar cases) in the database.  Commonly
used similarity measures are Euclidean
distance and correlation coefficients.
Euclidean distance is employed in the
EBA tool ANGEL (Shepperd and
Schofield, 1997).  ANGEL predicts effort
based on identifying analogous or similar
projects for which effort is known.  The
predicted effort is basically identical to the
effort of the most similar project.  The
ANGEL model is illustrated in Figure 6.

Using the Finnish data set (section 5)
as example of how ANGEL works, the
most similar project is the project which is
closest in terms of FP (in the univariate
case).  For example, to estimate the effort
for a 1300 FP project, we would measure
the distance to every project in the
database and identify project C (1282 FP)
in Figure 6 as closest (a distance of 18 FP).
C is closer than for example D (1347 FP).
The effort for C is 22670 workhours.
Therefore, the estimated effort for the
1300 FP project would be 22670
workhours.

We observe that the similarity
measurements may be used to rank all the
projects in the database with respect to
closeness with project X where X is 1300
FP in our particular example.
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Figure 6.  Estimation by analogy model (ANGEL),
Finnish data set

ANGEL may also compute estimates
that are averages of the n closest projects
where n may be any value chosen by the
user.  If we are extreme, we may average
over all the 38 projects in the Finnish data
set.  In this case, the ANGEL function
would look like the solid thick line in
Figure 7. (The average effort of all
projects is 7573 workhours.)  For any
other n, the model would be a stepwise
function somewhere in between the solid
thick line and the collection of the thin
horizontal, discontinuous line segments in
Figure 7.
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Figure 7.  ANGEL prediction model taking the
average over the 38 closest projects, Finnish data set
(thick solid line).

7.2 CART

Decision tree approaches classify the
data set in a tree structure (Brieman et al.
1984).  Decision trees are referred to as
classification or regression trees depending
on whether they classify discrete variables
or continuous variables, respectively.  The
common term for these trees is CART,
Classification And Regression Trees.  For
the Finnish data set, both the predictor
variable (FP) and the response variable
(effort) are continuous.  In this case, we
therefore use a regression tree (RT).
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Figure 8.  CART model, Finnish data set.

The idea is to partition projects into
more homogeneous subsets based on the
similarities of projects within groups and
dissimilarities between groups.  There are
many ways to operationalize “similarity”.
Srinivasan and Fisher (1995) used the
minimum mean squared error (MSE) of
the response variable as the criterion to
divide a group into two disjoint subgroups.
Suppose further that we adopt Srinivasan
and Fisher’s strategy, which was to divide
the data set into “maximum depth”. “We
allowed the regression tree to grow to a
“maximum depth”, where each leaf
represented a single software
project…(p.130)”  For the Finnish data
set, we then obtain 38 leafs, and the mean

effort per leaf equals the actual effort for
the single project in that leaf.  This CART
model is illustrated in Figure 8.

To estimate a new project using
CART, we must find out which leaf it is
closest to in the FP dimension and then use
the actual effort of the closest leaf as the
estimate.  Using Euclidean distance to
identify the closest leaf, we obtain exactly
the same function and results as for
ANGEL (Compare Figure 6 and Figure 8).
The CART model in Figure 8 is identical
to the EBA model in ANGEL.   That is,
ANGEL and CART gives us identical
estimates.  Thus, the critique of ANGEL
applies equally well to CART given that
• there is one single predictor variable
• CART is allowed to grow to leafs of

one project
• ANGEL uses the single closest

analogy
Of course, both CART and ANGEL

would give somewhat different results if
we apply some “filtering”.  Filtering in
ANGEL means that we use the mean of
the n closest analogies as an estimate
rather than the single closest analogue
(with n>1).

Filtering in CART means that we do
not let the tree grow to maximum depth
(i.e. n>1 in each leaf).  If we let CART
grow to “minimum depth”, we get a
function that is a solid horizontal line just
like for ANGEL as shown in Figure 7.

Whatever the value of n, we argue
that the fundamental structure and
properties remain the same for both CART
and ANGEL.  The basic nature of a CART
or an EBA model like ANGEL, regardless
of n, is an “up-and-down staircase”
function without any well-defined
properties of the estimates and with a
possibility of obtaining lower estimates as
size (FP) increases.  This seems contrary
to common sense.

7.3 ANN

The vision of artificial intelligence
(AI) research is to devise systems that
behave like intelligent, living creatures
that can learn from experience and modify
their behavior accordingly.  Artificial
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neural network (ANN) models are inspired
by biological neural networks.

ANN models employ a wide variety
of algorithmic approaches and
architectures.  A main concern in
computer science has been to devise
algorithms that are computationally
efficient and require small memory space.
One of the merits of ANN models from a
computational perspective is that they lend
themselves to parallel processing.  Thus,
they are suited to multi-CPU hardware
architectures.

Whatever the algorithm used, the
output from an ANN model is a smooth
curve through the observations (Srinivasan
and Fisher, 1995).  An ANN model is
therefore a smooth AFA rather than a
stepwise AFA (as CART and EBA are).
An ANN model may be fitted more or less
to the observations through more or less
filtering.   The number of nodes
determines the degree of fit.  In Figure 9,
we have shown an ANN model with high
fit (many nodes).

Just like for CART and EBA models,
an ANN model has a possibility of giving
lower estimates as size (FP) increases.
Again, this seems contrary to common
sense.
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Figure 9.  ANN model, Finnish data set.

8. RESULTS

In this section, we report the results in
terms of MMRE of regression models,
EBA and CART models on the original
data and the modified data, respectively.
The results in terms of MMRE in Table 4
clearly demonstrate that an AFA like
ANGEL or CART is extremely sensitive
to small perturbations of the data whereas
a function like a regression model is not.
The MMRE for the two regression models
does not change by more than 25% (R
column).

We have not reported MMRE
numbers for ANN because we did not
have an appropriate tool to calculate this.
However, we have good reasons to believe
that the results in terms of MMRE would
be arbitrary, too, depending on details in
the pattern of observations that ought not
to influence on a model performance
criterion.

Table 4.  MMRE of AFA (ANGEL/CART) and
regression model (R).

Data N MMRE
(AFA)

MMRE
(R)

Finnish,
orig.

38 1.55 0.79

Finnish,
modif.

38 0.00 0.63

As opposed to the MMRE results for
the regression model, we observe that the
MMRE results for the AFA models
(CART/ANGEL) are completely different
for the original data and the modified data;
MMRE varies by infinitely many percent
(from 0.00 to 1.55).   That is, for two
rather similar data sets, the AFA models
seemingly perform from anywhere
between extremely well to very bad.

Thus, if we had compared a regression
model with an AFA on a data set like the
original Finnish data set, the regression
model would have obtained the lowest
MMRE and been deemed best.
Comparing the same two models on a
slightly different data set like the modified
data set, the AFA would apparently have
outperformed the regression model
completely in terms of MMRE and been
hailed as the ultimate, perfect model.

9. CONCLUSIONS

In this study, we have contributed an
explanation of why studies on prediction
models do not converge when AFA’s are
part of the study.  Specifically, we have
shown that the de facto evaluation method,
cross-validation combined with MMRE,
yields completely arbitrary MMRE values
for arbitrary function approximators.

For data sets that are almost identical
in terms of properties like variance,
heteroscedasticity, linearity, range, number
of observations, etc., we may, when
evaluating and AFA, obtain wildly
different prediction accuracies in terms of
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MMRE.  We have shown that we may
obtain anything from a spectacular
performance (e.g. MMRE=0) to very low
performance (i.e. a large MMRE) in terms
of MMRE.

The implications for previous research
on AFA-type prediction models are that
the conclusions of these studies with
regard to the research question: “which
model is best?” are of limited, or probably
no, value.

Obviously, other validation methods
are called for to properly assess AFA’s.
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