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Abstract

Learning from high performance projects is crucial for
software process improvement. Therefore, we need to
identify outstanding projects that may serve as role
models.  It is common to measure productivity as an
indicator of performance.  It is vital that productivity
measurements deal correctly with variable returns to
scale and multivariate data.  Software projects
generally exhibit variable returns to scale, and the
output from ERP projects is multivariate.  We propose
to use Data Envelopment Analysis Variable Returns to
Scale (DEA VRS) to measure the productivity of
software projects.  DEA VRS fulfils the two
requirements stated above, and to our knowledge, it is
the only method complying with them.  The results from
this empirical study of 30 ERP projects extracted from
a benchmarking database in Accenture identified six
projects as potential role models.  These projects
deserve to be studied and probably copied as part of a
software process improvement initiative.  The results
also suggest that there is a 50% potential for
productivity improvement, on average.  Finally, the
results support the assumption of variable returns to
scale in ERP projects.  We recommend DEA VRS be
used as the default technique for appropriate
productivity comparisons of software projects.  Used
together with methods for hypothesis testing, DEA VRS
is also a useful technique for assessing the effect of
alleged process improvements.

Index Terms
Software process improvement, benchmarking, best

practice identification, software project management,

multivariate productivity measurements, data
envelopment analysis (DEA), software development,
enterprise resource planning (ERP), software metrics,
economies of scale, variable returns to scale.

1. INTRODUCTION

Learning from high performance projects is crucial
for software process improvement. Therefore, we need
to identify outstanding projects that may serve as role
models.  A minimum prerequisite for identifying these
best practice projects, is the ability to measure the
performance.  If you cannot measure it, you cannot
possibly know which projects are best, and you cannot
know whether you have improved or not.   Also, if you
are able to identify the best projects, they may serve as
role models guiding you on how to improve.  For
practitioners, identifying and studying the best practice
projects is an invaluable source of learning.  Last, but
not least, by measuring project performance, you create
incentives that likely will yield higher performance.
Indeed, Weinberg [37] demonstrated many years ago
that the proverb “You get what you measure” also is
highly valid in the software engineering field.

In addition to identifying the best practice projects,
several stakeholders are interested in the related
problem of benchmarking the projects.  (In this context,
benchmarking means to measure the project
performance against some established performance
standard, or alternatively, against an observed best
practice frontier.)

As practitioners, we experience an increasing
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demand from our customers that performance
benchmarks of past performance be included in
proposals.  Therefore, consultants must provide
benchmarks to stay competitive.  Organisations use
benchmarks internally as input to compensation
schemes and promotions, and thus needs to identify best
performers.  Finally, as already stated, project
managers and methodologists need to identify best
practice processes and technologies to improve project
methodologies and software processes.

It is not trivial to correctly identify the outstanding,
best performing software projects.  First, we need to
establish criteria for what we actually mean by
qualitative words like "outstanding", "high
performance", "best", and so on, and then we must find
appropriate quantifiable measures.  Next, it is vital that
the comparisons of individual software projects deal
correctly with variable returns to scale and multivariate
data because it is likely that software projects exhibit
variable returns to scale, in general, and in addition, the
output from ERP projects is multivariate. (ERP projects
are a subclass of software projects.)

In this paper, we measure the productivity and use it
as a performance indicator.  In other words, we use the
productivity as the criterion to judge software projects
as "high performance" or "best".  For software projects,
productivity is relatively easy to measure.  Also, it is a
common performance indicator in software engineering.
It is, however, not unproblematic to reduce the task of
measuring performance to the subtask of measuring
solely productivity of software projects. This issue is
discussed in section 7.1.

The most widely applied productivity model in
software engineering (See e.g.[12] [15] [22] [26] [9]) is
the following univariate, constant returns to scale
(CRS), model (P=productivity, x=input, y=output):

x
y

P =  (1)

Equation 1.  A univariate, CRS (linear) productivity model

Common output measures (i.e. y) in software
projects are source lines of code (SLOC), function
points (FP) or object points, and the usual input
measure (i.e. x) is effort, e.g. the number of
personmonths (PM).  So, Equation 1 states that the
productivity equals the number of FP developed per
PM.   That is, the more FP per PM, the higher the
productivity. Equation 1 therefore seems like a
reasonable productivity model.

There is, however, one serious drawback with the
productivity model in Equation 1.  The productivity
model (Equation 1) assumes constant returns to scale
(CRS) in software projects.  In other words, CRS
assumes a linear relationship between input and output.
This assumption is inconsistent with the assumptions
made by important cost estimation models like
COCOMO 1.0 or 2.0 [13][14].  COCOMO assumes the

contrary, namely that software projects exhibit variable
returns to scale (VRS).   That is, they assume a non-
linear relationship between input and output.  Provided
VRS cost models like COCOMO are right in their
assumptions, CRS productivity models like Equation 1
would simply pick the smallest project as the most
productive project, ultimately misleading us to draw
erroneous conclusions regarding which project is the
most productive.  Cost estimation models like
COCOMO generally have the following form
(P=productivity, x=effort, y=FP or SLOC, B>1):

B
yx

P
1

=  (2)

Equation 2.  A VRS (non-linear) cost model

When B>1 (as in COCOMO), Equation 2 states that
software projects have decreasing returns to scale
(DRS).  DRS is a special case of VRS.  On the other
hand, Equation 2 would describe an increasing returns
to scale (IRS) cost model if B<1.  IRS is also a special
case of VRS.  When software projects exhibit VRS, it
means they might be either IRS or DRS or both.
Finally, if B=1, Equation 2 describes a CRS cost model
(Figure 1).  (In the paper, we use the term economies of
scale as a synonym to IRS and diseconomies of scale as
a synonym to DRS and (dis)economies of scale as a
synonym to VRS, and VRS to mean either IRS, DRS or
both.)
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Figure 1.  CRS and VRS models

Small and large software projects likely exhibit VRS
(IRS and DRS, respectively) whereas medium software
projects probably exhibit CRS.  To see this, it is useful
to divide software development into two parts,
application development and technical infrastructure
(TI) development.  The application is the part of the
system containing the user functionality.  The technical
infrastructure consists of hardware, network, operating
system, compilers, editors, database management
system, transaction processing monitors, window
managers, programming standards, and other third party
software needed to support the application.

Function points measure mostly application size, but
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account inadequately for TI size.  Therefore, using FP
as the output measure and effort as input, small projects
likely exhibit IRS because they incur a relatively large
TI development effort compared to the application
development effort.  A small project by definition
develops few FP.  Therefore, the average effort per FP
is high since the TI effort is distributed across a low
number of FP.   Therefore, when small projects develop
more FP, the TI effort is distributed across more FP,
and consequently, the average effort per FP decreases.

At the other end of the spectrum, large projects
likely exhibit DRS because they incur increasing
overhead effort (Larger project teams and more
modules needed to be integrated will result in more
coordination effort.)  Therefore, it is reasonable to
expect that the average effort per FP increases.  Finally,
medium projects probably are CRS (i.e. they have a
linear relationship between FP and effort) because the
IRS and DRS effects cancel each other out.

In addition to the CRS/VRS issue that likely is
general to the broad class of software projects, ERP
projects (a subclass of the class of software projects)
produce multivariate outputs.  Therefore, univariate
productivity models like Equation 1 are inapplicable
since they can take one input and one output, only (e.g.
input=effort and output=FP).  As for ERP1 projects, the
output is a multivariate measure (output={Users, Sites,
Plants, Companies, Interfaces, EDI, Conversions,
Modifications, Reports, Modules}, see Table 1).
Hence, the multivariate ERP output measure differs
from custom software development (CSD) projects
where the output often is a univariate measure like FP
or SLOC.

The output of ERP projects is, and has to be,
multidimensional since ERP projects are part of
business transformation initiatives and not stand alone
CSD projects.  This implies that the projects not only
deliver developed software but also deliver
reengineered business processes and organisational
structures.  The business reengineering is performed
partly to improve business performance and partly
necessitated by the ERP package because the
functionality of a package to some extent dictates how
you have to do your business.  Of course, one could also
perform business process reengineering activities in
connection with CSD projects.  The difference is that
you do not have to since, in a CSD project, you can
always customise the functionality to an existing
organisation and the way it does its work.  Using an
ERP software package, the functionality is largely given
(unless you rewrite the existing functionality).  Thus, as
a user you must adapt your work processes so that they

                                                          
1 In earlier papers we have preferred the term PER (package-

enabled reengineering) to ERP (enterprise resource planning).
Actually, PER projects implement ERP systems.  However, the term
ERP has become more established in magazines, e.g. in
Communications of the ACM, April 2000 issue.  Therefore, we have
opted for the term ERP in this paper.

align with the given software functionality.  Thus, there
is always some business process reengineering activities
carried out in these ERP projects.

To appropriately measure and compare the
productivity of individual ERP projects exhibiting VRS
and multivariate outputs, we propose to use Data
Envelopment Analysis, Variable Returns to Scale (DEA
VRS) to measure the productivity of software projects
in general, and of ERP projects, in particular.  DEA
VRS ensures that large projects are compared with other
large projects and small projects with small projects.
Furthermore, DEA is suitable for productivity
comparisons of ERP projects because it handles
multivariate inputs and outputs.  In fact, as far as we
know, DEA is the only method complying with these
two requirements that we consider crucial to perform
correct productivity assessments in software
engineering.

The paper is organised as follows.  Section 2
presents the issue of measuring productivity in general.
Section 3 presents DEA.  The presentation emphasises
the strengths as well as the limitations of DEA in the
context of identifying best practice ERP projects.  We
believe it is the first time DEA is used to analyse ERP
projects.  Furthermore, we believe it is the first time
DEA is used to test hypotheses and where significance
levels are reported when analysing software projects2.
Section 4 presents related work using DEA to analyse
software projects.  Many papers have been published on
DEA3.  However, to our knowledge, only four papers
have used DEA to analyse software projects
[5][7][8][28].  It is unfortunate that DEA VRS has not
gained more widespread use in the software engineering
community since productivity assessments are widely
conducted and reported in research studies, using CRS
productivity models e.g.[12] [15][22] [26][9] that
probably are inappropriate.  It seems inappropriate (and
meaningless) to compare the productivity of a small
project with the productivity of a large project e.g.
compare a one-person project with a 100-person project
if the aim is to identify appropriate role models as
sources of learning for software process improvement.

We show that the four papers using DEA to analyse
software projects partly suffer from methodological
flaws and partly use DEA where simpler methods could
have been used.   Section 5 describes the ERP data used
in the analysis.  Section 6 presents the results of
analysing the Albrecht-Gaffney CSD data set using
DEA as well as the results analysing the ERP data with
DEA.  The main purpose of analysing the Albrecht-
Gaffney data set is to provide an intuitive example (for
univariate cases) of the use of DEA CRS and VRS.

                                                          
2 However, some results were published in an earlier version at

METRICS’99 [27].
3 We found 285 hits in the INSPEC Electronics & Computing

database 1989 - Oct 97 using the search term «data envelopment
analysis» of which a large majority were in operational research
journals.
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Section 7 discusses some important assumptions
underlying performance and productivity assessments
regardless of whether DEA VRS or other CRS
productivity models like Equation 1 are used.  Also,
some issues that are particular to DEA are discussed in
this section.  Section 8 concludes recommending that
DEA VRS should be adopted as the default productivity
model in software engineering for comparison
(benchmarking) of individual projects and identification
of the most productive projects.

2. MEASURING PRODUCTIVITY

As stated in the Introduction, the productivity (P) is
generally defined as the output (y) over input (x) ratio in
the univariate CRS case (as in Equation 1).   In software
engineering, we are accustomed to depicting the output
(FP or SLOC) along the horizontal axis and input
(effort) along the vertical axis (as in Figure 1).  In
economics in general, and in DEA in particular, the axes
are usually switched.  We have adopted the DEA
convention in the figures in this paper since the paper is
on DEA (despite being in a software engineering
journal).  We observe, therefore, that the axes in Figure
1 are switched compared with the axes in Figure 3.

Using the DEA convention, we have plotted the
Albrecht-Gaffney [2] data set in Figure 2 (see also
Table 2) where we observe that project 23 appears to
have the highest productivity when we apply a
univariate CRS  model (P=199/0.5=398).  Alternatively,
we may present the productivity results on a normalised
scale, i.e. a scale from zero to one, by dividing all
numbers with the highest, PMAX.  For the Albrecht-
Gaffney data set PMAX =398 (i.e. the productivity of
project 23).  Project 23 thus has a normalised
productivity equal to 1. Using this normalised CRS
productivity scale, the productivity of e.g. project 20
relative to project 23, is:

20

1572

612
199

0 5

25 7

398
0 06

P

P MAX
= = =.

.

.
.

Equation 3: A normalised, univariate, CRS productivity
measure

We observe that project 20 appears extremely
unproductive in the CRS scheme.  Inspecting Figure 2,
it seems likely that the software projects in the
Albrecht-Gaffney data set exhibit diseconomies of scale
(VRS of the DRS type), and therefore, CRS
productivity models are inappropriate for comparing
e.g. a large project like number 20 with a small project
like number 23.  Project 20 is a 61 PM project and
therefore likely is a multi-person project with a team
size of, say, 5-10 developers (The largest projects in the
Albrecht-Gaffney data set, projects 1 and 2, likely have
10+ developers).  As opposed to these large projects,

project 23 is a small, two workweeks, one-person
project probably with no overhead costs and likely
insignificant fixed costs (because in two weeks it would
be impossible to install the technical infrastructure and
thereafter develop and test an application of 398 FP).
Figure 2 thus clearly illustrates how misleading a simple
CRS productivity model can be for productivity
comparisons unless it takes diseconomies of scale
(VRS) into account.  The plot of the Albrecht-Gaffney
data set reveals a pattern clearly suggesting VRS (of
type DRS or diseconomies of scale).  Therefore, it is not
surprising that the smallest project (project 23) is
deemed the most productive.  Thus, an obvious
objection against using a CRS productivity model is that
it is not reasonable to compare a small (0.5
workmonths) project with a large (61 workmonths)
project.  Still, we observe that this is routinely done in
software engineering productivity studies (e.g.
[15][22][14][26][9]).  In general, it would seem more
reasonable to compare a project with other projects of
similar size. That is, it seems more appropriate to apply
a VRS model comparing the productivity of small with
small and big with big, since there are good reasons,
analytical as well as empirical, to believe there are
economies as well as diseconomies of scale in software
projects i.e. VRS [5][8].
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Figure 2.  Benchmarking Albrecht-Gaffney projects assuming
constant returns to scale (CRS).  The straight line is the CRS
frontier.

If we assume VRS rather than CRS, one pragmatic
approach is to define a non-parametric best practice
frontier in this two-dimensional space.  This idea is
illustrated in Figure 3 where the dotted line represents
the CRS best practice frontier, and the solid line
represents the VRS best practice frontier.  In this VRS
scheme, project 23 is no longer the only fully
productive project.  Rather, in the VRS scheme, project
20 also is on the front (P=1.0) in stead of being highly
unproductive (P=0.06) in the CRS scheme.  Similarly,
e.g. project 10 is benchmarked against the line segment
between projects 19 and 22 in stead of against the
dotted CRS line where project 23 is the only reference.
Intuitively, a VRS model (comparing small with small
and large with large) seems more reasonable for the
Albrecht-Gaffney projects.  Also, a VRS productivity
model would definitely be more appropriate than a CRS
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productivity model for the COCOMO data since the
cost model assumes that software projects comply with
a VRS model.
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Figure 3.  Benchmarking Albrecht-Gaffney projects assuming
VRS and using a non-parametric frontier.  The dotted straight
line is the CRS frontier.  The broken line is the VRS frontier.

Next, proceeding from the univariate Albrecht-
Gaffney CSD data set to multivariate ERP projects, we
observe that univariate productivity models like
Equation 1 can not be used.  In Table 1, all the variables
{Users, Sites, Companies, etc.} define the output.  In
other words, this multivariate ERP output is analogous
to the univariate FP (or SLOC) output used in CSD
projects.  In this multivariate case, it seems reasonable
to construct a productivity model similar to Equation 4
(Note that it is still CRS rather than VRS, though):

P
a Y

b X

j j
j

n

k k
k

m= =

=

∑

∑
1

1

Equation 4: A multidimensional CRS productivity model

In Equation 4, aj and bk are weights reflecting the
relative importance of the different outputs and inputs,
respectively.  The normalised productivity can still be
defined in a way similar to Equation 2, i.e. P/PMAX.

We observe that although Equation 4 improves over
Equation 1 (and Equation 3) in that it allows for
multivariate productivity models, it still does not handle
VRS, but only CRS.  In this paper we therefore propose
to use DEA to measure productivity and benchmark
software projects (including ERP projects) because
DEA addresses multivariate CRS as well as multivariate
VRS productivity measurements.  In other words, DEA

tackles the problem of comparing projects of similar
size with each other in a normalised, multivariate space.

3. DATA ENVELOPMENT ANALYSIS

The initial publication on Data Envelopment
Analysis (DEA) method is credited to Charnes, Cooper
and Rhodes [18] handling CRS (constant returns to
scale), only.  Afriat [1] laid the foundations for VRS,
which later have been enhanced by several authors
including Banker, Charnes and Cooper [6] and Førsund
and Hjalmarson [21].

When performing DEA, the first step is to decide
whether to use a CRS or a VRS model since DEA gives
you the choice.  For software projects in general, and
ERP projects in particular, it is prudent (and it makes
sense, see the Introduction and Figure 1) to assume
VRS.  The VRS assumption is supported by e.g. Boehm
[13], Brooks [16] and Banker, Chang and Kemerer [5].
For example, the VRS assumption is explicitly stated in
cost models like COCOMO 1.0 and 2.0 [13][14] where
the exponent of the size variable is greater than one
(x=AyB, where B>1, x=Effort, A includes a selection of
cost drivers, and y=FP, SLOC, or object points).  Thus,
in software engineering and software cost estimation, it
is not controversial to assume that software projects
exhibit VRS.

Technically, there are two alternative algorithms to
calculate the VRS efficiency using DEA. (Using the
DEA terminology, we use the term efficiency in stead of
the term productivity.  In the paper, they are used as
synonyms.)  We may either use an input reducing
efficiency or alternatively an output increasing
efficiency measure.  These two measures are illustrated
in Figure 3 for project C where AB/AC and EC/ED are
the input decreasing and output increasing efficiencies,
respectively.  Both are reasonable approaches in the
context of software engineering.  We can either measure
how much less effort that could have been used to
produce the same amount of project output (keeping
project size constant), or alternatively, we can measure
how much more project output that could have been
produced with the same amount of effort (keeping
project effort constant).  In this paper we use the input
reducing efficiency measure to illustrate the DEA
method.
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Figure 4: Measuring VRS efficiency using either input reducing or output increasing measures.

Using project C as example, we attempt to find the
minimal effort required to produce the same amount of
output as C produces.  That is, we ask how much effort
it would take for a best practice project to produce just
as much output as C.  This minimal effort is the effort at
the point B, which is a linear combination of the two
frontier projects 21 and 22.  These latter are termed
reference projects.  Thus, the idea is to move
horizontally from C and towards the left until we hit the
line segment at B.  This is a minimisation problem,
which can be solved using linear programming.

The formal problem thus becomes to minimise the
objective function:

iE i= minθ (1)
subject to the constraints:

ij
j

kjY kiY kλ∑ ≥ ∀, (1.1)

i miX ij
j

mjX mθ λ≥ ∑ ∀, (1.2)

ij
j

λ∑ = 1 (1.3)

ij jλ ≥ ∀0, (1.4)

The constraint in (1.3) is the VRS constraint, and
furthermore:
• Ei - is the efficiency score for observation i
• θi – is the efficiency score variable to be

determined for observation i
• λi – are the weights to be determined for

observation i
• Xmi, Yki – are inputs and outputs of observation i - is

the current observation
• j - is all the other observations with which

observation i is compared
• m - is the number of inputs, in our case effort, only
• k - is the number of outputs, i.e. the

multidimensional size metric for the ERP projects

The technicalities for solving the DEA problem in a
computationally efficient manner on a computer is
beyond the scope of this paper and is thus not discussed
here.  The algorithmic issues in DEA are, however,
similar to the issues to consider in linear programming.

4. RELATED WORK

Banker and Kemerer [8] use DEA to test whether
software projects exhibit VRS and to identify the
optimal project size with respect to maximising
productivity.  They apply the DEA CRS model on eight
univariate (single input - single output) data sets,
including the Albrecht-Gaffney data set [2].   Regarding
the Albrecht-Gaffney data set, they find that the most
productive project is project 23 in Figure 1 (199
function points, 0.5 workmonths.  See Table 2).  The
merit of Banker and Kemerer is that they introduce
DEA in software engineering.

However, for this trivial univariate CRS case, we
observe that the same result could have been found with
simpler methods than DEA such as visual inspection of
the scatter plot in Figure 1 or by calculating all the
simple y/x ratios and then sorting them in a spreadsheet.

Banker, Chang and Kemerer’s paper [5] is an
extension of [8] employing the DEA-based F-test of
Banker and Chang to verify their previous results of
VRS in software projects.
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Banker, Datar and Kemerer [7] employ a variant of
basic DEA CRS that is extended in two orthogonal
directions.  The first extension is called Stochastic DEA
(SDEA).  SDEA is stochastic in the sense that in
addition to productivity related deviations, it also allows
for the impact of random errors.  The second extension
extends DEA to analyse the effects of several alleged
productivity factors such as using or not using «peer
reviews».  This doubly extended DEA model is used to
evaluate the effect of five productivity factors on 65
software maintenance projects.

The idea behind a stochastic DEA is conceptually
appealing, and we acknowledge Banker’s, Datar’s and
Kemerer’s work on this issue.  A stochastic DEA that
can incorporate random errors would certainly be
welcome by statisticians, and it would also improve our
faith in the results drawn from DEA.  Stochastic DEA
remains, however, a formidable challenge.  We do not
see how the problem of distinguishing model
specification errors and measurement errors from
inefficiency is solved in Banker et al.’s paper.
Concerning model specification errors, we still find it
more intuitive to perform a sensitivity analysis on the
model specification and study the effects on the frontier
as well as on the individual and average efficiency
scores.  Concerning measurement errors, we find it
more intuitive to remove one project at a time from the
frontier and again study the effects on the frontier as
well as on the individual and average efficiency scores.

Parkan, Lam and Hang [28] use DEA to measure the
performance of individual projects where DEA is used
as a part of an organisation’s reward structure. They
apply the VRS model on one data set with eight
projects.   The data set has four inputs and one output.
However, they have not commented on the fact that they
use a VRS model, and why.  With four inputs and only
eight projects, three out of the eight projects are
efficient.  The robustness of this result is not
commented.  Few projects and many dimensions will
result in too many projects being on the frontier, making
it meaningless to identify role models.

Below follows a summary of DEA papers in IT
areas other than software engineering.  We consider this
work as somewhat remotely related to software
engineering.  Nevertheless, we have included them to
provide a broader account of related work due to the
scarcity of work reported in software engineering.

Fisher and Sun [20] use DEA to evaluate the
individual performance of 22 e-mail packages using the
VRS model.  The data set has five inputs and four
outputs.   Using all inputs and outputs they find four
efficient e-mail packages.  One project is in the
reference set for all but two of the 22 packages.  Fisher
and Sun do not comment on the rationale for choosing a
VRS rather than a CRS model.  Also, they do not
comment on why one single package serves as reference
for almost all other packages, nor do they do a
sensitivity analysis by removing this package which

obviously is extreme in one or more of the output
dimensions.

Thore, Phillips, Ruefli and Yue [34] use DEA to
rank the efficiency of 44 U.S. computer companies
using six inputs and three outputs.  They find that 11
companies are efficient using both CRS and VRS
models.  The robustness of this result is not discussed.
Sensitivity analysis is not done.

Mahmood [24] uses DEA to evaluate organisational
efficiency of IT investments using a data set with 81
firms and eight inputs and ten outputs per firm.  The
results indicate that two-thirds of the firms are efficient.
It is not documented whether a CRS or a VRS model is
used.  However, using any of these two models, there
will likely be many firms on the frontier because of the
large number of dimensions.  The robustness of the
results is not discussed.  Mahmood also compares the
efficient group of firms with the non-efficient group
based on differences in means but without testing the
significance of these results.

Doyle and Green [19] use DEA to benchmark 22
microcomputers using one input and four outputs.  The
merit of their paper is in providing a good presentation
of DEA and a comparison of DEA with regression
analysis.

In summary, previous studies suffer from several
major flaws.
• They use DEA for univariate CRS data sets where

we have shown that simpler productivity models
(like Equation 1) could have been used.

• They use CRS models where a VRS model would
have been more appropriate.

• When using a VRS model in multivariate data sets,
it is applied to too small data sets compared to the
number of variables.  In such a case, the results are
not particularly informative as too many projects
will be on the DEA frontier.

• Sensitivity analysis is not a routine part of DEA
analysis in empirical software engineering papers.
Sensitivity analysis of outliers as well as of model
specification must be done when using DEA
because productivity comparisons, not limited to
DEA, are extremely sensitive to outliers and model
specification, in general.

• Last, but not least, the rationale for applying either
a CRS or a VRS model is not reported.

5. ERP DATA

The original data set used for this validation consists
of 48 completed ERP projects.  All the ERP projects in
the sample implement the same ERP software package,
SAP R/3, i.e. it is a homogeneous data set.  The data
have been gathered since 1990, and it is an ongoing
effort.  All the projects are industrial projects spanning
from 100 to 20.000 workdays, and there are ten output
factors.  All the ten variables in Table 1 are therefore
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candidate output metrics.  The obvious input metric is
Effort (not reported in Table 1).  These 11 (ten outputs,
one input) metrics constitute the intra-organisational
benchmarking standard1 in Accenture (formerly
Andersen Consulting).  A more detailed description and
explanation of these metrics is beyond the scope of this
paper since the main focus is on the DEA technique
rather than on the metrics. Readers interested in the
metrics are referred to [31][32].

 Table 1: Descriptive statistics for the ten ERP outputs
Variable  N  Mean Min Max

Users 48 346.5 7 2000
Sites 48 10.25 0 98
Plants 48 7.35 0 98
Companies 48 2.833 1 35
Interfaces 46 13.07 0 50
EDI 35 1.857 0 10
Conversions 37 18.38 1 93
Modifications 39 9.74 0 30
Reports 44 44.16 0 100
ModulNo 48 4.500 1 8

We observe that we have a relatively large number
of output factors (10) compared to the number of
projects (48).  In addition, there were missing values for
some of the observations.  Therefore, we had to reduce
the number of output factors, and at the same time use
variables giving us the largest possible sample.  We
primarily used expert knowledge to determine which of
the ten outputs to include in the model.  Best subset
regression analysis [11][25] was used to assist the
expert in this selection process.  We landed on a model
with three outputs (Users, EDI, Conversions) and one
input (Effort).  This resulted in a final usable data set of
30 observations.

There were no specialised units in the data set, i.e.
projects that e.g. have a high number of Users and zero
in EDI as well as Conversions.  (Specialised units will
tend to be on the front.)

6. RESULTS

In this section, we provide the results for the
Albrecht-Gaffney data set as well as for the ERP data
set.  We have included the Albrecht-Gaffney CSD data
set mostly because it is instructive to discuss the results
of the DEA method using a univariate data set, and a
data set that presumably is familiar to a software
engineering audience.  Also, it is interesting to compare
our VRS frontier results to Banker and Kemerer’s [8]
CRS frontier results since they also analysed the

                                                          
1 This is the standard as per 1997.  However, there is continuous

research to improve the metrics. The data have been reported in a
Lotus Notes repository by "knowledge champions" (project team
members responsible for contributing to knowledge management
within the firm.  There are several hundreds of them).  Also, they
have persons responsible for maintaining the repository, and the
repository is accessible from all over the world.

Albrecht-Gaffney data set.  Also, it is interesting to
compare the DEA measures with the more familiar
univariate, non-normalised, CRS productivity measure.
We have therefore reported three different productivity
measures:
• Univariate non-normalised CRS productivity (P)
• DEA CRS efficiency (ECRS)
• DEA VRS efficiency (EVRS)

6.1 Albrecht-Gaffney Results

Table 2: Efficiency results for Albrecht-Gaffney data set
Project ID Actual

Effort
Function

Points
P* ECRS EVRS

1 102.4 1750 17 0.04 0.83

2 105.2 1902 18 0.05 1

3 11.1 428 39 0.1 0.26

4 21.1 759 36 0.09 0.71

5 28.8 431 15 0.04 0.10

6 10 283 28 0.07 0.14

7 8 205 26 0.07 0.07

8 4.9 289 59 0.15 0.29

9 12.9 680 53 0.13 0.87

10 19 794 42 0.11 0.88

11 10.8 512 47 0.12 0.38

12 2.9 224 77 0.19 0.26

13 7.5 417 56 0.14 0.37

14 12 682 57 0.14 0.94

15 4.1 209 51 0.13 0.15

16 15.8 512 32 0.08 0.26

17 18.3 606 33 0.08 0.44

18 8.9 400 45 0.11 0.29

19 38.1 1235 32 0.08 1

20 61.2 1572 26 0.07 1

21 3.6 500 139 0.35 1

22 11.8 694 59 0.15 1

23 0.5 199 398 1 1

24 6.1 260 43 0.11 0.18

Mean 21.9 648 60 0.15 0.56

*) P = Function Points divided by Actual Effort.

In Table 2, we show the results of the three
productivity measures on the Albrecht-Gaffney data set.
Assuming that the software projects exhibit CRS, we
observe that the most productive project in the
Albrecht-Gaffney data set is project 23 (P=398).
Applying DEA CRS (i.e. a normalised CRS
productivity scale), we observe it is the only project that
is fully efficient (ECRS=1.0).  Project 23 is the same
project that Banker and Kemerer [8] found to be the
most efficient project.  They also used DEA CRS.  Still
assuming CRS, we further observe that the productivity
for project 23 largely exceeds any of the other projects.
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To assess the validity of this CRS result, it is necessary
to observe that this project is the smallest project in
terms of effort (0.5 PM) and functionality (199 FP).  In
terms of effort, project 23 is significantly smaller than
the next smallest project (project 12) which is almost
six times as large as project 23.  Therefore, it is not
unreasonable to deem project 23 an outlier and
therefore as not representative of a typical Albrecht-
Gaffney project.  In the univariate CRS case, outliers
like this project can easily be detected by scatter plots
(like Figure 2).  However, in the multivariate CRS (or
VRS) case, scatter plots are inapplicable, and one has to
use other techniques like sensitivity analysis to detect
such outliers and other sources of error.

Table 3: VRS reference set for Albrecht-Gaffney data set
Project ID 2 19 20 21 22 23

1 0.54 0 0.46 0 0 0

2 1 0 0 0 0 0

3 0 0 0 0.76 0 0.24

4 0 0.12 0 0 0.88 0

5 0 0 0 0.77 0 0.23

6 0 0 0 0.28 0 0.72

7 0 0 0 0.02 0 0.98

8 0 0 0 0.30 0 0.70

9 0 0 0 0.07 0.93 0

10 0 0.18 0 0 0.82 0

11 0 0 0 0.94 0.06 0

12 0 0 0 0.08 0 0.92

13 0 0 0 0.72 0 0.28

14 0 0 0 0.06 0.94 0

15 0 0 0 0.03 0 0.97

16 0 0 0 0.94 0.06 0

17 0 0 0 0.45 0.55 0

18 0 0 0 0.67 0 0.33

19 0 1 0 0 0 0

20 0 0 1 0 0 0

21 0 0 0 1 0 0

22 0 0 0 0 1 0

23 0 0 0 0 0 1

24 0 0 0 0.20 0 0.80

Next, assuming VRS rather than CRS, we find six
efficient projects (i.e. where EVRS=1) as opposed to one
for the CRS case (Table 2, column EVRS).  Among the
six efficient projects, two are at the very end of the
frontier, the smallest (project 23) and the largest
(project 2).  Examining the scatter plots (Figure 4), we
also observe that two other frontier projects (projects 19
and 20) do not have any other projects in their
neighbourhood and that the cluster of projects is
between 200 and 700 FP.  Only in this area are the
results reasonably robust.  Outside this area, the results
are less reliable.  That is, we should be more careful
concluding that the smallest project (23) or the largest

projects (19, 20 and 2) are fully efficient.  We also
observe that visual inspection of scatter plots still can be
used as a method to identify the VRS frontier for a
univariate data set.

The assumption of VRS seems justified by the
results of the average efficiency numbers of ECRS and
EVRS in Table 2.  It is more reasonable that the average
efficiency is around 60% than 15% for a group of
homogenous projects conducted by the same
organisation.  Also, a large project like project 2 was
highly inefficient when compared with the frontier line
determined by project 23 in the CRS model.  In the
VRS model, project 2 has become efficient.   The latter
result seems more reasonable although not robust since
there are too few observations above 20 PM.

Table 3 contains the VRS reference projects for
each project in the Albrecht-Gaffney data set.  (A
reference project always is selected among one of the
frontier projects.  Furthermore, in the VRS case a
reference project will always be an efficient project of
similar size to the project that references it).  The
column headings show the IDs of the six reference
projects, the same six projects that are VRS efficient
(EVRS=1.0) in Table 2 (projects 2, 19, 20, 21, 22 and
23).  Reading a row in Table 3, we can identify the
reference projects for a given project.  For example,
inspecting project 7, we find it has two projects in its
reference set: projects 21 and 23 (Table 3).  Especially,
we observe that project 23 is a more important reference
than project 21 (98% vs. 2%).  The figures in the cells
are weights indicating the relative importance of the
reference projects.  The practical benefit of this
information is that the project manager of project 7 can
identify which projects he ought to consult and probably
copy to improve his performance.   We also observe
that it is reasonable to compare project 7 against project
23 and project 21 since these three projects are of a
similar size (205 FP, 199 FP, 500 FP, respectively).

Finally, we also observe that for this univariate data
set, the reference projects could have been just as easily
identified by visual inspection of the scatter plot in
Figure 3 in stead of using DEA (but we would not have
obtained any quantitative efficiency scores, though).
Also, the weights could in principle have been
determined by measuring with a ruler on the scatter plot
diagram.

6.2 ERP results

The full potential of DEA first becomes apparent
when the inputs or outputs are multivariate and the
projects exhibit VRS.  For multivariate data sets, visual
inspections can no longer be used to detect the frontier,
and for VRS data sets, it is incorrect to use simple CRS
models to calculate efficiency scores.  Our ERP data set
is such a multivariate VRS data set having 10 outputs
(See Table 1).
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The average VRS efficiency (EMEAN), standard
deviation (SD), minimum VRS efficiency (EMIN) and the
number of efficient projects (NEFF) for Albrecht-
Gaffney and the ERP data set are shown in Table 4.  We
observe that the figures are almost identical for the two
data sets except that the ERP set has nine efficient
projects vs. six for Albrecht-Gaffney.  This is as we
would expect since there are more outputs for the ERP
data set than for the Albrecht-Gaffney data set (three
and one, respectively).

Table 4: Average efficiency results using DEA VRS
N EMEAN SD EMIN NEFF

Albrecht-Gaffney 24 0.56 0.36 0.07 6
ERP 30 0.56 0.36 0.06 9

From a process improvement perspective, these
average efficiency figures tell us that there is a potential
for improvement of such projects between 40 and 50%
compared with the "best-in-class" projects.

Table 5: VRS efficiency and reference set for ERP data set
ID EVRS 48 101 111 133 137 140 142 158 168

1 0.13 0.52 0 0.48 0 0 0 0 0 0

2 0.41 0 1 0 0 0 0 0 0 0

47 0.24 0.29 0 0.58 0 0 0 0.13 0 0

48 1 1 0 0 0 0 0 0 0 0

63 0.18 0.47 0 0.53 0 0 0 0 0 0

73 0.28 0.62 0 0.26 0 0 0 0.13 0 0

101 1 0 1 0 0 0 0 0 0 0

109 0.48 0.21 0 0 0 0.16 0.57 0 0 0.05

110 0.90 0.31 0 0.44 0 0 0 0.25 0 0

111 1 0 0 1 0 0 0 0 0 0

112 0.22 0.04 0.15 0 0 0 0 0 0 0.81

113 0.15 1 0 0 0 0 0 0 0 0

127 0.40 0.95 0 0 0 0 0 0 0 0.05

133 1 0 0 0 1 0 0 0 0 0

136 0.84 0 0.29 0 0.14 0.57 0 0 0 0

137 1 0 0 0 0 1 0 0 0 0

140 1 0 0 0 0 0 1 0 0 0

142 1 0 0 0 0 0 0 1 0 0

145 0.33 0.33 0 0 0 0 0 0 0 0.67

146 0.11 0.47 0 0.53 0 0 0 0 0 0

147 0.06 0.74 0 0.26 0 0 0 0 0 0

151 0.72 0 0 0 0.18 0.31 0 0 0 0.51

154 0.29 0.22 0 0.78 0 0 0 0 0 0

155 0.40 0.25 0 0 0 0 0 0.63 0 0.13

158 1 0 0 0 0 0 0 0 1 0

159 0.59 0.50 0 0 0 0 0 0.37 0 0.12

163 0.51 0 0 0 0 0 0 0.13 0.73 0.13

168 1 0 0 0 0 0 0 0 0 1

172 0.19 0.74 0 0.26 0 0 0 0 0 0

174 0.23 0.83 0 0.17 0 0 0 0 0 0

Table 5 shows the individual VRS efficiency scores
as well as the reference projects for each project in the
ERP data set.  Nine projects are fully efficient (EVRS=1).
We observe that in multivariate data sets an inefficient

project may have more than two projects in its reference
set.  For example, project 47 has three reference
projects (48, 111 and 142).

6.3 ERP results - Sensitivity analysis of outliers

DEA identifies best practice rather than the average
or say the best 10 %, which makes the technique very
sensitive to extreme observations.  It is, therefore,
necessary to do a sensitivity analysis of outliers.  There
are several techniques (e.g. superefficiency [3] and
analysis of reference units [36]) each with their
strengths and limitations depending on the purpose of
the DEA analysis.  The purpose of our DEA analysis is
twofold, first to identify best practice projects as well as
the reference projects for individual projects and
second, to determine the average efficiency of the ERP
projects to quantify the overall potential for productivity
improvement.  For this double purpose, the simplest,
and probably most reasonable sensitivity analysis is to
remove all the frontier projects one by one and study the
effect on the mean efficiency.  We may also study the
effect on the efficiency of a given project and the
stability of the frontier and the reference projects for
individual projects.  We concentrate on the first part,
presented in Table 6.  The other part should be fairly
obvious.

The ERP data set has nine units on the front.  We do
the sensitivity analysis by removing each of these nine
projects one at a time.   We observe that none of the
frontier projects are extreme, in the sense that their
removal hardly influences the average efficiency.  We
observe this by comparing EMEAN in Table 4 and Table
6.  That is, there still is a potential improvement of
around 40%.

Furthermore, it is useful to identify the most
influential reference units, i.e. those reference units, or
peers, that are referenced most.  This has a double
purpose.  First, it may be used to assess the robustness
of the frontier (An efficient project that is not
referenced at all must be in an area with few
observations, such as projects 19 and 20 in the
Albrecht-Gaffney data set).  Second, it may be used to
identify the most worthy role models (by distinguishing
the efficient projects that few or no projects reference
from those efficient projects that many projects
reference).  The projects that are referenced most are
more likely to be appropriate role models.

One method to quantify the degree of influence of
an efficient project is by computing the peer index [36].
The larger the data set and the number of reference
units, the more helpful this technique is as part of a
sensitivity analysis.  The peer index, ρ, is defined as
follows.
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j – is the peer index for reference unit j and input
m

• λij – is the determined weight for observation i with
respect to reference unit j

• Xmi – is the input m of observation i
• Xmi

p – is the potential input m of observation i, had
it been efficient, i.e. on the DEA frontier

• j - is the number of reference units
• m - is the number of inputs, in our case effort, only
• k - is the number of outputs, i.e. the multivariate size

metric for the ERP projects

It is beyond the scope of this paper to discuss the
technicalities of the general peer index formula.  For a
full account, see [36].

The idea behind the peer index is as follows in the
univariate case.  All the inefficient projects are
evaluated relative to two efficient projects.  Consider
e.g. project C in Figure 4.  The efficiency of this project
is assessed relative to the "virtual" project B.  The
"virtual" project B is as linear combination of the two
efficient projects 21 and 22.  Furthermore, assume that
project B is closer to 22 than to 21, say dividing the line
segment between 21 and 22 into a 40/60 ratio.  In this
case, project C contributes to increasing the peer index
of project 22 by 0.6 points and of project 21 by 0.4
points.  If there are many inefficient projects between
the line segment between projects 21 and 22, these two
latter projects will get a high peer index.  In other
words, projects 21 and 22 would be the role models (or
reference units in DEA terminology) for a large
percentage of the projects.  Oppositely, projects 2 and
20 in Figure 4 do have only one single project
referencing them, and project 19 has none, thus getting

a peer index of zero.  This also tells us that in the region
where we find projects 19, 20 and 2, there are few
observations and therefore, there is a smaller degree of
confidence in the frontier.  Now, in the univariate case
as in Figure 4, we do not really need the peer index to
draw these conclusions.  We could just as well examine
the scatter plot figure.  (However, we would not get
quantitative figures without the peer index).  The
usefulness of the peer index becomes evident for
multivariate data when figures such as Figure 4 are no
longer an option.

The ERP results in Figure 5 suggest that project 48
is an influential reference unit. (It is referenced by 37%
of the projects).  This confirms our results in Table 6
where we observe an increase in EMEAN from 0.56 (in
Table 4) to 0.61.  However, the frontier did not change
(i.e. no new projects appeared on the frontier) when
removing it.  Therefore, even though it is an influential
reference unit, we do not consider it an outlier that
should be removed.  From Table 6, we also observe that
EMEAN generally remains reasonably unchanged around
56% when removing one of the frontier projects at a
time.

The results in Figure 5 also reveals that project 133
is not an influential reference unit (It is referenced by
only 1% of the projects), telling us that there must be
few observations in this region.

Table 6: Results of sensitivity analysis of ERP data set
Project ID EMEAN New ID

48 0.61 None
101 0.54 None
111 0.55 None
133 0.56 151,136
137 0.54 None
140 0.54 None
142 0.55 None
158 0.54 None
168 0.59 145

Project ID – ID of removed project, EMEAN – mean of EVRS, New
ID - New projects on the frontier
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 48 (37,0%)

168 (15,0%)

158 ( 4,0%)
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133 ( 1,0%)

111 (16,0%)

101 ( 6,0%)

Peer indices

Figure 5: Pie chart of peer indices, ERP

6.4 ERP results - Sensitivity analysis of model
specification

The original model consisted of the three input
variables (Users, EDI, and Conversions).  The model
was determined based on expert judgement.  In this
model, we were in doubt whether to use EDI or
Interfaces as EDI is a kind of interface and also is
correlated with Interfaces.  Therefore, it seems
reasonable to do a sensitivity analysis of the model
specification by substituting Interfaces for EDI to check
if the front changes, and in case how much it changes,
and also check how much the average VRS efficiency
changes.

Table 7 shows the results using the modified model,
i.e. output={Users, Interfaces, Conversions}.  The
EMEAN of the modified model is 0.50 which is fairly
close to the average value in the original model which is
0.56 (see Table 4).  We also observe that the front has
changed to some degree.  There are now 8 projects on
the front vs. 9 in the original model.  Projects 137, 142
and 158 are no longer on the front, and the latter two
have got a very low efficiency.  Newcomers on the front
are projects 127 and 172.

Table 7: VRS efficiency for modified model
Proj

ect
ID

EVRS

1 0.15

2 0.41

47 0.28

48 1

63 0.27

73 0.18

101 1

109 0.08

110 0.35

111 1

112 0.22

113 0.15

127 1

133 1

136 0.78

137 0.78

140 1

142 0.14

145 0.33

146 0.11

147 0.06

151 0.95

154 0.77

155 0.08

158 0.23

159 0.11

163 0.16

168 1

172 1

174 0.35

More important, when we inspect the front, we
observe that six of the most influential peers remain
efficient in both models.  We therefore conclude that
there is enough stability in our results to claim that the
study has revealed that these six projects are truly
efficient projects and therefore appropriate role models
that are worthwhile being studied by project managers
of other, less efficient, projects.

It is comforting to a practitioner that DEA is in good
agreement with expert opinion in selecting the role
models.  Prior to this DEA analysis, we knew that
project 48 stood out as a particularly successful project.
In fact, this project, which implemented an ERP system
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in the healthcare industry, was deemed a role model
long before we identified it using DEA.  The
implementation process of this project has been widely
studied and reported within the organisation from which
this data is extracted.  As we observe from Figure 6, this
project stands out in the DEA analysis as well since
almost half of the projects (37%) have this as one of
their reference units.

The expert evaluation of project 48 as a role model
is based, we believe, on rather simple observations: it
implemented a lot of SAP modules, and several
interfaces and conversions, for many users with
relatively little effort and short duration. The expert
evaluation is, we believe, therefore similar to an
informal application of a multivariate productivity
model.  DEA only formalises and makes explicit the
expert judgement and provides quantitative figures
rather than qualitative expert assessments.

We have not personally checked what project 48 did
differently, but from our own experience as an ERP
project manager (One of the authors is an experienced
ERP project manager) we can propose an educated
guess.  We think project 48 adapted a different strategy
to requirements specification: "work smarter, not
harder".  In stead of asking the users what they needed

(by gathering requirements in the usual manner), they
were proactive and simply convinced the users: "This is
what you need" and rolled out a preconfigured SAP
solution.  This strategy has later been incorporated in
the Accelerated SAP (ASAP) methodology to speed
delivery of SAP implementations.  (ASAP did not exist
in the early 1990'ies when most of these projects were
conducted adopting a traditional waterfall model).  This
approach works when the consultant has a lot of
authority and knows the business domain as well as the
SAP functionality well.  The analogy with traditional
software projects is as follows.  The usual software
methodology is a waterfall like model: specify
requirements by asking the user, analyse requirements,
then design, code, test and deploy the system.  A
different methodology would be as follows: present an
existing solution to the users, then convince the users
that this is what they need, train them and deploy.
Actually, this is no different from what Microsoft does
with their Office suite: First, develop what you think the
users need.  Next, persuade the users that Office is
exactly what they need.  Whatever you do, do not ask
ten million users what they need.  It would just drive
you crazy reconciling all the diverse requirements.

 48 (47,3%)

172 ( 4,2%)

168 (10,5%)

140 ( 0,3%)

133 ( 3,2%)
127 (18,3%)

111 ( 4,7%)

101 (11,5%)

Peer indices

Figure 6: Peer indices of modified model, ERP

6.5 ERP results - Hypothesis testing

Apart from telling us how much room there is for
productivity improvement, average figures of DEA
results (such as in Table 4) may be used to identify what
characterises the most efficient projects.  This can be
used to test hypotheses about the alleged superiority of
a certain technology or a certain process improvement
technique. For example, one can test whether a certain
programming language or a database product or a
process technique such as peer reviews improves
efficiency or not.

We illustrate the hypothesis testing technique used

in conjunction with DEA by investigating whether or
not the average efficiency varies with industry.  (This is
probably not the most exciting hypothesis to state.
Since the purpose, however, merely is to illustrate
hypothesis testing in conjunction with DEA, it will do.)
If efficiency varies with industry, it might be unfair and
unreasonable to compare the productivity across
industries for evaluation purposes.  On the other hand,
this information may be used to discover what ERP
projects in a certain industry have in common that
apparently make them more efficient.  The industries in
our sample are shown in Table 8.



14

Discussion Paper 4/2002  Norwegian School of Management BI
ISSN: 0807-3406 Department of Leadership and Organizational

Management/Department of Economics
                www.bi.no

Table 8: Average VRS efficiency per industry in ERP data
set

Industry N Mean Median
Manufacturing 11 0.56 0.51
Energy 3 0.46 0.19
Process 7 0.36 0.28
Consumer 7 0.79 0.9
Unclassified 2 0.57 --

The preliminary results in Table 8 suggest that
projects in the Consumer industry are the most efficient
(EVRS= 0.79) and that projects in the Process industry
are the least efficient (EVRS= 0.36).  The significance
tests in

Table 9 confirm the preliminary result that the
Consumer industry is more efficient than the other
industries combined.  We have used analysis of the
variance (ANOVA) of the mean and Mann-Whitney of
the median.  Both tests are significant at the 5% level.

A problem with hypothesis testing with the DEA
measures is the fact that the distributions are truncated
(at 1).  ANOVA assumes a normal distribution and is
therefore not completely correct, and the results from
ANOVA should therefore be treated with care.  Mann-
Whitney does not have any such requirement
concerning the distribution and is therefore more suited
in this case.  A third alternative is a DEA adjusted F-test
developed by Banker [4].  This test, however, requires a
large number of observations in the sample.  Still
another alternative for hypothesis testing would be to
use Tobit regression analysis [35] that handles truncated
distributions such as the DEA efficiency scores that are
truncated at 1.

The significance tests in Table 10 confirm the
preliminary result that the Process industry is
significantly less efficient than the other industries
combined.  Process industry projects should therefore
be compared with projects from other industries with
caution.

Of course, the point with this investigation is not to
encourage everybody to leave the Process industry and
join the Consumer industry if you are into SAP
implementations.  The point is to show that one must
exercise much care to avoid unfair and meaningless
productivity comparisons.  We have already
demonstrated that it is meaningless to compare the
productivity of a small project with a large project
provided software projects assume VRS.  This latter
result also suggests that it may be unfair to compare the
productivity of SAP projects across industries if the
productivity measurements are used e.g. as a basis for
compensation schemes.  In short, one must control for
as many factors as possible to ensure valid productivity
comparisons and infer correct conclusions.

Table 9: Efficiency of Consumer industry vs. the others
using ANOVA and Mann-Whitney significance tests

Industry ANOVA Mann-Whitney

Mean Median
Consumers 0.79 0.9
The Others 0.48 0.33
Significance level of
difference

0.04 0.03

Table 10: Efficiency of Process industry vs. the others
using ANOVA and Mann-Whitney significance tests

Industry ANOVA
Mean

Mann-Whitney
Median

Process 0.35 0.28
The Others 0.62 0.59
Significance level of
difference

0.09 0.05

7. DISCUSSION

There are a number of assumptions underlying
performance and productivity models like DEA and
univariate CRS models.  Most of the assumptions are
general and apply to any performance and productivity
model.  Only a few assumptions are particular to DEA.
We find it important to differentiate between general
assumptions underlying all kinds of productivity models
and assumptions that are specific to DEA.  If one does
not differentiate between the assumptions underlying all
productivity measurements and the assumptions specific
to DEA, one runs the risk of unjustly criticising DEA
for making unrealistic assumptions and hence reject the
use of DEA on false grounds.

We argue in this section that the major objections
one may raise against assumptions underlying
productivity measurements of individual observations
actually concern assumptions made by all productivity
models, not limited to DEA.  This includes the simple
univariate CRS models that are widely applied in
software engineering and against which we have hardly
seen any critique raised in software engineering studies
on productivity regarding their underlying assumptions.

We therefore present the most important
assumptions underlying productivity measurements and
discuss the extent to which these assumptions are valid
in software engineering.

7.1 Performance and productivity

It is hard to find appropriate performance
indicators, and it may ultimately entail comparing
apples and pears.  Measuring performance is a difficult
task.  Ideally, performance assessments should include
productivity indicators as well as quality indicators, and
it should also take other external factors into account
such as schedule constraints.  (It is well established that
projects with compressed schedules require more effort
to produce the same amount of software [13][16].)  In
practice, it is, unfortunately, often too difficult to assess
projects based on combined productivity and quality
measures because it requires comparing apples and
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pears.  For example, assume that project A produces
100 function points per personmonth and has 10 defects
per 1000 lines of code.  Next, assume that another
project B produces 200 function points per
personmonth and has 20 defects per 1000 lines of code.
Obviously, B has higher productivity but lower quality
than A.  Which project rates highest in overall
performance?  The answer generally is: "Don't know",
unfortunately.

The pragmatic answer to this problem is to simplify
the measuring task by measuring the productivity, only,
and use the productivity measures as indicators of
project performance acknowledging that productivity
assessments do not tell the whole story.  Productivity
comparisons may be quite unfair unless one takes
precautions to ensure that the projects to compare are
reasonably equal and homogeneous in the other
dimensions such as quality.

It is hard to find appropriate productivity
indicators, too.  So, performance comparisons are
difficult.  Does that mean that the problem is solved if
we restrict ourselves to comparing productivity rather
than overall performance?  Unfortunately, the answer is
a partial "no".  Consider projects A and B once more.
Assume A produces 100 FP per PM and B produces
200.  Is B more productive than A?  The answer is: "It
depends".  If one believes that the number of FP per PM
is a fair indicator of productivity, B is twice as
productive as A.  However, let us assume that project A
had to develop the technical infrastructure first whereas
project B has the technical infrastructure in place and
can focus on producing functionality from day one.
Would we still consider B as the most productive
project, and would the number of FP per PM be a
reasonable and just indicator of comparison?  Not
necessarily.

We summarise the performance and productivity
issues as follows.  First, we resort to productivity
comparisons as a substitute for performance
comparisons because the latter often may require
comparing apples and pears and is too difficult to carry
out.  This simplification entails the implicit assumption
that productivity and performance are reasonably
correlated, an assumption that does not always hold
completely in software engineering.  Second, we use
productivity indicators that are easy to collect and
count, such as function points and effort (or multivariate
outputs like Users, Sites, etc. for ERP projects),
assuming that these indicators are valid measures for
productivity comparisons of individual software
projects.  This assumption does not always hold either.

We would like to repeat that these objections are
general to all productivity models and not an objection
against DEA, only.  Specifically, it should be observed
that the choice of appropriate productivity indicators
such as FP or Users, Sites, etc. is not linked with
whether or not DEA is used.  DEA just enables you to
apply multivariate productivity indicators.

7.2 General assumptions of productivity
measurements

Productivity models aimed at comparing individual
units (individual projects or individual programmers)
have to be non-stochastic, or deterministic. DEA is
incorrectly criticised because it is a deterministic model
as opposed to stochastic models like regression analysis
that allow for random errors.  In the following, we argue
that determinism is not particular to DEA but rather is a
property of productivity models in general.   In
particular, univariate CRS models like Equation 1 also
are deterministic.  Consider the simple and widely
applied univariate CRS productivity model in Equation
1 (e.g. y=FP, x=effort).  Assume project A has x=100,
y=100, and project B has x=100, y=200.  The
productivity of A and B is P=1 and P=2, respectively.
If you state that B is twice as productive as A, one
implicitly assumes that there are no random errors, i.e.
that there are no model errors and no measurement
errors.  That is, you assume that the model is correct i.e.
that FP is an appropriate indicator of software project
output, and actual effort is an appropriate indicator of
project input, and furthermore, that there are no
counting errors of FP or effort.  All the studies
comparing the productivity of individual projects, or
individual programmers, that we are aware of in
software engineering have implicitly assumed a
deterministic model. Otherwise, one could not have
concluded that project B is more productive than
project A, or benchmark an individual project (like e.g.
[10][26][15] do), or in other studies, conclude that
programmer X is more productive than programmer Y
(like e.g. [29][17] do).

This is very different from traditional statistical
methods like regression analysis that make the opposite
assumption.  Statistical, stochastic techniques are
applicable when comparing samples, not individuals.  In
regression analysis, the stochastic error term is included
to account for everything that is imperfect such as
model errors (e.g. that FP does not account adequately
for project output) and measurement errors (e.g. that FP
counts are inaccurate).  Productivity differences are
likewise embedded in the stochastic error term.  Thus,
in a stochastic model like regression analysis, it is
impossible to distinguish model and measurement errors
from true productivity differences.  They are all put in
the same basket, the stochastic error component.

Acknowledging that productivity models like
Equation 1 are deterministic, it is legitimate to ask how
valid a deterministic assumption is for productivity
assessments of individual software projects.

Measurement errors.  We certainly know that there
are measurement errors in FP counts.  See e.g.
Kemerer's study [23].  In addition, from personal
experience we know there are measurement errors in
effort reporting, too.  Project members report time
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differently, and project managers manipulate effort
reports to fit the budget.  No studies similar to
Kemerer's exist for ERP projects. Thus, we do not know
the extent of measurement errors for the multivariate
project output metric (Users, EDI, Interfaces,
Conversions, etc.)

Model errors.  We also know there are model errors
in univariate CRS software productivity models like
Equation 1.  FP counts do not account appropriately for
e.g. technical infrastructure development, compressed
schedules and quality.  Some projects do a lot of
technical infrastructure work whereas other projects
start with an existing technical infrastructure and can
concentrate on producing functionality.  Some software
projects have severe schedule constraints and strict
quality requirements (usability, MTBF, response time)
whereas other projects have relaxed schedule and
quality requirements.

As for ERP projects, there probably are smaller
model errors than for CSD projects.  First, ERP projects
are more homogeneous than CSD projects in general.
The user interface is given and constant (i.e. same
usability), the MTBF is given and constant (since it is
the same software package) and response time is given
(to improve it, the usual solution is to purchase more
hardware, rather than reprogram the software package).
In addition, in the company Accenture (from where the
ERP data originate), a standard methodology is
employed for ERP projects implementing the SAP
software package.  Therefore, time reports are
presumably more homogeneous than we would
generally find in software data sets coming from diverse
companies.

Regarding the three output measures (Users, EDI,
Conversions) used for ERP projects in this study, we
believe that they are at least as appropriate productivity
indicators as FP is for the broad class of CSD projects.
These ERP output indicators are certainly not perfect.
For example, let us assume that the users in project A
are hostile to the proposed business process
reengineering (BPR) that is part of any ERP project
whereas the users in project B are not.  If this is the
case, project A will appear less productive than project
B based on counts of Users, Sites, Interfaces,
Conversions, Modules, etc., since this "degree-of
hostility-to-BPR" factor is not entered explicitly in the
model.  In this case, the productivity comparison will be
unfair, and we run the risk of identifying only lucky
projects (with a high "friendly-to-BPR" factor) as role
models.

The wisdom to draw from this discussion is that
productivity benchmarks ought not to be used
uncritically in, say, compensation schemes.  Still,
productivity measurements might add value by assisting
us in identifying role model projects that other project
managers may want to take a closer look at.
Nevertheless, we observe that it is difficult to be certain
that we have found a deserving role model and not just a

lucky fluke due to model or measurement error.
So, we may ask, what is the alternative when facing

a complicated world and there only exist simplistic,
imperfect models of this complex world?  One solution
is to strive to improve the models.  We may define more
rigorous counting rules so as to reduce measurement
errors, and we may identify more and better
performance and productivity indicators so as to reduce
model errors.  We may also strive to ensure that the
projects we compare are reasonably homogeneous in the
dimensions that are not explicitly entered into the model
(e.g. quality, schedule constraints, inclusion of other
products such as technical infrastructure).

Another, less attractive alternative is to give up, i.e.
to refuse to measure productivity on the grounds that
productivity measurements are imperfect and thus that
productivity comparisons might be unfair.  Yet another,
apparently more attractive alternative is to account for
stochastics in productivity models such as SDEA aims
at.  However, to do that one must be able to separate
productivity from other components of the stochastic
error term.  Still another alternative is to perform more
controlled experiments where one has better control
over all the other external factors so that one may more
rightly assume that a deterministic model is valid.  In
such a case, you rule out data from real world projects
as a source of information and learning.  Also,
customers require productivity benchmarks from real
projects, not from controlled experiments.  Therefore,
productivity assessments of controlled experiments can
complement, but not replace, productivity assessments
of real projects.

Productivity comparisons assume that there is a
benchmark against which to compare project
productivity.  Consider the case of projects A and B
above where P=1 and P=2, respectively.  If we state that
A is half as productive as B, we have implicitly used the
productivity of B as a reference, or best practice
frontier, benchmark.  Another alternative is to compute
the average productivity of the projects and use this
average as the benchmark.  Yet another alternative is to
use a theoretically based benchmark.  This is done in
other disciplines, e.g. economics.  This alternative does
not seem viable in software engineering since theories
regarding the theoretical maximum project productivity
are non-existent.

Productivity techniques generally assume that we
know the correct variables.  Unlike e.g. stepwise and
best subset regression analysis, productivity techniques
like DEA do not assist us in selecting the most
important variables based on some goodness of fit
criterion.  Rather, one must rely on a hypothesis or a
theory to select variables.  In practice, a pragmatic
approach must be adopted in software engineering.  We
measure the things that are measurable and use them as
indicators.  For example, we measure the amount of
software functionality by counting FP since it is
countable, but we do not have good indicators to
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account for the amount of technical infrastructure
development, so we simply leave it out of the model.
For ERP projects it is no different.  It is easy to count
the number of Users, Sites, EDI, Interfaces and
Conversions compared to measuring "user hostility to
business process reengineering".

For the productivity comparisons of this ERP data
set, we used a subset of the outputs available.  There
were ten measures, and we used only three in the DEA
model.  This assumes that the three variables selected
are correlated with the others.  Generally, this
assumption is valid for ERP projects.  A project with
many Users usually also produces many Reports,
Modules, etc.   Of course, there are exceptions to the
rule.  We selected the three variables based on expert
knowledge.  (One of the authors is an experienced ERP
project manger).  He was also supported by best subset
regression analysis.1   We therefore believe that this
assumption is reasonably valid.

VRS productivity models based on comparisons
with observed best practice assume that observed best
practice projects are representative role models and not
just some extreme outliers.   This assumption can be
tested as we have done with sensitivity analysis.  Using
DEA, we can in addition justify this assumption by
recourse to techniques such as the peer index that assist
us in identifying robust parts of the frontier from less
robust, "thin" parts of the frontier.

7.3 DEA specific assumptions

Multivariate data.  DEA does in fact not make many
specific assumptions other than an assumption about
how to handle multivariate cases.  DEA proposes a
method of obtaining a single productivity score for
multivariate cases.  The alternative would be to use a
series of simple y/x ratios e.g. Users/Effort, EDI/Effort
and Conversions/Effort.  In some cases, this is an
alternative method, and in other cases one runs into
difficulties when adopting this latter method.  Consider
the projects A and B in Table 11.  For A, we have that
Users/Effort=1 and EDI/Effort=0.2.  For B, the figures
are Users/Effort=2 and EDI/Effort=0.1.  Therefore, A is
most productive in Users and B in EDI.  Which project
is overall most productive, A or B?  DEA offers a
solution to this problem by creating a single efficiency
or productivity score (in stead of three ratios).  DEA
makes one assumption in doing this.  It assumes that all

                                                          
1 Best Subsets is an efficient way to select a group of

"best subsets" for further analysis by selecting the
smallest subset that fulfils certain statistical criteria. The
subset model may actually estimate the regression
coefficients and predict future responses with smaller
variance than the full model using all predictors.
Berenson and Levine [11] explain the approach and
how to perform it in Minitab.

dimensions have equal weight in normalised space.
This is an assumption made by many other multivariate
measures e.g. multivariate euclidean distance as
implemented in the estimation by analogy tool ANGEL
[30].

Table 11. Example of ERP projects
Proj ID Effort Users EDI Conversion
A 1000 1000 200 100
B 1000 2000 100 100
C 1 1 1 1

Returns to scale.  The DEA CRS model assumes
constant returns to scale just as simple productivity
models like Equation 1.  Therefore, the DEA CRS is no
different from Equation 1 in this respect.  It differs from
Equation 1 in that it handles multivariate productivity
indicators, only.  Unlike DEA CRS and the CRS model
in Equation 1, the DEA VRS model assumes variable
returns to scale.  The latter assumption seems more
appropriate for ERP projects, and many software data
sets exhibit VRS properties.  This includes the
COCOMO as well as the Albrecht-Gaffney data sets.
Consider again projects A, B and C in Table 11.  A and
B have equal effort.  In this case, it seems justified to
compare them in a CRS scheme. Next, consider A and
C in the User dimension only.  Both have the same CRS
productivity (P=y/x=1).  Using a univariate CRS
productivity model, they would therefore be rated as
equally productive.  Is the CRS model a fair model for
comparison in this case?  Probably not.  Project A likely
is a multi-person project whereas project C is a single-
person project.  Therefore, A incurs a lot more overhead
costs in coordinating team members and resolving
conflicts of interest among the users.  Thus, it seems
more reasonable to conclude that A is in fact a lot more
productive than C.   Therefore, the CRS model is an
invalid model when it comes to comparing the
productivity of small and large projects.  Still, the
(univariate) CRS model is widely applied in software
engineering studies without any consideration for scale
(See e.g.[12] [15][22] [26][9]).  DEA VRS seems a
much more correct and reasonable model than a CRS
model when the data set includes small as well as large
projects.

7.4 Other considerations

Multivariate DEA VRS.  In the multivariate DEA
VRS case, we require that the number of observations is
much larger than the number of variables and that there
are not too many specialised units.  A considerable
number of observations are characterised as efficient
unless the sum of the number of inputs and outputs is
small relative to the number of observations.
Specialised units will typically be on the frontier.  For
example, an ERP project that delivers Conversions,
only, will probably produce more Conversions than any
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of the other projects that deliver both EDI, Interfaces
and Conversions, and therefore this atypical project will
be deemed efficient by DEA.  In our study none of the
projects had such characteristics.

Distribution of efficiency measures. The output from
DEA, the efficiency measures, do not have a normal
distribution that lends itself to simple statistical analysis
since the distribution is truncated at 1.  There are,
however, more advanced techniques that may be used
such as e.g. Tobit regression analysis [35].

Weighting of the dimensions.  As with most other
multidimensional measures, DEA does not solve the
problem of weighting the dimensions.  All the
dimensions are normalised, i.e. they have equal weights.
It should be observed that FP suffer from similar
problems since the  weights of the individual counts
(e.g. external inputs, outputs, files) were fixed based on
analysing one single data set.  As opposed to this crude
approach, a statistical technique like, say, regression
analysis is more sophisticated in that it provides a
technique to weight the dimensions (by providing the
sample regression coefficients).

On proving VRS.  DEA VRS handles variable
returns to scale but one should be cautious in using it to
prove the data are VRS.  DEA handles CRS as well as
VRS cases.  However, if there are large random errors,
one may wrongly conclude that the data are VRS when
in fact they are CRS since DEA assumes there are no
random errors.  Therefore, it may be dangerous to use a
VRS productivity model (like DEA VRS) to prove the
existence of (dis)economies of scale such as Banker et
al. do [8].  However, if one has a priori knowledge or a
hypothesis stating that the data exhibit VRS (or
(dis)economies of scale), DEA may be used as an
indicator of the plausibility of this hypothesis.

8. CONCLUSIONS

The conclusions in this paper are of two kinds: i)
conclusions on the results of the empirical study and ii)
conclusions on the usefulness of DEA.

As for the results, we have identified six projects
that appear to be important role models, thus deserving
to be studied as part of a software process improvement
initiative.  These six projects remain stable on the front
across different model specifications.  The results
further suggest that the average efficiency is
approximately 50%.  Consequently, there seems to be a
substantial improvement potential compared with the
“best in class” projects.  Thus, it would seem beneficial
to identify the common denominators of the process
followed by these best practice projects and update the
project methodology accordingly.

The results of the hypothesis testing suggest that
there are significant differences in productivity between
projects in different industries.  If this is the case, one
should exhibit caution when benchmarking across

industries.
The results do not contradict the findings of Banker

et al. [8] and Boehm [13] that software projects exhibit
VRS.  Indeed, ERP projects seem to exhibit similar
characteristics.  Thus, it seems appropriate to use a VRS
model rather than a CRS model also for ERP projects.

Regarding the usefulness of DEA, we conclude that
it is a pragmatic, useful method for productivity
assessments of individual software projects because it
enables us to compare apples with apples and pears with
pears.   Our recommendations regarding the use of DEA
versus the commonly used univariate CRS productivity
models are as follows.

Use DEA VRS if the data set includes both small
and large projects.  Unlike univariate CRS models (e.g.
FP per PM), the DEA VRS model enables us to perform
meaningful productivity comparisons between small and
large projects by comparing small projects with small
projects and large projects with large projects.  The
DEA VRS model therefore better assists us in
identifying best practice projects in data sets where the
projects span from small to large projects.  Using a CRS
model, we would not be able to discover all the projects
deserving to be considered as potential role models.
Worse, we might wrongly deem the smallest project as
the most productive.  (We believe it would not be very
instructive to scrutinise a small one-person, one-month
project in order to understand how to improve a 100-
person, 5-year megaproject.)

Use DEA (CRS or VRS) if the data set contains
multivariate input or output indicators.  Unlike simple
univariate CRS models (e.g. FP per PM), the DEA
model provides a single productivity (or efficiency)
measure in the multivariate case.  It is therefore more
appropriate than univariate models in the context of
ERP projects since the output indicator from ERP
projects is multivariate.

Also, DEA is appealing to a software practitioner
because it uses the best practice frontier as a benchmark
rather than some theoretical baseline.  In software
engineering, it seems sensible to compare the
productivity with best practice rather than with some
theoretical optimal (and probably non-attainable)
productivity.

Finally, this study suggests that DEA used together
with methods for hypothesis testing may be a useful
technique for assessing the effect of alleged process
improvements.

There are no serious objections to be made against
DEA.  The objections regarding its deterministic nature
are general to productivity measurements and
comparisons of individual observations and not
particular to DEA.  Therefore, whenever one performs
productivity comparisons of individuals, one needs to
exercise some caution and be somewhat sceptical to the
results.  Still, we recommend that productivity
measurements and comparisons are made in software
engineering, and we recommend that DEA VRS is
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adopted as the default productivity model, and that it
replaces the commonly used univariate CRS models.
To our knowledge, the univariate CRS model is
currently the only model used in software engineering
studies of productivity.

To summarise, productivity measurements are
required to identify role models and best practice
projects and to provide rough benchmarks and average
efficiency scores.  We recommend that productivity
measurements are performed provided that certain
guidelines are obeyed.  First, the model must be fair, i.e.
that the input and output indicators are carefully
selected, and exogeneous factors are controlled for (to
the extent possible).  Second, we must have confidence
that the measurement errors are small.  Third,
appropriate sensitivity analyses must be done.  Fourth,
productivity measurements should be used mainly to
assist in identifying the best projects but not as the sole
basis for compensation schemes or bombastic
conclusions as to which project is deemed best.
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