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Abstract 
The correspondence principle suggests a link between asymptotic stability properties of equi-
libria of economic models and the equilibrium response to data that describe the model or the 
model environment. However, this link has been impaired by a logical-mathematical defi-
ciency. This paper, by introducing a conceptual requirement of (local) structural stability as 
part of the principle hypotheses, rectifies the relation between qualitative properties of equi-
libria and the analysis of variations. Two related examples are given. The first completes 
Dierkers’ proof of a unique equilibrium in regular Arrow–Debreu economies, where all price 
systems are locally stable relative to a tâtonnement process. The second validates linear ap-
proximation analysis of deterministic continuous time rational expectation models. The pa-
per’s focus on local analysis makes it possible to handle potentially difficult problems in a 
straightforward manner. 
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The Correspondence Principle and Structural Stability in  
Non-Maximum Systems 

 
[...] James Clerk Maxwell applied stability theory to the study of the 
rings of planet Saturn. He decided that they must be composed by 
many small separate bodies, rather than being solid or fluid, for 
only in the former case are there stable solutions of the equations of 
motions. He discovered that while solid or fluid rings were mathe-
matically possible, the slightest perturbation would destroy their 
configuration. (Hirsch & Smale [1974], p. 191.) 

 

Economic theory has developed tools for the study of equilibria in various environments. 

While arguably the core results of these studies have to do with what could be described as 

intrinsic qualities of equilibria (existence, determinacy, efficiency etc.), a systematic analysis 

of variations, that is, how the set of equilibria responds to changes in parts of the environ-

ment, is also important. Samuelson [1941,1942,1947] envisioned a link between the two 

fields of study in what he termed the correspondence principle (CP). In non-maximum sys-

tems, the principle roughly amounts to saying that if one studies a phenomenon that can be 

assumed to be stable, then this information can be used in analyzing comparative statical and 

(possibly) a limiting form of comparative dynamical properties of equilibria.1 

 

However, the fascinating CP has been impaired by a mathematical-logical deficiency: condi-

tions imposed from dynamical considerations are only sufficient, not necessary, for the as-

sumed stability property. This incongruity mirrors the inference problems regarding the dy-

namics of a non-linear system from its linearization around a stationary point. 

 

The CP only uses information about the initial equilibrium when analyzing changes in  

parameters or exogenous variables. I argue that the application of the CP presupposes that the 

perturbed equilibrium is of the same “kind” as the initial one (for instance that a locally  

asymptotically stable equilibrium remains so). A precise formulation of this idea requires that 

                                                 
1 Velupillai [1973] attributes the first (implicit) formulation of the correspondence principle in economics to 
Hicks (Hicks [1939] p. 62) and traces its origin to fundamental work in theoretical physics, in particular to Niels 
Bohr. 

I will not comment on the CP with respect to the other branch of application, notably where the equilib-
rium conditions are (or can be reduced to) first order conditions for a parameterized optimization problem. In 
this class of situations, the interplay with second order conditions takes the place of stability conditions. 
Malliaris & Broch [1989] gives a comprehensive treatment in an optimal control framework. 
 In systems where the dynamics can be represented in a one-dimensional phase space, a particularily 
powerful global approach can be taken to the CP, see Bhagwati, Brecher & Hatta [1987] (see also the reference 
to Echenrique in note 5 below). 
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a notion of qualitative invariance and an allowable class of perturbations are defined. They 

lead to the concept of structural stability (SS), and in particular to local structural stability 

(LSS). I include LSS as a part of the CP hypotheses and thereby reexamine the relation 

between variations and the qualitative structure of equilibria.2 

 

The application of the fundamental conceptual requirement of LSS resurrects the CP and 

yields results relevant to the analysis of models in general. I give two examples that are re-

lated to the CP. The first completes Dierker’s proof of uniqueness of Walrasian equilibrium in 

regular Arrow–Debreu-economies that have asymptotically stable equilibria with respect to 

the tâtonnement process (Dierker [1972], Theorem 2). The second validates linear approxi-

mation analysis of deterministic continuous time rational expectations models, where a con-

ditional asymptotic stability notion is part of the solution concept. 

 

There are some technicalities involved in the definition of SS. However, by focusing on local 

analysis around fixed points, rather than working in an equilibrium correspondence frame-

work and global properties of flows, this paper deals with potentially difficult material in a 

straightforward way. 

 

The paper is organized as follows: Section 1 sets the scene for the CP and explains the various 

situations where it has been applied. Section 2 motivates the (L)SS requirement and provides 

the necessary mathematical terminology and definitions. Section 3 is on the resurrection of 

the CP. Section 4 is on Walrasian equilibria, and Section 5 on the analysis of forward looking 

models. Section 6 concludes. 

1. The Correspondence Principle 

I assume initially existence of a finite-dimensional vector of parameters or exogenous vari-

ables µ  in some (open) subset M of lR , and that the model world is described by a system of 

equations 0);( =µxf . Here, : nf X M× → R , and X – the set of conceivable states – is some 

(open) subset of nR . The equilibrium set E, 

 

                                                 
2 Fuchs [1975] is, to the best of my knowledge, the first to formally introduce the notion of SS to economic 
theory. He calls SS a “consistency requirement” for dynamical models and provides a link between certain con-
tinuity assumptions and sufficiency theorems for structural stability, including typicality results. The present 
paper focuses on continuous time evolution and assumes a simple necessary condition for SS that is necessary 
and sufficient for LSS (a “global” sufficiency result is reported in Sec. 4). 
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(1) { }( ) ( ; ) 0E x X f xµ µ= ∈ = , 

 

is assumed to be non-empty on a sufficiently large part of M. The variation question can be 

posed as: how does the constellation of equilibrium variables, the set E, vary in X as the 

parameter system varies in M? In full generality, this amounts to a study of the equilibrium 

correspondence :E M X→ .3 

 

A standard approach is to do a local analysis of an equilibrium ( )x E µ∈ , given a smoothness 

assumption ( )kf C X M∈ × , 1 k≤ ≤ ∞ , and assuming a regularity property of full rank of the 

Jacobian matrix ( , )xD f x µ  at the point. Then, by the implicit function theorem (IFT), there 

are open sets XX ⊂'  and MM ⊂'  around x  and µ , and a kC  function '': XMg →  such 

that 0);( =µxf  hold for ( , ) ' 'x X Mµ ∈ ×  if and only if )(µgx = . 

 

Hence, given full rank, the IFT ensures that comparative statics is well-defined locally 

(isolated equilibria depend in a continuous way on the data of the economy), and4 

 

(2) ));(());(()( 1 µµµµµ µ gfDgfDDg x
−−= . 

 

However, due to the system-determinedness of the endogenous variables, it is hard to derive 

what Samuelson called “fruitful theorems in comparative statics”. To further this aim, he sug-

gested studying ( )g µ  with reference to an out-of-equilibrium dynamical system (“fast 

dynamics”)5 

 

                                                 
3 Balasko [1988] and Mas-Colell [1985] give an exhaustive account of this approach in general equilibrium 
theory (see also the references in Sec. 4 below). See Van Damme [1991] for applications to game theory. 
4 The determinacy and robustness properties are called “persistence”. Note that the assumptions of the IFT are 
sufficient, not necessary, for these qualities (but necessary for g to be kC ), see Mas-Colell [1985], Theo-
rem C.3.2 p. 20. The requirement of LSS will be seen to imply the full rank assumption (called regularity in 
Sect. 4). The IFT does not provide existence of the “initial” equilibrium (Sec. 4 refers to a theorem that does). 
5 “Where the interactions between individuals are concerned, the scope of fruitful comparative statics may be 
greatly extended by […] the apprehension of the correspondence principle, whereby the comparative statical 
behavior of a system is seen to be closely related to its dynamical stability properties” (Samuelson [1947] 
p. 351).  
 In strategic settings, deriving comparative statics results is especially difficult due to a high degree of 
simultaneity created by the equilibrium notions. A recent approach applies the concept of so-called supermodular 
games to compare equilibria. Echenrique [2002] uses out of equilibrium dynamics and the CP to refine equilibria 
in this context. 
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(3) ( ; )
defdx x f x

dt
µ= =& . 

 

In this context, f is a vector field on X, and its vanishing point, Eg ∈)(µ  a member of the 

class of solutions to the differential equations (I discuss the legimaticy of calling (3) a dy-

namical system and its interpretation in Sec. 2.1). Following standard mathematical terminol-

ogy, I call )(µg  a fixed point. Samuelson argued that for the calculation of Dg  to make 

sense, the fixed point has to be asymptotically stable.6 The assumption that the observed 

equilibrium is stable would then give information about the structure of the Jacobian 

));(( µµgfDx  that could aid in signing the elements of (2). 

 

However, the suggested duality between comparative statics and stability is problematic due 

to the fact that the restrictions imposed on ));(( µµgfDx  by the condition of asymptotic 

stability of the fixed point are not necessary for the stability of (3): Let ( ( ; ))xD f x µΛ  be the 

collection of eigenvalues of xD f  at the fixed point, and let Re( )iλ  denote the real part of the 

eigenvalue iλ . The condition Re( ( )) 0iλ µ < , 1,...,i n=  (allowing for possible multiplicities) 

is necessary and sufficient for the asymptotic stability of the linear approximation system 

( ( ); )( ( ))xx D f g x gµ µ µ= −& , but only sufficient, not necessary, for the asymptotic stability of 

the non-linear system (3).7 Hence Arrow & Hahn’s [1971] statement (albeit on the assumption 

of gross substitutes in general equilibrium contexts, p. 321) is accurate: 

                                                 
6 Let fϕ  denote the flow of (3) and ( )rB a  an open ball around a in nR  with radius r. A fixed point ( )x E µ∈  is 
stable if for all 0ε >  there exists a 0δ >  such that for all “initial conditions” ( )x B xδ∈  and 0t ≥ , 

( , ) ( )f t x N xεϕ ∈ . The fixed point is asymptotically stable if it is stable and there exists a 0δ >  such that for all 
( )x B xδ∈ , lim ( , )f

t
t x xϕ

→∞
= . If there are regions in nR  relative to which x  is (asymptotically) stable, then x  is 

called conditionally stable (Coddington & Levinson [1955] Ch. 13.4), see Section 5 below. 
7 Mistakes recur in the literature on this point. Consider for example the system 
 

 1 2
2

2 1 1 2

x x

x x x xµ

=

= − −

&

&
. 

 
At the fixed point (0,0)x = , { }( ( ; )) ,xD f x i iµΛ = − , hence x  is a center of the linear flow exp( ( ; ))xtD f x xµ ; 
solutions are periodic with the same period (Hirsch & Smale [1974] p. 95). However, since x  is an example of a 
non-hyperbolic fixed point (see Sec. 2.2 below), conclusions about the local behaviour of the nonlinear system 
cannot be drawn from the linearization. In fact, x  is globally asymptotically stable for 0µ >  and unstable for 

0µ <  (Guckenheimer & Holmes [1983], p. 13). The qualitative change in the structure of solutions at 0µ =  is 
called a (local) bifurcation, and 0µ =  a bifurcation value. 
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All these restrictions share the characteristic that they are not necessary for the task for 

which they were invented; they are only sufficient and this explains why the correspon-

dence principle “isn't”. 

 

The CP has also been used in settings where the dynamics is considered a real time process 

(“slow dynamics”) and where the (economic) interpretation of the equilibrium concept is 

richer. The distinction between adjustment and real time dynamics may be explained by a 

digression into the mathematically equivalent formulation8 

 

(3’) 

1

1

( )( )1
1 1 1

( )( )
1 1 1

( , ,..., ,..., , ,..., ; ) 0

( , ,..., ,..., , ,..., ; ) 0

p

p

qq
p p p

qqp
p p p

F y y y y y y

F y y y y y y

µ

µ

=

=

& &

LLLLLLLLLLLLLLLL

& &

, 

 

where ( )iq
iy  denotes the highest derivative of the function iy  that enters the system, whose 

order is iq q=∑ . As first pointed out by Frisch [19299,1936], equilibrium in a model of an 

economy extending over time has two meanings: i) an instantaneous equilibrium; the p q+  

variables 1 ( )( )
1 1 1, ,..., ,..., , ,..., pqq

p p py y y y y y& &  ii) a total dynamic equilibrium; the p-dimensional 

solution trajectory 1( ; ) ( ( ; ),..., ( ; ))py t y t y t⋅ = ⋅ ⋅ of (3’), see Section 2.2 for details. 

 

In the comparative static analysis of (3), a permanent change in the parameter system from 

one constant level to another is envisioned (see Sec. 2.1), and the dynamics is not taken to de-

scribe the transition path between the fixed points; under fast adjustment dynamics, only the 

asymptotic states are observable. Under the slow dynamics envisioned in (3’), data can vary 

in a much richer way (an infinity of parameter system paths can be considered in comparative 

dynamic analysis, see Sec. 5).  

 

In the context of real time dynamics, the CP has been applied in two ways. First, to point-in-

time analysis of the instantaneous equilibrium. Under standard continuity assumptions on 

                                                                                                                                                         
 The necessary conditions for asymptotic stability of the non-linear system (3) are (allowing for multi-
plicities) Re( ( )) 0iλ µ ≤ , 1,...,i n= , Hirsch & Smale [1974] p. 187. 
8 By solving (3’) with respect to the highest derivatives and by introducing all the other derivatives that appear in 
the system as new variables, the so-called normal form (3) can be obtained, see Pontryagin [1962] Ch. 1.4. The 
terminology of fast and slow dynamics is used e.g. in Balasko [1988]. 
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( ; )y t ⋅ , all variables, except the highest derivative of each function ( ; )iy t ⋅ , are tied down by q 

initial conditions10 that describe the historically given state of the system and that render these 

variables invariant (momentarily ”exogenous”) under variations in the parameter system. The 

p highest derivatives 1 ( )( )
1 ,..., pqq

py y  are determined by the p functional equations in (3’). An 

adjustment process refers to these variables, the assumed stability of which is used to infer 

their momentary reactions to parameter shifts and to place restrictions on the functional equa-

tions. This analysis of (3’) is very similar to the fixed point analysis in (3). 

 

The other application of the CP, a limiting form of comparative dynamic analysis, refers to 

(eventual) stationary states 1( ,..., )py y y=  of (3’), defined by the algebraic equations 

 

 

1
1

1

( ,0,...0, ,0,...,0; ) 0

( ,0,...0, ,0,...,0; ) 0

p

p
p

F y y

F y y

µ

µ

=

=

LLLLLLLLLLLL . 

 

Although y  technically can be analysed as a fixed point in a (q-dimensional) system in nor-

mal form, the question of existence and (asymptotic) stability of stationary states in real time 

models raises different problems than that of the fixed point in (3).11 

 

Here I touch upon unresolved “ontological” problems surrounding the CP, that in the case of 

adjustment dynamics reflect the lack of a necessary or axiomatic disequilibrium process and 

the relativity of the comparative static implications to the dynamical system.12 Except for the 

motivation for (L)SS in Section 2.1, these problems will not be addressed. Note, however, that 

in rational expectations models – real time models where a conditional asymptotic stability 

notion is part of the solution concept – the question of the legitimacy of the asymptotic stabil-

ity requirement has a different status. (The choice of a stable solution path has been charac-

terized as a variant of the CP, see e.g. Sargent [1987] p. 39.) Finally, note that in this class of 

                                                                                                                                                         
9 This article has only recently partly been made available in English (see the reference list). 
10 1 1 ( 1) ( 1)( 1) ( 1)

1 0 1 1 0 1 1 0 1 0 0 0(0) , (0) ,..., (0) ,..., (0) , (0) ,..., (0)p pq qq q
p p p p p py y y y y y y y y y y y− −− −= = = = = =& & & & . 

11 Samuelson [1941,1942,1947] applied the CP in the two first-mentioned situations, that is, with reference to 
adjustment dynamics. However, he clearly saw the possibility of using the CP in the last mentioned setting 
([1947], Ch. 12), and discussed the apparatus introduced by Frisch in detail. 
12 See Kemp [1986] for an overview. 
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models the instantaneous equilibrium cannot be subject to comparative static analysis with re-

spect to any instant of time.13 

2. Structural Stability: Motivation and Definitions 

2.1 Informal discussion 

Figure 1 illustrates the situation analyzed in (2) for a small change in the parameter system 

from 0µ  to 1µ , with corresponding fixed points 0 0( )x g µ=  and 1 1( )x g µ= . 

 

 

Figure 1. Adjustment dynamics and qualitative invariance around the fixed points 0x  and 1x  in the 
phase space. The solid and dashed curves (isoclines) are the graphs of 0( ; ) 0f x µ =  and 1( ; ) 0f x µ = , 
respectively. The homeomorphism ( )h ⋅  connecting trajectories is defined in Section 2.2. (In a real time 
interpretation, a trajectory might have a kink at moments when the parameter system shifts or possibly a 
discontinuity in forward-looking models, see Sec. 2.2 and 5.) 
 

Note that (2) only uses information about the initial equilibrium, including the structure as-

signed to ));(( µµgfDx  from an assumption of asymptotic stability (or conditional asymp-

totic stability). The focus on the independence of initial conditions that the asymptotic stabil-

ity notion embodies, is sufficient only when the reason for the postulated stable economy to 

                                                 
13 The continuity assumption is dispensed with for some components of ( ; )y t ⋅  at certain points in time, deter-
mined by when new “information” becomes available to the economy and by the analysts’ partitioning of the 
variables into predetermined (“backward looking”) and non-predetermined (“forward looking”). This means that 
some of the lower derivatives or variables on level form are not pinned down by the state given by the historical 
development of the system; the instantaneous equilibrium is underdetermined as a function of the parameter 
system at any one moment of time (some of the initial conditions are replaced with an assumption of conver-
gence of the total dynamic equilibrium as time goes to infinity). As pointed out by Sargent [1987], to do com-
parative static analyses at given time points requires that there is no dependence of variables at one moment of 
time on equilibrium values of those at later moments (see Ch. 1.9 and Sec. 5 below). 

x
0

1( , )f t xϕ

1
2( , ( ))f t h xϕ

( )h x  

•

1
1( , ( ))f t h xϕ

0
1x 1

1x

�

�

2x

1x

1
2x  

0
2x
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be out of equilibrium is a perturbation of the impulse kind, and not the persistent parameter 

shift envisioned in (2). Applying the asymptotic stability notion to the family of solution 

curves to (3), it is important to note that the vector field f itself has undergone permanent 

change, see Figure 1. Hence, for “fruitful” analysis the CP must (implicitly) assume that the 

resulting fixed point 1x  is of the same “kind” as 0x : that an (eventually conditionally) 

asymptotically stable fixed point remains so. I consider the effect of making this notion ex-

plicit, and require for f that the solutions to (3) remain qualitatively invariant around the fixed 

point in face of (possibly small) variations in M.14 

 

I am, in fact, going to make a somewhat tougher demand on f. The set of parameters or ex-

ogenous variables singled out for analysis is somewhat arbitrary, and it would also be arbi-

trary to limit the invariance property to the subset of parameters explicitly chosen by the ana-

lyst to be studied by (2). Furthermore, even though the most typical “economic variations” are 

studied as variations in finite-dimensional spaces of parameters like M, plenty of situations 

are not (one could, for instance, think of economies defined by demand functions or more 

general spaces of agents characteristics). In the context of adjustment dynamics, it is of par-

ticular importance that the system (3) is typically not a derived one, but rather ad hoc in the 

sense that one would be willing to look at any transformed system 

 

(4) 1( ),x F f x F= ∈ℑ& o , 

 

where 1ℑ  is the set of 1C  functions such that (0) 0,F =  ( ( )),i i iF F f x=  and 0,F∇ �  

1,...,i n=  (see F. Hahn [1982]).15 These observations motivate demanding qualitative invari-

ance with respect to more general variations in the vector field. Section 2.2 refines these 

ideas. 

                                                 
14 Frisch and Samuelson, in the context of real time dynamics, clearly (implicitly) assumed LSS. Frisch defined a 
system originally in a stationary equilibrium as stable if it after an exposure to a small “rupture in the initial con-
ditions, or in the influencing coefficients [---] tends back to the original equilibrium situation, or to another equi-
librium situation close to the original one” (Frisch [1936] p. 102; my emphasis). “In the case of stable systems 
the response to a permanent alteration gives us a description of the actual path followed by a system in going 
from one ‘comparative static level’ to another” (Samuelson [1947] p. 252; my emphasis). 
15 A possible response to the degrees of freedom is a requirement of stability independent of adjustment speed 
(D-stability). This gives additional information as to as to the structure of ( ( ); )xD f g µ µ , see Arrow [1974]. 
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2.2 ,rC ε -perturbations, (Local) Structural Stability and Hyperbolicity 

The system (3) defines a dynamical system on the state space X by the fundamental theory of 

differential equations (Hirsch & Smale [1974], Ch. 8). Hence, let :f Xφ Ω →  be the flow 

generated by the vector field f, that is XΩ⊂ ×R  an open set, and for each x X∈  the map 

( , ) ( )f f
tt ø t x ø x→ =  the solution passing through x for 0t = . This solution is defined and is 

unique for some (possibly small) interval in R  under the stated assumptions. With the 

exception of some minor comments in Section 5 on forward looking models, I do not discuss 

existence, but take for granted the solution over a sufficiently large interval. In terms of the 

flow, fixed points satisfy ( , )f t x xϕ =  for all t. Note that (possibly) except for forward 

variables at a finite number of time points, solution curves (trajectories) ( ; , ) :f x Xφ µ⋅ →R  

are 1C  in initial conditions x X∈ and parameters Mµ∈  (Perko [2001], Theorem 2 p. 84). 

 

As argued in Section 2.1, under the CP it must be assumed that the dynamics defined by (3) is 

not radically altered by small variations in the vector field. This requires that a notion of 

qualitative invariance and an allowable class of perturbations are defined. They lead to the 

idea of structural stability and the requirement that the mathematical model should belong to 

the set of dynamical systems on X which satisfy what I call local structural stability (LSS).16 I 

first consider the question of when two flows have the same qualitative behavior: 

 

DEFINITION (FLOW/TOPOLOGICAL EQUIVALENCE OF VECTOR FIELDS). Let 1
0 0( )f C X∈  and 

1
1 1( )f C X∈ , where 0X  and 1X  are open subsets of nR . The systems 0 ( )x f x=&  and 1( )x f x=&  

are flow or topologically equivalent if there is a homeomorphism17 0 1:h X X→  which maps 

trajectories 0 ( )f
tø x  of 0f  onto trajectories 1 ( )f

tø x  of 1f  and preserves their time orientation. If 

0 1X X X= = , the systems (or fields) are flow or topologically equivalent on X: 0 1f f� . 

 

                                                 
16 One could argue independently, that is, not only in the sphere of the CP, that (most) models of economic 
theory should be drawn from the set of models which are (L)SS. Since model construction is based on 
approximation and simplification, parameters are determined inaccurately etc., it seems reasonable to endow 
systems with properties that are not too sensitive to small changes if insights from the model analysis are going 
to be transferred to the real process under consideration (Arnold [1983] Ch. 3, see also Fuchs [1975]). These 
questions, however, are beyond the scope of the paper. 

Note that the terminology of LSS is not used uniformly. It is adopted by Fuchs [1974]. Devaney [1986] 
and Hubbard & West [1995] write on structurally stable fixed points. 
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A direct consequence of the definition is that for any x and 1t  there exists 2t  such that 

0 1
1 2( ( , )) ( , ( ))f fh t x t h xϕ ϕ= . As illustrated in Figure 1, drawing the vector fields 0f  and 1f  on 

rubber sheets, they are topologically equivalent “if one rubber sheet can be stretched and put 

onto the other so that the trajectories of one equation coincide with the trajectories of the 

other, as oriented curves” (Hubbard & West [1995], p. 204). This continuous deformation of 

the phase portrait (also called a 0C -equivalence) sets up a one-to-one correspondence be-

tween the fixed points of the two fields and distinguishes between sinks, saddles and sources. 

The fact that the parameterization of time is not necessarily preserved reflects that one is 

mainly interested in the geometry of solutions (Hubbard and West give a more detailed moti-

vation for the definition). 

 

Turning to the perturbations under which topological equivalence is required, consider first 

the discussion of the IFT in Section 1. The basic requirement (in addition to full rank) is that 

the derivatives of f and of the finite-dimensionally perturbed f are close, through the assump-

tion that f be ( )kC M . I make a similar restriction on the variation in f, but open for an infi-

nite-dimensional perturbation as motivated in Section 2.1. Letting ⋅  be the Eucledian norm, 

I use the following definition of nearness of two vector fields 0f  and 1f : 

 

DEFINITION ( ,rC ε -PERTURBATION). If 0 ( )k nf C∈ R , ,k r +∈Z , r k≤ , and 0ε > , then 1f  is a 

rC -perturbation of size ε  if there is a compact set nK ⊂ R  such that 0 1f f=  on the set 

n K−R  and for all 1( ,..., )ni i  with 1 ... ni i i r+ + = ≤  we have 1
1 0 1( / ... )( )niii

nx x f f ε∂ ∂ ∂ − < .18 

 

I can now state the following definition of SS (based on the requirement that the initial and 

perturbed vector field have components and first derivatives which are close throughout K): 

 

                                                                                                                                                         
17 A function 0 1:h X X→  is a homeomorphism if it is continuous, one-to-one, onto, and has a continuous in-
verse 1h− . 
18 The definition is from Guckenheimer & Holmes [1983], p. 38, and is a special case of the ones in e.g. Hirsch 
& Smale [1974] and Perko [2001] which use properties of function spaces. Devaney [1986], Ch. 1.9 gives a geo-
metric interpretation of ,rC ε -perturbations (restricts the possible variations in the isoclines in Fig. 1 above and 
2a below). Note that the variations (via µ  and F) in Section 2.1 are examples of 1,C ε -perturbations. 
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DEFINITION ( 1C  STRUCTURAL STABILITY, SS). A vector field 1( )nf C∈ R  is 1C  structurally 

stable (SS) if there exists an 0ε >  such that all 1,C ε -perturbations of f are topologically 

equivalent to f. 

 

The concept of SS involves difficult global questions that inter alia have to do with existence 

and preservation of closed orbits, lack of saddle connections, and more generally properties of 

the so-called non-wandering set. However, in this paper SS is introduced as a maintained 

hypothesis of the CP, and as a property to hold locally around fixed points. Hence, it will be 

sufficient to insist on the following weaker requirement: 

 

DEFINITION ( 1C  LOCAL STRUCTURAL STABILITY, LSS). A vector field 1( )nf C∈ R  is 1C  lo-

cally structurally stable (LSS) at the fixed point x  if there is a neighborhood N of x  and an 

0ε >  such that all vector fields 'f  that are 1,C ε -close to f on N are topologically equivalent 

to f. 

 

The condition of LSS is replaceable by a simple condition of hyperbolicity, that is, that all the 

eigenvalues of xD f  evaluated at x  have real parts that are different from zero. This prerequi-

site, which excludes zero and purely imaginary eigenvalues at equilibrium, is the key to the 

powerful mathematical theorems that will be used below.19 

 

PROPOSITION. The vector field 1( )nf C∈ R  is LSS if and only if the fixed point x  is hyper-

bolic. 

 

PROOF OUTLINE.20 On necessity, see Guckenheimer & Holmes [1983] p. 40—41. Sufficiency: 

By theorems 1 and 2 in Hirsch & Smale [1974] p. 305, there is a neighborhood of x  and a set 

                                                 
19 For systems of higher dimentions ( 3n ≥ ), a requirement of SS is non-trivial. (For two-dimensional flows, 
there are theorems of the set of SS-fields being open and dense in the set of 1C -fields that are traverse on the 
boundary of a suitably defined compact set (SS is a generic property): every such system that is not SS can be 
approximated arbitrarily closely by SS-systems. However, it is known that no such result can exist in higher 
dimensions, see Hirsch & Smale [1974] Ch. 16.3. The non-triviality of the requirement of LSS (hyperbolicity) 
can be seen from the discussion of degeneracy or codimension of (local) bifurcations at fixed points in 
Guckenheimer & Holmes [1983]. 

The substitution of the hyperbolicity for explicit equations for homeomorphisms to determine whether a 
given function is LSS is useful, as finding ( )h ⋅  is demanding (see Devaney [1986], Example 9.4, for the simplest 
possible case). (A global sufficiency result is stated in Sec. 4 below.) 
20 Hubbbard & West [1995] Ch. 8*.6 gives an alternative proof under slightly more restrictive assumptions. 



 12

of 1,C ε -close fields such that for any such perturbation 'f  there is a unique ' : '( ') 0x f x =  

(in general 'x x≠ ). Furthermore, for any 0δ > , 0ε >  can be chosen such that 'x x δ− < , 

where 'x  has the same number of eigenvalues with positive and negative real part as x . By 

the Hartman–Grubman theorem in Section 3 below, there is a neighborhood U ( 'U ) of x  

( 'x ) on which f ( 'f ) is topologically equivalent (in fact conjugate) to x x x
D f

=
 (

'
'x x x

D f
=

). 

For ε  sufficiently small, x x x
D f

=
 and 

'
'x x x

D f
=

 are topologically equivalent by the result on 

linear isomorphisms in Hirsch & Smale [1974] p. 309. Hence, for sufficiently small δ  the 

following holds in a neighborhood N of x : 
'

' 'x xx x x x
f D f D f f

= =
� � � . 

3. Resurrection of the Correspondence Principle 

In Section 1, I commented on the persistence of equilibria ensured by the IFT assumptions. It 

is interesting to note that the property of LSS implies full rank of the Jacobian ( ; )xD f x µ  at 

equilibria, and hence – to the extent that dynamic considerations are applicable – makes this 

assumption of the IFT extraneous.21 

 

Consider now the linear approximation of (3) around a fixed point x  (I temporarily drop the 

reference to the finite-dimensional parameterization and assume that the fixed point has been 

translated to the origin): 

 

(5) ( )xx D f x x=&  

 

Given LSS and the Proposition, the vector field ( )xD f x  generates a hyperbolic linear flow 

exp( ( ))xtD f x x  (Hirsch & Smale [1974] Ch. 5 gives a complete characterization of such 

flows). The following particularily strong result on topological equivalence near the fixed 

point is available (see e.g. Perko [2001] Ch. 2.8 for a proof): 

 

                                                 
21 Since ( ; )xD f x µ  real, its characteristic polynomial is real, and its roots are real or appear in conjugate pairs, 
that is if Re( ) Im( ) ( )xi D fλ λ+ ∈Λ , then Re( ) Im( ) ( )xi D fλ λ− ∈Λ . Hence, by the Proposition (hyperbolicity) 
det ( ; ) 0x iD f x µ λ= ≠∏ . 

Mas-Colell [1986], Ch. 8.3, discusses how sufficient dependence of f on µ  in M (via knowledge of 
rank D fµ ) allows inferences of full rank of xD f  (that is, no simultaneous collapse of both the real and imagi-
nary part of the eigenvalues) for “almost all” Mµ ∈  using transversality theory (see Sec. 4 below). 
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HARTMAN–GROBMAN THEOREM. Given hyperbolicity of x , there is a homeomorphism h de-

fined on some neighborhood U of x  in nR  locally taking trajectories of the nonlinear flow 

( , )f t xφ  of (3) to those of the linear flow exp( ( ))xtD f x x  of (5). The homeomorphism pre-

serves the orientation of trajectories and can also be chosen to preserve parameterization by 

time.22 

 

I started by highlighting a logical flaw in the CP. However, when laying out the proper setting 

or hypothesis for the principle (LSS), the Hartman–Grobman theorem shows that in a 

neighborhood of the fixed point, the behavior of the non-linear system is fully described by its 

linear part. Hence the necessary (and sufficient) conditions for asymptotic stability of (5) are 

necessary (and sufficient) for the stability of the non-linear system (3): the CP “is”. Further-

more, the solution to (5) not only yields local asymptotic behavior, but – up to a homeomor-

phism – also provides the local topological structure of the phase portrait. The latter is im-

portant when the dynamics is interpreted as a real time movement (slow dynamics).23 

4 Walrasian Equilibrium Set Structure 

I consider finite exchange economies with H households and commodity space LR . Each 

household is characterized by a vector of initial endowments and possibly some parameters 

describing household preferences. In the terminology of the theory, µ  is an economy in the 

space of economies M, where mM ⊂ R , m LH≥ (economies defined in more general spaces 

are admittable, see below). I abstract from individual demand functions and assume that pref-

erences and the endowment configuration generate a 1C  aggregate excess demand function 

: LF P M× → R  ( { }\ 0LP += R  is the price space). Since there are no intermediate goods, 

desirability assumptions are assumed such that for each µ , ( ; ) 0Tp F p µ =% %  for all p P∈%  

(Walras’ Law, WL), and such that the set of Walrasian equilibria E%  of the economy can be 

described as the set of strictly positive price systems given by 

 

                                                 
22 exp( )xtD f  is the exponential matrix defined by 

0

( )
exp( )

!

k
x

x
k

tD f
tD f

k

∞

=

= ∑ . Since the homeomorphism can be 

chosen to preserve time, that is ( ( , )) exp( ( )) ( )f
xh t x tD f x h xϕ =  for each t∈R , the relationship is called a 0C -

conjugacy. 
23 Stable and unstable manifolds will be discussed in Section 4. Note that since the homeomorphism is not 
necessarily differentiable, nodes and foci are not distinguished. If f is analytic and certain non-resonance condi-
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(6) { }ˆ( ) int ( ; ) 0E p P F pµ µ= ∈ =% % % . 

 

The 1L −  equations in (6) arise from F, deleting the L-th component due to WL. The restric-

tion to strictly positive prices is a local implication of desirability. Since F is homogeneous of 

degree zero on P, Lp%  can be normalized to 1, and the equilibrium set can be defined as 

( 1 1( ,..., )Lp p p −= , 1 1
ˆ( ; ) ( ,..., ,1; )Lf p F p pµ µ−= )24 

 

(7) { }1( ) ( ; ) 0LE p f pµ µ−
++= ∈ =R . 

 

DEFINITION (REGULAR ECONOMY). An equilibrium price system ( )p E µ∈ is regular if the 

rank of the Jacobian of f is full at that point, that is ( )( ; ) 1prank D f p Lµ = − . An economy 

Mµ ∈  is regular if all price systems ( )p E µ∈  are regular.25 

 

Through the full rank property, regular economies have all the persistence properties implied 

by the IFT (see Sec. 1). Debreu [1970] proved that a regular economy has a finite number of 

equilibria, and that “almost all” economies in M are regular.26 Using properties of the excess 

demand function on the boundary of a suitably redefined price space (global implications of 

desirability), Dierker [1972], drawing on the Poincaré–Hopf Theorem, added structure to the 

set ( )E µ  in a regular economy. Let #E( )µ  be its (finite) number of elements, and define the 

index I as 

 

 
( )
( )

( )

1 det ( ; ) 0
( ; )

1 det ( ; ) 0

p
p E

regular
p

if D f p
I p

if D f p
µ

µ

µ
µ

µ
∈

⎧ − >⎪= ⎨
− − <⎪⎩

. 

                                                                                                                                                         
tions are satisfied, there is an analytic change in coordinates in a neighborhood of the stationary point which 
brings (3) into linear form (see Arnold [1983] for details). 
24 The homogeneity property implies that rank ( ; )pD F p Lµ <% % . Desirability assumptions typically take the form 
that the excess demand for a commodity shoots to infinity as its price converges to zero from above. The stated 
version of WL is called Walras Law in the narrow sense. For omitted details of this section, Mas-Colell, 
Whinston & Green [1995] is a good textbook reference. Balasko [1988] and Mas-Colell [1985] are exhaustive 
monographs. 
25 Debreu [1970] defined regular economies in the equilibrium correspondence context, relative to a space of 
endowments 1=( ,..., )H LHω ω ω ∈R . The stated definition is due to Dierker & Dierker [1972]. Since it does not 
involve the space of parameters, it readily opens for wider classes of specifications (Dierker [1980] Sec. 3). 
26 The above references refine the statement “almost all”, including extensions to economies defined in more 
general spaces than M. 
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THEOREM (DIERKER). For every regular economy Mµ∈ , #E( ) 2 -1kµ =  for a 

{ }1,2,...,k K∈ , of which k have 1I =  and 1k −  have 1I = − ; 
( )

( ; ) 1
p E

I p
µ

µ
∈

=∑ . 

 

This theorem, which implies existence, exhausts the structure of ( )E µ  in the full generality of 

Arrow-Debreu models. Further restrictions require additional assumptions. The much studied 

Walrasian tâtonnement process 

 

(8) ( ; )p f p µ=& , 

 

or some 1C  sign preserving transformation (see the comments to (4) and Balasko [1988] 

Ch. 1.9) has been a source of such restrictions. Dierker [1972], Theorem 2, proposed that a 

regular economy Mµ∈ for which all ( )p E µ∈  are locally stable, has a unique equilibrium, 

arguing that stability of (8) implies that all eigenvalues of ( ; )pD f p µ  have strictly negative 

real parts.27 Hence, ( )det ( ; )pD f p µ−  is positive over all ( )p E µ∈  and uniqueness follows 

from the index theorem.28 

 

However, since strictly negative real parts of the eigenvalues is not a necessary condition for 

local asymptotic stability of the non-linear system (8), the index restriction does not follow 

from the assumed stability. However, as argued above, LSS should be considered a part of the 

stability hypothesis. If not, arbitrarily small changes in explicit data or in the dynamic process 

with respect to which the economy is assumed stable, could lead to another economy with 

essentially different properties, making the assumption of stability at the fixed points uninter-

esting. By the implied property of hyperbolicity of the fixed point from LSS (see the Proposi-

tion), Dierker’s link between the dynamics of the system and the structure of the set of equi-

libria is restored, consistent with the spirit of the CP. 

 

                                                 
27 Dierker [1972] endowed the economy with a more general adjustment process, sharing properties with the 
excess demand function only around the fixed points (and on the boundary of the price space in his normaliza-
tion). 
28 From the modified Routh–Hurwitz conditions, a necessary condition for ( ; )pDf p µ−  to only have eigenvalues 

with strictly negative real roots is that 1( ; ) ( 1) ( ; ) 0L
p pDf p Df pµ µ−− = − > , see e.g. Murata [1977] p. 92. 
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It is worth noting that LSS under the assumption of global asymptotic stability of the unique 

fixed point (required when 3L ≥ ) is sufficient for SS under the assumptions of Dierkers 

theorem: Using the choice of state space and local parameterization in Varian [1982], Sec-

tions 1 and 2, Theorem 1 on p. 314 in Hirsch & Smale [1974] can be applied (see 

Fuchs [1975] Theorem B for a similar result). 

5 Rational Expectations Models 

Rational or model-consistent expectations may be introduced in a normal form like (3) – un-

der a real time interpretation – by writing the vector field as ( , )x yf f f= , and 

 

(9) { }
( , ; )
( , ; ),

x

t y I

x f x y
E y I f x y t t

µ
µ

=
= ≠

&

&
. 

 

The state variables have been partitioned into a vector y of yn “forward looking” or “jump” 

variables and x yn n n= −  continuous or “predetermined” variables x. E is the expectation 

operator, tI  the information set conditioning expectations formed at time t, and y&  the right 

hand derivative 

 

{ }
0

( ) ( )( ) limt t
y yE y I E I

ε

τ ε ττ
ε+→

⎧ + − ⎫
= ⎨ ⎬

⎩ ⎭
& . 

 

The information set contains all current and past values of x, y and µ  as well as the model 

structure (9). Interpreting also x&  as a right hand derivative (due to possible discontinuities in 

y or µ , see below), the assumed expectation formation implies that all actual and anticipated 

rates of change coincide, except possibly with respect to y&  at time points It  when new 

information about the parameter system becomes available. The current values of non-prede-

termined variables are functions of current anticipations of future values of endogenous vari-

ables and the parameter system. Accordingly, it is necessary to specify the whole future path 

for the parameters, and to assume that ( )tE µ τ  is bounded on [ , )t ∞ . The model assumptions 

are formulated more completely in Buiter [1984]. I consider a simple example of so-called 
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anticipated event analysis, where (9) is given an autonomous perturbation from a (expected) 

constant level 0µ  to a constant level 1µ  at time It , see Figure 2b.29 

 

This class of models “leads to notions of stability and to solution theory that is different than 

much of that in the natural sciences” (Malliaris & Brock [1989] p. 263). The continuity prop-

erty of the total dynamic equilibrium ( )0 0 0( ; , ) ( ; , ), ( ; , )f f f
x yt x t x t xϕ µ ϕ µ ϕ µ=  is broken at 

time It t=  with respect to the forward variables y; the right-continuous non-predetermined 

variables are allowed to (possibly) “jump” at It  to a region in the state space such that an 

assumed resumed continuous movement of the model solution to the fixed point 

( )1 1 1 1( , ) ( ), ( ) ( )x yx y g g gµ µ µ= =  is assured under the new parameter system.30 

 

The solution methodology can be described as follows: Obtain from (9) the linear approxima-

tion system (assuming coordinates have been transformed such that the fixed point is trans-

lated to the origin) 

 

(10) { } ( , ) ( , ; )x y
t

x x
D f x y

E y I y
µ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

&

&
 

 

Divide the spectrum of the Jacobian the fixed point, ( , )( ( , ; ))x yD f x y µΛ , into three parts 

,sΛ ,cΛ  and uΛ  with Re( ) 0λ <  if sλ∈Λ , Re( ) 0λ =  if cλ∈Λ , and Re( ) 0λ >  if uλ∈Λ . 

Define the following linear subspaces of nR  

 

 the sn -dimensional stable subspace { }1( , ) ,..., snsE x y span u u=  

 the cn -dimensional center subspace { }1( , ) ,..., cncE x y span v v=  

                                                 
29 Note that Frisch [1929], writing on dynamic models of exchange (i.e. real time dynamical versions of the mod-
els in Sec. 4 above), in emphasising the demand concept as functional-theoretic, came close to defining a rational 
expectations equilibrium: “Should we incorporate the phenomenon of anticipations in an entirely satisfactory 
manner, we would have to introduce the higher growth rates, or even better, introduce the whole likely future 
path of the time curve that represents p [the Walrasian price vector], and weigh the different alternatives 
according to certain principles of probability calculus” (p. 341—342; my translation). 
30 For ordinary systems like (3) with continuous solutions as discussed in Section 2.2, at any one moment of time 

( , , ) 0
f t xϕ µ
µ

∂
=

∂
. In the case where f has a finite or countable number of discontinuity points, x&  does not exist 
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 the un -dimensional unstable subspace { }1( , ) ,..., unuE x y span w w=  

 

where 1,..., snu u , 1,..., cnv v  and 1,..., unw w  are the sn , cn  and un  (generalized) eigenvectors that 

correspond to ( ) sλ µ ∈Λ , ( ) cλ µ ∈Λ  and ( ) uλ µ ∈Λ , respectively. Hirsch & Smale [1974] 

proves that the spaces form a direct sum decomposition of nR  and that they are invariant un-

der the linear flow ( , )exp( ( , ; ))x ytD f x y xµ , that is, exp( ) iE⋅  remains on iE  for all t, , ,i s c u=  

Furthermore, all solutions that start in sE  ( uE ) approach (leave) the fixed point ( , )x y  expo-

nentially fast. The solutions that lie in cE  do neither.31 

 

Assuming full rank (regularity) of the Jacobian at ( , )x y  and appealing locally to the linear 

approximation system, n linearly independent boundary conditions are required for a unique 

solution. In the case where the number of predetermined variables equals the dimension of the 

stable subspace (or the number of eigenvalues with negative real parts, counting multiplic-

ities), x sn n= , xn  initial conditions – through the (two-sided) continuity requirement on the 

predetermined variables – are pinned down by the history of the system. The remaining 

x yn n n− =  boundary conditions are obtained from the transversality condition of asymptotic 

convergence, which – by the properties of the eigenspaces – requires the yn  forward variables 

to (possibly) “jump” at It  such that 1 1 1( ( , ; ), ( , ; )) ( ( ))f f s
x I y It x t x E gϕ µ ϕ µ µ∈ , and hence 

1 1 1( , ; ) ( , )f st x E x yϕ µ ∈  for all It t≥ . There are just enough free variables at time It t=  to 

make this happen for any configuration of the continuous (momentarily exogenous) vector x 

(see Fig. 2).32 

 

                                                                                                                                                         
(unless interpreted as a right hand derivative), but a continuous solution curve will, possibly with kinks. See 
Sydsæter & Seierstad [1987], Theorem A9 and Appendix A respectively, for mathematical details. 
31 For linear (autonomous) systems, asymptotic stability is equivalent to exponential asymptotic stability. Solu-
tions in cE  are stable (but never asymptotically stable) if every eigenvalue in cΛ  is of multiplicity one, other-
wise they become unbounded. 
32 Buiter [1984] provides an explicit solution. (It might also be useful to observe that eigenvalues and eigen-
vectors of ( ) ( ( ); ) ( )x ij n n

A D f g aµ µ µ µ
×

⎡ ⎤= = ⎣ ⎦  are functions of µ , whose derivatives can be obtained through 

total differentiation and by the formulas in e.g. Magnus [1985] relating eigenvalues and eigenvector elements to 
the matrix elements ( ) ( ( ); ) /i

ij ja f g xµ µ µ= ∂ ∂ .) In the case of y sn n< , an asymptotically stable solution gener-
ally (that is, for any x) does not exist. In the case of y sn n> , a continuum of solutions exist. Buiter discusses how 
economically motivated linear restrictions on the state variables may ensure uniqueness. 
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Figure 2a. Phase space analysis, 1x y s un n n n= = = = . The solid and dashed curves (isoclines) are 

graphs of 0( , )( , ; ) 0x yf f x y µ =  and 1( , )( , ; ) 0x yf f x y µ = , respectively. The solid and dashed lines are 

subsets of 0 0( , )sE x y  and 1 1( , )sE x y . ( )0 0 0 0( ; , ), ( ; , ) ( , )f f s
x yt x t x E x yϕ µ ϕ µ ∈  is assumed to be ar-

bitrarily close to 0 0( , )x y  as It t−→ . At It t=  µ  shifts (permanently) to 1µ . By asymptotic stability, 

( )1 1 1 1( ; , ), ( ; , ) ( , )f f s
x yt x t x E x yϕ µ ϕ µ ∈  for [ , )It t∈ ∞ . 

Figure 2b. Sketch of solution trajectories; unanticipated event analysis. 
 

However, analogous to the difficulty with the CP due to non-linearity (Sec. 1), the require-

ment ( , , ) ( ( ))f st x E gϕ µ µ∈  is not necessary for the asymptotic stability of the system (9) 

even arbitrarily close to the fixed point. This is due to the possible behaviour of (9) on the 

(local) center manifold ( ( ))cW g µ , the non-linear analogue to the center subspace. As the 

discussion of the center manifold theorem in Guckenheimer & Holmes [1983] shows, so-

lutions can be expanding or contracting on cW  (see Ch. 3.2; this point is also illustrated by 

It
t
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the system in note 7 above). For non-linear systems (9), the solution suggested from the 

analysis of linear system (10) does not follow from the partition of the state variables into 

predetermined and non-predetermined and the assumed (conditional) asymptotic stability. 

 

However, the solution and stability concept of rational expectations (implicitly) clearly em-

bodies a notion of LSS; in particular it is assumed that the dimension of the stable and unsta-

ble manifolds (denoted sW  and uW  in the non-linear case) are invariant to changes in the 

explicit parameter system, and that the system converges to the new perturbed stationary 

state.33 Applying from LSS the equivalent notion of hyperbolicity (that is, 0cn =  or 

c cW E= =∅ , see the Propostion in Sec. 4), the following theorem endows the linear 

approximation system with the qualitative properties of the non-linear system locally around 

the fixed point, as required for the correctness of the above analysis: 

 

STABLE MANIFOLD THEOREM. Let ( )rf C U∈  where U is an open subset of nR  containing 

the fixed point hyperbolic ( , )x y , 1.r ≥  At the fixed point, there exists an sn -dimensional 

stable manifold ( , )sW x y  tangent to the (generalized) eigenspace ( , )sE x y  of sΛ  at ( , )x y  

and an un -dimensional unstable manifold ( , )uW x y  tangent to (generalized) eigenspace 

( , )uE x y  of uΛ  at ( , )x y . The manifolds are invariant under the flow of f and of class rC .34 

6 Concluding remarks 

This paper has examined implications of a maintained hypothesis of (local) structural stability 

as part of the correspondence principle assumptions. The local focus has allowed a simple 

hyperbolicity criterion and a straightforward analysis, but has given important results. In par-

ticular, a deficiency in the link envisioned by Samuelson between assumed stability properties 

of equilibria and the equilibrium set structure, has been repaired. 

 

In models with a real time interpretation, dynamic systems whose laws of motion change with 

time might be considered.35 Several issues would also benefit from a global analysis. This 

applies in particular to the class of rational expectation models, where some of the qualitative 

                                                 
33 If the system is not LSS, then arbitrarily small changes in the data or functional equations could for instance in 
the case of x sn n=  lead to a situation where no solution exists, or a continuum of solutions exist. 
34 Perko [2001] Ch. 2.7 gives a precise definition of a differentiable manifold and a proof of the theorem. 
35 Hahn [1967] Sec. 56 gives some sufficiency theorems on stability under persistent perturbations. 
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properties that can be seen in two-dimensional structurally stable systems seem to be required 

as a part of the solution concept. Such challenging questions are, however, beyond the scope 

of this paper. 
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