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ON THE ERRORS COMMITTED

BY SEQUENCES OF ESTIMATOR FUNCTIONALS

STEFFEN GRØNNEBERG AND NILS LID HJORT

Abstract. Consider a sequence of estimators θ̂n which converges almost surely

to θ0 as the sample size n tends to infinity. Under weak smoothness conditions,

we identify the asymptotic limit of the last time θ̂n is further than ε away from

θ0 when ε → 0+. These limits lead to the construction of sequentially fixed width

confidence regions for which we find analytic approximations. The smoothness

conditions we impose is that θ̂n is to be close to a Hadamard-differentiable func-

tional of the empirical distribution, an assumption valid for a large class of widely

used statistical estimators. Similar results were derived in Hjort and Fenstad

(1992, Annals of Statistics) for the case of Euclidean parameter spaces; part of

the present contribution is to lift these results to situations involving parameter

functionals. The apparatus we develop is also used to derive appropriate limit dis-

tributions of other quantities related to the far tail of an almost surely convergent

sequence of estimators, like the number of times the estimator is more than ε away

from its target. We illustrate our results by giving a new sequential simultane-

ous confidence set for the cumulative hazard function based on the Nelson–Aalen

estimator and investigate a problem in stochastic programming related to compu-

tational complexity.

1. Introduction and summary

Let (Ω,A, P ) be a probability space and Pn be the empirical distribution based

on the first n observations from an infinite iid sample X1, X2, . . . from P living on

some space X . That is, let

Pn :=
1

n

n
∑

i=1

δXi

be the seemingly näıve estimator of the distribution function P – which puts a

point mass 1/n on every observed value in X . Although Pn can never converge

as a measure to P uniformly over the whole of X unless P is discrete, one can

measure closeness between Pn and P relative to a set of mappings F from X to R

by perceiving Pn as an element of l∞(F) evaluated as

Pn(f) :=

∫

f dPn =
1

n

n
∑

i=1

f(Xi).

Key words and phrases. The last n, Hadamard-differentiable statistical functionals, Sequential

confidence regions, Gaussian processes, the Nelson-Aalen estimator.
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Likewise, one perceives P as an element of l∞(F) evaluated as

P (f) :=

∫

f dP = Ef(X),

and ask how large can F be in order for Pn to be very close to P as n → ∞.

A natural measure of closeness is the size of

(1) ‖Pn − P‖F := sup
f∈F

|Pn(f)− P (f)|.

As ‖Pn−P‖F may not be measurable, one can work with outer almost sure conver-

gence and ask when

P ∗
(

lim
n→∞

‖Pn − P‖F = 0
)

= 1,

defined in terms of the outer measure P ∗(B) = inf {P (A) : A ⊃ B,A ∈ A} for any

A ⊆ Ω. If this convergence takes place, F has the so-called Glivenko–Cantelli

property. Characterizations of how large F may be relative to the structure of P is

dealt with in the now classical expositions of Dudley (1999) and van der Vaart &

Wellner (1996).

Supposing that F is Glivenko–Cantelli (that is, has the Glivenko–Cantelli prop-

erty), it is natural to ask by which rate this convergence takes place. One way to

approach this is to ask how rapidly a function r(n) ր ∞ may grow in order to keep

the size of

r(n)‖Pn − P‖F
stable in some appropriate sense. This leads us to discover that under reasonable

conditions on F , the rate r(n) =
√
n gives

√
n‖Pn − P‖F = OP ∗(1).

These developments are described in van der Vaart & Wellner (1996) and Dudley

(1999), which gives conditions on F to be a so-called Donsker class – that is, con-

ditions for
√
n[Pn − P ] to converge weakly in l∞(F) to a P -Brownian Bridge in the

Hoffman-Jørgensen sense.

These two levels of accuracy are of fundamental importance in asymptotic statis-

tics and are connected in non-trivial ways. The present investigation concerns one

such connection. Talagrand (1987)’s deep study of the Glivenko–Cantelli property

of F shows (in his Theorem 22, see also Theorem 6.6.A of Dudley, 1999) that if F
is Glivenko-Cantelli and made up of P -integrable measurable functions, then

(2) Ω̃ :=
{

ω ∈ Ω : lim
n→∞

‖Pn − P‖F(ω) = 0
}

is measurable (even though ‖Pn − P‖F need not be) and P (Ω̃) = 1. This implies

that on all of Ω̃, there exists a last time an error larger than any prescribed ε > 0

is ever committed. Let

Nε = sup{n : ‖Pn − P‖F > ε}
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be the last time an error larger than ε > 0 is ever committed. Notice that by the

definition of almost sure convergence,

{Nε < ∞ for each ε > 0} = Ω̃.

Hence, Nε is finite with probability one even though Nε may not be measurable.

It natural to inquire into the size Nε, and this question connects the two precision

levels above in the following manner. Define m = [y/ε2] and y0 = ε2[y/ε2] so that

(3)

P (ε2Nε > y) = P

(

sup
n≥m

‖Pn − P‖F > ε

)

= P

(

sup
s≥1

√
m‖P[ms] − P‖F >

√
y0

)

.

So if sups≥1

√
m‖P[ms] − P‖F has a non-trivial weak limit, we can use this to find

distributional approximations of Nε. What is needed is that the partial sum process

(4) Xn :=
√
n(P[ns] − P )

converges weakly on l∞([1,∞)×F) to some non-trivial variable X. This shows that

sup
s≥1

√
m‖P[ms] − P‖F = ‖Xn‖[1,∞]×F

W ∗−−−→
n→∞

‖X‖[1,∞]×F

by the continuous mapping theorem, which together with eq. (3) shows that

(5) ε2Nε
W ∗−−−→

ε→0+
‖X‖2[1,∞]×F .

The class F is called functional Donsker if the so-called sequential empirical pro-

cess Zn(s, f) = sXm(s, f) converges weakly on [0, 1] × F to a mean zero Gaussian

process Z on (0, 1]×F with covariance structure

(6) Cov (Z(s, f),Z(t, g)) = (s ∧ t) (Pfg − PfPg) ,

called a Kiefer-Müller process. The set of functional Donsker classes and Donsker

classes are in fact the same (see Chapter 12.2 of van der Vaart & Wellner, 1996), and

the seemingly stronger statement of full l∞([1,∞)×F) convergence of Xn to s−1
Zs

actually follows when F is functionally Donsker (Exercise 2.12.5 van der Vaart &

Wellner, 1996). Time reversal of the Kiefer-Müller process (exercise 2.12.4 van der

Vaart & Wellner, 1996) implies that Z(s, f) := X1/s(f) is a Kiefer-Müller process on

(0, 1]×F . Hence,

ε2Nε
W ∗−−−→

n→∞
‖X‖2[1,∞]×F = ‖Z‖2(0,1]×F

for a Kiefer-Müller process Z on l∞((0, 1] × F) as long as F is Donsker. Thus,

while the mere almost sure existence of Nε is secured through the Glivenko–Cantelli

property of F , we get distributional approximations ofNε from the Donsker property

of F .

The above questions are natural for any statistical estimator, and not just for

the empirical distribution function. For a sequence of estimators {θ̂n}∞n=1 for which
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θ̂n
a.s.∗−−−→
n→∞

θ, we can define

Nε = sup{n : ‖θ̂n − θ‖ > ε}

where ‖ · ‖ is an appropriate norm. The present paper shows that the above connec-

tion between the Glivenko–Cantelli and Donsker properties of F is transferred from

the empirical distribution function Pn over F to all estimators θ̂ which are (in an

appropriate sense) close to being so-called Hadamard-differentiable statistical func-

tionals of Pn over F . The class of Hadamard-differentiable statistical functionals

includes a fair portion of statistical estimators in use – for example Z-estimators

with classical regularity conditions.

The investigation of Nε for various estimators has a long history in probability

and statistics, and goes back at least to Bahadur (1967). A steady stream of papers

has worked with the subject, and we mention Robbins et al. (1968), Kao (1978),

Stute (1983) and Hjort & Fenstad (1992). The theory contained in the present paper

generalizes these investigations and puts them in a general framework.

The perhaps most obvious motivation for studying Nε is to identify the proba-

bilistic aspects that influence its limit distribution as ε → 0+. We will see that

for Hadamard-differentiable statistical functionals, only the Hadamard-differential

and the choice of norm in defining Nε matters, besides the factors influencing the

limiting distribution of the last time an error larger than ε is committed by the

empirical distribution function itself. This gives a fresh and statistically motivated

interpretation of the Hadamard-differential as a measure of variance.

We note that practically all statistical estimators can in principle be studied by

only focusing on the empirical distribution. That is, for practically every possible

estimator θ̂n taking values on some space E, we can find a class F and nonrandom

mapping φn : Dn ⊆ l∞(F) 7→ E so that

θ̂n = φn(Pn(f))

in which φn(Pn(f)) is φn evaluated at the mapping f 7→ Pn(f). Clearly, the class of

all estimators written as φn(Pn(f)) is far too vast for a unified study, and we need

to impose some restrictions on φn. Such a study was initiated in Hjort & Fenstad

(1992) which identified the limit of ε2Nε when θ̂n = X̄n + Rn where X̄n = Pn(ι)

is an iid average and equal to the empirical distribution evaluated at the identity

functional, and Rn is small in the sense that
√
m supn≥m |Rn| = oP (1). They also

worked with estimators of the form θ̂n = φ(Fn) defined in terms of the classical

empirical distribution function Fn and where φ was assumed to be so-called locally

Lipschitz differentiable – a rather strong functional differentiation concept which

implies Hadamard-differentiability. Such estimators can be written as φ(Pn(f))

where f ranges over identity functions over (−∞, t) for t ∈ R.
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This paper studies maps φn = φ which for a Donsker class F are Hadamard-

differentiable and estimators θ̂n which are close to Hadamard-differentiable func-

tionals in the sense that

θ̂n = φn(Pn(f)) = φ(Pn(f)) +Rn

where again
√
m supn≥m |Rn| = oP ∗(1). We then apply these limit theorems to

provide new sequential fixed width confidence intervals for such estimators, and use

tail approximations for Gaussian processes to provide approximations for the sizes

involved in computing such confidence sets.

Hadamard-differentiability (henceforth H-differentiability) is a quite weak differ-

entiability concept, which means that a very large class of statistical estimators can

be written as H-differentiable statistical functionals of the empirical distribution.

Examples include the Nelson–Aalen and Kaplan–Meier estimators, the empirical

copula process and a large class of Z-estimators (see Section 3.9.4 of van der Vaart

& Wellner, 1996). We say that a map φ : Dφ ⊂ D 7→ E defined on topological

vector spaces D and E is H-differentiable tangentially to a set D0 ⊆ D if there is a

continuous linear map φ̇θ : D0 7→ E, such that

(7) lim
n→∞

φ(θ + tnhn)− φ(θ)

tn
= φ̇θ(h)

for all converging sequences tn → 0 and hn → h such that h ∈ D0 and θ+ tnhn ∈ Dφ

for every n. Let ∆h(t) = φ(θ+ th). If φ is H-differentiable at P , its H-differential is

given by ∆′
h(0) where ∆

′ is the classical derivative. As we will deal with functionals

of empirical distributions, we will work exclusively with D ⊆ l∞(F) and E = l∞(E)
both equipped with the supremum norm. We will suppress the dependence which

φ has on F and the use of the uniform norm, and write φ(Pn) instead of φ(Pn(f)).

However, whether or not φ is Hadamard-differentiable is clearly dependent on both

F and the use of the uniform norm. See Remark 4 for further comments on this

interplay.

H-differentiability is one of many possible functional generalizations of ordinary

differentiation. The mathematical mathematical significance of H-differentiability is

that it is the weakest functional differentiability concept which respects a chain-rule

(Section A.5 Bickel et al., 1993). Its statistical significance is that it is the weakest

differentiability concept which allows a generally applicable functional extension

of the classical delta method of asymptotic statistics, called the functional delta

method (see van der Vaart & Wellner, 1996). We note that the above definition we

explicitly assumes that the H-differential is linear. This assumption can be avoided

at the cost of a somewhat more involved theory. As the main results of this paper

valid also under such a weakening, we follow the text of van der Vaart & Wellner

(1996) by assuming that the differential is linear as it simplifies our presentation.
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However, see Remark 2 for further discussion on the consequences of estimators with

non-linear H-differential for our investigation.

As a concrete example of an H-differentiable estimator, consider the Nelson–Aalen

estimator on [0, τ ]. Suppose that we observe Xi = (Zi,∆i) ∼ F where Zi = Yi ∧
Ci and ∆i = 1{Yi ≤ Ci} are defined in terms of unobservable iid failure times

Yi < τ distributed according to G and observable iid censoring times Ci. Under

fairly general conditions, given e.g. in Shorack & Wellner (1986), the Nelson–Aalen

estimator Λn(t) converges almost surely to its limit, and we have

Λn(t) =

∫

[0,t]

1

H̄n

dHuc
n

a.s.−−−→
n→∞

Λ(t) :=

∫

[0,t]

1

1−G(t)
dG

where

H
uc
n (t) =

1

n

n
∑

i=1

∆i1{Zi ≤ t} and H̄n(t) =
1

n

n
∑

i=1

1{Zi ≥ t}.

Let Fn be the bivariate empirical distribution of the observations Xi = (Zi, Ci). By

van der Vaart & Wellner (1996, example 3.9.19), we can write

Λn(t) = φ(Fn)

for an H-differentiable functional φ. This H-differentiability structure now leads to

the famous process convergence of the Nelson–Aalen estimator
√
n (Λn(t)− Λ(t))

W ∗−−−→
n→∞

φ̇(Z)(t)

through a simple application of the functional delta method (see van der Vaart &

Wellner, 1996, section 3.9), where Z is a P -Brownian Bridge on [0, τ) × {0, 1}. In

the same manner, our paper shows that if we let

Nε = sup

{

n ∈ N : sup
0≤t≤τ

|Λn(t)− Λ(t)| ≥ ε

}

= sup
{

n ∈ N : ‖Λn − Λ‖[0,τ ] ≥ ε
}

,

the H-differentiability structure implies that

(8) ε2Nε
W ∗−−−→

n→∞

(

sup
0≤s≤1

sup
0≤t≤τ

|φ̇(Zs)(t)|
)2

= ‖φ̇Zs‖2[0,1]×[0,τ ]

as an immediate consequence of our main result in Section 2, where Zs(z, c) is a

Kiefer-Müller process on (0, 1] × [0, τ) × {0, 1}. In this case, φ̇(Zs))(t) is also a

martingale in t for each s. This allows the application of the theorem of Section 3.2,

which simplifies the limit result of eq (8) to

ε2Nε
W−−−→

ε→0+
σ2

(

sup
0≤s≤1

sup
0≤t≤1

|S(s, t)|
)2

= σ2‖S‖2[0,1]2

for a Brownian Sheet S on [0, 1]2 where

σ2 =

∫

[0,τ ]

1−∆Λ(z)

P{Z ≥ z} dΛ(z).



ON THE ERRORS COMMITTED BY SEQUENCES OF ESTIMATOR FUNCTIONALS 7

We give an application of our limit results to sequential confidence sets in Section

3. The variable Nε is the last passage time of an ε-ball in the uniform norm, and

its limiting distribution can be used to construct sequential confidence sets. The

limit distribution of ε2Nε is defined in terms of a supremum of a Gaussian mean

zero process, and we utilize known tail-bounds for Gaussian processes to find closed

form approximations to the fixed-width confidence sets.

This martingale structure simplifies the construction of sequential confidence sets,

and Section 3.2 gives very tight approximations for the sizes needed to construct

such sets when the limit distribution of
√
n[φ(Pn) − φ(P )] is a martingale. This

results in a new and easily calculated sequential confidence set for the Nelson–Aalen

estimator. Indeed, let A−1 be the inverse of (the rapidly converging) sum

(9) A(λ) = 1−
∞
∑

k=−∞
(−1)k [Φ((2k + 1)λ)− Φ((2k − 1)λ)]

in which Φ is the cumulative distribution function of a standard Gaussian random

variable. We will show that for some m ∈ [σ2A−1(
√
α)2/ε20, σ

2A−1(
√
α/2)2/ε20 + 1],

we have that

P

(

Λ ∈
{

f : sup
t∈[0,τ ]

|f(t)− Λn(t)| ≤ ε0

}

for all n ≥ m

)

is close to 1− α. In particular, the choice m = σ2A−1(
√
α/2)2/ε20 + 1 works.

Section 3.3 deals with related a problem arising in stochastic programming. Shapiro

& Ruszczynski (2008) gives several practical applications in operations research

where interest is in the value of minx∈X g(x) where g(x) = EG(x, ξ) is the expected

loss of a loss-function G defined in terms on a random vector ξ which has a known

distribution. Often g(x) is difficult to compute, but G(x, ξ) is simpler to compute,

while ξ is possible to simulate. This motivates approximating min g(x) by min ĝ(x)

where ĝn(x) = 1
n

∑n
i=1 G(x, ξi) in which ξ1, ξ2, . . . , ξn are iid realizations of ξ. A

natural question is how to choose n. Our general theory provides a well-motivated

answer in a large class of cases, and we work out the details for a risk averse sto-

chastic problem using a so-called absolute semideviation risk measure.

We conclude the paper with surveying other statistically relevant results connected

or implied by our main result in Theorem 1. We propose two new measures of

asymptotic relative efficiency and also prove convergence of variables related to

Nε. These variables are the number of errors larger than ε, the ratio of errors of

sizes contained in [aε, bε] relative to all errors larger than ε and the mean size of

errors larger than ε. The two last variables have not been studied in the literature

previously.

2. Limit Theorems

We will work under the following set of assumptions.
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(1) (Probability structure and spaces) Assume given a sequence of iid observa-

tions {Xn}∞n=1 living on a metric space space X and distributed according to

P . Suppose that F is made up of real-valued measurable square-integrable

functions from X to R.

(2) (Donsker structure) Assume that F is Donsker (and hence Glivenko–Cantelli)

with respect to P , and is bounded with respect to P in the sense that

supx supf∈F |f(x)− Pf | < ∞.

(3) (Differentiability structure) Assume that φ : Dφ ⊆ D = l∞(F) 7→ l∞(E) =: E

is H-differentiable at P tangentially to D0 ⊆ D. Denote the H-differential at

P by φ̇.

Assumptions 1 and 2 are the basic assumptions of van der Vaart & Wellner (1996),

while assumption 3 is the weakest form of H-differentiability used in the literature

and assumes only differentiability at the single point P tangentially to D0 ⊆ D.

H-differentiability at P implies that φ is continuous at P (Proposition A.5.1,

Bickel et al., 1993), and secures that φ(Pn) converges outer almost surely to φ(P ).

In fact, the measurability of Ω̃ of eq. (2) shows that φ(Pn) even converge almost

surely to φ(P ) and that

(10) Ω̃ = {Pn → P} = {φ(Pn) → φ(P )} = {Nε < ∞ for each ε > 0}

where

Nε = sup{n : ‖φ(Pn)− φ(P )‖E > ε}.
Hence, Nε < ∞ with probability one, even though neither Nε nor φ(Pn) needs to be

measurable.

Most of the work in deriving the limit behaviour of Nε is done in the following

lemma. It states that weak convergence of the partial sum process

(s, f) 7→
√
n
[

P[sn] − P
]

(f)

in l∞([1,∞)× F) implies weak convergence of the partial “sum” (or “partial func-

tional”) process

(s, e) 7→
√
n
[

φ(P[sn])− φ(P )
]

(e)
W ∗−−−→

n→∞
φ̇(s−1

Zs).

in l∞([1,∞) × F) if φ is H-differentiable. In a certain sense, the lemma is a gen-

eralized version of the functional delta method. However, we will make use of the

measurability of

{φ(Pn) → φ(P )}
which is difficult to prove for other types of estimators. And so if such measura-

bility conditions are in place also for other weakly converging sequences having a

separable and Borel-measurable limit variable, the transference of weak convergence

from partial sums to “partial functionals” is valid. However, we state the Lemma

specifically for φ(Pn) for concreteness.
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Lemma 1. Under assumptions 1-3, we have that

√
n
[

φ(P[sn])(e)− φ(P )(e)
] W ∗−−−→

n→∞
φ̇(s−1

Zs)

on l∞([1,∞) × F) where Z is a Kiefer-Müller process on [1,∞) × F and φ̇(s−1
Zs)

is short-hand for φ̇ evaluated at the l∞(F)-map f 7→ s−1
Zs(f). The limit φ̇(s−1

Zs)

is a Gaussian process on l∞([1,∞)× E).

Proof. Recall that we assume that

φ : Dφ ⊆ D = l∞(F) 7→ l∞(E) = E

is H-differentiable at P tangentially to D0 ⊆ Dφ. That is, there exists is a continuous

linear map φ̇θ : D0 7→ E, such that

lim
n→∞

∥

∥

∥

∥

φ(θ + tnhn)− φ(θ)

tn
− φ̇θ(h)

∥

∥

∥

∥

E
= 0

for all converging sequences tn → 0 and hn → h such that h ∈ D0 and θ+ tnhn ∈ Dφ

for every n. Define hs : D 7→ E as the restriction map hs(f) = h(s0, f)
∣

∣

s0=s
for

h ∈ l∞([1,∞)×F) and let

Pφ = {h ∈ l∞([1,∞)×F) : for all s ≥ 1, hs ∈ Dφ} ,

P0 =
{

h ∈ l∞([1,∞)×F) : for all s ≥ 1, hs ∈ D0, lim
s→∞

hs = 0
}

,

Pn =
{

h ∈ l∞([1,∞)×F) : for all s ≥ 1, hs ∈ Dn, lim
s→∞

hs = 0
}

where

Dn =

{

h ∈ l∞(F) : P +
1√
n
h ∈ Dφ

}

.

Define

Φ : Pφ 7→ l∞([1,∞)× E), Φ̇P : P0 7→ l∞([1,∞)× E)
by

Φ(h)(s, e) = φ(hs)(e), Φ̇P (h)(s, e) = φ̇(hs)(e),

Define gn : Pm 7→ l∞([1,∞)× E) and cn : Pm 7→ l∞(E) by

gn(h) =
√
n

[

Φ

(

P +
1√
n
h

)

− Φ(P )

]

, cn(h) =
√
n

[

φ

(

P +
1√
n
h

)

− φ(P )

]

.

Although we know that H-differentiability of φ implies the validity of the extended

continuous mapping theorem (Theorem 1.11.1 van der Vaart & Wellner, 1996) on cn
for the spaces Dn and D0, we wish to use the mapping theorem on gn with the spaces

Pn and P0. To do this, we suppose that hn → h with hn ∈ Pn and h ∈ P0 and must

show that also gn(hn) → Φ̇(h). As P + 1√
n
hn,s ∈ Dφ for each s, H-differentiability

of φ at P tangentially to D0 implies that

sup
e∈E

|gn(hn)(s, e)− φ̇(h)(e)| → 0
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for each s, which is seemingly weaker than the required

sup
s∈[1,∞),e∈E

|gn(hn)(s, e)− φ̇(h)(e)| = sup
e∈E

sup
s∈[1,∞)

|gn(hn)(s, e)− Φ̇(h)(s, e)| → 0.

However, the inner supremum must be achieved by an s ∈ [1,∞). Indeed, as hn,s is

vanishing when s → ∞, we have that

lim
s→∞

gn(hn)(s, e) = gn(0) =
√
n [Φ(P )− Φ(P )] = 0

by the continuity of φ at P and

lim
s→∞

Φ̇(h)(s, e) = Φ̇(0) = 0

by the linearity of φ̇. Let s(e) be the attained maximum of sups∈[1,∞) |gn(hn)(s, e)−
Φ̇(h)(s, e)| and pick, say, the smallest one if the point of maximum is not unique.

We have that

sup
e∈E

sup
s∈[1,∞)

|gn(hn)(s, e)− Φ̇(h)(s, e)| = sup
e∈E

|gn(hn)(s, e)− Φ̇(h)(s, e)|

= sup
e∈E

|cn(hs(e),n)(e)− Φ̇(hs(e))(e)|.

However, as hn,s ∈ Dn and hs ∈ D0 for any s ≥ 1, we have that h̃n = hs(e),n is just

a sequence in Dn converging to h̃ = hs(e), an element of D0. Indeed, let e ∈ E be

given. Then

‖hs(e),n − hs(e)‖F ≤ sup
s≥1

‖hn,s − hs‖F = ‖hn − h‖[1,∞)×F → 0

where the convergence follows as we know that hn → h in l∞([1,∞),F). We can

conclude with gn(hn) → φ̇(h), proving the validity of the extended continuous map-

ping theorem.

As Xn =
√
n[P[sn] − P ] converges weakly to a separable limit on l∞([1,∞)× F),

we are left with showing that Xn is concentrated on Pn. There are two defining

properties of Pn. The first is trivially fulfilled by Xn for each n. Notice that if φ is

to be used as a statistical functional, clearly

Pn = P +
1√
n

√
n[Pn − P ] ∈ Dφ,

and hence
√
n[Pn − P ] ∈ Dn =

{

q ∈ l∞(F) : P +
1√
n
q ∈ Dφ

}

.

for each n. As

P +
1√
n
Xn = P +

1√
n

√
n[P[sn] − P ] = P[sn],

this means that also

P +
1√
n
Xn(s, f) ∈ Dn

for every s ≥ 1.
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However, the second defining property is only fulfilled with probability one. In-

deed, Talagrand (1987) (see also Theorem 6.6.A of Dudley, 1999) shows that as F
is Glivenko–Cantelli and made up of measurable and integrable functions, we have

that

P
(

lim
n→∞

‖Pn − P‖F = 0
)

= 1,

even though ‖Pn − P‖F might not itself be measurable. As

{ lim
s→∞

Xn(s, e) = 0} = { lim
n→∞

‖Pn − P‖F = 0} =: Ω̃,

the process Xn is included in Pn with probability one, which suffices to allow the

application of the extended continuous mapping theorem, as the exclusion of a mea-

surable set with probability zero does not change the (outer) probability structure

of the problem. This is seen as follows. Given a B ⊆ Ω, we have that

P ∗(B ∩ Ω̃) = P
((

B ∩ Ω̃
)∗)

= P (B∗ ∩ Ω̃) = P (B∗) = P ∗(B),

where the second equality comes from the measurability of Ω̃C and exercise 1.2.15

in van der Vaart & Wellner (1996). Hence, we may conclude with

√
m
[

φ(P[sn])− φ(P )
]

= gn(t,Xn)
W ∗−−−→

n→∞
Φ̇P (Xs) = φ̇(s−1

Zs)

on [1,∞)×E for a Kiefer-Müller process Z on [1,∞)×F from the extended contin-

uous mapping theorem. Finally, the Gaussianity of the limit process follows either

from the functional definition of Gaussian processes in Banach spaces or Lemma

3.9.8 of van der Vaart & Wellner (1996). �

Theorem 1. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by [0, 1)×F
and φ̇Zs is φ̇ evaluated at the map f 7→ Zs(f). Given assumptions 1-3, the following

is true.

(1) For Nε = sup{n : ‖φ(Pn)− φ(P )‖F}, we have that

(11) ε2Nε
W ∗−−−→

n→∞
‖φ̇Zs‖2(0,1]×E .

(2) Given an estimator θ̂n
a.s.∗−−−→
n→∞

θ, let Nε = sup{n : ‖θ̂n − θ‖E > ε}. Assume

θ̂n is close to being H-differentiable in the sense that θ̂n = φ(Pn) +Rn where√
m supn≥m ‖Rn‖E is oP ∗(1). We then have

(12) ε2Nε
W ∗−−−→

n→∞
‖φ̇Zs‖2(0,1]×E .

In both cases, φ̇Zs is a zero mean Gaussian process. If D0 is a linear space, then

φ̇Zs has a covariance function with the product structure

(13) ρ ((s1, e1), (s2, e2)) := Eφ̇Zs1(e1)φ̇Zs2(e2) = (s1 ∧ s2)Eφ̇W
◦(e1)φ̇W

◦(e2).

where W ◦ is a P -Brownian bridge process on F .
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Proof. For the first part, we note that in light of eq. (3), it suffices to identify the

weak limit of supn≥m

√
m‖φ(Pn)− φ(P )‖E . Thanks to the Lemma, this is easy, as

sup
n≥m

√
m‖φ(Pn)− φ(P )‖E = sup

s≥1
‖φ(P[sn])− φ(P )‖E =

√
m[Φ(Xm)− φ(P )]‖E

= ‖
√
m[Φ(Xm)− φ(P )]‖[1,∞)×E

W ∗−−−→
n→∞

‖φ̇s−1
Z̃s‖[1,∞)×E

by the continuous mapping theorem. Finally, we know that Zs(f) = s−1
Z̃1/s(f) is a

Kiefer-Müller process on (0, 1]×F . This proves the first claim, and we can readily

extend this case to the second claim. Note that

P ∗(ε2Nε > y) = P ∗
(

sup
s≥1

√
m‖θ̂[ms] − θ‖E >

√
y0

)

.

Thanks to Lemma 1.10.2 (i) of van der Vaart & Wellner (1996), the stated conver-

gence follows if
∣

∣

∣

∣

sup
s≥1

√
m‖θ̂[ms] − θ‖ − sup

s≥1

√
m‖φ(P[ms])− θ‖E

∣

∣

∣

∣

P∗−−−→
n→∞

0.

However, sups≥1 ‖·‖E = ‖·‖[1,∞)×E respects the triangle inequality, so that the above

difference is bounded by
√
m supn≥m ‖Rn‖E which converge to zero in probability by

assumption.

We are left with proving that φ̇Z has the stated covariance structure of eq. (13).

Construct a sequence W ◦
1 ,W

◦
2 , . . . of independent P -Brownian Bridges, and define

Zn(s, f) :=
1√
n

[ns]
∑

i=1

W ◦
i (f)

which is a Gaussian mean zero process with covariance function given by

Cov [Zn(s1, f1),Zn(s2, f2))] =
[ns1] ∧ [ns2]

n
Cov [Zn(1, f1),Zn(1, f2)] .

This covariance function converges to the covariance function of a Kiefer-Müller

process on (0, 1] × F , so that the finite dimensional distributions of Zn converge

weakly to those of Z. We now prove that Zn is tight so that Zn
W ∗−−−→

n→∞
Z. Let

̺P (f) = (P (f − Pf)2)
1/2

be the variance seminorm. Following the proof of Theorem

2.12.1 of van der Vaart & Wellner (1996), we need to show that for any ε, η > 0,

there exists a δ > 0 so that

lim sup
n→∞

P ∗

(

sup
|s−t|+̺(f,g)<δ

|Zn(s, f)− Z(t, g)| > ε

)

< η.

By the triangle inequality, the supremum in the above display is bounded by

(14) sup
|s−t|<δ

‖Zn(s, f)− Zn(t, f)‖F + sup
0≤t≤1

‖Zn(t, f)‖Fδ
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where Fδ = {f − g : f, g ∈ F , ̺(f − g) < δ}. We can hence bound the probability

of each of these terms being larger than ε separately. By the generalized Lévy

inequality (see e.g. De la Pena & Gine, 1999, Theorem 1.1.5), we have that

P

(

sup
0≤t≤1

‖Zn(t, f)‖Fδ
> ε

)

= P

(

max
k≤n

‖ 1√
n

k
∑

i=1

W ◦
i (f)‖Fδ

> ε

)

≤ 9P (‖Zn(1, f)‖Fδ
> ε/30) .

An inspection of the covariance of Zn(1, f) reveals that it is a P -Brownian Bridge

for each n. As F is Donsker, a P -Brownian Bridge is continuous with respect to

̺P , so that ‖Zn(1, f)‖Fδ
converges to zero in probability as δ → 0+. To bound the

probability that the first term of eq. (14) is larger than ε, the arguments contained

in the proof of Theorem 2.12.1 in van der Vaart & Wellner (1996) imply that

P

(

sup
|s−t|<δ

‖Zn(s, f)− Zn(t, f)‖F > ε

)

≤
⌈

1

δ

⌉

P

(

max
k≤nδ

‖ 1√
n

k
∑

i=1

W ◦
i (f)‖F > ε

)

=

⌈

1

δ

⌉

P

(

max
k≤nδ

‖ 1√
δn

k
∑

i=1

W ◦
i (f)‖F >

ε

δ

)

.

Note again that Znδ is a P -Brownian Bridge W ◦ for each n. By the generalized

Lévy inequality, the above display is bounded by

9

⌈

1

δ

⌉

P
(

‖Znδ(1, f)‖F >
ε

30δ

)

= 9

⌈

1

δ

⌉

P
(

‖W ◦‖F >
ε

30δ

)

.

the finite second moment of ‖W ◦‖F (van der Vaart & Wellner, 1996, Lemma 2.3.9)

enables us to envoke the Borell inequality (van der Vaart & Wellner, 1996, Propo-

sition A.2.1) which imples that ‖W ◦‖F has exponentially decreasing tails. Hence,

the above display converges to zero. We assumed that D0 is a linear space, so that

we can apply φ̇ to Zn, which converges weakly to φ̇Z by the continuous mapping

theorem. The linearity of φ̇ also shows that

φ̇Zn(s, e) =
1√
n

[ns]
∑

i=1

φ̇W ◦
i (e),

which has covariance function

ρn ((s1, e1), (s2, e2)) = Cov
[

φ̇(Zn(s1, f))(e1), φ̇(Zn(s2, f))(e2)
]

=
[ns1] ∧ [ns2]

n
Cov

[

φ̇(Zn(1, f))(e1), φ̇(Zn(1, f))(e2)
]

.

As φ̇Zn is Gaussian and converges weakly to φ̇Z and as φ̇Z1 = φ̇W ◦ for a P -Brownian

Bridge W ◦, we have that ρn → ρ, where ρ is defined in eq (13). �

Several remarks are in order.
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Remark 1. When φ(Pn) is a random variable, so that E = {e} is a singleton, the

covariance structure of eq. (13) shows that φ̇Zs =
√

Var IFφ(X)Bs for a Brownian

Motion Bs and where IFφ is the influence function of φ. Thus Theorem 1 is a proper

generalization of the basic result in Hjort & Fenstad (1992).

Remark 2. We note that the proofs of Lemma 1 and the first two parts of

Theorem 1 does not use the assumed linearity of φ̇, and is still true when the

definition of H-differentiability is weakened to only assume eq. (7). The chain-rule

still applies, and several new maps can be shown to be H-differentiable in this weaker

sense. See Römisch (2005) for a survey of such results. Our proof also applies in

the case of set-valued functionals when an appropriate metric for comparing sets is

assumed, such as the Attouch-Wets topology.

Remark 3. The limit of ε2Nε depends only on three things. Firstly, the Kiefer-

Müller process is a mean zero Gaussian process, with covariance structure defined

through P . Secondly, both Nε and the limit variable is defined in terms of the

uniform topology on E . Thirdly, while Nε is defined in terms of the full φ, the

limit only depends on the much simpler φ̇. This is interesting from a statistical

perspective and motivates the definition of

σ2 :=
Median‖φ̇Zs‖2(0,1]×E
Median‖Zs‖2(0,1]×F

(15)

as a measure of variance for φ(Pn). There are two main reasons for scaling the

median of the limit variable of ε2Nε with Median‖Zs‖2(0,1]×F . Firstly, all stochasticity

of θn = φ(Pn) originates from Pn, making it natural to separate the variability

of Pn and the variability inherent in the structure of φ itself. Secondly, notice

that if θ̂ = X̄n is the empirical mean of iid random variables X1, X2, . . . , Xn, then

φ̇Zs = σBs for a Brownian Motion process Bs. Hence,

Median‖φ̇Zs‖2 = σ2 Median sup
0≤s≤1

|Bs|2.

so that the σ2 of eq. (15) coincides with the standard definition of variance.

Remark 4. The structure of the class of H-differentiable functionals depends

on the topology of both D and E. For a collection C ⊆ D we call φ a C-differentiable
functional at θ if

lim
t→0

sup
h∈C, θ+th∈Dφ

∥

∥

∥

∥

φ(θ + th)

t
− φ̇θ(h)

∥

∥

∥

∥

= 0.

H-differentiability is equivalent to C-differentiability when C is the class of all com-

pact sets. If other topologies on D or E are used, this changes the class of H-

differentiable functionals in non-trivial ways. We note that the investigation of Dud-

ley (1992) works with Fréchet differentiability functionals with p-variation norms on

the D-space. Fréchet differentiability is C-differentiability when C is the class of all
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bounded sets of D, which is strictly stronger than H-differentiability – when the

same topology is used. However, the classes of H-differentiable and Fréchet differ-

entiable functionals are incommensurable when different topologies are used. See

Section 5.2 of Shao (2003) for examples of this incommensurability, and exercise 5.27

of Shao (2003) for a class of functionals of the classical empirical distribution which

are Fréchet differentiable with respect to the L1-norm, but not H-differentiable with

respect to the uniform norm. We have followed van der Vaart & Wellner (1996) in

working with the uniform topology on both D and E.

Remark 5. When working with estimators of the form θ̂n = φ(Pn) + Rn, we

can no longer guarantee the measurability of {Nε < ∞ for each ε > 0} as eq. (10)

need not hold. If Rn 6≡ 0 but Rn
a.s.∗−−−→
n→∞

0, this only provides a the existence of a

version of the measurable cover of ‖θ̂n − φ(P )‖, which we denote by ‖θ̂n − φ(P )‖⋆,
that converges to zero almost surely. Although the convergence of eq. (12) is valid

without measurability, we can only guarantee the measurability of {N⋆
ε < ∞} for

ε > 0 where N⋆
ε := sup{n : ‖θ̂n − θ‖⋆E > ε}.

3. Sequential confidence sets

As in Hjort & Fenstad (1992) and Stute (1983), our results about the limiting

distribution of ε2Nε can be used to construct sequential fixed-volume confidence

regions. As our limit result encompasses all H-differentiable functionals, this leads

to new confidence sets for many estimators, the Nelson–Aalen estimator being one

of them. In this connection we remark that Bandyopadhyay et al. (2003) find fixed-

value confidence intervals for the H-differentiable functional

(16) φ(FX,Y ) =

∫

FX dFY = P (X ≤ Y ).

The basis for their construction of a fix-volume confidence set for P (X ≤ Y ) is a

direct application of a special case of Theorem 1.

The connection between the limit of Nε and the construction of fixed-width con-

fidence sets is as follows. Calculate or approximate the upper α quantile of the

limit variable of the theorem and denote this quantile by λα. Fix the radius of the

confidence set as ε0 and compute m = [λα/ε
2
0]. By the distributional convergence,

we get that

P (ε2Nε < λα) = P (‖φ(Pn)− φ(P )‖E ≤ ε0 for all n ≥ m)

= P (φ(P ) ∈ B (ε0, φ(Pn)) for all n ≥ m)(17)

is close to 1− α where

B(ε, y) = {x : ‖x− y‖E ≤ ε}
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is an ε-ball in l∞(E). This has intuitive appeal. Whereas confidence sets are usually

of the form

P (φ(P ) ∈ Cn) ≥ 1− α, for all n ≥ m

and thus only give a probability statement for one n ≥ m at the time, a fixed-volume

confidence set gives a simultaneous answer for all n ≥ m. This is intuitively pleasing,

and Hjort & Fenstad (1992) humorously mentioned that even Serfling’s physician

(Serfling, 1980, page 49) is interested in sequential fixed-volume confidence regions.

The difficult step in constructing the fixed width confidence set of eq. (17) is to

calculate λα. In some special cases, as in the case of eq. (16), the limit distribution

of ε2Nε can be found in a closed form expression. This seems out of reach for a

completely general H-differentiable φ. However, in some cases we can find useful

approximations for tail-probabilities of ‖φ̇Zs‖2(0,1]×E . Although this quantile can in

theory be simulated directly from the Donsker Theorem, this is often very time

consuming, if even possible.

When the limit variable φ̇Zs is Gaussian, we have the well-developed theory of

Gaussian tail bounds at our disposal. Under typical conditions, φ̇Zs has zero mean

– see Section 3.9.2 of van der Vaart & Wellner (1996). In this case we can use

Proposition A.2.1 of van der Vaart & Wellner (1996) that gives the Borell inequality

in the form

(18) P (‖φ̇Zs‖2(0,1]×E ≥ λ) = P (‖φ̇Zs‖(0,1]×E ≥
√
λ) < 2 exp

(

− λ

8E‖φ̇Zs‖2(0,1]×E

)

for all λ > 0. The following Lemma shows that the above inequalities are non-trivial

under our assumptions.

Lemma 2. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by [0, 1)×F
and φ̇Zs is φ̇ evaluated at the map f 7→ Zs(f). Given assumptions 1-3, ‖φ̇Zs‖(0,1]×E
has finite second moment.

Proof. By Proposition 1 below, we have

E‖φ̇Zs‖2(0,1]×E =

∫ ∞

0

P (‖φ̇Zs‖2(0,1]×E > x) dx ≤ 2

∫ ∞

0

P (‖φ̇Zs‖2E > x) dx = 2E‖φ̇Z‖2E

As φ̇Z is the weak limit of
√
n[φ(Pn) − φ(P )] as n → ∞, Lemma 2.3.9 of van der

Vaart & Wellner (1996) shows that E‖φ̇Z‖2E is finite. �

The expectation of inequality 18 is simpler to approximate than the full distribu-

tion of ‖φ̇Zs‖2(0,1]×E and provides a general bound for λα. However, E‖φ̇Z‖2E is often

difficult to compute and the constants involved can be improved in special cases.

The following subsections gives explicit bounds for some classes of special cases.

Remark 6. The confidence sets presented in this section rely on the approx-

imation P (ε2Nε < λα) ≈ 1 − α through Theorem 1. An alternative construction



ON THE ERRORS COMMITTED BY SEQUENCES OF ESTIMATOR FUNCTIONALS 17

of approximate sequential confidence sets for a fixed ε > 0 can be based on the

following observation. Let

(s, e) 7→ Rms(e) =
[

φ(P[ms])(e)− φ(P )(e)
]

−
[

φ̇(P[ms] − P )
]

and suppose a bound of the type

(19) P

(

sup
s≥1,e∈E

|Rms(e)| > y

)

≤ r(y)

is known. Following the notation of Section 1, the triangle inequality shows that

(20) P (ε2Nε > y) ≤ P

(√
m sup

s≥1,e∈E
|φ̇(P[ms] − P )(e)| > √

y0/2

)

+ r (
√
y0/2) .

By the linearity of φ̇, the first term is the supremum of a sequential empirical

process, for which non-asymptotic bounds exist. The inequality of Talagrand (1996)

applies to sequential empirical processes as well, as it is proved through estimating

the Laplace transform, and the exponentiated partial sum is a submartingale, so

that Doob’s inequality can be applied. However, although good constants for the

Talagrand inequality are given in Massart (2000) for the non-sequential empirical

process, we are unaware of analogous results for the sequential case. Supposing such

constants known, one could bound any quantile from eq. (20). However, it may

be difficult to find useful r-functions for eq. (19). Analogously to the unspecified

precision underlying P (ε2Nε < λα) ≈ 1− α, one could also give conditions securing

sups≥1,e∈E |Rms(e)| = op(1) and ignore the second term of eq. (20) when solving for

y in eq. (20).

3.1. A reduction to the Kolmogorov–Smirnov limit. The weak limit of ε2Nε

is almost the limit of the Kolmogorov–Smirnov Goodness-of-fit functional for the

estimator φ(Pn). Approximating such goodness-of-fit limits is a well-known problem

and have been studied in many settings. The following result relates the ε2Nε limit

to that of the Kolmogorov–Smirnov functional.

Proposition 1. Let Zs(f) = Z(s, f) be a Kiefer-Müller process indexed by

[0, 1) × F and φ̇Zs is φ̇ evaluated at the map f 7→ Zs(f). Given assumptions 1-3,

we have

P (‖φ̇Zs‖(0,1]×E > λ) ≤ 2P (‖φ̇Z‖E > λ).

where Z is an F -Brownian Bridge.

Proof. Fix an integer k > 0 and let m = 2k. For k = 1, 2, . . . ,m and t ∈ [0, 1]d, let

Uk(e) = φ̇Zj/m(e)− φ̇Z(j−1)/m(e)

which is a symmetric stochastic process, and where U1, U2, . . . , Uk are independent

of each other. As φ̇Zj/m(e) =
∑j

i=1 Ui(e), the general Lévy’s inequality given e.g.
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in Proposition A.1.2 in van der Vaart & Wellner (1996), shows that

P

(

sup
1≤j≤m

‖φ̇Zj/m‖E > λ

)

= P

(

sup
1≤j≤m

∥

∥

∥

∥

∥

j
∑

i=1

Ui

∥

∥

∥

∥

∥

E

> λ

)

≤ 2P

(∥

∥

∥

∥

∥

m
∑

i=1

Ui

∥

∥

∥

∥

∥

E

> λ

)

,

which equals 2P (‖φ̇Z1‖E > λ). As Z1 is an F -Brownian Bridge, the claimed upper

bound follows from monotone convergence as k → ∞. �

The above result leads e.g. to explicit bounds for the limit distribution of ε2Nε

for the two-dimensional empirical distribution function through the results of Adler

& Brown (1986). Let W be a two-dimensional real valued F -Brownian-Bridge on

R
2 and K an F -Kiefer-process on (0, 1] × R

2. The above lemma, symmetry of zero

mean Gaussian processes and Theorem 3.1 of Adler & Brown (1986) shows that for

any F , we have

P

(

sup
(s,t)∈(0,1]×R2

|Zs(t)| >
√
λ

)

≤ 2P

(

sup
t∈R2

|W(t)| >
√
λ

)

≤ 4P

(

sup
t∈R2

W(t) >
√
λ

)

≤ 4
∞
∑

k=1

(8k2λ− 2)e−2k2λ.

3.2. Gaussian Local Martingales. If φ̇W ◦ is a univariate local martingale in-

dexed by [0, τ) the limit variable of Nε has a particularly simple structure.

Theorem 2. Assume that D0 is linear, that E is [0, τ) for some 0 < τ < ∞,

and that for each s, the process φ̇(Zs)(t) is a square integrable continuous local

martingale in t starting at zero. Let
〈

φ̇W ◦, φ̇W ◦
〉

s
be the covariation process of

φ̇W ◦ and define σ2(t) = inf
{

s :
〈

φ̇W ◦, φ̇W ◦
〉

s
> t
}

. Then the limit variable of

Theorem 1 has the same distribution as σ2‖S‖2[0,1]2 where S is a Brownian Sheet on

[0, 1]2 and σ2 = σ2(τ) is non-stochastic.

Proof. The Dambis Dubuins-Schwarz Theorem (Revuz & Yor, 1999, Theorem V.1.6)

shows that there exists a versionW of Brownian Motion so thatW (σ2(t)) = φ̇W ◦(t).

As φ̇W ◦ is a continuous mean zero Gaussian process with a product covariance

structure given by eq. (13), its quadratic variation process is non-stochastic (see

exercise V.1.14 Revuz & Yor, 1999). Hence,

Eφ̇W ◦(t)φ̇W ◦(s) = EW (σ2(t))W (σ2(s)) = σ2(t) ∧ σ2(s).

Theorem 1 shows that φ̇Z is a continuous mean zero Gaussian process with a product

covariance structure given by eq. (13). As the distribution of a mean zero Gaussian

process is determined by its covariance structure, this shows that defining S by

φ̇Z = S(s, σ2(t)) makes S(s, t) a Brownian Sheet on [0, 1]× [0, σ2(τ)]. Let N be the
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limit variable of Theorem 1. As φ̇W ◦ is continuous, its quadratic variation is also

continuous, which makes its inverse σ2(t) continuous as well. Hence,

N =

(

sup
0≤s≤1

sup
0≤t≤τ

∣

∣S(s, σ2(t))
∣

∣

)2

=

(

sup
0≤s≤1

sup
0≤t≤1

∣

∣S(s, tσ2(τ))
∣

∣

)2

.

The time scaling property of the Brownian Sheet then shows that

N = σ2(τ)

(

sup
0≤s≤1

sup
0≤t≤1

∣

∣

∣
S̃(s, t)

∣

∣

∣

)2

= σ2‖S̃‖2[0,1]2

where S̃ is a Brownian Sheet on [0, 1]2. �

This leads directly to the following result concerning the Nelson–Aalen estimator.

Its proof follows as a direct consequence of Theorem 2 from the well-known fact that

the Nelson–Aalen estimator is composed of H-differentiable maps (van der Vaart &

Wellner, 1996, Example 3.9.19) and has a Gaussian Martingale limit. We also note

that a completely analogous corollary is also valid for the Kaplan–Meier estimator

(see example 3.9.31 of van der Vaart & Wellner (1996) and Theorem IV.3.2 of

Andersen et al. (1992)).

Corollary 1. Let Nε be the last time the Nelson–Aalen estimator Λ̂n is more

than ε away from Λ with respect to supremum distance and let

σ2(t) =

∫

[0,t]

1−∆Λ(z)

P{Z ≥ z} dΛ(z).

Then

(21) ε2Nε
W−−−→

ε→0+
σ2

(

sup
0≤s≤1

sup
0≤t≤1

|S(s, t)|
)2

for a Brownian Sheet S on [0, 1]2 and where σ2 = σ2(τ).

This can also be seen independently when working directly with the heuristics

leading to Theorem 1 through

Ym(s, t) =
√
m(Λ̂[ms](t)− Λ(t))

using martingale calculus. Using theory presented in Andersen et al. (1992), con-

vergence of Ym(s, t) to the Brownian Sheet W (s, σ2(t)) as m → ∞ can be proven.

However, such a proof would use the fine structure of φ. In contrast, the above

corollary is a trivial consequence of Theorem 2, and only rests on the well-known

martingale structure of φ̇Zs.

In the setting of Theorem 2, we can reach tight and general bounds for the m of

eq. (17). Let b =
√
λα/σ where λα is the upper α quantile of σ2‖S‖[0,1]2 . We have

that

(22) P (‖Bs‖[0,1] > b) ≤ P (‖S(s, t)‖[0,1]2 > b) = α ≤ 2P (‖Bs‖[0,1] > b),
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where B is Brownian motion on [0, 1] and where the upper bound is analogous to

Proposition 1. Hence,

A−1(
√
α) ≤ b ≤ A−1(

√
α/2)

where

A(λ) = 1−
∞
∑

k=−∞
(−1)k [Φ((2k + 1)λ)− Φ((2k − 1)λ)]

is the cumulative distribution function of ‖Bs‖[0,1] given in Section 2.7 of Sen (1981).

As m = [λα/ε
2], we get that

σ2A−1(
√
α)2/ε20 ≤ m ≤ σ2A−1(

√
α/2)2/ε20 + 1.

One may improve on this bound by approximating the distribution of ‖S(s, t)‖[0,1]2
directly instead of using eq. (22).

3.3. An application to risk averse stochastic problems. As discussed in Shapiro

& Ruszczynski (2008), there is a rich class of applications in operations research

where one encounters problems of the form

(23) min
x∈X

g(x)

where g(x) = EG(x, ξ) is the expected loss of a loss-function G defined in terms on a

random vector ξ which has a known distribution and is supported on a set Ξ ⊆ R
d.

Often g(x) is difficult to compute, but G(x, ξ) is simpler to compute, while ξ is

possible to simulate. As numerical optimization of eq. (23) requires many evaluations

of g(x) at different values of x, a well-motivated procedure is to approximate g(x)

by

ĝn(x) =
1

n

n
∑

i=1

G(x, ξi)

where ξ1, ξ2, . . . , ξn are iid realizations of ξ. The so-called sample average approxi-

mation to the stochastic problem of eq. (23) is then

(24) min
x∈X

ĝ(x).

Shapiro (2008) derives limit theorems for the sample average approximation for cer-

tain minimax stochastic problems by showing that under certain assumptions that

are natural in many operation research problems, the estimator of eq. (24) is a

H-differentiable functional of the empirical distribution. Under uniqueness assump-

tions on the optimization problem, the functional delta method then shows that√
n(vn−v) is asymptotically normal, where vn = minx∈X ĝ(x) and v = minx∈X g(x).

For concreteness, let us work with the following risk averse stochastic problem, given

by

min
x∈X

ρλ [G(x, ξ)]
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where G : Rm×Ξ and ρλ(Z) := EZ+λE[Z−EZ]+ is the so-called absolute semide-

viation risk measure with λ ∈ [0, 1]. A most fundamental problem for using sample

average approximations is how to choose n. First of all, one needs to guarantee

that approximating g(x) by ĝ(x) does not distort the minimum value too much.

Secondly, one needs to make sure that the size of n that guarantees such a sufficient

precision level is not so large as to exceed the computational burden of working

work directly with g(x). Through assuming an exponential bound of the moment

generating function of ξ, Shapiro (2008) provides a formula for n(α, ε) such that for

a given α > 0,

(25) P (|v̂n(α,ε) − v| < ε) ≥ 1− α

where

(26) n(α, ε) =
C1

ε2

(

log
C2

ε
+ logα−1

)

for constants C1, C2 depending on G, X and the distribution of ξ only. Without

assuming exponential bounds for the moment generating function of ξ, Theorem 1

identifies the limit distribution of ε2Nε = ε2 sup{n : |vn − v| > ε}. Assuming the

uniqueness conditions stated in Shapiro (2008), vn is asymptotically Gaussian, so

that Remark 1 and the computations of Section 3.2 shows that

(27) n ≥ N(α, ε) := σ2A−1(
√
α/2)2/ε2

implies that

(28) P (|v̂m − v| < ε for all m ≥ n)

is close to 1 − α for sufficiently small ε. Here σ2 is the asymptotic variance of√
n(vn − v) which is given in Equation 3.11 of Shapiro (2008) as

σ2 = Var
{

G(x∗, ξ) + λα∗ [G(x∗, ξ,−EG(x∗, ξ)]+ + λ(1− α∗) [−G(x∗, ξ)− EG(x∗, ξ)]+
}

defined in terms of

x∗ = argmin
x∈X

ρλ [G(x, ξ)] , α∗ = P (G(x∗, ξ) ≤ EG(x∗, ξ)).

This result is valid under much less stringent assumptions than that of Shapiro

(2008), but is asymptotic in contrast to the finite sample bound of n(α, ε) in eq. (26).

It is interesting to note that n(α, ε) is larger than N(α, ε) by a factor of log ε−1. This

seems to originate from the coarseness of the exponential inequalities used in Shapiro

(2008).

4. Further applications

This section surveys other statistically motivated applications of Theorem 1.
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4.1. The multivariate case. Although we have suppressed it from our notation,

Theorem 1 is valid also in the multivariate case. Given a norm ‖ · ‖Rd on R
d, such

as the Euclidean or the maximum norm, we can work with

l∞(E) =
{

f ∈ M(E 7→ R
d) : sup

e∈E
‖f(e)‖Rd < ∞

}

whereM(E 7→ R
d) is the space of all functions from E to Rd. Suppose that θ̂1,n

a.s.∗−−−→
n→∞

θ1 and θ̂2,n
a.s.∗−−−→
n→∞

θ2 are two sequences of estimators pertaining to the regularity

conditions of Theorem 1 and let

Nε := sup
{

n :
∥

∥

∥
θ̂1,n − θ1

∥

∥

∥
> ε and

∥

∥

∥
θ̂2,n − θ2

∥

∥

∥
> ε
}

= sup
{

n : max
{∥

∥

∥
θ̂1,n − θ1

∥

∥

∥
,
∥

∥

∥
θ̂1,n − θ1

∥

∥

∥

}

> ε
}

be the last time an error larger than ε is committed both for θ̂1,n and θ̂2,n. As

the map F 7→ (F, F ) is linear and hence trivially H-differentiable, the chain-rule of

H-differentiability and Theorem 1 show that

ε2Nε
W ∗−−−→

ε→0+
sup

(i,s,e)∈{1,2}×(0,1]×E
|Zi,s(e)|2 = ‖Zs(e)‖2(0,1]×E

for a vector-valued Kiefer-Müller process Zs = (Z1,s,Z2,s). Note that Z1,s and Z2,s

are independent if
√
n(θ̂1,n − θ1) is asymptotically independent of

√
n(θ̂2,n − θ2).

4.2. The number of ε-misses and two new variables. So far we have only

worked with the variable Nε. However, weak convergence of several statistically

interpretable variables also follow from Lemma 1.

Corollary 2. Let

Qε =
∞
∑

n=1

I{‖φ(Pn)− φ(P )‖ ≥ ε}

be the number of errors larger than ε. Further let

Rε(a, b) =

∑∞
n=1 I{aε ≤ ‖φ(Pn)− φ(P )‖ ≤ bε}
∑∞

n=1 I{‖φ(Pn)− φ(P )‖ ≥ ε}
be the ratio of errors of sizes contained in [aε, bε] relative to all errors larger than ε

and

Mε =

∑∞
n=1 ‖φ(Pn)− φ(P )‖I{‖φ(Pn)− φ(P )‖ ≥ ε}

∑∞
n=1 I{‖φ(Pn)− φ(P )‖E ≥ ε} ,

the mean size of errors larger than ε. We then have that

ε2Qε
W−−−→

ε→0+

∫ ∞

0

I
{

‖φ̇Zs‖E ≥ 1
}

ds.

Denoting the limit variable of ε2Qε by Q, we further have

Rε(a, b)
W−−−→

ε→0+
Q−1

∫ ∞

0

I
{

a ≤ ‖φ̇Zs‖E ≤ b
}

ds,
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which we will call R(a, b). Finally, we also have

ε−1Mε
W−−−→

ε→0+
Q−1

∫ ∞

0

‖φ̇Zs‖EI
{

‖φ̇Zs‖E ≥ 1
}

ds.

Proof. We will only consider Qε, as the other cases follow similarly. Let us first show

that for

Qε(l) =
∞
∑

n=[l/ε2]

I{‖φ(Pn)− φ(P )‖ ≥ ε}

we have

ε2Qε(l)
W−−−→

ε→0+

∫ ∞

l

I
{

‖φ̇Zs‖E ≥ 1
}

ds

each l > 0 and we afterwards let l → 0+. Indeed, as

∞
∑

n=[l/ε2]

I{‖φ(Pn)− φ(P )‖ ≥ ε} =

∫ ∞

[l/ε2]

I{‖φ(P[s]n)− φ(P )‖ ≥ ε} ds

a change of variables gives

ε2Qε(l) =

∫ ∞

l

I{
√
m‖φ(P[ms])− φ(P )‖ ≥ 1} ds+ oP ∗(1) = Ql(Xn) + oP ∗(1),

where Ql is the mapping

D 7→
∫ ∞

l

I{sup
f∈F

|Ds(f)| ≥ 1} ds.

As Ql is a continuous mapping in l∞([l,∞) × E), the claimed limit follows from

the continuous mapping Theorem and a trivial extension of Lemma 1 to prove

convergence on l∞([l,∞) × E) (when l > 0) instead of l∞([1,∞) × E). The full

convergence follows if we show that for each δ > 0 we have

lim
c→∞

lim sup
n→∞

P ∗

(

sup
l≤1/c

|Dl(Xn)−D0(Xn)| ≥ δ

)

= 0.

The linearity of the integral and subadditivity of outer measures implies that

P ∗

(

sup
l≤1/c

|Ql(Xn)−Q0(Xn)| ≥ δ

)

= P ∗

(

∫ 1/c

0

I{
√
n‖φ(P[ns])− φ(P )‖ ≥ 1} ds ≥ δ

)

≤ P ∗

(

c−1I{ sup
0<s≤1/c

√
n‖φ(P[ns])− φ(P )‖ ≥ 1} ≥ δ

)

= P ∗

(

I{ sup
0<s≤1/c

√
n‖φ(P[ns])− φ(P )‖ ≥ 1} ≥ cδ

)

which is zero for cδ > 1. �
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Figure 1. Median value and lower and upper 0.05 quantiles of the

variable R(1, b) (the limit of Rε(1, b)) for a range of b values for the

simple average.

While Hjort & Fenstad (1992) worked with Qε, both Mε and Rε are new. Note

that Rε does not require a normalization with respect to ε to gain a weak limit, and

as such has a very direct interpretation. For an illustration of the Rε result, Figure

1 displays the median value and the lower and upper 0.05 quantiles of the variable

R(1, b), the limit of Rε(1, b), for a range of b values (these calculations relate to the

case of a one-dimensional simple average). We learn e.g. that about half of all errors

ever committed above ε are below 1.53 ε, the rest above 1.53 ε. Amazingly, this fact

is established even though we may never observe or even simulate the underlying

Rε(1, b) variables.

4.3. Measures of asymptotic relative efficiency. Suppose that φ1(Pn) and φ2(Pn)

are H-differentiable statistical functionals both estimating φ(P ). A concrete exam-

ple is the median versus the mean when the density of P is symmetric. Let Ni,ε be

the last time φi(Pn) is further than ε away from φ(P ). A natural measure for the

asymptotic relative efficiency of φ1(Pn) compared to φ2(Pn) is then

ARE := M1/M2

where Mi is the median of Ni, the limit variable of ε2Ni,ε as ε → 0+. Recall that

φ1(Pn) and φ2(Pn) is implicitly dependent on which space Pn is defined. Indeed,

suppose φ1 and φ2 are functionals of l
∞(F1) and l∞(F2). If F1 6= F2, a more natural

extension of the measure of variance proposed in Remark 3 is

(29) ARE :=

(

M1

Median‖Zs‖2(0,1]×F1

)

/

(

M2

Median‖Zs‖2(0,1]×F2

)
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If F1 = F2, the two measures agree.

These asymptotic relative efficiency measures do not distinguish between estima-

tors with the same H-differential. To distinguish between such cases, a second order

perspective is required. The ε2Qε-limit result of Corollary 2 may be the starting-

point for providing a.r.e measures when ε2N1,ε and ε2N1,ε have the same limit.

Indeed, let Qi,ε be the number of errors committed by φi(Pn) for i = 1, 2. As done

in Hjort & Fenstad (1995) and Hjort & Khasminskii (1993) for estimators connected

with averages, one can work with the asymptotic relative deficiency measure

ARD = lim
ε→0+

E{Q1,ε −Q2,ε},

which in such cases provides more detail than the a.r.e measure of eq. (29).
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