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Abstract 

 

This paper explores the use of machine learning models to predict what 

characteristics affect illiquidity in stocks using historical data. The paper uses 

thirteen different regressions, exploring the effects of 43 characteristics. The 

regressions are run with and without the variable bid-ask spread. The in-sample 

findings suggest that the oracle, group lasso and enet regressions are 

outperforming the OLS regression both with and without bid-ask spread. Bid-ask 

spread is seen to be the variable with the highest correlation in the out of sample 

analysis. The regressions without bid-ask spread show more variance in the results 

also showing the variables BM and VolMkt to be most correlated.  Concluding 

that the bid-ask spread is the most correlated characteristic. 
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1.0 Introduction  

 

Since the inception of competitive stock exchanges, speculators and analysts have 

wanted higher returns in constantly changing stock/market trading conditions. In 

this thesis, we will measure what characteristics correlate with/affect stock 

illiquidity the best. The thesis provides results suggesting that bid-ask spread is 

the most significant, and without the bid-ask spread, the BM and VolMkt are the 

most significant characteristics. Stock illiquidity measures the relative ease or 

difficulty of trading a particular stock. It is calculated by dividing the average 

daily volume of the investment by the absolute value of the daily return of the 

asset. An illiquidity value suggests it is more difficult to trade the asset, as it may 

take longer to find a buyer or seller, and the bid-ask spread is larger. This can 

make buying or selling large quantities of the asset more challenging. Illiquidity 

between stock returns and trading volume occurs when a stock cannot 

comfortably and swiftly be sold or exchanged for cash without a considerable loss 

in value. Knowing about this is important because transaction costs are an 

essential part of trading, and getting a better understanding of what stock and what 

predicts illiquidity based on characteristics using non-linear relationships. Since 

we expect the bid-ask spread to have the highest correlation, we will also have 

regressions without the bid-ask spread. The reason for using machine learning 

techniques is that stock illiquidity is non-linear, and the impact of characteristics 

is non-linear, so linear regression may not be appropriate. Research on this topic is 

essential to literature because it increases the amount and takes a new perspective. 

Specifically, we will ask: 

 

“What are the key stock characteristics that significantly influence stock 

illiquidity?" 

 

Amihud (2002) measures the ease or difficulty of trading a particular financial 

asset. This information can prove valuable to investors and traders who want to 

evaluate the liquidity of various assets and determine how it could affect their 

trading strategies. The transaction costs are dependent on the market type and 

trade size. One challenge experienced by major players is that their high market 

influence results in high transaction costs. In such cases, splitting the trade into 

smaller orders and executing them over time is advisable. 
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On the other hand, over-the-counter markets require one to call a dealer on the 

phone to complete the trade. In this case, it is best to trade in chunks worth the 

dealer's time and get competitive bids by calling several dealers. (Amihud, 2002) 

 

Liquidity is an essential stock characteristic to consider when investing or trading 

because it can impact the price at which an asset can be bought or sold and the 

speed at which trades can be executed. Highly liquid assets are generally easier to 

trade and may be more suitable for investors who need to buy or sell large 

quantities of the investment quickly. On the other hand, less liquid assets may be 

more challenging to trade. They may be more suitable for investors who are 

willing to accept the additional risk and reduced trading flexibility in exchange for 

the potential for higher returns. Amihud illiquidity is just one of many measures 

that can be used to assess liquidity. For our thesis, we measure price impact, in 

which Amihud has been shown to be the best. It can also be useful for 

understanding the liquidity characteristics of different assets and how they may 

impact trading and investment decisions. 

 

When selecting stocks, it is crucial to consider stock illiquidity for various 

reasons. Firstly, low trading volumes make it difficult for investors to quickly 

enter or exit positions, resulting in significant price impacts and a need for 

counterparties to transact with. Secondly, illiquid stocks often have wider bid-ask 

spreads, leading to higher transaction costs and reducing potential profits for 

investors. Additionally, limited trading activity can result in significant price 

fluctuations, making it challenging to accurately assess the stock's actual value, 

heightening the investment risk. Understanding stock illiquidity is a vital measure 

to consider when choosing stocks.  

 

Additionally, illiquid stocks often have less information avaliable. Analyst 

Coverage, financial news, and market participants often overlook them. More 

information is required to perform a thorough fundamental analysis and gain 

insights into the company's prospects, amplifying investment uncertainty. Lastly, 

illiquid stocks may not be suitable for investors with short investment horizons or 

those who require liquidity. These stocks restrict the ability to adjust portfolios or 

capitalize on new investment opportunities as they arise. While illiquid stocks can 

present unique investment opportunities, they necessitate careful consideration of 
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the factors above, along with higher risk tolerance and potential limitations in 

executing trades. 

 

Machine learning has been studied in numerous papers. Gu et al. (2020) explore 

the application of machine learning techniques in asset pricing. They try to 

investigate if machine learning models can give insights into asset pricing and the 

accuracy of return forecasts. Machine learning can uncover non-linear 

relationships through learning algorithms that traditional methods cannot. In our 

thesis, we will use similar machine learning techniques and regression as Gu et al. 

(2020) to find the different characteristics that predict the illiquidity in stocks. The 

selected machine learning techniques for the thesis, includes Simple OLS R2, 

PCR R2, PLS R2, Lasso R2, Ridge R2, Enet R2, Oracle R2, and Group Lasso R2, 

are applicable due to their diverse capabilities in regression analysis. They cover a 

range of scenarios such as linear regression (OLS), addressing multicollinearity 

(PCR, PLS), variable selection (Lasso, Oracle), regularization (Ridge, Enet), and 

handling grouped variables (Group Lasso). This comprehensive set of techniques 

allows us to explore different aspects of the data, such as model interpretability, 

predictive performance, variable importance, and handling specific challenges like 

multicollinearity or irregular grouping. 

 

When choosing a stock to invest in, it is important focusing on different factors 

that affect the return. Through several research articles such as (Amihud, 2002), 

illiquidity has become a measure of how to predict share returns. The relationship 

between stock returns and illiquidity is displayed through higher returns for stocks 

with higher illiquidity. Also, stocks that are expected to be sensitive to changes in 

liquidity should concede a higher return to compensate for the risk. Understanding 

and using the relationship between return and illiquidity makes this an essential 

measure in choosing a stock with a high expected return concerning risk. For our 

thesis's chosen characteristics, we selected them to assess their predictive power 

for illiquidity and diversified our choices to ensure representative research. The 

results show the importance of the bid-ask spread and its most significant 

characteristics in the regressions. When the regressions are run without the bid-

ask spread, there is more variance in our variables. BM and VolMkt are the most 

distinct characteristics in the regressions without the bid-ask spread. The 
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regressions show that the Oracle, Enet, and Lasso regressions are more distinct 

than the OLS regressions.  

 

The rest of this thesis has a six-part structure. Section two will contain the related 

literature. The third section is where we will present the methodology of our 

research, and the part is used to go into detail and explain why and how our study 

is done. The fourth section will present the data used in our research. Section five 

is where we will analyze the results. The last section, section 6, will proceed to the 

conclusion of our master thesis. After the decision and master's thesis, we will 

find a bibliography and appendix. 

 

 

2.0 Literature Review and Expectations 

 

Amihud (2002) is widely known as the measure of stock illiquidity. Plenty of 

research uses Amihud’s method, and plenty of academic papers are based on his 

theory. The paper examines the relationship between stock illiquidity, the 

difficulty in buying or selling a stock, and future stock returns. The paper looks at 

both cross-sectional and time-series effects of illiquidity on stock returns. 

 

According to Amihud (2002), stocks with higher illiquidity levels tend to have 

higher returns, referred to as the "illiquidity premium." Investors need a higher 

return to offset illiquid stocks' potential risk and trading costs.  

  

In general, Amihud (2002) emphasizes the significance of illiquidity in assessing 

the performance of stocks and the stock market. The illiquidity measures 

presented in the paper could aid us in investigating our research question 

regarding the factors that impact illiquidity. The critical difference between our 

paper and the one cited is that it examines the influence of illiquidity on returns by 

measuring it first and then determining the correlation. On the other hand, we will 

utilize the measure to consider the characteristics that contribute to illiquidity and 

evaluate their impact on it. 

  

The Amihud illiquidity measure bases itself on the average ratio of the absolute 

return of the day (Riyd) divided by the day's volume (VOLDivyd). This 
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calculation can be reformulated into an equation using machine learning 

techniques to determine the characteristics that impact illiquidity. By measuring 

these variables, we can determine the level of illiquidity. 

  

Goyenko (et al.,2009) examine whether the standard liquidity measures can fully 

capture the liquidity of a market or asset. The article proposes that these measures 

may only sometimes be reliable liquidity indicators and that additional research is 

required for more precise measurements. Goyenko (et al., 2009) also explore the 

significance of liquidity in empirical finance by introducing and testing novel 

liquidity measures compared to commonly used measures in previous studies. 

 

Unlike previous studies that analyze the correlation between security returns and 

liquidity measures, (Goyenko et al., 2009) take a unique approach by evaluating 

the connection between the suggested liquidity measures and tangible transaction 

costs. Previous research tends to rely on liquidity measures based on daily return 

and volume data as a proxy for investor liquidity and transaction costs without 

conducting direct tests on their relationship with actual trading costs. In contrast, 

(Goyenko et al., 2009) aims to test whether the proposed liquidity proxies 

accurately represent transaction costs by comparing them against factual trading 

data such as effective and realized spreads. 

 

Using new and widely employed measures in the literature, running horse races of 

annual and monthly estimates of each measure against liquidity benchmarks 

(Goyenko et al., 2009). Benchmarks are effective spread, realized spread, and 

price impact based on Trade and Quote (TAQ) and Rule 605 data. They are 

finding that the new effective/realized spread measures win most horse races, 

while the Amihud paper (Amihud, Y. 2002) measure does best in price impact. 

Goyenko et al.(2009) created a proxy based on (Amihud, 2002), and the proxy 

proved the best results in measuring price impact and proving that the measure is 

the most relevant illiquidity measure for our thesis. 

 

Dynamic trading involves analyzing whether traders can accurately forecast the 

returns on their traded assets. The research (Garleanu & Pedersen, 2013), has 

demonstrated that a threshold-based approach is the best trading strategy when 

considering transaction costs and predictable returns. This strategy involves 
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purchasing (or selling) assets only when their returns exceed (or fall below) a 

specific threshold. 

 

Garleanu and Pedersen's (2013) paper delves into the realm of dynamic trading 

and assesses the proficiency of traders in predicting asset returns. Through their 

research, it has been discovered that a threshold-based approach is the most 

effective trading strategy, considering predictable returns and transaction costs. 

This approach entails purchasing assets solely when their returns surpass a 

particular threshold and vending them when returns decline below another 

threshold. Garleanu and Pedersen's (2013) paper presents a unique perspective on 

trading in a dynamic environment with predictable returns and transaction costs. 

The paper's insights are valuable to traders, investors, and researchers seeking to 

understand how to navigate such markets effectively. 

 

Kaniel et al. (2023) conducted a study utilizing machine learning methods to 

predict the performance of mutual funds based on various attributes. The study 

found that the flow and momentum of funds were the primary factors for 

outperformance, while the characteristics of the stocks held by the funds had little 

impact. Interestingly, the study also revealed interaction effects between fund 

characteristics and investor sentiment, highlighting the significance of non-linear 

models in capturing complex relationships. These discoveries have significant 

implications for delegation theories in the mutual fund market and stress the 

potential benefits of avoiding underperforming funds. 

 

Gu (et al.,, 2020) study aims to assess and compare multiple machine-learning 

approaches in predicting asset returns. The results highlight the potential of 

machine learning techniques to improve our understanding of asset prices.  

 

Interestingly, the study has uncovered that "shallow" learning techniques, which 

utilize models with fewer layers or simpler architectures, tend to perform better 

than "deep" learning techniques (Gu et al., 2020). This finding differs from 

observations in other areas, such as computer vision or bioinformatics. It is likely 

due to the limited data availability and the low signal-to-noise ratio inherent in 

asset pricing problems. 
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In addition, the research emphasizes the usefulness of machine learning 

techniques in predicting returns for more extensive, more easily tradable stocks 

and building optimized portfolios (Gu et al., 2020). By utilizing machine learning 

capabilities, investors and portfolio managers can make better-informed choices 

that may increase returns.  

 

Gu (et al., 2020) study has analyzed various machine learning models and has 

identified a small but significant set of predictive signals that consistently emerge 

as solid indicators of asset returns. These signals include price trends like return 

reversal and momentum, measures of stock liquidity, volatility, and valuation 

ratios. These findings offer valuable insights into the factors that drive asset prices 

and can aid in refining economic models and enhancing risk measurement 

techniques.  

 

Not only does machine learning advance our understanding of asset pricing, but it 

also has practical implications for return prediction. By minimizing approximation 

and estimation errors, machine learning techniques can provide more precise 

measurements of risk premiums. This leads to easier identification of reliable 

economic mechanisms behind asset pricing phenomena, allowing for the 

development of more robust economic models and informed portfolio choices. 

(Gu et al., 2020) 

 

Gu (et al., 2020) research findings show that machine learning is increasingly 

important in financial technology (fintech). The proven success of machine 

learning in predicting asset returns justifies its use throughout the architecture of 

fintech applications. These findings are valuable for academic research and have 

practical implications for portfolio management, investment strategies, and 

decision-making in the financial industry. 

 

Jensen et al.'s (2022) research combine machine learning with portfolio selection 

to improve investment portfolios by considering transaction expenses and 

expected returns based on security features. Their technique significantly expands 

the implementable efficient frontier and offers a new perspective on the 

importance of securities when optimizing a portfolio. Their proposed method 
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offers a practical and effective way to optimize investment portfolios by factoring 

in expected returns and transaction costs. 

 

3.0 Methodology 

 

We utilize the widely known illiquidity measure from Amihud (2002) to 

determine which characteristics affect illiquidity. Contrary to the Amihud (2002) 

measure, which aims to find the correlation of illiquidity to stock returns, we 

utilize machine learning and change the equation to fit our research.  

 

𝐼𝐿𝐿𝐼𝑄𝑖𝑦 = 1/𝐷𝑖𝑦 ∑  |R𝑖𝑦𝑑|

𝐷𝑖𝑦

𝑇=1

/𝑉𝑂𝐿𝐷𝑖𝑣𝑦𝑑, (1) 

 

 

The equation is the measure of illiquidity used by (Amihud, 2022). The 

calculation of illiquidity, which we can reformulate into an equation using 

machine learning techniques and use to find which characteristics that affect 

illiquidity. Amihud (2002) uses the average ratio of the absolute return of the day 

(Riyd) against the volume of the day (VOLDivyd). Illiquidity is measured using 

these variables. Where Diy is the number of days for which data are available for 

stock I in the year. 

 

When finding characteristics affecting illiquidity, we will use machine learning. 

Gu et al. (2020) explore different measures using machine learning. Since we will 

use machine learning to find characteristics that affect illiquidity, we will combine 

the machine learning techniques with illiquidity measures. Gu et al. (2020) follow 

a linear predictive regression.  

𝐿(𝜃) =
1

𝑁𝑇
∑(𝑟𝑖,𝑡+1 − 𝑔(𝑧𝑖,𝑡; 𝜃))2

𝑁

𝑖=1

(2) 

 

  

 

We then combine the equation to measure illiquidity with the regression model for 

machine learning and can then estimate the equation. In the paper of Amihud, he 
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explores the relationship between illiquidity and returns. At the same time, we 

want to redefine this and use the measure instead to find the characteristics that 

affect illiquidity. We will put in the equation used in (Amihud, 2002) and replace 

the returns (Gu et al.,2020) 

 

The simple linear model assumes that the expected value of a variable can be 

represented as a linear combination of the predictor variables and a parameter 

vector. Gu et al.(2020) show that this model is limited because it does not allow 

for interactions or non-linear effects between predictors.  

 

A least squares objective function is used to estimate the model following 

Freedman (2009), which minimizes the difference between the actual and 

predicted values from the linear model. Using Freedman's (2009) approach is 

convenient because it provides analytical estimates and does not require complex 

optimization or computation. The estimated parameters are referred to as the 

pooled OLS estimator. 

𝐿(𝜃) =
1

𝑁𝑇
∑ ∑((

1

𝐷𝑖𝑦
∑|𝑅𝑖𝑦𝑑|/𝑉𝑂𝐿𝐷𝑖𝑣𝑦𝑑)𝑡+1 − 𝑔(𝑧𝑖,𝑡 − 𝑔(𝑧𝑖,𝑡; 𝜃))2

𝐷𝑖𝑦

𝑇=1

𝑇

𝑡=1

𝑁

𝑖=1

(3) 

 

The equation uses a standard least squares objective function. We will use the 

equation that we have to use machine learning while measuring. The predictors 

also cannot allow us to affect each other, and if they affect each other, the research 

findings might be wrong or be affected by not the factors we find.  

 

The equation (Amihud,2002)(1) is our dependent variable in all the regressions. 

The term for equation (1) is 𝐼𝐿𝐿𝐼𝑄𝑖𝑦 will therefore be the variable we change the 

different r variables to.  

𝐿𝑤(𝜃) =
1

𝑁𝑇
∑ ∑ 𝑤𝑖,𝑡(𝐼𝐿𝐿𝐼𝑄𝑖𝑦,𝑡+1 − 𝑔(𝑧𝑖,𝑡; 𝜃))2

𝑇

𝑡=1

𝑁

𝑡=1

(4) 

 

The weighted least squares objective function is an alternative to the traditional 

one used in regression analysis. It involves assigning weights to each observation 

based on their statistical or economic significance. By doing so, the 

econometrician can emphasize specific comments over others, thereby improving 
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the model’s predictive performance. Gu et al.(2020) provide two variations of 

weighted least squares: one based on the number of stocks available at a given 

time and the other based on the equity market value of each store. These 

variations allow for equal weighting or value weighting of the squared loss of 

stocks.  

 

The motivation behind weighted least squares is to address the issue of heavy-

tailed distributions often observed in financial data. Gu et al.(2020) refer to heavy 

tails as the presence of extreme observations or outliers that can 

disproportionately impact the model's predictions. The convexity of the traditional 

least squares objective function places a high emphasis on significant errors, 

making the model sensitive to outliers. Therefore we will deploy a robust loss 

function. 

𝐿𝐻(𝜃) =
1

𝑁𝑇
∑ ∑ 𝐻 (𝐼𝐿𝐿𝐼𝑄𝑖𝑦,𝑡+1 − 𝑔(𝑧𝑖,𝑡; 𝜃))2

𝑇

𝑡=1

𝑁

𝑡=1

(5) 

 

The Huber robust loss function is commonly used in machine learning to handle 

heavy-tailed observations. Huber (1964) combines squared loss for relatively 

small errors and total defeat for rather large mistakes. The tuning parameter ξ 

controls the transition point between the two loss functions and can be optimized 

from the data. Huber (1981) tells of the advantage of the Huber loss function: it is 

more robust to extreme observations, providing more stable forecasts than the 

traditional least squares method. 

 

 

The H equation for robustness is defined as: 

𝐻(𝑥; ξ) = {
2ξ|x|−ξ2,𝑖𝑓|x|>ξ.

𝑥2,𝑖𝑓|x|<ξ; (6) 

 

There are challenges using a basic linear model when there are many predictors 

compared to the number of observations. In such situations, the linear model 

performs poorly as it starts with proper noise instead of the actual signal (Gu et 

al., 2020). This is a common problem when predicting returns, where helpful 

information is often mixed with much noise.  
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To overcome noise issues, regularization techniques are employed. Following 

(Tibshirani, 1996), regularization involves adding a penalty term to the model's 

objective function, encouraging simpler models with fewer predictors. Although 

this penalty may worsen the model's performance on the data used for training (in-

sample), it helps the model generalize better to new, unseen data (out-of-sample) 

by reducing the impact of noise while still capturing the critical patterns. 

 

L(θ;⋅) = L(θ) + ϕ(θ;⋅) (7) 

 

 The specific regularization method used in this paper is called the net elastic 

penalty. Zou & Hastie (2004) explains how it has two parameters, λ and ρ, which 

control the amount and type of penalty applied. Further, the elastic net combines 

two well-known regularization methods: the lasso and ridge regression. The lasso 

sets some coefficients to precisely zero, effectively performing variable selection 

and keeping only the most important predictors. Tibshirani (1996)  tells how on 

the other hand, ridge regression shrinks the coefficients toward zero without 

setting any to precisely zero, which helps prevent coefficients from becoming too 

large.  

 

ϕ(θ; λ, ρ) = λ(1 − ρ) ∑|𝜃𝑗|

𝑃

𝑗=1

+
1

2
λρ ∑ 𝜃𝑗

2

𝑃

𝑗=1

(8) 

  

An adaptive optimization process determines the best values for λ and ρ. The 

tuning parameters are optimized by evaluating the model's performance on a 

separate validation sample (Huber,1981). This allows the model to find the right 

balance between simplicity and capturing the signal.  

 

Dimension reduction techniques, such as Principal Components Regression (PCR) 

and Partial Least Squares (PLS), address this issue by forming linear 

combinations of predictors (Gu et al.,2020). These techniques help reduce noise 

and decorrelate highly dependent predictors, thus isolating the signal in the 

predictors more effectively. (Geladi & Kowalski, 1986) 
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PCR involves a two-step process. In the first step, Principal Components Analysis 

(PCA) combines the predictors into smaller linear combinations that preserve the 

covariance structure among the predictors (Livak & Schmittgen, 2001). A few 

leading components are used in standard regression in the second step. PCR 

achieves regularization by setting coefficients on low-variance parts to zero. 

 

Papers such as (Mullis & Faloona, 1987) (Livak & Schmittgen, 2001), and (Gu et 

al.,2020) have discussed different drawbacks of PCR. One drawback of PCR is 

that it does not explicitly consider the forecasting objective when reducing 

dimensionality. It condenses the data into components based on the covariation 

among predictors without considering their association with future returns. 

 

In contrast, (PLS) directly exploits predictors' and forecast targets' covariation (Gu 

et al.,2020). PLS regression proceeds by estimating each predictor's univariate 

return prediction coefficient using (OLS) (Wold, 1966). These coefficients reflect 

the sensitivity of returns to each predictor. PLS then averages all predictors into a 

single aggregate component, giving higher weights to stronger univariate 

predictors and lower consequences to weaker ones. This dimension reduction is 

performed considering the forecasting objective (Geladi & Kowalski, 1986). To 

create more than one predictive component, the target and predictors are 

orthogonalized concerning previously constructed features, and the process is 

repeated until the desired number of PLS components is achieved. (Gu et al.,2020) 

 

Implementing both PCR and PLS starts with a vectorized version of the linear 

model and rearranges it into a matrix form. Following Gu et al. (2020), the 

dimension-reduced predictor set is represented by a matrix ΩK, and the 

forecasting model is written as a regression of the target variable on ZΩK, where 

Z is the original predictor matrix. The choice of the combination weights in PCR 

and PLS is determined by solving optimization problems that either maximize the 

variation retained by the predictors (PCR) or the predictive association with the 

target (PLS). The coefficient vector θK is estimated using OLS regression. 

 

When using Pls, we change the original equations. 
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𝐼𝐿𝐿𝐼𝑄𝑖𝑦 = 1/𝐷𝑖𝑦 ∑  |R𝑖𝑦𝑑|

𝐷𝑖𝑦

𝑇=1

/𝑉𝑂𝐿𝐷𝑖𝑣𝑦𝑑,

𝑖,𝑡+1

= 𝑧𝑖,𝑡
′ 𝜃 + 𝜖𝑖,𝑡+1 (9) 

  

𝐼𝐿𝐿𝐼𝑄𝑖𝑦𝑖,𝑡+1 = 𝑧𝑖,𝑡
′ 𝜃 + 𝜖𝑖,𝑡+1 (10) 

  

 

The equation becomes:  

 

𝐼𝐿𝐿𝐼𝑄 = 𝑍𝜃 + 𝐸 (11) 

 

The A is the NTx1 matrix created by R_(i,t+1). Z is a matrix with dimensions 

NT×P, where NT represents the number of observations and P represents the 

number of predictors (De Jong, 1993). Each row of Z corresponds to a stacked 

predictor zi,t. On the other hand, E is a vector of residuals with dimensions NT×1, 

where each element represents the residual ϵi,t+1 for a particular observation.  

 

PCR and PLS are techniques used to reduce the dimensionality of a set of 

predictors. The goal is to transform many predictors (dimension P) into a smaller 

group of linear combinations (dimension K) (Gewaldi, 1986) (Mullis & Faloona, 

1987).  

 

In PCR and PLS, the predictors are combined to capture the essential information 

while discarding some less relevant or redundant information as found in (De 

Jong, 1993). This condensation process helps simplify the data and makes it more 

manageable for analysis. 

The resulting condensed set of predictors is used to build a forecasting model. 

This model represents the relationship between the predictors and the target 

variable. (Gu et al., 2020) 

 

A = (ZΩK)θK + Ẽ (12) 

 

  

ΩK represents a matrix with dimensions P×K, where each column (w1, w2, ..., 

wK) corresponds to a set of weights for creating the predictive components. These 
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weights determine the linear combinations used to generate the reduced version of 

the original location of predictors, denoted as ZΩK (De Jong, 1993). In this 

condensed version, the predictors are transformed into a lower-dimensional 

representation 

 

PCR employs an iterative process to determine the combination weights, ΩK. At 

each iteration, the jth linear combination is calculated to solve the equation: 

 

wj = arg maxwVar(Zw), 

s. t. w′w = 1, 

Cov(Zw, Zwl) = 0, l = 1,2, . . . , j − 1. (13) 

 

PCR aims to find the best linear combinations of variables (Z) that closely 

resemble the entire predictor set. The focus is on capturing common variation 

rather than the forecasting objective. The PCR algorithm efficiently computes ΩK 

using the singular value decomposition of Z. De Jong's (1993) PLS research 

seeks, in contrast, the K linear combinations of Z that are highly predictive of the 

forecast target. The weights used for constructing each PLS component solve a 

different objective.  

 

𝑤𝑗 = 𝑎𝑟𝑔
𝑀𝑎𝑥

𝑤
𝐶𝑜𝑣2(𝑅, 𝑍𝑤),   

s.t.  𝑤′𝑤 = 1,  𝐶𝑜𝑣(𝑍𝑤, 𝑍𝑤𝑙) = 0,  

𝑙 = 1,2, … , 𝑗 − 1. (14) 

 

 

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡+1 − 𝐼𝐿𝐿𝐼𝑄^
𝑖,𝑡+1 = 

(𝑔 ∗ (𝑧𝑖,𝑡) − 𝑔(𝑧𝑖,𝑡; 𝜃)) + (𝑔(𝑧𝑖,𝑡; 𝜃) − 𝑔(𝑧𝑖,𝑡; 𝜃^)) + (ϵ𝑖,𝑡+1) (15) 

 

. 

The subsequent subsections introduce nonparametric models of g(⋅) with varying 

degrees of flexibility, accompanied by regularization techniques to address 

overfitting. (Hastie, Tibshirani, & Friedman, 2009) ((Faraway, 2005) 
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The model we analyze enhances the basic linear form by incorporating a spline 

series expansion with K terms of the predictors. 

g(z; θ, p(. )) = ∑ p(zj)
′θj

p

j=1

(16) 

 

The model we examine incorporates a vector of basis functions p(⋅) and parameter 

matrix θ=(θ1,θ2,…,θN) to represent a spline series expansion. The spline 

functions we consider are of order two, specifically (1, z, (z-c1)², (z-c2)², …, (z-

cK-2)²), where c1, c2, ..., cK-2 denote the knots. Various options exist for 

selecting spline functions, but we adopt this specific spline series. 

 

The generalized linear model, incorporating higher-order terms additively, allows 

for forecasting using standard estimation methods. Our analysis employs a least 

squares objective function, with or without Huber robustness modification. To 

handle the increased number of model parameters due to series expansion, we 

employ penalization using a specialized function called the group lasso, which 

controls degrees of freedom. 

 

ϕ(θ; λ, K) = λ ∑(

𝑃

𝑗=1

∑ 𝜃𝑗,𝑘
2

𝐾

𝑘=1

)1/2 (17) 

  

The group lasso method selects all or none of the K spline terms associated with a 

specific characteristic (Tibshirani, 1996). This penalty is incorporated into the 

objective function, accommodating both least squares and robust Huber 

objectives. Yuan & Lin (2006) see that the group lasso employs accelerated 

proximal gradient descent, similar to the elastic net, with two tuning parameters, λ 

and K. 

 

We deeply appreciate Dacheng Xiu's invaluable support in our regression 

analysis. It was with great skill that Mr. Xiu developed the Matlab script that we 

utilized for our regression work. The exceptional quality of the script is a 

testament to his expertise and unwavering commitment to his craft. We are 

grateful to him for sharing his knowledge and making his code accessible through 
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his official website (Xiu, 2019). Mr. Xiu's work has greatly facilitated our 

research, and we extend our heartfelt gratitude for his significant contribution. 

 

The code conducts regression analysis for each predictor variable using various 

regression methods. It removes the current predictor variable from the 

independent variable matrix and calculates the out-of-sample R-squared value for 

each regression method. The results are stored in a matrix. 

 

The code visualizes the results through a heatmap, which displays the out-of-

sample R-squared values for each regression method and predictor variable. The 

heatmap allows for a quick comparison of the performance of different regression 

methods across predictors. 

 

Additionally, the code generates bar plots in two layouts. The first layout presents 

the results for six regression methods, while the second layout shows the results 

for the remaining seven methods. The bar plots provide a clear overview of the R-

squared values associated with each predictor variable for the different regression 

methods. 

 

This methodology allows researchers or analysts to assess the performance of 

multiple regression methods and identify the most effective predictor variables. 

The visualization techniques help understand the relationships between predictors 

and the quality of regression models. 

 

4.0 Data 

 

4.1 Data Sources 

 

The dataset on which our thesis is based is taken from Chen & Zimmerman 

(2023). Our dataset comprises 204 distinct stock characteristics, from which we 

have selected 43 variables for our study. The characteristics are created based on 

CRPS/composted of US stocks. Our stock dataset covers the years 1986-2021 and 

includes financial ratios, volatility measures, and other metrics. Some values are 

missing and need to be handled carefully for accurate results. We addressed these 
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missing values by creating monthly averages or filling in where possible. 

However, some data points had to be removed, resulting in a more limited dataset. 

We needed to compute the average of the available numbers within each period. 

By calculating these averages, we obtained representative values to fill in the NaN 

entries corresponding to the respective periods. This approach ensured that 

missing values were substituted with plausible estimates based on the available 

data. 

 

However, it is essential to note that there were instances where no values existed 

for companies during specific periods. Consequently, we had to remove these 

rows, reducing the overall size of the dataset. Removing these rows had a 

cascading effect, impacting the dataset's dimensions and decreasing it from nearly 

5,000,000 rows to just under 2,800,000. 

 

4.2 Description of Variables 

Table 1 describes the variables used in our empirical investigation and regression 

analysis. The part is split between dependent- and independent variables.  

 

 

5.0 Main results 

 

In this part, we plan to present empirical evidence which shows which 

characteristics affect illiquidity through the various regressions. We offer 

empirical evidence through the period 1986-2021. The characteristics are 

explained in Table 1. 

 

This section presents the empirical results of our study, which aimed to identify 

and analyze the characteristics that impact illiquidity in various financial contexts. 

By employing a rigorous research design and advanced econometric techniques, 

we sought to unravel new insights into illiquidity determinants, contributing to 

academic literature and practical applications in financial markets. 

 

These characteristics encompass a range of factors, including firm-specific 

attributes, market-related variables, investor behavior, and macroeconomic 
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indicators. By examining a wide array of potential drivers of illiquidity, we sought 

to capture the complex interplay of factors shaping liquidity conditions in 

different market environments. 

 

5.1 In-sample analysis 

In-sample analysis, or in-sample testing or evaluation, refers to assessing a 

model's performance on the same data set used for training (Bishop, 2006). This 

analysis compares the model's predictions against the training data's actual 

outcomes or target variables. 

 

Bishop's (2006) in-sample analysis aims to understand how well the model fits the 

training data and how accurately it can predict the outcomes already seen. By 

evaluating the model's performance on the training data, we can assess its ability 

to capture the underlying patterns and relationships within the data and identify 

any issues such as overfitting or underfitting. 

 

Sample analysis indicates how well the model has learned from the training data, 

but it may need to reflect its performance on new, unseen data. This is because the 

model has already "seen" the training data and might have learned to memorize 

the patterns specific to that data, leading to overly optimistic results. 

Table 2 shows the R2 values for various regression models. The Oracle model has 

the highest value at 0.1250, indicating the best performance. Other models have 

lower values, ranging from -0.1193 to 0.1224. Some models have additional 

adjustments, but their R2 values remain similar to standard ones, which means 

that, at best, over 85% of illiquidity is explained by factors other than our 

characteristics.  

 

When the bid-ask spread variable is removed from the regression analysis, the 

resulting models yield varying outcomes. The Simple OLS and Simple OLS + H 

models exhibit weak fits, as indicated by their negative R2 values of -0.0873, 

shown in Table 2. Conversely, the PCR model displays a better fit, showing an 

increased R2 value of 0.0648. However, the PLS model indicates a poorer fit, with 

a more negative R2 value of -0.2465. R2 values are explained following 

(Chatterjee & Hadi, 2012)(Gu et al.,2020) (Plonsky & Ghanbar, 2018) and the 
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results. The Lasso, Ridge, Enet, and Group Lasso models maintain low R2 values 

around 0.0160, highlighting their weak fits without bid-ask spread. The Oracle 

model's fit remains unchanged at 0.1250, while Group Lasso and Group Lasso + 

H models consistently exhibit low fits, with their R2 values hovering around 

0.0146. 

 

5.2 Out-of-sample analysis 

In data analysis and machine learning, evaluating the performance of a model on 

unseen data is a critical step in assessing its effectiveness and generalization 

capabilities. An out-of-sample analysis allows us to test the model's ability to 

make accurate predictions on independent data points, providing insights into its 

applicability and reliability (Bishop, 2006).  

 

Bishop's (2006) paper shows that the purpose of analyzing out-of-sample data is 

to evaluate how well a model performs on new, unseen data. It helps assess the 

model's ability to generalize and make accurate predictions beyond the data it was 

trained on. We can gain insights into real-world applicability, reliability, and 

performance by testing the model on out-of-sample data. Following Gu et al. 

(2020), the out-of-sample is the most important for our thesis, and the trained 

model will be the most relevant models and important for our results. Therefore, 

the out-of-sample analysis is the main focus. 

 

5.3 Results regressions 

The MATLAB script reads and preprocesses data, calculates variable importance, 

and visualizes the results using a heatmap and multiple layouts of bar plots. It 

defines labels for the plots, creates figures, and arranges the bar plots in a tiled 

layout. The script creates four different layouts of bar plots, each with a different 

subset of methods to plot. For each layout, a figure is created using the figure 

function. A tiled layout is established using the tilted layout function with two 

rows and one column. For the heatmap, a figure is created using the figure 

function. 

The heatmap is generated using the images function, with r2_oos_mat as the input 

data. 
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Simple OLS 

 

This study aimed to conduct a simple Ordinary Least Squares (OLS) regression 

analysis on a given dataset shown in Figure 2 and Table 3. Including all the 

variables, the initial regression yielded a coefficient of determination (R-squared) 

value of 0.12071, indicating that the independent variables explain approximately 

12% of the variability in the dependent variable (Chatterjee & Hadi, 2012). 

Among the variables considered, the Bid-ask spread was identified as the most 

important predictor, as its exclusion resulted in the most significant impact on the 

regression results. Furthermore, when excluding each variable one at a time, the 

variables High52 and VolMkt emerged as dominant factors, as their exclusion had 

the most significant influence on the regression outcomes. On the other hand, the 

variable std_turn was the least important, as its exclusion did not significantly 

alter the regression results. Interestingly, no noticeable impact on the regression 

was observed when employing the Huber loss function. These findings emphasize 

the crucial role of bid-ask spread, High52, and VolMkt in explaining the 

dependent variable, suggesting that std_turn may have limited explanatory power 

in this analysis. 

 

PCR 

 

Using (PCR) is to establish the correlation between a dependent variable and a set 

of independent variables(Mullis & Faloona, 1987). The PCR analysis was 

conducted on all variables, resulting in a coefficient of determination (R-squared) 

value of -0.11934, as shown in Figure 3 and Table 3. This value indicates that the 

independent variables collectively account for around 12% of the variability 

observed in the dependent variable. 

 

After thoroughly analyzing multiple variables, we can see that BM had the most 

significant influence on the dependent variable, thus making it the most important 

predictor. Interestingly, in certain scenarios where specific variables were 

removed from the equation, it was revealed that AccrualsBM, BetaFP, and 

PriceDelayRsq played a dominant role in the results obtained from the regression. 

The absence of these variables had the most significant impact on the regression 
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outcomes. These findings indicate the essential role of these variables in 

explaining the dependent variable within the PCR model context. 

 

Conversely, the variable bid-ask spread was deemed the least important, implying 

that its inclusion or exclusion had minimal impact on the regression outcomes. 

This suggests that bid-ask spread may not have a strong relationship with the 

dependent variable or may be redundant in the presence of other influential 

variables. 

 

In conclusion, the results of the PCR analysis indicate that several variables, 

namely BM, AccrualsBM, BetaFP, and PriceDelayRsq, significantly explain the 

dependent variable. It was noted, however, that the bid-ask spread variable may 

need to be more relevant in this particular analysis.  

PLS 

 

We run PLS regression to investigate the correlation between a set of independent 

variables and a dependent variable. The PLS analysis was conducted with all 

variables and shown in Figure 3 and Table 3. It yielded an R-squared value of -

0,08250, indicating that the independent variables collectively account for roughly 

8% of the variation in the dependent variable. 

 

Bid-ask spread was the most significant predictor of all the variables analyzed, 

implying that it considerably impacted the dependent variable. Interestingly, when 

each variable was removed individually, PriceDelayRsq and ShareVol were 

identified as the dominant factors, as their exclusion resulted in the most 

significant changes in the regression results. These results emphasize the crucial 

role of PriceDelayRsq and ShareVol in explaining the dependent variable in the 

PLS model. 

 

Conversely, the variable Accruals were determined to be the least important, 

indicating that its inclusion or exclusion had minimal effect on the regression 

outcomes. This suggests that Accruals may have a weak relationship with the 

dependent variable or may be less influential than other model variables. 
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In summary, the PLS regression analysis revealed the significance of variables 

such as bid-ask spread, PriceDelayRsq, and ShareVol in explaining the dependent 

variable. Additionally, the regression indicated that Accruals may have little 

importance in the context of this study. 

 

Lasso 

 

Including all variables, the Lasso analysis resulted in a coefficient of 

determination (R-squared) value of 0.12237, indicating that the independent 

variables collectively explain approximately 12% of the variability in the 

dependent variable shown in Figure 4 and Table 3.  

 

Among the variables considered, bid-ask spread was identified as the most 

important predictor, implying that it significantly impacted the dependent 

variable. Interestingly, when excluding each variable one at a time, the variables 

High52 and VolMkt emerged as dominant factors, as their exclusion had the most 

significant influence on the regression results. These findings highlight the crucial 

role of High52 and VolMkt in explaining the dependent variable within the 

context of the Lasso model. 

 

On the other hand, the variable std_turn was determined to be the least important, 

indicating that its inclusion or exclusion had minimal effect on the regression 

outcomes. This suggests that std_turn may need more relevance in explaining the 

dependent variable when considering the other variables included in the model. 

 

Additionally, applying the Huber loss function, the regression stays the same. This 

could imply that the Lasso model is relatively strong and not significantly affected 

by outliers or influential observations. 

 

In summary, the Lasso regression analysis demonstrated the significance of 

variables such as bid-ask spread, High52, and VolMkt in explaining the dependent 

variable. Furthermore, it indicated that std_turn might have little importance in 

this analysis, while the robustness of the model was observed through the Huber 

loss function. 
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Ridge 

 

The Ridge analysis, utilizing all variables, yielded a coefficient of determination 

(R-squared) value of 0.12062, indicating that the independent variables 

collectively explain approximately 12% of the variability in the dependent 

variable given in Figure 5 and Table 3. 

 

Among the variables considered, bid-ask spread was identified as the most 

important predictor, implying that it significantly impacted the dependent 

variable. Intriguingly, when excluding each variable one at a time, the variables 

MaxRet and BetaTailRisk emerged as dominant factors, as their exclusion had the 

most significant influence on the regression results. These findings underscore the 

critical role of MaxRet and BetaTailRisk in explaining the dependent variable 

within the context of the Ridge model. 

 

Conversely, the variable std_turn was determined to be the least important, 

suggesting that its inclusion or exclusion had minimal effect on the regression 

outcomes. This indicates that std_turn may need more relevance in explaining the 

dependent variable when considered alongside the other variables in the model. 

 

Employing the Huber loss function did not affect the regression results. This 

indicates that the Ridge model is relatively strong and is not significantly 

influenced by outliers or influential observations. 

 

In summary, the Ridge regression analysis demonstrated the significance of 

variables such as bid-ask spread, MaxRet, and BetaTailRisk in explaining the 

dependent variable. Furthermore, it indicated that std_turn might have little 

importance in this analysis, while the robustness of the model was observed 

through the application of the Huber loss function. 

 

Enet 

The Elastic Net analysis, incorporating all variables, resulted in a coefficient of 

determination (R-squared) value of 0.12204, indicating that the independent 
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variables collectively explain approximately 12% of the variability in the 

dependent variable shown in Figure 6 and Table 3. 

 

Among the variables considered, bid-ask spread emerged as the most important 

predictor, suggesting that it holds influence over the dependent variable. Notably, 

when excluding each variable one at a time, the variables High52 and VolMkt 

were found to be most dominant, as their exclusion had the most significant 

impact on the regression results. These findings highlight the roles of High52 and 

VolMkt in explaining the dependent variable within the context of the Elastic Net 

model. 

 

Conversely, the variable std_turn was identified as the least important, indicating 

that its inclusion or exclusion had minimal effect on the regression outcomes. This 

indicates that std_turn may need more relevance in explaining the dependent 

variable when considered alongside the other variables included in the model. 

Moreover, using the Huber loss function did not significantly influence the 

results. Implying that the Elastic Net model is relatively insensitive to outliers or 

influential observations. 

 

Oracle 

The Oracle analysis shown in Figure 6 and Table 3, incorporating all variables, 

resulted in a coefficient of determination (R-squared) value of 0.12499, indicating 

that the independent variables collectively explain approximately 12.5% of the 

variability in the dependent variable. 

 

Among the variables considered, roaq was identified as the most important 

predictor, suggesting that it significantly influences the dependent variable. 

Intriguingly, when excluding each variable one at a time, the variable Accruals 

emerged as the most dominant factor, as its exclusion had the most significant 

impact on the regression results. These findings underscore the role of Accruals in 

explaining the dependent variable within the context of the Oracle model. 

 

Conversely, the variable betaVIX was determined to be the least important, 

indicating that its inclusion or exclusion had minimal effect on the regression 
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outcomes. This suggests that betaVIX may need more relevance in explaining the 

dependent variable when considered alongside the other variables included in the 

model. 

 

Group Lasso  

 

The Group Lasso analysis, using all variables shown in Figure 7 and Table 3, 

yielded a coefficient of determination (R-squared) value of 0.05242, indicating 

that the independent variables collectively explain approximately 5.2% of the 

variability in the dependent variable. 

 

Among the variables considered, bid-ask spread emerged as the most important 

predictor, suggesting that it holds a significant influence over the dependent 

variable. Interestingly, every other variable in the model had the same value, 

implying that they collectively contribute to the regression outcome but do not 

possess individual importance. 

 

Furthermore, applying the Huber loss function did not affect the regression 

results, as shown in Figure 8. This indicates that the Group Lasso model is robust 

to outliers or influential observations. 

5. 4 Discussion regressions 

 

When examining various regression models, it becomes clear that the bid-ask 

spread significantly impacts the dependent variable in most cases. This finding is 

consistent across most regression methods, suggesting that the bid-ask spread is a 

crucial factor in explaining the variability in the dependent variable. However, this 

rule has a few exceptions, such as PCR and Oracle regression. Interestingly, the 

results of these two regression methods differ, with Roaq performing best in 

Oracle regression and BM performing best in PCR. The results imply that other 

variables may be necessary depending on the regression approach. 

 

Roaq emerges as the most significant predictor in Oracle regression, while BM 

takes precedence in PCR regression. This finding underscores the importance of 

considering different factors when performing regression analysis, as different 
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variables may have varying degrees of influence depending on the method 

employed. It is worth noting that the bid-ask spread consistently exhibits stronger 

correlations than other variables, which is unsurprising given that it measures 

liquidity.  

 

Overall, the dominance of bid-ask spread across multiple regression models 

reinforces its significance in explaining the dependent variable. This finding 

highlights the importance of liquidity considerations in financial analysis and 

enhances our understanding of the factors that affect market dynamics. By 

examining the performance of different variables across multiple regression 

methods, we can gain a more comprehensive understanding of the factors that 

drive financial markets. 

 

After conducting a regression analysis, it was observed that incorporating the 

Huber loss function did not substantially impact the initial results. The results 

suggest that the regression model was already quite resilient to outliers and other 

influential observations (Huber,1964) Therefore, the original regression model 

could withstand outliers effectively if the results are not significantly altered by 

integrating this robust regression method. 

 

Through our analysis, we have found several findings that must be addressed. 

Firstly, removing variables individually does indeed affect the regression results, 

indicating that each variable plays a role in contributing to the overall explanatory 

power to some degree. However, it was also determined that the bid-ask spread 

factor significantly impacts the dependent variable, revealing its crucial role in 

predicting the model's outcome. Nevertheless, relying solely on one predictor may 

decrease the model's prediction accuracy, suggesting that a more comprehensive 

approach may be necessary.  

 

Interestingly we found that the Lasso, Enet, and Oracle regressions were proven to 

be better than the OLS regressions. This can be explained by Lasso, Enet, and 

Oracle regressions have advantages over OLS regression in situations with many 

predictors, potential multicollinearity, or a need for variable selection. They 

provide more robust and interpretable models, leading to improved prediction 

accuracy and enhanced understanding of the underlying relationships between 



 

Page 28 

predictors and the response variable, which is also suggested through the results 

of the different regressions in our thesis.  

 

Furthermore, the coefficient of determination (R-squared) values were relatively 

low, hovering around 0.20, implying that none of the variables, individually or 

collectively, can effectively predict the model's outcome with high accuracy. This 

low explanatory power raises questions about the ability to accurately predict 

illiquidity based on the variables considered in this study. Although certain 

variables have a more significant impact than others, the limited data and 

variables available in this research limit the generalizability of the findings. With 

a larger dataset and a more comprehensive range of variables, making solid 

predictions about illiquidity is easier. 

 

Regressions without bid-ask spread 

 

The new R-squared values without the "bid-ask spread" variable are generally 

lower than the original R-squared values, as shown in Table 4. This suggests that 

removing the "bid-ask spread" variable has negatively impacted the models' 

ability to explain the variance in the dependent variable. 

 

Among the models, the Simple OLS, Simple OLS + H, Ridge, and Ridge+H 

models show lower R-squared values in both the original and new calculations, 

indicating that the removal of the variable has worsened their performance. The 

Lasso, Lasso+H, Enet, and Enet+Huber loss models also exhibit lower R-squared 

values in the new calculations. 

 

On the other hand, the PCR model shows a higher R-squared value without the 

"bid-ask spread" variable, indicating improved performance after removing it. 

However, the PLS, Oracle, Group Lasso, and Group Lasso+H models still show 

lower R-squared values in the new calculations, suggesting a weaker fit even 

without the "bid-ask spread" variable. 

 

The removal of the "bid-ask spread" variable has generally led to lower R-squared 

values, indicating a decrease in the model's ability to explain the dependent 

variable's variance. This is more proof that the bid-ask spread is the most 
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significant variable, causing the regressions to show a lower variance that explains 

the Amihud illiquidity. The most important element in the new regressions is how 

poorly OLS performs compared to the other regressions shown in Table 4. 

Therefore, having less significant explanatory power and other regressions such as 

Lasso, Oracle, and Enet will be more relevant to explore.  

 

Bid-ask spread out-of-sample analysis 

Not surprisingly, the models were worse when removing the bid-ask spread, but 

interestingly the models gave more variance in the different characteristics in the 

different out-of-sample regressions.  

In Figure 10, the Ols regression, the VolMkt, Sharevol, and BM were the most 

distinct characteristics. All the characteristics were negative, and the VolmMkt 

was the most significant at -0,1545.  

The PCR regression in Figure 11 can both have positive and negative values. 

When the value is negative, it means that when the characteristic value increases, 

the dependent variable will decrease, and when it is positive, the dependent 

variable increases. Therefore, the most prolific characteristics are based on the 

highest negative or positive values (Livak & Schmittgen, 2001).  BM and RDS, 

with both negative numbers, have the highest values but still low explanatory 

value at -0,0751.  

 

PlS can also be negative and have the same inverse relationship as PCR. The most 

prolific characteristics were AccrualsBM and PriceDelayRsq. While still having a 

low R2 value given in Figure 11. Having a value of -0,07203 

 

Lasso regression, there is some positive and some negative R2 in Figure 12. 

Further showing the small inverse relationship BM and VolMkt have on Amihud 

illiquidity since the values are still small and explain -0,0447. 

 

The ridge regression in Figure 13 VolMkt and BM are still the most prolific 

factors with BM -0,1125 and VolMKT -0,1150 from Table 5. They are still 

showing an inverse relationship with Amihud's illiquidity. Ridge regression shows 

higher values than previous regressions.  
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The Enet regression also shows low values in Figure 14, continuing that BM and 

VolMkt are still the most significant and continuing the inverse relationship with 

the dependent variable with a value of -0,0448 and -0,0213 from Table 5. 

 

The oracle regression is constant with no particular characteristic being different 

shown in Figure 15.  

 

While Group Lasso, also shown figures 15 and 16, shows all characteristics as the 

same with MaxRet with values of 0,0023 from Table 5.  

 

The out-of-sample and in-sample analysis results without the bid-ask spread show 

more variance in the different regressions. The regressions such as Oracle, Enet, 

and Lasso are also proven to be more accurate than the OLS regression in the in-

sample regression. This shows that the fit for the other regressions performs better 

than the OLS, as seen in Table 4. Different characteristics are shown to be more 

significant through the regressions. The regressions show clearly that VolMkt and 

BM are the most significant in the most regressions but also in the regressions that 

are proven to be most significant.  

 

These results vary based on the specific characteristics chosen in this thesis. 

Alternative results could have been obtained had different variables been chosen 

or if the set of characteristics had been expanded. The study only considered 43 

characteristics, a limited subset of all the potential factors that could impact 

Amihud's illiquidity. It would be beneficial to incorporate a larger number of 

variables to attain a more comprehensive understanding and improve the accuracy 

of predictions. By doing so, additional characteristics could be explored, offering 

deeper insights and potentially leading to more precise predictions. The reason for 

not including more characteristics was that the dataset had Na/NaN values, and 

including more characteristics would make our dataset smaller.  

Our research shows that illiquidity cannot be predicted effectively using the 

investigated variables. The lack of explanatory power, reliance on a single 

predictor, and limitations imposed by data constraints all highlight the need for 

further research and a more comprehensive approach to accurately predict and 

understand illiquidity in financial markets. The results could also be because the 
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characteristics tested do not significantly affect illiquidity. More extensive 

research must provide valuable insights into this complex phenomenon. 

5.5 Robustness of the analysis 

 

One potential criticism of the thesis is handling the dataset’s NaN (missing) 

values. Taking the average across periods and filling in NaN values can introduce 

biases and potentially distort the results. Averaging across periods assumes that 

the missing values have a similar distribution to the available data, which may 

only sometimes be the case. This method can overlook significant variations and 

patterns in the data. 

 

Moreover, removing rows where filling in NaN values was impossible is another 

aspect that could be criticized. This significant reduction in sample size raises 

concerns about the representativeness and generalizability of the findings. It is 

crucial to consider the potential impact of such data loss on the statistical power 

and validity of the results. 

 

Another point of criticism is the dominance of the bid-ask spread variable in every 

regression model. If bid-ask spread consistently emerges as a significant predictor 

and dominates the results, it raises questions about the robustness and reliability 

of the findings. This dominance could overshadow the effects of other variables 

and lead to an overemphasis on bid-ask spread in interpreting the results. It is 

essential to thoroughly investigate the reasons behind this dominance and assess 

whether it is reasonable or if it could be attributed to data peculiarities or model 

misspecifications. 

 

Exploring alternative methods for handling missing values is recommended to 

address these criticisms, such as multiple imputation techniques that consider the 

underlying patterns and relationships in the data. Additionally, sensitivity analyses 

can be conducted to assess the impact of the missing data and evaluate the 

robustness of the results when different imputation or deletion strategies are 

employed. 
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Regarding the dominance of bid-ask spread, it is crucial to evaluate the reasons 

behind its strong influence and assess its economic and theoretical significance. 

This could involve examining the underlying relationships between bid-ask spread 

and the other variables and considering potential confounding factors or omitted 

variables that might explain the observed dominance. Further analysis, such as 

regression diagnostics and model selection techniques, can help determine 

whether the results are reliable and if the power of bid-ask spread is justified. 

Overall, these criticisms highlight the need for careful consideration and 

transparent reporting of the data handling techniques, as well as a thorough 

evaluation of the impact of dominant variables on the overall results. Addressing 

these concerns can strengthen the validity and reliability of the thesis findings and 

enhance the trustworthiness of the research outcomes. 

 

6.0 Conclusion 

 

In conclusion, the regression analysis conducted using the Oracle and Group 

Lasso models provided insights into the factors influencing the variability in the 

dependent variable. The findings indicated that while the independent variables 

collectively explain a portion of the variability, the overall explanatory power was 

relatively low. The R-squared values hovered around 0.20, suggesting that the 

variables examined in the study, individually and collectively, were not highly 

effective in accurately predicting the outcome. Our out-of-sample analysis shows 

how few of the characteristics explain Amihud illiquidity. This may prove that the 

characteristics do not affect the illiquidity or only the illiquidity in a limited way.  

 

Among the variables considered, the bid-ask spread consistently emerged as a 

significant predictor across multiple regression methods. This explains its crucial 

role in explaining the variability in the dependent variable and highlights the 

importance of liquidity considerations in financial analysis. However, the 

dominance of bid-ask spread raised questions about the robustness and reliability 

of the findings. It was crucial to thoroughly investigate the reasons behind this 

dominance and assess whether it was reasonable due to data peculiarities or model 

misspecifications. 

The analysis also proved that the characteristics show low explanatory value to 

the Amihud illiquidity, making it hard for practical use. 
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While the bid-ask spread exhibited strong correlations with the dependent 

variable, it was essential to recognize that relying solely on one predictor may 

decrease the model's prediction accuracy. The results indicated the need for a 

more comprehensive approach that includes a larger number of variables to 

enhance the accuracy of predictions and gain a deeper understanding of the 

underlying dynamics.  

 

The regressions without the bid-ask spread also proved to show some 

characteristics that are more significant such as BM and VolMkt shown to have 

the highest values in the regressions. Lasse, Oracle and enet are the regression 

proved to be the best with their R2 values. Proving that over these regressions that 

BM and VolMkt are the most significant in these regressions.  
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Appendix: 

 

 

Figures: 

 

Figure 1 - Heatmap 

  

 

 

This figure shows a heatmap consisting of the 13 regression methods and the 43 

stock characteristics.  
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Figure 2 – Simple OLS and Simple OLS with Huber loss 

 

 

 

This figure shows the regressions Simple OLS and Simple OLS with Huber loss 

function and the 20 most significant stock characteristics. The graph illustrates the 

relationship between the characteristics removed (x-axis) and the corresponding 

R2 values (y-axis). 
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Figure 3 PCR and PLS 

 

This figure shows the PCR and PLS regressions and the 20 most significant stock 

characteristics. The graph illustrates the relationship between the characteristics 

removed (x-axis) and the corresponding R2 values (y-axis). 

Figure 4 Lasso and Lasso with Huber loss 
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This figure shows Lasso and Lasso's regressions with the Huber loss function and 

the 20 most significant stock characteristics. The graph illustrates the relationship 

between the characteristics removed (x-axis) and the corresponding R2 values (y-

axis). 

 

Figure 5 Ridge and Ridge with Huber loss 

 

This figure shows Ridge and Ridge regressions with Huber loss function and the 

20 most significant stock characteristics. The graph illustrates the relationship 

between the characteristics removed (x-axis) and the corresponding R2 values (y-

axis). 
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Figure 6 Enet and Enet with Huber loss 

 

This figure shows Enet and Enet's regressions with the Huber loss function and 

the 20 most significant stock characteristics. The graph illustrates the relationship 

between the characteristics removed (x-axis) and the corresponding R2 values (y-

axis). 
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Figure 7 Oracle and Group Lasso 

 

This figure shows the regressions of Oracle and Group Lasso and the 20 most 

significant stock characteristics. The graph illustrates the relationship between the 

characteristics removed (x-axis) and the corresponding R2 values (y-axis). 
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Figure 8 Group Lasse with Huber loss 

 

The figure shows the regression Group Lasso with the Huber loss function and the 

20 most significant stock characteristics. The graph illustrates the relationship 

between the characteristics removed (x-axis) and the corresponding R2 values (y-

axis). 

 

 

Figure 9 – Heatmap without bid-ask spread 

 

This figure shows a heatmap consisting of the 13 regression methods and the 42 

stock characteristics when excluding the bid-ask spread characteristic.  
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Figure 10 Simple OLS and Simple OLS with Huber loss function excluding bid-

ask spread 

 

This figure shows the regressions Simple OLS and Simple OLS with Huber loss 

function and the 20 most significant stock characteristics when excluding the bid-

ask spread characteristic. The graph illustrates the relationship between the 

characteristics removed (x-axis) and the corresponding R2 values (y-axis). 
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Figure 11 PCR and PLS excluding bid-ask spread 

 

This figure shows the PCR and PLS regressions and the 20 most significant stock 

characteristics when excluding the bid-ask spread characteristic. The graph 

illustrates the relationship between the characteristics removed (x-axis) and the 

corresponding R2 values (y-axis). 
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Figure 12 Lasso and Lasso with Huber loss excluding bid-ask spread 

 

This figure shows the regressions Lasso and Lasso with Huber loss function and 

the 20 most significant stock characteristics when excluding the bid-ask spread 

characteristic. The graph illustrates the relationship between the characteristics 

removed (x-axis) and the corresponding R2 values (y-axis). 
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Figure 13 Ridge and Ridge with Huber loss excluding bid-ask spread 

 

This figure shows the regressions Ridge and Ridge with Huber loss function and 

the 20 most significant stock characteristics when excluding the bid-ask spread 

characteristic. The graph illustrates the relationship between the characteristics 

removed (x-axis) and the corresponding R2 values (y-axis). 
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Figure 14 Enet and Enet with Huber loss excluding bid-ask spread 

 

This figure shows Enet and Enet's regressions with the Huber loss function and 

the 20 most significant stock characteristics when excluding the bid-ask spread 

characteristics. The graph illustrates the relationship between the characteristics 

removed (x-axis) and the corresponding R2 values (y-axis). 
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Figure 15 Oracle and Group Lasso excluding bid-ask spread 

 

This figure shows the regressions of Oracle and Group Lasso and the 20 most 

significant stock characteristics when excluding the bid-ask spread characteristics. 

The graph illustrates the relationship between the characteristics removed (x-axis) 

and the corresponding R2 values (y-axis). 
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Figure 10 Group Lasso with Huber loss excluding bid-ask spread 

 

The figure shows the regression Group Lasso with the Huber loss function and the 

20 most significant stock characteristics when excluding the bid-ask spread 

characteristics. The graph illustrates the relationship between the characteristics 

removed (x-axis) and the corresponding R2 values (y-axis). 
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Tables 

Table 1 

betaVIX betaVIX: Beta 

concerning the VIX 

index 

High52 52-week high 

Roaq  Return on assets 

quality 

Governance Governance score 

Leverage Debt-to-equity ratio tang Tangibility of assets 

ShortInterest Short interest ratio RoE Return on equity 

Beta Beta coefficient 

measuring stock's 

sensitivity to market 

movements 

VarCF Variability of cash flow 

OperProf Operating profit 

margin 

VolMkt Market volatility 

BM The ratio of book value 

to the market value of 

equity 

MomSeason06YrPlus Momentum 

seasonality 

Accruals Earnings accruals NOA Net operating assets 

Investment Level of investment sinAlgo Algorithmic trading 

score 

ShareVol Share volume traded PriceDelayRsq Price delay R-squared 

BidAskSpread Difference between 

bid and ask prices 

Herf Herfindahl-Hirschman 

index 

MaxRet Maximum return ShareRepurchase Share repurchase 

activity 

AccrualsBM Interaction between 

accruals and book-to-

market ratio 

RevenueSurprise Surprise in revenue 

InvGrowth Investment growth 

rate 

OptionVolume1 Option volume traded 

NetPayoutYield Net payout yield BetaTailRisk Beta tail risk 

REV6 Revenue over six 

months 

CF Cash flow 

CashProd Cash production RDS Research and 

development expenses 

std_turn Standardized turnover DivYieldST Short-term dividend 

yield 

Activism1 Activism score NumEarnIncrease Number of earnings 

increases 

ShareIss5Y Share issuance in the 

last five years 

MS Market sensitivity 
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FR Quality of financial 

reporting 

BetaLiquidityPS Beta liquidity factor 

BetaFP Beta factor pricing   

Table 1 shows the 43 stock characteristics with a short description of them. 

 

Table 2 – In sample values 

 

This table contains In sample values. 

 

Table 3 – Out of sample values 
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Contains the out of sample values from regressions and every stock characteristic. 

 

 

 

 

 

Table 4 – In sample values excluding bid-ask spread 

 

 

This table contains In sample values when excluding bid-ask spread 
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Table 5 – Out of sample values excluding bid-ask spread 

 

 

 

Simple OLS R2 -0,1125 -0,0872 -0,0873 -0,1278 -0,0924 -0,0722 

Simple OLS R2 + H -0,1125 -0,0872 -0,0873 -0,1278 -0,0924 -0,0722 

PCR R2 -0,0751 -0,0218 0,0648 0,0684 0,0928 -0,0163 

PLS R2 -0,2122 -0,1444 -0,2465 -0,0614 -0,2424 -0,0720 

Lasso R2 -0,0447 0,0153 0,0162 -0,0109 0,0755 0,0313

Lasso+H R2 -0,0447 0,0153 0,0162 -0,0109 0,0755 0,0313

Ridge R2 -0,1125 -0,0856 -0,0841 -0,0867 0,0995 -0,0438 

Ridge+H R2 -0,1125 -0,0856 -0,0841 -0,0867 0,0995 -0,0438 

Enet R2 -0,0448 0,0151 0,0160 -0,0111 0,0753 0,0311

Enet+Huber loss R2 -0,0448 0,0151 0,0160 -0,0111 0,0753 0,0311

Oracle R2 0,1250 0,1249 0,1250 0,1250 0,1250 0,1250

Group Lasso R2 0,0146 0,0146 0,0146 0,0146 0,0023 0,0146

Group Lasso+H R2 0,0146 0,0146 0,0146 0,0146 0,0023 0,0146

InvGrowth NetPayoutYield REV6 CashProd std_turn Activism1

Simple OLS R2 -0,0873 -0,0845 -0,0884 -0,0872 0,0269 -0,0926 

Simple OLS R2 + H -0,0873 -0,0845 -0,0884 -0,0872 0,0269 -0,0926 

PCR R2 0,0648 0,0673 0,0626 0,0635 0,0699 0,0625

PLS R2 -0,2464 -0,2543 -0,2511 -0,2463 -0,0127 -0,0633 

Lasso R2 0,0162 0,0162 0,0162 0,0162 0,0701 0,0118

Lasso+H R2 0,0162 0,0162 0,0162 0,0162 0,0701 0,0118

Ridge R2 -0,0841 -0,0815 -0,0859 -0,0841 0,0269 -0,0828 

Ridge+H R2 -0,0841 -0,0815 -0,0859 -0,0841 0,0269 -0,0828 

Enet R2 0,0160 0,0160 0,0160 0,0160 0,0700 0,0116

Enet+Huber loss R2 0,0160 0,0160 0,0160 0,0160 0,0700 0,0116

Oracle R2 0,1250 0,1250 0,1250 0,1250 0,1250 0,1250

Group Lasso R2 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146

Group Lasso+H R2 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146

ShareIss5Y FR BetaFP High52 Governance tang

Simple OLS R2 -0,0872 -0,0920 -0,0873 -0,0682 -0,0864 -0,0856 

Simple OLS R2 + H -0,0872 -0,0920 -0,0873 -0,0682 -0,0864 -0,0856 

PCR R2 0,0635 0,0598 -0,0204 -0,0166 0,0636 0,0628

PLS R2 -0,2397 -0,2900 -0,1905 -0,0747 -0,2831 -0,0371 

Lasso R2 0,0162 -0,0072 0,0162 0,0106 0,0162 0,0162

Lasso+H R2 0,0162 -0,0072 0,0162 0,0106 0,0162 0,0162

Ridge R2 -0,0866 -0,0919 -0,0872 -0,0403 -0,0863 -0,0826 

Ridge+H R2 -0,0866 -0,0919 -0,0872 -0,0403 -0,0863 -0,0826 

Enet R2 0,0160 -0,0074 0,0159 0,0104 0,0159 0,0159

Enet+Huber loss R2 0,0160 -0,0074 0,0159 0,0104 0,0159 0,0159

Oracle R2 0,1250 0,1250 0,1250 0,1250 0,1250 0,1250

Group Lasso R2 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146

Group Lasso+H R2 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146
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Contains the out of sample from regressions when excluding the bid-ask spread 

characteristic. 

 


