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Abstract 

This thesis contributes to the extensive and expanding literature on financial 

forecasting through machine learning techniques. Our investigation focuses on the 

predictive capacity of machine learning (ML) models in forecasting the returns of 

implied volatility (IV) for at-the-money (ATM) currency options, leveraging the 

established methodology outlined in Kelly et al. (2020, RFS). In contrast to prior 

empirical evidence pertaining to equity options prediction, our findings reveal that 

machine learning techniques do not exhibit superior performance when compared 

to the straightforward ordinary least squares (OLS) regressions. This research sheds 

light on the inherent limitations of machine learning models in effectively capturing 

the predictive power of relevant covariates or variables, thereby resulting in 

diminished forecasting accuracy. Consequently, our study underscores the 

significance of exploring alternative approaches and adopting meticulous model 

selection strategies to enhance the precision of financial forecasting for implied 

volatility returns in ATM options. Through the comparative analysis of machine 

learning techniques and traditional regression models, our study contributes to a 

more comprehensive understanding of the efficacy of diverse forecasting 

methodologies within the financial domain.  
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1. Introduction and Motivation 

The returns of a financial asset are the most standard evaluation of its performance. 

The fluctuations in these returns are described by the asset’s volatility (Medvedev 

& Wang, 2021, JFM). Volatility measures the dispersion of returns for a security or 

index (Brooks, 2019). This characteristic makes it an essential component of 

financial derivatives. There are two measures of volatility; historical volatilities and 

implied volatilities (IV) (Medvedev & Wang, 2021, JFM). Historical volatility 

tracks the market’s volatility over time, while implied volatility is a prediction that 

traders use to determine future market volatility. Factors such as monetary policy, 

macroeconomic conditions, and market expectations drive future volatility 

(Medvedev & Wang, 2021, JFM). Forecasting changes in implied volatilities is, 

therefore, challenging yet highly rewarding. Implied volatilities play a crucial role 

in option valuation and are essential to the Black-Scholes options pricing model 

(Black-Scholes, 1973, JPE). This study aims to explore the predictability of implied 

volatility returns of at-the-money (ATM) currency options returns using machine 

learning (ML) models and to contribute to the existing literature on financial 

forecasting.  

 

Given that the changes in IV returns for ATM currency options hold significant 

implications for the broader currency options market, these changes play an 

essential role in the global financial market, influencing risk management, 

investment decisions, and monetary policy. The ability to forecast changes in 

implied volatilities for ATM currency options returns is of great interest to investors 

and traders. Kelly et al. (2020, RFS) demonstrated the potential of ML models for 

forecasting asset prices and returns, inspiring the investigation of such models’ 

applicability to the implied volatility of ATM options. Being capable of selecting 

variables that maximize out-of-sample performance and address issues related to 

multicollinearity among predictor variables (Kelly et al. 2020, RFS), ML 

techniques offer a good starting point. Additional papers also demonstrate the 

strength of machine learning regressions beating the ordinary least squares (OLS) 

regressions (Goyenko & Zhang, 2020, SSRN; Neuhierl et al., 2021, SSRN). 

However, the paper “Interacting Anomalies” (Müller & Schmickler, 2020, SSRN) 

displays that the method of double sorts can sometimes outperform ML strategies; 

hence ML is not always superior.  



 

2 

 

The primary objectives of this research are to determine the effectiveness of ML 

models in forecasting the implied volatility (IV) of ATM currency option returns, 

to compare the performance of different ML models in this context, and to identify 

the factors affecting the accuracy of these forecasts. The findings can directly aid 

traders or investors using these models for decision-making and indirectly benefit 

those intending to develop their own models. Additionally, understanding the 

impact of specific characteristics on forecast accuracy can provide insights into 

model optimization.   

 

Not only can the research have practical implications in finance, but this research 

is also interesting from a theoretical perspective, as it could provide insights into 

the underlying relationships between different financial assets and how they are 

affected by various economic and market characteristics. By studying this topic, we 

can contribute to the existing literature on IV for ATM currency options and 

machine learning in finance. 

 

2. Literature review  

In this section, we will briefly discuss the currency option market along with the 

Black-Scholes model. We will also review economic and parametric methods that 

are relevant for volatility forecasting, along with the role that machine learning has 

in finance.  

2.1 Currency option market  

Currency options are financial derivatives, granting the holder the right, without the 

obligation, to purchase or sell a predetermined amount of one currency for another 

at a pre-established exchange rate, referred to as the strike price, either on or before 

a specified expiration date (Hull, 2018). These options, which originated in the early 

1970s (Hull, 2018), are employed by a wide array of market participants, such as 

investors, corporations, and financial institutions, for a variety of reasons, such as 

hedging against foreign exchange risks, engaging in speculative activities, and risk 

management (Hull, 2018). 

 

The currency options market constitutes a sizable part of the global foreign 

exchange market, renowned for being one of the world's largest and most liquid 
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financial markets (King et al., 2013, JIMF). As reported by the Bank for 

International Settlements (BIS), the global foreign exchange market's average daily 

trading volume was around $6.6 trillion in April 2019 (BIS, 2019) and $7.5 trillion 

in April 2022 (BIS, 2022). While the currency options market contributes 

substantially to this volume, quantifying its precise share remains challenging due 

to many currency options transactions' over-the-counter (OTC) nature (Eichengreen 

et al., 2016). 

 

There are two main categories of the currency options market: exchange-traded 

options and OTC options, as classified by Hull (2018). The exchange-traded options 

are standardized contracts listed and traded on formal exchanges like the Chicago 

Mercantile Exchange (CME) and the International Securities Exchange (ISE). 

These options feature uniform contract sizes, expiration dates, and strike prices and 

undergo clearing via a central clearinghouse, effectively reducing counterparty risk 

(Hull, 2018). 

 

On the other hand, OTC currency options involve private agreements between two 

parties, usually financial institutions or their clients, and do not trade on formal 

exchanges (Levinson, 2005). OTC currency options provide increased flexibility 

regarding contract conditions and customization, enabling market participants to 

adapt the contracts to suit their individual requirements and risk preferences 

(Bekaert & Hodrick, 2018). Nevertheless, OTC options carry a higher degree of 

counterparty risk, as the absence of a central clearinghouse means there is no 

guarantee of contract realization (Bekaert & Hodrick, 2018).   

 

Currency option pricing depends on a range of factors, including the current spot 

exchange rate, the strike price, the time until expiration, the volatility of the 

underlying currency pair, and the difference in interest rates between the two 

currencies involved (Black & Scholes, 1973; Merton, 1973, JSTOR). Multiple 

option pricing models, like the Garman-Kohlhagen model (Garman & Kohlhagen, 

1983, JIMF), have been developed to determine the fair value of currency options 

by considering these influencing factors (Black & Scholes, 1973; Merton, 1973). 
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Over time, the currency options market had grown substantially, evolving from its 

origins in the early 1970s when the Chicago Mercantile Exchange (CME) 

introduced the first standardized currency futures contracts (Hull, 2018). Since then, 

the market has seen the development of new trading platforms, products, and risk 

management tools (Hull, 2018). Throughout the years, market participants have 

developed and implemented various currency options strategies tailored to diverse 

market conditions and risk-return preferences, such as straddles, strangles, risk 

reversals, and butterflies (Hull, 2018). Risk reversals and butterfly spreads are two 

prominent option strategies in the currency options market, utilized by market 

participants to manage risk exposure and optimize profit potential. 

 

Risk reversals consist of simultaneously purchasing and selling out-of-the-money 

call and put options with exact expiration dates but varying strike prices (Hull & 

Sinclair, 2022, JIS). The risk-reversal skew, or the difference in implied volatility, 

offers valuable insights into market sentiment concerning the currency pair's 

direction because it provides a measure of the market's expectation for the future 

price direction of the underlying asset (Hull & Sinclair, 2022, JIS). 

Conversely, butterfly spreads involve combining four options with the same 

expiration date but different strike prices, establishing a profit zone within a 

specified range of the underlying currency's spot rate (Hull, 2018). Investors 

typically employ this strategy when anticipating low volatility in the underlying 

currency (Hull, 2018). 

 

Such strategies have evolved in conjunction with the currency options market 

attracting a diverse range of market participants, which has contributed to further 

enhancing the strategies (King et al., 2013, JIMF). In addition, technological 

advancements, such as high-speed cables, servers, and electronic trading, have 

improved the efficiency, transparency, and accessibility of the currency options 

market (Eichengreen et al., 2016; King et al., 2013, JIMF). Algorithmic trading has 

significantly changed how financial markets operate, including the currency options 

market, influencing trading strategies, liquidity, and market efficiency (Vega et al., 

2014, JF). These improvements have attracted a broader range of market 

participants and intensified competition among liquidity providers, ultimately 
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impacting exchange rate dynamics and contributing to the evolution of exchange 

rate regimes (Levinson, 2005).   

2.2 Implied Volatility 

Implied volatility plays a significant role in the currency options market, by 

providing a forward-looking measure of the expected fluctuations in currency 

prices. As a critical input into option pricing models, it reflects the market’s 

collective estimation of how much the underlying currency pair is likely to move 

over the life of the option (Medvedev & Wang, 2021, JFM). Therefore, implied 

volatility is not just a technical concept but a vital tool for understanding and 

navigating the complexities of the currency options market.  

 

In their paper “Multi-Step Forecasts of the Implied Volatility Surface Using Deep 

Learning,” Medvedev and Wang (2021, JFE) explains how the Black-Scholes 

model (BS) (Black & Scholes, 1973) can be inverted to produce implied volatilities 

and implied volatility-smiles. All of these are assumed to be constant over time. 

The implied volatility in the Black-Scholes model is computed through an iterative 

technique that uses the BS-model backward, plugging in the known variables and 

iteratively adjusting the volatility until the model’s output matches the observed 

market price of the option (Medvedev & Wang, 2021, JFM). The initial volatility 

(𝜎) is systematically adjusted using the market data until we get the optimal implied 

volatility (𝜎𝑖𝑚𝑝) (Medvedev & Wang, 2021, JFM).  

2.3 Machine learning in finance 

In recent years, machine learning has gained significant attention in the field of 

finance. Due to its capacity to manage extensive datasets, reveal concealed patterns, 

account for the effects of nonlinearities, and address interactions among numerous 

option and stock characteristics, machine learning also helps to minimize the risk 

of in-sample model overfitting (Bali et al. 2021, SSRN). Several studies have 

demonstrated the effectiveness of machine learning techniques in predicting various 

financial variables, such as stock prices, exchange rates, and credit risk (Bao et al., 

2017; Kelly et al., 2020; Krizhevsky et al., 2012). Machine learning models have 

further demonstrated promising results in predicting financial time series data, often 

outperforming traditional forecasting methods (Kelly et al., 2020). They have been 
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applied to various aspects of finance, such as predicting stock prices, exchange 

rates, and option returns. 

2.3.1 Machine Learning in financial forecasting 

Some commonly used machine learning models in financial forecasting include 

Neural Networks, Decision Trees and Random Forests, and Ensemble Methods. 

Artificial Neural Networks (ANNs) are inspired by the human brain's structure and 

function, consisting of interconnected layers of nodes or neurons that process and 

transmit information through weighted connections (Zhang et al., 1998, IJF). 

Feedforward Neural Networks and Recurrent Neural Networks (RNNs) are popular 

types of neural networks used for time series forecasting (Zhang et al., 1998, IJF). 

Decision trees are hierarchical models that recursively partition the input space into 

regions based on a set of rules, leading to a decision or prediction at the terminal 

nodes or the "leaves" of the tree (Kara et al., 2011). Random Forests, however, 

consist of multiple decision trees combined through a bagging technique to reduce 

overfitting and improve prediction accuracy (Liaw & Wiener, 2002, R news). 

Ensemble methods, such as bagging and boosting, combine multiple weak learners 

to create a strong learner, improving the prediction accuracy and reducing the risk 

of overfitting (Dietterich, 2000, LNCS; Rokach, 2010, AIR). Combining individual 

classifiers to obtain a collective classifier that outperforms the individual ones 

emulates the human process of gathering and evaluating several opinions before 

making a decision. Humans weigh these decisions individually and reach a final 

decision by combining them (Polikar, 2006, IEEE).  

 

Machine learning models have been applied to time series data for forecasting 

future values of financial variables, such as stock prices and exchange rates. Long 

Short-Term Memory (LSTM) networks, a type of recurrent neural network, have 

proven particularly useful in capturing temporal dependencies in time series data 

(Hochreiter & Schmidhuber, 1997, MIT; Bao et al., 2017, plos). Support vector 

regression (SVR) has also been utilized in time series forecasting, demonstrating 

promising results in comparison to traditional methods like autoregressive 

integrated moving average (ARIMA) models (Cao & Tay, 2001, 2003, IEEE).  
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2.3.2 Challenges and Limitations in financial forecasting 

While machine learning models have shown potential in financial forecasting, there 

are some general challenges and limitations to consider: 

 

• Overfitting: Machine learning models are prone to overfitting, mainly when 

dealing with noisy financial data. Overfitting occurs when a model learns the noise 

in the training data instead of the underlying patterns, resulting in poor 

generalization to new data (Hawkins, 2004, CI). Regularization techniques, such as 

Lasso and Ridge regression, have been employed to mitigate the risk of overfitting, 

but it remains a challenge in complex financial forecasting tasks (Tibshirani, 1996, 

JRSS). 

 

• Interpretability: Many machine learning models, such as deep learning and 

ensemble methods, are considered "black boxes" because their internal workings 

are difficult to interpret. This lack of interpretability can be an issue in finance, 

where regulators and investors often require transparent decision-making processes 

(Guidotti et al., 2018, ACM). Some researchers have proposed explainable artificial 

intelligence (XAI) techniques to improve the interpretability of these models. 

However, the application of XAI in finance is still in the early phase of research 

(Adadi & Berrada, 2018, IEEE). 

 

• Computational Complexity: Some machine learning models, especially deep 

learning models, require significant computational resources and time to train and 

optimize. This can be challenging when dealing with significant financial datasets 

or when real-time predictions are needed (Chen et al., 2018, arXiv). However, 

advancements in parallel computing and specialized hardware, such as GPUs, have 

helped alleviate some of these computational constraints (Raina et al., 2009, ACM).  

 

Despite these challenges, machine learning continues to be a promising area of 

research in finance, with ongoing developments aimed at addressing these 

limitations and improving the performance and interpretability of machine learning 

models (Kelly et al., 2020, RFS).  

 



 

8 

 

Another area for improvement is our relatively novice experience with advanced 

machine learning techniques, such as neural networks, random forests, and Gradient 

Boosted Regression Trees (GBRT) may have constrained our ability to exploit the 

analytical advantages and possibilities of these methods fully. These limitations 

could have implications for the precision of our conclusions. We have to the best 

of our abilities, incorporated as many of the required nuances as possible to better 

align with our research objective. However, limitations arising from this may exist. 

We therefore urge readers to interpret our findings with these limitations in mind. 

2.4 Existing studies on ML for forecasting  

The application of machine learning (ML) techniques for forecasting currency 

option returns has been the focus of numerous studies in recent years. The pursuit 

of accurate financial forecasts has led to significant contributions in the field, as 

evidenced by the works of Hu et al. (2013, IJF), Feng et al. (2020, JF), Kelly et al. 

(2020, RFS), Bali et al. (2021, SSRN), Corte et al. (2021, JFE), and Fullwood et al. 

(2021, JFE). 

 

Kelly et al. (2020, RFS) is an extensive empirical study that makes an important 

contribution to the literature on machine learning for financial forecasting in asset 

pricing and investment decision-making, making it a valuable resource for anyone 

interested in using machine learning in finance.  

 

Bali et al. (2021, SSRN) is a paper that investigates the use of machine learning and 

big data to predict option returns. The authors find that these approaches can 

significantly improve the accuracy of option pricing models, particularly in 

capturing nonlinear relationships between option returns and their underlying 

factors. 

 

Corte et al. (2021, JFE) makes an important contribution to the literature on 

currency volatility and risk premia and is a valuable resource for anyone interested 

in the factors that influence the demand for currency volatility risk. The findings of 

the paper have important implications for the pricing of currency-linked financial 

instruments and the management of currency risk in investment portfolios. 
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Fullwood et al. (2021, JFE) investigates the relationship between option returns and 

volatility in the foreign exchange (FX) market and concludes that option returns are 

positively related to volatility, with the relationship being more robust for options 

with longer maturities and lower liquidity. The paper's findings have important 

implications for using options as a risk management tool and for developing option 

pricing models. 

 

In addition to these empirical studies, Hastie et al. (2009, Springer) provide the 

theoretical foundation for specific ML models, such as penalized regression, 

regression trees, and neural networks. While the machine learning literature 

typically focuses on prediction, Molnar (2014) emphasizes that model 

interpretation is crucial for understanding the underlying relationships in financial 

forecasting. This could identify areas for improvement and make models more 

accurate.  

 

In summary, these studies collectively contribute to a growing body of literature on 

machine learning and currency option returns forecasting. They provide valuable 

insights and guidance for researchers and practitioners interested in exploring the 

potential benefits of incorporating various ML techniques into financial forecasting 

and investment decision-making processes. 

 

3. Data 

We obtain data for nine different currency pairs, consisting of 4066 observations 

spanning from 2006 to 2021. The quoting convention is standardized across dealers 

and exchanges. The currencies are the Japanese yen (JPY), Canadian dollar (CAD), 

Danish krone (DKK), Norwegian krone (NOK), Swedish Krona (SEK), Swiss franc 

(CHF), Pound sterling (GBP), Euro (EUR) and Australian dollar (AUD), all in 

relation to the United States Dollar (USD).  

 

The change in implied volatility returns of ATM currency options (∆𝐼𝑉𝐴𝑇𝑀) is 

computed as the difference between the implied volatility at time 𝑡 + 1 (𝐼𝑉 𝐴𝑇𝑀,𝑡+1) 

and the implied volatility in time 𝑡 (𝐼𝑉𝐴𝑇𝑀,𝑡), divided by the implied volatility at 

time 𝑡 (𝐼𝑉𝐴𝑇𝑀,𝑡). Multiplying by 100 gives us the percentage change in in implied 

volatility of ATM currency options returns.  
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∆𝐼𝑉𝐴𝑇𝑀 =
(𝐼𝑉𝐴𝑇𝑀,𝑡+1 − 𝐼𝑉𝐴𝑇𝑀,𝑡)

𝐼𝑉𝐴𝑇𝑀,𝑡
𝑥 100  

 

We will retrieve the most economically relevant data to see if changes in implied 

volatility returns for ATM currency options can be forecasted. In particular, we 

focus on key variables with substantial economic significance. All of our data is 

collected from the Bloomberg terminal. The data include the change in one-month 

ATM implied volatilities and Interbank Offered Rates. We also have the 1, 2, 3, 6, 

6-3, 9, and 12-month data for the risk reversals, butterfly strategies, and forward 

rates.  

 

The time period used is from January 2006 to August 2021, resulting in 4066 

observations for all of our variables. Table 1 provides sample statistics on each 

instrument; the number of observations, the mean, the median, the standard 

deviation, and the maximum and minimum value for all currencies combined. See 

Appendix B for summary statistics for all currencies and each pair individually. The 

data is available from the authors upon request. 

 

4. Methodology 

In this section, we provide an overview of the machine learning methods used in 

our analysis. Our methodology is based on the work by Shihao Gu, Bryan Kelly, 

and Dacheng Xiu in their paper “Empirical Asset Pricing via Machine Learning” 

(Kelly et al., 2020, RFS). We use MATLAB code from Dacheng Xiu’s website 

(Kelly et al., 2019, GitHub), and we thank him for making this code publicly 

available. Each subsection focuses on a specific method and its three key 

components. Firstly, we have the statistical model, which defines the general form 

for predicting risk premiums (Kelly et al., 2020, RFS). Secondly, we discuss the 

objective function used to estimate the model parameters. We aim to minimize the 

mean squared prediction error (MSE) to ensure accurate predictions. To enhance 

out-of-sample performance and avoid overfitting, we introduce variations of the 

MSE objective. These variations would involve including penalties for 

parameterization and making the models more robust against outliers. 
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Additionally, even with a small number of predictors, nonlinear transformations can 

lead to a vast number of potential model combinations, especially considering our 

already high-dimensional predictor set. Lastly, we describe computational 

algorithms in each subsection that efficiently identify the best model specification 

from the available options. These algorithms are crucial in optimizing the models 

for our analysis (Kelly et al., 2020, RFS). 

 

4.1 Sample splitting and tuning via validation  

We align with the essential preliminary steps outlined in their paper. These include 

designing disjoint subsamples for estimation and testing and understanding the 

concept of “hyperparameter tuning” (Kelly et al., 2020). Hyperparameters, also 

called tuning parameters, manage machine learning model complexity and combat 

overfitting. However, determining the optimal hyperparameter values for out-of-

sample performance could be challenging based on limited theoretical guidance. 

 

Echoing Kelly et al.’s (2020, RFS) paper, we adopt an approach by adaptively 

selecting tuning parameters from a validation sample. Our sample is divided into 

three disjoint time periods: a training sample for model estimation, a validation 

sample for hyperparameter tuning, and a testing sample for evaluating predictive 

performance. This setup enables a simulated out-of-sample test, aiming for optimal 

model complexity. The tuning parameters are chosen from the validation sample, 

while the parameter estimates are derived solely from the training data (Kelly et al., 

2020, RFS). 

4.2 Simple Linear 

To introduce our model analysis, we first present the simplest method - the ordinary 

least square (OLS) linear predictive regression model. Kelly at al. (2020, RFS) use 

it as a baseline to highlight the unique characteristics of more advanced techniques, 

since they anticipate that the OLS will underperform in contrast. The linear model 

assumes that future changes in implied volatility for ATM currency option returns 

can be approximated by a linear function of the raw predictor variables and a 

parameter vector, θ. 

∆𝐼𝑉𝐴𝑇𝑀(𝑖,𝑡+1)
= 𝑧𝑖,𝑡

′ 𝜃 
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This model imposes a simple regression specification that does not allow for 

nonlinear effects and interactions with predictors. In our baseline estimation of the 

simple linear model, we employ a standard least squares approach with an objective 

function, 𝐿2.  

𝐿2 =
1

𝑁𝑇
∑ ∑(∆𝐼𝑉𝐴𝑇𝑀(𝑖,𝑡+1)

𝑇

𝑖=1

− 𝑧′𝑖,𝑡;

𝑁

𝑖=1

𝜃)^2  

Minimizing 𝐿(𝜃) yields the pooled OLS estimator. The advantage of using the 

baseline 𝐿2 function is that it provides analytical estimates, eliminating the need for 

complex optimization and computation techniques (Kelly et al. 2020, RFS). 

 

4.2.1 Simple Linear + Huber objective function 

Kelly et al. (2020, RFS) states that replacing Equation (4) with a weighted least 

squares objective such as 

𝐿2 =
1

𝑁𝑇
∑ ∑ 𝑤𝑖,𝑡(∆𝐼𝑉𝐴𝑇𝑀(𝑖,𝑡+1)

𝑇

𝑖=1

− 𝑧′𝑖,𝑡;

𝑁

𝑖=1

𝜃)^2 

The additional scale factor or weight, which is included in the fitting process, could 

potentially improve the fit (Rosopa et al. 2006). Financial returns and 

illiquidity/currency/stock predictor variables are known to exhibit heavy tails, 

indicating outliers (Bradley, B. O., & Taqqu, M. S. 2003).  The least squares 

objective function (4) is convex, which means it strongly emphasizes errors. 

Accordingly, the OLS predictions could be vulnerable to influence of outliers 

(Choi, S. W, 2009). The statistics literature has developed modified least squares 

objective functions that tend to produce more stable forecasts than OLS in the 

presence of extreme observations. Huber robust objective function is an example of 

such variation, which is a common choice to counter the effect of heavy-tailed 

observations (Choi, S. W, 2009). The Huber robust objective function is defined as:  

𝐿𝐻(𝜃) =
1

𝑁𝑇
∑ ∑ 𝐻 (∆𝐼𝑉𝐴𝑇𝑀(𝑖,𝑡+1)

𝑇

𝑖=1

− 𝑧′𝑖,𝑡;

𝑁

𝑖=1

𝜃, 𝜉),     

Where,  

𝐻(𝑥; 𝜉) =
𝑥2 𝑖𝑓 |𝑥| ≤ 𝜉

2𝜉|𝑥| − 𝜉2 𝑖𝑓 |𝑥| > 𝜉
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The combination of the Huber loss function is determined by tuning parameter 𝜉, 

which can be optimized based on data (Fan et al., 2016). The function combines 

characteristics of squared loss for small errors and absolute loss for larger errors 

(Kelly et al., 2020). This incorporation of robust objective functions, enhance 

robustness of the simple linear model (Huber, P. J., 1964). In our empirical analysis, 

these functions would be applied for most of the methods, while we investigate 

predictive advantages of this incorporation in the machine learning techniques.  

 

4.3 Penalized Linear (Lasso, Elastic net & Ridge) 

In order to avoid overfitting, the objective of reducing number of estimated 

parameters is crucial. With many predictors, the simple linear model often fails 

based on number of predictors approaching number of observations. The simple 

linear would become inefficient, by overfitting noise rather than extracting signal. 

Avoiding overfitting in machine learning is commonly countered by appending a 

penalty to the objective function. To combat this, a “penalty” term is added to the 

linear regression. Echoing Kelly et al. (2020, RFS), we promote parameter 

simplicity by introducing this “penalty” term to encourage the selection of more 

concise model specifications. We wish to incorporate this “regularization” to 

eventually hope for improving the stability of the out-of-sample performance, 

ultimately reducing fit of noise, while preserving signal fit (Kelly et al., 2020, RFS).  

For our penalized linear model, the statistical model is the same as the simple linear 

model in equation (3). However, it differs by appending a penalty to the original 

loss function.  

𝐿(𝜃; ) = 𝐿(𝜃) + 𝜙(𝜃; ) 

Additionally, we focus on the penalty function known as “elastic net“ penalty which 

combines two popular types of penalties; the L1 penalty used in Lasso regression 

and the L2 penalty used in Ridge regression (Zou & Hastie, 2005). The “elastic net” 

takes this form.  

𝜙(𝜃; 𝜆, 𝜌) = 𝜆(1 − 𝜌) ∑|𝜃𝑗| +
1

2

𝑃

𝑗=1

𝜆𝜌 ∑ 𝜃𝑗
2

𝑃

𝑗=1

 

The 𝜌 = 0 corresponds to the Lasso and uses an absolute value, 𝑙1 as parameter 

penalization, while case of 𝜌 = 1 corresponds to the ridge regression (Zou & 

Hastie, 2005).  Ridge regression uses an 𝑙2 parameter penalization, drawing all 
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coefficient estimates closer to zero, but never exactly zeroes. In this regard, the 

ridge acts as a shrinkage technique, preventing coefficients from becoming 

excessively large in magnitude (Kelly et al., 2022, RFS). We optimize the tuning 

parameters λ and ρ, adaptively using the validation sample. To achieve this, we use 

the accelerated proximal gradient algorithm in implementation of penalized 

regression. This approach supports both least squares and Huber robust objective 

functions (Kelly et al., 2022, RFS). 

 

4.4 PCR and PLS 

Principal Component Regression (PCR) and Partial Least Squares (PLS) are two 

strategies for reducing the dimensionality of the data. When predictors in penalized 

linear models are highly correlated, the produced forecasts could be suboptimal, 

specifically when forcing coefficients on regressors near or exactly equal to zero. 

In this case, a subset of predictors via Lasso penalty could be less efficient in 

comparison to taking a simple average of predictors and using this as the sole 

predictor in a univariate regression. Moreover, linear combinations of predictors 

could help reduce noise and decorrelate otherwise highly reliant predictors (Kelly 

et al., 2020, RFS). 

 

With PCR, we first execute the principal component analysis (PCA) which “… is a 

multivariate technique that analyzes a data table in which observations are 

described by several inter-correlated quantitative dependent variables. Its goal is to 

extract the important information from the table, to represent it as a set of new 

orthogonal variables called principal components, and to display the pattern of 

similarity of the observations and of the variables as points in maps” (Abdi & 

Williams, 2010).  

 

One flaw of the PCR is its failure to incorporate the objective of implied volatility 

returns for ATM currency options in the dimension reduction step (Kelly et al., 

2020, RFS). On the other hand, PLS directly exploits the covariation between 

predictors and the forecast target to perform dimension reduction (Kelly & Pruitt, 

2015, JE). PLS then combines predictors into an aggregate component, prioritizing 

stronger predictors with higher weights. The process is iterated, were the target and 
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predictors are orthogonalized to the previously constructed components until the 

desired number of PLS components is obtained (Kelly et al., 2020, RFS). Here we 

have: 

∆𝐼𝑉𝐴𝑇𝑀 = 𝑍𝜃 + 𝐸 

Where ∆𝐼𝑉𝐴𝑇𝑀 is the NT x 1 vector of the percentage changes in implied volatility 

for each observation I at time t+1, Z is the NT x P matrix of stacked predictors 

z_(i,t), and E is a NT x 1 vector of residuals ϵ_(i,t+1). Both PCR and PLS seek 

reducing dimensionality by transforming the set of predictors from its original 

dimension P to a reduced set of K linear combinations of predictors. For both 

models, forecasting model is written:  

𝑅 = (𝑍Ω𝑘)𝜃𝑘 + E∽ 

PCR seeks K linear combinations of Z that mimic the predictor set, while PLS, in 

contrast, seek K linear combinations.  

 

4.5 Generalized Linear (Group Lasso) 

Due to their simplicity and efficiency, linear models have become popular. This is 

because they essentially are a first-order approximation of real world data (White, 

1980, IER). But data can be far more complex and nonlinear. A models forecasting 

error can be divided into three parts; approximation error, estimation error and 

intrinsic error (Kelly et al., 2020, RFS). 

 

Approximation error arises from the model’s inability to replicate in full the true 

data. This can be reduced by implementing more flexible specifications. However, 

this might increase the risk of overfitting and destabilizing the model out of sample 

(Kelly et al., 2020, RFS). Estimation error arises due to sampling variation. This is 

therefore determined by the data and can be reduced by adding new observations, 

but doing so might reduce the control for the econometrician. News or randomness 

in financial markets are classified as intrinsic error. It is simply unpredictable.  

 

The generalized linear models offer a nonparametric approach by including 

transformation that is nonlinear of the predictors as additional terms in a linear 

model – adding flexibility levels while still being close counterparts to the 
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approaches in (4.2.1) and (4.3). Our model adapts the simple linear form by adding 

a K-term splineseries expansion of the predictors (Kelly et al., 2020, RFS):  

𝑔(𝑧; 𝜃, 𝑝(∙)) = ∑ 𝑝(𝑧𝑗)´𝜃𝑗 ,

𝑃

𝑗=1

  

Where 𝑝(∙) = (𝑝1(∙), 𝑝2(∙), … , 𝑝𝑘(∙))´ (∙))´ is a vector of basic functions, and the 

parameters are now a K x N matrix 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑁). We adopt a spline series of 

order two: (1, 𝑧, (𝑧 − 𝑐1)2, (𝑧 − 𝑐2)2, … , (𝑧 − 𝑐𝐾−2)2,, where 𝑐1, 𝑐2, … , 𝑐𝐾−2 are 

knots (Kelly et al., 2020, RFS).   

We adopt the same least squares objective function as in linear models, with optimal 

modifications for robustness similar to the paper by Kelly et al. (2020, RFS) both 

with and without the Huber robustness modification. Similarly, the use of 

penalization is adopted to control for the number of model specifications. The 

penalization function is known as the group lasso and has the form: 

𝜙(𝜃; 𝜆, 𝐾) = 𝜆 ∑ (∑ 𝜃𝑗,𝑘
2  

𝐾

𝑘=1

)

1
2𝑃

𝑗=1

 

The group Lasso is compatible with both least squares and robust Huber objectives, 

and it employs the accelerated proximal gradient descent algorithm, similar to the 

elastic net (Kelly et al., 2020, RFS). 

 

4.6 GBRT and Random forests  

Gradient Boosted Regression Trees (GBRT) is a widely used learning algorithm in 

the field of machine learning today (Zheng et al., 2020). It constructs an additive 

regression model by utilizing decision trees as weak learners. One of the advantages 

of decision trees, including gradient boosted regression trees (GBRT), is their 

interpretability compared to other learning algorithms. Additionally, GBRT is 

highly adaptable as it allows for the use of various loss functions during the boosting 

process (Friedman, J.H., 2001). 

 

We follow the exact same procedure and pattern as the paper of Kelly et al. (2020). 

Similarly, the procedure begins by fitting a shallow tree with a limited depth (e.g., 

L=1). This initial tree may provide a weak prediction with substantial bias in the 

training sample. Subsequently, a second shallow tree (also with depth L) is 
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employed to model the prediction residuals from the first tree. The forecasts from 

these two trees are combined to form an ensemble prediction, but the contribution 

from the second tree is scaled down by a factor ν ∈ (0,1) to prevent overfitting of 

the residuals (Kelly et al., 2020, RFS). 

 

In each subsequent step, a new shallow tree is fitted to the residuals from the model 

with b-1 trees, and its residual forecast is added to the ensemble prediction with a 

shrinkage weight of ν. This process continues iteratively until a total of B trees are 

included in the ensemble. Therefore, the final output is an additive model 

comprising shallow trees with three tuning parameters (L, ν, B), which we select 

adaptively through the validation step (Kelly et al., 2020, RFS).  

 

Following the approach outlined in the paper by Kelly et al. (2020, RFS), we again 

adopt a similar methodology for random forests. Random forests consist of a 

combination of tree predictors, where each tree relies on the values of a random 

vector that is independently sampled from the same distribution for all trees in the 

forest (Breiman, 2001). This ensemble approach has demonstrated significant 

improvements in classification accuracy by aggregating the predictions of multiple 

trees and allowing them to vote for the most popular class (Breiman, 2001). 

To construct these ensembles, random vectors are often generated to govern the 

growth of each tree within the ensemble. One notable example is bagging (Breiman, 

1996), which involves selecting random subsets (without replacement) from the 

training set to grow each individual tree. This randomness in the selection process 

contributes to the diversity of the trees within the forest, enhancing the overall 

predictive performance (Breiman, 2001).  

 

5.0 Results 

Our training sample ranges from January 2006 to January 2013, our testing data 

ranges from February 2013 to January 2018 and our validation data uses the 

remaining time period stretching from February 2018 to August 2021. We 

conducted robustness tests for our training, testing, and validation models by 

employing different time periods, ensuring the reliability and validity of our 

findings.  



 

18 

 

5.1 Variable Importance and marginal relationships 

Similarly to the paper by Kelly et al. (2020, RFS), we wish to identify covariates 

that have a significant impact on implied volatility returns of ATM options, in 

addition to accounting for other predictors. In our methodology, we adopt a similar 

metric to evaluate the importance of variables to try to represent the goodness of fit 

of the model to our observed data. When specific predictor values are set to zero, 

the metric measures the panel predictive R2 while holding the remaining model 

estimates constant (Kelly et al., 2019, JFE).  

Moreover, we examine the marginal relationship between the implied volatility 

returns of ATM options and each characteristic through plots. This offers a visual 

presentation of the influence of each covariate in the machine learning models.   

 

5.2 All currencies  

In this section, we will present the results of our analysis and further discuss the 

impact and meaning of our findings.  

5.2.1 Out of sample R-squared  

The regressions used in this study aim to predict the implied volatility returns of the 

ATM currency options. Table 2 in Appendix B exhibits the out-of-sample R-

squared for all currencies combined. Out of the thirteen model regressions, the 

simple OLS and simple OLS + H has an R-squared value of 0.0232, meaning that 

these models explain about 2,32% of the variance in the implied volatility. This 

indicates a relatively weak predictive power.  

 

PCR and PLS have the lowest R-squared values of the models, close to zero and 

equal to zero. These regression models should handle dimensionality and 

multicollinearity in the data. However, the low R-squared values suggest that these 

models were unable to capture any meaningful relationship between the target 

variable and the input features.  

 

Our regularization models, Lasso, Ridge, and Elastic net, which introduce penalties 

to prevent overfitting in the models, perform slightly better. The Lasso and its 

Huber loss function both yield an R-squared of 0,0176. The Ridge regression and 
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its Huber loss function yield an R-squared of 0,0126 and 0,0127, respectively. The 

Elastic net and its Huber loss function yield an R-squared of 0,0155 and 0,0156, 

hence performing even worse.  

 

The Oracle model yields a negative R-squared value, meaning that it actually 

performed worse compared to a model that only predicts the mean of the output 

variable.  

 

Finally, the R-squared values for the group lasso regression and its Huber loss 

function are 0,0021 and 0,0020, respectively. Like the other models, these fail to 

predict and capture the relationship in high-dimensional data with the current 

feature grouping.  

 

Overall, these R-squared yielded from our models suggest our models were largely 

unsuccessful in accurately predicting implied volatility returns of ATM currency 

options. 

 

5.3 Individual currency pairs 

In this section, we will look into the results of the regression models when run for 

each currency individually.  

 

The simple OLS and its Huber loss function variant display some interesting 

variations. They both yield more robust R-squared values when applied to JPY, 

NOK, and GBP, returning values of 0,1381, 0, 1449, and 0,0628 for the simple OLS 

function, respectively. Compared to when all currencies were stacked together, the 

models explain a higher percentage of variation for these currencies individually.  

 

Similar to all currencies combined, the PCR and PLS continue to perform poorly 

across all currencies individually, with R-squared close or equal to zero. This 

highlights the models’ inability to capture the relationship between the target and 

input variables.  
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The regularization models, Lasso, ridge, and elastic net, exhibit varying 

performances across the corresponding currency pairs. The Lasso model yields an 

R-squared of 0,1607 for NOK, closely followed by the elastic net, yielding 0,1594. 

The regularized regressions perform best out of all the models for CAD, NOK, 

SEK, and AUD, while its performance was weaker for the other currencies. It is of 

interest how the Ridge regression for NOK have a relatively high R-squared 

(0,1393) but low values for all the other currency pairs.  

 

Like the PCR and PLS, the Oracle model, the group lasso, and its Huber loss 

function generally performed poorly across all individual currency pairs, yielding 

R-squared close to zero. In the case of the CHF, the Oracle model yielded a negative 

R-squared, indicating the model’s difficulty in providing accurate predictions.  

 

RF and GBRT were applied to DKK, CHF, and AUD. Despite the relatively low 

results, both the RF and GBRT yielded higher R-squared values than the rest of the 

models, similar to the GBRT for DKK.  

 

The predictive power of the models remains relatively low across the currency 

pairs. However, some currency pairs display higher performance, JPY, NOK, and 

AUD.  

 

Table 3 displays the summary statistics for JPY in relation to USD. Starting with 

the IBOR and forward rates, the mean and median are close to each other, implying 

that there is a normal or near normal distribution with limited skewness in this data. 

Given a mean and a median close to zero, with a relatively low standard deviation, 

indicates low variations. This could possibly explain why Lasso, Ridge and Elastic 

net have such low R-squared values since these models can handle multicollinearity 

and selecting variables that are major contributors.  

 

The forward rates have a higher standard deviation compared to the mean, 

suggesting high variability. If these rates significantly affect implied volatility, the 

variability in forward rates could contribute to the relatively high R-squared values 

for the simple OLS model. 
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The statistics for risk reversals show a strong skew towards negative values, 

highlighted by the 15 delta across all maturities, suggesting a market bias for 

protecting against depreciation of USD/JPY. There is far greater volatility in a 15 

delta compared to a 35 delta, implying a larger market uncertainty for extreme 

movements in USD/JPY, aligning with the high negative values observed.  

 

The statistics for the butterfly strategy display positive values across all maturities 

and deltas. This could suggest market anticipation with higher volatility in either 

direction of the USD/JPY forward rate. The volatility expectation increase as the 

horizon of the maturities increases. This makes sense due to increasing uncertainty 

over longer time horizons.  

 

Linking these observations to the original regression results, models like Lasso, 

Ridge, and Elastic Net performed relatively well. These values are not particularly 

high, but these models are capturing some of the complexities and volatility in the 

USD/JPY forward rate, displayed in Figure C.1.1. 

 

Figure C.1.1. also displays some context for why the PCR and PLS perform so 

poorly. There is a complex relationship and inherent volatility in the currency 

market, reflected in the low explanatory power of these models, similarly across all 

currency pairs.  

 

In Table 2, the regression results for USD/NOK currency pair display a similar 

pattern as the USD/JPY. Overall, the R-squared values are low, indicating the 

models' relatively weak predictive power. However, some differences in the results 

are worth discussing. 

 

The forward rates displayed in Table 1 exhibit a skew to the right, explained by a 

mean higher than the median. This could suggest an anticipation towards a future 

appreciation in the value of USD against the NOK. This could contribute to 

volatility in the exchange rate. This anticipation is strengthened by the positive risk 

reversal mean values across all maturities. The mean is also positive for the butterfly 

spread across, implying that markets add tail risk to their pricing. This could 

contribute to overall volatility. 
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5.4 Which characteristics matter  

This subsection examines the significance of covariates and introduces two figures, 

namely Figure 1 and Figure 2. Using the importance measure discussed in Section 

1.9, we assess the relative importance of individual covariates in relation to the 

performance of each model. Following the study by Kelly et al. (2020), we present 

Figure 1, which showcases the top 20 most influential covariates for each method. 

This presentation enables the interpretation of the relative importance of variables 

within each model, with the variable importance normalized to a sum of one. 

 

Figure 1 presents the important characteristics of the generalized models and the 

dimension reduction model (PLS). The generalized model, specifically the Group 

Lasso + H, exhibits a moderate bias towards the 1-month tenor of the Interbank 

offered rate (IBOR). Furthermore, the Group Lasso models display a slight 

inclination towards the butterfly spread (15BF6_3M). Conversely, the PLS 

dimension reduction model highlights that the covariate IBOR1M holds the primary 

influence. In contrast, the other covariates appear to have negligible or zero impact 

on the predictions of the PLS models. With the exception of the PLS, all individual 

models demonstrate some degree of agreement regarding the most influential 

predictors, suggesting their utilization of predictive information from a broader 

range of predictors. 

 

Across the models, the covariates exhibit variation, with a slight bias towards 

foreign exchange rates (FX_rates) for 1-3-month maturities observed in both the 

Simple OLS and Simple OLS + Huber. The higher R-squared values associated 

with the FX-rate variables indicate a stronger explanatory influence, thus 

accounting for a more significant portion of the variance in implied volatilities 

compared to the butterfly or risk reversal strategy variables. Considering the Simple 

OLS's treatment of variables on equal footing, without specific regularization or 

selection techniques, it is reasonable for foreign exchange rates to emerge as 

significant predictors for implied volatilities of ATM currency option returns. 

 

Moreover, the Lasso models, with and without the Huber loss function, exhibit a 

slight bias towards the Risk reversal strategy for options trading (15RR6M) and the 

butterfly spread trading strategy (25BF9M). In contrast, the Ridge and Ridge 
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models with Huber loss function demonstrate similarity in terms of the most 

influential predictors, although differentiated by expiration and maturity time 

horizons. 

 

The Elastic net model (Enet + H) demonstrates a close alignment of predictors, with 

the foreign exchange rate (FX_rate) and the 3-month rate displaying the highest R-

squared values. Additionally, the model exhibits a slight skewness towards the 

butterfly spread trading strategy across various time horizons. The penalized 

models exhibit a similar agreement among predictors, indicating that these models 

prioritize the same groups of variables and penalize those deemed less relevant. 

 

Figure 1 demonstrates that, except for Oracle and the dimension reduction 

technique known as Partial Least Squares (PLS), there is a consensus among the 

models regarding the most influential predictive characteristics. These predictors 

can be categorized into four groups. The first group pertains to the risk reversal 

options strategy, which varies in terms of maturities and sensitivity to changes in 

the underlying assets (delta). The second group consists of the butterfly spread and 

the foreign exchange rate (FX_rate). Lastly, the Interbank offered rate (IBOR) 

serves as a predictor characteristic.  

 

In Figure 2, the heatmap portrays the 51 characteristics based on their overall 

contribution to the models. Similar to the study conducted by Kelly et al. (2020), 

we rank the importance of each covariate for each method and subsequently sum 

their ranks. The color gradients in the heatmap reflect the model-specific ranking 

of covariates, ranging from least to most important, with lighter shades indicating 

lower importance and darker shades indicating higher importance. 

 

The analysis of the regression models, accompanied by the heatmap visualization, 

reveals the significant impact of certain covariates on the predictive performance of 

the models. The heatmap exhibits a discernible pattern, wherein specific variables 

consistently exhibit higher R-squared values across various models, particularly the 

penalized models such as Lasso (Lasso + H), Ridge (Ridge + H), and Enet (Enet + 

H). The color gradient pattern observed in the heatmap indicates a consensus among 

these models regarding influential predictors, with certain variables consistently 
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contributing more to the predictive power. Notably, the butterfly spread strategies 

(15BF6M, 15BF9M, 15BF12M) and the IBOR1M exhibit a strong influence, 

consistently appearing as darker shades across the penalized models. 

5.4.1 Best Performers  

In this subsection, our focus is on three specific currencies: Norwegian Krone 

(NOK), Japanese Yen (JPY), and Australian Dollar (AUD). The currencies are 

displayed in Figure C.2, C.1, and C.3, respectively, in Appendix B. These 

currencies have demonstrated superior out-of-sample performance compared to 

others. As in the previous analysis, we present the top 20 influential covariates for 

each method. 

 

Examining the results for NOK, we find consistently low R-squared values across 

all models. The independent variables exhibit limited explanatory power in 

predicting performance. Although this pattern holds true across various models, 

specific predictors contribute more significantly to the out-of-sample predictive 

performance in specific models. Notably, the Generalized models (Group Lasso + 

H) exhibit a notable skew towards the FX_rate variable, while the remaining top 

variables demonstrate a high degree of agreement in their contributions. The 

penalized model (elastic net) gives slightly greater importance to the IBOR1M 

predictor. However, the R-squared value, approximately 17.5%, indicates a 

relatively modest level of explanatory power for predictive purposes. 

 

In the case of the Japanese Yen (JPY), the penalized model (Elastic net + H) exhibits 

a distinct bias toward the 1-month foreign exchange rate. Furthermore, it 

incorporates predictive insights from a broader range of characteristics. The Ridge 

regression models, with and without the Huber loss function, demonstrate a 

pronounced inclination towards the foreign exchange rate and the 9-month butterfly 

trading strategy (25BF9M). Additionally, these models derive predictive 

information from the Interbank offered rates (IBOR1M) and (IBOR6-3M). The 

remaining variables, however, contribute little to the overall predictive performance 

of the models. 
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The Australian dollar (AUD/USD) exhibits negative R-squared values across 

multiple variables in the Simple OLS and OLS with the Huber extension. This 

indicates a potential violation of the assumption of linearity between the 

independent and dependent variables, as assumed by the Simple OLS regression. 

Consequently, the omission of certain variables may have resulted in a poor fit, 

failing to accurately capture the relationship's complexity. Conversely, the 

penalized models, particularly Elastic net and Lasso regressions, demonstrate 

positive R-squared values, indicating their effectiveness in forecasting. These 

models utilize information from all of the top 20 characteristics, suggesting a higher 

level of agreement in terms of predictive information. However, the Ridge 

regression displays a stronger bias towards the 1-month interbank offered rate 

(IBOR1M). Additionally, the Ridge regression and other penalized models 

incorporate predictive information from a broader range of the top 20 

characteristics. 

 

These results indicate that, while the performance of models improved for some 

individual currency pairs compared to all currencies combined, the predictive 

power of the models remains relatively low across all currencies. This suggests that 

the relationship between the independent variables and the implied volatility returns 

of ATM currency options may be complex, potentially nonlinear, and varies by 

currency. The difference in model performance for individual currencies indicate 

that there may be unique characteristics in each currency market that are not 

captured by the models. This calls for further investigation and potentially 

developing currency-specific models or including additional currency-specific 

predictors. 

 

6. Conclusion 

In our study, we investigate a range of machine learning methods – namely, 

Principal Component Regression (PCR), Partial Least Squares (PLS), Lasso, Lasso 

+ Huber, Ridge, Ridge + Huber, Elastic Net, Elastic Net + Huber, Oracle, Group 

Lasso, Group Lasso + Huber, Random Forest (RF), and Gradient Boosted 

Regression Trees (GBRT) – and reveals that the comparatively simpler linear 

Ordinary Least Squares (OLS) regression outperforms these more advanced 

techniques. This outcome can be attributed to several key factors. Firstly, the 
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simplicity of OLS lends itself to transparent and interpretable models, enabling a 

deeper understanding of coefficient effects on the response variable (James et al., 

2013). This characteristic proves particularly beneficial in our research context, 

where interpretability and explainability are valued. Secondly, the assumptions 

inherent in OLS, including linearity, independence, and homoscedasticity, align 

favorably with the underlying structure of our data, leading to accurate and reliable 

results.  

 

Nevertheless, this by no means diminishes the potential of machine learning 

techniques, which may outshine in different contexts or datasets (Müller & Guido, 

2017). Considering the specific characteristics of different currency pairs, such as 

JPY/NOK and USD/AUD, where dimension reduction regressions such as Lasso 

and Elastic Net have exhibited relatively better performance compared to OLS, may 

offer valuable insights for developing tailored models for forecasting IV returns for 

ATM currency options. 
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Appendix: Data sources 

A.1 One-month At the Money Implied Volatilities 

We use nine different currencies in relation to the US dollar for the one-month at-

the-money implied volatilities: Japanese yen (JPY), Canadian dollar (CAD), Danish 

krone (DKK), Norwegian krone (NOK), Swedish Krona (SEK), Swiss franc (CHF), 

Pound sterling (GBP), Euro (EUR) and Australian dollar (AUD). We retrieve the 

data on the one-month at-the-money implied volatilities from Bloomberg. The time 

period stretches from 01/04/2006 to 08/03/2021.  

 

A.2 Risk reversals in FX options and butterfly strategies in currency options 

Here, we have the 15 delta, 25 delta, and 35 delta risk reversals with a 1, 2, 3, 6-3, 

6, 9, and 12-month expiry for the various currency pairs: USD/JPY, USD/CAD, 

USD/DKK, USD/NOK, USD/SEK, USD/CHF, GBP/USD, EUR/USD, and 

AUD/USD.  The data was obtained from Bloomberg. The same time periods apply 

here as A.1 

 

A.3 Interbank Offered Rates (IBOR) 

We have the Interbank Offered Rates for the same currency pairs with period 

lengths of 1 month and 6-3 months. In certain economic conditions, negative 

IBOR rates can occur meaning that banks charge a storage fee for holding the 

money, instead of paying interest. The same time periods apply here as A.1. 

 

Figure A.1: 1-month IBOR for the various currencies.  
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Fig.A.1. This figure shows the Interbank offered rate for the different currencies over a sample 

period from January 2006 to August 2021.  

 

A.4 Historical foreign exchange (FX) rates and currency forwards 

For the corresponding currency pairs, we gather their historical FX rates. The data 

was obtained from Bloomberg. The same time periods apply here as A.1. We also 

have the 1, 2, 3, 6-3, 6, 9, and 12-month forward rates for these currency pairs.  

 

Figure A.4: FX rates for each currency 

Fig.A.4. The top figure shows the FX rates for USD/CAD, USD/DKK, USD/NOK, USD/SEK, 

USD/CHF, GBP/USD, EUR/USD, and AUD/USD, while the bottom figure shows the USD/JPY 

FX rates over a sample period from January 2006 to August 2021. 
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Appendix B: Tables 

B.1 All Currencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Summary statistics for our data 

Tab.1. The table displays summary statistics for each instrument in our data, reporting the mean, 

median, standard deviation, maximum and minimum value.  
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B.2 Out-of-sample R-squared 

 

 

Table 2: Out-of sample R-squared 

Tab.2. The table shows the out-of sample R-squared yielded by the different models for each 

currency pair.  
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B.3 USD/JPY summary statistics 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Summary statistics for our data 

Tab.3. The table displays summary statistics for each instrument in our data, reporting the mean, 

median, standard deviation, maximum and minimum value for USD/JPY.  
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Appendix C: Individual currency pairs 

C.1 Currency pair 1: Japanese yen (JPY) in relation to the US dollar (USD) 

 

Figure C.1: Heatmap USD/JPY for 13 regression models. 

Fig.C.1. This figure shows the heatmap for each of the 13 regression models, looping over each of 

the 51 variables.  
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Figure C.1.1: Top 20 covariates for USD/JPY for 13 regression models. 

Fig.C.1.1. This figure shows the top 20 covariates for each of the 13 regression models 

 

C.2 Currency pair 2: Norwegian krone (NOK) in relation to the US dollar 

(USD) 

 

Figure C.2: Heatmap USD/NOK for 13 regression models. 

Fig.C.2. This figure shows the heatmap for each of the 13 regression models, looping over each of 

the 51 variables.  
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Figure C.2.1: Top 20 covariates for USD/NOK for 13 regression models. 

Fig.C.2.1. This figure shows the top 20 covariates for each of the 13 regression models 
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C.3 Currency pair 3: Australian dollar (AUD) in relation to the US dollar 

(USD) 

 

Figure C.3: Heatmap USD/AUD for 15 regression models. 

Fig.C.3. This figure shows the heatmap for each of the 15 regression models, looping over each of 

the 51 variables.  
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Figure C.3.1: Top 20 covariates for USD/AUD for 13 regression models. 

Fig.C.3.1. This figure shows the top 20 covariates for each of the 13 regression models 
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