
The Journal of Systems and Software 209 (2024) 111918

A
0

✩

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Extending the range of bugs that automated program repair can handle✩,✩✩

Omar I. Al-Bataineh a, Leon Moonen a,b,∗, Linas Vidziunas a

a Simula Research Laboratory, Oslo, Norway
b BI Norwegian Business School, Oslo, Norway

A R T I C L E I N F O

Dataset link: https://github.com/secureIT-proj
ect/extendingAPR, https://doi.org/10.5281/ze
nodo.10397656

Keywords:
Automated program repair
Bug classification
Non-observable and liveness bugs
Hybrid techniques

A B S T R A C T

Modern automated program repair (APR) is well-tuned to finding and repairing bugs that introduce observable
erroneous behavior to a program. However, a significant class of bugs does not lead to observable behavior
(e.g., termination bugs and non-functional bugs). Such bugs can generally not be handled with current
APR approaches, so complementary techniques are needed. To stimulate the systematic study of alternative
approaches and hybrid combinations, we devise a novel bug classification system that enables methodical
analysis of their bug detection power and bug repair capabilities. To demonstrate the benefits, we study
the repair of termination bugs in sequential and concurrent programs. Our analysis shows that integrating
dynamic APR with formal analysis techniques, such as termination provers and software model checkers,
reduces complexity and improves the overall reliability of these repairs. We empirically investigate how well
the hybrid approach can repair termination and performance bugs by experimenting with hybrids that integrate
different APR approaches with termination provers and execution time monitors. Our findings indicate that
hybrid repair holds promise for handling termination and performance bugs. However, the capability of the
chosen tools and the completeness of the available correctness specification affects the quality of the patches
that can be produced.
1. Introduction

Corrective maintenance, i.e., finding and repairing software bugs,
is one of the main categories of software maintenance, and responsible
for a large part of the overall costs of software development (Swanson,
1976). Automated program repair (APR) promises to increase developer
productivity and drastically reduce the costs of corrective mainte-
nance (Le Goues et al., 2019; Monperrus, 2018). Despite the advances
of APR for real-world programs (Marginean et al., 2019), these ap-
proaches can only handle certain types of bugs because they generally
rely on dynamic analysis for functional verification, where a test suite
is used to simulate the input and monitor the output to check correct
behavior. However, this is only viable if the effects of a bug can be
observed when executing the program.

Detecting and repairing non-observable bugs and liveness bugs (i.e.,
bugs that do not lead to incorrect results or crashes) pose a far greater
challenge. For example, identifying a liveness bug requires finding an
infinite execution that will never satisfy the desired liveness prop-
erty (Alpern and Schneider, 1987). It is not known how long one
would need to run the program to reveal an existing liveness bug,

✩ This work has been financially supported by the Research Council of Norway through the secureIT project (RCN contract #288787).
✩ Editor: W. Eric Wong.
∗ Corresponding author at: Simula Research Laboratory, Oslo, Norway.

E-mail addresses: omar@simula.no (O.I. Al-Bataineh), leon.moonen@computer.org (L. Moonen), linasvidz@simula.no (L. Vidziunas).

making it impractical to find such cases using dynamic analysis. An-
other critical challenge that makes detection and repair of liveness bugs
notoriously hard is that the effects that a liveness bug is triggered are
generally unobservable (i.e., they typically produce little debugging
information). One option for finding this class of bugs is applying
formal program analysis techniques that use correctness specifications
to detect liveness bugs. Such a rigorous analysis can both help to detect
the presence of liveness bugs as well as assure the absence of these bugs
in automatically generated patches.

The question which (combinations of) techniques will be most
effective at handling certain bugs is an open research question that
forms the foundation of this paper. To stimulate the systematic study of
alternative APR approaches and hybrid APR combinations, we devise
a novel bug classification system that enables methodical analysis
of their bug detection power and bug repair capabilities. In earlier
work, various bug classification schemes were developed to understand
when and why specific bugs arise, and how they are fixed. These
classifications use a number of criteria, such as cause-impact (Li et al.,
2006; Tan et al., 2014), severity-priority (Serrano and Ciordia, 2005),
vailable online 14 December 2023
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2023.111918
Received 2 March 2023; Received in revised form 12 October 2023; Accepted 4 De
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

cember 2023

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
mailto:omar@simula.no
mailto:leon.moonen@computer.org
mailto:linasvidz@simula.no
https://doi.org/10.1016/j.jss.2023.111918
https://doi.org/10.1016/j.jss.2023.111918
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111918&domain=pdf
http://creativecommons.org/licenses/by/4.0/

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

e

i
d

T
c
p
s
t
b
b
S
o

and bug complexity (Cotroneo et al., 2016). However, since they were
designed for different goals, they do not capture the properties required
to determine if a bug is amenable to a particular technique. To that end,
we introduce a bug classification system explicitly aimed at comparing
different techniques and evaluating the feasibility of their integration.

Contributions: The paper makes the following key contributions:

1. We propose a novel bug classification system based on three fun-
damental properties: bug observability, bug reproducibility, and bug
tractability. This classification provides the APR community with
a tool to methodologically explore and compare alternative and
hybrid APR approaches by (i) analyzing the detection power
of different bug detection techniques, (ii) distinguishing APR
approaches based on their bug repair capabilities, and (iii) pro-
viding a common terminology that helps identify gaps in current
APR research.

2. We discuss four APR approaches that can handle different classes
of bugs: dynamic APR, static APR, dynamic–static APR, and formal
APR. Moreover, we identify the conditions under which each
approach can be effectively applied.

3. To demonstrate the benefits of our method, we study termi-
nation bugs in sequential and concurrent programs, and sketch
novel hybrid APR algorithms for repairing such bugs. The study
shows that termination bugs in sequential programs can be ef-
fectively addressed using dynamic–static APR, by first generating
plausible patches using test cases and then using termination
provers (Giesl et al., 2014; Chen et al., 2015; Brockschmidt et al.,
2016) to check their correctness. The non-deterministic nature
of termination bugs in concurrent programs makes them chal-
lenging for dynamic analysis, and they are best addressed with
formal APR that combines termination provers with software
model checkers (Jhala and Majumdar, 2009; Godefroid, 1997;
Holzmann, 1997; Havelund and Pressburger, 2000; Musuvathi
et al., 2002; Thompson et al., 2010; Baranová et al., 2017).

4. This paper extends our earlier work (Al-Bataineh and Moonen,
2022) with an empirical investigation of how well the proposed
hybrid approach can handle termination and performance bugs.
To this end, we create hybrids of tools representing different
APR approaches with termination provers and execution time
monitors. We use a dataset for termination bugs in C code that
was originally developed to evaluate the efficacy of termination
provers (Shi et al., 2022), and extend it with two performance
bugs: one simple synthetic example, while the other one is a
real-world Apache flaw that has also been analyzed by other
researchers (Song and Lu, 2017). As a representative of search-
based APR tools, we choose GenProg (Le Goues et al., 2012),
and as a representative of semantic-based repair tools, we choose
FAngelix (Yi and Ismayilzada, 2022). We were unable to locate
a representative of template-based repair tools that can handle C
code. Our findings indicate that mutation-based repair tools have
a better chance of fixing performance bugs than semantic-based
repair tools. Mutation-based repair tools can easily restructure
the program using the basic mutation operators like move, swap,
delete, and insert. Since programs having performance bugs are
semantically correct programs, we observe that these operators
can successfully address performance bugs. The satisfaction of
a composite property, which combines a termination property
and a semantic property describing the loop’s logic, is neces-
sary for fixing termination bugs. The integration of APR with
termination provers would help to fully fix the termination bug
if the semantic property is available. To ensure termination
without necessarily maintaining the program’s logic, patches can
be made by combining termination provers and test cases. Both
the GenProg and FAngelix hybrids were unable to fix termina-
tion bugs successfully: they produce patches that only guarantee
termination and do not maintain the logic of the loop being
2

fixed. The main cause for these issues is the incompleteness of
the correctness specification (i.e., the available test suite), which
is a frequently observed drawback of dynamic APR.

Remark 1. Different terms have been used to characterize a situation
in which a program performs unexpectedly such as bug, defect, error,
and fault. These terms are generally similar and refer to instances in
which the analyzed program deviates from its intended behavior. How-
ever, the terms bug and defect are frequently used in the literature of
software engineering, whereas the terms fault and error are frequently
used in the literature of formal methods (especially model checking).
However, to be consistent with earlier research on automated program
repair, in this paper we use the terms bug and defect.

Notations: We start by explaining some notations that we use through-
out the paper. When referring to an observer who records the execution
of a program and its results, we use the notations 𝑂, 𝑂𝑒𝑥𝑝, and 𝑂𝑜𝑏𝑠,
where 𝑂𝑒𝑥𝑝 stands for the output that would be produced by a correct
version of the program, and 𝑂𝑜𝑏𝑠 stands for the output that 𝑂 actually
sees when running a program. We assume that 𝑂 can distinguish
between correct and incorrect outcomes. The property 𝜑𝑏𝑒ℎ is a formal
property (typically written in temporal logic) that denotes the correct
behavior of the program being analyzed, and 𝜑𝑟𝑒𝑎𝑐ℎ is a property that is
used to check whether the program being analyzed can reach any of its
halting locations. The expression (𝑃 , 𝑖) ⊧ 𝜑𝑏𝑒ℎ expresses that program
𝑃 under input 𝑖 fulfills property 𝜑𝑏𝑒ℎ while expression (𝑃 , 𝑖) ̸⊧ 𝜑𝑏𝑒ℎ
xpresses that 𝑃 under 𝑖 violates 𝜑𝑏𝑒ℎ. The expression 𝑃 ⊢ 𝑡 denotes

that program 𝑃 successfully passes test 𝑡. Finally, we write (𝑝𝑖 ∥ 𝑝𝑗) to
ndicate that processes 𝑝𝑖 and 𝑝𝑗 are run in parallel, and 𝑡𝑖𝑚𝑒(𝑃 , 𝑖) to
enote the length of time that program 𝑃 takes under input 𝑖.

2. Bug classification schemes

There are many different ways to expose bugs in programs, in-
cluding manual inspection, dynamic analysis (testing), static analysis,
model checking, or a combination of these techniques. Effective bug
classification schemes can help understand why bugs arise and how
to fix them. Classification can also help identify the most appropriate
analysis technique for handling each class of bugs. Next, we discuss
three existing bug classification systems, analyze their limitations, and
introduce a new classification system that addresses them:

1. Cause-impact criteria (Li et al., 2006; Tan et al., 2014): Bugs
are classified based on their cause: algorithmic, concurrency,
memory, generic programming, and unknown, as well as based
on their impact: security, performance, failure, and unknown.

2. Severity and priority criteria: This classification is used in many
bug tracking systems (Serrano and Ciordia, 2005). Severity in-
dicates the impact of the bug on the program’s functionality
and can be categorized as critical, major, moderate, minor, etc.
Priority indicates how soon the bug should be fixed and is
categorized into levels such as low, medium, and high.

3. Bug complexity criteria (Cotroneo et al., 2016): These criteria
distinguish four main categories: (i) easy to detect, easy to repair
bugs, (ii) easy to detect, difficult to repair bugs, (iii) difficult to
detect, easy to repair bugs, and (iv) difficult to detect, difficult
to repair bugs.

hese three existing bug classification systems were not designed for
omparing the capabilities and limitations of different bug detection or
rogram repair techniques. As a result, their criteria do not capture the
pecific properties needed to determine whether a bug 𝑏 is amenable
o a particular technique 𝑇 . To address this gap, we propose a new
ug classification system that is based on three key properties of
ugs, namely bug observability, bug reproducibility, and bug tractability. In
ections 3 and 4, these properties are then used to analyze the power
f different bug detection techniques and APR approaches.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

o
b

c

D

w
𝑏

D
o

o
t
i
𝑂
b
t
t
m
e
t
t
B
i
e

i
m
o
t
b
v
T
M
p

D
p
e

m
O
h

D

t

Before proceeding further, let us first define a program bug. We base
ourselves on a specification of expected behavior : the expected responses
(output) of the program to a given input.

Definition 1 (Program Bug). Let 𝑃 be a program, 𝐼 a set of inputs, and
𝜑𝑏𝑒ℎ be a specification of expected behavior of 𝑃 . We say that 𝑃 suffers
from a bug iff there exists at least one input 𝑖 ∈ 𝐼 that leads to an
execution trace under which program 𝑃 violates 𝜑𝑏𝑒ℎ, formalized as
(𝑃 , 𝑖) ⊧̸ 𝜑𝑏𝑒ℎ.

Since a complete specification of a program’s expected behavior is
ften not available, test cases are generally used to model the expected
ehavior of a program 𝑃 . We assume there exists (𝑖, 𝑜𝑒𝑥𝑝), where 𝑜𝑒𝑥𝑝

is the expected output for input 𝑖 ∈ 𝐼 . When the observed output
𝑜𝑜𝑏𝑠 = (𝑃 , 𝑖) does not match the expected output 𝑜𝑒𝑥𝑝, we say that 𝑃
ontains a bug.

efinition 2 (Observable Bug). Let 𝑃 be a program containing bug 𝑏.
We say that 𝑏 is an observable bug iff there exists an execution of 𝑃

here, in a finite number of execution steps, the erroneous behavior of
can be seen by an observer 𝑂.

efinition 3 (Classifying Bugs by Observability). We classify bugs based
n the notion of observability in three types:

1. observable bugs whose erroneous behavior is fully observable in
finite execution steps (e.g., arithmetic bugs),

2. partially observable bugs whose erroneous behavior is only par-
tially observable at runtime because the faulty trace is infinite, so
not all output of the program can be observed (e.g., termination
bugs),

3. non-observable bugs whose erroneous behavior is fully unobserv-
able at runtime (e.g., non-functional bugs).

Note that observability is a relative notion that depends on the
bservation power of 𝑂. In the simplest case, the observer can witness
he output produced by 𝑃 and the corresponding execution time. If we
ncrease the observation power of 𝑂 (i.e., the amount of information

can gather about the program’s execution), some non-observable
ugs may become observable. For example, bugs that adversely affect
he memory or energy consumption can easily go unnoticed during
he execution of the program. Such bugs can be exposed by using
onitoring at the virtual machine or operating system level (Hebbal

t al., 2015; Dovgalyuk et al., 2017; Gregg, 2020, 2019). Alternatively,
he program can be augmented with additional variables and checks
hat help to keep track of these non-functional aspects at runtime (Al-
ataineh et al., 2021b). However, increasing observation power also

ncreases the chance of affecting the program’s execution (Mytkowicz
t al., 2008).

We distinguish five common types of observable erroneous behav-
or: 𝐸𝐵 = {crash, exception, incorrectResult , softHang , hardHang}. While
ost types in 𝐸𝐵 are easy to understand, we will define the notions

f soft and hard hang bugs. Hang bugs are a particular type of bugs
hat concern (temporary or permanent) lack of progress in observable
ehavior (Wang et al., 2008; Dean et al., 2015). Hang bugs can have
arious causes, such as iteration errors or communication deadlocks.
o define hang bugs, we use a temporal specification (Pnueli, 1977;
anna and Pnueli, 1992) that checks if any of the locations where the

rogram might terminate can be reached.

efinition 4 (Halting Statements). We refer to a statement 𝑠 in a
rogram 𝑃 as a halting statement iff the expected behavior of 𝑃 is that
xecution terminates after executing statement 𝑠.

Examples of halting statements include special termination state-
ents such as exit, or simply the final statement in a program.
bserve that programs whose expected behavior is to never terminate
ave no halting statements (e.g., a webserver).
3

efinition 5 (Hang Bugs). Let 𝑃 be a program with a set of inputs 𝐼 and
𝐻 be the set of halting statements of 𝑃 . Let 𝜑𝑡𝑒𝑚𝑝 be a temporal property
that puts an upper bound on the execution time of 𝑃 , and 𝜑𝑟𝑒𝑎𝑐ℎ be a
emporal property that checks whether 𝑃 reaches a halting statement.

Let also 𝐸𝐵′ = 𝐸𝐵 ∖ {𝑠𝑜𝑓𝑡𝐻𝑎𝑛𝑔, ℎ𝑎𝑟𝑑𝐻𝑎𝑛𝑔}. We distinguish:

1. Soft hang bugs, also known as performance bugs, occur when
there exists an input 𝑖 ∈ 𝐼 that makes 𝑃 unresponsive for a
finite amount of time before execution is resumed and a halting
statement is reached:

𝑆 ∶ (𝑃 , 𝑖) ⊧̸ 𝜑𝑡𝑒𝑚𝑝 ∧ (𝑃 , 𝑖) ⊧ 𝜑𝑟𝑒𝑎𝑐ℎ ∧ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑃 , 𝑖) ⊈ 𝐸𝐵′

2. Hard hang bugs, also known as termination bugs, occur when
there exists an input 𝑖 ∈ 𝐼 that makes 𝑃 unresponsive for an
unbounded amount of time, never resuming to normal execution
or reaching a halting statement:

𝐻 ∶ (𝑃 , 𝑖) ⊧̸ 𝜑𝑡𝑒𝑚𝑝 ∧ (𝑃 , 𝑖) ⊧̸ 𝜑𝑟𝑒𝑎𝑐ℎ ∧ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑃 , 𝑖) ⊈ 𝐸𝐵′

Hang bugs are also referred to as liveness violations in model check-
ing and formal program analysis literature (Lamport, 1977; Alpern and
Schneider, 1985; Killian et al., 2007; Li and Regehr, 2010), and we will
use these terms interchangeably in the remainder.

We now turn to discuss the property of bug reproducibility.

Definition 6 (Bug Reproducibility). Let 𝑃 be a program containing a bug
𝑏 and 𝑡𝑏 be a test case that exposes 𝑏. We say that 𝑏 is a reproducible or
deterministic bug iff every time program 𝑃 is executed under test 𝑡𝑏, bug
𝑏 is exposed and the same erroneous behavior is observed. On the other
hand, we say that 𝑏 is a hard-to-reproduce or non-deterministic bug iff bug
𝑏 is exposed in rare circumstances when repeating the execution of 𝑃
under test 𝑡𝑏 (i.e., the result of program 𝑃 depends not only on the code
of 𝑃 but also on the timing of the execution).

Reproducible bugs are easy to detect, provided that the bug is
observable (see Definition 2). Not surprisingly, hard-to-reproduce bugs
are also hard to detect. Arithmetic bugs are examples of easy-to-
reproduce bugs, while concurrency bugs are examples of hard-to-
reproduce bugs. The last property we study is bug tractability, which
depends on the depth of the bug and the size of the faulty trace it
produces.

Definition 7 (Bug Tractability). Let 𝑃 be a program containing bug 𝑏
and 𝐿 be the set of reachable locations of 𝑃 and 𝓁𝑏 ∈ 𝐿 be the buggy
location to the bug 𝑏. We say that the trace of 𝑏 is a tractable trace iff for
each execution of 𝑃 that is buggy to 𝑏, the number of execution steps
that are required to reach 𝓁𝑏 is bounded and that 𝓁𝑏 is not part of a
loop that can be executed infinitely often. On the other hand, we say
that the trace of 𝑏 is intractable iff 𝓁𝑏 is visited infinitely often during
the execution of 𝑃 (i.e., 𝓁𝑏 is part of an infinite loop).

The presence of loops plays a crucial role in determining the
tractability of a bug. The size of faulty traces for non-loop programs is
typically shorter than those in loop programs. Based on the size of the
faulty trace, we can further distinguish the class of tractable bugs: (i)
shallow bugs are tractable bugs with finite short faulty traces, (ii) deep
bugs are tractable bugs with finite but long faulty traces. For example,
a bug in a loop program 𝑃 that does not occur until a vast number of
iterations are executed can be viewed as an example of a deep bug.

Bug Classification System: Table 1 summarizes the three properties
in our classification system with their distinguishing attributes and
impact on bug detection. Our classification system associates each bug
with a three-tuple of concrete attributes for {observability, reproducibil-
ity, tractability}. For example, an arithmetic bug has the properties:
{observable, easy-to-reproduce, shallow}.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

c
a
𝐷

f
n
p
g
(
b

O
c
a
t

Table 1
A summary of the key properties for bug classification with their attributes and impact.

Bug property Property attributes Impact on bug detection

observability {observable, non-observable, partially-observable} Affects detection power
reproducibility {easy-to-reproduce, hard-to-reproduce} Affects efficiency and scalability
tractability {shallow, deep, liveness} Affects detection power and efficiency
w
p
a
i
t
d

3

p
o
t
b
d
S
e
g
s

n
a
f

D

o
i
d
f
a
a

O
r
b
c
c

p
t
a
A

3

2

3. Bug detection techniques

Various bug detection techniques can be used to expose bugs in
programs. In this work, we are interested in studying three well-
known bug detection techniques: dynamic analysis, static analysis, and
model checking. While dynamic analysis detects bugs in programs by
executing them, static analysis and model checking use different tech-
niques in bug detection that perform bug checking statically, without
running the program. We start by discussing the requirements needed
to expose bugs in each technique, the advantages and disadvantages of
the techniques, and the theoretical foundation and detection power of
each (i.e., the classes of bugs that each technique can handle).

3.1. Dynamic analysis

Dynamic analysis is a technique to identify bugs and vulnerabilities
in programs by exercising various runs through the program based on
valid inputs. Dynamic analysis can be performed using a test suite,
which can be developed manually or via test case generation, or
through fuzzing, which systematically explores a large amount of auto-
matically generated tests. Fuzzing is one of the most common methods
used to find vulnerabilities in programs (Miller et al., 1990, 2006).
Early fuzz testing was based on sending random inputs to a program
to check if it could be made to crash. The techniques have evolved to
systematically explore the input space using knowledge from the source
code or input formats to discover bugs that are hidden deep in the code.

Dynamic analysis has several advantages over the other program
analysis techniques: (i) the program behavior can be monitored, and
bugs can be exposed while the program is running; (ii) it allows for
analysis of programs for which we do not have access to the actual
code; (iii) it can be conducted against any program; and last but not
least, (iv) it can identify bugs that are hard to find using static analysis.
We now discuss the conditions under which bugs may be discovered in
dynamic analysis.

Definition 8 (Bug Detection in Dynamic Analysis). Let 𝑃 be a program
ontaining bug 𝑏, and 𝐷 be a dynamic program analysis checker (i.e., an
utomated testing tool such as a fuzzer). We say that 𝑏 is detectable in

iff

1. 𝑃 is given in an executable form,
2. bug 𝑏 is observable in some executions of 𝑃 ,
3. there exists a test suite 𝑇 containing at least one failing test 𝑡 by

which bug 𝑏 can be exposed in 𝑃 .

However, many bugs whose detection requires the analysis of in-
inite traces or the satisfaction of complex composite properties can-
ot be found using an approach solely relying on test cases. Exam-
les of such classes of bugs include (i) bugs in non-executable pro-
rams, (ii) liveness bugs such as termination and starvation bugs, and
iii) non-observable bugs such as non-functional and information flow
ugs (Sabelfeld and Myers, 2003; Smith, 2007).

bservation 1. Dynamic analysis techniques can handle observable
lasses of bugs with finite execution traces, provided that a testing mech-
nism is implemented by which the bug can be exposed, and provided that
4

he program is executable. s
To address these limitations, we need to pair dynamic analysis
ith complementary bug detection techniques to improve the detection
ower of the approach. The remainder of this section discusses static
nalysis and model checking, which instead of using the program
tself as in dynamic analysis, analyzes abstractions of the program,
o improve observability and tractability and enable the detection of
eeper bugs (David et al., 2016).

.2. Static program analysis

Static program analysis is an approach for analyzing a computer
rogram without actually executing it. The most significant advantage
f static analysis is the ability to quickly and automatically examine
he complete code of the program to find flaws that might be missed
y dynamic analysis. The literature on static program analysis for bug
etection is rich and mature (D’Silva et al., 2008; Bessey et al., 2010;
adowski et al., 2018). Many of these techniques build on automatically
valuated analysis rules and bug detection patterns that capture the
eneral conditions under which specific bugs can occur, providing a
ystematic way for their detection.

To capture the notion of bug detectability in static analysis, one
eeds to ensure the availability of the source code of the buggy program
t which the bug 𝑏 occurs and the availability of some valid solid theory
or the detection of bug 𝑏.

efinition 9 (Bug Detection in Static Analysis). Let 𝑃 be a program
containing bug 𝑏 and 𝑆 be a static program analyzer that can be used
to expose bugs of type 𝑏. We say that 𝑏 is a bug detectable by analyzer
𝑆 if all of the following conditions hold:

1. the source code of 𝑃 is available, and
2. 𝑆 contains sound and complete detection method for 𝑏, and
3. 𝑃 is written in a language that is accepted by 𝑆.

The increasing complexity of (loop) programs and the large variety
f vulnerabilities make it difficult for static code analyzers to detect and
dentify vulnerabilities in a precise manner. One of the most significant
isadvantages of the static code analysis methodology is the presence of
alse-positive warnings: the tool may signal possible bugs where there
re none. However, reducing the number of false positives in static
nalysis tools is still an open problem.

bservation 2. Static checkers can handle observable, non-observable,
eproducible, and non-reproducible bugs, provided that the checker is built
ased on some solid mathematical foundation, and provided that the source
ode of the program is available in a programming language accepted by the
hecker.

Dynamic and static analysis techniques have different bug detection
owers as they rely on distinct assumptions and use orthogonal detec-
ion methods. Overall, these techniques have complementary strengths
nd weaknesses that are worth combining to improve the reliability of
PR systems.

.3. Model checking

Model checking (Burch et al., 1992; Bérard et al., 2001; Clarke et al.,
018) is an automated formal method for checking whether a finite-

tate model of a system meets a given specification. The technique

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

t
s
o

s
p
t
a

D

u

Table 2
A summary of key differences and similarities of dynamic analysis, static analysis, and model checking.

Criteria Dynamic analysis Static analysis Model checking

Bug detection mechanism Test cases Pattern-based specifications Formal correctness specifications
Accuracy of the analysis Accurate Inaccurate (suffers from false positives) Accurate relative to the accuracy of model
The need of code availability Not needed Needed to perform the analysis Needed to construct the model
The need of bug observability Needed to detect the bug Not needed (performs code analysis) Not needed (performs state analysis)
Code coverage of the program Incomplete code coverage Complete code coverage Complete code coverage
The need of code executability Needed to detect the bug The program will not be executed The program will not be executed
Language dependency Language-independent Language dependent Language dependent
Automation of the analysis Can be automated (fuzz testing) Fully automated A model needs to be manually written
has been used successfully to debug complex computer hardware,
concurrent systems, and real-world safety-critical systems.

Model checking has several advantages. It can detect errors that
would be very difficult to notice with other methods, such as in
concurrent programs. The properties that can be verified are more
expressive than with traditional testing, depending on the formalism
used to express them. For example, properties that require something to
happen infinitely often, or properties that require that some alternative
is always available. In addition, because every possible behavior of
the model is checked, the result is inevitable, provided that the model
checking tool itself has no serious errors.

Model checking can be an expensive procedure in a repair process
because of its exhaustive nature. Expressing both the model of the
system and the properties formally requires great care and expertise.
Moreover, one of the most significant problems with model checking in
practice is the so-called ‘‘state explosion problem’’: When the number of
state variables in the system increases, the size of the system state space
grows exponentially. However, abstractions can be applied to bring the
verification within feasible bounds of model checking technology.

Software model checking tools (Jhala and Majumdar, 2009; Gode-
froid, 1997; Holzmann, 1997; Havelund and Pressburger, 2000; Musu-
vathi et al., 2002; Thompson et al., 2010; Baranová et al., 2017) verify
the correctness of software models in a rigorous and automated fashion.
Most tools construct a (symbolic) reachability graph for the program-
under-analysis (i.e., a graph that contains reachable run-time states of
the program) without running the program. This graph is then used
o check if a property of interest holds. They typically implement
ophisticated data structures that enable clever search algorithms and
ptimizations.

The answer returned by a model checker is either a notion of a
uccessful verification (i.e., the specification holds), or a counterexam-
le — an execution path that violates a given property. However, if
he program being verified has an infinite state space, certain types of
bstractions are needed, or the analysis may simply not terminate.

efinition 10 (Bug Detection in Model Checking). Let 𝑃 be a program
containing bug 𝑏 and 𝑆𝑀𝐶 be a software model checker that can be
sed to expose bugs of type 𝑏. We say that 𝑏 is a detectable bug in the

model checker 𝑆𝑀𝐶 iff:

1. a formal property 𝜑𝑏 is available that is written in the input
specification language of 𝑆𝑀𝐶, which captures the conditions
under which 𝑏 can occur, and

2. the source code of 𝑝 is available, and
3. 𝑃 has finite states or an equivalent finite abstract program 𝑃𝑎𝑏𝑠

can be constructed for the properties of interest, and
4. the program 𝑃 or its reduced equivalent program 𝑃𝑎𝑏𝑠 is written

in a modeling language that is acceptable by 𝑆𝑀𝐶.

Observation 3. Model checking tools can handle observable, non-
observable, reproducible, and non-reproducible bugs, provided that the size
of the program is finite or a sound abstraction can be developed to bring the
program within the feasibility bound of model checking, and provided that
5

a specification is available for the bug of interest.
Bug Detection Properties: Based on the characteristics of the three
bug detection techniques discussed, one can make the following general
observations. Model checking is more expensive than static analysis,
requiring longer running times and more resources. Static analysis is
not as accurate as model checking, and testing is not as complete as
model checking. Testing suffers from coverage challenges: it is chal-
lenging to cover all possible executions of the program, in particular for
programs with an infinite input space where this becomes prohibitively
expensive. To ensure the correctness of the program for all inputs, a
correctness specification must exist that can be formally analyzed.

Table 2 summarizes the key differences and similarities between the
three program analysis techniques using several criteria: code coverage,
the need for code executability, accuracy of the analysis, the need for
bug observability, the need for code availability, and automation of the
technique. By code coverage, we mean the number of feasible execution
paths of the program that the technique can cover during the analysis,
and accuracy indicates whether the detected bug is a real bug.

4. APR approaches

This section describes four APR approaches that can handle different
classes of bugs. The four approaches combine the detection power
of dynamic analysis, static analysis, and model checking techniques
to improve the reliability of existing APR techniques. We discuss the
applicability of these approaches to three classes of bugs: arithmetic
bugs (observable bugs), non-functional bugs (non-observable bugs),
and liveness bugs (partially observable bugs).

An APR approach generally consists of four steps: fault identifi-
cation, fault localization, patch generation, and patch validation. The
most challenging step in the APR process is the patch validation step, in
which the generated patch is extensively evaluated to ensure that the
bug is resolved, and that the patch does not introduce any unwanted
behavior. In dynamic APR, as the name implies, the patch validation
step is primarily performed using test cases. Since these rarely capture
the expected behavior in full detail, the technique suffers from the so-
called patch overfitting problem, where the patched program may pass
the tests in the given test suite, while it is failing for valid inputs not
covered by the test suite. It is therefore desirable to combine the power
of different analysis techniques while taking into account the distinctive
properties of each class of bugs. This leads to our examination of the
following four APR approaches:

1. dynamic APR: in which fault identification and patch valida-
tion are performed using dynamic analysis techniques. Gen-
Prog (Le Goues et al., 2012) is an example of a dynamic APR
tool;

2. static APR: in which fault identification and patch validation are
performed using static analysis techniques;

3. dynamic–static APR: in which fault identification and patch vali-
dation are performed using a combination of static and dynamic
analysis, i.e., using test cases and static analysis tools developed

for the same class of bugs;

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.
4. formal APR: in which fault identification and patch validation
are performed using formal methods and verification techniques
such as model checking.

A hybrid APR approach aims to improve the overall quality of the gen-
erated repairs and alleviate the patch overfitting challenge of dynamic
APR systems.

4.1. Arithmetic bugs

Arithmetic calculations affect a wide variety of applications, includ-
ing safety-critical systems such as control systems for vehicles, medical
equipment, and industrial plants. The key properties of arithmetic bugs
can be summarized as follows:

1. Arithmetic bugs are observable classes of bugs or can be eas-
ily made observable to external observers: the root causes of
arithmetic bugs are limited and easy to identify.

2. Arithmetic bugs are tractable bugs with finite traces.
3. Arithmetic bugs introduce various erroneous behavior to the

program in which they occur: they may cause the program to
crash or may produce incorrect outputs.

These properties make them directly amenable to dynamic (i.e., test-
based) APR. Note that many of the available dynamic APR systems
rely explicitly or implicitly on observability strategies to expose this
class of bugs (e.g., integer overflow, division by zero, etc.). There
are also several static analysis tools that can handle arithmetic bugs.
Thus, arithmetic bugs can be repaired using dynamic APR, static APR,
or dynamic–static APR. These repair approaches differ mainly in the
correctness specification used to validate generated patches for the
detected arithmetic bug. In dynamic APR, the specification is captured
by the test cases, while in static APR, the specification is captured by
the formal bug detection rules.

Example 1. Integer overflow (IO) is a type of arithmetic bug that
occurs when the computation of an arithmetic operation, such as
multiplication or addition, exceeds the maximum size of the integer
type used to store it. IO bugs are an observable class of bugs, and
thus they are amenable to dynamic APR. IO bugs are also amenable to
static APR, and there are several reliable static analysis tools available
that can address IO bugs (Muntean et al., 2021; Al-Bataineh et al.,
2021a). Thus, devising a hybrid static-dynamic APR system for IO bugs
is feasible and will help increase confidence about the soundness of the
generated repairs.

Observation 4. Arithmetic bugs are observable, tractable, and repro-
ducible classes of bugs with finite execution traces. They are amenable to
dynamic and static APR since the root causes of arithmetic bugs are easy to
identify.

4.2. Non-functional bugs

Non-functional bugs (Jin et al., 2012; Radu and Nadi, 2019; Al-
Bataineh et al., 2021b) are a class of bugs that affect the way a
program operates, rather than the functional behavior of the program.
Inefficiently written loops in programs and synchronization issues in
concurrent programs (i.e., using a large unnecessary number of locks)
can be viewed as examples of non-functional bugs. Non-functional bugs
are as important as functional bugs. For example, energy consumption
saving is getting more urgent, particularly for applications running on
embedded systems and IoT in Smart Cities.

Fixing non-functional bugs is generally more complex than fixing
functional bugs, since non-functional bugs can hide themselves well in
the code. While most functional bugs can be detected through observing
the erroneous behavior of bugs, a large percentage of non-functional
bugs are detected through manual code review (Fagan, 1976; Gilb
6

et al., 1993; Bacchelli and Bird, 2013). Non-functional bugs usually
do not generate incorrect results or crashes. Therefore, they cannot
be observed by checking the program output. The key properties of
non-functional bugs can be described as follows.

1. Non-functional bugs are generally non-observable classes of
bugs: they do not introduce direct observable erroneous behav-
ior to the program in which they occur.

2. Non-functional bugs increase the anticipated running cost of
a program (execution time, memory and energy consumption,
etc.) due to the inefficient use of resources.

Depending on what quality attributes are considered, programs may
suffer from many different types of non-functional bugs. For exam-
ple, consider the class of non-functional bugs that adversely affect
the run-time costs of executing the program, such as execution time,
memory consumption, and energy consumption. To expose such types
of bugs, the program may need to be augmented with additional
variables or online monitors that can be used to observe aspects at
runtime (Al-Bataineh et al., 2021b).

Therefore, there is a need to develop effective bug detection tools
that can be used to expose non-functional bugs at the early stages of
the software development life cycle. Specifically, this requires efficient
profiling techniques and oracles that help decide whether the program’s
non-functional requirements are met under a particular workload. Un-
fortunately, the lack of effective test oracles for non-functional bugs is
a well-known problem that will need to be addressed in the future.

Observation 5. With a few notable exceptions, such as performance bugs,
non-functional bugs are typically non-observable types of bugs because a
program with a non-functional bug runs normally and terminates normally.
Thus, they are not directly amenable to traditional dynamic bug detection
techniques that rely on test cases and observing a program’s outputs.

4.3. Liveness bugs

In this section, we discuss a class of bugs that has received little
attention from the APR community, namely liveness bugs. A liveness
property asserts that ‘‘something good will eventually occur when ex-
ecuting a program’’ (Lamport, 1977; Alpern and Schneider, 1985).
Freedom of starvation and program termination are examples of live-
ness properties. A program that violates a liveness property cannot
make progress and thus suffers from a liveness bug.

Two fundamental properties make detecting and repairing liveness
bugs far more challenging than other classes of bugs. First, the behav-
ioral effects of triggering a liveness bug are generally unobservable.
Second, identifying a liveness bug requires finding an infinite execution
that will never satisfy the desired liveness property (Alpern and Schnei-
der, 1987), making it impractical to find such bugs using dynamic
analysis. Therefore, detecting and repairing liveness bugs generally
require more sophisticated repair algorithms since they must be able
to generate a finite representation of infinite counterexamples.

To better understand the complexity of repairing liveness bugs,
we study a subset of liveness bugs known as termination bugs. There
are two advantages to this choice: On the one hand, a termination
bug is a specific type of liveness bug whose repair is essential for
ensuring software reliability. On the other hand, by examining tech-
niques for handling termination bugs, we gain knowledge that can
help address other liveness bugs. Termination bugs have the following
specific properties:

1. Termination bugs are partially observable: an observer monitoring
the behavior of a non-terminating loop program will not witness
any erroneous behavior but rather experience unexpectedly long
execution times. The only observable behavior of termination
bugs is that the program becomes non-responsive at runtime.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

e
r
r
(

b

5

p
r
e
t

D
P
(
t
p
s

t

𝜑

w
𝑃

s
t
𝑇
I
s
a
c
r
e
(
l
p
𝑆
o

5

e
a
e
T
t
i
𝑝
i
t
a
i

D
.
p
t
𝑝
t
e

D
(
o
t

2. Termination bugs have infinite faulty traces: a counterexample to
a termination property violation is infinite.

Observation 6. Termination bugs are an example of partially observable
bugs with infinite execution traces. Termination bugs are amenable to
dynamic–static APR and static APR.

5. Hybrid APR for termination bugs

This section describes a hybrid program repair approach for termi-
nation bugs that combines the strengths of termination provers with
those of software model checkers. Such a combination has two key
advantages. First, it considerably reduces the overall computational
complexity of the problem by avoiding the exhaustive exploration of
the program’s input space. Second, it helps avoid the known overfitting
problem by generating verified repairs for termination bugs.

The presence of loops in programs can complicate the detection
of certain classes of bugs. Recall the two types of hang bugs from
Definition 5; It is not clear how one can distinguish between the
following two types of loops using a dynamic analysis technique: (i)
inefficiently written loops that introduce a soft hang bug, and (ii)
incorrect infinite loops that introduce a hard hang or termination bug.

Earlier work (Le Goues et al., 2015) that evaluated the effectiveness
of different APR tools on the ManyBugs and IntroClass datasets, used
a simple timeout mechanism to handle termination bugs in these two
datasets: when the execution time of a program exceeds some pre-
specified period, they consider the program to be likely non-terminating
due to an infinite loop. Marcote and Monperrus instrument loops with
iteration counters that are monitored to detect infinite loops (Marcote
and Monperrus, 2015). Both options can lead to false conclusions about
the program under analysis (i.e., even when the watchdog triggers, the
program may not have a termination bug but suffer from a soft hang
bug). Moreover, hang bugs can have complicated causes: programs that
become unresponsive may contain deadlocks, infinite loops, or other
bugs that lead to non-termination but are not infinite loops.

An effective solution for addressing termination bugs is to apply
termination provers: tools that can check combinations of many complex
termination criteria. They take a program as input and return one
of three answers: terminating (𝑇𝑅), non-terminating (𝑁𝑇), or unknown
(𝑈𝑁). In general, when the prover returns definite answer for a given
program (i.e., 𝑎𝑛𝑠𝑤𝑒𝑟 ∈ {𝑇𝑅,𝑁𝑇 }), the answer is valid with high
confidence. Termination provers have been successfully used to analyze
termination of a wide variety of loop programs (Berdine et al., 2007;
Chawdhary et al., 2008; Tsitovich et al., 2011; Gulwani et al., 2009a,b;
Bradley et al., 2005; Cousot, 2005; Gupta et al., 2008; Harris et al.,
2010; Kroening et al., 2010; Podelski and Rybalchenko, 2004).

Definition 11 (Valid Termination Bug Repair). Let 𝑃 be a buggy non-
terminating program with a set of inputs 𝐼 , 𝜑𝑏𝑒ℎ a specification of
xpected behavior of 𝑃 , and 𝜑𝑟𝑒𝑎𝑐ℎ a specification that checks the
eachability of some halting statement of 𝑃 . We say that 𝑃 ′ is a valid
epair of 𝑃 iff for every input 𝑖 ∈ 𝐼 we have (𝑃 ′, 𝑖) ⊧ 𝜑𝑏𝑒ℎ and
𝑃 ′, 𝑖) ⊧ 𝜑𝑟𝑒𝑎𝑐ℎ.

In other words, the patched version 𝑃 ′ should preserve the expected
ehavior of 𝑃 , and it should terminate.

.1. Termination bugs in sequential programs

To repair termination bugs in sequential programs, we first generate
lausible patches, and then use termination provers to check the cor-
ectness of these patches. AProVE (Giesl et al., 2014) and 2LS (Chen
t al., 2015) are among the most reliable candidates to analyze the
ermination of sequential programs.
7

efinition 12 (Validity of Patches for Termination Bugs in Sequential
rograms). Let 𝑃𝑠 be a non-terminating sequential program and 𝑇 =
𝑇𝑝 ∪ 𝑇𝑓) be a test suite consisting of passing test cases 𝑇𝑝 and failing
est cases 𝑇𝑓 . Let 𝑃 ′

𝑠 be a candidate patch of 𝑃𝑠 and 𝑇𝑃 be a termination
rover that returns one of the verification answers {𝑇𝑅,𝑁𝑇 ,𝑈𝑁}. We
ay that 𝑃 ′

𝑠 is a valid patch of 𝑃𝑠 iff all of the following conditions hold:

1. all failing test cases from 𝑇𝑓 pass on program 𝑃 ′
𝑠 ,

2. none of the passing test cases from 𝑇𝑝 fail on program 𝑃 ′
𝑠 ,

3. termination prover 𝑇𝑃 returns ‘‘TR’’ when analyzing termination
of 𝑃 ′

𝑠 .

The soundness of generated patches for termination bugs in sequen-
ial programs can be captured formally as:

𝑠𝑒𝑞 = (∀𝑡∈𝑇 (𝑃 ′
𝑠 ⊢ 𝑡) ∧ 𝑇𝑃 (𝑃 ′

𝑠) = 𝑇𝑅) (1)

here 𝑇 is the set of available test cases, and 𝑃 ′
𝑠 ⊢ 𝑡 indicates that patch

′
𝑠 runs successfully against test 𝑡.

Fig. 1 sketches a hybrid repair procedure for termination bugs in
equential programs. The algorithm takes five inputs: the buggy sequen-
ial program 𝑃𝑠, a specification of expected behavior 𝜑𝑏𝑒ℎ, a test suite
𝑠, a termination prover TP, and the allocated time budget 𝑇 𝑖𝑚𝑒𝐵𝑢𝑑𝑔𝑒𝑡.
t uses two functions: (i) 𝑓𝑎𝑢𝑙𝑡𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑟(𝑃𝑠, 𝐶𝐸, 𝑇𝑠) computes the set of
uspicious statements 𝑆𝑢𝑠𝑝𝑆𝑡𝑎𝑡𝑠 whose mutation may lead to generate
valid patch. It finds these suspicious statements by combining the

ounterexamples CE generated by termination prover TP with the
esults of spectrum-based fault localization (Jones et al., 2002; Naish
t al., 2011; Heiden et al., 2019; Xie and Xu, 2021) on the test suite
executed with a timeout mechanism to avoid getting stuck in infinite
oops); (ii) the function 𝑚𝑢𝑡𝑎𝑡𝑒(𝑃𝑠, 𝑆𝑢𝑠𝑝𝑆𝑡𝑎𝑡𝑠) is used to construct the
atch space (i.e., patch generation) by mutating the computed set
𝑢𝑠𝑝𝑆𝑡𝑎𝑡𝑠 that may affect the truth value of the termination condition
f the detected buggy non-terminating loop in 𝑃𝑠.

.2. Termination bugs in concurrent programs

In the automated repair of concurrent programs, the goal is to gen-
rate a patch that ensures that a concurrent program is correct under
ll interleavings. It is difficult, if not impossible, to examine all possible
xecutions of a concurrent program using dynamic analysis techniques.
herefore, a concurrent program cannot be debugged and repaired in
he same manner as sequential programs. In the case of concurrency,
t usually refers to action interleaving. That is, if the processes 𝑝𝑖 and
𝑗 are in parallel composition (𝑝𝑖 ∥ 𝑝𝑗) then the actions of these will be
nterleaved. Each process executes a sequence of actions (sub-program),
hen the set of possible interleavings of several processes consists of
ll possible sequences of actions. Before proceeding further, let us
ntroduce the notion of successful termination in concurrent programs.

efinition 13 (Termination of Concurrent Programs). Let 𝑃𝑐 = (𝑝1 ∥ 𝑝2 ∥
.. ∥ 𝑝𝑛) be a concurrent program that consists of a collection of sub-
rograms, where each process 𝑝𝑖 executes a sub-program. Let 𝐻𝑖 be
he set of halting statements at the sub-program executed by process
𝑖. We say that 𝑃𝑐 is terminating iff every sub-program is eventually
erminating. That is, the sub-program executed by process 𝑝𝑖 eventually
xecutes some halting statement 𝑠 ∈ 𝐻𝑖 and terminates.

efinition 14 (Termination Failures in Concurrent Programs). Let 𝑃𝑐 =
𝑝1 ∥ 𝑝2 ∥ ... ∥ 𝑝𝑛) be a concurrent program that consists of a collection
f sub-programs executed by processes 𝑝1,… , 𝑝𝑛. The program 𝑃𝑐 fails
o terminate iff:

1. there exists a logical bug that leads to an infinite loop, or
2. there exists a concurrency bug, such as deadlock or livelock,

that prevents the program from making any further progress in

reaching a halting statement and terminating.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

i
p
p
m
b

C
t
c
p
m
o
r
p
o
c
e
t
c
n

D
C
n
a
s
l
b
𝑃

Fig. 1. Repair algorithm for sequential programs.
4

𝜑

A
t
p
o
p
u
w
u
l
s
c
o
a
a

t
t
w
t
t
(
w
t
l

𝜑

w
a
I
p
r

Thus, if deadlocks and livelocks are formally proven to never occur
n the program-under-analysis, and all loops in the sub-programs are
roven to be terminating, then one can conclude that the concurrent
rogram is terminating. The distinction between the two causes of ter-
ination failures in concurrent programs (logical bug or concurrency

ug) helps to select a strategy for fixing the detected termination bug.

ombining Model Checking and Termination Provers: Repairing
ermination bugs in concurrent programs can be a computationally
omplex task. This is mainly because termination bugs in concurrent
rograms can be caused by either a logical or concurrency bug. Further-
ore, the vast number of possible interleavings of parallel processes

f a given concurrent program can increase the complexity of the
epair problem. Therefore, it is necessary to employ both termination
rovers and model checking to reduce the computational complexity
f the problem. Fortunately, we know how to write specifications to
heck the absence of concurrency bugs in concurrent programs (Gupta
t al., 2018; Lin and Kulkarni, 2014; Zhou et al., 2017). In Defini-
ion 15, we describe the conditions that are necessary to ensure the
orrectness of the generated patches for termination bugs in the buggy
on-terminating concurrent program.

efinition 15 (Validity of Generated Patches for Termination Bugs in
oncurrent Programs). Let 𝑃𝑐 = (𝑝1 ∥ 𝑝2 ∥ ... ∥ 𝑝𝑛) be a buggy
on-terminating concurrent program, 𝑇𝑃 be a termination prover,
nd 𝑆𝑀𝐶 be a software model checker. Let 𝜑𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘 and 𝜑𝑙𝑖𝑣𝑒𝑙𝑜𝑐𝑘 be
pecifications that check respectively the absence of deadlocks and
ivelocks in 𝑃𝑐 and 𝜑𝑏𝑒ℎ be a specification that captures the expected
ehavior of 𝑃𝑐 . We say that a candidate patch 𝑃 ′

𝑐 for the buggy program
𝑐 is a valid patch iff it meets the following requirements:

1. the prover 𝑇𝑃 returns ‘‘terminating’’ when analyzing termina-
tion of the sub-program executed by process 𝑝𝑖, and

2. the checker 𝑆𝑀𝐶 returns ‘‘holds’’ when checking the specifica-
tions 𝜑𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘 and 𝜑𝑙𝑖𝑣𝑒𝑙𝑜𝑐𝑘 against 𝑃 ′

𝑐 , and
3. the checker 𝑆𝑀𝐶 returns ‘‘holds’’ when checking the specifica-

′

8

tion of expected behavior 𝜑𝑏𝑒ℎ against the patch 𝑃𝑐 . p
Formally, we can capture the requirements described above in a
-part correctness specification of the following form:

𝑐𝑜𝑛 = ∀𝑝𝑖∈𝑃 ′
𝑐
(𝑇𝑃 (𝑝𝑖) = 𝑇𝑅) ∧ 𝑆𝑀𝐶(𝑃 ′

𝑐 , 𝜑𝑑𝑒𝑎𝑑𝑙𝑜𝑐𝑘) ∧
𝑆𝑀𝐶(𝑃 ′

𝑐 , 𝜑𝑙𝑖𝑣𝑒𝑙𝑜𝑐𝑘) ∧ 𝑆𝑀𝐶(𝑃 ′
𝑐 , 𝜑𝑏𝑒ℎ)

(2)

key challenge when dealing with termination bugs is to ensure
hat the generated repair guarantees not only the termination of the
rogram for each possible input, but also the semantic preservation
f the program. This requires the analysis of a composite correctness
roperty that checks both termination and semantic preservation. By
sing formula (2), we entirely avoid the patch overfitting problem,
hich is one of the major problems of dynamic APR. Formula (2)
ses sequential termination provers to check the absence of infinite
oops in each individual process. This can be performed while ab-
tracting away concurrency details that are irrelevant to the local
omputations of processes. Note that one cannot prove the termination
f program 𝑃𝑐 by simply applying a sequential termination prover:
sound proof of termination must consider all possible interactions

mong the sub-programs of 𝑃𝑐 .
An alternative way to use model checking in detecting and repairing

ermination bugs of the concurrent program is to reduce the termina-
ion problem to the reachability analysis problem. That is, to check
hether each process will eventually reach some halting location and

erminate. However, the feasibility of the approach relies mainly on
he size and number of processes of the buggy program under analysis
i.e., computing state-reachability is known to be PSPACE-complete
hen processes are finite state Kozen, 1977). The reduction of the

ermination problem to the reachability problem in model checking
eads to the following temporal formula

′
𝑐𝑜𝑛 = ∀𝑝𝑖∈𝑃 ′

𝑐
(𝐀𝐅(𝑝𝑖.𝓁

(𝑗)
ℎ ∣ 𝓁(𝑗)

ℎ ∈ 𝐻𝑖)) ∧ 𝑆𝑀𝐶(𝑃 ′
𝑐 , 𝜑𝑏𝑒ℎ) (3)

here 𝐀 is a temporal path quantifier which should be read as ‘‘for
ll paths’’, and 𝐅 is the ‘‘future’’ temporal operator (Pnueli, 1977).
ntuitively, formula (3) checks whether for each reachable execution
ath of process 𝑝𝑖, some halting location 𝓁(𝑗)

ℎ ∈ 𝐻𝑖 will eventually be
eached. However, the proper termination analysis of the concurrent

rogram 𝑃𝑐 using formula (3) requires the precise computation of the

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

s

r
c

Fig. 2. Repair algorithm for concurrent programs.
n
r
b
m
K
r
t
e

c
(

et of halting locations 𝐻𝑖 for each process 𝑝𝑖 of the patched concurrent
program 𝑃 ′

𝑐 .
There are several software model checkers1 that can be used to

verify reachability properties and detect concurrency bugs, includ-
ing VeriSoft (Godefroid, 1997), Java Pathfinder (Havelund and Press-
burger, 2000), CMC (Musuvathi et al., 2002), DIVINE (Baranová et al.,
2017), and GMC (Thompson and Brat, 2008). DIVINE is a modern,
explicit-state model checker that can verify programs written in multi-
ple real-world programming languages, including C and C++. On the
other hand, GMC is a model checker based on the generic Monte-Carlo
model-checking algorithm. It takes as input a C program, the target
program to be verified, and the linear temporal logic specification that
needs to be checked.

There are also a few termination provers that can be used to
analyze the termination of concurrent programs. For instance, Cook
et al. (2007) have extended the termination prover T2 (Brockschmidt
et al., 2016) to support the analysis of concurrent programs, which
can be used to validate generated patches for termination bugs in
concurrent programs. Termination checker T2 supports nested loops,
recursive functions, pointers, side-effects, and function-pointers, as well
as concurrent programs. Of course, the prover cannot handle ter-
mination of all concurrent programs since the general problem is
undecidable. The use of concurrent termination provers leads to the
following specification

𝜑′′
𝑐𝑜𝑛 = ∀𝑝𝑖∈𝑃 ′

𝑐
(𝑇𝑃 (𝑝𝑖) = 𝑇𝑅) ∧ 𝑆𝑀𝐶(𝑃 ′

𝑐 , 𝜑𝑏𝑒ℎ) (4)

1 Unlike traditional model checking, a software model checker does not
equire a user to manually construct an abstract model of the program to be
hecked, but instead, the tool works directly on the program’s source code.
9

The termination provers AProVE, 2LS, and T2 can be viewed as com-
plementary tools: it is possible that some tool fails to detect certain
forms of termination bugs while other succeeds, depending on the
implemented theory and the complexity of the program under anal-
ysis. Therefore, termination checkers can be run in parallel to expose
termination bugs.

While checking the satisfaction of formula (2) may require higher
computational complexity than formulas (3) and (4) (i.e., it employs
both termination provers and software model checkers to check the
absence of deadlocks, livelocks, and infinite loops), it has several
advantages. First, it helps identify the root causes of non-termination in
the program-under-repair. Second, the patch validation approach that
uses formula (2) can benefit from the counterexamples generated by
both termination provers and software model checkers. This helps to
develop effective program synthesis for termination bugs.

Repairing Termination Bugs in Concurrent Programs: To fix termi-
ation bugs in concurrent programs, it is first essential to identify the
oot cause of the termination bug since both logical and concurrency
ugs can cause non-termination. On the one hand, there are several
echanisms for handling deadlocks in concurrent programs (Lin and
ulkarni, 2014; Zhou et al., 2017; Cai and Cao, 2016). On the other,
epair algorithms based on genetic programming can help fix termina-
ion bugs that occur due to infinite loops (Le Goues et al., 2012; Yu
t al., 2020).

Fig. 2 sketches a hybrid repair procedure for termination bugs in
oncurrent programs. It uses three helper functions: (i) 𝑓𝑎𝑢𝑙𝑡𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑟
𝑃𝑐 , 𝐶𝐸) finds the statements that are suspected to be faulty in 𝑃𝑐 using

the counterexamples CE generated by termination prover TP and soft-
ware model checker SMC, (ii) 𝑚𝑢𝑡𝑎𝑡𝑒𝐶𝑜𝑛𝑐𝑢𝑟(𝑃𝑐 , 𝑆𝑢𝑠𝑝𝑆𝑡𝑎𝑡𝑠𝐷) constructs
the patch space for a concurrency bug by mutating the synchronization

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.
Fig. 3. High-level overview of our iterative hybrid repair methodology for termination bugs that is guided by counter-examples (CEs) generated by the termination prover.
Table 3
A comparison of the complexity of the repair problem of termination bugs in sequential and concurrent programs.

Program class Root causes of non-termination Feasible APR

Sequential programs Infinite loops Dynamic–static
Concurrent programs Infinite loops, deadlocks, or livelocks Static or formal

Program class Patch validation procedure Patch validation tools

Sequential programs Test cases and termination provers AProVE, 2LS, T2, and GMC
Concurrent programs Termination provers and SMC T2 and GMC
𝑅
𝑅

primitives of the program, and (iii) 𝑚𝑢𝑡𝑎𝑡𝑒𝐿𝑜𝑔𝑖𝑐(𝑃𝑐 , 𝑆𝑢𝑠𝑝𝑆𝑡𝑎𝑡𝑠𝐿) con-
structs the patch space for a logical bug by mutating expressions that
affect the control of faulty loops.

Generating verified repairs of termination bugs in both sequential
and concurrent programs is a challenging open problem that requires
formal analysis techniques. The application of the termination provers
2LS and AProVE on the programs in the two datasets, SNU real-time
benchmark and the Power-Stone benchmark suite (Ku et al., 2007),
show that the tools are able to successfully prove termination of around
85% of the examined programs using very little computational time
(a few seconds). This demonstrates the feasibility of using termination
provers to validate the generated patches of termination bugs. We build
on this result in the next section, which discusses our preliminary em-
pirical investigation of integrating termination provers for sequential
programs with dynamic APR approaches to generate verified repairs
for termination bugs and performance bugs.

Table 3 compares the complexity of termination bugs in both se-
quential and concurrent programs using several criteria: (i) root causes
of termination bugs, (ii) feasible APR approach to be applied for
termination bugs in both classes of programs, (iii) patch validation
procedure to validate generated patches, (iv) patch validation tool that
can be used to check termination.

6. Empirical evaluation

The proposed repair method integrates formal methods with APR
and is mainly designed to address a class of bugs that are challenging
to handle using dynamic analysis techniques. Specifically, bugs that
do not introduce observable erroneous behavior to the program at
which they occur. This class of bugs can be effectively addressed using
formal analysis techniques such as software model checkers, static
analysis, and theorem and termination provers. Examples of such type
of bugs include liveness and non-functional bugs. In this section, we
demonstrate the advantages of using hybrid repair approaches to two
categories of bugs, namely termination bugs and performance bugs,
which are difficult to handle using dynamic repair approaches.

6.1. Research questions

We consider two key research questions in the empirical eval-
uation of the proposed hybrid repair approach on termination and
performance bugs. The first aims to assess the effectiveness of ad-
dressing termination bugs, and the second assesses the effectiveness of
addressing performance bugs that occur due to inefficient loops.
10
𝑄1 ∶ How effective is hybrid APR in fixing termination bugs?
𝑄2 ∶ How effective is hybrid APR in fixing performance bugs?

6.2. Prototype implementation

A high-level overview of the methodology that can be used to
produce a verifiable fix for a bug found by a termination prover is
provided in Fig. 3. Five major components make up the methodology:
(i) a termination prover component to detect termination bugs and
assess patch correctness with respect to the termination requirement,
(ii) a CE-test conversion component to turn formal CEs into failing
tests (T𝐹), (iii) a constraint solver (CS) to generate passing test cases
corresponding to bug-free program instances (T𝑃), (iv) an FL method
to produce a list of suspicious statements related to the bug being fixed,
and (v) a patch generation method to generate candidate patches for
the termination bug. The process is iterative in nature and comes to an
end when the termination prover successfully validates the program.

6.3. Dataset for non-terminating loop programs

The dataset for non-terminating loop programs that we consider in
this paper was initially created for the assessment of the performance
of the available termination provers (Shi et al., 2022). However, since
there are no test suites connected to the non-terminating programs
provided in the dataset, APR tools cannot be used directly to handle
these programs. To produce patches for a specific buggy program, the
majority of the current APR tools require a test suite. It is, therefore,
necessary to extend the dataset to contain failing and passing test
cases for each non-terminating loop program. For this task, we use the
UAutomizer termination prover, which has the capability to generate
counterexamples when the loop program fails to terminate. The gener-
ated counterexamples can be used to assist in creating failing test cases
for the buggy non-terminating loop program. The issue then becomes
how we categorize test cases for termination bugs as failing or passing.
We say that a test 𝑡 is a passing test for a loop program 𝐿 if 𝐿 succeeds in
terminating and produces the correct outputs. On the other side, we say
that 𝑡′ is a failing test for 𝐿 if either 𝐿 fails to terminate or terminates
but gives wrong results.

An intriguing aspect of the dataset is that it includes a fixed version
(a human-written patch) for each buggy non-terminating loop program,
which can be used to assess the efficacy of patches generated by APR
tools. The given patched versions of the loop programs are used to
produce passing test cases that can be used to direct the APR engine

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.
to produce fixes for the original buggy loop program. In our setup,
we employ the provided buggy program and a termination prover to
automatically generate a set of failed test cases, while the provided
human-written patches are used to generate a set of passing test cases.
These passing and failing test cases are given to an APR tool along with
the original buggy program to create a patch.

A pre-configured timer whose value represents an anticipated upper
limit for termination for the loop program under repair is added to
failing test cases. There are many benefits to using a timer for fixing
termination bugs. First, it is important to utilize a timer to force the end
of the analysis performed by the APR tool because the loop program is
known to be non-terminating under the specified failing test. Second,
by utilizing a timer with a predetermined upper bound, it notifies the
APR tool that the bug under repair belongs to a specific class of bugs
that have an impact on the program’s termination. This is essential
because it enables the APR tool to modify the original buggy program
so that it ends within the predetermined upper bound. This would
result in a patch that fixes the termination bug. However, using merely
a timer in the test suite is insufficient to produce reliable patches
for termination bugs, as we will show when we examine the patches
produced by APR tools. Information on the semantics or functionality
of the loop program that is being repaired must be included in the
test suite. The APR tools can quickly add a halting statement at any
random location in the code when a program termination fault occurs.
Such repairs are unacceptable since they have a negative impact on the
program’s semantics.

6.4. Selected termination provers and APR tools

To evaluate the effectiveness of APR tools in repairing termination
bugs, we select two APR tools: the search-based repair tool Gen-
Prog (Le Goues et al., 2012) and the semantic-based repair tool FAn-
gelix (Yi and Ismayilzada, 2022). Both FAngelix and GenProg are
chosen as representatives of tools for mutation-based and semantic-
based repairs, respectively. These are general-purpose repair tools that
can be used to fix a range of program bugs, including loop program
bugs. The termination prover UAutomizer is chosen, and it is integrated
with the APR tools indicated above. Among the termination provers
available, UAutomizer was chosen because it performs the best on loop
programs and can generate counterexamples when the loop program
under investigation fails to terminate. The termination prover UAu-
tomizer is employed several times during the repair process: initially,
to identify the non-termination bug and build a counter-example; and,
secondly, to confirm the validity of the set of patches produced by the
APR tool, which should pass all of the test cases.

6.5. Factors affecting repair framework for termination bugs

As indicated earlier, the objective of termination repair is to cor-
rectly recover termination without adversely affecting the semantics of
the loop program. In comparison to other classes of bugs, this one is, in
fact, difficult to fix. The patch’s validity must be verified in relation to
both the termination requirement and the semantics requirement. Note
that a fix for a termination bug introduced by an APR tool typically
makes one of the following forms: (i) updating the expressions for some
control variables of the buggy loop or, (ii) updating the termination
condition of the loop, (iii) inserting a halting statement at some location
of the loop, or a combination of these. The number of times the loop
is iterated would change as a result. This would have an impact on
the loop’s calculations and results. Due to this, it is necessary to use
the composite correctness property to validate the generated patches
for termination bugs. Before proceeding further, let us discuss the
key assumptions we make about the presented repair framework for
11

termination bugs.
1. The availability of termination provers that produce counterex-
amples. This is crucial as it allows us to check the overall
accuracy of the patches created in regard to the termination
requirement. Specifically to determine whether each and every
input results in the corrected program terminating. Additionally,
by utilizing the previously discussed CE-guided repair approach,
the created CEs can be used to gradually enhance the quality of
the patches that are generated. The employment of termination
provers is the only feasible and practical method for proving
the general termination of loop programs, assuming that the
termination problem of the particular loop program is a solvable
problem.

2. The availability of failing and passing test cases for termination
bugs. The quantity of information encoded in the test cases,
as well as the number of accessible passing and failing test
cases, affect the quality of the patches that are created for
termination bugs, as we will see in more detail later. There are
two parts to validating that a loop program with a termination
bug has been successfully repaired. The first step is to assess
the desired behavior of the program that should be maintained
when the program is modified by the APR tool. Secondly, the
anticipated upper bound for termination of the program being
repaired should be asserted. We assume here that a test can be
constructed that includes information representing the desired
behavior as well as the expected upper bound for termination.
A test 𝑡 ∈ 𝑇 for a termination bug is defined as follows

𝑡 = (𝚝𝚒𝚖𝚎𝚛 ≤ 𝑣𝑎𝑙 ∧ {(𝑖𝑛1,… , 𝑖𝑛𝑛)} ∧ {(𝑜𝑢𝑡1,… , 𝑜𝑢𝑡𝑛)}) (5)

where the collection of inputs to the non-terminating loop pro-
gram 𝐿 is represented by 𝑖𝑛1,… , 𝑖𝑛𝑛, and the set of observable
expected outputs of the program corresponding to those inputs
is represented by 𝑜𝑢𝑡1,… , 𝑜𝑢𝑡𝑛, respectively. We firmly believe
that using a timer is advantageous for both passing and failing
tests. The timer can be used to instruct the APR tool to preserve
the behavior for passing tests without increasing processing or
execution times (if possible). The timer is used to notify the APR
tool that failing tests have a specific type of bug that affects
the program’s execution time. This would help the APR tool to
generate a patch that fixes the termination bug.

3. The availability of general-purpose APR tools. When we refer
to general-purpose APR tools, we mean those which were not
created to tackle certain bug types, built on, or configured
for particular datasets. This is essential so that programs with
arbitrary bugs can be handled by the tools. In our quest for
such kinds of tools, we found that search-based APR tools like
GenProg and semantic-based APR tools like FAngelix are suitable
options for handling termination bugs. In terms of generality in
the context of dynamic APR, they are general APR tools for C
programs.

6.6. Hybrid APR tools for handling hard hang bugs (termination bugs)

Although adding more details to test cases may increase the time it
takes to fix termination bugs, it promotes the creation of high-quality
patches. While adjusting the level of detail in the provided test suite,
we assess how well hybrid APR tools handle termination bugs. More
specifically, we aim to evaluate the quality of generated patches under
each of the following hypotheses:

1. The quality of patches produced by APR tools when only the
timing information on the upper bound of the execution time is
provided. When only the desired or anticipated termination time
is given, this configuration aims to evaluate the effectiveness
of APR tools in repairing termination bugs. The objective is
to determine whether this is sufficient to create trustworthy

patches for termination bugs.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

t
A
t
c
c
c

e
h
d
p
b
s
t
p
b
t

v
A
d
t
t
t
t
t

D
a
b
a
f
a
t

t
b

a
f
o
t
p
i
i
c

D

a
t
c

𝜑

O
t
s
(
r
o

7

O
c
a
i
c

7

S
h
t
t
p
t
t
t
v
H
o
t
d
d
t
t

2. The quality of patches produced by APR tools when both the
timing information and expected behavior are provided. This
configuration intends to assess the APR tool’s performance in
creating trustworthy patches when both the expected termi-
nation time and expected outputs are specified. This setup,
however, makes the assumption that the intended time for ter-
mination, as well as the anticipated outputs corresponding to the
inputs that result in the termination bug, are known.

6.7. Hybrid APR tools for handling soft hang bugs (performance bugs)

In this section, we explore the possibility of building hybrids based
on available APR tools that can be used to optimize inefficiently written
loop programs in addition to producing accurate patches. We believe
this objective can be accomplished if test suites were more robust
and thorough and included information about both the expected upper
bound for termination and the expected behavior of the program. The
goal is to employ the APR technology outside of its conventional ap-
plication by not only repairing the bug but also, if possible, optimizing
the buggy loop program by reducing the observed execution time of
the program.

Hypothesis: By adding additional variables to the program
(such as timing variables, loop counting variables, etc.) whose
values have no direct or indirect impact on the behavior
of the program, we can transform the optimization problem
of inefficient loops into a repair problem and redefine the
concepts of passing and failing test cases.

A number of questions need to be addressed in order to use the APR
echnology in optimizing loop programs. For example, how should the
PR tools be configured to deal with performance bugs that occur due

o inefficient loops? How should the notions of passing and failing test
ases be defined for performance bugs? How can the validity of patches
reated to fix performance bugs be verified? And last but not least, what
orrectness property can be used to validate the desired optimization?

Performance bugs are a form of non-functional bugs that unnec-
ssarily lengthens the program’s execution time, but they are not be-
avioral bugs. Given that the correct behavior is known and can be
educed from the original program, this actually makes the validation
rocess for this type of bugs somewhat easier than it is for functional
ugs whose correctness specifications are typically unavailable. In this
ituation, the original program might be utilized as a reference program
o direct the fixing of the identified performance bug. The semantics
reservation of the program after being repaired must still be verified,
ecause fixing non-functional bugs often have a direct impact on how
he program behaves.

We now turn to discuss the notions of passing and failing tests and
alidity criteria for performance bugs. A failing test in the context of
PR is an input that results in an execution that does not satisfy the
esired specification (e.g., an assertion, timeout, formal specification of
he intended behavior, access control policy, etc.), whereas a passing
est is an input that results in an execution that does. When it comes
o performance bugs, passing and failing tests are specified in relation
o a timed specification: a specification states that the program must
erminate and produce correct results within a specified time bound.

efinition 16 (Passing and Failing Tests for Performance Bugs). Let 𝐿 be
loop program containing a performance bug 𝑏, and 𝑇 = (𝑇𝑃 ∪ 𝑇𝐹)

e a test suite developed w.r.t. bug 𝑏, where each test 𝑡 ∈ 𝑇 is
ssociated with a time-bound 𝑈𝑡 representing the expected upper bound
or termination of program 𝐿 under test 𝑡. We say that a test 𝑡 ∈ 𝑇𝑃 is
passing test if 𝐿 terminates and produces a correct output within the

ime bound 𝑈 . On the other hand, we say that a test 𝑡′ ∈ 𝑇 is a failing
12

𝑡 𝐹 a
est if 𝑃 terminates and produces a correct output but exceeds the time
ound 𝑈𝑡′ .

We refer to runs corresponding to passing tests of performance bugs
s fast runs and runs corresponding to failing tests as slow runs. Both
ast and slow runs terminate normally and produce correct results. As
ne can see, the ability to compute the predicted upper bound for
ermination for each specific input is a requirement for the design of
assing and failing tests for performance bugs. The predicted number of
terations and the time required for each iteration needs to be estimated
n order to achieve this. The average time required for each iteration
an be estimated using passing tests.

efinition 17 (Validity of Patches for Performance Bugs). Let 𝐿 be a
loop program containing a performance bug 𝑏 and 𝑇 = (𝑇𝑃 ∪ 𝑇𝐹) be

test suite developed w.r.t. 𝑏, where 𝑇𝑃 lead to fast runs and 𝑇𝐹 lead
o slow runs. We say that a patch 𝑝𝑡 is a valid patch for 𝑏 if the following
onditions hold:

1. for each test 𝑡 ∈ 𝑇 the original program 𝐿 and the generated
patched program 𝑝𝑡(𝐿) produces the same output, and

2. for each test 𝑡 ∈ 𝑇𝐹 the observed execution time in program
𝑝𝑡(𝐿) is smaller than to the one observed in program 𝐿 (i.e., the
generated patch transforms slow runs into fast runs).

The above two requirements can be captured formally as follows

𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = ∀𝑡∈𝑇 (𝑜𝑢𝑡𝑝𝑢𝑡(𝐿, 𝑡) = 𝑜𝑢𝑡𝑝𝑢𝑡(𝑝𝑡(𝐿), 𝑡))∧
∀𝑡∈𝑇𝐹 (𝑡𝑖𝑚𝑒(𝑝𝑡(𝐿), 𝑡) < 𝑡𝑖𝑚𝑒(𝐿, 𝑡))

bservation 7. One of the main characteristics of performance bugs is
hat since the bug is not a functional bug, a portion of the correctness
pecification related to the semantics of the program is implicitly known
i.e., the original program itself can be used as a reference program when
epairing the bug). This facilitates the validation procedure for the generated
ptimized versions.

. Experimental results

pen Science: To support reproducible research, we publish a repli-
ation package containing the source code for the 15 termination bugs
nd 2 performance bugs considered, the scripts to conduct the empirical
nvestigation, as well as the outcomes of the hybrid repair processes
onducted during the evaluation.2

.1. RQ1: How effective is hybrid APR in fixing termination bugs?

etup: This research question intends to assess the effectiveness of the
ybrid repair approach that combines termination provers, execution
ime monitors, and existing APR tools in producing valid patches for
ermination bugs and investigate the kinds of patches that the tools
rovide when dealing with termination bugs. As mentioned earlier,
ermination bugs can be repaired in a variety of ways. For example,
he bug may be repaired by inserting a halting statement, modifying the
ermination condition, modifying the update expression of some control
ariable, adding a new control variable, or a combination of these.
owever, these changes should be made while preserving the semantics
r functionality of the loop program that is being repaired. During
he analysis, we considered 15 infinite loops taken from the dataset
escribed by Shi et al. (2022). As mentioned earlier, we extended the
ataset of infinite loops by adding a set of failing and passing test cases
o each loop program. The termination provers are used to create failing
est cases (i.e., inputs corresponding to generated CEs are transformed

2 Available at https://github.com/secureIT-project/extendingAPR, and
rchived on Zenodo https://doi.org/10.5281/zenodo.10397656.

https://github.com/secureIT-project/extendingAPR
https://doi.org/10.5281/zenodo.10397656

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

s
s
p
t
c
t
p
p

a
T
p
t
w
r
p
p

a
a
a

1

into failing tests), whereas reference loop programs are used to create
passing test cases.

Results: The first repair tool we examined in our repair approach is
GenProg, a search-based repair tool. In a hybrid setting, the tool was
able to generate patches for 5 out of the 15 considered infinite loops.
The termination prover indicates the successful termination of the gen-
erated patches. The use of termination provers together with test suites
was effective in generating patches that ensure the general termination
of the non-terminating loop program being repaired but not necessarily
maintaining the program’s logic. However, when comparing the gener-
ated patches w.r.t. reference ones (human-written patches), we found
that none of the patches generated by the tool was correct. The GenProg
hybrid generates patches for termination bugs by merely inserting a
halting statement at some random location of the loop program or
swapping two statements that have some influence on the behavior of
the program being repaired. We did not observe any case in which
the GenProg hybrid generated a patch by modifying a conditional
expression or an update expression of some of the control variables
of the loop. The main cause for these issues is the incompleteness of
the correctness specification (i.e., the test suite not covering enough
of the desired behavior), which is a frequently observed drawback of
search-based repair approaches. When integrating the hybrid repair
approach with the tool FAngelix, we observed that the tool was unable
to handle infinite loops effectively. This is primarily caused by the tool’s
inability to synthesize expressions that meet timed specifications, which
are required when handling termination bugs.

Answer to RQ1: While not always maintaining the pro-
gram’s logic, integrating termination provers, execution time
monitors, and test suites can assist in creating patches that
guarantee termination. The analysis shows that search-based
repair tools like GenProg can produce patches for infinite
loops by inserting a halting statement at some location of
the program or swapping statements that have some direct
influence on the termination of the loop. On the other hand,
due to the inability to synthesize expressions that meet timed
specifications, the semantic-based repair tool FAngelix was
unable to handle programs that contained infinite loops.

7.2. RQ2: How effective is the hybrid APR in fixing performance bugs?

Setup: This research question intends to assess the ability of the pre-
ented hybrid repair approach in fixing performance bugs, particularly
oft hang bugs that unnecessarily increase the execution time of a loop
rogram but does not adversely affect its functionality. To analyze this
ype of bugs, we use a time monitor in addition to the anticipated
orrect behavior. By imposing a rigid upper bound on the execution
ime, the APR tool might be able to improve the efficiency of the loop
rogram by identifying a patch that preserves the functionality of the
rogram while speeding up execution.

We consider two programs with performance bugs in order to
ssess how well the current APR tools can handle performance bugs.
he first program (Listing 1) has a fairly straightforward, observable
erformance bug where we unnecessarily insert a sleep statement in
he body of the loop. The second one (Listing 2) is based on a real-
orld flaw that occurred in Apache and has also been analyzed by other

esearchers (Song and Lu, 2017). Listing 2 shows this more challenging
erformance bug that may need to be repaired by restructuring a
ortion of the program.

To run APR tools on these programs, we need to develop passing
nd failing test cases. Test cases that lead to fast runs are considered
s passing tests while test cases that lead to slow runs are considered
s failing tests. A repair that transforms slow runs into fast runs while
13
1 int main() {
2 int n = __VERIFIER_nondet_int();
3 int s = 0;
4 for (int i=0; i < n; i++){
5 s += i;
6 usleep(n * 0.01);
7 }
8 printf(" %
9 return 0;
0 }

Listing 1: A simple performance bug containing unnecessary sleep
statement

1 int found = -1;
2 while (found < 0) {
3 // Check if string source[] contains target[]
4 char first = target[0];
5 int max = sourceLen - targetLen;
6 for (int i = 0; i <= max; i++) {
7 // Look for first character.
8 if (source[i] != first) {
9 while (++i <= max && source[i] != first);

10 }
11 // Found first character
12 if (i <= max) {
13 int j = i + 1;
14 int end = j + targetLen - 1;
15 for (int k=1; j<end && source[j]==target[k]; j++, k++);
16 if (j == end) {
17 /* Found whole string target. */
18 found = i;
19 break;
20 }
21 }
22 }
23 // append another character; try again
24 source[sourceLen++] = getchar();
25 }

Listing 2: A challenging performance bug found in Apache

preserving the expected behavior of the original program is considered
to be a valid repair.

When dealing with the second performance bug, we first run the
termination prover to formally confirm that the program is really ter-
minating and that the bug is a performance bug and not a termination
bug. The main reason for this is that we discovered throughout the
analysis that some inputs could result in extremely lengthy runs, and
we want to rule out the potential of having inputs that can result in
infinite runs. This gives us the ability to set up the APR tools to address
a performance bug rather than a termination bug. This also impacts
the validation procedure that will be used to examine the validity of
generated patches. Note that due to the ineffectiveness of the tool UAu-
tomizer in handling loop programs with character arrays, we instead
analyze a semantically equivalent version of the program using integer
arrays. According to UAutomizer, the program is terminating, which
indicates that it has a performance bug rather than a termination bug.

Analysis of the program in Listing 2: The program aims to determine
whether a given (target) string is contained within another (source)
string. If the target string is found in the source string, the program sets
the variable found to the index of the target string’s first character.
But there is a significant performance flaw in the program: when the
target string is at the start of the source string, the run is fast, and the
program stops almost instantaneously. On the other hand, the run is
slower and takes longer to finish when the target string is closer to
the end of the source string. This is mostly because there will be a
significant increase in the number of redundant computations. The fault
is that the initialization statement of the control variable i of the for
loop at line 6 should be placed outside the scope of the main while
loop just after the initialization of the variable found. The longest run

7
that we reported occurs when the source string has a length of 10

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

i
o
i
p
0
d
a
a
s
t
e
t
i
t
f
a
i
c
t
a
r
T
c
b
s
p

R
a
t
t
p
a
c
t
h
o

characters, and the target is a single character that is present at the
end of the source string. In this instance, the program runs for 30 h
before terminating and producing correct results. This is one of the test
scenarios that failed (i.e., it leads to an extremely slow run) and was
provided to the APR tools for use in repairing the bug. By changing the
size of the source string and the positioning of the target string w.r.t.
the source string, it is easy to create numerous passing and failing test
cases for this program.

Results from the GenProg hybrid: The first simple performance
bug is easily fixed by the GenProg hybrid by producing a patch that
removes the sleep statement and creates a loop program that is more
efficient. Intuitively, the original program and the patched version are
semantically equivalent, and thus no formal validation procedure is
required. The second performance bug was fixed by the GenProg hybrid
by swapping the initialization statements of the variables found and

at lines 1 and 6. To avoid doing repetitive calculations in the
riginal inefficient loop, the initialization statement of the variable i
s moved outside of the for loop. In this case, the generated patch
asses the test-cases since the variable i is no longer being set to
every time the loop receives a new character. Although this patch

oes not appear very elegant from a programming perspective, it is
valid patch that turns slow runs into fast runs without adversely

ffecting the program’s functionality. A fix that places the assignment
tatement for the variable i right after the assignment statement for
he variable found in the original program is considered to be more
legant. It is interesting to mention that before identifying the patch
hat passes all of the provided failing test cases, the GenProg hybrid
nvestigated about 3000 candidate patches and spent a total of almost
hree hours searching the patch space. We set the timer in the generated
ailed tests to 7 s to allow for the fact that some inputs may take

little longer to complete, especially if the size of the source string
s quite huge. The generated patches were assessed in relation to a
ollection of test cases that included both the anticipated behavior and
ermination time. The results obtained by the GenProg hybrid show that
ddressing performance bugs is possible using mutation-based hybrid
epair tools, especially with their remove, move, and swap operators.
his is primarily due to the observation that we deal with semantically
orrect programs that generate results consistent with the intended
ehavior. It is possible to avoid repetitive computations by deleting
pecific statements that unnecessarily increase the computations of the
rogram or restructuring it by moving or swapping specific statements.

esults from the FAngelix hybrid: Using the same set of passing
nd failing tests that were given to the GenProg hybrid, we also ran
he FAngelix hybrid on the two performance bugs previously men-
ioned. Unfortunately, the FAngelix hybrid was unable to produce
atches for both bugs. The fact that none of the termination bugs nor
ny of the performance bugs could be satisfactorily addressed indi-
ates that the current implementation of FAngelix is unable to handle
hese classes of bugs. Investigating the causes of its ineffectiveness in
andling performance and termination bugs lead us to the following
bservations:

1. In relation to the two considered performance bugs, FAngelix
was unable to locate a suspicious statement. Recall that an
APR tool does not generate a patch if no suspicious statements
are discovered. This raises questions about the capability of
the implemented FL methods in handling performance bugs.
Furthermore, the tool is unable to effectively handle bugs whose
correction requires the synthesis of expressions that satisfy timed
properties.

2. The types of buggy statements that FAngelix can handle are
constrained. It has the ability to correct bugs in the following
types of statements: if statements, assignment statements, con-
ditional statements, and guard statements. The two inefficient
14

loop programs can be repaired without modifying such types of
statements. By deleting, moving, or swapping existing lines in
the buggy programs, the considered performance bugs can be
resolved. Such alterations to the program under repair cannot
be made by FAngelix.

Answer to RQ2: Depending on the APR tool selected,
our hybrid repair strategy’s efficacy for performance bugs
varies. Integrating our approach with GenProg can success-
fully generate valid patches for both of the performance bugs
under consideration. This suggests that mutation-based repair
methods may be effective in handling simple and complex
performance bugs. However, combining the approach with
the semantic-based repair tool FAngelix was unable to handle
performance bugs, including the simple one involving the
sleep statement. The main observed issues were the inability of
the tool to identify the expression that leads to the inefficient
behavior of the program and that the types of buggy state-
ments that FAngelix can handle are constrained (performance
bugs like the ones considered here may fall outside the scope
of semantic repair).

7.3. Key findings from the analysis of termination and performance bugs

Compared to other functional bugs, the repair of termination and
performance bugs is more challenging due to their distinctive char-
acteristics. These bugs primarily affect the program’s execution time
and generate little debugging information. For these kinds of bugs,
the main issue is defining passing and failing test cases that allow
the fault localization (FL) methods to compute a candidate list of
suspicious statements and APR tools to create patches for these bugs.
Our empirical investigation of the efficacy of hybrid APR against bugs
that adversely affect the execution time of the program leads to the
following observations:

1. During the analysis, we considered 15 termination bugs and
2 performance bugs. Both the GenProg and FAngelix hybrids
were unable to correctly handle termination bugs: all patches
produced by the tools were invalid due to the incompleteness of
the correctness specification (i.e., available test suite). While the
FAngelix hybrid replaces the conditional expression of the loop
with one that iterates a zero time, the GenProg hybrid typically
fixes termination bugs by inserting a halting statement into the
body of the loop. This clearly demonstrates the complexity of
fixing termination bugs using current APR tools for two reasons.
First, the faulty traces generated by a termination bug is infinite.
Second, fixing a termination bug using dynamic APR requires
the satisfaction of complex timed property, where most tools
are unable to handle timed properties effectively. On the other
hand, the GenProg hybrid successfully handled performance
bugs while the FAngelix hybrid was unable to produce patches
for performance bugs.

2. The current FL methods that are employed by these tools are
generally unable to generate a suspicious list for performance
bugs because no erroneous behavior will be observed while an
inefficient loop is being executed. The absence of incorrect be-
havior makes it more challenging to locate the faulty statement
that correlates to the performance bug that needs to be fixed.
The GenProg hybrid mutates the statements of the program one
by one in order to create patches for the two performance bugs,
but the FAngelix hybrid was unable to detect any suspicious
statements, so no patches were generated. Thus, it is necessary to
develop new FL techniques for bugs that generate little observab
information. One option would be to use dynamic–static FL
methods to handle performance bugs.

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

p
a
P
a
t
p
a
w
c
N
r
r
N
a
2
c
o
2
a

B
u
T
c
b
t
d
d
s
i
p
C
c
t

o
o
a
t
t
d
v
t
b

I
m
t
t
s
d
p
o
S
a
b

T

g
a
c
s
a
t
c
I
v
p

9

9

a
s
o
r
c
d
i
p
A
b
i
p

3. Correcting termination bugs (infinite loops) is considerably
harder than correcting performance bugs (inefficient loops),
as the analysis of the aforementioned two research questions
demonstrates clearly, for the following reasons. First, whereas
we solely deal with finite runs in performance bugs, the analysis
of termination bugs can involve both finite and infinite runs.
Second, whereas for termination bugs, the relevant semantic
property might not be available, the validity property of per-
formance bugs is fully known (the original program can be
used as a reference program). Third, generating patches to fix
termination bugs might be computationally expensive since it
may necessitate making repeated calls to numerous termination
provers to ensure the termination of the repaired program.

4. Termination provers can be used to distinguish termination bugs
(infinite loops) from performance bugs (inefficiently written
loops). This is important because we observe several loops that
were not constructed efficiently and take a very long time to
terminate (i.e., we observe examples of inefficient loops that
terminate after around 30 h). In this situation, a developer
may incorrectly assume that the program has a termination bug
and not a performance bug. By distinguishing between different
types of bugs, it is possible to use the appropriate repair tech-
nique for the loop program under repair. Termination provers
can also generate CEs which can be used to guide the repair
process when searching for repairs.

8. Related work

We discuss the related literature on APR, bug classification, use of
formal specifications in APR, previous attempts to integrate different
analysis techniques, and termination analysis.

Automated Program Repair: Source-based, automated program re-
air approaches (Monperrus, 2018) can be separated into search-based
nd semantic-based approaches. Search-based approaches such as Gen-
rog (Le Goues et al., 2012), Astor (Martinez and Monperrus, 2016),
nd SCRepair (Yu et al., 2020) predominantly use failing test cases
o identify bugs, and then mutate the source code until the program
asses all failing test cases. They do not provide patch correctness guar-
ntees beyond the fact that the provided test cases now pass. Recent
ork introduced property-based testing to strengthen the validation of

andidate repairs and address overfitting (Gissurarson et al., 2022).
evertheless, these approaches require executing the program-under-

epair, first to find the bug, and then to generate and validate candidate
epairs. Semantic-based approaches like SemFix (Nguyen et al., 2013),
opol (Xuan et al., 2017), DirectFix (Mechtaev et al., 2015), SPR (Long
nd Rinard, 2015), Angelix (Mechtaev et al., 2016), and JFIX (Le et al.,
017) infer repair constraints for the buggy program via symbolic exe-
ution of the given tests. The completeness of inferred constraints relies
n the available test suite. Similarly, Infinitel (Marcote and Monperrus,
015) uses an SMT solver to synthesize a loop termination condition
nd then uses test cases for patch validation.

ug Classification Systems: Several works target bug classification
sing a wide variety of classification criteria and for different goals.
he work of Li et al. (2006) and Tan et al. (2014) introduced a bug
lassification system based on the cause-impact criteria. They studied
ug characteristics of around 2,060 real-world bugs in three represen-
ative open-source projects. They concluded that semantic bugs are the
ominant root cause of bugs, and memory-related bugs have decreased
ue to the development of effective detection tools. Many bug tracking
ystems classify bugs using severity and priority criteria, where severity
ndicates the seriousness of the bug on the program functionality and
riority indicates how soon the bug should be fixed (Serrano and
iordia, 2005). Cotroneo et al. present a maintenance-oriented bug
lassification system in which the characteristics of the bug manifes-
ation are studied (Cotroneo et al., 2016). The study identifies the set
15
f failure-exposing conditions under which a bug may occur. Neither
f these classification systems considers properties that can be used to
nalyze the detection power of different bug detection techniques and
he conditions under which they can be integrated, which we add with
he classification system proposed in this paper. Asadollah et al. (2015)
o use bug observability to study the erroneous behavior of a wide
ariety of concurrency bugs. However, the authors restrict themselves
o concurrency bugs and do not study the detection power of different
ug detection techniques.

ntegrating Bug Detection Techniques: Few attempts have been
ade to integrate different program analysis techniques to alleviate

he impact of the patch overfitting problem. Al-Bataineh et al. used
he static detection patterns/rules as the source for formulating formal
pecifications and discussed the possibility of integrating static and
ynamic analysis techniques to improve the overall quality of generated
atches (Al-Bataineh et al., 2021a). There also exists a few examples
f using information from debugging to aid APR: Facebook’s APR tool
apFix takes information generated during the bug detection process
nd applies various techniques, including templates specific to given
ug types, to fix the program (Marginean et al., 2019).

ermination Analysis of Programs: A huge body of work has been
published on proving termination of programs based on a variety
of techniques, such as abstract interpretation (Berdine et al., 2007;
Chawdhary et al., 2008; Tsitovich et al., 2011), bounds analysis (Gul-
wani et al., 2009a,b), ranking functions (Bradley et al., 2005; Cousot,
2005), recurrence sets (Gupta et al., 2008; Harris et al., 2010), and
transition invariants (Kroening et al., 2010; Podelski and Rybalchenko,
2004). Based on these techniques, a number of program termina-
tion checkers have been developed in the prior literature including
AProVE (Giesl et al., 2014), 2LS (Chen et al., 2015), T2 (Brockschmidt
et al., 2016), and ARMC (Podelski and Rybalchenko, 2007). Unfor-
tunately, termination provers have not yet been used to validate the
enerated candidate patches of termination bugs in the previous APR
pproaches. We strongly believe that integrating APR approaches with
ontemporary termination checkers would help advance the current
tate-of-the-art of APR, not only for repairing termination bugs, but
lso for other classes of concurrency bugs. This is mainly because fixing
ermination bugs in concurrent programs would ensure the absence of
ertain classes of concurrency bugs, such as deadlock and livelock bugs.
t would also help avoid the patch overfitting problem by generating
erified repairs for termination bugs in both sequential and concurrent
rograms.

. Concluding remarks

.1. Conclusions

A significant class of bugs cannot be handled with current APR
pproaches, and there is a need to study complementary techniques. To
timulate this work, we propose a novel bug classification system based
n three key properties: bug observability, bug tractability, and bug
eproducibility. This provides a tool to methodologically explore and
ompare alternative and hybrid APR approaches by (i) analyzing the
etection power of different bug detection techniques, (ii) distinguish-
ng APR approaches based on their bug repair capabilities, and (iii)
roviding a common terminology that helps identify gaps in current
PR research. Moreover, it allows analysis of how techniques can
e combined to handle challenging classes of bugs. As a demonstrat-
ng example, we study termination bugs in sequential and concurrent
rograms, and present novel hybrid algorithms for their repair by

integrating termination provers and software model checkers in the
APR pipeline. Our analysis shows that such an integration reduces the
complexity of the repair algorithms and improves the overall reliability.

As a followup on this more theoretical analysis, we empirically
investigate how well such a hybrid approach can repair termination and

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.

-

performance bugs. To this end, we create hybrids of tools representing
different APR approaches with termination provers and execution time
monitors. We use a dataset for termination bugs in C code that was
originally developed to evaluate the efficacy of termination provers (Shi
et al., 2022), and extend it with two performance bugs: one simple
synthetic example, while the other one is a real-world Apache flaw
that has also been analyzed by other researchers (Song and Lu, 2017).
Our findings indicate that the proposed hybrid repair approaches hold
promise for handling termination and performance bugs. More specif-
ically, mutation-based hybrid repair tools seem to perform better at
fixing performance bugs than semantic-based repair tools. We hypoth-
esize that this comes from the fact that mutation-based hybrids can
easily restructure the program using the basic mutation operators like
move, swap, delete, and insert. Since programs with performance bugs
are semantically correct programs, we observe that these operators
can successfully address performance bugs while they are much harder
to address using a semantics-based approach. Fixing termination bugs
requires the satisfaction of a composite property, which combines a
termination property and a semantic property describing the loop’s
logic. Hybrid APR can only fully fix such termination bugs if the
semantic property is available. Unfortunately, very much aligned with
other APR studies, we observe that the incompleteness of (this part
of) the correctness specification negatively affects the quality of the
patches that can be produced.

9.2. Future work

We identify the following as promising avenues for future research:

1. we are in the process of further empirical validation of the
ideas described in this work by combining selected APR tools
with termination provers and software model checkers men-
tioned earlier. One concrete direction is to include template-
based repair approaches, which with the current state-of-the-art
in template-based APR tools would require a curated dataset
of termination and performance problems in Java source code
(with tests that indicate correct behavior);

2. there is a need for efficient fault localization mechanisms for
termination and liveness bugs, since these create infinite traces
that cannot be handled with the current spectrum-based fault
localization approaches. We currently circumvent this with a
timeout mechanism, but more efficient techniques could find a
more precise set of suspicious statements;

3. the combination of CounterExample-Guided Inductive Synthesis
(CEGIS) (Solar-Lezama et al., 2006) with termination provers
and software model checkers could enable efficient patch space
exploration without the user guidance that is normally needed
for CEGIS;

4. aside from the termination bugs studied in Section 5, vari-
ous other bugs cannot be handled by APR approaches solely
based on dynamic analysis. One particularly interesting class
of non-observable bugs for future research are security-related
vulnerabilities where sensitive information may be disclosed to
unauthorized parties as a result of violations of information flow
security (Sabelfeld and Myers, 2003; Smith, 2007).

CRediT authorship contribution statement

Omar I. Al-Bataineh: Conceptualization, Methodology, Formal anal
ysis, Investigation, Data curation, Writing – original draft, Writing
– review & editing. Leon Moonen: Conceptualization, Methodology,
Validation, Data curation, Writing – original draft, Writing – review
& editing, Resources, Supervision, Project administration, Funding
16

acquisition. Linas Vidziunas: Software, Investigation, Validation.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data is available on GitHub at https://github.com/secureIT-
project/extendingAPR, and archived on Zenodo at https://doi.org/10.
5281/zenodo.10397656.

References

Al-Bataineh, O.I., Grishina, A., Moonen, L., 2021a. Towards more reliable automated
program repair by integrating static analysis techniques. In: IEEE Int’L Conference
on Software Quality, Reliability and Security (QRS). pp. 654–663, doi:10/gp6kq6.

Al-Bataineh, O.I., Moonen, L., 2022. Towards extending the range of bugs that
automated program repair can handle. In: IEEE Int’L Conference on Software
Quality, Reliability and Security (QRS). IEEE, pp. 1–12.

Al-Bataineh, O., Ng, D.J.X., Easwaran, A., 2021b. Monitoring cumulative cost properties.
In: Int’L Conference on Formal Methods in Software Engineering (FormaliSE). pp.
19–30, doi:10/gp6kqw.

Alpern, B., Schneider, F.B., 1985. Defining liveness. Inform. Process. Lett. (ISSN:
0020-0190) 21 (4), 181–185, doi:10/d97bw4.

Alpern, B., Schneider, F.B., 1987. Recognizing safety and liveness. Distrib. Comput.
(ISSN: 1432-0452) 2 (3), 117–126, doi:10/fmbptq.

Asadollah, S.A., Hansson, H., Sundmark, D., Eldh, S., 2015. Towards classification
of concurrency bugs based on observable properties. In: Int’L Workshop on
Complex Faults and Failures in Large Software Systems (COUFLESS). pp. 41–47,
doi:10/f3nh6c.

Bacchelli, A., Bird, C., 2013. Expectations, outcomes, and challenges of modern
code review. In: Int’L Conference on Software Engineering (ICSE). pp. 712–721,
doi:10/gf2h2r.

Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai, P.,
Štill, V., 2017. Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayana Kumar, K. (Eds.), Automated Technology for Verification and Analysis.
Springer, Cham, ISBN: 978-3-319-68167-2, pp. 201–207, doi:10/gp6kq7.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.,
McKenzie, P., 2001. Systems and Software Verification: Model-Checking Techniques
and Tools. Springer, Berlin, Heidelberg, ISBN: 978-3-662-04558-9.

Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P., 2007. Variance
analyses from invariance analyses. In: SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). POPL ’07, ACM, New York, NY, USA, ISBN:
978-1-59593-575-5, pp. 211–224, doi:10/frk5km.

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C.,
Kamsky, A., McPeak, S., Engler, D., 2010. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM (ISSN: 0001-0782)
53 (2), 66–75, doi:10/bj8r36.

Bradley, A.R., Manna, Z., Sipma, H.B., 2005. Linear ranking with reachability. In:
Etessami, K., Rajamani, S.K. (Eds.), Int’L Conference on Computer Aided Verifica-
tion (CAV). Springer, Berlin, Heidelberg, ISBN: 978-3-540-31686-2, pp. 491–504,
doi:10/fpjv58.

Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N., 2016. T2: Temporal
property verification. In: Chechik, M., Raskin, J.-F. (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Springer, Berlin, Heidelberg,
ISBN: 978-3-662-49674-9, pp. 387–393, doi:10/gp6kq9.

Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L., 1992. Symbolic model checking:
1020 states and beyond. Inform. and Comput. (ISSN: 0890-5401) 98 (2), 142–170,
doi:10/bvrsx5.

Cai, Y., Cao, L., 2016. Fixing deadlocks via lock pre-acquisitions. In: Int’L Conference
on Software Engineering (ICSE). ICSE ’16, ACM, New York, NY, USA, ISBN:
978-1-4503-3900-1, pp. 1109–1120, doi:10/gp6kq3.

Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H., 2008. Ranking abstractions.
In: Drossopoulou, S. (Ed.), European Symposium on Programming Languages
and Systems (ESOP). Springer, Berlin, Heidelberg, ISBN: 978-3-540-78739-6, pp.
148–162, doi:10/d4wm5s.

Chen, H.-Y., David, C., Kroening, D., Schrammel, P., Wachter, B., 2015. Synthesising in-
terprocedural bit-precise termination proofs (T). In: Int’L Conference on Automated
Software Engineering (ASE). pp. 53–64, doi:10/gp6krb.

Clarke, E., Grumberg, O., Kroening, D., Peled, D., Veith, H., 2018. Model Checking,
second ed. In: Cyber Physical Systems Series, MIT Press, ISBN: 978-0-262-03883-6.

Cook, B., Podelski, A., Rybalchenko, A., 2007. Proving thread termination. In: SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
PLDI ’07, ACM, New York, NY, USA, ISBN: 978-1-59593-633-2, pp. 320–330,
doi:10/dp236p.

https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://github.com/secureIT-project/extendingAPR
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
https://doi.org/10.5281/zenodo.10397656
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb1
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb2
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb3
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb4
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb5
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb6
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb7
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb8
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb9
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb10
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb11
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb12
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb13
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb14
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb15
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb16
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb17
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb18
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb19

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.
Cotroneo, D., Trivedib, K., Russoa, S., Pietrantuonoa, R., 2016. How do bugs surface?
A comprehensive study on the characteristics of software bugs manifestation. J.
Syst. Softw. 113, 27–43, doi:10/gpd4t5.

Cousot, P., 2005. Proving program invariance and termination by parametric ab-
straction, Lagrangian relaxation and semidefinite programming. In: Cousot, R.
(Ed.), Verification, Model Checking, and Abstract Interpretation. Springer, Berlin,
Heidelberg, ISBN: 978-3-540-30579-8, pp. 1–24, doi:10/dzfpc6.

David, C., Kesseli, P., Kroening, D., Lewis, M., 2016. Danger invariants. In: Fitzger-
ald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (Eds.), Formal Methods. In:
Lecture Notes in Computer Science, Springer, Cham, ISBN: 978-3-319-48989-6, pp.
182–198, doi:10/gp6kqr.

Dean, D.J., Wang, P., Gu, X., Enck, W., Jin, G., 2015. Automatic server hang bug
diagnosis: Feasible reality or pipe dream?. In: IEEE Int’L Conference on Autonomic
Computing Hang Bug Diagnosis. pp. 127–132, doi:10/gp6kq5.

Dovgalyuk, P., Fursova, N., Vasiliev, I., Makarov, V., 2017. QEMU-based framework for
non-intrusive virtual machine instrumentation and introspection. In: Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). In: ESEC/FSE 2017, ACM, ISBN: 978-1-4503-5105-8, pp.
944–948, doi:10/gp6kqz.

D’Silva, V., Kroening, D., Weissenbacher, G., 2008. A survey of automated techniques
for formal software verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. (ISSN: 1937-4151) 27 (7), 1165–1178, doi:10/frf7ww.

Fagan, M., 1976. Design and code inspections to reduce errors in program development.
IBM Syst. J. (ISSN: 0018-8670) 15 (3), 182–211, doi:10/btfv3v.

Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R., 2014. Proving
termination of programs automatically with aprove. In: Demri, S., Kapur, D.,
Weidenbach, C. (Eds.), Int’L Joint Conference on Automated Reasoning (IJCAR).
Springer, Cham, ISBN: 978-3-319-08587-6, pp. 184–191, doi:10/f3ssz2.

Gilb, T., Graham, D., Finzi, S., 1993. Software inspection. Addison-Wesley, Wokingham,
England ; Reading, Mass, ISBN: 978-0-201-63181-4.

Gissurarson, M.P., Applis, L., Panichella, A., van Deursen, A., Sands, D., 2022.
PROPR: Property-based automatic program repair. In: Int’L Conference on Software
Engineering (ICSE). pp. 1768–1780, doi:10/gqhgs7.

Godefroid, P., 1997. VeriSoft: A tool for the automatic analysis of concurrent reactive
software. In: Grumberg, O. (Ed.), Int’L Conference on Computer Aided Verifica-
tion (CAV). Springer, Berlin, Heidelberg, ISBN: 978-3-540-69195-2, pp. 476–479,
doi:10/b7ntq3.

Gregg, B., 2019. BPF Performance Tools: Linux System and Application Observability.
Addison-Wesley, ISBN: 978-0-13-655482-0.

Gregg, B., 2020. Systems Performance: Enterprise and the Cloud, second ed. In:
Addison-Wesley Professional Computing Series, Addison-Wesley, Boston, ISBN:
978-0-13-682015-4.

Gulwani, S., Jain, S., Koskinen, E., 2009a. Control-flow refinement and progress
invariants for bound analysis. ACM SIGPLAN Notices (ISSN: 0362-1340) 44 (6),
375–385, doi:10/fxdmzw.

Gulwani, S., Mehra, K.K., Chilimbi, T., 2009b. SPEED: precise and efficient static
estimation of program computational complexity. ACM SIGPLAN Notices (ISSN:
0362-1340) 44 (1), 127–139, doi:10/fxgdsx.

Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G., 2008. Proving
non-termination. In: SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). POPL ’08, ACM, New York, NY, USA, ISBN: 978-1-59593-689-9,
pp. 147–158, doi:10/dd76q5.

Gupta, A., Kahlon, V., Qadeer, S., Touili, T., 2018. Model checking concurrent
programs. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (Eds.), Handbook
of Model Checking. Springer, Cham, ISBN: 978-3-319-10575-8, pp. 573–611,
doi:10/jkpx.

Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K., 2010. Alternation for termination. In:
Cousot, R., Martel, M. (Eds.), Static Analysis Symposium (SAS). Springer, Berlin,
Heidelberg, ISBN: 978-3-642-15769-1, pp. 304–319, doi:10/djthds.

Havelund, K., Pressburger, T., 2000. Model checking JAVA programs using JAVA
PathFinder. Int. J. Softw. Tools Technol. Transfer (ISSN: 1433-2779) 2 (4),
366–381, doi:10/d2pmx6.

Hebbal, Y., Laniepce, S., Menaud, J.-M., 2015. Virtual machine introspection: Tech-
niques and applications. In: Int’L Conference on Availability, Reliability and
Security Introspection. pp. 676–685, doi:10/gp6kq4.

Heiden, S., Grunske, L., Kehrer, T., Keller, F., Hoorn, A.v., Filieri, A., Lo, D., 2019.
An evaluation of pure spectrum-based fault localization techniques for large-scale
software systems. Softw. - Pract. Exp. (ISSN: 1097-024X) 49 (8), 1197–1224,
doi:10/gp6kq8.

Holzmann, G., 1997. The model checker SPIN. IEEE Trans. Softw. Eng. (ISSN:
1939-3520) 23 (5), 279–295, doi:10/d7wqxt.

Jhala, R., Majumdar, R., 2009. Software model checking. ACM Comput. Surv. 41 (4),
1–54, (ISSN: 0360-0300, 1557-7341). doi:10/fd3pxq.

Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S., 2012. Understanding and detecting real-
world performance bugs. ACM SIGPLAN Notices (ISSN: 0362-1340) 47 (6), 77–88,
doi:10/f372jr.

Jones, J.A., Harrold, M.J., Stasko, J., 2002. Visualization of test information to assist
fault localization. In: Int’L Conference on Software Engineering (ICSE). p. 467,
doi:10/bxz64c.
17
Killian, C., Anderson, J.W., Jhala, R., Vahdat, A., 2007. Life, death, and the critical
transition: Finding liveness bugs in systems code.

Kozen, D., 1977. Lower bounds for natural proof systems. In: Annual Symposium on
Foundations of Computer Science (SFCS). pp. 254–266, doi:10/dbkc79.

Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M., 2010. Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jack-
son, P. (Eds.), Computer Aided Verification. Springer, Berlin, Heidelberg, ISBN:
978-3-642-14295-6, pp. 89–103, doi:10/b54tf5.

Ku, K., Hart, T.E., Chechik, M., Lie, D., 2007. A buffer overflow benchmark for
software model checkers. In: Int’L Conference on Automated Software Engineering
(ASE). ASE ’07, ACM, New York, NY, USA, ISBN: 978-1-59593-882-4, pp. 389–392,
doi:10/fds27b.

Lamport, L., 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. (ISSN: 1939-3520) SE-3 (2), 125–143, doi:10/d25dpw.

Le, X.-B.D., Chu, D.-H., Lo, D., Le Goues, C., Visser, W., 2017. JFIX: semantics-based
repair of java programs via symbolic PathFinder. In: Int’L Symposium on Software
Testing and Analysis (ISSTA). In: ISSTA 2017, ACM, New York, NY, USA, ISBN:
978-1-4503-5076-1, pp. 376–379, doi:10/gp6krg.

Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W., 2015. The ManyBugs and IntroClass benchmarks for automated repair
of c programs. IEEE Trans. Softw. Eng. 41 (12), 1236–1256, (ISSN: 0098-5589,
1939-3520). doi:10/gpd4jv.

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W., 2012. GenProg: A generic method
for automatic software repair. IEEE Trans. Softw. Eng. (ISSN: 1939-3520) 38 (1),
54–72, doi:10/cfztf3.

Le Goues, C., Pradel, M., Roychoudhury, A., 2019. Automated program repair. Commun.
ACM 62 (12), 56–65, (ISSN: 0001-0782, 1557-7317). doi:10/gkgf29.

Li, P., Regehr, J., 2010. T-check: bug finding for sensor networks. In: Int’L Con-
ference on Information Processing in Sensor Networks. IPSN ’10, ACM, ISBN:
978-1-60558-988-6, pp. 174–185, doi:10/djrwkg.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C., 2006. Have things changed now? an
empirical study of bug characteristics in modern open source software. In: Work-
shop on Architectural and System Support for Improving Software Dependability.
ACM, New York, NY, USA, ISBN: 978-1-59593-576-2, pp. 25–33, doi:10/cqsw86.

Lin, Y., Kulkarni, S.S., 2014. Automatic repair for multi-threaded programs with
deadlock/livelock using maximum satisfiability. In: Int’L Symposium on Software
Testing and Analysis (ISSTA). In: ISSTA 2014, ACM, New York, NY, USA, ISBN:
978-1-4503-2645-2, pp. 237–247, doi:10/gp6krh.

Long, F., Rinard, M., 2015. Staged program repair with condition synthesis. In: Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). In: ESEC/FSE 2015, ACM, New York, NY, USA,
ISBN: 978-1-4503-3675-8, pp. 166–178, doi:10/gfvmzm.

Manna, Z., Pnueli, A., 1992. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York, NY, ISBN: 978-1-4612-0931-7.

Marcote, S.R., Monperrus, M., 2015. Automatic repair of infinite loops. doi:10/jb2f.
Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y., Mao, K., Mols, A., Scott, A.,

2019. SapFix: Automated end-to-end repair at scale. In: Int’L Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). pp. 269–278,
doi:10/gkgf2c.

Martinez, M., Monperrus, M., 2016. ASTOR: a program repair library for java. In: Int’L
Symposium on Software Testing and Analysis (ISSTA). ACM, Saarbrücken Germany,
ISBN: 978-1-4503-4390-9, pp. 441–444, doi:10/gndn55.

Mechtaev, S., Yi, J., Roychoudhury, A., 2015. DirectFix: Looking for simple program
repairs. In: Int’L Conference on Software Engineering (ICSE), Vol. 1. pp. 448–458,
doi:10/gndpcr.

Mechtaev, S., Yi, J., Roychoudhury, A., 2016. Angelix: Scalable multiline program
patch synthesis via symbolic analysis. In: Int’L Conference on Software Engineering
(ICSE). pp. 691–701, doi:10/ggsskp.

Miller, B.P., Cooksey, G., Moore, F., 2006. An empirical study of the robustness of macos
applications using random testing. In: Int’L Workshop on Random Testing. RT ’06,
ACM, New York, NY, USA, ISBN: 978-1-59593-457-4, pp. 46–54, doi:10/bw7w9h.

Miller, B.P., Fredriksen, L., So, B., 1990. An empirical study of the reliability of UNIX
utilities. Commun. ACM (ISSN: 0001-0782) 33 (12), 32–44, doi:10/fqnt9s.

Monperrus, M., 2018. Automatic software repair: A bibliography. ACM Comput. Surv.
(ISSN: 03600300) 51 (1), 1–24, doi:10/ggssbj.

Muntean, P., Monperrus, M., Sun, H., Grossklags, J., Eckert, C., 2021. IntRepair:
Informed repairing of integer overflows. IEEE Trans. Softw. Eng. (ISSN: 1939-3520)
47 (10), 2225–2241, doi:10/gh97rm.

Musuvathi, M., Park, D.Y., Chou, A., Engler, D.R., Dill, D.L., 2002. CMC: A pragmatic
approach to model checking real code. In: Symposium on Operating Systems Design
and Implementation (OSDI). Usenix.

Mytkowicz, T., Sweeney, P.F., Hauswirth, M., Diwan, A., 2008. Observer Effect and
Measurement Bias in Performance Analysis. Technical Report CU-CS-1042-08,
University of Colorado at Boulder.

Naish, L., Lee, H.J., Ramamohanarao, K., 2011. A model for spectra-based soft-
ware diagnosis. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20 (3), 1–32,
doi:10/c5xnmd.

Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S., 2013. SemFix: Program repair
via semantic analysis. In: Int’L Conference on Software Engineering (ICSE). pp.
772–781, doi:10/gg82z6.

http://refhub.elsevier.com/S0164-1212(23)00313-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb20
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb21
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb22
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb23
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb24
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb25
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb26
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb27
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb28
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb29
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb30
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb31
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb32
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb33
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb34
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb35
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb36
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb37
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb38
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb39
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb40
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb41
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb42
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb43
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb44
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb45
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb46
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb47
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb48
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb49
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb50
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb51
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb52
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb53
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb54
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb55
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb56
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb57
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb58
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb59
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb60
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb61
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb62
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb63
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb64
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb65
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb66
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb66
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb66
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb67
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb68
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb68
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb68
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb68
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb68
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb69
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb70
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb70
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb70
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb70
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb70
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb71
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb71

The Journal of Systems & Software 209 (2024) 111918O.I. Al-Bataineh et al.
Pnueli, A., 1977. The temporal logic of programs. In: Annual Symposium on
Foundations of Computer Science (SFCS). pp. 46–57, doi:10/dn8cpn.

Podelski, A., Rybalchenko, A., 2004. Transition invariants. In: Symposium on Logic in
Computer Science. pp. 32–41, doi:10/fbsbdm.

Podelski, A., Rybalchenko, A., 2007. ARMC: The logical choice for software model
checking with abstraction refinement. In: Hanus, M. (Ed.), Practical Aspects of
Declarative Languages. Springer, Berlin, Heidelberg, ISBN: 978-3-540-69611-7, pp.
245–259, doi:10/dmrfmf.

Radu, A., Nadi, S., 2019. A dataset of non-functional bugs. In: Int’L Conference
on Mining Software Repositories (MSR). IEEE, Montreal, Quebec, Canada, pp.
399–403, doi:10/gp6kq2.

Sabelfeld, A., Myers, A., 2003. Language-based information-flow security. IEEE J. Sel.
Areas Commun. (ISSN: 1558-0008) 21 (1), 5–19, doi:10/dnvjwg.

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C., 2018. Lessons
from building static analysis tools at google. Commun. ACM 61 (4), 58–66, (ISSN:
0001-0782, 1557-7317). doi:10/ggsshq.

Serrano, N., Ciordia, I., 2005. Bugzilla, ITracker, and other bug trackers. IEEE Softw.
(ISSN: 1937-4194) 22 (2), 11–13, doi:10/fbgs99.

Shi, X., Xie, X., Li, Y., Zhang, Y., Chen, S., Li, X., 2022. Large-scale analysis of non-
termination bugs in real-world OSS projects. In: ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. In: ESEC/FSE 2022, ACM, New York, NY, USA, ISBN: 978-1-4503-9413-0, pp.
256–268, doi:10/grmn6m.

Smith, G., 2007. Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (Eds.), Malware Detection. Springer,
Boston, MA, ISBN: 978-0-387-44599-1, pp. 291–307, doi:10/fnfjff.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V., 2006. Combinatorial
sketching for finite programs. In: Int’L Conference on Architectural Support for
Programming Languages and Operating Systems. In: ASPLOS XII, ACM, New York,
NY, USA, ISBN: 978-1-59593-451-2, pp. 404–415, doi:10/fdsnnt.

Song, L., Lu, S., 2017. Performance diagnosis for inefficient loops. In: Int’L Conference
on Software Engineering. ICSE ’17, regexpIEEE, Buenos Aires, Argentina, ISBN:
978-1-5386-3868-2, pp. 370–380, doi:10/gq4wj3.
18
Swanson, E.B., 1976. The dimensions of maintenance. In: Int’L Conference on Software
Engineering (ICSE). ICSE ’76, IEEE, pp. 492–497.

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., Zhai, C., 2014. Bug characteristics in
open source software. Empir. Softw. Eng. (ISSN: 1573-7616) 19 (6), 1665–1705,
doi:10/f6m38x.

Thompson, S., Brat, G., 2008. Verification of C++ flight software with the MCP
model checker. In: IEEE Aerospace Conference. IEEE, Big Sky, MT, USA, ISBN:
978-1-4244-1487-1, pp. 1–9, doi:10/ds9chc.

Thompson, S.J., Brat, G., Venet, A., 2010. Software model checking of ARINC-653 flight
code with MCP. In: NASA Formal Methods Symposium. NASA.

Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D., 2011. Loop summa-
rization and termination analysis. In: Abdulla, P.A., Leino, K.M. (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Springer, Berlin,
Heidelberg, ISBN: 978-3-642-19835-9, pp. 81–95, doi:10/cd8sdb.

Wang, X., Guo, Z., Liu, X., Xu, Z., Lin, H., Wang, X., Zhang, Z., 2008. Hang analysis:
fighting responsiveness bugs. Oper. Syst. Rev. (ISSN: 0163-5980) 42 (4), 177–190,
doi:10/b9chm8.

Xie, X., Xu, B., 2021. Essential Spectrum-based Fault Localization. Springer, Singapore,
ISBN: 978-981-336-178-2, doi:10/jb2d.

Xuan, J., Martinez, M., DeMarco, F., Clément, M., Marcote, S.L., Durieux, T.,
Lea Berre, D., Monperrus, M., 2017. Nopol: Automatic repair of conditional
statement bugs in java programs. IEEE Trans. Softw. Eng. (ISSN: 1939-3520) 43
(1), 34–55, doi:10/gm5s3h.

Yi, J., Ismayilzada, E., 2022. Speeding up constraint-based program repair using
a search-based technique. Inf. Softw. Technol. (ISSN: 0950-5849) 146, 106865,
doi:10/grvb97.

Yu, X.L., Al-Bataineh, O., Lo, D., Roychoudhury, A., 2020. Smart contract repair.
ACM Trans. Softw. Eng. Methodol. 29 (4), 1–32, (ISSN: 1049-331X, 1557-7392).
doi:10/gpd4hr.

Zhou, J., Silvestro, S., Liu, H., Cai, Y., Liu, T., 2017. UNDEAD: Detecting and preventing
deadlocks in production software. In: Int’L Conference on Automated Software
Engineering (ASE). pp. 729–740, doi:10/gp6kqx.

http://refhub.elsevier.com/S0164-1212(23)00313-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb72
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb73
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb74
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb75
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb76
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb77
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb77
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb77
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb77
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb77
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb78
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb79
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb80
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb81
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb82
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb83
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb83
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb83
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb84
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb85
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb86
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb87
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb88
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb89
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb90
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb91
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb92
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb93
http://refhub.elsevier.com/S0164-1212(23)00313-8/sb93

	Extending the range of bugs that automated program repair can handle
	Introduction
	Bug Classification Schemes
	Bug Detection Techniques
	Dynamic Analysis
	Static Program Analysis
	Model Checking

	APR Approaches
	Arithmetic Bugs
	Non-functional Bugs
	Liveness Bugs

	Hybrid APR for Termination Bugs
	Termination Bugs in Sequential Programs
	Termination Bugs in Concurrent Programs

	Empirical Evaluation
	Research Questions
	Prototype Implementation
	Dataset for Non-terminating Loop Programs
	Selected Termination provers and APR Tools
	Factors Affecting Repair Framework for Termination Bugs
	Hybrid APR tools for handling hard hang bugs (termination bugs)
	Hybrid APR tools for handling soft hang bugs (performance bugs)

	Experimental Results
	RQ1: How effective is hybrid APR in fixing termination bugs?
	RQ2: How effective is the hybrid APR in fixing performance bugs?
	Key findings from the analysis of termination and performance bugs

	Related Work
	Concluding Remarks
	Conclusions
	Future Work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

