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1 Introduction

The purpose of this paper is to develop a generalization of the multinomial proba-

bility model to provide novel insights into the income mobility process by allowing

for income class probabilities to depend on a vector of individual characteristics. We

group households into different income categories and assume that the probabilities

of an individual from different family backgrounds being in different income cate-

gories follow a multinomial probability model. These probabilities are allowed to be

influenced by various characteristics of both the individual and the parents. The uti-

lization of this framework enables us to study the joint distribution of parental-child

income pairs and therefore income mobility dynamics at the aggregate level.

In incorporating probability dependence on individual characteristics, we provide

links between the conventional measurement approach to intergenerational mobil-

ity and alternative approaches focusing on specific individual, parental, familial,

and environmental factors influencing income status and intergenerational income

mobility. Previous research has extensively explored heterogeneity in transition

processes, with race being a standard dimension of analysis; see Duncan (1968) and

Hout (1984) for older classic studies and Bhattacharya and Mazumder (2011), and

Bloome (2014) for more recent contributions. Our aim is to provide novel tools

that capture heterogeneity in richer ways than previous studies. To achieve this, we

develop a fully nonparametric ordered multinomial probability model that accom-

modates highly general nonlinear relationships between parental income status and

the income class into which children move. Moreover, we incorporate factors such

as race, parental education, and parental age at childbearing to influence the condi-

tional probability structure linking parental and offspring income statuses without

relying on functional form assumptions linking offspring income and parental char-

acteristics.

The flexibility of our model presents challenges in terms of estimation. It is

widely acknowledged in the literature that fully nonparametric estimation of a non-

linear model can be exceedingly difficult, and sometimes unattainable, especially

when dealing with a large number of factors and/or a sizable sample size. Even

in conventional probit or logit models with linear index functions, estimation can

become computationally daunting when handling extensive datasets or numerous

regressors. To overcome this issue, we employ kernel methods from the machine

learning literature coupled with further regularization through principal component
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analysis (PCA). These tools have become increasingly prevalent for addressing high-

dimensional problems. By leveraging these methods, we introduce a new approach

to estimate our fully nonparametric multinomial choice model, which is robust in

environments with large samples and/or a large number of covariates, thereby cir-

cumventing the curse of dimensionality while maintaining computational efficiency.

We apply our multinomial model to the Panel Study of Income Dynamics (PSID)

data to examine how gender, race, parental education, parental age at childbirth,

and parental income status interact to influence offspring income status. Our analy-

sis reveals significant racial disparities, with Black individuals more likely to fall into

the low-income category and less likely to belong to the middle- and high-income

categories, particularly among those raised in middle-income families. Addition-

ally, parental college education substantially reduces the likelihood of a child being

in the low-income category and increases the chances of belonging to the middle-

and high-income categories. This positive effect of parental education is particu-

larly pronounced for individuals with middle-income parents and those born when

their parents are in their late twenties to mid-thirties, maximizing the predictive

probability of a child attaining high-income status. Collectively, race, parental edu-

cation, and parental age at childbirth can influence the probabilities of low-income

status for children by more than 20 percent, given a certain parental income level.

This provides compelling evidence of the ways in which heterogeneity in downward

mobility can occur for middle-income families.

Our approach also relates to the longstanding literature on using Markov chains

to study intergenerational mobility. Prais (1955) is a classic early example of the

application of Markov chains to occupational mobility, while Song (2021) illustrate

their continuing importance in sociology. Although Markov chains are less frequently

used in economics, they remain significant tools. Important examples include Bhat-

tacharya and Mazumder (2011) and Chetty et al. (2017). Though not directly

pursued in this study, by linking the transitional probabilities in the Markov chain

mobility model to our fully nonparametric multinomial choice model, we can provide

additional insights into the mobility process by allowing for transition probabilities

between parents and children to depend on a vector of individual and parental char-

acteristics.

This paper is organized as follows: We begin with a brief motivation for our

work in Section 2. Section 3 introduces our multinomial choice model for income

class probabilities and discusses its estimation and inference. Section 4 describes

3



the Panel Study of Income Dynamics sample we use. Section 5 applies our methods

to explore the effects of various factors on the relationship between parent and

offspring income statuses. Finally, Section 6 concludes the paper. Technical details

are provided in the three Appendices that follow.

2 Beyond Linearity in Intergenerational Mobility Anal-

ysis

The workhorse model to study intergenerational income mobility is

log(yc) = α+ β log(yp) + ε

where yc and yp are specific measures of the child’s income and the parental income,

respectively. The parameter β is the intergenerational elasticity of income and has

become the primary measure of the persistence of income across generations.

As such, this workhorse model has nothing to say about the evolution of intergen-

erational persistence, since β is a constant. Researchers have therefore augmented

this model to include additional factors. A frequently used regression model takes

the form of

log(yc) = α+ β log(yp) + γ′s+ ε

where s is a vector of factors beyond parental income that are believed to shape a

child’s income.

Although the augmented model enables one to study the effects of factors beyond

parental income on intergenerational mobility, it is still very restrictive since it does

not allow interactions between different factors in determining the income level of

the child. As such, it preserves an implicit dichotomy between the measure of

intergenerational mobility, β, and other mechanisms. Social science theory does

not justify this independence. For example, it could be the case that the effect

of parental income on children’s future income is affected by discrimination or by

parental education. This has led to a literature that allows β to differ by categories

such as race. By implication, products of variables are usually taken to capture the

interactions of different determinants of offspring outcomes. However, this is not

an entirely satisfactory solution, since it amounts to a second-order Taylor series

approximation of the interactions of different variables, and there is no theoretical

basis for thinking such an approximation will be particularly accurate. And of
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course, this observation applies to efforts to introduce nonlinearities in the effects

of parental income based on polynomial generalizations of the linear model.

Our objective is to propose a framework that can accommodate rich interactions

and nonlinearities. We propose a fully nonparametric model to link these factors

to the probabilities of a child belonging to different relative income classes. Unlike

the IGE model which focuses on levels of income, we consider probabilities that

link the income classes of parents and children. We choose this dependent variable

for several reasons. First, our model permits a natural integration of interactions

by making income class probabilities functions of various factors. Second, income

categories such as the middle class hold a distinct substantive interest from absolute

income levels.1 Third, many of the publicly available income data contain left

and/or right-censored observations and might contain zero/negative income figures.

Estimating an IGE with censored data might lead to bias estimates, and taking logs

with zero and/or negative values could be problematic, even with some of the usual

transformation techniques such as adding one before taking logs (Chen and Roth,

2023). Our approach, by looking at income classes instead of income levels, remains

robust in the presence of such data issues.

In the next section, we propose a fully nonparametric multinomial model that can

be used to study the link between various factors and an individual’s probabilities

of membership into different income classes.

3 Methodology

3.1 Multinomial Model for Income Class Probabilities

The evolution of income distributions over time is evident. A pertinent inquiry

arises: what factors propel these changes, and how exactly do they impact income

distribution dynamics? To address this, we propose a nonparametric ordered multi-

nomial choice model.

To be specific, let j = 1, . . . ,m denote the m income classes. In our study,

we shall set m = 3, and j = 1, 2 and 3 represent the low-, middle- and high-

income classes, respectively. We use subscript i = 1, 2, . . . , n to index individuals

1Linear regression models of ranks have become popular in economics, cf Chetty et al. (2014).
We note here that the linear specification for ranks is nongeneric in the space of joint probability
densities of parent/child incomes, in the same way that linear probability models are nongeneric in
the space of discrete choice models, i.e., linearity applies to almost no models in the space.
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in our sample, and use πj(x) to denote the probability of belonging to class-j for

the individual with covariates x. We shall call these probabilities the income class

probabilities hereafter. Evidently,
∑m

j=1 πj(xi) = 1 for all i = 1, . . . , n, indicating

that each individual’s probabilities across all income classes sum up to one.

Individuals’ characteristics (xi) are related to their income class probabilities by

the functions πj(·) in the form of an ordered multinomial choice model

πj(x) = P
{
τj−1 < y∗i ≤ τj

∣∣xi = x
}

for j = 1, . . . ,m, with the convention τ0 = −∞ and τm = ∞, where y∗i is a la-

tent variable that represents the unobservable permanent income of individual i,

which depends on the individual covariates xi, and τ1, . . . , τm−1 are constant income

thresholds that determine the categories of the permanent income. For convenience,

from now on, we shall simply call y∗i the permanent income. We set the permanent

income (y∗i ) to be determined by the covariates (xi) through

y∗i = g(xi) + ui, (1)

where g is a nonparametric function to be estimated, and (ui) is the random com-

ponent that represents the heterogeneity in permanent income not captured by the

covariates (xi). We shall estimate the distribution of the random component non-

parametrically.

Our framework offers a high level of flexibility and generality. Unlike parametric

models such as logit or probit, which assume a Gaussian or logit distribution for the

random component (ui), our model does not confine the random component to any

specific distribution family. This grants us greater adaptability in mirroring real

income distributions, for example, allowing the presence of fat tails in the income

distribution.

We depart from the conventional linearity setting by allowing for a general non-

linear form of g, taking values in a sufficiently large function space. The function

space employed in our analysis allows for a precise approximation of any continu-

ous function over a compact subset of its domain. This departure from linearity is

not solely about freedom in functional forms; rather, it empowers us to explore the

heterogeneous impacts of factors on income distribution and thus intergenerational

mobility. Additionally, it facilitates the exploration of intricate interactions among

various factors influencing income distributions and intergenerational mobility, far

6



beyond those allowed in conventional linear discrete choice models. The generalities

of our approach will be further explained in Section 3.2.

To identify the effects of various factors in our discrete choice model, we may

either include a constant term in the function g and set one of the parameters in

τ = (τ1, τ2, . . . , τm−1) at a fixed number (e.g., set τ1 = 0), or we do not include a

constant term in g and allow all the parameters in τ to vary freely. As discussed,

we also allow the distribution of the random component to be fully nonparametric

to avoid any potential misspecification error. We need to introduce an appropriate

identification condition to separately identify the unknown function g in the sys-

tematic component and the distribution of the random component.2 In this paper,

however, they are not separately identified, since our analysis will be focused only

on various choice probabilities. We leave for our future work the structural analy-

sis based on the function g in the systematic component, which is identified by an

appropriate identifying restriction.

3.2 Heterogeneous Effects of Factors

The study of income intergenerational mobility is based on the belief that the income

status of parents is linked to the adult income status of their children. One intriguing

quantitative question is: if one family is wealthier than another by a certain margin,

how does this difference affect the likelihood of their offspring belonging to a specific

income class in their adulthood?

While all multinomial choice models can offer insights into this question, their

efficacy varies. To articulate this more formally, let πj(x) represent the probability

of an offspring’s income falling within class j, where x denotes the logged parental

income—the only factor considered at present for illustration. The partial effect

∂πj(x)/∂x serves to answer our question by quantifying the increased likelihood

of an offspring being in income class j if their parents’ income were increased by

1% from level x. This partial effect, contingent upon the functional form of πj , is

potentially heterogeneous across families with different parental income levels x. If

we employ a linear probability model as πj(x) = xβ, the partial effect implied is

β, which is identical across all families with different parental income levels. If we

employ the multivariate probit or logit model with a linear g function, the partial

2The reader is referred to, e.g., Yan (2023) for a detailed discussion on the required identification
condition for discrete choice models.
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effect is given by
∂πj(x)

∂x
=
[
f(τj−1 − xβ)− f(τj − xβ)

]
β,

where F is the cumulative distribution function (CDF) of the standard normal

distribution or the logit distribution, and f denotes the derivative of F . This partial

effect, although heterogeneous in x, depends heavily on the shape of the derivative

f of the CDF F under consideration. It could be the case that partial effect as

a function of x with certain shapes cannot be generated from the probit or logit

model. In contrast, our approach gives a partial effect

∂πj(x)

∂x
= [f(τj−1 − g(x))− f(τj − g(x)]

∂g(x)

∂x
.

By allowing for flexible forms of f and g, we are able to generate heterogeneous

partial effects with no restrictions on their shapes if it is viewed as a function of the

given covariates x.

Usually, the covariates consist of multiple factors, denoted as xi = (zi, wi)
′, where

zi is the factor whose heterogeneous impact is of primary interest, and wi consists of

all other factors considered under our study. The conditional average partial effect

of zi on income class probabilities πj may be formally defined as

CAPEj(z) = E
[
∂πj(zi, wi)

∂zi

∣∣∣∣zi = z

]
,

evaluated at a particular point z. As we vary the evaluation point z, we get the

conditional average partial effect as a function of z. Once we obtain an estimator

π̂j(x) for πj(x), we may estimate the heterogeneous average partial effect by

ĈAPEj(z) =
1

n

n∑
i=1

ρi
∂π̂j(z, wi)

∂z
Kh(z − zi),

where (ρi) are the survey weights,3 and Kh(·) = (1/h)K(·/h) is defined with a kernel

function K and bandwidth parameter h > 0. The kernel function is introduced here

to take the local average of ∂π̂j(z, wi)/∂z in a neighborhood of any given z. The

standard normal density function is commonly used for the kernel function in this

context.4

3These weights are provided by our data set and used in our empirical study to adjust for sample
selection and non-random attrition, as will be explained later in Section 4.

4However, the uniform kernel, which is given by K(z) = 1{|z| ≤ 1/2} and Kh(z) = (1/h){|z| ≤
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The same idea can be applied to study the heterogeneous treatment effect of cer-

tain treatments. For instance, consider a treatment such as a college degree for the

parents. It is expected that there exists a disparity in the probability of belonging to

a specific income class between children whose parents have or have not obtained a

college degree. Moreover, it is plausible that such discrepancy in probabilities might

exhibit variations among children raised in families with diverse parental income

levels. Exploring these variations can offer insights into how parental college educa-

tion and other family background factors can interact with each other to determine

mobility.

To conduct such an analysis, we first partition our covariates into xi = (zi, di, wi).

Here, zi represents the contingency variable under investigation (in our example,

logged parental income), di is the treatment variable (1 if at least one of the parents

has a college degree, and 0 otherwise), and wi includes all other factors considered

in our study. We then compute the conditional average treatment effect in the

probability gap given a particular parental income level z, formally defined as

CATEj(z) = E
[
πj(zi, 1, wi)− πj(zi, 0, wi)

∣∣zi = z
]
.

With a properly estimated income class probability function π̂j(x), we may estimate

the heterogeneous average treatment effect by

ĈATEj(z) =
1

n

n∑
i=1

ρi[π̂j(z, 1, wi)− π̂j(z, 0, wi)]Kh(z − zi), (2)

where we use a kernel function again for local averaging over (zi) around a given z.

To sum up, our general and flexible framework enables us to design analyt-

ical tools to capture complex interactions between the factors without imposing

functional forms or predefined interaction terms commonly employed in traditional

regression techniques. Moreover, as will be shown later, machine learning techniques

and tools empower us to estimate and conduct statistical inference in a framework

as general and flexible as ours, even when we face a large number of potential factors

and a large sample size.

h/2}, makes it more clear what the kernel function does here. If it is used, we take the local average

of ∂π̂j(z, wi)/∂z to estimate ĈAPEj(z) over the values of (zi) such that z − h/2 ≤ zi ≤ z + h/2
for a small value of h.
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3.3 Maximum Likelihood Estimation

The nonparametric function g in the systematic component, the density function f

of the random component, and the threshold values τ , τ = (τ1, . . . , τm−1)
′, can be

jointly estimated by maximum likelihood estimation for our nonparametric ordered

multinomial choice model. We define the maximum likelihood estimators ĝ, f̂ and

τ̂ , τ̂ = (τ̂1, . . . , τ̂m−1)
′, for g, f and τ by

(
ĝ, f̂ , (τ̂j)

m−1
j=1

)
= argmax

g∈G,f∈F ,
τ∈Rm−1

n∑
i=1

ρiℓ(yi, xi, θ), (3)

where θ contains the parameters
(
g, f, τ

)
, ρi is the survey weight for the i-th obser-

vation introduced earlier, the log-likelihood function ℓ is given by

ℓ(yi, xi, θ) =
m∑
j=1

1{yi = j}
[
F (τj − g(xi))− F (τj−1 − g(xi))

]
(4)

with the convention τ0 = −∞ and τm = ∞, and F is the distribution function of

the density function f .

Following Gallant and Nychka (1987), we choose the density function f in the

class F of density functions given by

f(u) =
1

c

(
1 +

q∑
k=1

αku
k

)2

ϕ(u), (5)

where (αk)
q
k=1 are the coefficients of polynomial terms, ϕ is the standard normal

density, and c is a normalization constant to make f a proper probability density.

A wide variety of densities can be approximated arbitrarily well by a function of

the form in (5). The class F of density functions we consider here is broad and

includes, for instance, all Hermite polynomials of finite order. Hermite polynomial

approximation of the density f is particularly suitable in our model, where we let f

have unbounded support. We impose the mean zero restriction∫ ∞

−∞
uf(u)du = 0 (6)

for the density function f .

Stewart (2005) and Yan (2023) show that the distribution function F in the
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likelihood function ℓ in (4) and the zero mean restriction on the density function f

in (6) can be written explicitly as functions of α = (α1, . . . , αq)
′. In fact, as shown

in Appendix B, the distribution function F is given by

F (u) =

[
2q∑
k=0

ck(α)mk

]−1 2q∑
k=0

ck(α)Mk(u), (7)

and the mean zero restriction on the density function f is given by

2q∑
k=0

ck(α)mk+1 = 0,

where mk and Mk are the k-th moment and the k-th cumulative moment func-

tion of the standard normal distribution, i.e., mk =
∫∞
−∞ ukϕ(u)du and Mk(u) =∫ u

−∞ vkϕ(v)dv, respectively, and

ck(α) =

k∧q∑
ℓ=0∨(k−q)

αkαk−ℓ,

where ∨ and ∧ denote the maximum and minimum, respectively. These closed-

form representations of the distribution function F and the zero mean restriction on

the density function f make our maximum likelihood procedure extremely simple

and straightforward. In particular, our maximum likelihood procedure does not

require any numerical integration, which is generally necessary for the nonparametric

estimation of discrete choice models. The interested reader is referred to Appendix

B for more details.

The function g in the systematic component of our model is assumed to belong

to the class G of functions that are given by any linear combination of a set of basis

functions

K(·, xi) = exp
(
− κ∥ · −xi∥2

)
(8)

for i = 1, . . . , n, where κ > 0 is a scale parameter and ∥z∥2 = z′z denotes the

squared norm, in the so-called the reproducing kernel Hilbert space defined by K.

The function K we use here to generate a functional basis is referred to as a kernel

function.5 The scale parameter κ in the kernel function K is a tuning parameter and

5The kernel function is used here to generate a space of functions defined as a reproducing
kernel Hilbert space, and it is totally different from the kernel function we introduce earlier for

11



has to be set a priori. We use a particular kernel function given in (8), which is most

commonly used and called the radial kernel, though other choices are also possible.

The class G of functions is known to be large enough to approximate any continuous

function g arbitrarily well over any compact subset of its domain uniformly. Using

a linear combination of the basis functions given by (8) to estimate the function

g means that we obtain our estimate for g essentially by a linear combination of

normal densities centered at (xi)
n
i=1 with the same variance σ2 = 1/(2κ).

Let

g(x) =
n∑

j=1

cjK(x, xj) (9)

with a set of coefficients (cj)
n
j=1. It is clear that there exists a set of coefficients

(cj)
n
j=1 such that

g(xi) =
n∑

j=1

cjK(xi, xj)

for all i = 1, . . . , n. Indeed, if we define g◦ =
(
g(x1), . . . , g(xn)

)′
,K◦ =

(
K(xi, xj)

)n
i,j=1

and c = (c1, . . . , cn)
′, then we have

g◦ = K◦c, (10)

from which we may easily obtain such c as c = K−1
◦ g◦, since K◦ is invertible.

However, estimating the function g as in (9) with such c yields overfitting, and

we need to reduce the dimension of c through an appropriate regularization method.

Note that c includes n unknown parameters, i.e., as many as the sample size. To

avoid the problem, we simply set

c = V β

with p-dimensional parameter vector β, where V is an n× p matrix whose columns

are leading principal components of K◦, which are the p eigenvectors of K◦ corre-

sponding to its p largest eigenvalues (λi)
p
i=1. This amounts to approximating (10)

as

g◦ ≈ V Λβ, (11)

where Λ = diag (λ1, . . . , λp).
6 Our approach here is often used in machine learning.

local averaging.
6Since K◦ is a symmetric matrix, we may represent it as K◦ = V◦Λ◦V◦, where Λ◦ is the diagonal

matrix of the eigenvalues (λi)
n
i=1 of K◦ and V◦ is the n × n-orthogonal matrix of the eigenvectors
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See Appendix A for a more detailed discussion.

Under our specifications in (5) and (9), our problem of maximizing likelihood

function in (3) reduces to

θ̂ = argmax
β∈Rp,α∈Rq ,
τ∈Rm−1

n∑
i=1

ρiℓ(yi, xi, θ),

where θ contains p + q + (m − 1) parameters in
(
β, α, τ). This is a completely

standard problem. Our approach is thus able to handle with no extra difficulty the

situation when the dimension of the covariate is large and/or the sample size is large.

Regardless of how large the dimension of the covariate (xi) is, the dimensionality

of (xi) does not pose any problem to our approach. Note that we only need the

covariate (xi) in the evaluation of the kernel K(·, ·) in our approach, and the value

of the kernel function is dependent only on the norm ∥xi − xj∥ of the data pairs

(xi, xj).

To select the tuning parameters including the dimension p of the parameter β

the dimension q of the parameter α, which are needed to regularize our estimator

for g and estimate the error density function f , respectively, we use the cross-

validation, which is a standard method for selecting tuning parameters in non-

parametric statistics. In the i-th iteration of the cross-validation procedure, we

construct a sub-sample by leaving out the i-th observation and estimate the model

with this sub-sample. We then make predictions for the i-th observation based

on the estimated model and obtain the predicted probabilities
(
π̂ij
)m
j=1

for the m

classes we consider. We then calculate the sum of squared errors of the predicted

probabilities as
m∑
j=1

(π̂ij − πij)
2 ,

where
(
πij
)m
j=1

is a degenerate distribution that reflects the true class probabilities

of the i-th observation. We calculate the sum of the squared loss for each i and

select the parameter combinations that yield the smallest average loss. We search

within the range of p = 1, . . . , 10 and q = 1, . . . , 5 and end up with p = 7 and

q = 2. We set the scale parameter κ = 1/2 for the kernel function. This seems to

be a reasonable choice, given that we follow the usual practice of standardizing the

of K◦ associated with the eigenvalues (λi)
n
i=1. The matrices V and introduced here are n× p and

p× p leading submatrices of V◦ and Λ◦, respectively.
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covariates so that they have mean zero and variance one. Setting κ = 1/2 means

that we use the standard normal densities as basis functions to estimate g. Finally,

we use a bootstrap procedure to obtain confidence intervals/bands of our estimates.

Details of our bootstrap procedure are presented in Appendix C. The asymptotic

distribution of our nonparametric estimator is not available.

4 Data

Our sample is constructed from the Panel Study of Income Dynamics (PSID). PSID

is a comprehensive longitudinal household survey in the United States, tracking

individuals and their descendants over several decades and containing variables on

the economic, health, educational, and social behavior of individuals and families.

Given the survey’s time span and the fact that it tracks families across generations,

it is one of the most widely used data sets in the study of intergenerational mobility.

The PSID was initiated in 1968 and contains annual data from year 1968 to 1997.

Data is available biannually after 1997. We focus on a sample from the years 1968 to

1997 to avoid any inconsistency due to the change in the survey design. Our sample

includes individuals who reached an age between 30 to 35 years old (inclusive) during

any of our sample periods (1968-1997). We also track their parents and ultimately

we end up looking at child-parent pairs in conducting our analysis. To reflect the

fact that we are looking at such pairs, we shall refer to the individuals in our study

as the child from now on.

Due to sample size constraints, we use the logged average household income

of the head and spouse within the age range of 30 to 35 (inclusive) for the child

as a measure of the child’s overall economic status during adulthood. We look at

household income instead of personal income due to the economic partnership and

risk-sharing function of marriage, by which we think that an individual’s economic

status is better reflected by the household income instead of his or her personal

income. We adopt the Pew Research Center’s methodology to categorize children

into low, middle, and high-income classes (Pew Research Center, 2020). Specifically,

we calculate the median income of the children and set the threshold for low income

at two-thirds of this median income and for high income at twice the median income.

The factors we propose that may affect the economic status of an individual are

parental income, parental age at childbirth, parental college education, child gender,

child race, child college education, and child health condition at birth. We measure
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Table 1: Summary Statistics of Variables

variable type mean std min max

log child income continuous 9.833 0.904 0.000 11.724
low income class dummy 0.260 0.438 0.000 1.000
middle income class dummy 0.664 0.472 0.000 1.000
high income class dummy 0.076 0.265 0.000 1.000

log parental income continuous 9.813 1.275 0.000 13.016
male dummy 0.508 0.500 0.000 1.000
child college degree dummy 0.393 0.488 0.000 1.000
parental college degree dummy 0.312 0.463 0.000 1.000
black dummy 0.060 0.237 0.000 1.000
parental age at birth continuous 28.030 5.354 12.000 46.000
underweight at birth dummy 0.049 0.216 0.000 1.000

parental income by the parents’ logged average income during the period when the

child is between 15 and 20 years old (inclusive). We choose this time span for two

reasons. First, it reflects the parents’ economic situation during the child’s period

of dependency, which significantly influences the child’s economic status rather than

the parents’ economic condition after the child becomes economically independent.

Given that many children leave home for college or work after adolescence, we focus

on income up until the child reaches the age of 20. Second, due to sample size

considerations, we are not able to look at the parents’ income throughout the entire

childhood of the child. We therefore strike a balance and consider this specific time

span.

We also consider parents’ average age when the child was born. Reasons we

consider this include parental maturity and location of parents in the life cycle of

income and overall family resources.

It should be noted that income is top-coded in the PSID. Also, there are in-

stances of zero and negative incomes in the data, which could potentially indicate

measurement errors. Our method is robust in handling this censored data issue for

the dependent variable as we categorize children into income classes rather than

analyzing specific income levels. For parental income used as one of the covariates,

we simply set the zero or negative incomes to one in our empirical analysis, as often

done in the studies of intergenerational mobility.

Our benchmark sample consists of a total of 1297 child-parent pairs. Survey

weights provided by PSID are also used to adjust for sample selection (oversampling

of low-income families) and non-random attrition in the PSID survey. Income is

15



Figure 1: Probability Differentials Between Males and Females, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
male and female children, as functions of parental income. The upper-left panel displays the
probability differentials of being in the low-, middle-, and high-income classes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.

deflated by the Consumer Price Index for All Urban Consumers (CPI-U-RS, 1977

= 100), following the usual practice. Table 1 provides the summary statistics of the

variables we use in our study.

5 Empirical Results

5.1 Effects of Single Factors

We first employ our framework to analyze heterogeneous effects on children by

considering gender, race, and parental education as separate factors, conditioning

on different parental income levels. We do this by estimating a single nonparametric
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Figure 2: Probability Differentials Between Blacks and Non-Blacks, as Functions of
Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
Black and non-Black children, as functions of parental income. The upper-left panel displays the
probability differentials of being in the low-, middle-, and high-income classes within one single plot.
The upper-right, lower-left, and lower-right panels depict the three differential curves individually,
each accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light
gray areas, respectively.

multinomial model and then integrating out each variable except income and the

factor under consideration using (2).

Figure 1 plots the probability differentials between male and female children, as

functions of parental income. In each figure, the vertical axis measures the probabil-

ity differential between male and female children, and the horizontal axis measures

parental income. Each parental income/gender pair produces a probability differ-

ential for membership, by the child, in each of the income classes. The upper-left

panel plots the three probability differentials of the child’s membership in the low-,

middle-, and high-income classes for comparisons based on their parents’ incomes.

The next three panels plot the three differentials separately with confidence bands.

The light and dark gray areas correspond to the 95% and 90% confidence bands,
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respectively.

The plots show that males, compared to females, exhibit slightly lower proba-

bilities of entering the low-income class and slightly higher probabilities of entering

the high-income class. However, these differentials are generally not statistically

significant at the 0.1 significance level, except for children from the poorest families.

For those, we observe that males are less (more) likely than females to be in the

low (middle) category when they were born into a very poor family as shown in the

upper-right and lower-left panels in Figure 1. The effects are small, but statistically

significant. For the probability differentials of being in the high-income category,

the gender effect is positive for all parental income levels but the magnitude is big-

ger for those with richer parents. However, the effect is not statistically significant

at the 0.1 level. Overall, at best we find weak evidence that parental income has

differential effects on the income class of offspring of different genders.

Figure 2 illustrates the probability differentials between Black and non-Black

children across different parental income levels. The plots show that Black in-

dividuals have a higher likelihood of falling into the low-income class and face a

comparative disadvantage in accessing the middle- and high-income classes com-

pared to their non-Black counterparts. All these racial differentials are statistically

significant. The disparities are particularly pronounced in the probabilities of en-

tering the low- and middle-income classes. There are obvious heterogeneities in the

disparities among children from families of different income levels: children from

middle-income families appear to be more affected by race than those from other

economic backgrounds. Moreover, the plots suggest that race may exert a compara-

tively lesser influence on attaining the high-income class than the other two income

classes. These results on lower rates of upward mobility are qualitatively similar

to Bhattacharya and Mazumder (2011) and the results on relatively higher rates of

downward mobility are qualitatively similar to Chetty et al. (2020). Our ability to

generate similar findings when one allows for distinct heterogeneity variables across

families is an important corroboration of the salience of race as distinct sources of

disparities in mobility.

Figure 3 illustrates the probability differentials based on parents’ possession of

a college degree, relative to those without, as a function of parental income. These

results reveal a significant contrast in the probability of a child ending up in the lower

income category when the parents have not attended college versus when they have.

This effect is especially large for families whose incomes lie in the middle-to-high

18



Figure 3: Probability Differentials Between Children with Parents as College and
Non-college Graduates, as Functions of Parental Income

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of parental
income. The upper-left panel displays the probability differentials of being in the low-, middle-,
and high-income classes within one single plot. The upper-right, lower-left, and lower-right panels
depict the three differential curves individually, each accompanied by its 90% and 95% pointwise
confidence bands delineated by dark and light gray areas, respectively.

range of income support, with college degrees making low income among children 5

percent less likely than otherwise. This result suggests a complementarity between

parental income and parental education.

Figure 4 illustrates the probability differentials between children whose parents

have or have not obtained a college degree when the average age of parents at

childbirth is allowed to vary. Complementing Figure 3, Figure 4 reveals that the

disparities in income class probabilities due to parental college education are most

pronounced when parents give birth during their late twenties to mid thirties.
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Figure 4: Probability Differentials Between Children with Parents as College and
Non-College Graduates, as Functions of Parental Age at Childbirth

Notes: This figure presents the probability differentials of being in various income classes between
children whose parents have a college degree and those whose parents do not, as functions of
parental age at childbirth. The upper-left panel displays the probability differentials of being in
the low-, middle-, and high-income classes within one single plot. The upper-right, lower-left, and
lower-right panels depict the three differential curves individually, each accompanied by its 90%
and 95% pointwise confidence bands delineated by dark and light gray areas, respectively.

5.2 Combining Factors

Combining our single factor analyses in the previous section reveals the existence

of family background configurations that make it challenging for a child to avoid

the low-income category. Our findings from these analyses indicate the presence

of a privileged group of children, originating from non-Black families with college-

educated parents, and born when their parents are around 30. This group of children

contrasts sharply with children who are Black, born to parents at the age of 18, and

without college degrees.

Figure 5 presents the probability differentials as a function of parental incomes.

Particularly striking are the results in the upper-right panel, where the probability
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Figure 5: Probability Differentials (Multiple Treatments), as Functions of Parental
Income

Notes: This figure presents the probability differentials of being in various income classes between
children from non-Black families whose parents have a college degree and were aged 30 at child-
birth, and those from Black families whose parents do not have a college degree and were aged
18 at childbirth, as functions of parental income. The upper-left panel displays the probability
differentials of being in the low-, middle-, and high-income classes within one single plot. The
upper-right, lower-left, and lower-right panels depict the three differential curves individually, each
accompanied by its 90% and 95% pointwise confidence bands delineated by dark and light gray
areas, respectively.

of a child being in the low-income category consistently remains 10 percent higher

for our disadvantaged category across all family income levels. For middle-to-high-

income categories, this disparity exceeds 20 percent. These findings provide further

insight into how the probability of downward mobility varies across different demo-

graphic groups.
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6 Conclusions

This paper proposes a fully nonparametric multinomial choice model to study in-

tergenerational income mobility. Our approach effectively captures nonlinear and

interactive effects of various factors on personal income status and societal mobility

levels. It demonstrates strong computational efficiency and robustness, particularly

suitable for analyzing large datasets with high-dimensional covariates. We affirm

race, parental education, and parental childbearing age as crucial determinants in-

fluencing intergenerational mobility. Each of these factors significantly impacts the

predictive power of parental income for the incomes of children.

Our findings, which highlight the distinct relationships shaped by race, parental

education, and parental childbearing age, underscore the importance of systemat-

ically investigating bottlenecks in intergenerational mobility dynamics. By bottle-

necks, we refer to a set of family background variables that perpetuate low incomes

across generations, where higher incomes alone may not suffice to break such per-

sistence. These phenomena represent a natural stochastic generalization of poverty

trap models. Currently, we are actively pursuing further research on this topic.
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A Estimation of Systematic Component

Let our covariates (xi) be r-dimensional and take values in a subset D of Rr. The

function g on D in the systematic component of our ordered choice model is esti-

mated as a function in the reproducing kernel Hilbert space (RKHS) HK defined by

a kernel K : D ×D → R

K(x, y) = exp
(
−κ∥x− y∥2

)
,

where κ > 0 is the scale parameter, x, y ∈ D and ∥x− y∥2 = (x− y)′(x− y) denotes

the squared distance between x and y in D. This kernel function is symmetric, i.e.,

K(x, y) = K(y, x) for all x, y ∈ D, and positive definite, i.e.,

n∑
i=1

n∑
j=1

cicjK(xi, xj) > 0

for any c1, . . . , cn not all identically zero and for all (xi) in D. These two properties

are essential in the sense that we may use any continuous function to define a

RKHS if it satisfies these properties. Here we choose the most commonly used

kernel, which is often called the radial kernel, although many other choices of kernel

are also possible.

The RKHS HK defined by the kernel K is a vector space involving all functions

given as linear combinations of

K(·, x1), . . . ,K(·, xn) (12)

for all choices of n and x1, . . . , xn ∈ D, which is endowed with the inner product

⟨·, ·⟩K defined by

⟨K(·, x),K(·, y)⟩K = K(x, y) (13)

for any x, y ∈ D. The value K(x, y) of kernel function K may thus be obtained by

taking the inner product of two functions K(·, x) and K(·, y) for each (x, y) ∈ D×D,

and therefore, the kernel function K may be reproduced from the inner product of

functions in HK . For this reason, HK is called a RKHS. The RKHS HK defined

by the radial kernel K introduced above includes a wide range of functions. It is

indeed known that any continuous function can be approximated arbitrarily well by

a function in this RKHS uniformly on any compact subset of D.
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To estimate the function g defining the systematic component of our ordered

choice model, we assume g ∈ HK and write it as

g(x) =

n∑
j=1

cjK(x, xj) (14)

for x ∈ D, where (cj)
n
j=1 are a set of unknown parameters. This is the most flexible

specification of g. Since g(x) is observed only at n-number of x’s given by (xi)
n
i=1,

we may choose n-unknown parameters (cj)
n
j=1 appropriately to have a perfect fit for(

g(xi)
)
. Note that g(xi) =

∑n
j=1 cjK(xi, xj) for i = 1, . . . , n, which we may write

as

g◦ = K◦c

in matrix form, where g◦ =
(
g(x1), . . . , g(xn)

)′
, c = (c1, . . . , cn)

′ and K◦ is an n× n

invertible matrix defined as

K◦ =


K(x1, x1) · · · K(x1, xn)

...
. . .

...

K(xn, x1) · · · K(xn, xn)

 .

Here the entries ofK◦ are given by the inner products of basis functions
(
K(·, xj)

)n
j=1

for an n-dimensional subspace of HK , and such a matrix is generally referred to as

a Gram matrix.

Let

g∗(x) =
(
K(x, x1), . . . ,K(x, xn)

)
c∗ (15)

with c∗ = K−1
◦ g◦, so that g∗(xi) = g(xi) for all i = 1, . . . , n. Then it follows from

(13) that 〈
K(·, xi), g(·)− g∗(·)

〉
K

= g(xi)− g∗(xi) = 0

for all i = 1, . . . , n, which implies that g − g∗ is orthogonal to the n-dimensional

subspace VK ofHK spanned by the basis
(
K(·, xi)

)n
i=1

introduced in (12). Therefore,

g∗ is the orthogonal projection of g on VK in HK .

However, the specification g∗ of g in (15) is too flexible, which needs to be

regularized. There are several ways of regularizing, one of which is to introduce a
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penalty term given by

λ∥g∥2K = λ

〈
n∑

i=1

ciK(·, xi),
n∑

j=1

cjK(·, xj)

〉
K

= λc′K◦c

obtained from (13) and (14) with an appropriately chosen penalty parameter λ > 0.

This is usually done in the regression model. For our discrete choice model, we use

a simpler, but known to be equally effective, method based on rank reduction of

the Gram matrix K◦ defined above. The symmetric matrix K◦ admits the spectral

representation given by

K◦ = V◦Λ◦V
′
◦ ,

where Λ◦ is a diagonal matrix of the eigenvalues λ1 ≥ · · · ≥ λn > 0 of K◦ and

V◦ is an orthogonal matrix with columns given by the corresponding eigenvectors

v1, . . . , vn of K. The matrix K◦ of rank n can be best approximated by the matrix

K• = V ΛV ′

of rank p, p < n, where V is a semi-orthogonal matrix given by the n × p leading

submatrix of V◦ and Λ is a diagonal matrix given by the p× p leading submatrix of

Λ◦. Accordingly, we restrict the unknown parameter c introduced earlier to be in a

p-dimensional subspace of Rn spanned by v1, . . . , vp and write c = V β for a newly

defined unknown parameter β in Rp. Then we have

g◦ = K◦c ≈ K•c = V Λβ

with an p-dimensional unknown parameter β. We may easily obtain the maximum

likelihood estimator β̂ of β along with the maximum likelihood estimator α̂ of the

other parameter α defined in the next section. Finally, we have

g(x) =
(
K(x, x1), . . . ,K(x, xn)

)
c =

(
K(x, x1), . . . ,K(x, xn)

)
V β,

which may be estimated by

ĝ(x) =
(
K(x, x1), . . . ,K(x, xn)

)
V β̂

for any x ∈ D. In our application, p is chosen using the standard leave-one-out cross
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validation. Typically, p is chosen to be substantially smaller than n.

B Estimation of Random Component Distribution

We follow Gallant and Nychka (1987) and make use of Hermite polynomials to

approximate the error density function f of the random component ui in (1). The

density of (ui) is assumed to be given as a function of the form

f(u) =
1

ι(α)

(
q∑

k=0

αku
k

)2

ϕ(u), (16)

where we set α0 = 1 for normalization, α = (α1, . . . , αq)
′ is the vector of polynomial

coefficients, ϕ is the standard normal density, and

ι(α) =

∫ ∞

−∞

(
q∑

k=0

αku
k

)2

ϕ(u)du

is a normalization constant to make f a proper probability density. We will require

that ∫ ∞

−∞
uf(u)du = 0 (17)

to ensure that the mean of (ui) is zero.

As shown in Stewart (2005) and Yan (2023), we may readily estimate the pa-

rameter α, and eventually f in (16), by the maximum likelihood estimation. Let

mk(u) = ukϕ(u) and mk =

∫ ∞

−∞
mk(u)du,

where mk is the k-th moment of the standard normal distribution which is given

explicitly as

m0 = 1, m1 = 0 and mk = (k − 1)mk−2 for k ≥ 2.

Also, define the cumulative k-th moment function of the standard normal distribu-

tion as

Mk(u) =

∫ u

−∞
mk(v)dv,
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which is given explicitly as

M0(u) = Φ(u), M1(u) = −ϕ(u), M2(u) = −uϕ(u) + Φ(u)

Mk(u) = u
[
Mk−1(u)− (k − 2)Mk−3(u)

]
+ (k − 1)Mk−2(u) for k ≥ 3

recursively, where Φ is the standard normal distribution function. Finally, we let

ck(α) =

k∧q∑
ℓ=0∨(k−q)

αkαk−ℓ,

where ∨ and ∧ denote the maximum and minimum, respectively.

Now we may rewrite f in (16) as

f(u) =

[
2q∑
k=0

ck(α)mk

]−1 2q∑
k=0

ck(α)mk(u),

from which it follows that

F (u) =

[
2q∑
k=0

ck(α)mk

]−1 2q∑
k=0

ck(α)Mk(u),

and the zero mean restriction in (17) as

2q∑
k=0

ck(α)mk+1 = 0.

The parameter α can be estimated by the maximum likelihood method, along with

the parameter β introduced in the previous section.

C Bootstrap Details

We use bootstrap to obtain confidence bands for the heterogeneous treatment effects

presented in Section 5. In the following, we describe some details of our bootstrap

procedure.

Let θ be a parameter of interest and θ̂ its estimates from the data. To obtain

its bootstrap confidence interval, in the bootstrap iteration b, we first obtain a

resample from the original dataset, and estimate θ with the resampled data, using
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the same procedures as we estimate with the original data. Denote the estimate

with the resampled data by θ̂∗b . Repeat this procedure B times and we obtain a

vector θ̂∗ = (θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
B) of bootstrap estimates for θ.

For r ∈ (0, 1/2), if θ is one-dimensional, we obtain the r/2 and 1− r/2 quantiles

of θ̂∗, denoted by θ̂∗l and θ̂∗u respectively. Also, we calculate the mean of θ̂∗, denoted

by θ̄∗. We then construct [
θ̂ + θ̂∗l − θ̄∗, θ̂ + θ̂∗u − θ̄∗

]
as our bootstrapped 100(1− r)% confidence interval for θ.

If θ is a function as in our case of heterogeneous treatment effect, we obtain from

θ̂∗(z) = (θ̂∗1(z), θ̂
∗
2(z), . . . , θ̂

∗
B(z)) the pointwise quantiles θ̂∗l (z) and θ̂∗u(z) for each z,

and construct pointwise confidence interval as[
θ̂(z) + θ̂∗l (z)− θ̄∗(z), θ̂(z) + θ̂∗u(z)− θ̄∗(z)

]
.
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