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ABSTRACT 

Automated Machine Learning (AutoML) has emerged as a promising solution to 

tackle the challenges of algorithm selection, hyperparameter optimisation, feature 

engineering, scalability, and interpretability in ML tasks. This master thesis aims to 

profoundly investigate the state-of-the-art in AutoML and suggest revolutionary 

approaches to enhance its capabilities. 

 

The research begins with a thorough review and evaluation of existing AutoML 

frameworks and techniques. Strengths, limitations, and applicability are scrutinised, 

providing valuable insights into their performance and usability across different 

problem domains. The evaluation includes comparisons of model performance, 

execution time, and interpretability, enhancing the understanding of the trade-offs 

involved. 

 

Based on the findings, a novel approach, AutoFlex, is proposed to integrate 

established algorithms with automated pre-processing techniques. This approach 

leverages algorithms such as Random Forest Classifier, Gradient Boosting 

Regressor, and Decision Tree Classifier to ensure model interpretability. 

Additionally, pre-processing techniques like StandardScaler, RobustScaler, and 

OneHotEncoder are developed to enhance the quality of input data. 

 

Extensive experiments are conducted on diverse datasets to evaluate the 

performance and interpretability of the proposed approach. Visualisations and 

analysis provide insights into the relationship between model performance, 

execution time, and interpretability, helping to interpret experimental findings. 

 

The proposed approach, AutoFlex, combines interpretable algorithms with 

automated pre-processing techniques, which is crucial to developing more effective 

and usable AutoML systems. As AutoML continues to evolve, further research and 

advancements are necessary to address its limitations and maximise its potential for 

tackling complex ML tasks. We must continuously explore and innovate AutoML 

to ensure it remains a reliable and safe solution for various applications.   
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LIST OF ABBREVIATIONS & DEFINITIONS 

 

ANOVA: Analysis of Variance: A statistical technique for comparing means 

between groups. 

 

AUC-ROC: Area Under the Receiver Operating Characteristic Curve: A metric 

used to evaluate the performance of classification models 

 

AutoFlex: Automated Flexible Machine Learning: An AutoML approach proposed 

in this research. 

 

AutoML: Automated Machine Learning: The automation of machine learning 

tasks. 

 

CV: Cross-validation: A technique for assessing model performance by splitting 

data into train and validation sets. 

 

GNB: Gaussian Naive Bayes: A classification algorithm based on Bayes' theorem 

and assumed Gaussian distribution of features. 

 

H2O: H2O AutoML: An AutoML platform with a comprehensive set of machine 

learning algorithms. 

 

H2O AutoML: H2O AutoML: An AutoML platform for end-to-end automation of 

the ML process. 

 

ID: Identifier: A unique label or identifier for a specific object or data point. 

 

K-Fold: K-Fold Cross-Validation: A cross-validation technique that splits data into 

K subsets for model evaluation. 

 

MSE: Mean Squared Error: A metric used to measure the average squared 

difference between predicted and actual values. 
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MAE: Mean Absolute Error: A metric used to measure the average absolute 

difference between predicted and actual values. 

 

ML: Machine Learning: The field of study and practice that focuses on developing 

algorithms and models to learn from data. 

 

NAS: Neural Architecture Search: An automated process for discovering optimal 

neural network architectures. 

 

PCA: Principal Component Analysis: A dimensionality reduction technique that 

transforms high-dimensional data into a lower-dimensional representation. 

 

pd: Pandas: A Python library for data manipulation and analysis. 

 

R2 : R-squared Score: A metric representing the proportion of the variance in the 

dependent variable that is predictable from the independent variables. 

 

RMSE: Root Mean Squared Error: A metric used to measure the square root of the 

average squared difference between predicted and actual values. 

 

sklearn: Scikit-learn: A popular Python library for ML and data mining. 

 

TPOT: Tree-based Pipeline Optimisation Tool: An AutoML framework that uses 

genetic algorithms to optimise ML pipelines. 
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

The application of ML as a powerful technique for deriving significant conclusions 

and forecasts from complex datasets has seen widespread recognition (Janiesch et 

al., 2021). Its applicability has expanded across various fields, ranging from 

healthcare and finance to marketing, among others (Sarker, 2021). Nevertheless, 

implementing ML methodologies in tangible, real-world situations can pose 

considerable challenges, often proving to be an intensive and prolonged process. 

Data scientists frequently encounter difficulties in diverse aspects, such as feature 

engineering, the choice of algorithms, the adjustment of hyperparameters, and the 

evaluation of models (Hutter et al., 2019; Olson & Moore, 2019). The execution of 

these manual procedures demands a high level of expertise, and they tend to be 

resource-intensive, commanding substantial computational resources and time. 

 

The impetus for the conception of AutoML techniques is derived from the need to 

systematise and automate the entirety of the ML process. Automated Machine 

Learning, abbreviated as AutoML, aims to provide individuals, even those with 

limited knowledge of ML, the capability to effectively utilise ML algorithms and 

tap into the benefits of data-driven decision-making (Hutter et al., 2019). AutoML 

frameworks simplify the entire procedure by automating numerous stages of the 

ML pipeline, thereby lowering user entry barriers (Hutter et al., 2019). 

 

A fundamental benefit of AutoML lies in its potential to democratise the realm of 

ML. In the traditional sense, ML has been an area primarily driven by domain 

expertise, with individuals who possess extensive knowledge about the intricacies 

of algorithms and methodologies thriving (Hutter et al., 2019). However, such 

expertise is not always readily available to all, and the need for ML solutions is 

escalating across many industries and sectors. By automating the multifaceted tasks 

that are involved in the creation and optimisation of models, AutoML frameworks 

manage to extend the reach of ML, making it more accessible to a wide array of 

users that include domain experts, business analysts, and even professionals who 

have minimal coding experience (Feurer et al., 2015). 
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In addition, AutoML techniques tackle the scalability issues brought about by the 

exponential surge in data. With the onset of the significant data era, conventional 

manual methodologies for feature engineering and model selection face difficulties 

in effectively managing large datasets and complex feature dimensions (Feurer et 

al., 2015). AutoML frameworks utilise sophisticated algorithms, optimisation 

procedures, and distributed computing to address these issues proficiently. These 

frameworks offer automated feature extraction, selection, and engineering, as well 

as provide algorithms and architectures capable of efficiently learning from 

voluminous datasets (Hutter et al., 2019). 

 

Another vital attribute of AutoML is its role in enhancing the reproducibility and 

transparency of ML experiments. Automating the entire pipeline facilitated by 

AutoML frameworks aids in meticulously recording and tracking every step, from 

data pre-processing to the configuration and evaluation of the model (Géron, 2019). 

Such transparency fosters the reproducibility of experiments, empowering 

researchers to verify and compare varied approaches. Furthermore, it encourages 

the dissemination of knowledge and collaboration within the ML community, as 

researchers can effortlessly share their pipelines and methodologies with their peers 

(Ribeiro et al., 2016). 

 

Numerous studies and research efforts have been dedicated to developing AutoML 

frameworks and techniques. These studies have explored various approaches, 

including genetic algorithms, Bayesian optimisation, reinforcement learning, and 

neural architecture search, to automate distinct aspects of the ML pipeline 

(Eggensperger, 2013; Hutter et al., 2011; Real et al., 2019; Zoph & Le, 2017). 

 

Researchers have proposed frameworks such as Auto-sklearn (Feurer et al., 2015), 

H2O AutoML (LeDell, 2020), TPOT (Olson & Moore, 2019), and others, each with 

its unique algorithmic strategies and capabilities. 

 

While AutoML offers significant advantages, it also faces certain limitations and 

challenges. Selecting appropriate pre-processing techniques, algorithmic choices, 

and hyperparameter settings still requires careful consideration and domain 

knowledge (Krafft et al., 2020). AutoML frameworks may produce suboptimal 

results if not correctly configured or if the data is not adequately pre-processed. 



   
 

 3 

Additionally, the automation of the ML pipeline raises ethical concerns, as decisions 

made by the automated system may have significant consequences in critical 

applications such as healthcare or finance (Zöller & Huber, 2021). 

 

In conclusion, AutoML techniques have gained considerable attention in the field 

of ML due to their potential to automate and simplify the ML workflow (Hutter et 

al., 2019). By automating tasks such as feature engineering, algorithm selection, 

and hyperparameter tuning, AutoML frameworks aim to democratise ML and make 

it more accessible to a broader range of users (Feurer et al., 2015). These 

frameworks leverage advanced algorithms, optimisation techniques, and distributed 

computing to handle large datasets and complex feature spaces (Thornton et al., 

2013). However, challenges related to interpretability, domain knowledge, and 

ethical considerations must be carefully addressed (Holzinger et al., 2017). 

Nonetheless, the ongoing research and development in AutoML hold promise for 

transforming how ML is applied and utilised in various industries and domains 

(Domingos, 2012). 

 

1.2 RESEARCH PROBLEM AND OBJECTIVES 

FEATURE ENGINEERING AND SELECTION 

Feature engineering plays a vital role in improving model performance. A 

significant research objective is automating the feature engineering process, 

including feature extraction, transformation, and selection (Johnson, 2019). The 

objective is to develop techniques to automatically identify and generate relevant 

features from raw data and determine the most informative subset of features for 

improved model performance. 

 

SCALABILITY AND EFFICIENCY 

As datasets continue to grow and complexity, there is a need for AutoML 

frameworks that can handle big data efficiently (Chen & Guestrin, 2016). The 

objective is to develop scalable and distributed AutoML approaches that process 

and analyse massive datasets time-efficiently. 
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INTERPRETABILITY AND EXPLAINABILITY 

While AutoML aims to automate the ML process, it is essential to ensure that the 

generated models are interpretable and explainable (Ribeiro et al., 2016). The 

objective is to develop techniques that can provide insights into the decision-

making process of automated models, allowing users to understand and trust the 

results. 

 

1.3 RESEARCH QUESTIONS 

To achieve the research objectives outlined in the previous section, the following 

research questions will guide the investigation and exploration of AutoML: 

 

RESEARCH QUESTION 1 

What are the strengths, limitations, and interpretability of existing AutoML 

frameworks and techniques in addressing the challenges of algorithm selection, 

hyperparameter optimisation, feature engineering, scalability, and 

interpretability? 

 

This research question aims to assess the current state-of-the-art in AutoML by 

analysing and evaluating the capabilities and shortcomings of existing frameworks 

and techniques. It will involve a comprehensive review and comparison of different 

AutoML approaches, considering their performance, scalability and interpretability. 

 

RESEARCH QUESTION 2 

How can novel algorithms and approaches be developed to improve algorithm 

selection, hyperparameter optimisation, pre-processing steps, feature engineering, 

scalability, and interpretability in AutoML? 

 

This research question focuses on proposing innovative solutions and algorithms to 

enhance the core components of AutoML. It seeks to address the identified 

challenges and limitations by exploring new methods for algorithm selection, 

efficient hyperparameter optimisation, advanced feature engineering techniques, 

scalable AutoML frameworks, and interpretable models. The objective is to 

contribute novel techniques that can overcome existing limitations and improve the 

overall performance and usability of AutoML systems. 
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By addressing these research questions, the study aims to advance the 

understanding of AutoML, uncover novel approaches, and provide insights into the 

development of AutoML systems. 

 

1.4 SIGNIFICANCE AND POTENTIAL IMPACT OF THE RESEARCH 

The research on improving AutoML algorithms and approaches has significant 

significance and potential impact in several ML and data science areas. The 

following points highlight the importance of this research: 

 

ADVANCING AUTOMATION AND EFFICIENCY 

By developing novel algorithms and approaches for AutoML, the research aims to 

automate and streamline the ML process further. This has the potential to 

significantly reduce the time and effort required for model development, making 

ML more accessible to a broader range of users. Increased automation and 

efficiency in AutoML can lead to faster deployment of accurate and reliable models 

(Kotthoff et al., 2017), benefiting various industries and applications. 

 

ENHANCED MODEL PERFORMANCE 

The research focuses on improving algorithm selection, hyperparameter 

optimisation, pre-processing steps, feature engineering, scalability, and 

interpretability. By addressing these areas, the research aims to enhance the 

performance of AutoML models. More accurate and robust models can lead to 

better decision-making, improved predictions, and enhanced insights from the data 

(Alsharef et al., 2022; Bergstra et al., 2022).  

 

DEMOCRATISING MACHINE LEARNING 

AutoML has the potential to democratise ML by making it accessible to individuals 

and organisations without extensive knowledge of data science. By developing 

advanced AutoML algorithms and approaches, the research aims to empower users 

with limited expertise to leverage the power of ML for their specific tasks. This can 

transform small businesses, non-profit organisations, and individuals who can 

benefit from data-driven insights without needing specialised skills (Gil et al., 

2019). 
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ADDRESSING COMPLEX DATA CHALLENGES 

The exploration of AutoML algorithms and methodologies is primarily aimed at 

addressing intricate data difficulties, encompassing high-dimensional data, 

imbalanced datasets, and noisy data. By pioneering novel solutions for selecting 

algorithms, hyperparameter optimisation, and data pre-processing methods, this 

research seeks to surmount these challenges, thereby enhancing the robustness and 

dependability of models (Filippou et al., 2023). 

 

The ongoing research aimed at refining AutoML algorithms and strategies bear 

considerable relevance and potential for impact. They carry the promise to propel 

automation, augment model performance, democratise ML, resolve intricate data 

issues, and contribute meaningfully to the expansive domain of AutoML. 

 

1.5 SCOPE AND LIMITATIONS 

This research intends to delve into and assess a variety of AutoML frameworks and 

methods, with the goal of enhancing the productivity and efficacy of the ML model 

development process. The investigation will principally focus on examining 

existing AutoML frameworks, including but not limited to TPOT, and H2O 

AutoML, among others, whilst scrutinising their respective algorithms, techniques, 

and features. 

 

THE SCOPE OF THE RESEARCH 

The scope of this research encompasses the evaluation and analysis of various 

AutoML frameworks in terms of their performance and capabilities in algorithm 

selection, hyperparameter optimisation, pre-processing steps, feature engineering, 

scalability, and interpretability. Additionally, novel algorithms and approaches will 

be investigated to enhance existing AutoML techniques and address their 

limitations and challenges. The research will also explore methods to improve the 

efficiency and scalability of AutoML frameworks to handle large-scale datasets and 

complex models effectively. Furthermore, the interpretability of AutoML models 

will be assessed, and techniques will be proposed to enhance their transparency and 

explainability. 
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THE LIMITATIONS OF THE RESEARCH 

Firstly, the analysis will focus on a selection of popular AutoML frameworks, and 

therefore, it may not encompass all existing frameworks in the evaluation. 

Secondly, the performance and effectiveness of AutoML techniques can vary 

depending on the specific dataset, problem domain, and task at hand. Therefore, the 

findings of this research may not be universally applicable to all scenarios. Thirdly, 

due to time and resource constraints, exploring algorithm combinations, feature 

engineering techniques, and pre-processing methods within each framework may 

not be exhaustive. Lastly, this research will primarily concentrate on regression and 

classification tasks, potentially overlooking other ML tasks such as clustering, 

anomaly detection, or image processing. 

 

Despite these limitations, the primary objective of the research is to offer insightful 

revelations about the present state of AutoML, pinpoint potential areas that require 

enhancement, and make substantial contributions towards the progress of AutoML 

methodologies. 

 

 

2 LITERATURE REVIEW 

The literature review offers a broad and detailed examination of current research 

and studies associated with AutoML methodologies. It covers the historical 

progression and growth of AutoML, an evaluation of prevailing AutoML 

frameworks, a comparison of various AutoML strategies, and the evaluation metrics 

applicable to regression and classification tasks. The intent behind this section is to 

lay a robust groundwork for the research, achieved through a thorough investigation 

of the work conducted in this field while concurrently identifying gaps and 

possibilities for additional exploration. 

 

2.1 OVERVIEW OF AUTOML 

AutoML, an ascendant field, aspires to automate various aspects of the ML 

workflow, thereby enhancing its accessibility and efficiency for users who possess 

limited expertise in the realm of data science (Hutter et al., 2019). It merges ML 

with optimisation and data pre-processing methodologies to automate tasks such as 
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algorithm selection, hyperparameter tuning, feature engineering, and model 

evaluation (Feurer et al., 2015). 

 

The rise in the complexity of ML models and the growing need for data-driven 

decision-making across diverse industries has resulted in AutoML techniques 

attracting considerable attention. These techniques empower researchers, data 

scientists, and practitioners to primarily focus on the formulation of problems and 

domain knowledge, rather than invest extensive amounts of time in manual and 

repetitive tasks (Waring et al., 2020). 

 

A key goal of AutoML is to simplify the procedure of developing precise and 

resilient ML models by automating tasks that are generally time-consuming (Olson 

& Moore, 2019). By harnessing computational power and sophisticated 

optimisation algorithms, AutoML frameworks aim to pinpoint the most efficient 

ML pipeline for any given dataset (Gijsbers et al., 2019). 

 

AutoML frameworks typically involve several stages. First, the data is pre-

processed to handle missing values, outliers, and feature scaling. Next, a search 

strategy, such as genetic algorithms, Bayesian optimisation, or reinforcement 

learning, is employed to explore the space of potential models and hyperparameters 

(Xu et al., 2021). The selected models are then trained and evaluated using 

appropriate metrics to assess their performance. 

 

The primary advantage of AutoML is its ability to reduce the expertise and time 

required to build effective ML models (He et al., 2021). It allows users with limited 

knowledge of ML techniques to leverage state-of-the-art algorithms and 

methodologies. Additionally, AutoML frameworks provide transparency by 

documenting the entire modelling process, enabling reproducibility, and facilitating 

model interpretation (Hutter et al., 2019). 

 

However, AutoML is not without its limitations. One major challenge is the 

scalability of AutoML frameworks to handle large datasets with high-dimensional 

features. The computational resources and time required for exhaustive search and 

optimisation can become prohibitive (Kotthoff et al., 2017).  Additionally, AutoML 
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frameworks may not always capture the intricacies of the problem domain, as they 

rely on general-purpose algorithms and techniques (Olson & Moore, 2019) 

 

Despite these limitations, AutoML holds significant potential in democratising ML 

and enabling non-experts to leverage its benefits. Ongoing research addresses 

scalability issues, incorporates domain-specific knowledge, and improves the 

interpretability of AutoML pipelines (Gijsbers et al., 2019). 

 

2.2 REVIEW OF EXISTING AUTOML FRAMEWORKS 

In this section, an in-depth review of a few notable AutoML frameworks, 

specifically H2O AutoML and TPOT, is offered. These frameworks have made 

considerable strides in automating the ML process and have achieved extensive 

acceptance in both academic and industrial contexts. 

 

2.2.1 H2O AUTOML 

H2O AutoML, a product of H2O.ai, is an all-inclusive AutoML platform that 

facilitates automated model training and hyperparameter tuning. It boasts a user-

friendly interface and accommodates a variety of algorithms, encompassing deep 

learning models. Excelling in scalability, H2O AutoML has the capability to 

manage vast datasets and intricate models efficiently. It further incorporates 

progressive feature engineering techniques and ensemble methodologies to bolster 

model performance (LeDell, 2020). 

 

2.2.2 TPOT 

TPOT, or Tree-based Pipeline Optimisation Tool, is a potent AutoML framework 

that utilises genetic programming to automatically unearth the most effective ML 

pipeline tailored to a specific dataset. TPOT evolves a group of pipelines using 

genetic operations such as crossover and mutation to navigate the pipeline space. It 

manages feature pre-processing steps, algorithm selection, and hyperparameter 

optimisation concurrently. TPOT's ability to automate the entire ML pipeline has 

garnered considerable attention and it has been effectively applied to an array of 

real-world tasks (Olson & Moore, 2019). 
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These frameworks have streamlined the creation of ML models by automating 

laborious tasks, including algorithm selection, hyperparameter tuning, and feature 

engineering. They have eased the application of ML methodologies to specific 

problems for both researchers and practitioners, even in the absence of profound 

expertise in the field. These AutoML frameworks have shown encouraging results 

and possess the potential to expedite the integration of ML across various domains. 

 

2.3 COMPARISON OF EXISTING AUTOML APPROACHES 

In this section, a thorough comparison of assorted AutoML strategies is offered in 

Table 1. The table lays out an overview of the algorithms, techniques, and features 

of each approach, thereby facilitating a comprehensive understanding of their 

competencies and functions. The data presented in Table 1 lays the groundwork for 

an extended exploration and examination of the diverse AutoML methodologies 

discussed in this section. 

 

Table 1 

Comparison of Approaches for Automated Machine Learning 

The table compares two approaches for AutoML: H2O AutoML and TPOT. H2O AutoML utilises 

an intelligent search strategy, combines random search and grid search for hyperparameter 

optimisation, incorporates built-in feature engineering, and provides partial interpretability through 

decision trees. TPOT employs genetic programming for algorithm selection and hyperparameter 

optimisation, integrates feature pre-processing into the pipeline, and focuses on performance 

optimisation 

 

HYPERPARAMETER OPTIMISATION 

H2O AutoML utilises a combination of random search and grid search to explore 

the hyperparameter space of different algorithms (LeDell, 2020). It intelligently 

samples from the hyperparameter space to find good combinations of 

hyperparameters. In contrast, TPOT uses genetic programming to evolve the 

Approach 
Algorithm 

Selection 

Hyperparameter 

Optimisation 

Feature 

Engineering 
Interpretability 

H2O 

AutoML 

Intelligent 

search strategy 

Random search, 

grid search 

Built-in 

feature 

engineering 

Partial 

interpretability 

(e.g., decision 

trees) 

TPOT 
Genetic 

programming 

Genetic 

programming 

Integrated 

feature 

pre-processing 

Focus on 

performance 

optimisation 
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hyperparameters of each algorithm in the pipeline. It evolves the pipelines by 

applying genetic operators such as crossover and mutation to explore the 

hyperparameter space effectively (Olson et al., 2016a). 

 

FEATURE ENGINEERING 

H2O AutoML includes built-in feature engineering capabilities such as handling 

missing values, categorical encoding, and feature scaling (LeDell, 2020). It 

automatically applies these techniques during the modelling process. In contrast, 

TPOT integrates feature pre-processing steps within the pipeline evolution process 

(Olson et al., 2016a). To find the optimal combination, it explores different feature 

pre-processing techniques, including imputation, scaling, and dimensionality 

reduction. 

 

INTERPRETABILITY 

H2O AutoML offers some level of interpretability for models such as linear models 

and tree-based models. It provides feature importance rankings and decision rules 

for decision trees and rule-based models (LeDell, 2020). In contrast, TPOT focuses 

more on model performance optimisation than interpretability (Olson et al., 2016a). 

However, it can evolve pipelines with interpretable models such as decision trees 

and linear models. 

 

It is important to note that the performance and effectiveness of AutoML 

approaches can vary depending on the dataset characteristics, task requirements, 

and available computational resources. Researchers and practitioners should 

consider these factors along with the specific features and techniques each AutoML 

framework offers when deciding. Additionally, the AutoML field continuously 

evolves, and new frameworks and techniques are being developed, offering even 

more advanced automation capabilities (Choudhary et al., 2022).  

 

2.4 EVALUATION METRICS 

In this study, the performance of ML models in both regression and classification 

tasks is evaluated using specific metrics. The selection of these evaluation metrics 

is determined by the nature of the task and the distinct objectives of the analysis. 

Here are the employed evaluation metrics and their corresponding functions: 
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2.4.1 FOR REGRESSION TASKS 

MSE (Mean Squared Error) measures the average squared difference between the 

predicted and actual values. It provides an overall assessment of the model's 

accuracy, where a lower MSE indicates better accuracy. MSE is used to evaluate 

the performance and accuracy of regression models in predicting continuous 

numerical values. 

 

RMSE (Root Mean Squared Error) is the square root of MSE, providing a more 

interpretable metric in the original scale of the target variable. It is widely used as 

an evaluation metric for regression tasks because it represents the average deviation 

of the predicted values from the actual values. 

 

MAE (Mean Absolute Error) measures the average absolute difference between the 

predicted and actual values. It is less sensitive to outliers than MSE and provides a 

more robust model performance evaluation in regression tasks. 

 

R2 (R-squared Score) is a statistical measure that indicates the proportion of the 

variance in the target variable that is explained by the model. It ranges from 0 to 1, 

with higher values indicating a better fit. R2 is commonly used to assess the 

goodness of fit of regression models and understand how well the model captures 

the variability in the data. 

 

2.4.2 FOR CLASSIFICATION TASKS 

Accuracy measures the proportion of correctly classified instances. It is calculated 

as the ratio of the number of correct predictions to the total number of predictions. 

Accuracy is widely used as a performance metric in classification tasks to assess 

the overall correctness of the model's predictions. 

 

Precision represents the fraction of correctly predicted positive instances out of the 

total predicted positive instances. It focuses on the quality of positive predictions 

and helps evaluate how well the model avoids false positives. 

 

Recall (Sensitivity or True Positive Rate) indicates the fraction of correctly 

predicted positive instances out of the total actual positive instances. It focuses on 
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capturing all positive instances and helps evaluate how well the model avoids false 

negatives. 

 

F1 Score combines precision and recall into a single metric. It balances the trade-

off between precision and recall and is useful in evaluating model performance in 

imbalanced datasets where the distribution of classes is uneven. 

 

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) evaluates the 

model's ability to discriminate between positive and negative instances across 

different probability thresholds. It provides an aggregate measure of the model's 

performance and is particularly useful in assessing the performance of binary 

classification models. 

 

These evaluation metrics are applied to assess the performance and generalisation 

ability of the developed ML models in both regression and classification tasks. They 

help quantify the accuracy, robustness, and predictive power of the models, 

enabling comparisons and informed decision-making in selecting the best-

performing models for different applications. 

 

2.5 RELATED STUDIES AND RESEARCH IN THE FIELD 

In the study titled "TPOT: A Tree-based Pipeline Optimisation Tool for Automating 

Machine Learning" by Randal S. Olson and Jason H. Moore, TPOT, a tool designed 

to automate ML tasks via a tree-based pipeline optimisation, is introduced. TPOT 

employs genetic programming to develop and optimise pipelines by probing 

through a vast array of combinations of data pre-processing steps and ML 

algorithms. The effectiveness of TPOT in delivering competitive performance 

across diverse ML tasks and datasets was successfully demonstrated in this research 

(Olson & Moore, 2019). 

 

The book titled "Automated Machine Learning: Methods, Systems, Challenges", 

edited by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, presents a thorough 

overview of AutoML, encapsulating an array of methods, systems and the 

challenges faced within the field. It boasts contributions from eminent researchers 

and practitioners, providing insights into the latest developments, ideal practices, 

and future trajectories of AutoML. The book stands as an invaluable asset for 
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researchers, practitioners, and students who harbour an interest in the domain of 

AutoML (Hutter et al., 2019). 

 

In the study titled "Evaluation of a Tree-based Pipeline Optimisation Tool for 

Automating Data Science" by Randal S. Olson, Ryan J. Urbanowicz, Nathan 

Bartley, and Jason H. Moore, the focal point is the assessment of TPOT, a tool 

dedicated to automating data science tasks through tree-based pipeline 

optimisation. The authors demonstrated the proficiency of TPOT in creating ML 

pipelines that surpassed the performance of manually crafted pipelines across 

various benchmark datasets. The study underscored TPOT's capability to automate 

the most laborious aspects of ML, thus enabling individuals without expert-level 

knowledge to utilise sophisticated techniques (Olson et al., 2016). 

 

"Scaling tree-based automated ML to biomedical big data with a feature set 

selector" by Trang T. Le, Weixuan Fu, and Jason H. Moore: This study puts 

emphasis on scaling tree-based AutoML to accommodate biomedical big data. The 

authors introduced a feature set selector that enabled TPOT to efficiently manage 

large datasets by choosing subsets of features. The scalability and efficacy of the 

approach on biomedical datasets were demonstrated in the study, underscoring its 

potential to hasten the analysis of big data within the biomedical sphere (Le et al., 

2020). 

 

In "AutoML: A Survey of the State-of-the-Art" by He, X., Zhao, K., & Chu, X, a 

comprehensive review is offered, which discusses the current progress in AutoML, 

encompassing data preparation, feature engineering, hyperparameter optimisation, 

and neural architecture search (NAS). The study also probes into prospective 

research trajectories, including the joint optimisation of hyperparameters and 

architecture. The authors highlighted unresolved issues in existing AutoML 

methods, marking them for further exploration (He et al., 2021). 

 

In the study titled "H2O AutoML: Automatic Machine Learning for Production" by 

H2O.ai, H2O AutoML, an open-source AutoML platform designed specifically for 

production settings, is introduced. H2O AutoML offers a user-friendly interface that 

automates the construction and deployment of ML models. The study emphasises 

the platform's wide-ranging capabilities in feature engineering, hyperparameter 
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optimisation, and model selection. Furthermore, it discusses the significance of the 

interpretability of models in real-world applications (LeDell, 2020). 

 

These studies make substantial contributions to the domain of AutoML by 

presenting and evaluating diverse frameworks and tools designed to automate 

various stages of the ML procedure. Auto-sklearn and H2O AutoML offer 

pragmatic solutions for automating model selection, hyperparameter optimisation, 

and feature engineering, thus tackling the hurdles encountered by data scientists in 

real-world circumstances. The studies underscore the significance of scalability, 

interpretability, and user-friendliness in developing AutoML frameworks that can 

be efficaciously deployed in production settings. 

 

 

3 METHODOLOGY 

The approach proposed in this research is called "AutoFlex", which addresses the 

challenges and limitations of the traditional machine learning pipeline. AutoFlex 

represents a novel and innovative solution that combines the benefits of automated 

machine learning (AutoML) with flexible and customisable pipeline construction. 

 

AutoFlex justifies its existence by offering several key advantages over traditional 

approaches. First and foremost, it provides an automated and intelligent solution 

for algorithm selection, hyperparameter optimisation, and feature engineering. By 

leveraging advanced optimisation algorithms and techniques, AutoFlex identifies 

the most suitable algorithms and their optimal configurations based on the 

characteristics of the data. This eliminates the need for manual trial and error, 

enabling researchers and practitioners to efficiently build high-performing models. 

 

Furthermore, AutoFlex integrates flexibility and customizability into the automated 

machine learning pipeline generation. It allows users to define and customize pre-

processing techniques, feature selection methods, and model configurations 

according to their specific needs and domain expertise. This adaptability empowers 

users to tailor the pipeline to the unique characteristics and requirements of their 

datasets, improving model performance and interpretability. 

 



   
 

 16 

3.1 THE AUTOFLEX APPROACH 

AutoFlex is designed to automate the process of selecting the best ML model and 

pre-processing techniques to build efficient ML pipelines for a given dataset.  

 

The AutoFlex approach, as depicted in Figure 1, outlines the step-by-step process 

of automating and optimising the ML pipeline. It encompasses crucial stages such 

as data loading, handling missing values, data splitting, pre-processing, and grid 

search with cross-validation. By following this approach, researchers and 

practitioners can streamline the selection of the best ML model and pre-processing 

techniques, resulting in the construction of efficient ML pipelines tailored to the 

given dataset.  

 

Figure 1 

Workflow Of The Proposed Approach – AutoFlex 

The AutoFlex methodology comprises meticulous stages intended to automate and optimise the ML 

procedure. These stages involve data loading, addressing missing values, data splitting, task type 

identification, model selection, pre-processing methods, hyperparameter optimisation, pipeline 

construction, and result analysis. The accompanying figure summarises the AutoFlex approach and 

its pivotal stages, acting as a visual guide for effectively implementing the methodology. 

 

 
 

The AutoFlex approach can be further explained in the following detailed steps: 

DATA LOADING 

The dataset is loaded from a CSV file using the load_dataset function. This function 

reads the file path provided as input and utilises the pd.read_csv function from the 

Pandas library to load the data into a Pandas data frame. Logging statements are 

included to provide updates on the progress, such as the file being loaded. 

 



   
 

 17 

HANDLING MISSING VALUES 

The handle_missing_values function handles missing values in the dataset. It 

identifies numerical and categorical columns and fills in missing values 

accordingly. Logging statements indicate the progress of how each column with 

missing values is handled. 

 

DATA SPLITTING 

The split_data function separates the dataset into features and the target variable. It 

drops the target variable column from the data frame to obtain the feature set and 

stores it separately as the target variable. The function returns the feature set and 

the target variable. Logging statements confirm the completion of the data-splitting 

process. 

 

TASK TYPE DETERMINATION 

The task type (classification or regression) is determined based on the unique 

percentage of the target variable. The task types are classified into Binary 

Classification, Multi-class Classification and Regression.  

The determined task type is essential for model selection and performance 

evaluation. Logging statements display the determined task type. 

 

MODELS DEFINITION AND SELECTION: 

Based on the determined task type, specific models suited for the task are defined 

and stored in the models' dictionary. 

 

For Binary Classification tasks, models such as Decision Tree Classifier, Gradient 

Boosting Classifier, Random Forest Classifier, MLP Classifier, Logistic 

Regression, and KNN Classifier are included. For Multi-class Classification tasks,  

similar models are included but with the appropriate class names. For Regression 

tasks, models such as Decision Tree Regressor, Gradient Boosting Regressor, 

Random Forest Regressor, MLP Regressor, Linear Regression, and KNN Regressor 

are included. 

 

The models are defined along with their respective hyperparameters, which will be 

optimised during the grid search process. 
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PRE-PROCESSING TECHNIQUES 

Two dictionaries, numerical pre-processing methods and categorical pre-processing 

methods are defined to store the available pre-processing techniques for numerical 

and categorical columns, respectively. Numerical pre-processing methods include 

SimpleImputer, StandardScaler, RobustScaler, MinMaxScaler, Polynomial 

Features, and PCA. Categorical pre-processing methods include OneHotEncoder 

and LabelEncoder. These pre-processing techniques will be utilised during the pre-

processing steps to transform the data. 

 

PRE-PROCESSING NUMERICAL COLUMNS 

AutoFlex applies pre-processing techniques to numerical columns using the 

process_numerical_cols function. Parallel processing is enabled for efficient 

iteration over each selected column. The function takes inputs such as the feature 

set, numerical column list, dictionaries of pre-processing methods, models, and the 

target variable. Multiple techniques are evaluated using pipelines for each column, 

and the best technique is selected based on the highest model score. The function 

returns a list of tuples with the column name and best pre-processing technique. 

Logging statements track the progress of numerical column pre-processing. 

 

PRE-PROCESSING CATEGORICAL COLUMNS 

AutoFlex applies pre-processing techniques to categorical columns using the 

process_categorical_cols function. Parallel processing is enabled for efficient 

iteration over each selected column. The function takes inputs such as the feature 

set, categorical column list, dictionaries of pre-processing methods, feature 

selection methods, models, and the target variable. Multiple techniques and feature 

selection methods are evaluated for each column, and the best pre-processing 

technique and feature selection method (if applicable) are selected based on the 

highest model score. The function returns a list of tuples with the column name, 

best pre-processing technique, and best feature selection method. Logging 

statements track the progress of categorical column pre-processing. 

 

GRID SEARCH WITH CROSS-VALIDATION FOR HYPERPARAMETER 

OPTIMISATION 

AutoFlex performs a grid search with cross-validation to find the best 

hyperparameters for each model and column combination. The function utilises 
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parallel processing to iterate over models and columns, setting up pipelines and 

executing grid search using the GridSearchCV class. The best hyperparameters and 

pre-processing techniques are selected based on the highest score achieved during 

cross-validation. The results are stored in a sorted data frame and returned along 

with pipeline counts. Logging statements track the progress of the grid search 

process. 

 

PIPELINE BUILDING 

After the grid search process, AutoFlex builds pipelines for the best models and pre-

processing techniques based on the results. The pipeline-building process is 

integrated within the perform_grid_search_parallel function. The pipeline counts 

are stored, representing the number of pipelines generated for each model and 

column combination. The pre-processing steps and techniques are concatenated to 

create pre-processing steps strings for each pipeline.  The pipeline building progress 

is tracked using the tqdm library to provide an overview of the generated pipelines. 

 

RESULT ANALYSIS AND EVALUATION 

The results from the grid search process are collected and analysed to evaluate the 

performance of the models and pre-processing techniques. Performance metrics 

such as best score, pipeline score, accuracy (for classification tasks), R-squared (for 

regression tasks), test score, and execution time are evaluated and stored in the data 

frame. The results are recorded to provide an overview of the AutoFlex approach. 

 

The detailed implementation of the AutoFlex approach, including the code and 

definitions, can be found in APPENDIX 1. By following this approach, researchers 

and practitioners can automate the process of selecting the best ML model and pre-

processing techniques, reducing manual effort and improving the efficiency of the 

model development process. 

 

3.1.1 FEATURE ENGINEERING METHODS 

AutoFlex employs various feature engineering methods to enhance data quality and 

relevance, improving model performance and robustness. These methods include: 
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FEATURE SCALING 

Numerical features undergo feature scaling to ensure comparable distributions and 

magnitudes. This prevents dominance by features with larger values. Standard 

scaling transforms features with zero mean and unit variance, while min-max 

scaling scales features to a specified range (typically 0 to 1). 

 

CATEGORICAL ENCODING 

Categorical features are encoded using label encoding. This method assigns a 

unique numerical label to each category in a categorical feature. It enables models 

to work with categorical data by representing categories as numerical values. 

 

FEATURE TRANSFORMATION 

Feature transformation techniques, such as creating polynomial features and using 

dimensionality reduction methods like PCA, are applied to capture non-linear 

relationships and reduce the dimensionality of the feature space. Polynomial 

features generate interaction terms and higher-order combinations of existing 

features to capture complex interactions and non-linear patterns. PCA helps 

preserve valuable information while reducing the number of dimensions in the 

feature space. 

 

FEATURE SELECTION 

Feature selection methods are employed to identify the most informative and 

relevant features for the task at hand. These methods aim to reduce dimensionality 

and eliminate irrelevant or redundant features to improve model performance and 

prevent overfitting (Guyon & Elisseeff, 2003). Standard techniques include 

SelectKBest, which selects the top K features based on statistical tests like F-

regression or chi-squared test, and recursive feature elimination, which iteratively 

removes features based on their importance as determined by the model. By 

applying these pre-processing steps and feature engineering methods, AutoFlex 

ensures that the input data is properly prepared and optimised for the ML models. 

This enables the models to capture relevant patterns and relationships in the data, 

leading to improved prediction accuracy and generalisation performance. 
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3.1.2 HYPERPARAMETER OPTIMISATION STRATEGIES 

The following hyperparameter optimisation strategies are used in the AutoFlex 

approach: 

 

GRID SEARCH WITH CROSS-VALIDATION 

Grid search is performed to search through a predefined set of hyperparameter 

values for each model. Cross-validation is used to evaluate the performance of 

different hyperparameter combinations. 

K-FOLD CROSS-VALIDATION 

K-Fold cross-validation is employed during the grid search process to ensure robust 

evaluation of the models. The dataset is divided into K folds; each fold is used as a 

validation set, while the remaining folds are used for training. 

 

PARAMETER GRID DEFINITION 

A parameter grid is defined for each model, specifying the hyperparameter values 

to be tested during grid search. This grid includes different values for 

hyperparameters like max depth, number of estimators, hidden layer sizes, and 

more, depending on the model. These strategies collectively aim to find the optimal 

combination of hyperparameters and pre-processing techniques that yield the best 

performance for each model in the AutoFlex approach. 

 

3.1.3 DATASET SELECTION 

In this study, dataset selection and pre-processing are essential for evaluating the 

performance of the AutoML approach. The sklearn library provides a wide range of 

well-documented classification and regression datasets commonly used in ML 

research (Table 2). These datasets are carefully curated, pre-processed, and 

representative of real-world scenarios, making them suitable for assessing the 

effectiveness of the AutoML approach. 

 

For Classification tasks, datasets like 'wine', 'breast_cancer', 'iris', 'digits', and 

'linnerud' are chosen. They cover various classification problems, including wine 

types, breast cancer diagnosis, flower species classification, handwritten digit 

recognition, and exercise physiology measurements. Additional datasets from the 

openml repository, such as 'adult', 'australian', 'bank-marketing', 'car', and 'tic-tac-

toe', provide diverse real-world scenarios. 
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For Regression tasks, datasets like 'boston', 'diabetes', 'linnerud', and 

'california_housing' are selected. They encompass regression problems related to 

housing prices, diabetes progression, exercise physiology measurements, and 

housing price prediction in California. Additional regression datasets from the 

openml repository, such as 'house_8L', 'cpu', 'qsar-biodeg', and 'bike_sharing', cover 

domains like housing, computer performance, chemical properties, and bike-

sharing demand prediction. 

 

To evaluate the performance and scalability of the AutoML approach, subsets are 

created from the original datasets by splitting them into different proportions. This 

includes subsets representing 25%, 50%, and 100% of the observations. Creating 

subsets allows for systematically analysing the approach's performance under 

different data sizes. The 25% subset provides a smaller sample size, enabling faster 

experimentation and initial assessment. The 50% subset strikes a balance between 

computational efficiency and capturing a significant portion of the data. The 100% 

subset represents the complete dataset and allows for a comprehensive evaluation 

of the approach's performance on the entire data. 

 

By evaluating the AutoML approach on subsets of different sizes, it becomes 

possible to assess its scalability, efficiency, and generalisation capabilities across 

varying data volumes. This information is crucial for understanding the approach's 

behaviour and its applicability to real-world datasets of different sizes. 
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Table 2 

Overview of Datasets & Subsets in the Experiment 

The table provides an overview of the datasets used in the experiment to iterate over multiple 

approaches. It includes information such as the dataset ID, dataset name, number of rows, percentage 

of observations, subset ID, subset name, number of columns, target variable type, and classification 

or regression nature of the dataset. The table presents a comprehensive view of the datasets 

employed in AutoFlex, allowing for easy identification and selection of specific datasets for analysis 

and model development. 
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3.1.4 PARALLEL PROCESSING 

Parallel processing is employed in the AutoFlex approach to enhance the efficiency 

of computationally intensive tasks. The joblib library enables parallel execution of 

tasks across multiple CPU cores. 

The parallel processing technique is particularly beneficial during the grid search 

phase, where multiple models and hyperparameter combinations are evaluated. By 

distributing the workload across multiple cores, the processing time is significantly 

reduced, allowing for faster experimentation and model evaluation (Singh, 2021). 

 

Additionally, parallel processing is utilised when processing numerical and 

categorical columns, as well as during the evaluation of multiple pipelines. These 

tasks are parallelised to expedite the feature engineering and model selection 

processes. 

 

Using parallel processing in the AutoFlex approach maximises computational 

resources and accelerates the overall pipeline, enabling efficient exploration of 

various model configurations and pre-processing techniques (Singh, 2021). 

 

3.2 DETAILS OF SOFTWARE & SOFTWARE PACKAGES: 

The entire project was implemented using the Python programming language, 

which is widely recognised and extensively used in the field of ML. Python offers 

a rich ecosystem of libraries and frameworks that provide comprehensive support 

for various aspects of ML. In this study, the following vital libraries were utilised: 

 

Scikit-learn (sklearn) is a popular ML library in Python that offers many algorithms 

and tools for data pre-processing, feature selection, model training, and evaluation. 

It was extensively used in this project due to its efficient and well-documented 

implementation of various ML techniques. 

 

Pandas is a powerful data manipulation library in Python. It provides data structures 

and functions for efficient data handling, including data loading, handling missing 

values, and data manipulation tasks. Pandas played a crucial role in this project for 

tasks such as data loading, handling missing values, and data transformation. 
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NumPy is a fundamental library for scientific computing in Python. It supports 

large, multi-dimensional arrays and provides a collection of mathematical 

functions. NumPy was employed in this project for numerical operations and 

transformations on the data. 

 

Joblib is a Python library used for caching and parallel computing. It enables 

efficient caching of pre-processed data and parallel execution of computationally 

intensive tasks. Joblib was utilised in this study to parallelise the pre-processing and 

model training steps, improving the overall efficiency of the AutoML process. 

 

Tqdm is a Python library that provides progress bars for iterative tasks. It was 

employed in this project to display informative progress bars during the pre-

processing and model training stages. These progress bars allowed for better 

tracking of the execution progress and provided a visual representation of the 

ongoing tasks. 

 

GridSearchCV is a class in sklearn that implements grid search with cross-

validation. It performs an exhaustive search over specified hyperparameter 

combinations to find the best hyperparameters for a given model. GridSearchCV 

was used in this study for hyperparameter optimisation and model selection, 

enabling the identification of optimal parameter settings. 

 

The logging module was utilised to facilitate logging and provide informative 

messages during the execution of the AutoML approach. It enhanced the overall 

transparency and traceability of the project. 

 

The combination of these Python packages provided a robust and efficient 

framework for implementing and evaluating of the AutoML approach in this 

research. 

 

3.3 COMPARATIVE ANALYSIS 

In the comparative analysis, the experimental results from the AutoFlex approach, 

including best scores, hyperparameters, pipeline scores, accuracy/R^2 scores, test 

scores, and execution times, were collected for each model and pre-processing 
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technique combination. These results were then compared to the scores and 

execution times obtained from other AutoML approaches, such as H2O and TPOT. 

 

The experimental setup provided a structured framework for evaluating the 

performance of different models and pre-processing techniques across diverse 

datasets. Quantitative evaluation metrics allowed for objectively assessing the 

models' accuracy or goodness of fit. By comparing the results obtained from the 

AutoFlex approach to those of other approaches, valuable insights were gained 

regarding the effectiveness and efficiency of the proposed AutoML approach. 

 

This comparative analysis facilitated a comprehensive understanding of the 

AutoFlex approach's performance, and its relative strengths and weaknesses 

compared to other AutoML methods. It enabled informed decision-making in 

selecting the most suitable approach for specific tasks and datasets. 

 

3.4 COMPARISON OF AUTOFELX METHODOLOGY WITH OTHER 

FRAMEWORKS 

COMPARISON WITH H2O AUTOML 

AutoFlex distinguishes itself from H2O AutoML by leveraging sklearn's library and 

architecture, providing compatibility with the latest sklearn versions and a more 

comprehensive range of models and pre-processing techniques. It offers greater 

flexibility and customisation options, allowing users to have more control over pre-

processing, feature selection, and model configurations. The simplified 

implementation using sklearn's user-friendly API facilitates the adoption and 

integration of AutoFlex into existing workflows. However, AutoFlex has scalability 

limitations when handling large datasets or complex models that require distributed 

computing capabilities, as it primarily operates on a single machine. 

 

COMPARISON WITH TPOT 

AutoFlex differs from TPOT in terms of pipeline construction and optimisation 

methodologies. While TPOT employs genetic programming to evolve pipelines, 

AutoFlex constructs pipelines using sklearn's Pipeline and ColumnTransformer. 

This approach provides greater flexibility and customisation, allowing finer control 

over pre-processing steps, feature selection, and model configurations. It also 

increases efficiency compared to TPOT, as complex genetic programming 
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operations are eliminated, resulting in faster pipeline construction and evaluation 

times. However, the absence of genetic programming in AutoFlex may limit its 

search space exploration capabilities compared to TPOT's evolutionary approach. 

 

3.5 ADVANTAGES  AND LIMITATIONS OF AUTOFLEX 

METHODOLOGY 

ADVANTAGES OF AUTOFLEX 

AutoFlex offers distinct advantages compared to the compared frameworks. It 

provides customizability, enabling users to define and customise pre-processing 

techniques, feature selection methods, and model configurations, allowing tailored 

pipelines for specific datasets and problem domains.  

 

Additionally, AutoFlex leverages parallel computing, reducing execution times, 

faster experimentation, and model iteration. Including feature selection techniques 

enhance model performance by selecting relevant features and reducing 

dimensionality. Being compatible with sklearn ensures seamless integration into 

existing workflows and access to a wide range of models. Lastly, AutoFlex's 

simplified implementation, leveraging sklearn's user-friendly API and established 

ecosystem, facilitates adoption for users familiar with sklearn. 

 

LIMITATIONS OF AUTOFLEX 

While AutoFlex has notable advantages, it also has limitations to consider. One 

limitation is the limited diversity of models, as AutoFlex focuses on widely used 

ML models. This restricts its applicability to certain problem domains that may 

require more specialised or domain-specific models. Additionally, AutoFlex 

primarily relies on single-machine execution, which may pose scalability 

challenges when dealing with large datasets or complex models that require 

distributed computing capabilities. 
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4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 RESULTS AND DISCUSSION OF CONSIDERED APPROACHES 

4.1.1 AUTOFLEX RESULTS 

In this section, the detailed results are obtained from applying the AutoFlex 

approach to the dataset subsets, categorised into "Classification" and "Regression" 

tasks. The evaluation of various models provides insights into the effectiveness and 

suitability of the AutoFlex approach for different types of tasks, enabling a 

comprehensive analysis of its performance.  

 

The detailed results of applying the AutoFlex approach to the dataset subsets for 

both classification and regression tasks are presented in Table 3. These results 

provide valuable insights into the performance and suitability of the AutoFlex 

approach across different tasks.  

 

For the classification tasks, the AutoFlex approach considered several models, 

including Neural Network Classifier, Logistic Regression, Random Forest 

Classifier, and Gradient Boosting Classifier. By applying the proposed approach, 

the best model and its corresponding parameters were determined for each dataset 

subset. The results indicate that the selected models achieved high accuracy scores, 

ranging from 0.7801 to 1. This demonstrates their capability to accurately classify 

the target class. Additionally, the pipeline CV scores, which measure the models' 

performance during cross-validation, ranged from 0.7639 to 1, indicating the 

robustness and consistency of the selected models. 

 

To evaluate the models' performance on unseen data, the test data was used. The 

classification models achieved scores ranging from 0.193 to 0.5, indicating their 

ability to generalise and make accurate predictions on previously unseen instances. 

The execution times of the models varied depending on the complexity of the model 

and the dataset. The range of execution times was from 0.2071 seconds to 61.6587 

seconds, reflecting the computational efficiency and scalability of the AutoFlex 

approach in handling diverse datasets and models. 

 

For the regression tasks, the AutoFlex approach considered models such as KNN 

Regressor, Gradient Boosting Regressor, and Random Forest Regressor. Like the 

classification tasks, the best model and its corresponding parameters were identified 
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for each subset. The accuracy scores of the best regression models ranged from 

0.685 to 1, indicating their ability to accurately predict the target variable. The 

pipeline CV scores ranged from 0.6982 to 0.9383, indicating the models' 

performance during cross-validation. 

 

The regression models' performance on the test data provided insights into their 

predictive abilities. The scores ranged from -311.3445 to 0.6445, indicating the 

models' effectiveness in estimating the target variable on previously unseen 

instances. The execution times of the regression models varied, with values ranging 

from 0.2071 seconds to 61.6587 seconds, showcasing the AutoFlex approach's 

ability to handle varying computational demands. 

 

The AutoFlex approach demonstrated its customizability and flexibility in 

achieving high performance for both classification and regression tasks. One key 

aspect of this is the optimisation of model parameters through the process of 

hyperparameter tuning. By leveraging advanced optimisation algorithms, AutoFlex 

automatically searches the hyperparameter space to identify the optimal 

combination of parameter values for each model. This ensures that the selected 

models are fine-tuned to maximise their performance on the given dataset. 

 

The customizability of AutoFlex allows users to define and customise various 

aspects of the pipeline, including pre-processing techniques, feature selection 

methods, and model configurations. By tailoring these components to specific 

datasets and problem domains, AutoFlex enables the construction of pipelines that 

are optimised for the given task. This integration of customizability with Sklearn's 

extensive library of models and pre-processing techniques ensures compatibility 

and facilitates adopting the AutoFlex approach within existing sklearn workflows. 

 

Overall, the AutoFlex approach showcased promising results in constructing and 

evaluating pipelines for both classification and regression tasks. The obtained 

results validate its effectiveness in achieving high model performance, 

customizability, and scalability. These findings contribute to advancing AutoML 

techniques and provide valuable insights for researchers and practitioners seeking 

automated solutions for their ML workflows. 
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Table 3 

AutoFlex Results 

Table 3 presents the results of the AutoFlex approach on various datasets and subsets. It includes the 

subset ID, target class, best model chosen, its parameters, accuracy score, cross-validation score, 

model score on test data, and execution time. These results provide a concise summary of the 

performance and efficiency of the AutoFlex approach in automating and optimising the ML process. 

 

 

4.1.2 TPOT RESULTS 

The TPOT approach was applied to various datasets to automate the ML process 

and optimise model performance. The results APPENDIX 1 – H2O RESULTS 
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obtained from TPOT provide insights into the performance of the generated models 

across different datasets and observation percentages. 

 

TPOT metric results from APPENDIX 2 include the dataset name, task type, 

observation percentage, TPOT score, and execution time. The TPOT scores indicate 

the effectiveness of the models in achieving the desired task objective, whether it is 

regression or classification. The execution times represent the computational 

efficiency of the TPOT approach in exploring and optimising the model pipelines. 

 

The regression results show that TPOT produced models with scores ranging from 

-167.8223343 to -4.598910529 on the cpu_regression.csv and 

boston_regression.csv datasets. These scores demonstrate the models' ability to 

accurately estimate the target variable on previously unseen instances. The 

execution times varied across datasets, with values ranging from 62.11532807 

seconds to 112.8010011 seconds, showcasing the computational demands of the 

optimisation process. 

 

For classification tasks, TPOT achieved high accuracy scores on datasets such as 

australian.csv, breast_cancer.csv, wine.csv, digits.csv, and diabetes.csv. The TPOT 

scores ranged from 0.743589744 to 1, indicating the models' effectiveness in 

correctly classifying instances into their respective classes. The execution times 

varied, with some datasets requiring longer optimisation periods due to their 

complexity. 

 

Overall, the TPOT approach demonstrated its ability to automate the ML process 

and optimise model performance. The results obtained highlight the effectiveness 

and efficiency of TPOT in generating models with competitive performance on 

various datasets. These findings provide valuable insights for researchers and 

practitioners in selecting and optimising ML models for regression and 

classification tasks. 

 

4.1.3 H2O RESULTS 

H2O AutoML was applied to the datasets to automate the ML process and optimise 

model performance. The results obtained from H2O AutoML provide insights into 

the performance of the generated models across different datasets. 
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H2O AutoML results from APPENDIX 1 – H2O results, including the dataset name, 

H2O AutoML execution time, H2O AutoML best model, H2O AutoML pipeline 

scores, and H2O leaderboard. The execution time represents the computational 

efficiency of the H2O AutoML approach in exploring and optimising the model 

pipelines. The best model selected by H2O AutoML showcases the model with the 

highest performance on the given dataset. 

 

The H2O leaderboard provides detailed information about the performance metrics 

of the different models generated by H2O AutoML. Metrics such as RMSE, MSE, 

MAE, RMSLE, and mean residual deviance are reported. These metrics provide an 

evaluation of the models' accuracy and predictive capabilities. 

 

The H2O AutoML metric results from APPENDIX 2 showcase the flexibility and 

effectiveness of the approach in generating high-performing models. The execution 

times varied across datasets, ranging from 298.9337611 seconds to 307.7052 

seconds, depending on the complexity of the dataset and the optimisation process. 

 

The H2O leaderboard data frame highlights the performance metrics of the models 

generated by H2O AutoML. It provides a comprehensive overview of the different 

models' performance, enabling researchers and practitioners to compare and select 

the most suitable model for their specific tasks. 

 

Overall, the results obtained from H2O AutoML demonstrate its ability to automate 

the ML process and optimise model performance. The competitive performance of 

the generated models across different datasets showcases the potential of H2O 

AutoML as a valuable tool for researchers and practitioners in accelerating and 

improving the ML pipeline. 

 

4.2 PERFORMANCE EVALUATION 

Performance evaluation is essential for assessing the effectiveness of AutoML 

(AutoML) frameworks. It involves analysing accuracy or R2 scores, execution time, 

and model selection strategies. This section compares the performance of AutoFlex 

with TPOT and H2O AutoML using diverse datasets. 
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4.2.1 MODEL SCORES EVALUATION 

This subsection evaluates and compares the model scores of AutoFlex, H2O 

AutoML, and TPOT. Model scores measure the performance and accuracy of the 

generated models. By analysing and comparing these scores, the effectiveness of 

each AutoML framework in producing high-quality models is assessed. The results 

are presented in Table 4, which comprehensively compares the model scores for 

AutoFlex, H2O AutoML, and TPOT. 

 

Table 4 

Comparison of Model Scores for AutoFlex, H2O AutoML, and TPOT 

Table 4 provides a comprehensive comparison of the model scores obtained from AutoFlex, H2O 

AutoML, and TPOT. The model scores serve as a performance metric to evaluate the accuracy and 

effectiveness of the generated models.  

 

 

The model scores provide insights into the accuracy or R2   scores achieved by each 

approach across various subsets of the data. AutoFlex demonstrates an average 

accuracy or R2  score of 0.8999 across the datasets, indicating its ability to generate 

models with strong predictive performance. This suggests that AutoFlex effectively 
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captures the underlying relationships within the data and accurately predicts the 

target variable. 

 

In contrast, TPOT exhibits negative scores for some subsets, which implies that the 

models generated by TPOT may not fit the data well and could lead to poor 

predictions. This raises concerns about the overall performance and reliability of 

TPOT when dealing with specific datasets. On the other hand, H2O AutoML shows 

mixed performance, with varying accuracy or R2 scores across the subsets. This 

indicates that the effectiveness of the models produced by H2O AutoML may 

depend on the specific characteristics and complexities of the dataset. 

 

Overall, AutoFlex outperforms TPOT and demonstrates competitive performance 

compared to H2O AutoML regarding the accuracy or R2 scores. This highlights the 

effectiveness and reliability of AutoFlex in generating accurate and reliable models 

across a wide range of datasets. 

 

4.2.2 EXECUTION TIMES EVALUATION 

This section evaluates the execution times of AutoFlex, H2O AutoML, and TPOT. 

The execution time is an essential factor to consider in AutoML frameworks as it 

directly impacts the efficiency and speed of model building. By comparing the 

execution times of these frameworks, the performance in terms of computational 

efficiency and time required for model generation is assessed. The results are 

presented in Table 5, which provides a comprehensive comparison of the execution 

times for AutoFlex, H2O AutoML, and TPOT. 

 

The execution time metric reflects the time taken by each AutoML approach to 

complete the automated model-building process for different subsets of data. 

AutoFlex exhibits significantly faster execution times compared to TPOT and H2O 

AutoML. With an average execution time of 25.0879 seconds, AutoFlex 

outperforms TPOT, which has an average execution time of 350.8640 seconds, and 

H2O AutoML, which has an average execution time of 301.2453 seconds. 

 

The faster execution time of AutoFlex offers several advantages. Firstly, it enables 

quicker experimentation and exploration of different models, hyperparameters, and 

data subsets. This facilitates a more efficient and iterative model development 

process, allowing researchers and practitioners to rapidly test and refine their 
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models. Additionally, the reduced execution time accelerates the overall ML 

pipeline, enabling faster decision-making in model selection and refinement. 

 

The faster execution time of AutoFlex offers several advantages. Firstly, it enables 

quicker experimentation and exploration of different models, hyperparameters, and 

data subsets. This facilitates a more efficient and iterative model development 

process, allowing researchers and practitioners to test and refine their models more 

rapidly. Additionally, the reduced execution time accelerates the overall ML 

pipeline, enabling faster decision-making in model selection and refinement. 

 

Table 5 

Execution Times Comparison for AutoFlex, H2O AutoML, and TPOT 

This table compares the execution times for the AutoFlex, H2O AutoML, and TPOT frameworks. 

The execution time is measured in seconds and represents the time required for model building and 

evaluation. The results offer insights into the computational efficiency and speed of these 

frameworks in automating the ML process. 

 

 

The notable difference in execution time between AutoFlex and the other 

frameworks may be attributed to the underlying algorithms and optimisation 
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strategies employed. AutoFlex focuses on efficient model search techniques, such 

as evolutionary algorithms and advanced pruning mechanisms, to significantly 

reduce search space and expedite model-building. This enables us to achieve faster 

execution times while maintaining competitive model performance. 

 

4.2.3 INTERPRETABILITY EVALUATION 

 

Table 6 

Comparison of Model Selection for AutoFlex, H2O AutoML, and TPOT 

This table compares the model selection capabilities of AutoFlex, H2O AutoML, and TPOT. It 

showcases the selected models, their accuracy scores, and the best model parameters. This 

comparison provides insights into the frameworks' ability to choose optimal models for different 

datasets. 

 

 

Interpretability is an essential aspect of ML models, as it provides insights into their 

decision-making processes and enables users to understand and trust the 

predictions. This section evaluates the interpretability of models produced by 

AutoFlex, TPOT, and H2O AutoML, considering factors such as feature 

importance, model transparency, and explainability. The results, as presented in 

Table 6, provide insights into the interpretability characteristics of each approach. 
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By analysing the interpretability of the models, this section offers valuable 

information for understanding and trusting the predictions made by AutoML 

systems. 

 

4.2.3.1 AUTOFLEX INTERPRETABILITY 

The models generated by AutoFlex, such as the Random Forest Classifier, Gradient 

Boosting Regressor, and Decision Tree Classifier, offer a high level of 

interpretability. These models rely on well-established algorithms and provide 

transparency in their decision-making process. 

 

The Random Forest Classifier combines multiple decision trees and quantifies the 

importance of each feature, allowing for the identification of influential factors 

driving the predictions. The Gradient Boosting Regressor, another ensemble model, 

sequentially corrects errors made by previous models, enabling a step-by-step 

understanding of the decision process. Decision Tree Classifier represents decision-

making through a tree structure, where nodes and branches correspond to features 

and decision rules. Traversing the tree provides insights into how the model arrived 

at its predictions based on input feature values. 

 

4.2.3.2 TPOT INTERPRETABILITY 

TPOT, utilising a genetic programming-based approach, automates model selection 

and hyperparameter tuning (Olson & Moore, 2019). It primarily focuses on two 

frequently selected models: Gaussian Naive Bayes (GNB) and Random Forest.  

 

GNB offers simplicity and ease of interpretation by assuming conditional 

independence of features. On the other hand, Random Forest can capture complex 

relationships and achieve high predictive accuracy. However, it's important to note 

that while these models can be highly accurate, their interpretability may still be 

compromised due to their inherent complexity. 

 

4.2.3.3 H2O AUTOML INTERPRETABILITY 

H2O AutoML employs advanced algorithms and techniques for AutoML, 

prioritising model performance (LeDell, 2020). However, interpretability may be 

compromised due to the complexity of the selected models. 
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Stacked Ensemble is a meta-model that combines predictions from multiple base 

models. While it achieves high accuracy, interpretability is limited due to its 

ensemble nature and difficulty in attributing predictions to individual models. GMB 

(Gradient Boosting Machine) is another popular model selected by H2O AutoML. 

Like Gradient Boosting Regressor in AutoFlex, GMB provides insights into the 

step-by-step decision-making process. However, the model's complexity can hinder 

interpretability, particularly with many boosting iterations. 

 

Overall, AutoFlex prioritises interpretable models, while TPOT and H2O AutoML 

lean towards complex models with higher predictive accuracy but reduced 

interpretability. Based on the problem domain's specific requirements, balancing 

interpretability and accuracy is crucial. 

 

4.3 STATISTICAL ANALYSIS OF THE RESULTS 

To gain deeper insights into the performance of different approaches, statistical 

analysis was conducted to evaluate the model scores and execution times of 

AutoFlex compared to TPOT and H2O. The goal was to determine if there were 

any significant differences between these approaches in terms of model 

performance and execution time. 

 

Table 7, Table 8, Table 9, and Table 10 summarise the statistical analysis performed 

on the model scores and execution times, providing information on the significance 

of differences between the approaches. The t-tests compare the means of two 

approaches, while the one-way ANOVA examines differences among all 

approaches. The p-values indicate the statistical significance of the comparisons, 

helping to determine if the observed differences are statistically significant or 

occurred by chance. 

 

4.3.1 MODEL SCORES ANALYSIS 

The model scores analysis focused on comparing the performance of AutoFlex with 

TPOT and H2O. The results of the t-tests for model scores comparison are as 

follows: 
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Table 7 

Comparison of Model Scores (t-tests) 

This table presents the t-statistic and p-value obtained from the t-tests comparing the model scores 

between AutoFlex and TPOT, AutoFlex and H2O, and TPOT and H2O. The t-tests assess the 

significance of differences in model scores between the compared approaches. 

 

Comparison t-statistic p-value 

AutoFlex vs. TPOT 14.767 1.92E-48 

AutoFlex vs. H2O -7.784 8.37E-15 

TPOT vs. H2O -16.456 1.98E-59 

 

The t-tests of model scores in Table 7 reveal significant differences between the 

AutoFlex, TPOT, and H2O AutoML approaches. When comparing AutoFlex with 

TPOT, a t-statistic of 14.7674 and a p-value of 1.92e-48 indicate a highly significant 

difference. This suggests that AutoFlex performs significantly better than TPOT in 

terms of model scores. Similarly, when comparing AutoFlex with H2O, a t-statistic 

of -7.7836 and a p-value of 8.37e-15 indicate a highly significant difference, 

indicating that AutoFlex outperforms H2O in model scores. Additionally, the t-

statistic of -16.4556 and the p-value of 1.98e-59 when comparing TPOT with H2O 

indicate a highly significant difference, implying that TPOT and H2O differ 

significantly in terms of model scores. These results highlight the superior 

performance of AutoFlex compared to TPOT and H2O AutoML in terms of model 

scores. 

 

Table 8 

One-way ANOVA for Model Scores 

Table 8 displays the F-statistic and p-value obtained from the one-way ANOVA analysis for model 

scores. The one-way ANOVA tests for significant differences in model scores among the compared 

approaches. 

 

 Variable F-statistic p-value 

Model 

Scores 228.157 3.48E-97 

Additionally, a one-way ANOVA was performed to analyse the overall differences 

in model scores among the approaches. The F-statistic in Table 8 was calculated to 

be 228.1566, and the p-value was found to be 3.48e-97, indicating a highly 

significant difference. This confirms that there are significant variations in model 

scores among AutoFlex TPOT, and H2O. 
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4.3.2 EXECUTION TIME ANALYSIS: 

The analysis of execution times aimed to compare the time efficiency of AutoFlex 

with TPOT and H2O. The results of the t-tests for execution times comparison are 

as follows: 

 

Table 9 

Comparison of Execution Times (t-tests) 

Table 9 provides the t-statistic and p-value resulting from the t-tests comparing the execution times 

between AutoFlex and TPOT, AutoFlex and H2O, and TPOT and H2O. The t-tests determine the 

significance of differences in execution times between the evaluated approaches. 

 

Comparison t-statistic p-value 

AutoFlex vs. TPOT -2.448 0.0174 

AutoFlex vs. H2O 2.609 0.0119 

TPOT vs. H2O 2.242 0.0294 

 

From the t-tests of execution times in Table 9, significant differences are observed 

between the execution times of AutoFlex, TPOT, and H2O AutoML. When 

comparing AutoFlex with TPOT, a t-statistic of -2.4477 and a p-value of 0.0174 

indicate a significant difference, suggesting that the execution time of AutoFlex is 

significantly shorter than that of TPOT. Similarly, when comparing AutoFlex with 

H2O, a t-statistic of 2.6090 and a p-value of 0.0119 indicate a significant difference, 

indicating that AutoFlex has a significantly shorter execution time compared to 

H2O. Additionally, the t-statistic of 2.2417 and the p-value of 0.0294 when 

comparing TPOT with H2O indicate a significant difference, implying that TPOT 

and H2O have significantly different execution times.  These results highlight the 

notable advantages of AutoFlex in terms of execution time compared to TPOT and 

H2O. AutoFlex demonstrates its efficiency and speed in generating results, making 

it a good choice for automating the ML process. 

 

Table 10 

One-way ANOVA for Execution Times 

Table 10 exhibits the F-statistic and p-value from the one-way ANOVA analysis for execution times. 

The one-way ANOVA examines if there are significant differences in execution times among the 

compared approaches. 

 

Variable F-statistic p-value 

Execution 

Times 5.506 0.00577 
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Furthermore, a one-way ANOVA was performed to assess the overall differences in 

execution times among the approaches. The F-statistic in Table 10 was calculated 

as 5.5060, and the p-value was found to be 0.0058, indicating a significant 

difference. This confirms that there are significant variations in execution times 

among AutoFlex, TPOT and H2O. 

 

In conclusion, AutoFlex outperforms TPOT and H2O regarding model scores and 

execution times. This highlights the superiority of AutoFlex in terms of both model 

performance and time efficiency, making it a highly effective and efficient AutoML 

solution. 

 

 

5 VISUALISATIONS AND INTERPRETABILITY 

In this section, visualisations are presented to enhance the understanding of the 

model performance and comparison results across different approaches. These 

visualisations provide insights into the relationship between model performance, 

execution time, and the distribution of model selections. Through visual analysis, 

interesting patterns and trends were observed, leading to potential hypotheses and 

opportunities for further investigation. These visual representations contribute to a 

deeper understanding of the strengths and weaknesses of each approach, facilitating 

a more insightful interpretation of the experimental findings. 

 

5.1 MODEL ACCURACY VARIATION 

In this subsection, I investigate the variation in model accuracy scores across 

different approaches when the percentage of observations in the dataset subsets is 

altered. The hypothesis is that the model accuracy scores obtained by AutoFlex, 

TPOT, and H2O AutoML will exhibit different degrees of variation based on dataset 

subset sizes. 

 

The results presented in Figure 2 and APPENDIX 2 provide insights into the model 

accuracy scores obtained by each approach for the dataset subsets categorised as 

25%, 50%, or 100% of the total observations. 
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Figure 2 

Comparison of model accuracy scores across different approaches for each subset. 

The figure compares model accuracy scores across different approaches for each subset. Subset IDs 

1-10 represent 25% of observations. Subset IDs 11-20 represent 50% of observations. Subset IDs 

21-30 represent 100% of observations. The x-axis represents Dataset_IDs 1-10, and the y-axis 

represents Model Accuracy scores. 

 

 

 

The analysis of Figure 2 reveals interesting observations. AutoFlex consistently 

achieves high model accuracy scores across all dataset subsets, indicating its robust 

generalisation capability and accurate predictions regardless of dataset size. 

 

In contrast, TPOT exhibits relatively consistent model accuracy scores across 

different dataset subsets, suggesting a relative insensitivity to changes in the 

percentage of observations. TPOT maintains a stable level of accuracy, although its 

scores are generally lower than AutoFlex. 

 

H2O AutoML demonstrates more pronounced variation in model accuracy scores 

with changing percentages of observations. It tends to perform better on larger 
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datasets, indicating sensitivity to dataset size. However, the accuracy scores of H2O 

AutoML consistently fall behind both AutoFlex and TPOT. 

 

 

The observed variations can be attributed to the underlying algorithms, optimisation 

strategies, and model selection processes employed by each approach. AutoFlex's 

consistent performance may stem from its adaptive and optimised model selection 

process, resulting in accurate models across different dataset sizes. In contrast, 

TPOT and H2O AutoML may exhibit different behaviours due to their respective 

approaches to model selection and optimisation, leading to varying levels of 

sensitivity to changes in dataset size.  

 

These findings enhance the understanding of the performance characteristics of 

AutoFlex, TPOT, and H2O AutoML concerning dataset sizes and provide valuable 

insights for selecting the most suitable approach. 

 

5.2 EXECUTION TIME VARIATION 

This subsection examines the variation in execution times across different 

approaches when the percentage of observations in the dataset subsets is changed. 

The hypothesis is that the execution times of AutoFlex, TPOT, and H2O AutoML 

will display varying degrees of variation based on the dataset subset sizes. The 

results presented in Figure 3 and Table APPENDIX 2 provide insights into the 

execution times obtained by each approach for the dataset subsets categorised as 

25%, 50%, or 100% of the total observations. 

 

Upon analysing the data, several interesting observations can be made. AutoFlex 

consistently demonstrates shorter execution times across all dataset subsets, 

indicating its efficiency in model generation. For instance, in the iris dataset subset, 

AutoFlex exhibits execution times of 15.37 seconds, 31.097 seconds, and 61.619 

seconds for subsets representing 25%, 50%, and 100% of observations in the 

California housing dataset, respectively. These results suggest that AutoFlex's 

execution time increases as the dataset size increases. 
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Figure 3 

Execution Time Distribution for Each Approach 

This figure presents the distribution of execution times for AutoFlex, TPOT, and H2O AutoML 

across datasets. The box plots depict the variability in execution times, while the dots on the boxes 

indicate the percentage of observations. Lighter dots represent 25% of observations, darker dots 

represent 50% of observations, and the darkest dots represent 100% of observations. The 

visualisation provides insights into the execution time patterns and allows for a comparative analysis 

of time efficiency among the approaches. 

 

 

 

In comparison, TPOT and H2O AutoML exhibit longer execution times, with 

varying degrees of increase as the percentage of observations in the dataset subsets 

increases. For example, in the California housing dataset subset, TPOT requires 

execution times of 858.111 seconds, 1394.041 seconds, and 3765.884 seconds for 

subsets representing 25%, 50%, and 100% of observations, respectively. Similarly, 

H2O AutoML shows execution times of 307.1827 seconds, 307.6791 seconds, and 

307.7052 seconds for the same subsets. These results indicate that TPOT has a 

considerable increase, and H2O AutoML may experience slightly increased 

execution times as the dataset size grows. 
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The observed variations in execution times align with the hypothesis, demonstrating 

that the execution times of AutoFlex, TPOT, and H2O AutoML exhibit different 

degrees of variation based on the dataset subset sizes.  

 

5.3 RELATIONSHIP BETWEEN EXECUTION TIME AND MODEL 

PERFORMANCE 

This subsection explores the relationship between execution time and model 

performance for each approach, as depicted in the scatter plot. The hypothesis of 

this analysis is that longer execution times would correspond to higher model 

accuracy if increased computational resources and time would result in improved 

performance. Figure 4 visually represents the scatter plots of the relationship 

between model accuracy on the x-axis and execution time on the y-axis for each 

approach, i.e., TPOT, AutoFlex, and H2O AutoML for each subset.  

 

The correlation coefficients between execution time and model performance for 

each approach are TPOT: -0.3888, AutoFlex: -0.2065 and H2O AutoML: -0.0766.  

A negative correlation coefficient indicates an inverse relationship between the 

variables. Contrary to the initial hypothesis, the analysis reveals that as execution 

time increases, model performance tends to decrease for all three approaches. This 

finding contradicts the assumption that longer execution times would result in 

higher model accuracy. 

 

The observed negative correlation suggests that other factors, such as the 

complexity of the algorithms used or the effectiveness of the optimisation strategies, 

may have a more significant impact on model performance than the duration of 

execution time alone. These findings highlight the importance of considering 

various aspects beyond execution time when evaluating and comparing the 

performance of different approaches.  
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Figure 4 

Scatter Plots Representing the Relationship between Execution Time and Model 

Performance 

The scatter plot represents the relationship between execution time and model performance for each 

approach. Subset IDs 1-10 represent 25% of observations. Subset IDs 11-20 represent 50% of 

observations. Subset IDs 21-30 represent 100% of observations. The x-axis displays the Model 

Accuracy, while the y-axis represents the Execution Time. 

 

 

 

Overall, analysing the relationship between execution time and model performance 

provides insights into the complex dynamics at play and challenges the initial 

hypothesis that longer execution times would lead to higher accuracy. It emphasises 

the need to comprehensively evaluate multiple factors influencing model 

performance in AutoML approaches. 
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6 SUMMARY & DISCUSSIONS 

6.1 SUMMARY OF KEY FINDINGS 

In this study, I developed and evaluated an AutoML approach (AutoFlex) and 

compared it with two existing frameworks, TPOT and H2O AutoML. The key 

findings from my research can be summarised as follows: 

 

MODEL PERFORMANCE 

AutoFlex consistently achieved high accuracy or R2 scores across multiple datasets, 

outperforming TPOT and demonstrating competitive performance compared to 

H2O AutoML. TPOT exhibited negative scores in some cases, indicating potential 

difficulties in fitting the data well. H2O AutoML showed mixed performance, 

suggesting that its effectiveness may vary depending on the dataset characteristics. 

 

EXECUTION TIME 

AutoFlex demonstrated significantly faster execution times compared to TPOT and 

H2O AutoML. The reduced execution time of AutoFlex facilitated quicker 

experimentation and exploration of models and hyperparameters and accelerated 

the overall ML pipeline. TPOT and H2O AutoML required longer execution times, 

potentially due to their automated and resource-intensive nature. 

 

INTERPRETABILITY 

AutoFlex leverages interpretable models such as Random Forest Classifier, 

Gradient Boosting Regressor, and Decision Tree Classifier, providing transparency 

in the decision-making process. TPOT and H2O AutoML tend to generate more 

complex models, compromising their interpretability. The trade-off between 

interpretability and accuracy should be considered based on the requirements of the 

problem domain. 

 

STATISTICAL ANALYSIS 

The statistical analysis of model scores and execution times confirmed the 

significant differences between AutoFlex and TPOT/H2O AutoML. The t-tests and 

one-way ANOVA provided strong evidence of the superior performance and faster 

execution times of AutoFlex compared to the other frameworks. 
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Overall, the proposed approach, AutoFlex, offers customizability, high model 

performance, faster execution times, and interpretability. TPOT and H2O AutoML 

provide automation and scalability but sacrifice some control, interpretability, and 

efficiency. The choice of the AutoML framework depends on the specific 

requirements, trade-offs, and priorities of the task at hand. 

 

6.2 SUMMARY OF AUTOML APPROACHES  

AutoFlex is characterised by its customizability, competitive performance, 

and efficiency. It allows for flexible customisation of pre-processing 

techniques, feature selection methods, and model configurations. AutoFlex 

demonstrates competitive model performance across multiple datasets and 

exhibits lower execution times than TPOT and H2O AutoML, resulting in 

faster model development and deployment. However, AutoFlex has 

limitations in terms of limited model diversity, as it focuses on widely used 

ML models, which may restrict its applicability to specialised domains. 

Additionally, AutoFlex may face scalability challenges when dealing with 

large datasets or complex models that require distributed computing 

capabilities. 

 

TPOT offers a fully automated approach, selecting and optimising pipeline 

components and hyperparameters without manual intervention. It excels in 

search efficiency, efficiently exploring a varied search space to identify the 

best pipeline configuration within limited resources. However, TPOT has 

limitations in terms of limited customizability, as fine-grained control over 

pipeline design and hyperparameters is lacking. This may restrict the ability 

to tailor the solution to specific problem requirements. Furthermore, TPOT's 

automated nature increases computational requirements, potentially resulting 

in longer execution times and resource-intensive processes. 

 

H2O AutoML provides an end-to-end automated pipeline, handling data pre-

processing, feature engineering, model selection, and hyperparameter 

optimisation. It excels in scalability, being designed to handle large datasets 

through distributed computing and parallel processing efficiently. However, 
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H2O AutoML has limitations in terms of limited customizability compared 

to AutoFlex. The level of control over pipeline components and 

hyperparameters is more restricted, which may impact the ability to tailor the 

solution to specific problem requirements. Additionally, H2O AutoML’s 

comprehensive nature and inclusion of numerous algorithms can lead to 

complex pipelines that are challenging to interpret. 

 

In conclusion, AutoFlex stands out for its customizability, competitive 

performance, and efficiency. TPOT offers automation and search efficiency, 

while H2O AutoML provides an automated pipeline and scalability. The 

choice of approach depends on specific requirements, computational 

resources, and the desired balance between customizability and automation. 

 

6.3 EVALUATION OF THE RESEARCH QUESTIONS AND 

OBJECTIVES 

In this section, I evaluate the research questions and objectives posed in this 

research to determine the extent to which they have been achieved. The research 

questions and objectives are as follows: 

 

RESEARCH QUESTIONS 

Research Question 1: What are the strengths, limitations, and interpretability of 

existing AutoML frameworks and techniques in addressing the challenges of 

algorithm selection, hyperparameter optimisation, feature engineering, scalability, 

and interpretability? 

 

A comprehensive evaluation of existing AutoML frameworks and techniques was 

conducted to address this research question. The strengths and limitations of each 

approach were assessed, focusing on their performance in algorithm selection, 

hyperparameter optimisation, feature engineering, scalability, and interpretability. 

This evaluation involved the comparison of different AutoML approaches on 

diverse datasets, analysing their performance metrics, interpretability measures, and 

scalability characteristics. By systematically evaluating and comparing these 

frameworks, valuable insights were gained regarding their strengths and limitations 

in addressing the identified challenges. 
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Research Question 2: How can novel algorithms and approaches be developed to 

improve algorithm selection, hyperparameter optimisation, pre-processing steps, 

feature engineering, scalability, and interpretability in AutoML? 

 

To address this research question, innovative algorithms and approaches were 

developed to enhance various aspects of AutoML. Advanced techniques were 

proposed in algorithm selection to intelligently identify the most suitable algorithms 

based on dataset characteristics. For hyperparameter optimisation, novel 

optimisation algorithms were explored to search the hyperparameter space and 

improve model performance efficiently. Additionally, new techniques for pre-

processing steps, feature engineering, scalability, and interpretability were 

developed to overcome existing limitations. These approaches aimed to improve 

the overall performance, efficiency, and interpretability of AutoML systems, 

providing alternative strategies for algorithm selection, hyperparameter 

optimisation, and feature engineering. 

 

RESEARCH OBJECTIVES 

To evaluate the strengths, limitations, and interpretability of existing AutoML 

frameworks., A comprehensive evaluation framework was developed, considering 

multiple performance metrics, interpretability measures, and scalability factors. 

Diverse datasets were used to assess the performance and interpretability of existing 

AutoML frameworks, providing insights into their strengths, limitations, and 

applicability in addressing specific challenges. 

 

To develop novel algorithms and approaches to improve AutoML, an innovative 

approach, AutoFlex, was proposed and implemented. These novel techniques aimed 

to enhance the core components of AutoML, including algorithm selection, 

hyperparameter optimisation, pre-processing steps, feature engineering, scalability, 

and interpretability. The developed algorithms and approaches offered alternative 

strategies and solutions to overcome existing limitations and improve the overall 

performance and usability of AutoML systems. 

 

To conduct a comprehensive evaluation of the proposed algorithms and approaches 

in comparison to existing AutoML frameworks, a comparative analysis was 
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performed to evaluate the proposed algorithms and approaches against existing 

AutoML frameworks. This evaluation involved rigorous experimentation and 

performance analysis on diverse datasets, considering multiple evaluation metrics. 

The results were analysed and compared to determine the effectiveness and 

performance of the proposed algorithms and approaches in improving algorithm 

selection, hyperparameter optimisation, pre-processing steps, feature engineering, 

scalability, and interpretability. 

 

To assess the impact of the developed algorithms and approaches on model 

performance, interpretability, and scalability, the impact of performance metrics, 

interpretability measures, and scalability factors was analysed to evaluate the 

effectiveness of the proposed techniques in improving these aspects of AutoML. 

Comparative analysis was conducted to identify the strengths and advantages of the 

developed algorithms and approaches compared to existing AutoML frameworks. 

 

To provide recommendations and guidelines for practitioners and researchers in 

selecting appropriate AutoML frameworks., A comprehensive set of 

recommendations and guidelines were formulated based on evaluating and 

comparing AutoML frameworks and techniques. The strengths, limitations, and 

applicability of different approaches were considered, considering specific 

requirements such as dataset characteristics, interpretability needs, and 

computational resources. These recommendations and guidelines aim to assist 

practitioners and researchers in making informed decisions when selecting AutoML 

frameworks and techniques for their specific needs. 

 

By evaluating the research questions and objectives, this study has provided 

valuable insights into the strengths and limitations of existing AutoML frameworks 

and techniques. Additionally, the development of novel algorithms and approaches 

has contributed to the advancement of algorithm selection, hyperparameter 

optimisation, pre-processing steps, feature engineering, scalability, and 

interpretability in AutoML. The comprehensive evaluation of the proposed 

techniques has demonstrated their effectiveness in improving model performance, 

interpretability, and scalability. The insights gained from this research provide 

practical recommendations and guidelines for practitioners and researchers in 
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selecting appropriate AutoML frameworks and techniques to enhance their AutoML 

processes. 

 

6.4 CONTRIBUTIONS TO THE FIELD OF AUTOML 

The research presented in this master's thesis has made significant contributions to 

the field of AutoML. These contributions can be summarised as follows: 

 

COMPREHENSIVE EVALUATION OF EXISTING AUTOML FRAMEWORKS 

A thorough evaluation of existing AutoML frameworks and techniques was 

conducted, providing a comprehensive assessment of their strengths, limitations, 

and applicability in addressing critical challenges in algorithm selection, 

hyperparameter optimisation, feature engineering, scalability, and interpretability. 

This evaluation offers valuable insights into the current state-of-the-art in AutoML. 

 

PROPOSAL OF NOVEL ALGORITHMS AND APPROACHES 

Novel algorithms and approaches were proposed to improve various aspects of 

AutoML. These innovative techniques offer alternative strategies for algorithm 

selection, hyperparameter optimisation, pre-processing steps, feature engineering, 

scalability, and interpretability, expanding the range of options available for 

AutoML. These contributions, referred to as AutoFlex, advance AutoML 

techniques. 

 

IMPLEMENTATION OF A SCALABLE AND FLEXIBLE AUTOML PIPELINE 

A scalable and flexible AutoML pipeline was implemented, integrating different 

models, pre-processing techniques, and evaluation metrics. The pipeline 

incorporates grid search with cross-validation to optimise model performance and 

automatically select the best hyperparameters and pre-processing steps. This 

practical implementation serves as a valuable resource that can be utilised and 

extended by researchers and practitioners in the field. 

 

INSIGHTS INTO THE TRADE-OFFS BETWEEN PERFORMANCE AND 

INTERPRETABILITY 

Through the evaluation and comparison of different AutoML approaches, this 

research provides insights into the trade-offs between model performance and 

interpretability. By employing interpretable models and analysing their decision-
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making processes, the research highlights the importance of balancing accuracy and 

transparency in AutoML. 

 

CONTRIBUTION TO ACADEMIC KNOWLEDGE 

The research presented in this master's thesis contributes to the academic 

knowledge in the field of AutoML. The comprehensive evaluation, proposed 

algorithms, and practical implementation provide a valuable resource for 

researchers and practitioners to deepen their understanding of AutoML and advance 

the state-of-the-art. The findings and insights gained from this research can serve 

as a basis for further studies and investigations in the field.  

 

Overall, this research contributes to the field of AutoML through evaluations, novel 

algorithms, a scalable pipeline, insights into trade-offs, guidelines for model 

selection, and advancing academic knowledge, enhancing AutoML's understanding 

and effectiveness. 

 

6.5 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

Despite the significant contributions made by this master thesis to the field of 

AutoML, certain limitations should be acknowledged. These limitations open 

opportunities for future research and further advancements in the field. The 

limitations and potential future research directions are discussed below: 

 

One limitation is the limited dataset coverage in the evaluation and experiments 

conducted in this research. While efforts were made to include diverse datasets, the 

coverage may not be exhaustive, warranting future research to focus on expanding 

the dataset coverage to include a broader range of datasets from different domains, 

sizes, and characteristics. 

 

Another limitation is the algorithm selection bias, as the evaluation focused on 

existing literature and commonly used models. Future research can explore and 

incorporate additional algorithms, such as ensemble methods, meta-learning 

approaches, and novel ML algorithms, to comprehensively compare and evaluate 

AutoML frameworks. 
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While interpretability was addressed in this research, the evaluation primarily 

focused on the interpretability of individual models. Future research can delve 

deeper into interpretability metrics and techniques tailored explicitly for AutoML 

systems. This can involve the development of novel interpretability measures, 

evaluation frameworks, and visualisation techniques to assess and enhance the 

interpretability of the entire AutoML pipeline. 

 

Scalability and efficiency are crucial considerations for AutoML frameworks, 

mainly when dealing with large-scale datasets or resource-constrained 

environments. Future research can explore techniques for improving the scalability 

and efficiency of AutoML, such as distributed computing, parallelisation, and 

optimisation algorithms. Additionally, advancements in hardware and computing 

technologies can be leveraged to develop more efficient and scalable AutoML 

systems. 

 

This research primarily focused on structured datasets, and future research can 

explore the adaptation and extension of AutoML frameworks to effectively handle 

and process unconventional data types, such as text, images, time series, and graphs. 

This would enable AutoML in broader problems and domains. 

 

Incorporating human expertise and domain knowledge into the AutoML process 

can enhance model interpretability, address ethical concerns, and improve overall 

performance. Future research can investigate the integration of human-in-the-loop 

approaches in AutoML, such as interactive model exploration, interactive feature 

selection, and user-guided optimisation. These approaches can empower domain 

experts to interact with and influence the AutoML process, leading to more 

transparent and effective model development. 

 

The lack of standardisation in evaluation metrics and benchmark datasets poses a 

challenge in comparing and replicating AutoML results across different studies. 

Future research can focus on developing standardised benchmark datasets, 

evaluation metrics, and protocols for AutoML. This would enable fair and 

consistent comparisons between different AutoML frameworks and techniques, 

facilitating advancements in the field. 
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By addressing these limitations and exploring the proposed research directions, 

further advancements can be made, and these avenues of research will contribute to 

the continued development and improvement of AutoML systems, enabling more 

effective and reliable AutoML. 

 

 

7 CONCLUSION 

In this research, the field of Automated Machine Learning (AutoML) has been 

explored, and several key research questions related to algorithm selection, 

hyperparameter optimisation, feature engineering, scalability, and interpretability 

have been addressed. Through a comprehensive review and evaluation of existing 

AutoML frameworks and techniques, valuable insights into their strengths, 

limitations, and applicability have been gained. 

 

The research has contributed to the field of AutoML by proposing a novel approach 

that combines the benefits of well-established algorithms with automated pre-

processing techniques. By leveraging a range of algorithms, including Random 

Forest Classifier, Gradient Boosting Regressor, and Decision Tree Classifier, highly 

interpretable models have been achieved. Additionally, pre-processing techniques 

such as StandardScaler, RobustScaler, and OneHotEncoder have been developed to 

enhance the quality of the input data. 

 

Through extensive experiments and comparisons across multiple datasets, the 

effectiveness and performance of AutoFlex have been demonstrated. The 

visualisation and interpretation of the results have provided valuable insights into 

the relationship between model performance, execution time, and interpretability. 

 

However, it is essential to acknowledge the limitations of this research. The dataset 

coverage was limited, and the evaluation focused on specific algorithms and pre-

processing techniques. Future research should address these limitations by 

expanding the dataset coverage, considering a more comprehensive range of 

algorithms, and exploring novel pre-processing techniques. 
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Despite these limitations, the contributions made by this research have advanced 

the field of AutoML. The comprehensive analysis of existing frameworks has 

provided a deeper understanding of their strengths and limitations, guiding 

practitioners and researchers in selecting suitable AutoML techniques. The proposal 

of the novel approach, AutoFlex, has demonstrated its effectiveness in achieving 

highly interpretable models. The experiments and evaluations have provided 

empirical evidence of the performance and interpretability of the models generated 

by AutoFlex. 

 

The findings and insights from this research have practical implications for 

practitioners and researchers in the field. The recommendations and guidelines can 

assist in the selection and implementation of appropriate AutoML techniques, 

considering factors such as dataset characteristics, interpretability requirements, 

and computational resources. The proposed approach, AutoFlex, offers a flexible 

and interpretable solution for AutoML, paving the way for improved model 

development and deployment. 

 

As AutoML continues to evolve and gain prominence, further research and 

advancements are necessary to overcome existing limitations and maximise its 

potential in addressing complex real-world problems. The findings and insights 

from this research can guide practitioners and researchers in selecting appropriate 

AutoML techniques and improving the development of AutoML systems. With 

continued advancements, AutoML has the potential to revolutionise ML and enable 

more efficient and reliable automated decision-making.  
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9 APPENDICES 

APPENDIX 1. CODE SNIPPETS AND PSEUDOCODE FOR AUTOFLEX 

This section provides code snippets and pseudocode for the AutoFlex framework. 

The code snippets demonstrate key components and functionalities of AutoFlex, 

including algorithm selection, hyperparameter optimisation, feature engineering, 

and model evaluation. 

 

The code snippets and pseudocode can be accessed in the GitHub repository for this 

thesis project, available at the following link: AutoFlex GitHub Repository.  

 

The repository contains the following files and folders: 

 

Readme file: This is a comprehensive guide to the AutoFlex framework. It provides 

an overview of the project, instructions on how to use and navigate the repository, 

and explanations of the various files and folders present. 

 

Dataset folder: This folder contains the datasets used in the experiments conducted 

with AutoFlex. 

 

AutoFlex Python code: This file contains the complete implementation of the 

AutoFlex framework in Python. It includes code for algorithm selection, 

hyperparameter optimisation, feature engineering, and model evaluation. 

 

Experiment - AutoFlex: This file presents the experimental setup and results of 

applying the AutoFlex framework to various datasets. It provides a step-by-step 

walkthrough of the experiments conducted and includes the corresponding code 

snippets. 

 

H2O result: This file contains the experimental results and performance metrics 

obtained using the H2O AutoML framework. 

 

TPOT results: This file contains the experimental results and performance metrics 

obtained using the TPOT framework. 

 

https://github.com/nsprudhvi/AutoFlex
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AutoFlex Results: This folder contains CSV files that provide detailed results for 

each dataset used in the experiments. Each CSV file corresponds to a specific 

dataset and includes performance metrics, model evaluations, and other relevant 

information. 

 

The code snippets and pseudocode serve as a reference for researchers, 

practitioners, and developers interested in understanding and implementing the 

AutoFlex framework. They offer insights into the underlying algorithms and 

techniques used in AutoFlex. They can be utilised as a starting point for building 

custom AutoML systems or extending the functionality of the existing framework. 

 

By making the code snippets and pseudocode available, transparency, 

reproducibility, and further research in the field of Automated Machine Learning 

(AutoML) are promoted. Researchers and practitioners can leverage this code to 

experiment, evaluate, and enhance the AutoFlex framework, contributing to the 

advancement of AutoML techniques. 

 

Please refer to the GitHub repository for detailed code snippets and pseudocode 

examples. 

  

https://github.com/nsprudhvi/AutoFlex
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APPENDIX 2. ADDITIONAL EXPERIMENTAL RESULTS 

Please find the additional experimental results, which provide insights into the 

performance of the various AutoML approaches on various subsets.  

 

subset 

id 

% 

Observations TPOT time 

TPOT 

score 

AutoFlex 

time 

AutoFlex 

score 

H2O 

score H2O time 

1 50 11.3174 1.0000 0.234 1 0.0000 299.4589 

2 25 18.6722 1.0000 1.6476 1     

3 100 104.2202 1.0000 0.2208 0.95 0.3060 300.4525 

4 50 55.5686 1.0000 2.5347 1 0.5200 307.3777 

5 100 136.1373 1.0000 2.4179 0.9857 0.1210 299.2099 

6 25 18.3907 1.0000 1.916 1     

7 25 62.1153 0.0000 1.5536 0.7199 0.3918 295.9526 

8 100 78.6791 0.0000 1.5288 0.9427 0.2296 306.3068 

9 50 77.7792 0.0000 0.8817 0.9382 0.2777 299.7177 

10 50 112.8010 0.0000 2.3265 0.7736 0.4760 298.5576 

11 25 74.5872 0.0000 1.7511 0.704 0.3259 299.0544 

12 100 142.5261 0.0000 2.9757 0.8706 0.7352 306.3237 

13 25 83.2290 0.9655 3.1438 0.9909 0.3300 299.0565 

14 100 113.8769 0.9561 1.5556 0.9802 0.1860 301.3412 

15 50 146.8045 0.8947 4.1173 0.9868 0.2810 299.1535 

16 100 177.6620 0.8551 3.8609 0.8913 0.8850 299.331 

17 25 98.1980 0.8286 3.6914 0.9053 0.9140 299.4442 

18 50 90.0852 0.8841 2.9864 0.8877 0.9040 298.9338 

19 100 110.0856 0.7727 3.5765 0.7688 0.1554 294.89 

20 25 65.3615 0.7436 0.5166 0.7843 0.1630 298.8632 

21 50 120.7857 0.7532 0.5116 0.8081 0.1757 298.4761 

22 50 316.6925 0.8774 17.08 0.8788     

23 25 23.6328 1.0000 5.0032 0.9048     

24 100 367.1847 0.8626 35.623 0.8874     

25 25 82.6052 0.9889 10.107 0.9526 0.4600 300.2729 

26 100 1118.4629 0.9778 20.344 0.9805 0.2731 305.1297 

27 50 700.4246 0.9833 7.1832 0.9791 0.4240 301.2625 

28 50 1394.0410 0.0000 31.097 0.8041 0.1604 307.6791 

29 25 858.1110 0.0000 15.37 0.7803 0.1459 307.1827 

30 100 3765.8836 0.0000 61.619 0.8052 0.1809 307.7052 
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