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MEASURING AGREEMENT USING GUESSING MODELS AND KNOWLEDGE
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Several measures of agreement, such as the Perreault–Leigh coefficient, the AC1, and the recent
coefficient of van Oest, are based on explicit models of how judges make their ratings. To handle such
measures of agreement under a common umbrella, we propose a class of models called guessing models,
which contains most models of how judges make their ratings. Every guessing model have an associated
measure of agreementwe call the knowledge coefficient.Under certain assumptions on the guessingmodels,
the knowledge coefficient will be equal to the multi-rater Cohen’s kappa, Fleiss’ kappa, the Brennan–
Prediger coefficient, or other less-establishedmeasures of agreement.We provide several sample estimators
of the knowledge coefficient, valid under varying assumptions, and their asymptotic distributions. After
a sensitivity analysis and a simulation study of confidence intervals, we find that the Brennan–Prediger
coefficient typically outperforms the others, with much better coverage under unfavorable circumstances.
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The most popular measures of agreement are chance-corrected. These can usually be written on
the form

pa − pca
1 − pca

, (0.1)

where pa is the percent agreement and pca is a notion of chance agreement. The best known
coefficients in this class are the (weighted) Cohen’s kappa 1960; 1968, Krippendorff’s 1970
alpha, Scott’s 1955 pi, and Fleiss’ 1971 kappa. The difference between these measures lies solely
in their definition of the chance agreement, pca . These coefficient make few to no assumptions
about the underlying distribution of ratings, and can be regarded as non-parametric.

It is also possible tomodel the judgment process directly, and then attempt to derive reasonable
chance-correctedmeasures of agreement from thesemodels (Janes, 1979) . Examples ofmeasures
of agreements developed in this way include the Perreault–Leigh coefficient (Perreault & Leigh,
1989) , theAC1 (Gwet, 2008) ,Maxwell’s RE coefficient (Maxwell, 1977) , Aickin’s α (Aickin,
1990) , the estimators of Klauer and Batchelder (1996), and the more recent coefficient of van
Oest (van Oest, 2019; van Oest & Girard, 2021) . These measures of agreement depend on the
parameters of the underlying judgment process, and may be considered semi-parametric instead
of non-parametric. The models used by the above-mentioned authors may be called guessing
models, as they represent ratings as being either known or guessed.

To make it clear what these models are about, consider the “textbook case argument” of
Grove et al. (1981) (see Gwet 2014, Chapter 4, for an extended justification). When two judges
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classify people into, say, psychiatric categories, some people are bound to be “textbook cases”,
i.e., being classifiable without much effort. Disagreement between competent judges will mostly
occur when subjects are hard to classify, when the judges have to guess. But judges may agree on
hard subjects as well, simply due to chance. We can then define a coefficient of “agreement due
to knowledge” as the proportion of textbook cases.

The guessing model, introduced in the next section, will encompass the textbook case model
and many more. As we will show, it is a generalization of several judgment process models
discussed in the literature on measures of agreement. Any guessing model is associated with
a knowledge coefficient, a measure of agreement defined directly from its parameters. These
coefficients generalize the “agreement due to knowledge” from Grove’s textbook case to more
general settings. The knowledge coefficient can, under various additional assumptions, be easily
estimated from the data; the details are in Theorem 2. In some cases, it equals already established
coefficients such as the Brennan–Prediger coefficient Brennan and Prediger (1981) or Fleiss’
kappa, but we will establish some less familiar formulas as well. We provide methods for doing
inference for our proposed coefficients, based on the delta rule and the theory of U -statistics.
Using sensitivity analyses and confidence interval simulations, we find that the Brennan–Prediger
coefficient generally outperforms its competitors as an estimator of the knowledge coefficient,
with reasonably small bias and variance in a variety of circumstances.

1. Guessing Models

We work in the setting where one rating is definitely true, such as psychiatric diagnoses. Thus
we exclude problems such as measuring agreement between movie reviewers, where there is no
true rating.We also excludemeasures of agreement between continuousmeasurement instrument,
as continuous ratings are rarely exactly right. For instance, an instrument for measuring blood
glucose may be decidedly better than another, but will never be precisely on the spot.

We will consider only agreement studies with a rectangular design, i.e., when R judges rate
n items into one of C < ∞ categories, with every item being rated exactly once by every judge.
Moreover, we will understand the set of judges as fixed and the set of items as being random and
increasing with n. These assumptions may not be necessary for all of the results in this paper, but
willmake the presentation easier to follow, and are necessary for the asymptotic results. Denote the
probability that the R judges will rate an item as belonging to the categories x = (x1, x2, . . . xR)

by p(x).
The joint distribution of the guessing model is

p(x | s, x�) =
R∏

r=1

[
sr1[xr = x�] + (1 − sr )qr (xr )

]
. (1.1)

where

• xr is the rating given by the r th judge on an item.
• s = {s1, s2, . . . , sr } are the skill-difficulty parameters, the probabilities that the r th judge

knows the correct classification of an item. The skill-difficulty parameters can be deter-
ministic or random. For instance, they can be sampled from a Beta distribution.

• x� is the true classification the item, an unknown latent variable. These are assumed to be
independent of the skill-difficulty parameters s. The distribution of x� is t (x�), the true
rating distribution.

• qr (x) are the guessing distributions, the distributions the ratings are drawn from when the
r th judge does not know the true classification of the item.
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We may use t (x�) to remove the dependence on x�
i from the univariate guessing model, giving

p(xr | s) = sr t (xr ) + (1 − sr )qr (xr ). (1.2)

The interpretation of p(xr | s) is straight-forward. When faced with an item, a judge r knows
its true classification, drawn from t (x), with probability sr . If the judge doesn’t know the true
classification, the rating will be drawn at random from his potentially idiosyncratic guessing
distribution qr (x). We do not allow for guessing distributions qr that depend both on both the true
classification x� and the judge, as it would make the parameters unidentifiable.

We have said nothing about the joint distribution of (s1, s2, . . . , sR, x�) except that x� is
independent of the skill-difficulty parameters. This assumption is not realistic in all situations. For
instance, correctly diagnosing patients with Down syndrome is easier than correctly diagnosing
patients with ADHD, implying that E[sr | x� = Down syndrome] dominates E[sr | x� =
ADHD], which violates independence of sr and x�. The independence assumption is not needed
for the definition of the guessing model to make sense, but will be used in the remainder of the
paper as it is required for Theorem 2.

In most settings with latent parameters one would decide on a model for them, such as
multivariate normal in the case of linear random effects models. Instead of following this route, we
will impose additional assumptions on the skill-difficulty parameters s, the guessing distributions
qr , and/or the true distribution t to make the problem manageable.

The guessing model 1.1 has, to our knowledge, not been presented in this generality before.
Klauer andBatchelder (1996,Theorem5andSection9) define amodel of almost as highgenerality,
but does not allow the the skill-difficulty parameters to differ between items.

1.1. Knowledge Coefficient

We have introduced the guessing model in order to define the notion of “agreement due to
knowledge” in a precise way. To gain an intuition about what we’re getting at, first consider
the case of two judges with potentially different, but deterministic, skill-difficulty parameters
s1 and s2. The probability that two judges agree on the classification of an item because they
both know its classification is the product of their skill parameters, or ν = s1s2. As “agree on
classification of an item because they both know its classification” is cumbersome to read, we will
call it “knowledgeable agreement” or “agree knowledgeably” from now. Extending this notion to

R judges, ν = (R
2

)−1 ∑
r1>r2 sr1sr2 is the probability that a randomly selected pair of judges will

agree knowledgeably on a pair of ratings.
Another simple case happenswhen there are R judgeswith random skill-difficulty parameters

that do not wary across judges when the item is fixed, i.e., S1 = S2 = · · · = SR , where we use
capital letters to emphasize that the Sr are random.Now E(S2r ) is the probability of knowledgeable
agreement. Finally, in the general guessing model, we find that the probability of knowledgeable
agreement among two judges is

ν =
(
R

2

)−1 ∑

r1>r2

E[Sr1 Sr2 ]. (1.3)

1.2. Earlier Guessing Models

The guessing model and its associated knowledge coefficient are extensions, formalizations,
or slight modifications of models or coefficients used in several earlier papers.
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1.2.1. The Two Models of Maxwell (1977) Maxwell (1977, Section 3) works in the setting of
two judges and binary ratings. From his Table II one can derive the the joint model for two ratings
x1, x2 by two judges as

p(x1, x2) = αp(x1)1[x1 = x2] + (1 − α)p(x1)p(x2), (1.4)

where p is the marginal distribution of the data. Maxwell then shows that α = Cor(X1, X2).
Maxwell’s joint distribution is the unconditional variant of a guessing model (1.1) with two

judges, i.e., a model on the form

p(x1, x2 | s, x�) = {s11[x1 = x�] + (1 − s1)qr (x1)}{s21[x2 = x�] + (1 − s2)qr (x2)}

with associated knowledge coefficient ν = α. The guessing model satisfies

(i) The judges’ guessing distributions are equal to the marginal distribution, i.e., q1(x) =
q2(x) = p(x).

(ii) The true distribution is assumed to be equal to the marginal distribution, i.e., t (x) =
p(x).

(iii) Both judges share the same skill-difficulty parameter s. It is Bernoulli distributed with
success probability α, so that α = P(s = 1) = Es2. Then s will 1 if the the case is easy
to judge (i.e., a textbook case) and 0 otherwise, and the probability of an item being a
textbook case is α.

In Section 4, Maxwell (1977) is still working with binary data and two judges. He describes a
guessing model where (iii) above still holds, but (i) and (ii) are replaced with

(i) Both the judges’ guessing distributions are uniform, i.e., q1(x) = q2(x) = 1/2 and
(ii) The true distribution t (x) is arbitrary.

Then he derives the knowledge for this model, the Maxwell RE (abbreviation of random error)
coefficient for binary data, a special case of the Brennan–Prediger coefficient,

νBP = pa − 1/C

1 − 1/C
, (1.5)

where C , in this case equal to 2, is the number of categories.

1.2.2. Perreault–Leigh Coefficient (1989) Perreault and Leigh (1989) devise an explicit model
for the rating procedure involving two judges andC < ∞ categories. Using an index for reliability
s ∈ [0, 1], they define the univariate model

p(x) = st (x) + (1 − s)C−1. (1.6)

The model is similar to the second Maxwell model, except that the skill-difficulty parameters are
deterministic and constant across judges and the number of categories is arbitrary. The guessing
distributions are uniform, q1 = q2 = 1/C , and t (x) is arbitrary. From this model they derive that
s = √

(pa − 1/C)/(1 − 1/C) = √
νBP , the square root of the Brennan–Prediger coefficient.

Hence the knowledge coefficient is ν = s2.
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1.2.3. Aickin’s Coefficient (1990) Aickin (1990) works in a setting of two judges. He defines
the joint model for two ratings x1, x2 by two judges as

p(x1, x2) = (1 − α)q1(x1)q2(x2) + α1[x1 = x2] q1(x1)q2(x1)∑C
x=1 q1(x1)q2(x1)

, (1.7)

with the goal of doing inference on α. He does this using maximum likelihood, estimating the
distributions q1 and q2 alongside α.

Aickin’s model is a guessing model and α = ν is its knowledge coefficient. The assumptions
of the guessing model are:

(i) As in the first Maxwell model, both judges share the same skill-difficulty parameter s.
It is Bernoulli distributed with success probability α, so that α = P(s = 1) = Es2.

(ii) The judges’ guessing distributions are arbitrary.
(iii) The true distribution is assumed to be equal to t (x) = q1(x)q2(x)/

∑C
x=1 q1(x)q2(x).

That Aicken’s model is a guessing model satisfying conditions (i)–(iii) is a direct consequence
of the following fact. Whenever the number of judges is two and the skill-difficulty parameter
s ∼ Bernoulli(α) is the same for both judges, the guessing model has unconditional distribution

p(x1, x2) = α1[x1 = x2]t (x1) + (1 − α)q1(x1)q2(x2). (1.8)

The details are in the appendix, p. 22.
Assumption (iii) is not justified by Aickin, and does not appear to be necessary. If we define

the generalized Aicken model as the guessing model satisfying only (i) and (ii) above, with an
arbitrary number of judges R ≥ 2, its parameters (ν, q1, q2, ...qR) are identified when C > 2.
This can be shown following the arguments laid out in the proof of Theorem 1 of Klauer and
Batchelder (1996).

1.2.4. The Klauer–BatchelderModel (1996) Klauer and Batchelder (1996) performs a detailed
structural analysis of the guessingmodel with identical skill-difficulty parameters. In our notation,
their equation 2 is

p(x | s, x�) = s1[x = x�] + (1 − s)qr (x), (1.9)

where the guessing distributions q1, q2 and the true distribution t are arbitrary. They show that,
provided the number of judges is equal to two, then (Klauer & Batchelder 1996, eq. 3)

p(x1, x2) = p(x1)p(x2) + s2t (x1)[1[x1 = x2] − t (x2)], (1.10)

which does not depend directly on the guessing distributions qr (x). Equation (1.10) provides a
nice interpretation of the skill-difficulty parameter s: The higher s is, the more weight will be
on the main diagonal of the agreement matrix and less on the off-diagonal elements. Moreover,
in Theorem 5, they extend equation 1.10 to the case of two judges with different deterministic
skill-difficulty parameters.

They show the model is identified when the C > 2, and propose to estimate it by maximum
likelihood using the EM algorithm developed by Hu and Batchelder (1994). In addition, they
show that s2 equals Cohen’s kappa when both guessing distributions are equal to the true distri-
bution; they also show that s2 equals the Brennan–Prediger coefficient when both distributions
are uniform. We generalize these results to arbitrary skill-difficulty parameters and an arbitrary
number of judges in Theorem 2 below.



J. MOSS 1007

1.2.5. Van Oest’s Coefficient (2019) Modifying the setup of Perreault and Leigh (1989), van
Oest (2019) develops a guessing model for two judges and C < ∞ categories. He assumes the
guessing distributions are equal to the marginal distribution, i.e., q1(x) = q2(x) = p(x), and that
the skill-difficulty coefficients are deterministic and constant across judges. The marginal model
becomes

p(x) = st (x) + (1 − s)p(x). (1.11)

van Oest (2019) proceeds to show that s equals the weighted Scott’s pi under these circumstances.

2. The Knowledge Coefficient

2.1. Definitions

Let w(x, y) be an agreement weighting function. This is a function of two arguments that
satisfies w(x, y) ≤ 1 and equals 1 when x = y, i.e., w(x, x) = 1. The purpose of this function is
to measure the degree of similarity between x and y, where 1 is understood as the maximal degree
of similarity. While there are infinitely many weighting functions, only three are in widespread
use. The first is the nominal weight,

w(x1, x2) = 1[x1 = x2] =
{
1, x1 = x2,

0, otherwise.

With this function, similarity does not come in degrees, but it does with the quadratic weighting
function, w(x1, x2) = 1 − (x1 − x2)2. The absolute value weighting function (sometimes called
the linear weighting function) measures the similarity between x, y using the absolute value, i.e.,
w(x1, x2) = 1 − |x1 − x2|.
Definition 1. Recall that pr (x) is the marginal distribution of ratings for judge r , and let x1 and
x2 be ratings by two different judges r1 and r2. Define the weighted agreement as

pwa =
(
R

2

)−1 ∑

r1>r2

∑

x1,x2

w(x1, x2)p(xr1 , xr2), (2.1)

the weighted Cohen-type chance agreement as

pwc =
(
R

2

)−1 ∑

r1>r2

∑

x1,x2

w(x1, x2)p(xr1)p(xr2), (2.2)

and the weighted Fleiss-type chance agreement as

pw f = R−2
∑

r1,r2

∑

x1,x2

w(x1, x2)p(xr1)p(xr2). (2.3)
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Table 1.
Coefficients covered in this paper.

Assumptions Name Definition
Provided that all guessing distributions are equal

Guessing = Uniform Brennan–Prediger coefficient νBP = pa−1/C
1−1/C

Guessing = Marginal∗ or Weighted Fleiss’ kappa νF = pwa−pw f
1−pw f

Guessing = True∗ or Weighted Cohen’s kappa νC = pwa−pwc
1−pwc

True = Marginal∗ Cohen–Fleiss coefficient νCF = pwa−pwc
1−pw f

Provided E[sr1sr2 ] = E[sr1 ]E[sr2 ] for all r1, r2
True = Marginal Cohen–Fleiss coefficient νCF = pwa−pwc

1−pw f

True = Uniform Cohen–Brennan–Prediger coefficient νCBP = pwa−pwc

1−1T W1/C2

Note: New coefficients in italics
∗These three conditions are equivalent, see (i) of Theorem 2

Thedifference between the twonotions ofweighted chance agreement should be clear enough.
The Fleiss-type probability of chance agreement counts the cases when a judge agrees with
himself, while the Cohen-type does not.

Letting {x1, x2, . . . , xC } be the set of possible ratings andw an agreement weighting function,
define the weighting matrix W as the C × C matrix with elements Wir = w(xi , xr ). Using W ,
we can write pw f = pTWp, where p = R−1 ∑

r pr is the marginal distribution of ratings, and

pwc = (R
2

)−1 ∑
r1>r2 p

T
r1Wpr2 .

When w is the nominal weight, pwa, pwc, and pw f are proper probabilities, and are often
referred to as unweighted probabilities of (chance) agreement. We do not require that the weight-
ing functions to be non-negative, hence the quantities pwa, pwc, and pw f are not, in general,
proper probabilities. Since the number of categories C is finite, however, we may assume that
the weighting function is positive by normalizing, i.e., redefining the weighting function to
1 − [1 − w(x1, x2)]/maxx1,x2(1 − w(x1, x2)).

2.2. The Knowledge Coefficient Theorem

As we have seen, well-known coefficients such as Scott’s pi and the Brennan–Prediger can
be understood as knowledge coefficients, albeit under restrictive assumptions such as all judges
being equally skilled. The following theoremdescribes less stringent sets of assumptions that keeps
interpretable expressions for the knowledge coefficient. We must assume either that all guessing
distributions are equal or that the skill-difficulty parameters have zero pairwise covariance to
get anywhere. In addition, we must assume something about either the true distribution or the
guessing distribution. We never have to assume that every judge is equally competent, and we
never have to assume anything about the number of categories rated, however. The content of the
theorem, including the required assumptions, is summarized in Table 1.

Theorem 2. (Knowledge Coefficient Theorem) Let w be any agreement weighting function and
W its associated agreement weighting matrix. Then the following holds:
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(i) Assume all guessing distributions are equal, i.e, qr (x) = q(x). Then the following are
equivalent:

q(x) = t (x), p(x) = t (x), q(x) = p(x)

Assuming either of these,pwc = pw f , and the knowledge coefficient equals both the
weighted multi-rater Cohen’s kappa (Conger’s kappa) and the weighted Fleiss’ kappa

ν = νC = pwa − pwc

1 − pwc
; ν = νF = pwa − pw f

1 − pw f
.

(ii) Assume all guessing distributions qr are uniform. Then the knowledge coefficient equals
the Brennan–Prediger coefficient,

ν = νBP = pa − 1/C

1 − 1/C
,

where pa denotes the weighted agreement with nominal weights.
(iii) Assume that the skill-difficulty parameters have pairwise covariance equal to zero, i.e.,

E[sr1sr2 ] = E[sr1 ]E[sr2 ] for all r1, r2. Then the knowledge coefficient equals

ν = pwa − pwc

1 − t T Wt
.

In particular, if t (x) = p(x), it equals the “Cohen–Fleiss” coefficient

ν = νCF = pwa − pwc

1 − pw f
.

Moreover, if t is uniform, it equals the “Cohen–Brennan–Prediger” coefficient,

ν = νCBP = pwa − pwc

1 − 1T W1/C2
.

Proof. The knowledge coefficient theorem is proved in the appendix, page 18. 	

Every coefficient in the theorem can be estimated by substituting the values of pwa , pw f , and pwc

for their sample variants. Under any of the equivalent conditions of Theorem 2 part (i), we have
that that ν equals

νF = pwa − pw f

1 − pw f
, νC = pwa − pwc

1 − pwc
, νCF = pwa − pwc

1 − pw f
.

The coefficient νF = pwa−pw f
1−pw f

is a weighted Fleiss’ kappa. This coefficient is strongly related

to the weighted Krippendorff’s alpha, which we denote by α̂. Indeed, it is easy to see that α̂ is a
linear transformation of ν̂F ,

α̂ = ν̂F + 1

N
(1 − ν̂F ), (2.4)
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where N is the total number of ratings made (see the appendix of, Moss, J (2023)) and ν̂F , the
sample weighted Fleiss kappa. Thus α̂ is a consistent estimator of νF .

On the other hand, νC is a weightedmulti-rater Cohen’s kappa of the form discussed by Berry,
K& J., Mielke, P. W. (1988) and Janson and Olsson (2001); it can also be regarded as a weighted
Conger’s kappa (Conger, 1980) . I have not seen anything like νCF , a curious combination of
Cohen’s kappa and Fleiss’ kappa, probably because it is not a classical chance-corrected chance
measure of agreement, as its numerator chance agreement pwc is distinct from the denominator
chance agreement pw f . The required condition for the Cohen–Fleiss coefficient, p(x) = t (x),
holds if and only if

R−1
R∑

r=1

[(1 − sr )qr (x) + sr t (x)] = t (x) ⇐⇒
R∑

r=1

(1 − sr )qr (x) = t (x)
R∑

r=1

(1 − sr ), for all r.

which hols trivially if qr (x) = t (x) for all r . Hence the Cohen–Fleiss coefficient is consistent for
the population knowledge coefficient under strictly more situations than weighted Fleiss’ kappa
and weighted multi-rater Cohen’s kappa, and may be preferred to them by a researcher who buys
the rationale behind the guessing model.

The Cohen-Brennan–Prediger coefficient will be equal to the knowledge coefficient if the
true distribution equals the uniform distribution and the skill-difficulty parameters have pairwise
covariances equal to zero. This scenario may be uncommon, but can happen if the designer of the
agreement study has complete control over the true ratings.

Part (ii) of Theorem 2 concerns the case when a judge who does not know the correct
classification of an item guesses uniformly at random, so that qr (x) = C−1 for all judges r .
This assumption is used by e.g. Brennan and Prediger (1981), Maxwell (1977), Gwet (2008) and
Perreault and Leigh (1989).

Example 3. Zapf et al. (2016) did a case study on histopathological assessment of breast cancer.
The number of judges was R = 4, the number breast cancer biopsies rated was n = 50,and the
number of categories C = 5. The estimated coefficients are

ν̂CF = 0.574, ν̂F = 0.562, ν̂C = 0.567, ν̂BP = 0.604, ν̂CBP = 0.519.

In this case, the coefficients are quite close, suggesting that the guessing distributions are close
to the marginal distribution and that the marginal distribution is close to the uniform distribution.
The observed marginal distribution in this data set 0.255, 0.025, 0.12, 0.21, 0.39. This appears to
be quite far away from the uniform distribution, which raises the question of how sensitive the
Brennan–Prediger coefficient is to the uniformity assumption.

3. Sensitivity and Performance

Recall the assumptions on the coefficients of Theorem 2

• Brennan–Prediger: All guessing distributions are equal to the uniform distribution.
• Cohen’s kappa, Fleiss’ kappa: All guessing distributions are equal, the true distribution

equals the marginal distribution.
• Cohen–Fleiss: The true distribution equals the marginal guessing distribution, E[sr1sr2 ] =

E[sr1 ]E[sr2 ] for all r1, r2.
• Cohen–Brennan–Prediger: The true distribution is uniform, E[sr1sr2 ] = E[sr1 ]E[sr2 ]

for all r1, r2.



J. MOSS 1011

These assumptions are quite stringent, and will realistically never hold exactly. In this section,
we do two sensitivity–performance studies to check how well the coefficients perform when
the assumptions are broken. Theorem 2 contains two classes of coefficients. The first class,
containing the Brennan–Prediger coefficient in addition to Cohen’s and Fleiss’ kappa, requires at
minimum that all guessing distributions are equal. The second class, containing the Cohen–Fleiss
andCohen–Brennan–Prediger coefficient, requires that all pairs of skill-difficulty parameters have
zero covariance.Wewill do two studies, one where sr1 and sr2 have zero covariance and one where
sr1 and sr2 are correlated. We restrict our study the the case of nominal weights.

3.1. When E[sr1sr2 ] = E[sr1]E[sr2 ]
We will use the a special case of the guessing model we call the judge skill model. In this

model the skill-difficulty parameter s is deterministic. This is a generalization of the models used
by e.g. Perreault and Leigh (1989) and van Oest (2019) to allow for judges with different skill
levels. Since s is deterministic, E[sr1sr2 ] = E[sr1]E[sr2 ] and the main condition of Theorem
2 part (iii) is satisfied. Under the judge skill model, it is fairly easy to calculate the theoretical
values of the five coefficients in Theorem 2. To calculate pwa , we use representation (i) of Lemma
7 (p. 18), in the appendix. Since pw f = pTWp, where p is the marginal distribution, and

pwc = (R
2

)−1 ∑
r1>r2 p

T
r1Wpr2 , the values of pw f and pwc are easily calculated.

The parameters R, C and s are sampled as follows:

(i) The number of judges (R) is sampled uniformly from [2, 20].
(ii) The number of categories (C) is sampled uniformly from [2, 10].
(iii) The R skill–difficulty parameters s1, . . . , sR are drawn independently from a beta dis-

tribution with parameters 7 and 1.5. This is a slightly dispersed, asymmetric distribution
with a mean of 0.82.

We study what happens when the true distribution deviates from the uniform (an assumption for
νCBP ) and / or the guessing distribution deviates from the uniform distribution (an assumption
for νBP ). The numbers are the simulated mean absolute deviations from the true knowledge
coefficient E |ν − νx |, where x is one of F,C, BP,CF,or CBP . The smallest numbers by orders
of magnitude on each row is in bold.

3.1.1. True Distribution Centered on the Uniform Distribution If the variability of the true
distribution is “None”, it equals the uniform distribution. If the variability is “Low”, it is sampled
from a symmetric Dirichlet distribution ( Johnson, Kotz, & Balakrishnan1994, Chapter 49) with
concentration parameter α = 10; if variability is “High”, α = 0.5. Likewise, for the guessing
distributions, if the variability is “None”, all guessing distributions are equal to the uniform
distribution. If the variability is “Low”, the guessing distributions are sampled from a symmetric
Dirichlet distribution with concentration parameter α = 10. Finally, if the variability is “High”,
they are sampled from a symmetric Dirichlet distribution with α = 0.5.

From Table 2 we see that the Cohen–Brennan–Prediger coefficient performs worst in every
setting„ usually by a large margin, except when the true distribution is uniform. Moreover, the
Brennan–Prediger coefficient performs well in every scenario. The bias |νBP − ν| will be likely
be overshadowed by sampling variability for most conceivable sample sizes. Finally, there is little
difference between Cohen’s kappa, Fleiss’ kappa, and the Cohen–Fleiss coefficient. Their biases
are quite small, at least when the true distribution isn’t far away from the uniform distribution.

3.1.2. True Distribution Centered on the Marginal Distribution To derive Fleiss’ kappa,
Cohen’s kappa, and the Cohen–Fleiss coefficient, we assumed that the true distribution equals the
marginal distribution.We can use an asymmetric Dirichlet distribution to extend this scenario, just
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Table 2.
Sensitivity analysis when E[sr1 sr2 ] = E[sr1 ]E[sr2 ]. True distribution centered on the uniform distribution.

Variability Coefficient
Guessing� True∗ Cohen-Fleiss Fleiss Cohen BP Cohen–BP

None None 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
Low 3.8e-03 3.8e-03 3.8e-03 0.0e+00 1.2e-02
High 7.5e-02 7.5e-02 7.5e-02 0.0e+00 1.7e-01

Low None 5.2e-05 4.9e-05 4.3e-05 5.5e-05 1.7e-05
Low 3.8e-03 3.8e-03 3.8e-03 5.7e-04 1.2e-02
High 7.4e-02 7.4e-02 7.4e-02 2.0e-03 1.7e-01

High None 7.3e-04 8.0e-04 6.9e-04 8.7e-04 2.7e-04
Low 3.5e-03 4.2e-03 3.9e-03 2.4e-03 1.2e-02
High 7.3e-02 7.4e-02 7.4e-02 7.9e-03 1.7e-01

∗Variability of the true distributions: Baseline: True distribution is uniform.
�Variability of the guessingdistributions.Baseline:All guessingdistributions are equal to the true distribution.

Table 3.
Sensitivity analysis when E[sr1 sr2 ] = E[sr1 ]E[sr2 ]. True distribution centered on the marginal guessing distribution.

Variability Coefficient
Guessing� True∗ Cohen-Fleiss Fleiss Cohen BP Cohen–BP

None None 0.0e+00 0.0e+00 0.0e+00 1.1e-02 2.5e-02
Low 2.1e-02 2.1e-02 2.1e-02 1.1e-02 8.2e-02
High 3.4e-01 3.4e-01 3.4e-01 1.8e-02 4.7e-01

Low None 1.4e-04 4.6e-04 3.6e-04 1.3e-02 3.0e-02
Low 2.2e-02 2.2e-02 2.2e-02 1.4e-02 9.1e-02
High 3.2e-01 3.3e-01 3.3e-01 1.8e-02 4.6e-01

High None 1.1e-03 3.5e-03 2.8e-03 3.0e-02 7.4e-02
Low 2.5e-02 2.7e-02 2.6e-02 3.0e-02 1.3e-01
High 3.2e-01 3.2e-01 3.2e-01 3.4e-02 4.7e-01

∗Variability of the true distributions: Baseline: True distribution equals the marginal guessing distribution.
�Variability of the guessing distributions. Baseline: All guessing distributions are equal to the marginal
guessing distribution.

as we used the symmetric Dirichlet distribution to extend the scenario when the true distribution is
uniform. This time we won’t use the uniform distribution as a base true distribution, but randomly
generated distribution h, from a symmetric Dirichlet distribution with α = 5, instead. The rest of
the settings are identical to the previous sensitivity study.

The results are in Table 3. We see that the Cohen–Brennan–Prediger coefficient performs
worst in every setting, usually by a large margin. Surprisingly, the Brennan–Prediger coefficient
performs best in 6/9 cases, and its performance is good in the remaining cases too. Some of the
biases in the table are unacceptably large. Only the Brennan–Prediger coefficient has a bias less
than 0.1 in every case. Finally, there is little difference between Cohen’s kappa, Fleiss’ kappa, and
the Cohen–Fleiss coefficient. The Cohen–Fleiss coefficient does better, especially when the true
distribution equals the marginal distribution, but the difference in performance is insignificant
under slight deviations from equality.
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Table 4.
Sensitivity analysis when E[sr1 sr2 ] 
= E[sr1 ]E[sr2 ]. True distribution centered on the uniform distribution.

Variability Coefficient
Guessing� True∗ Cohen–Fleiss Fleiss Cohen BP Cohen–BP

None None 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00
Low 3.8e-03 3.8e-03 3.8e-03 0.0e+00 1.2e-02
High 7.4e-02 7.4e-02 7.4e-02 0.0e+00 1.7e-01

Low None 4.6e-05 4.0e-05 3.4e-05 4.5e-05 8.7e-06
Low 3.5e-03 3.6e-03 3.6e-03 5.6e-04 1.1e-02
High 7.8e-02 7.8e-02 7.8e-02 2.4e-03 1.7e-01

High None 6.3e-04 5.8e-04 4.6e-04 6.2e-04 1.2e-04
Low 3.6e-03 4.3e-03 4.0e-03 2.2e-03 1.1e-02
High 8.2e-02 8.4e-02 8.3e-02 8.6e-03 1.8e-01

∗Variability of the true distributions: Baseline: True distribution is uniform.
�Variability of the guessingdistributions.Baseline:All guessingdistributions are equal to the true distribution.

3.2. When E[sr1sr2 ] 
= E[sr1 ]E[sr2 ]
To model dependent skill-difficulty parameters, let F be a R-variate distribution with s ∼ F .

Evidently, the only restriction on F is that it’s a multivariate distribution function on [0, 1]. A
natural way to model situation is to use copulas for the dependence structure and a density on
[0, 1] for the marginals (Nelsen, 2007) . We will use the R-variate Gaussian copula with uniform
correlation structure, i.e., the correlation matrix parameter

⎡

⎢⎢⎢⎣

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎤

⎥⎥⎥⎦ .

Denote this Gaussian copula by Cρ . Let H(a,b) be the cumulative distribution function of a beta
distribution with parameters a and b, and define

Fρ,a,b(s1, s2, . . . , sR) = Cρ(H(a,b)(s1), H(a,b)(s2), . . . , H(a,b)(sR)).

Then Fρ,a,b is a reasonable model for dependent skill-difficulty parameters.
We use the small correlation parameter ρ = 0.2. The rest of the settings are exactly the

same as the previous setting, including the beta parameters a = 7, b = 1/2. We see that the
Cohen–Brennan–Prediger coefficient still outperforms the alternatives when the true distribution
equals the uniform distribution, but only by a an order of magnitude. Since the alternatives to
the Cohen–Brennan–Prediger coefficient also performs well in this situation, with biases likely
to be overshadowed by sampling error, the case for it remains weak. Similarly, we see that the
Cohen–Fleiss coefficient still outperforms Cohen’s kappa and Fleiss’ kappa, roughly by one
order of magnitude, a much smaller margin than before. These comments also hold for the case
of ρ = 0.5, 0.9, which can be found in the online appendix (p. 23).
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Table 5.
Sensitivity analysis when E[sr1 sr2 ] 
= E[sr1 ]E[sr2 ]. True distribution centered on the marginal guessing distribution.

Variability Coefficient
Guessing� True∗ Cohen–Fleiss Fleiss Cohen BP Cohen–BP

None None 0.0e+00 0.0e+00 0.0e+00 1.0e-02 2.3e-02
Low 2.2e-02 2.2e-02 2.2e-02 1.2e-02 8.4e-02
High 3.2e-01 3.2e-01 3.2e-01 1.8e-02 4.5e-01

Low None 7.5e-05 3.9e-04 2.9e-04 1.3e-02 3.0e-02
Low 2.3e-02 2.3e-02 2.3e-02 1.4e-02 9.1e-02
High 3.3e-01 3.3e-01 3.3e-01 2.1e-02 4.6e-01

High None 6.2e-04 3.3e-03 2.4e-03 3.0e-02 7.1e-02
Low 2.4e-02 2.7e-02 2.6e-02 3.1e-02 1.3e-01
High 3.5e-01 3.5e-01 3.5e-01 3.6e-02 4.8e-01

∗Variability of the true distributions: Baseline: True distribution equals the marginal guessing distribution.
�Variability of the guessing distributions. Baseline: All guessing distributions are equal.

3.3. Recommendations

We can draw three tentative conclusions from the sensitivity analysis.

(i) Unless the researcher can make sure the true distribution is exactly uniform, the Cohen–
Brennan–Prediger coefficient is probably not worth reporting. Its bias is often unaccept-
ably large, frequently larger than 0.1.

(ii) The Brennan–Prediger coefficient performs reasonably well in all situations, with biases
less than 0.01 when the true distribution is centered on the uniform distribution. It
performs decently in the second scenario as well, with biases at around 0.05 across the
board.

(iii) The Cohen–Fleiss coefficient does slightly better than Cohen’s kappa and Fleiss’ kappa,
but not enough to be important.

Since the Cohen–Fleiss coefficient does slightly better than Fleiss’ kappa and Cohen’s kappa, it
appears prudent to report it. However, we believe it would be best not to. For both Fleiss’ kappa
and Cohen’s kappa are well-known chance-corrected measures of agreement. In contrast, the
Cohen–Fleiss coefficient is neither well-known nor a chance-corrected measure of agreement.
We recommend that you report Cohen’s kappa (or Fleiss’ kappa) together with the Brennan–
Prediger coefficient. This solution accounts both for the scenario when the marginal distribution
is close to the true distribution and the scenario when the uniform distribution is close to the
marginal distribution.

4. Inference

The asymptotic distribution of the coefficients Table 1 can readily be calculated using the
theory of U -statistics.

The following Lemma is instrumental in constructing the confidence intervals.
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Lemma 4. Define the parameter vectors p = (pwa, pwc, pw f ) and p̂ = ( p̂wa, p̂wc, p̂w f ), and
let � be the covariance matrix with elements

σ11 = σ 2
A = Varμwa(X1), σ12 = σ 2

AC = 2Cov (μwa(X1), μwc(X1)) ,

σ22 = σ 2
C = 4Varμwc(X1), σ13 = σ 2

AF = 2Cov (μwa(X1), μwc(X1)) ,

σ33 = σ 2
F = 4Varμw f (X1), σ23 = σ 2

CF = 4Cov
(
μwc(X1), μw f (X1)

)
.

Then

√
n( p̂ − p)

d→ N (0, �).

Proof. See Lemma 1 of Moss, J (2023). The definitions of μwa(X1), μwc(X1) and μw f (X1) can
be found there. 	

An application of the delta method yields the following.

Proposition 5. The coefficients in Table 1 are asymptotically normal, and their asymptotic vari-
ances are

σ 2
F = σ 2

A
1

(1 − pw f )2
− 2σFA

1 − pwa

(1 − pw f )3
+ σ 2

F
(1 − pwa)

2

(1 − pw f )4
. (4.1)

σ 2
C = σ 2

A
1

(1 − pwc)2
− 2σCA

1 − pwa

(1 − pwc)3
+ σ 2

C
(1 − pwa)

2

(1 − pwc)4
, (4.2)

σ 2
BP = σ 2

A
C2

(1 − C)2
, (4.3)

σ 2
CF = (1 − pw f )

−2 (1,−1, νCBP ) � (1,−1, νCBP )T , (4.4)

σ 2
CBP = σ 2

A − 2σCA + σ 2
C

(1 − 1T W1/C2)2
. (4.5)

Proof. The expressions for σ 2
F and σ 2

C are from Moss, J (2023, Proposition 2). The simple proof
for the Cohen–Fleiss coefficient is in the appendix, p. 6. The asymptotic variance of the Brennan–
Prediger coefficient is well-known and the easiest to derive. The variance of the Cohen–Brennan–
Prediger coefficient follows immediately from an application of the delta method. 	

To estimate the σ 2

x , where x is a placeholder for F,C, BP,CF,or CBP , we use an empirical
approach that coincides with that of Gwet (2021) in the special case of Fleiss’ kappa with nominal
weights. See the comments following Proposition 1 of Moss, J (2023) for details.

4.1. Confidence Intervals

Moss, J (2023) found that the arcsine interval tends to do slightly better than the untransformed
interval for agreement coefficients with rectangular design. For that reason, we will only look at
the arcsine interval here. Using the delta method, together with the fact that d

dx arcsin(x) =
1/

√
1 − x2, we find that

√
n(arcsin ν̂x − arcsin νx )

d→ N (0, (1 − ν2x )
−1σ 2

x ), (4.6)
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Table 6.
Confidence limits for Zapf et al. (2016).

νCF νF νC νBP νCBP

Upper limit 0.68 0.67 0.67 0.70 0.62
Lower limit 0.46 0.44 0.45 0.49 0.41
Estimate 0.57 0.56 0.57 0.60 0.52

where
d→ denotes convergence in distribution and arcsin x is the inverse of the sine function.

Again, x is a placeholder for F,C, BP,CF,or CBP . Define the arcsine interval as

C Ix = sin
(
arcsin ν̂ ± t1−α/2(n − 1)(1 − ν̂2x )

−1σ̂ 2
x

)
, (4.7)

where σ̂ 2
x is estimated empirically, as described in the previous subsection, and ν̂x is the sample

estimator of νx .

Example 6. (Example 3 (cont.)) We calculate arcsine confidence intervals along with the point
estimates for the five coefficients using the data from Zapf et al. (2016). The results are in Table
6.

4.2. Coverage of the Confidence Intervals

Weuse the arcsine interval andnominallyweighted coefficients. The settings of our simulation
study follows the settings of the first sensitivity analysis closely. We use N = 10, 000 repetitions
and the following simulation parameters:

(i) Number of judges R. We use 2, 5, 20, corresponding to a small, medium, and large
selection of judges.

(ii) Sample sizes n. We use n = 20, 100, corresponding to small and large agreement
studies.

(iii) Model. We simulate from the judge skill model used in the sensitivity study (p. 9).

In some cases the simulation yields data frameswith only identical values. Our confidence interval
construction do not cover these instances, so we decided to discard these simulations, repeating
the simulation until we got a data frame with at least two different values.

4.2.1. True Distribution Centered on the Uniform Distribution We use the same setup as in
3.1.1, where we studied deviations from two assumptions. (a), that the true distribution is centered
on the uniform distribution, (b) that the guessing distributions are equal.

Table 7 contains the results of the simulation. All coefficients, except the Brennan–Prediger
coefficient, perform poorly when t is far from the uniform. The Cohen–Fleiss coefficient has poor
coverage when the true distribution is far away from the marginal distribution; likewise for Fleiss’
kappa and Cohen’s kappa. The Brennan–Prediger coefficient performs surprisingly well, with far
better coverage than Cohen’s kappa, Fleiss’ kappa, and the Cohen–Fleiss coefficient. On the other
hand, the Cohen–Brennan–Prediger coefficient performs poorly. The coverage when t is far from
the uniform or n = 100 is unacceptably low for all coefficients except the Brennan–Prediger
coefficient.
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Table 7.
Coverage and lengths of confidence intervals, deviation from uniform.

Coefficient Var t : None Low High
Var q: None Low High None Low High None Low High

n = 20
Cohen–Fleiss 0.95 0.95 0.95 0.95 0.95 0.95 0.82 0.81 0.82

0.26 0.26 0.26 0.26 0.26 0.26 0.33 0.33 0.33
Fleiss 0.95 0.95 0.95 0.94 0.95 0.95 0.81 0.81 0.82

0.26 0.26 0.26 0.27 0.27 0.27 0.33 0.33 0.34
Cohen 0.95 0.95 0.95 0.95 0.95 0.95 0.81 0.81 0.82

0.26 0.26 0.26 0.27 0.27 0.26 0.33 0.33 0.33
BP 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95

0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
Cohen–BP 0.92 0.92 0.92 0.90 0.90 0.90 0.43 0.43 0.44

0.27 0.27 0.27 0.28 0.28 0.28 0.33 0.33 0.33
n = 100

Cohen–Fleiss 0.95 0.95 0.95 0.94 0.94 0.94 0.52 0.52 0.53
0.11 0.11 0.11 0.11 0.11 0.11 0.14 0.14 0.14

Fleiss 0.95 0.95 0.95 0.94 0.94 0.93 0.51 0.52 0.51
0.11 0.11 0.11 0.11 0.11 0.11 0.14 0.14 0.14

Cohen 0.95 0.95 0.95 0.94 0.94 0.94 0.51 0.52 0.52
0.11 0.11 0.11 0.11 0.11 0.11 0.14 0.14 0.14

BP 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.90
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Cohen–BP 0.95 0.94 0.95 0.89 0.89 0.88 0.10 0.11 0.11
0.11 0.11 0.11 0.11 0.11 0.11 0.14 0.14 0.14

4.2.2. True Distribution Centered on the Marginal Distribution We use the same setup as in
3.1.2, where we studied deviations from the assumption that the true distribution is centered on
the marginal distribution and that the guessing distributions are equal.

The results are in Table 8. The most striking feature is, once again, the poor performance
of every coefficient except the Brennan–Prediger coefficient. The Brennan–Prediger coefficient
performs well, with a coverage of approximately 0.95 in most scenarios when n = 20. What’s
more, its length is always the smallest. Cohen’s kappa, Fleiss’ kappa, and the Cohen–Fleiss
coefficient performs decently, except when the marginal distribution is far away from the uniform,
when their coverage is dismal. The Cohen–Brennan–Prediger coefficients performs worse than
the others, with larger confidence interval lengths and horrible coverage. Compared to Table 7,
the coverages in Table 8 are much worse. Even the best-performing Brennan–Prediger coefficient
gets as low as 0.58 at a point.

5. Concluding Remarks

In the guessingmodel, a judge either knows –with 100% certainty – the correct classification,
or he makes a guess. A more realistic model would let knowledge come in degrees. A judge could
be, say, 70% sure that a patient is X, 20% sure that he is Y, and 10% spread evenly on the remaining
options. In epistemology, the credence function (Pettigrew, 2019) quantifies his degree of belief
in the different propositions. Defining and working with knowledge coefficients in more general
“credence models” might be possible, but identifiability issues looms large.
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Table 8.
Coverage and lengths of confidence intervals, deviation from marginal.

Coefficient Var t : None Low High
Var q: None Low High None Low High None Low High

n = 20
Cohen–Fleiss 0.95 0.95 0.95 0.93 0.92 0.92 0.37 0.37 0.39

0.27 0.27 0.3 0.29 0.29 0.32 0.36 0.36 0.34
Fleiss 0.95 0.95 0.94 0.92 0.92 0.91 0.37 0.37 0.39

0.27 0.28 0.31 0.30 0.30 0.34 0.36 0.37 0.36
Cohen 0.95 0.95 0.94 0.92 0.92 0.91 0.37 0.37 0.38

0.27 0.27 0.30 0.29 0.30 0.33 0.36 0.36 0.34
BP 0.96 0.95 0.90 0.96 0.95 0.91 0.94 0.94 0.87

0.26 0.26 0.26 0.26 0.26 0.27 0.26 0.26 0.26
Cohen–BP 0.88 0.85 0.72 0.69 0.67 0.55 0.04 0.04 0.06

0.29 0.3 0.34 0.32 0.32 0.35 0.26 0.26 0.25
n = 100

Cohen–Fleiss 0.95 0.95 0.95 0.85 0.85 0.84 0.09 0.09 0.13
0.11 0.11 0.12 0.12 0.12 0.14 0.18 0.18 0.18

Fleiss 0.95 0.95 0.95 0.85 0.84 0.82 0.09 0.09 0.12
0.11 0.11 0.13 0.12 0.12 0.14 0.18 0.18 0.19

Cohen 0.95 0.95 0.95 0.85 0.85 0.83 0.09 0.09 0.12
0.11 0.11 0.13 0.12 0.12 0.14 0.18 0.18 0.18

BP 0.92 0.89 0.64 0.91 0.87 0.65 0.86 0.81 0.58
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10

Cohen–BP 0.81 0.70 0.28 0.34 0.28 0.15 0.00 0.00 0.01
0.12 0.12 0.14 0.13 0.13 0.15 0.12 0.12 0.11

The sensitivity and coverage studies in this paper are limited in scope, as they only covers
nominal weights and and a small number of parameter tweaks. Larger simulation study could
potentially confirm or disconfirm our recommendation of reporting Cohen’s kappa and Fleiss’
kappa together with the Brennan–Prediger coefficient.

We reiterate that the agreement coefficient AC1 (Gwet, 2008) is justified using a guessing
model similar to the first Maxwell’s 1977 (discussed on p. 3), but it is not a knowledge coefficient.
The relationship between the AC1 and the knowledge coefficient will be explored in a future
paper.

We have only discussed a rather peculiar sort of estimation of the knowledge coefficient.
It would, perhaps, be more natural to discuss traditional estimation methods, such maximum
likelihood estimation, as explored by Aickin (1990) and Klauer and Batchelder (1996) in their
submodels of the guessingmodel. In particular, compositemaximum likelihood estimation (Varin
et al., 2011) appears to be a good fit to the problem. Bayesian estimation could also be a reasonable
option. If we only care about performance measures such as the mean squared error, the Brennan–
Prediger coefficient has small bias under many scenarios, and its variance is virtually guaranteed
to be smaller than the variance of a composite maximum likelihood estimator. But if we care about
inference, even the superior confidence intervals for the Brennan–Prediger coefficient have unac-
ceptably poor coverage under some circumstances. Since constructing approximate confidence
intervals for maximum likelihood and composite maximum likelihood is routine, going this route
will likely fix the coverage problem.
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Appendix

Proof of the Knowledge Coefficient Theorem on p. 6.

Recall that W is a matrix C ×C matrix of agreement weights, that is, a symmetric matrix whose
elements Wir satisfy 1 ≥ Wir with Wir = 1 if and only if i = r . We simplify our notation by
considering two judges only. Define pwa(r1, r2) and pwc(r1, r2) as the the probability of (chance)

agreement restricted to the two judges r1 and r2. Clearly, pwa = (R
2

)−1 ∑
r1<r2 pwa(r1, r2) and

pwc = (R
2

)−1 ∑
r1<r2 pwc(r1, r2).

In the following lemma, we will view probability mass functions as vectors. That is, we will view
e.g. p as the vector in R

C whose i th element is p(xi ). This will greatly simplify our notation.

Lemma 7. The following is true.

(i) The weighted agreement between r1 and r2, pwa(r1, r2), equals

E[sr1sr2 ] + (E[sr1] − E[sr1sr2 ])t T Wqr2 + (E[sr2 ] − E[sr1sr2 ])qTr1Wt

+(1 − E[sr1 ] − E[sr2 ] + E[sr1sr2 ])qTr1Wqr2 . (5.1)

(ii) The weighted chance agreement between r1 and r2, or pwc(r1, r2), equals

E[sr1 ]E[sr2 ]tT Wt + (E[si1r1 ] − E[sr1 ]E[sr2 ])tT Wqr2 + (E[sr2 ] − E[sr1 ]E[sr2 ])qTr1Wt

+(1 − E[sr1 ] − E[sr2 ] + E[sr1 ]E[sr2 ])qTr1Wqr2 .

(5.2)

(iii) Finally, the weighted chance agreement between r1 and r2 can be written in terms of
the marginal distributions and the weighting matrix,

pwc(r1, r2) =
∑

x1,x2

w(x1, x2)pr1(x1)pr2(x2) = pTr1Wpr2 . (5.3)

http://creativecommons.org/licenses/by/4.0/
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Proof. (i)We will make use the following expression for pwa(r1, r2):

pwa(r1, r2) =
∑

x�

∑

x1

∑

x2

w(x1, x2)p(xr1 | s, x�)p(xr2 | s, x�)t (x�).

Recall that x� is the true rating, x1 is the rating by judge 1, and x2 the rating by judge 2, and the
expression for the full guessing model, p(x | s, x�) = sr1[x = x�] + (1 − sr )qr (x) of formula
(1.1). We expand the right hand side of the expression for pwa(r1, r2) above to obtain

pwa(r1, r2) =
∑

x�

∑

x1

∑

x2

w(x1, x2)sr1sr2 t (x
�)1[x1 = x2 = x�] (= A)

+
∑

x�

∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2)t (x
�)1[x1 = x�]qr2(x2) (= B)

+
∑

x�

∑

x1

∑

x2

w(x1, x2)sr2(1 − sr2)qr1(x1)t (x
�)1[x2 = x�] (= C)

+
∑

x�

∑

x1

∑

x2

w(x1, x2)(1 − sr1)(1 − sr2)qr1(x1)qr2(x2)t (x
�) (= D)

Now we sum over x�, x1, x2 for each of (A)− (D). Starting with (A), recall that w(x, x) = 1 for
all x . Thus

A =
∑

x1

∑

x2

w(x1, x2)[sr1sr2 t (x�)1[x1 = x2 = x�],
= sr1sr2 .

Now consider (B), where wemust recall thatW , the weightingmatrix, is the matrix with elements
Wir = w(xi , xr ).

B =
∑

x�

∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2)t (x
�)1[x1 = x�]qr2(x2),

=
∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2)t (x1)qr2(x2),

= sr1(1 − sr2)t
T Wqr2 .

Likewise, C = sr2(1 − sr2)q
T
r1Wt and D = (1 − sr1)(1 − sr2)q

T
r1Wqr2 .

Summing over x1, x2, the expression becomes

= sr1sr2 + sr1(1 − sr2)q
T
r1Wt + sr2(1 − sr2)qr1(x1)t (x2)

+(1 − sr1)(1 − sr2)q
T
r1Wqr2 ,

and 5.1 follows from taking expectations over sr1 , sr2 .
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(ii)We proceed in the same way as we did in (i).

pwc(r1, r2 | sr1, sr2) =
∑

x1,x2

w(xr1 , xr2)p(xr1 | sr1)p(xr2 | sr1)

=
∑

x�
1

∑

x�
2

∑

x1,x2

w(xr1 , xr2)p(xr1 | sr1, x�
1)p(xr2 | sr2 , x�

2)t (x
�
1)t (x

�
2)

Again, we expand this expression to obtain

pwc(r1, r2 | sr1 , sr2 ) =
∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)sr1s
′
r2 t (x

�
1)t (x

�
2)1[x1 = x�

1]1[x2 = x�
2] (= A)

+
∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2 )t (x
�
1)1[x1 = x�]qr2 (x2)t (x�

2) (= B)

+
∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)sr2 (1 − sr1)qr1(x1)t (x
�
2)1[x2 = x�]t (x�

1) (= C)

+
∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)(1 − sr1)(1 − sr2 )qr1(x1)qr2 (x2)t (x
�
1)t (x

�
2) (= D)

The main difference from (i) is in (A),

∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)sr1sr2 t (x
�
1)t (x

�
2)1[x1 = x�

1]1[x2 = x�
2]

= sr1s
′
r2 t

T Wt.

Let’s consider (B) too:

∑

x�
1

∑

x�
2

∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2)t (x
�
1)1[x1 = x�]qr2(x2)t (x�

2),

=
∑

x1

∑

x2

w(x1, x2)sr1(1 − sr2)t (x1)qr2(x2),

= sr1(1 − sr2)t
T Wqr2 .

(C) and (D) can be calculated in the same way. After taking expectations with respect to indepen-
dent sr1 , sr2 , we find the expression for pwc(r1, r2) in the statement of the Lemma.
(iii) The expression for pwc in terms of pr1 , pr2 is trivial. 	

Proof. (Proof of Theorem 2)
(i). Assume all guessing distributions are equal, i.e., qr (x) = q(x). We wish to show that the
following are equivalent

q(x) = t (x), p(x) = t (x), q(x) = p(x). (5.4)

Todo this, recall themarginal univariatemodel p(x | s) = sr t (x)+(1−sr )q(x).Take expectations
over s to obtain, with α = R−1 ∑

r E(sr ),

p(x) = αt (x) + (1 − α)q(x). (5.5)
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It immediately follows that the expressions in 5.4 are equivalent.
Let’s proceed to prove the rest of (i). If all guessing distributions are equal to the true distribution,
then the formula 5.1 can be written as

pwa(r1, r2) = E[sr1sr2 ] + (E[sr1 ] − E[sr1sr2 ])t T Wt + (E[sr2 ] − E[sr1sr2 ])t T Wt

+(1 − E[sr1] − E[sr2 ] + E[sr1sr2 ])t T Wt.

Some of the terms cancel, leaving

pwa(r1, r2) = E[sr1sr2 ](1 − t T Wt) + t T Wt.

Moreover, the formula for pwc(r1, r2) can be simplified:

pwc(r1, r2) = E[sr1 ]E[sr2 ]t T Wt + (E[sr1] − E[sr1 ]E[sr2 ])t T Wt + (E[sr2 ] − E[sr1 ]E[sr2 ])t T Wt

+(1 − E[sr1 ] − E[sr2 ] + E[sr1]E[sr2 ])t T Wt.

Most of the terms cancel, leaving only

pwc(r1, r2) = t T Wt.

To verify these formulas, simply replace all instances of qr with t in Lemma 7, parts (i) and (ii).
Since the marginal distribution for every judge is the same under the assumption that q(x) = t (x),
it follows that pwa = pwa . Since the true distribution equals the marginal distribution,

t T Wt = pTWp = (R−1
∑

r

pr )
T W (R−1

∑

r

pr ) = R−2
∑

r1,r2

pTr1Wpr2 ,

and by part (iii) of Lemma 7, pw f = R−2 ∑
r1,r2 p

T
r1Wpr2 , Take the mean over all combinations

of judges and reorder to arrive at

ν = pwa − pwc

1 − t T Wt
= pwa − pwc

1 − pwc
= pwa − pw f

1 − pw f
= pwa − pw f

1 − pwc
.

(ii). Assume that all guessing distributions are uniform. Then if qr = C−11, which implies that
qTr p = C−1 for any probability mass function p. (This happens since p sums to 1.) It follows
that qTr2 t = qTr1qr2 = C−1 for all r1, r2. Using expression (i) of the Lemma and W = I , we find
that

pa(r1, r2) = E[sr1sr2 ] + (E[sr1] − E[sr1sr2 ])C−1 + (E[sr2 ] − E[sr1sr2 ])C−1

+(1 − E[sr1 ] − E[sr2 ] + E[sr1sr2 ])C−1.

Canceling terms, we find that pa(r1, r2) = E[sr1sr2 ](1−C−1)+C−1. It follows that ν = pa−C−1

1−C−1 .



J. MOSS 1023

(iii). Suppose that E[sr1sr2 ] = E[sr1]E[sr2 ] for all r1, r2. Now subtract pwc(r1, r2) from
pwa(r1, r2), using Lemma 7, parts (i) and (ii). Most of the terms cancel, leaving us with

pwa(r1, r2) − pwc(r1, r2) = E[sr1sr2 ](1 − t T Wt).

Take the mean over all combinations of judges and reorder to arrive at

ν = pwa − pwc

1 − t T Wt
.

If the true distribution equals the marginal distribution, then pw f = pTWp = t T Wt , as explained
in (i), hence ν = pwa−pwc

1−pw f
, as claimed. On the other hand, if the true distribution is uniform,

t = C−11, hence ν = pwa−pwc
1−1T W1/C−2 . 	


Proof of the Expression for σCF in Proposition 5

First, let us recall the multidimensional delta method. Let f : Rk → R be continuously differen-

tiable at θ and suppose that
√
n(θ̂ − θ)

d→ N (0, �). Then

√
n[ f (θ̂) − f (θ)] d→ N (0,∇ f (θ)T�∇ f (θ)) (5.6)

In the case of the Cohen–Fleiss coefficient, θ = (pwa, pwc, pw f ) and f (θ) = pwa−pwc
1−pw f

. Then

∇ f = 1

1 − pw f
(1,−1, νCBP ) .

(pwa, pwc, pw f )

Thus the variance is

(1 − pw f )
2∇ f (θ)T�∇ f (θ) = (1,−1, νCBP )T � (1,−1, νCBP ) ,

= pwaσ
2
wa + p2wcσ

2
wc + p2w f σ

2
w f + 2σ 2

w f σ
2
wc.

Proof that Aickin’s Model is a Guessing Model

Lemma 8. Let the number of judges be 2 and s ∼ Bernoulli(α) be the same for both judges.
Then the guessing model has unconditional distribution

p(x1, x2) = α1[x1 = x2]t (x1) + (1 − α)q1(x1)q2(x2). (5.7)
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Proof. Expanding the guessing model 1.1

p(x1, x2 | s, x�) = s21[x1 = x�]1[x2 = x�]
= +s(1 − s)1[x1 = x�]q2(x2)

+s(1 − s)1[x2 = x�]q1(x1)
+(1 − s)(1 − s)q1(x1)q2(x2)

Since s ∼ Bernoulli(α), we have that Es2 = α, E(s(1 − s)) = 0 and E(1 − s)(1 − s) = 1 − α.
It follows that

p(x1, x2 | x�) = α1[x1 = x�]1[x2 = x�] + (1 − α)q1(x1)q2(x2).

Summing over x� yields p(x1, x2) = α1[x1 = x2]t (x1) + (1 − α)q1(x1)q2(x2). 	
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