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1 Introduction

In time series or cross-sectional regressions, a relationship of interest is typically assumed to be

homogeneous. Even most panel regressions assume homogeneity up to individual-specific inter-

cepts that may be specified as stochastic (random effects) or nonstochastic (fixed effects). On the

other hand, in random coefficient panel regressions the relationship may be completely heteroge-

neous across individuals and/or time. Such an approach effectively decomposes the relationship of

interest into individually heterogeneous and/or temporally heterogeneous components. The latter

components constitute a stochastic trend common to all individuals, and it may be informative

about the temporal evolution of the relationship of interest.

Consider a panel of primary energy consumption by country. Energy consumption patterns

are of great interest to scientists in a world with a burgeoning population augmented by economic

growth per capita. The finiteness of our primary energy sources and the apparent fragility of human

and ecological systems to pollutants from consuming energy have pushed the study of energy

demand to the forefront of the agendas of many academics and policy makers. Understanding

energy consumption underlies models of climate change used to price carbon, project damages, and

ascertain the need for adaptation, for example.

Figure 1 presents an illustration of how the residuals from such a decomposition might look for a

simple regression of energy consumption on its mean. The left panel of the figure shows substantial

cross-country heterogeneity and no discernible common patterns in per capita energy consumption

over time. Yet the right panel shows a stochastic trend common to non-OECD countries that is

almost monotonically increasing and another one common to OECD countries that is decreasing

since 2004. The figure makes clear the advantage of examining common components (right panel),

because without them (left panel) the sample paths are resistant to ocular analysis.

A downside of tradition panel regressions is that estimation of a common temporal component

precludes inference about its temporal dynamics, because each time effect is effectively treated as

an independent draw. At the other extreme, a linear time trend is easy to analyze and predict

but may vastly oversimplify temporal dynamics. Allowing for time-varying parameters could be

considered an intermediate approach, in the sense that temporal dynamics are flexibly but mean-

ingfully modeled, and there is certainly no shortage of studies that take such an approach in the

energy literature: Park and Zhao (2010), Inglesi-Lotz (2011), Arisoy and Ozturk (2014), Chang et

al. (2014, 2016a, 2021), Liddle et al. (2020), inter alia.1

Another downside of the traditional panel approach is its inflexible parametric specification. The

1A wide variety of intermediate approaches exist, including stochastically time-varying coefficients (Cooley and
Prescott, 1976; Newbold and Bos, 1985, inter alia), deterministically time-varying coefficients (Lin and Teräsvirta,
1994; Park and Hahn, 1999; Bierens and Martins, 2010, inter alia), and common factor models (Sims and Sargent,
1977; Chamberlain and Rothschild, 1983; Bai and Ng, 2004, inter alia).
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Figure 1: Per Capita Energy Consumption. Temporally demeaned energy consumption (millions of

tonnes of oil equivalent, Mtoe) per capita over time by country (left panel) and aggregated for OECD countries,

non-OECD countries, and the world (right panel). The large black line shows the world average in each panel.

empirical evidence for nonlinearity in the relationship between energy consumption and real GDP

is well documented by Galli (1998), Judson et al. (1999), Medlock and Soligo (2001), Richmond

and Kaufmann (2006), Chang et al. (2016a), Liddle and Huntington (2020), Liddle (2022), inter

alia. However, many of these authors allow for nonlinearity by way of a quadratic function, which,

although certainly an improvement over a linear specification, leaves much to be desired.

Our approach embraces both heterogeneity and nonlinearity of unknown form while explicitly

modeling a common component to the coefficient and partial derivative (elasticity) – i.e., the

economic relationship – of interest. We use fixed effects to account for individual heterogeneity in

both slopes and intercepts, and we nonparametrically estimate a common component that varies

smoothly over time and over the value of a regressor that may be correlated with time, specifically

log real GDP, which proxies aggregate economic activity (output). In contrast with time series or

cross-sectional settings – or even with simpler panel settings – a functional panel setting allows

effective identification of a coefficient that is a function of two correlated arguments.

We further decompose the common components using functional principal component analysis

into functional principal components (FPCs) or factors that are functions of economic activity

and their loadings over time, and we employ a novel sieve-based bootstrap for interval estimates of

loadings on the FPCs. Because we are extracting principal components from a common components

of an economic relationship that is also a functional, we will henceforth refer to the latter either

using the abbreviation FPC or as factors and reserve common component to describe the functional

that is common to the economic relationship across individuals in the sample.

Although the research presented in this paper is firmly motivated by the need of economists

and policy makers to better understand the long-run relationship between energy consumption and

aggregate economic activity, the basic econometric issues raised and addressed by our modeling
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approach are completely general. While the nonparametric estimator is related to that of extant

studies, the decomposition of the relationship into idiosyncratic components and nonparametrically

specified common components, which are further decomposed using functional principal component

analysis, is novel both to the study of energy consumption and more generally, and it is the main

contribution of this research.2

Turning back to energy consumption, much has been written on what some authors call the

energy elasticity, energy-GDP elasticity, or energy coefficient (on aggregate production) of an econ-

omy, defined as the percentage increase in energy use per capita from a one percent increase in

economic activity per capita (c.f. Brookes, 1972; Burke and Csereklyei, 2016, inter alia). Formally,

the quantity may be expressed as a derivative dy{dx, where y is the log of energy consumption and

x is the log of aggregate economic activity, typically measured using real GDP. A decrease in the

energy coefficient is referred to as autonomous energy efficiency improvement (AEEI), which is a

key parameter in most integrated assessment models used to model, project, and price the effects

of anthropogenic climate change (Webster et al., 2008), such as the MIT Emissions Prediction and

Policy Analysis Model (Paltsev et al., 2005; Chen et al., 2022).

We find that a group of countries roughly corresponding to the OECD countries have elasticities

with a common component of approximately 0.2 to 0.3 that has been declining in recent years. The

decline is consistent with the pattern of energy intensity noted by Kaufmann (2004) and the US

Energy Information Administration (2013) for the US, and by Webster et al. (2008) and Csereklyei

et al. (2016) for developed countries more generally, and the range of the common component

lies on the lower end of the spectrum of estimates of this elasticity in the extant literature. The

remaining countries have a more complicated common pattern in their elasticities that generally

appears to increase over time for fixed levels of economic activity over a range of roughly �0.2 to

0.4. Such patterns are certainly not obvious from Figure 1, and we believe such insights can only

be gained by a panel approach as flexible as ours.

Further decomposing the common component of each group of countries into FPCs shows that

both groups of countries have a leading FPC that is generally increasing over time and that we

dub the energy-increasing factor. The group that contains mostly OECD countries has a secondary

FPC that generally offsets the increase of the first FPC to the extent that the elasticity for the

wealthiest countries generally has been declining during the latter part of the sample. We dub this

factor the intensity-reducing factor.

Adding estimated idiosyncratic slopes on top of the common components reveals negative elas-

ticities for some countries in both groups, a result which suggests the decoupling of economic growth

and energy consumption for the most advanced economies in particular. Decoupling has been noted

2In a closely related paper (Chang et al., 2021), we extend the loadings on the FPCs and bootstrap intervals in
the time dimension for the purpose of out-of-sample forecasting.
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by previous authors and is one of the “stylized facts” of Csereklyei et al. (2016), but our results

suggest that decoupling may be more prevalent than previously thought.

The remainder of this paper is structured as follows. In Section 2, we explain the functional

coefficient panel model, the semiparametric approach proposed to estimate the functional coefficient

and elasticity surfaces, and the decomposition of these surfaces using functional principal component

analysis. We discuss empirical estimates of the functional energy coefficient and elasticity surfaces,

FPCs and loadings of the elasticity surfaces, and the elasticities of some specific countries in Section

3, and we conclude with Section 4. We describe the data, methodology for grouping the countries,

and some additional details of our econometric procedures, including the bootstrap, in Appendices

A, B, and C.

2 Model, Estimation, and Functional Principal Components

2.1 Model

We start by assuming that, for country i and year t with i � 1, . . . , N and t � 1, . . . , T , log real

energy consumption per capita Yit is determined as

Yit � Ait �BitXit (1)

with log real GDP per capita Xit as a covariate, where Ait and Bit signify the intercept and slope

coefficients, which are generally assumed to be stochastic and to vary non-deterministically over

both i and t to allow for country- and time-specific components affecting energy consumption.

Although our empirical analysis and our motivation for the modeling approach revolve around the

relationship between energy consumption and economic activity (output) as measured by real GDP,

this model is obviously and inherently completely general.

Of course, we need to further specify the intercept and slope coefficients Ait and Bit in equation

(1) to enable empirical analysis. Denote by Ft the set of information on pXitq accumulated up to

time t across i. First, for the intercept Ait, we let

E
�
Ait

��Ft

�
� αi (2)

for i � 1, . . . , N and t � 1, . . . , T , which means that the part of energy consumption not related

to real GDP is country-specific but does not vary over time. As in traditional panel models, pαiq

represent individual-specific fixed effects in our model. Specifically, each αi measures the country-

specific and time-invariant component of energy consumption.
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Second, we specify the slope coefficient Bit as

E
�
Bit

��Ft

�
� βi � Γpt,Xitq (3)

for i � 1, . . . , N and t � 1, . . . , T . The specification in equation (3) distinguishes between country-

and time-specific components of the slope coefficient. We define βi to be the country-specific and

time-invariant component of the slope for country i. The remainder of the slope coefficient is

specified by Γpt,Xitq, a nonparametric function of time and real GDP. Time is included to account

for generally trending behavior in the propensity to consume energy resulting from changes in

energy consumption patterns, possibly due to sectoral shifts, changes in technology, and changes in

preferences as the effects of anthropogenic climate change have become more evident. Real GDP is

included as a proxy for the level of economic and social development of a country and to allow for

nonlinearity in the relationship between Yit and Xit. Here we set the slope coefficient of a country

to be solely determined by its own current real GDP in addition to time. In particular, we assume

that it is not affected by real GDP of a country’s own past real GDP once its current real GDP

is given. We believe that this is a reasonable modeling assumption, since we analyze the long-run

energy demand for a country and abstract from the dynamics of its short-run energy demand.

Under our specifications in equations (2) and (3), equation (1) reduces to

Yit � αi � rβi � Γpt,XitqsXit � Uit (4)

for i � 1, . . . , N and t � 1, . . . , T , where Uit is an error term satisfying ErUit|Fts � 0. To allow

for the general interactions of the arguments of the functional coefficient, we specify Γpt,Xitq

as an unknown function of t and Xit. Given our nonparametric specification of Γpt,Xitq, the

country-specific components pβiq are not identified for all i � 1, . . . , N , so we impose the identifying

restriction
Ņ

i�1

βi � 0 (5)

throughout the paper. The model in equation (4) with identifying restriction in equation (5) is

semi-parametric and partially linear, having both a linear parametric part αi�βiXit and a nonlinear

and nonparametric part Γpt,XitqXit. It may therefore be viewed as a partially linear functional

coefficient model with functional coefficient Γpt,Xitq.

Note that if we set Γpt,Xitq equal to γiXit, ignoring the time-varying trend in Γ and making

the functional form of Γ linear, then our model simplifies to Yit � αi � βiXit � γiX
2
it � Uit. This

quadratic specification is often fitted in the energy demand literature noted above, and, by swapping

out energy consumption for its resulting emissions, the quadratic model becomes that often used

to estimate the environmental Kuznets curve (EKC) in a related literature.
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The model in equations (4) and (5) and may be viewed as a conditional expectation function

model by writing

ErYit
��t � r,Xit � xs � αi � βix� Γpr, xqx.

to achieve ErUit|Fts � 0. Therefore, if we set Φipr, xq � pB{BxqE
�
Yit

��t � r,Xit � x
�
, it follows that

Φipr, xq � βi � Φpr, xq � βi � Γpr, xq � Γxpr, xqx (6)

where Γx denotes the partial derivative of Γ with respect to x. Φipr, xq clearly represents the

energy-GDP elasticity introduced above and discussed in more detail below, at time r and at log

real GDP x for country i � 1, . . . , N , and Φpr, xq represents its common component. In light of

the identifying restriction in equation (5), country-specific components of the elasticity are zero on

average, so that the surface Φpr, xq � Γpr, xq�Γxpr, xqx may be interpreted as an average elasticity

at the point pr, xq. However, the term “average” applies very loosely here, because it may very well

be that no country has a log real GDP of x at time r.

2.2 Estimation

We employ a two-step estimation procedure to estimate Γpr, xq at any point pr, xq adapted from

that of Fan and Huang (2005) and related to that of Cai (2007), Cai et al. (2009), and Chang et

al. (2016a, 2021). We introduce the weight function

Witpr, xq �
1

hrhx
K

�
t� r

hr



K

�
Xit � x

hx



ϖit, (7)

where K is a kernel function, hr and hx are bandwidth parameters for r and x respectively, and

ϖit ¡ 0 is such that
°N

i�1ϖit � 1 for each t. The weight function Witpr, xq is identical to that

of Chang et al. (2016a) up to multiplication by ϖit, which we discuss in Section 3. We utilize a

standard normal kernel function, but we do not expect the choice of kernel function to make any

substantive difference. Bandwidth selection is described in more detail in Appendix B.1.

Suppose for the moment that αi and βi are known for all i. In that case, we could estimate

Γpr, xq for any point pr, xq using the kernel regression

Γ̃pr, xq �

�
Ņ

i�1

Ţ

t�1

X2
itWitpr, xq

��1 � Ņ

i�1

Ţ

t�1

XitpYit � αi � βiXitqWitpr, xq

�

� Γ̂0pr, xq �
Ņ

i�1

αiΓ̂1ipr, xq �
Ņ

i�1

βiΓ̂2ipr, xq,
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where

Γ̂0pr, xq �

�
Ņ

i�1

Ţ

t�1

X2
itWitpr, xq

��1 � Ņ

i�1

Ţ

t�1

XitYitWitpr, xq

�

Γ̂1ipr, xq �

�
Ņ

i�1

Ţ

t�1

X2
itWitpr, xq

��1 � Ţ

t�1

XitWitpr, xq

�

Γ̂2ipr, xq �

�
Ņ

i�1

Ţ

t�1

X2
itWitpr, xq

��1 � Ţ

t�1

X2
itWitpr, xq

�
.

Note that Γ̂0pr, xq is the nonparametric kernel estimator from the regression of pYitq onto pXitq

for i � 1, . . . , N and t � 1, . . . , T and, for each i, Γ̂1ipr, xq and Γ̂2ipr, xq are the nonparametric

kernel estimators from regressions on pXitq of an indicator for country i and of the product of that

indicator with pXitq, respectively.

Subtract Γ̃pt,Xitq from both sides of the model in equation (4) and group terms to obtain

�
Yit � Γ̂0pt,XitqXit

�
�

Ņ

i�1

αi

�
1� Γ̂1ipt,Xitq

�
�

Ņ

i�1

βi

�
1� Γ̂2ipt,Xitq

�
Xit � Ũit, (8)

where Ũit � Uit � rΓ̃pt,Xitq � Γpt,XitqsXit. Given the feasible estimators Γ̂0pt,Xitq, Γ̂1ipt,Xitq,

and Γ̂2ipt,Xitq, the parameters αi and βi are estimated from equation (8) using N least squares

regressions for each i � 1, . . . , N . These regressions comprise the first step of the two-step estimation

procedure.

Once the least squares estimators α̂i and β̂i are obtained in the first step, the second step is

simply to calculate the common functional coefficient using

Γ̂pr, xq � Γ̂0pr, xq �
Ņ

i�1

α̂iΓ̂1ipr, xq �
Ņ

i�1

β̂iΓ̂2ipr, xq,

for any point pr, xq, which is a feasible version of the infeasible estimator Γ̃pr, xq. Following reasoning

similar to that of Chang et al. (2016a) for a related partially linear panel model, we may expect

the estimators α̂i, β̂i, and Γ̂pr, xq to be consistent under general conditions as T Ñ8 for fixed N .

If an estimate of Γxpr, xq is obtained, the energy-GDP elasticity Φipr, xq may be estimated for

any country i � 1, . . . , N and at any point pr, xq from equation (6) using estimates β̂i, Γ̂pr, xq, and

Γ̂xpr, xq. For the estimator of Γxpr, xq, we employ

Γ̂xpr, xq �
1

2δ
pΓ̂pr, x� δq � Γ̂pr, x� δqq,
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using some small increment δ.3 Clearly, an alternative estimator defined as

Γ̂xpr, xq �
B

Bx
Γ̂0pr, xq �

Ņ

i�1

α̂i
B

Bx
Γ̂1ipr, xq �

Ņ

i�1

β̂i
B

Bx
Γ̂2ipr, xq,

which we obtain by taking analytical derivatives of Γ̂0pr, xq, Γ̂1ipr, xq and Γ̂2ipr, xq, may also be

used.4

2.3 Functional Factor Analysis

To analyze the variation over time of the common component Γpr, xq of the coefficient on log real

GDP or the common component Φpr, xq of the energy-GDP elasticity, we regard Γpt, �q or Φpt, �q

as a functional time series – i.e., a time series of functions of log real GDP, whose observations are

available for t � 1, . . . , T . This functional approach is very useful to investigate how the coefficient

or elasticity changes over time as functions of log real GDP. Our empirical study uses the functional

factor model of Chang et al. (2021, 2023), which allows us to represent and interpret a functional

time series effectively as a linear combination of a small number of functional factors.

For our functional factor analysis, we let pftq be a functional time series defined as

ft � Γpt, �q � Γp�q or Φpt, �q � Φp�q

for t � 1, . . . , T , where Γp�q � T�1
°T

t�1 Γpt, �q and Φp�q � T�1
°T

t�1Φpt, �q, and regard them

formally as random elements taking values in a Hilbert space H of square integrable functions on R
endowed with inner product xu, vy �

³
upxqvpxqdx for u, v P H and norm }v}2 � xv, vy �

³
v2pxqdx.

Then we consider the minimization problem

Ţ

t�1

�����ft � Ķ

k�1

cktϕk

�����
2

,

with respect to a set of constants pcktq in R for k � 1, . . . ,K and t � 1, . . . , T and an orthonormal

set of square integrable functions pϕkq in H for k � 1, . . . ,K.

The solution to this minimization problem is given by pĉktq and pϕ̂kq for pcktq and pϕkq, re-

spectively, where pϕ̂kq are the K-leading functional principal components (FPCs) of pftq and pĉktq

3We use increments δ on supports rlnp2000q, lnp80000qs for the group that includes most OECD countries, which we
subsequently label intensity-reducing, and rlnp500q, lnp20000qs for the group that includes most non-OECD countries
in our sample, which we subsequently label intensity-increasing, where δ is equal to the difference of the log of
increments of 100 real USD and thus varies over the level of real GDP.

4This alternative estimator, however, doesn’t seem to be as reliable as the one we obtain from the numerical
derivative defined above. Therefore, we use the numerical derivative in our empirical analysis in the paper.
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are their loadings given by ĉkt � xϕ̂k, fty, which will be defined more precisely in our subsequent

discussions. It follows that

ft �
Ķ

k�1

ĉktϕ̂k

provides the best approximation of pftq as a linear combination of K-dimensional basis functions.

This approximation may indeed be obtained directly by the projection of pftq on the K-dimensional

subspace ĤK of H, which is spanned by the orthonormal basis pϕ̂kq consisting of K-leading FPCs.

If we let

ft �
Ķ

k�1

cktϕk � et (9)

with ct � pc1t, . . . , cKtq
1 P RK for t � 1, . . . , T and an orthonormal basis pϕkq for k � 1, . . . ,K

spanning HK , and assume that5

1

T

Ţ

t�1

ctc
1
t Ñp Q ¡ 0 and

1

T

Ţ

t�1

pet b etq Ñp 0, (10)

we may formally define pϕkq as functional factors and pcktq as their loadings in the sense of Chang

et al. (2023). Our specification in (9) and (10) implies that pϕkq appear in pftq pervasively over

time, while petq contributes to pftq only sporadically over time, both of which are given as functions

of log real GDP. Therefore, we may identify the functional components
�°K

k�1 cktϕk

�
and petq in

(9) as the common and idiosyncratic components of pftq, respectively, and define pϕkq as functional

factors. This is completely analogous to the identification and definition of factors in conventional

scalar factor models.

Under our specification, the common component
�°K

k�1 cktϕk

�
thus fully represents all regular

patterns in the fluctuations of pftq over time. The first condition in (10) implies that each func-

tional factor ϕk representing a common functional feature in pftq appears regularly over time for

k � 1, . . . ,K.6 The second condition in (10), on the other hand, requires that the idiosyncratic

component petq, which is introduced to allow for the presence of various temporary and time-

specific features in pftq, affects pftq only sporadically over time.7 The functional factors pϕkq and

their loadings pcktq are consistently estimated by pϕ̂kq and pĉktq, respectively, under mild technical

5Here and in some of our subsequent discussions, we use the tensor product ubv of functions u and v in H, which
is an operator (of rank 1) defined as pub vqw � xv, wyu for all w P H. Intuitively, we may view the tensor product of
functions in H as a generalization of the outer product of vectors in Rn. In fact, if u and v are vectors in Rn, ub v
reduces to uv1.

6This implies, in particular, that T�1°T
t�1xϕk, fty

2 Ñp σ2
k ¡ 0 for all k � 1, . . . ,K.

7This implies that petq is not a regular stationary time series, for which we would expect T�1°T
t�1petb etq Ñp Ω,

where Ω � Epet b etq. In our functional factor model, petq is defined to be the idiosyncratic component of pftq in the
sense that it is the component of pftq which appears not regularly but only intermittently over time. As a result, the
variation in petq is not accumulated as fast as T , which yields T�1°T

t�1pet b etq Ñp 0, as specified in (10).
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conditions. Moreover, the number K of functional factors can be found using the extension by

Chang et al. (2023) of the eigenvalue ratio test of Ahn and Horenstein (2013) for the standard

factor model to the functional factor model used in our paper. The reader is referred to Chang

et al. (2023) for more details. The reader interested in more details of standard functional data

analysis is referred to Ramsay and Silverman (2005) and the references therein and especially Bosq

(2000) for an introduction to functional time series.

For any given K ¤ T , the K-leading FPCs pϕ̂kq
K
k�1 of pftq

T
t�1 can be readily obtained as the

eigenfuctions of the sample variance operator

pΣ �
1

T

Ţ

t�1

pft b ftq (11)

of pftq, associated with its K-largest eigenvalues λ1 ¡ � � � ¡ λK .8 Once the FPCs pϕ̂kq
K
k�1 are

found, their loadings
�
xϕ̂k, fty

�
may easily be obtained. For more details of functional principal

component analysis, the reader is referred to Ramsay and Silverman (2005) among others.9

As discussed, the FPCs pϕ̂kq are functions of log real GDP. The estimated leading FPC ϕ̂1

identifies the function of log real GDP that is associated with the largest proportion of fluctuations

of pftq over time. The actual proportion of temporal fluctuations of pftq explained by ϕ̂1 is given

by

π1 �
λ1°T

k�1 λk

. (12)

The secondary FPC ϕ̂2 represents the function of log real GDP that is orthogonal to ϕ̂1 and

explains the second largest proportion of fluctuations of pftq over time. The proportion π2 of

temporal fluctuations of pftq explained by ϕ̂2 can be obtained similarly to π1 in (12) using the ratio

of λ2 and
°T

k�1 λk. In particular, the total proportion of temporal fluctuations of pftq accounted for

by the K-leading FPCs is given by
°K

k�1 πk. Our functional factor model implies that this much

of the variation in pftq is driven by the influences of some functional factors repeated over time,

while the rest of the variation in pftq is originated from other sources that are of temporary and

intermittent nature.

It turns out that the factor structures of pftq are low-dimensional for energy coefficients and

elasticities as will be discussed in the next section. The eigenvalue ratio test finds only one or

8For the actual computation of pϕkq, we do not need to use the sample variance operator of pftq defined in (11),
which is abstract and difficult to deal with. We may obtain the FPCs pϕ̂kq directly from the eigenvectors and
eigenvalues of the Gram matrix of pftq, which is a T � T matrix. See Chang et al. (2023) for more details.

9The terminology used in the functional data analysis literature is not consistent. In Ramsay and Silverman
(2005), our FPCs pϕ̂kq and their loadings

�
xϕ̂k, fty

�
are referred to as principal component functions and principal

component scores of functional data pftq, respectively. In Wikipedia, on the other hand, the loadings
�
xϕ̂k, fty

�
are

defined as the principal components of functional data pftq.
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two functional factors, and they explain more than 80% of the temporal variations. This factor

structure greatly simplifies the analysis of historical energy consumption and makes it possible to

effectively forecast the future energy demand, as Chang et al. (2021) do.

3 Energy-GDP Elasticity Estimation and Decomposition

For energy consumption z at GDP level w, energy-GDP elasticity dy{dx with y � ln z and x � lnw

is closely related to energy intensity z{w and energy efficiency dz{dw, which are expressed in units of

energy consumed per dollar instead of a unitless elasticity. A negative value is sometimes referred

to as an autonomous energy efficiency increase (AEEI) (Kaufmann, 2004), where autonomous

emphasizes that the change is independent of covariates, such as price. AEEI is an important

component of integrated assessment models such as the MIT Emissions Prediction and Policy

Analysis Model (Paltsev et al., 2005; Chen et al., 2022) used by economists to study climate

change.

The terminology “elasticity” seems ubiquitous in this literature but is somewhat problematic.

Adams and Miovic (1968) make a distinction between “gross [energy] elasticity,” which is measured

in this way, and “‘true’ energy elasticity,” which is a parameter of a structural model. They note

that the former underestimates the latter. The distinction between these types of elasticities is

evident from the fact that regression techniques are often used to estimate a derivative. Without

energy prices and other structural demand components, regression-based techniques suffer from an

omitted variable bias in estimating a structural elasticity, a partial rather than total derivative.

Adams and Miovic (1968) emphasize the need to examine relative efficiency of energy inputs and

Chang et al. (2016a) emphasize the difference in interpretation of the elasticity across economic

sectors when aggregate consumption data are used.

In addition to “elasticity,” Brookes (1972) uses “coefficient” for dy{dx � d ln z{d lnw, implicitly

reflecting both the regression approach to estimation and the direction of causality later explored

empirically by Kraft and Kraft (1978) inter alia. However, this terminology is also problematic,

because Adams and Miovic (1968) and even Brookes (1972) note instability in this derivative as the

composition of a country’s energy consumption bundle changes over time. Galli (1998), Judson et

al. (1999), Medlock and Soligo (2001), Richmond and Kaufmann (2006), inter alia find nonlinear

relationships between these variables, which undermines the interpretation of the coefficient itself

as a derivative.

We favor the terminology energy-GDP elasticity (like “gross [energy] elasticity” of Adams

and Miovic, 1968) recently employed by Burke and Csereklyei (2016) for the derivative dy{dx �

d ln z{d lnw, and estimation of this (total) derivative is the main aim of our empirical analysis. We

reserve coefficient for the coefficient on x � lnw, which is itself a function of x.



12

Our econometric model allows the energy-GDP elasticity to vary over time and over different

levels of GDP, and we apply it to a sample of countries that covers over 90% of the global population

since 1971. In our estimation procedure, ϖit in the definition of Witpr, xq in equation (7) is the

proportion of country i’s population to the global population in year t, and it is introduced to

account for difference in population sizes across countries.

A novelty of our econometric approach is that we allow the elasticity to follow a common

path in each of the two subsets of countries while countries retain idiosyncratic components that

reflect historical, political, cultural, geographical, or geological differences affecting how energy is

consumed. Countries are grouped by commonality in energy intensity patterns over time. At the

risk of oversimplification, we label one group (mostly OECD countries) the energy intensity-reducing

(or simply intensity-reducing) group and the other group (mostly non-OECD countries) the energy

intensity-increasing (or simply intensity-increasing) group. Indeed, our grouping procedure, which

is described in detail in Appendix A.2, starts with the OECD vs. non-OECD distinction and

strategically switches countries between groups to minimize root mean squared error, but the final

grouping is based on commonalities in the functional coefficient on log real GDP rather than a

political grouping. As will become clear shortly, elasticities of the intensity-increasing group are

driven by what we call the intensity-increasing factor, while those of the intensity-declining group

are driven by a similar intensity-increasing factor tempered by what we call the intensity-reducing

factor.

The labels above describe commonalities given by Γpr, xq in how the energy intensity coefficients

for each group have changed over time and especially in the past decade or so, but they do not

necessarily describe the coefficients themselves or the energy-GDP elasticities of individual coun-

tries, both of which include idiosyncratic components pβiq. An intensity-reducing country such as

Iceland or South Korea may have a high energy intensity from large positive βi. In the case of Ice-

land, the high intensity results from abundant hydroelectric and geothermal energy sources rather

than technical inefficiency, as Bradford (2018) points out. South Korea is one of the pioneers

of energy-intensive industrial export-driven growth. On the other hand, an intensity-increasing

country with a developed non-energy-intensive service sector such as South Africa may have a low

energy intensity from a large negative βi.

3.1 Functional Coefficient Estimates

Figure 2 shows the estimated functional coefficient surface Γ̂pr, xq for each group. The nonparamet-

ric procedure allows us to estimate the surfaces for any value of r and x using nearby observations

of t and Xit. However, the precision of the estimated surface at a given pair of r and x is expected

to depend on the actual frequency of Xit in its vicinity. If observations are densely (sparsely) pop-

ulated in the neighborhood of the point given by a pair of r and x, we may expect the estimated
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Figure 2: Estimated Functional Coefficient Surfaces. Estimates of the common components Γpr, xq

of the coefficients on log real GDP for the energy intensity-reducing group (left) and the energy intensity-increasing

group (right). The surfaces are bias-corrected using the bootstrap procedure described in Appendix C.

surface at that point to be more (less) precise. Dark blue areas in the lower left and upper right

corners of the surfaces in the figure are likely estimated with less precision than yellow and orange

areas for this reason. There simply were not very many countries with output levels near $5, 000

per capita in the first (wealthier) group towards the end of the sample and with output levels near

$20, 000 per capita in the second (poorer) group towards the beginning of the sample.

At higher real GDP levels – approximately more than $30,000 per capita and especially no-

ticeable at the maximum of $70,000 per capita – a common pattern is apparent for the energy

intensity-reducing group. The functional coefficient clearly increases with time up to about the

turn of the century and then decreases. The figure also suggests an increase in the coefficient with

real GDP for any fixed year, which provides some justification for a quadratic approximation used

by previous authors. Keeping in mind that countries’ real GDPs tend to grow over time, a country

will tend to move from the lower right to the upper left of the surface. In this light, a coefficient

that decreases as a country’s economy grows and hence generates an inverted “U” shape is possible

but can result only from conflating economic growth with the natural passage of time.

Looking at the estimated functional coefficient surface of the energy intensity-increasing group

in the right panel of Figure 2 and keeping in mind the caveat that we should discount the lower

left and upper right corners of the surfaces, we see that the coefficient is mostly increasing in both

time and real GDP. Moving from lower right to upper left gives the impression of an unambiguous

increase in the functional coefficient for countries in this group. Indeed, countries in this group that

have developed rapidly, like China, have generally done so by relying on energy-intensive industrial

sectors as the engines for their growth. It does not appear to matter whether economic growth and
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αi
s.e.

βi
s.e.

asym. bstp. asym. bstp.

Iceland -6.75 1.02 2.04 0.65 0.07 0.20
Israel -7.38 0.70 0.65 0.60 0.04 0.06
South Korea -6.72 0.48 0.41 0.60 0.04 0.04
Portugal -7.00 0.66 0.94 0.58 0.05 0.10
Chile -6.36 0.74 0.95 0.54 0.07 0.10
Greece -6.33 0.64 0.37 0.51 0.04 0.04
Mexico -5.75 1.37 1.24 0.46 0.13 0.12
New Zealand -3.85 0.82 0.42 0.31 0.05 0.03
Hong Kong -4.68 0.47 0.66 0.28 0.03 0.06
Spain -3.78 0.62 0.78 0.26 0.04 0.08
...

...
Russia 1.84 0.93 1.33 -0.23 0.09 0.13
Switzerland 1.97 0.82 0.44 -0.27 0.05 0.04
Canada 2.77 0.85 0.53 -0.27 0.05 0.04
France 1.96 0.85 0.49 -0.27 0.05 0.03
Germany 2.98 0.67 0.53 -0.36 0.03 0.05
Denmark 3.02 0.72 0.39 -0.37 0.04 0.03
United Kingdom 3.39 0.72 0.49 -0.42 0.04 0.04
Sweden 4.06 0.67 0.49 -0.44 0.03 0.03
United States 5.27 1.17 0.86 -0.52 0.08 0.07
Cuba 3.47 0.95 1.50 -0.54 0.09 0.15

Table 1: Selected Estimated Heterogeneous Components: Energy Intensity-Reducing
Group. Estimates of αi and βi for countries with ten highest and lowest estimates of βi. Asymptotic standard

errors denoted by “asym.” and bootstrapped standard errors denoted by “bstp.” and calculated as described in

Appendix C.

time are conflated: we do not expect an inverted “U” shape in the coefficient on economic activity

for any of the countries in this group.

Table 1 shows a subset of the results for the individual intercept and slope coefficients α̂i and β̂i

estimated for the energy intensity-reducing group. Specifically, the countries with the ten largest

and ten smallest estimated values of βi are shown. We find a strong negative correlation between

pα̂iq and pβ̂iq, and the countries with large values of pβ̂iq tend to have small values of pα̂iq. This

negative correlation is analyzed in Appendix B.2. In interpreting the results, one should keep

in mind the identifying restriction in equation (5) that the idiosyncratic slopes sum to zero. To

an approximation, we can interpret a negative β̂i to mean that the energy intensity of a country

is declining more rapidly or growing less rapidly than the intensities of the rest of the intensity-
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αi
s.e.

βi
s.e.

asym. bstp. asym. bstp.

Afghanistan -16.15 1.68 1.84 1.70 0.24 0.26
Haiti -7.97 1.71 1.32 0.75 0.23 0.18
Thailand -6.41 0.46 0.46 0.52 0.03 0.05
Malaysia -6.10 0.52 0.45 0.48 0.05 0.05
Taiwan -5.64 0.77 0.35 0.47 0.07 0.04
Bolivia -5.79 0.51 0.74 0.44 0.05 0.09
Algeria -6.28 1.55 1.43 0.44 0.16 0.16
Morocco -5.21 0.48 0.63 0.32 0.04 0.07
Vietnam -4.47 0.31 0.23 0.30 0.03 0.02
Malawi -5.44 1.61 1.13 0.30 0.23 0.16
...

...
Cameroon 1.03 0.68 0.81 -0.42 0.08 0.10
Rwanda 0.77 1.61 0.85 -0.50 0.23 0.12
Chad 0.56 0.87 1.13 -0.52 0.12 0.15
Burkina Faso 1.11 0.46 0.67 -0.54 0.06 0.10
Colombia 4.07 0.66 1.14 -0.69 0.06 0.13
Philippines 3.40 0.82 0.76 -0.71 0.09 0.09
South Africa 5.51 1.61 3.09 -0.73 0.17 0.33
Niger 2.23 0.72 0.84 -0.77 0.10 0.12
Uzbekistan 5.92 0.57 0.96 -0.83 0.06 0.11
Burundi 3.76 1.03 1.21 -0.95 0.16 0.18

Table 2: Selected Estimated Heterogeneous Components: Energy Intensity-Increasing
Group. Estimates of αi and βi for countries with ten highest and lowest estimates of βi. Asymptotic standard

errors denoted by “asym.” and bootstrapped standard errors denoted by “bstp.” and calculated as described in

Appendix C.

reducing group, while we can interpret a positive β̂i to mean that energy intensity is declining less

rapidly or increasing more rapidly than the intensities of rest of the group.

Iceland and South Korea rank among the most intensive users in the intensity-reducing group.

As noted above, Iceland’s intensity likely results from abundant hydroelectric and geothermal en-

ergy sources. Other large producers of geothermal energy on this list include Portugal and Greece,

while Mexico and New Zealand have large installed geothermal capacities. Also noted above, South

Korea’s intensity likely results from its energy-intensive export-driven economy, as does the inten-

sity of Hong Kong, which is treated separately from China in the data because it was separate over

most of the sample. Israel’s presence at this end of the spectrum is more difficult to explain, but

we speculate that its geopolitical isolation make energy efficiency paramount, hence the low α̂i, yet
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its development of an energy-intensive defense industry dictates a less negative scaling of energy

consumption with per capita output than other countries in this group, hence the high β̂i.

At the other end of the spectrum are countries with smaller coefficients. With a few exceptions,

these are the countries with the largest GDPs per capita and growth driven primarily by low-

intensity commercial sectors. Large energy consumers like the US are expected to have a high

α̂i, yet the sectoral shifts in such countries away from energy-intensive industry over the sample

period drive negative signs on β̂i. Cuba is a notable exception. We speculate that Cuba’s reduction

in energy intensity stems from a gradual shift from an export-driven agricultural economy aimed

at trade with the Soviet bloc to an economy dominated by tourism, a much less energy-intensive

economic sector. Somewhat similarly, a change of emphasis away from heavy industry after Russia’s

economy was no longer dominated by the communist ideology of the Soviet system may explain

Russia’s reduction in energy intensity during this period.

Table 2 shows a subset of the results for α̂i and β̂i estimated for the energy intensity-increasing

group. In this group, where the surface shown in the right panel of Figure 2 generally increases

but does not decrease, a positive β̂i suggests an intensity increasing faster than that of the rest

of the group, while a negative sign may suggest either a reduction in intensity or an intensity

increasing more slowly that the rest of the group. For the most part, these countries were poorer

over the sample period than those in the intensity-increasing group. Their economic growth tended

be driven by agricultural or industrial exports. Hence, scaling up economic activity means scaling

up the energy input in these sectors. Thus, the same logic that put South Korea and Hong Kong

near the top of the previous list puts Thailand, Taiwan, and Vietnam near the top of this list:

exports of manufactured goods and other energy intensive sectors.

The other countries are more difficult to explain. Afghanistan is clearly an outlier. The re-

sults for Afghanistan might be explained by decades of strife, so that both output and energy

consumption are very low. Looking at the low end of the spectrum, six of them, Rwanda, Chad,

Burkino Faso, Niger, Uzbekistan, and Burundi are landlocked countries, suggesting the possibility

of relying on industries that do not require importing very much energy. But Afghanistan, Bolivia,

and Malawi at the high end are also landlocked. A more detailed analysis of the industrial com-

position of each country might reveal further idiosyncrasies in endowments, geographical features,

institutions, or historical events that are reflected in these coefficient estimates.

3.2 Elasticity Estimates

Although the functional coefficient estimates discussed above hold some interest in their own right,

elasticity estimates are more economically meaningful and more widely applicable outside of the

particular empirical application motivating our analysis. The left panel of Figure 3 shows the

elasticity surface estimated for the intensity-reducing group. The exaggerated curvature to the
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Figure 3: Estimated Elasticity Surfaces. Estimates of the common components Φpr, xq � Γpr, xq �

Γxpr, xqx of the energy-GDP elasticities for the energy intensity-reducing group (left) and the energy intensity-

increasing group (right). The surfaces are bias-corrected using the bootstrap procedure described in Appendix C.

extreme left and right of the surface give the impression of a nearly flat surface elsewhere, but

although it is smooth this surface is in fact neither flat nor even monotonic. The right panel of the

figure shows the elasticity surface estimated for the intensity-reducing group. We again discount

the extreme lower left and upper right of the surface, but the middle of the surface is more obviously

not flat in comparison with the surface estimated for the intensity-reducing group in the left panel.

The elasticity surfaces in Figure 3 are more resistant to ocular analysis than the coefficient

surfaces in Figure 2. However, we see that the elasticity surfaces are approximately 0.2 to 0.3

for the intensity-reducing group and approximately �0.2 to 0.4 for the intensity-increasing group.

Recall that these may be interpreted loosely as group average elasticities due to the identifying

restriction in equation (5) that the idiosyncratic components of the slopes average to zero. Visual

inspection gives the general impression that the latter group started with smaller or even negative

average elasticities compared to the former group but ended up with larger average elasticities

than the former group by the end of the sample, which is consistent with the negative correlation

between growth rates of energy intensity and economic activity noted by Lescaroux (2011) and

Csereklyei et al. (2016).

Early estimates such as those by Adams and Miovic (1968) and Brookes (1972) for developed

countries tend to be high – even exceeding unity. Indeed, the period after the Second World War

and up to when those two studies were published was characterized by very low energy prices that

fueled energy-intensive economic growth for the wealthiest nations. It is well-documented that

average elasticities have declined substantially since then, though the mechanisms for modeling the

decline vary widely. A recent review by Liddle (2022) puts group averages across different studies
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Figure 4: Estimated FPCs and Loadings, Energy Intensity-Reducing Group. Left: Esti-

mated FPCs. Right: Estimated loadings. 95% confidence intervals created using the bootstrap procedure described

in Appendix C.

in the range of 0.6 to 0.8 with the exception of an earlier study by the present authors, Chang et

al. (2021). However, Csereklyei et al. (2016) note evidence for a decoupling of the relationship for

developed countries, which is consistent with the results of Jakob et al. (2012) who find average

elasticities for developed countries to be negative but statistically indistinguishable from zero. In

the context of such a wide range of elasticities estimated in the extant literature, the group averages

implied by our elasticity surface estimates are on the low end but certainly plausible.

To better understand the two surfaces estimated in Figure 3, we decompose each of them into

FPCs and FPC loadings, as we explain in Section 2.3. The reader should keep in mind that both

the factors and their loadings are defined for fluctuations of the functional time series of elasticities

around its temporal average, so that a value of zero simply reflects that average. Figure 4 shows the

leading two FPCs (left panel) against their respective loadings (right panel) for the elasticity surface

of the energy intensity-reducing group. Together, these two FPCs and their loadings account for

88.6% of the total variation in the surface.

Both FPCs appear to have similar shapes for low-to-middle income countries in this group.

Specifically, the FPCs are both relatively large over approximately $15, 000-$55, 000 per capita and

have single peaks at approximately $20, 000-$25, 000. The first FPC attains a lower peak at a lower

output level than the second FPC, but then the first peaks again at the upper end of the spectrum

of economic activity. The main difference between the two FPCs occurs for high-income countries.

Above approximately $55, 000 per capita, the first FPC remains large relative to the temporal

average elasticity and increases, while the second continues to decrease below the temporal average

elasticity for these larger output levels.
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Looking at the right panel of the figure, the loadings on these two FPCs begin with very

different magnitudes at the beginning of the sample, but end up with similar magnitudes at the

end. The loading on the first FPC increases nearly monotonically, and for this reason we dub it the

intensity-increasing factor. The time-varying rate at which the intensity-increasing factor drives

intensity shown by the loading is roughly consistent with a history of energy prices. The loading

increases rapidly during the 1970s, then it slows down during the 1980s, then it increases rapidly

again during the 1990s, and then finally it levels out and perhaps even decreases slightly after the

turn of the century.

In contrast, the loading on the second FPC appears to have a “U” shape until about the turn

of the century, falling below the temporal average in the late 1970s and rising above it in the late

1990s. After about 2005, the loading on the second FPC levels out into a pattern almost identical to

that of the first FPC. Because of the loading clearly declines over much of the sample, we dub this

FPC the intensity-reducing factor. While the name may seem paradoxical in light of clear increase

in its loading over the period of about 1990-2005, this was also a period of global prosperity, so that

the decrease in the factor itself with output could have negated much of that increase for countries

in this group.

Looking again at the loading on the intensity-increasing factor, the leveling out and perhaps

slight decrease of the loading on the energy intensity factor after the turn of the century is consis-

tent with a reduction in energy intensity that earns this group of countries its intensity-reducing

appellation in addition to the 1970s and 1980s. As hinted at above, the slowdown could be indica-

tive of changes in technology and preferences in an era of generally high and unpredictable energy

prices, which spur more measured use of energy. Alternatively or additionally, the slowdown could

be indicative of an increasing awareness of the effects of fossil fuel consumption on local environ-

ments and the global climate and consequent effects on human health and the economy, though

one could argue that it has been much more recently – if ever – that countries have made a serious

effort to curtail emissions other than sulfur dioxide and CFCs. The slowdown in the loading on the

intensity-increasing factor could be indicative of sectoral shifts away from manufacturing and other

energy-intensive industries in the wealthier developed countries, for which the intensity-increasing

factor is relatively large. However, the timing of this pattern of sectoral shifts seems to be explained

better by the intensity-reducing factor.

Looking only at the period after the mid-1980s, the loading on the intensity-reducing factor

has more of an “S” shape than the “U” shape noted above. Specifically, the most rapid increase

in the loading occurs over approximately 1990-2005. Given that the second FPC is decreasing in

economic activity, this shape suggest the possibility that wealthier countries, for which this factor

has a low weight, exported energy-intensive industries over this period to middle-income countries

also in this group, like South Korea and Mexico, for which this factor has a high weight, or to
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Figure 5: Estimated FPCs and Loadings, Energy Intensity-Increasing Group. Left: Esti-

mated FPCs. Right: Estimated loadings. 95% confidence intervals created using the bootstrap procedure described

in Appendix C.

middle-income or low-income countries in the intensity-increasing group, like Taiwan and China.

Indeed the period since the mid-1980s witnessed unprecedented global trade integration sufficient

to make such shifts possible.

Technology, preferences, and prices could also play a role in shaping the intensity-reducing

factor. The unexpectedly high prices of the 1970s and 1980s could have contributed to a decrease

in the load on the intensity-reducing factor just as they may have contributed to the slowing of the

increase of the load on the intensity-increasing factor. Environmental movements began to gain

traction with legislation during this period, such as the Clean Air Act (1970) and its amendments

(1977 and 1990) in the US.

Moving now to the energy intensity-increasing group and revisiting Figure 3, the right panel

shows the elasticity surfaces estimated for the second group. As we mention above, it is difficult

to make generalizations from the figure, but it appears that for medium-income countries – i.e.,

the wealthiest ones in this group – a peak occurred in the mid-1980s, followed by a downturn and

then by a more recent increase. Such an increase is qualitatively similar to the pattern that Adams

and Miovic (1968) and Brookes (1972) observe for developed countries prior to our sample. In that

light, this result echoes that of van Benthem (2015), who finds the benefit of technologies that can

reduce energy intensity in developing economies is offset by more energy-intensive consumption

bundles.

Figure 5 shows the leading FPC (left panel) and its loading (right panel) for the intensity-

increasing group, which alone explain 83.9% of the variation in the surface. The FPC is positive

for all levels of output. It remains relatively flat up to about $15, 000, after which it increases
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precipitously to the maximum output at which it is estimated, $20, 000 per capita. In fact, from

$10, 000 to $20, 000 this FPC strongly resembles the leading FPC in the intensity-reducing group

up to an elongation of the vertical axis.

So, too, does this FPC’s loading resemble that of the leading FPC of the intensity-reducing

group. It increases dramatically during the 1970’s, slowing down with the oil prices hikes and

recessions of the late 1970s and early 1980s. Like the the loading on the first FPC of the intensity-

decreasing group, it accelerates again in the 1990s and levels out in the early 2000s. It is no surprise,

then, that we label this the intensity-increasing factor like the first FPC of the intensity-reducing

group.

The combined effect of the energy intensity factor and its loading suggest a strong positive effect

on elasticities as output increases over time. Indeed, this is consistent with export-driven industrial

growth that many of the wealthiest countries in this group have used to fuel their development.

While both groups have an intensity-increasing factor that generally increases over time, this group

does not have the intensity-reducing factor that mitigates the increase for the wealthiest countries

in the intensity-reducing group.

The intensity-increasing factors given by the leading FPCs are similar across both groups.

These generally reflect the global buildup of energy-intensive sectors over the twentieth century,

but this buildup has stopped and perhaps declined since the turn of the century. This is not to

say that economic growth has slowed nor even that economic growth in energy-intensive sectors

has slowed, but simply that the proportion of energy-intensive sectors to all sectors has stopped

increasing. In this context and to the extent that the intensity-reducing factor reflects sectoral

shifts, it layers on a redistribution of energy-intensive sectors away from the wealthiest countries

and onto middle-income and low-income countries.

3.3 Country-Specific Elasticities

We have alluded both to country-specific idiosyncrasies in discussing the functional coefficient

surface estimates and to the difficulty in interpreting FPCs and their loadings beyond a snapshot

of the common component of elasticities for a fixed level of real GDP or fixed time period. But

a large part of the appeal of our panel approach is the ability to identify elasticities when both

arguments are correlated and changing over time. As with the coefficient surfaces, countries tend

to move from lower right to upper left of the elasticity surfaces as their economies grow over time.

For this reason, it is possible that elasticities of specific countries in the intensity-increasing group

do not increase very much, while those in the intensity-reducing group may not decrease very much

if at all, even setting aside the idiosyncratic components of each country’s elasticity.

In this light, Figure 6 traces out the estimated energy-GDP elasticities of eight large economies

along the elasticity surface corresponding to each country’s group and using estimates of the idiosyn-
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Figure 6: Estimated Elasticities of Selected Countries. Estimated elasticities of four countries in

the energy intensity-reducing group (US, Germany, South Korea, Japan) and four countries in the energy intensity-

increasing group (Brazil, China, India, Turkey).

cratic component βi of the slope estimated for each country. Specifically, elasticity estimates are

plotted for the US, Germany, South Korea, and Japan (countries in the energy intensity-reducing

group), and for Brazil, China, India, and Turkey (countries in the energy intensity-increasing

group).

Of the eight countries examined, South Korea is the most energy intensive for the duration of

the sample, with near unit elasticity since the early 1990s. A member of the intensity-reducing

group, South Korea appears to have a declining elasticity since the turn of the century, but this

decline is very shallow compared to the strong increase in its elasticity during the 1970s and 1980s.

South Korea’s trajectory is easy to interpret, because it started as a relatively poor country and

boosted its energy-intensive industrial base so that its energy intensity by the early 1990s resembled

that of Western Europe decades previously (Adams and Miovic, 1968).

The second-most energy intensive is China. China also began as a relatively poor country and

followed an industrial export-based model like that of South Korea. Indeed, we see a similar pattern

in that China’s elasticity starts low and relatively stable, but then increases from the mid-1990s to

the mid-2000s, after which it levels out. Roughly speaking, the pattern of the Chinese elasticity

appears to lag that of South Korea by a decade or two, though up to a vertical shift because it
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never exceeds 0.8.

The pattern of Turkey’s elasticity appears somewhat similar to that of South Korea in that it

increases until about the turn of the century after which it shows a noticeable decline. Indeed, one

could attribute the inverted “U” to an EKC, but we believe this is an unwarranted oversimplifica-

tion. The time period – but not necessarily output level – over which Turkey’s elasticity declines

is roughly consistent with the declining elasticities of other OECD countries, even though Turkey

is one of the few OECD countries in the intensity-increasing group (See Appendix A.2 for more

details).

Like South Korea, China, and Turkey, India’s elasticity increased during the 1970s but has

been stable at about 0.4 since then. In contrast, Brazil’s elasticity has never stopped increasing.

However, Brazil’s elasticity was negative at the beginning of the sample and only recently reached

zero.

Germany, Japan, and the US have similar patterns in that their elasticities declined rather than

increased until the 1990s. The elasticities of Germany and the US have remained nearly constant

and negative since then, while Japan’s has slightly increased. Given that these three are among the

wealthiest countries in the sample in terms of real GDP per capita and setting aside the obvious

correlation of time and output, these patterns are inconsistent with an EKC unless the peak of the

EKC happened prior to the 1970s, which seems unlikely. A simpler and more plausible explanation

for the decline in the elasticities during the 1970s is a response of these advanced economies to the

energy price hikes of that decade.

The negative sign of elasticities observed for Brazil, Germany, and the US seems surprising at

first glance, because the energy-GDP elasticity that we examine is easily confused with the income

elasticity of energy. A negative income elasticity would mean that energy is an inferior good. It

may very well be the case that consumers view certain types of energy, such as those that generate

high amounts of sulfur dioxide that may result in acid rain, as inferior goods. But it is hard to

imagine that energy from all sources would be an inferior good at a macroeconomic scale, especially

for a country like the US that is a large polluter.

It is important to keep in mind our discussion at the beginning of Section 3 of the energy-GDP

elasticity – it is not an income elasticity and would be difficult to interpret as such without including

additional covariates to control for energy prices and both supply and demand shifters. Instead, a

negative value simply indicates an AEEI, which is an increase in efficiency. In other words, Brazil,

Germany, and the US have grown in spite of decreasing energy consumption, essentially decoupling

economic growth from energy consumption, while the other five countries in the Figure 6 have

increased energy consumption in order to grow, albeit the increases have happened at a slower rate

than economic growth because the elasticities do not exceed unity. This is less a statement about

technical efficiency than it is about the allocation of economic activity across sectors with different
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energy intensities, as the example of Iceland discussed previously illustrates.

Our results on decoupling largely agree with those of Csereklyei et al. (2016). While decoupling

is observed in some countries, and especially in developed countries, it is not prevalent enough to

affect the common components of the elasticities of each group, which are clearly positive over most

values of pr, xq as we observed from Figure 3. However, given some of the large negative values of

βi in Tables 1 and 2, the phenomenon appears to be more prevalent than previously understood

using less flexible models.

4 Conclusion

In this paper, we embrace nonlinearity and both individual and temporal heterogeneity in the long-

run relationship between aggregate economic activity and energy consumption. Our methodological

contribution is based on semiparametric estimation of a functional coefficient panel model, which

allows heterogeneity in an economic relationship at the same time as a common component that is

both nonlinear and varies over time.

Using this approach, we can effectively distinguish nonlinearity in the covariate from a time-

varying linear or otherwise parametrically specified relationship. We emphasize the unique ability

of a nonparametric functional panel approach in identifying a functional relationship with two

arguments. Further, we use functional principal components analysis to examine commonalities

across across the domain of the covariate (the FPCs or factors) and across time (the loadings),

and we introduce a novel bootstrap procedure for inference and interval estimates on the loadings.

Our use of functional principal component analysis to extract common FPCs in a relationship of

interest using panel data is new to the best of our knowledge.

We specifically examine national energy-GDP elasticities, the derivative of log energy consump-

tion with respect to log real GDP for a specific country, which is a key elasticity in understanding

the efficiency and evolution of aggregate usage of energy to produce output and a critical input

that economists use to model the interaction of the climate and economic systems using integrated

assessment models. However, our methodology is quite general and can be applied to any panel

with reasonably large temporal and cross-sectional dimensions.

Our main results suggest that developed countries – those in the energy intensity-reducing

group – generally have had declining elasticities in recent years with a common component that

has fluctuated within a range of about 0.2 to 0.3 over the sample. On the other hand, relatively

underdeveloped countries – those in the energy intensity-increasing group – share a pattern of elas-

ticities that is generally increasing over time and similar to that followed by developed countries in

previous decades but fluctuation within a range of about �0.2 to 0.4 over the sample. Our inno-

vation lies not only in generating these estimates by way of a semiparametric functional coefficient
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model, but also in sorting these countries into their respective groups based on common patterns

in the functional coefficients.

Indeed, all countries appear to share an energy-increasing factor that echoes major changes in

global energy prices, while the more developed countries also have an intensity-declining factor that

may result from sectoral shifts, energy prices, technology, and/or energy sources preferences and

that offsets the growing intensity and has even decoupled economic growth from energy consumption

for the wealthiest countries, such as Germany and the US. Decoupling of this relationship has been

noted in the extant literature, but our results suggest that it may be more prevalent than is currently

thought.



26

References

Adams F.G. and P. Miovic (1968). On relative fuel efficiency and the output elasticity of energy
consumption in Western Europe, The Journal of Industrial Economics 17, 41-56.

Ahn, S.C. and A.R. Horenstein (2013). Eigenvalue ratio test for the number of factors, Econo-
metrica 81, 1203-1227.

Arisoy, I. and I. Ozturk (2014). Estimating industrial and residential electricity demand in Turkey:
A time varying parameter approach, Energy 66, 959-964.

Bai, J. and S. Ng (2004). A PANIC attack on unit roots and cointegration, Econometrica 72,
1127-1177.

van Benthem, A.A. (2015). Energy leapfrogging, Journal of the Association of Environmental and
Resource Economists 2, 93-132.

Bierens, H.J. and L.F. Martins (2010). Time-varying cointegration, Econometric Theory 26, 1453-
1490.

Bosq, D. (2000). Linear Processes in Function Spaces, in: Lecture Notes in Statistics, Vol. 149.
Springer, New York.

Bradford, T. (2018). The Energy System: Technology, Economics, Markets, and Policy. MIT
Press, Cambridge.

Brookes, L.G. (1972). More on the output elasticity of energy consumption, Journal of Industrial
Economics 21, 83-94.

Burke, P.J. and Z. Csereklyei (2016). Understanding the energy-GDP elasticity: A sectoral ap-
proach, Energy Economics 58, 199-210.

Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors,
Journal of Econometrics 136, 163-188.

Cai, Z., Q. Li and J.Y. Park (2009). Functional-coefficient models for nonstationary time series
data, Journal of Econometrics 148, 101-113.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure and mean-variance anal-
ysis in large asset markets, Econometrica 51, 1305-1324.

Chang, Y., M. Choi and J.Y. Park (2023). A factor model for functional time series, mimeograph.

Chang, Y., Y. Choi, C.S. Kim, J.I. Miller, J.Y. Park (2016a). Disentangling temporal patterns in
elasticities: A functional coefficient panel analysis of electricity demand, Energy Economics
60, 232-243.

Chang, Y., Y. Choi, C.S. Kim, J.I. Miller, J.Y. Park (2021). Forecasting regional long-run energy
demand: A functional coefficient panel approach, Energy Economics 96, 105117.



27

Chang, Y., R.K. Kaufmann, C.S. Kim, J.I. Miller, J.Y. Park, and S. Park (2020). Evaluating
trends in time series of distributions: A spatial fingerprint of human effects on climate,
Journal of Econometrics 214, 274-294.

Chang, Y., C.S. Kim, and J.Y. Park (2016b). Nonstationarity in time series of state densities,
Journal of Econometrics 192, 152-167.

Chen, Y.-H.H., S. Paltsev, A. Gurgel, J.M. Reilly, and J. Morris (2022). The MIT EPPA7:
A multisectoral dynamic model for energy, economic, and climate scenario analysis. Joint
Program Report Series Report 360.

Cooley, T.F. and E.C. Prescott (1976). Estimation in the presence of stochastic parameter varia-
tion, Econometrica 44, 167-184.

Csereklyei, Z., M.d.M. Rubio Varas, and D.I. Stern (2016). Energy and economic growth: The
stylized facts, Energy Journal 37, 223-255.

Fan, J. and T. Huang (2005). Profile likelihood inferences on semiparametric varying-coefficient
partially linear models, Bernoulli 11, 1031-1057.

Galli, R. (1998). The relationship between energy intensity and income levels: Forecasting long
term energy demand in Asian emerging countries, The Energy Journal 19, 85-105.

Inglesi-Lotz, R. (2011). The evolution of price elasticity of electricity demand in South Africa: A
Kalman filter application, Energy Policy 39, 3690-3696.

Jakob, M., M. Haller, and R. Marschinski (2012). Will history repeat itself? Economic convergence
and convergence in energy use patterns, Energy Economics 34, 95-104.

Judson, R.A., R. Schmalensee, and T.M. Stoker (1999). Economic development and the structure
of the demand for commercial energy, The Energy Journal 20, 29-57.

Kaufmann, R.K. (2004). The mechanisms for autonomous energy efficiency increases: A cointe-
gration analysis of the US energy/GDP ratio, The Energy Journal 25, 63-86.

Kraft, J. and A. Kraft (1978). On the relationship between energy and GDP, The Journal of
Energy and Development 3, 401-403.

Lescaroux, F. (2011). Dynamics of final sectoral energy demand and aggregate energy intensity,
Energy Policy 39, 66-82.

Liddle, B. (2022). What is the temporal path of the GDP elasticity of energy consumption in
OECD countries? An assessment of previous findings and new evidence, Energies 15, 3802.

Liddle, B. and H. Huntington (2020). Revisiting the income elasticity of energy consumption: A
heterogeneous, common factor, dynamic OECD & non-OECD country panel analysis, The
Energy Journal 41, 207-229.

Liddle, B., R. Smyth, and X. Zhang (2020). Time-varying income and price elasticities for energy
demand: Evidence from a middle-income panel, Energy Economics 86, 104681.



28
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A Appendix: Details of the Data

A.1 Missing Data

Estimating the model requires only two variables, energy consumption per capita and GDP per

capita. However acquiring these variables for a large panel is not straightforward. In fact, we need

not only energy consumption and GDP, but we also need population in order to create per capita

observations. The final data set is an unbalanced panel consisting of 180 countries over 1971-2015.

The population of these 180 countries covers 91.1% of the UN estimated world population in 1971

and 98.6% by 2015. 30 of these countries do not have data over the entire span, and the largest

increase in coverage, 5.3%, occurs in 1996 with the addition of former Soviet bloc countries. Details

of how we construct this panel follow.

Energy Consumption. Energy consumption is measured in millions of tonnes of oil equivalent

(Mtoe), and is available from Enerdata over durations up to 1970-2016 for 186 countries. However,

we drop data for 1970 and 2016, because data for only 71 and 48 countries are available in those

respective years at the time we conducted our analysis. We omit data for most former Soviet

bloc countries in Eastern Europe until 1995. All data for Eritrea, North Korea, Somalia, Kosovo,

Montenegro, and Netherlands Antilles are dropped, either because not enough energy consumption

data are available or because not enough GDP data are available. Energy consumption for Niger

for 1979 is missing.

Population. Population data are available from the World Bank for 217 countries over durations

up to 1960-2015. Population data are also available from Enerdata and the Penn World Table

(PWT), but we defer to the World Bank data for countries and years for which such data are

available. Substantial discrepancies between the three sources are only evident for Sudan. We

augment the data with Taiwanese population data from Enerdata, because Taiwan is not a member

of the World Bank. Population data for Kuwait are missing for 1992-94. Data on population prior

to 1971 for all countries are dropped.

GDP. GDP data are available mainly from the PWT version 9.0 for 182 countries over durations

up to 1950-2014. We employ Enerdata and World Bank GDP data where available for countries for

which energy consumption data are available. PWT real GDP data are chained to 2011 (output-

side GDP at chained PPPs in millions of 2011 US$), while those from Enerdata and the World

Bank are chained to 2005. Where the latter data sources are used, we match base years. The PWT

GDP data to 2014 from are augmented by data from the World Bank and Enerdata for 2015. We

also use World Bank and Enerdata to fill data that are available from those sources but missing
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from the PWT. For most (173) countries, we use World Bank GDP growth rates from 2014-2015

to estimate PWT GDP in 2015.

For Taiwan and Syria (2), World Bank GDP data are not available, but we use Enerdata growth

rates instead. For Cuba, Guyana, Kiribati, Papua New Guinea, Tonga, Vanuatu, and Samoa (7),

no PWT GDP data are available, but World Bank data are available. We use nominal GDP in

2011 to capture the difference in base years and the growth rates in real GDP to reconstruct an

estimate of real GDP chained to 2011 like that of the PWT. For Afghanistan, Libya, and Solomon

Islands (3), no PWT GDP data are available, some World Bank data are available, but Enerdata

data are available. The procedure for these three countries is the same for the latter seven, but

Enerdata growth rates are used where World Bank data are unavailable.

A.2 Country Groups

The 180 countries in our sample exhibit coefficient heterogeneity not only in βi but also in Γpr, xq.

Roughly speaking, developing countries appear to have Γpr, xq increasing in t, while developed

countries have Γpr, xq increasing in r only up to about 2004, after which point the function declines

for many values of x. In order to deal with this heterogeneity systematically, we first break the

countries into two groups: OECD (35 countries) and non-OECD (145 countries) and then sub-

sequently refine the groups by adding or subtracting countries to or from each group. We now

describe the procedure used to accomplish this grouping.

As the starting point, we fit the model in equation (4) separately for OECD and non-OECD

groups to obtain the surfaces Γ̂OECDpr, xq and Γ̂NonOECDpr, xq for each group. Next, for each

country i, regardless of its group, we estimate

Yit � Γ̂�OECDpt,XitqXit � αi � β�iXit � eit

Yit � Γ̂�NonOECDpt,XitqXit � αi � β�iXit � eit

using these surfaces.

We then compare the respective root mean squared errors (RMSEs)RMSEOECD
i andRMSENonOECD

i

from these two regressions. Any OECD country for which RMSEOECD
i ¡ RMSENonOECD

i is re-

moved from the OECD group. There are two, Latvia and Turkey, while 33 remain. Any non-OECD

country for which xi2015 ¡ logp15, 698q and RMSEOECD
i   RMSENonOECD

i is removed from the

non-OECD group. There are 14, Bahrain, Bahamas, Belarus, Bermuda, Bulgaria, Cuba, Cyprus,

Hong Kong, Kuwait, Lithuania, Panama, Romania, Russia, and Uruguay, while 131 remain.

In which group do these 16 removed countries belong? There are 216 � 65, 536 configurations

in which these 16 countries belong to one group or another. We re-estimate the model for each

group using each of these 216 groupings, retaining the fitted residuals for each country and year and
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Figure A.1: Root Mean Squared Errors. RMSEs calculated for 216 � 65, 326 groupings with RMSE of

original OECD vs. non-OECD groups and optimized RMSE of intensity-decreasing vs. intensity-increasing groups

indicated.

calculating a population-weighted root mean squared error for the whole panel. We then pick the

combination that minimizes root mean squared error across all 216 groupings. Figure A.1 shows

the clear improvement in model fit resulting from assigning countries to groups in this way relative

to the OECD/non-OECD starting point.

Based on this procedure, Turkey moves from the OECD group to the non-OECD group, while

Latvia and the 33 original countries remain. As explained in the text, we label this the energy

intensity-reducing group. On the other hand, 12 non-OECD countries, Bahrain, Belarus, Bermuda,

Bulgaria, Cuba, Cyprus, Hong Kong, Kuwait, Lithuania, Panama, Romania, Russia move to the

OECD group, while Bahamas, Uruguay, and the original 131 remain, and we label this the energy

intensity-increasing group. The specific countries in each group are listed below.

Energy Intensity-Reducing Group (46 Countries): 35 OECD countries, minus 1, plus

12 marked by a � superscript, ordered by ISO three-letter country codes. Australia, Austria,

Bahrain�, Belarus�, Belgium, Bermuda�, Bulgaria�, Canada, Chile, Cuba�, Cyprus�, Czech Re-

public, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong�, Hungary, Iceland,

Ireland, Israel, Italy, Japan, Kuwait�, Latvia, Lithuania�, Luxembourg, Mexico, Netherlands,

New Zealand, Norway, Panama�, Poland, Portugal, Romania�, Russia�, Slovakia, Slovenia, South

Korea, Spain, Sweden, Switzerland, United Kingdom, United States.

Energy Intensity-Increasing Group (134 Countries): 145 non-OECD countries, minus 12,

plus 1 marked by a � superscript, ordered by ISO three-letter country codes. Afghanistan, Albania,

Algeria, Angola, Argentina, Armenia, Azerbaijan, Bahamas, Bangladesh, Barbados, Belize, Benin,
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Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Burkina Faso, Burundi, Cabo

Verde, Cambodia, Cameroon, Central African Republic, Chad, China, Colombia, Comoros, Congo

(DR), Congo (R), Costa Rica, Côte d’Ivoire, Croatia, Djibouti, Dominica, Dominican Republic,

Ecuador, Egypt, El Salvador, Equatorial Guinea, Ethiopia, Fiji, Gabon, Gambia, Georgia, Ghana,

Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, India, Indonesia, Iran,

Iraq, Jamaica, Jordan, Kazakhstan, Kenya, Kiribati, Kyrgyzstan, Laos, Lebanon, Lesotho, Liberia,

Libya, Macao, Macedonia, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania,

Mauritius, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua,

Niger, Nigeria, Oman, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Qatar, Rwanda,

Saint Lucia, Saint Vincent and the Grenadines, Samoa, Sao Tome and Principe, Saudi Arabia,

Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Solomon Islands, South Africa, Sri Lanka,

Sudan, Suriname, Swaziland, Syria, Taiwan, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad

and Tobago, Tunisia, Turkey�, Turkmenistan, Uganda, Ukraine, United Arab Emirates, Uruguay,

Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe.

B Appendix: Additional Details of Estimation

B.1 Bandwidth Selection

There is no theory or empirical consensus guiding the choice of bandwidths hr and hx with a

nonstationary panel. We use the formulas hr � cn�1{6 and hr � cτn�1{6 where τ is the ratio

of the standard deviation of t{T , all time observations normalized to the unit interval, to that of

Xit{maxpXitq, all log real GDP observations normalized to the unit interval. Specifically, τ � 0.261

for the energy intensity-reducing group and τ � 0.367 for the energy intensity-reducing group. We

use wider bandwidths of hr � cn�1{8 and hr � cτn�1{8 for estimating the derivatives.

We select the bandwidth constant c based on out-of-sample forecast performance. Specifically,

we compare RMSEs of out-of-sample forecasts with the last 5 years or 10 years of the sample

reserved for this purpose. Because the forecasts for choosing c have relatively short horizons, the

function Γpt,Xitq is forecast simply by extending the standard normal kernel up to the end of the

sample, t � 2015 and Xi,2015. More precise forecasting may be possible if forecasting were the goal,

but our goal here is simply bandwidth selection.

For the OECD group and the similar intensity-reducing group, we choose a bandwidth constant

of c � 0.40 based on bandwidth constants of 0.20 and 0.34 selected for 5-year ahead and 10-year

ahead forecasts. The RMSE at 0.4 is barely larger than that at 0.34. For the non-OECD group and

similar intensity-increasing group, we choose a bandwidth constant of c � 0.30 based on bandwidth

constants of 0.24 and 0.20 selected for 5-year ahead and 10-year ahead forecasts. Deliberately

setting c to be a bit high imposes smoothness on the estimates, which is particularly useful for the
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second group, which otherwise shows a considerably less smooth surface estimate Γ̂pr, xq than that

of the first group.

B.2 Correlation of αi with βi

As noted in the paper, we observe a strong negative correlation between our estimates of αi and

βi. To understand why, rewrite our model in (4) as

Zit � αi � βiXit � Uit

by defining Zit � Yit � Γpt,XitqXit. The term αi may be decomposed as

αi � Z̄i � βiX̄i � Ūi

� rZ̄ � βiX̄s � rpZ̄i � Z̄q � βipX̄i � X̄q � Ūis

� α1i � α2i,

where P̄i � p1{T q
°T

t�1 Pit for P � Z,X,U , and Q̄ � p1{NT q
°N

i�1

°T
t�1Qit for Q � Z,X.

Define

σpα, βq �
1

N

Ņ

i�1

pαi � ᾱqpβi � β̄q,

σ2pαq � σpα, αq, and σ2pβq � σpβ, βq to be the sample covariance and variances of pαiq and pβiq.

The sample correlation is therefore given by ρpα, βq � σpα, βq{rσpαqσpβqs. Define σpαk, βq, σ
2pαkq

and ρpαk, βq similarly for k � 1 and 2.

For our model, pZ̄i� Z̄q and pX̄i� X̄q are negligible compared to X̄, and therefore, αi � α1i so

that σpα1q{σpαq � 1. Consequently,

ρpα, βq � ρpα1, βq

�
1�

σpα2, βq

σpα1, βq



σpα1q

σpαq
� �

�
1�

σpα2, βq

σpα1, βq



σpα1q

σpαq
� �1.

The ratios above can be computed from the estimates pβ̂iq of pβiq and p
ˆ̄Uiq of pŪiq. Using our data,

these ratios are given by
σpα1q

σpαq
� 0.905 and

σpα2, βq

σpα1, βq
� 0.098,

which implies that ρpα, βq � �0.993. In other words, the estimates pα̂iq have an almost perfect

negative correlation with pβ̂iq, a result that reflects correlation in the underlying heterogeneity, as

we have just shown, rather than correlations from estimation error or a spurious regression.
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C Appendix: Bootstrap Procedure

We utilize a bootstrap procedure to compute standard errors and confidence intervals to assess un-

certainty. Moreover, bandwidths of nonparametric estimators inherently balance bias and variance,

so the bootstrap may further reduce the bias.

C.1 Construction

The discussion in this section follows that of a closely related paper by the authors (Chang et al.,

2021, Appendix A.1). However, there are some differences in notations and groups. For either

the intensity-reducing or the intensity-increasing group, let N denote the number of countries for

which we observe data over the whole time span, 1971-2015, so that T � 45. Bootstrapped residuals

used to calculate interval estimates for the parameters and FPC loadings are obtained using the

following steps.

1. Obtain fitted residuals Ûit from the regression in (8), and temporally demean them to obtain

ûit � Ûit � Ûi.

2. Calculate the principal components of the covariance matrix of û�t � pû1t, ..., ûNtq
1. Decom-

pose û�t as û�t � Λ̂ĝt � η̂�t, where Λ̂ � pλ̂1, ..., λ̂N q
1 with λ̂i defined to be an r � 1 vector of

factors for variable pûi�q with an r�1 vector ĝt of factor loadings, and where η̂�t � pη̂1t, ..., η̂Ntq
1

is a vector of idiosyncratic components of û�t. The number of factors r is chosen by agreement

between the eigenvalue ratio and growth ratio tests (Ahn and Horenstein, 2013).

3. Model ĝt as a vector autoregression,

ĝt � B1ĝt�1 � � � �Bkĝt�k � ϵt (C.1)

with the autoregressive order k determined by BIC. Denote parameter estimates and fitted

residuals by B̂1, ..., B̂k and ϵ̂t respectively. Re-sample from pϵ̂t � ϵ̂�q to obtain bootstrap

samples pϵ�t q, from which bootstrap samples pg�t q are obtained using

g�t � B̂1g
�
t�1 � � � � B̂kg

�
t�k � ϵ�t , (C.2)

where g�t is set to ĝt for t � 1, ...k.

4. Model η̂it as an autoregression,

η̂it � πi1η̂it�1 � � � �πipi η̂it�pi � eit. (C.3)
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Figure C.2: Demeaned Residuals pêit� êiq. Outliers exceeding the p�0.0685, 0.0778q band marked in red.

Left: Energy intensity-Reducing Group. Right: Energy intensity-reducing group.

with the autoregressive order pi determined by BIC for each country i. Denote parameter

estimates and fitted residuals by π̂i1, ..., π̂ipi and êit respectively. Re-sample from pêit� êi�q to

obtain bootstrap samples pe�itq with outliers omitted as described in the Section C.2 below,

from which bootstrap samples pη�itq are obtained using

η�it � π̂i
1η

�
i,t�1 � � � � π̂i

kη
�
i,t�pi � e�it, (C.4)

where η�it is set to η̂it for t � 1, ..., pi.

5. From equations (C.2) and (C.4), the bootstrapped values of the regressand are given by

Y �
it � Ŷit � λ̂1ig

�
t � η�it with

Ŷit � Γ̂0pt,XitqXit �
Ņ

i�1

α̂i

�
1� Γ̂1ipt,Xitq

�
�

Ņ

i�1

β̂i

�
1� Γ̂2ipt,Xitq

�
Xit, (C.5)

from the regression in (8) using the estimates obtained from the procedure described in Section

2.2.

6. Parameters and FPC loadings are re-estimated for each of 1,000 bootstrap replications of Y �
it

holding Xit and the FPCs fixed. The distributions of these parameter estimates are used to

construct standard errors in Tables 1 and 2, and the distributions of the FPC loadings are

used to construct confidence intervals for the loadings in Figures 4 and 5.



36

Figure C.3: Bias and Standard Error Surfaces. Top: Bias. Bottom: Standard errors. Left: Energy

intensity-reducing group. Right: Energy intensity-reducing group.

C.2 Implementation

A few important details remain. 37 out of 46 countries in the intensity-reducing group and 113 out

of 134 countries in the intensity-increasing group have data available over the full time span, 1971-

2015. The regression in (C.1) is estimated for each of the two groups using these countries only for

the purpose of the bootstrap. The eigenvalue ratio test of Ahn and Horenstein (2013) selects four

factors common to the residuals of the 37 countries, which explain 81.3% of the variation of these

residuals, and two factors common to the residuals of the 113 countries, which explains 56.6% of

the variation in these residuals. For both groups, BIC selects k � 1 and pi P r1, 5s with pi � 1 most

often.

In redrawing from pêit � êiq for the 37 countries in the intensity-reducing group, we omit 64

outliers out of 1614 residuals. We similarly omit 1193 outliers out of 4939 residuals for the 113
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countries in the intensity-increasing group.10 Our aim in omitting outliers is to control excessive

heterogeneity across countries resulting from major economic disruptions, such as armed conflict

and the dissolution of the Soviet bloc and the Soviet Union, so the band p�0.0685, 0.0778q is chosen

based on the residuals of the G7 countries. The outliers are shown in Figure C.2.

The procedure just described omits countries with missing data. However, we use linear inter-

polation to fill the missing data for Kuwait over 1992-1994 following the Gulf War and for Niger

in 1979. There are eight former Soviet or Soviet bloc countries in the intensity-reducing group for

which we have incomplete time series, and there are 21 countries, some of which are former Soviet

or Soviet bloc countries, for which that is the case in the intensity-increasing group.

We project the fitted residuals from the omitted countries in each group using common compo-

nents obtained using the included countries in the respective group. The projection and its residuals

may be labeled as pλ̂1iĝtq and pη̂itq, and then we implement steps 3-5 of the bootstrap procedure

using these projections and residuals.

For each group, we compute the bias and standard error of Γ̂pt, xitq from re-estimating Γpt, xitq

over 1, 000 bootstrapped samples using both the countries with full data sets and those with missing

data as described above. The bias is calculated as the difference between the mean of these 1, 000

estimates and the original estimate Γ̂pt, xitq, while the standard error is calculated as the standard

deviation of these 1, 000 estimates. The biases and standard errors for the two groups are plotted in

Figure C.3. We interpret a positive bias of the bootstrap mean relative to the original estimate as a

reflection of the magnitude of bias inherent in the estimation procedure, so that the bias-corrected

surfaces shown in Figures 2 and 3 are the original surfaces Γ̂pt, xitq minus the biases shown in the

top panels of Figure C.3.

10Note that 37� 45 � 1665 so that 1665� 1614 � 51 for the energy intensity-reducing group and 113� 45 � 5085
so that 5085 � 4939 � 146 for the energy intensity-increasing group are equal to

°37
i�1 pi and

°113
i�1 pi respectively.

These are the degrees of freedom used up by the lag orders.
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