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Abstract 

This study utilizes time series analysis and machine learning techniques to 

forecast Brent Crude oil prices. The forecasting models include an ARIMAX 

model, three machine learning models (GRU, LSTM, CNN) and an 

ARIMAX model augmented with LASSO regularization.  

 

The findings indicate that the ARIMAX model exhibits the best forecasting 

performance; however, it is prone to overfitting. To address this issue, 

LASSO regularization is applied to the ARIMAX model to penalize 

complexity. Surprisingly, incorporating LASSO regularization results in 

reduced forecasting performance compared to the initial ARIMAX model.  

 

Among the basic machine learning models, the GRU model demonstrates 

highest predictive accuracy, followed by the LSTM model, while the CNN 

model exhibits lower predictive accuracy. When adding a dropout term, we 

find that the ranking order changes, and the CNN exhibits highest predictive 

accuracy. Further, when generalizing the models using cross-validation, we 

find that LSTM exhibits the best overall forecasting performance among the 

machine learning models. 

 

As an extension of our main research, we seek to use machine learning 

models to predict out-of-sample Brent Crude oil price and evaluate its 

impact on the valuation of Aker BP and Vår Energi. When applying the 

forecasted Brent Crude oil prices obtained from the Prophet model, the 

findings reveal that both companies are undervalued relative to their current 

market values. 

 

These results underscore the significance of accurate forecasting models in 

informing investment decisions and highlight the potential undervaluation 

of the companies analyzed. 
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1. Introduction 

1.1 Purpose 

The main objective of this thesis is to explore methods for forecasting the 

price of Brent Crude oil using quantitative models and machine learning 

techniques. Additionally, we aim to assess the impact of the Prophet model 

forecast on the fundamental values of Norwegian oil and gas companies. 

 

To achieve this, we will first develop an oil price forecast by employing 

various statistical forecasting models and utilizing machine learning 

algorithms. These approaches will help us generate reliable predictions for 

the future price of oil. Subsequently, we will conduct a comprehensive 

valuation analysis of the selected oil and gas companies. This analysis will 

involve the application of two present value methods, as well as an option 

pricing model. By incorporating our oil price forecast into these valuation 

models, we can obtain forward estimates for key factors that contribute to 

the fundamental value of oil and gas companies. 

 

Furthermore, we acknowledge that the selected companies have a significant 

presence in the gas sector. Therefore, we will incorporate the gas price based 

on the forward curve and expert estimates provided by macroeconomists 

and gas analysts. This will enable us to capture the dynamics of the gas 

market and its influence on the overall valuation of the companies. 

 

In summary, the primary objective of this thesis is to examine forecasting 

models for Brent Crude oil. Furthermore, we seek to obtain a forward 

estimate on the Brent Crude oil using machine learning and evaluate its 

impact on the fundamental values of Norwegian oil and gas companies. By 

doing so, we aim to enhance our understanding of these industries and 

contribute to the existing body of knowledge in the field. 
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1.2 Motivation 

The motivation behind this thesis stems from the current global energy 

crisis, characterized by high energy prices, increasing living costs and 

increased volatility in energy prices. While the invasion of Ukraine by Russia 

has contributed to the surge in energy prices, we believe that there are other 

underlying issues impacting global energy prices. We seek to gain an 

understanding of which underlying variables that affect energy prices. 

 

To gain a deeper understanding of the market dynamics that govern energy 

prices worldwide, we aim to investigate how these factors impact the 

fundamental values of Norwegian oil and gas companies. Given the 

candidates' interest in the oil market and its critical role in the global energy 

mix, we find it compelling to explore forecasting methods and their influence 

on the valuation of the selected companies. 

 

Furthermore, our objective is to acquire insights into accurate and efficient 

forecasting techniques and methodologies, particularly in the context of 

commodity markets. We aspire to develop a framework that leverages 

machine learning and quantitative models to forecast the price of Brent 

Crude oil. 

 

By conducting this research, we aim to contribute to the development of 

effective forecasting approaches, understanding of variables that impact 

energy prices, and valuation of oil and gas companies. Ultimately, our goal 

is to provide valuable insights and tools that can assist in making informed 

decisions in the energy sector and mitigate the challenges posed by volatile 

energy prices. 
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1.3 Research Question 

Our research question is:  

“How well do machine learning models perform on forecasting Brent Crude 

oil relative to traditional multivariate time series forecasting models?” 

With the following research sub-question: 

“What is the fundamental value of Aker BP and Vår Energi when applying 

the Brent Crude oil price forecasted by the Prophet model, and how does it 

compare to their current market values?” 

2. Literature review 

2.1  Forecasting oil price 

Early research on oil price forecasting was conducted by Wang, Yu, and Lai 

(2005) who compared ARIMA models and neural networks. They proposed 

a new methodology to predict Crude oil prices. They compared an ARIMA 

model to an ANN model. Their findings suggest that for the full period, the 

ANN outperformed ARIMA by just 0.2% based on RMSE. An important 

factor that Wang, Yu and Lai highlights in their paper is that the models 

have very little practical use.  

 

Wang, Yu and Lai (2008) continued their work with comparing ARIMA to 

an empirical mode decomposition (EMD) for world Crude oil spot price 

forecasting. In this paper, they use a three-layer feed-forward neural network 

(FNN) and compared it to ARIMA. In this paper, ARIMA was the worst 

performer and achieved an RMSE significantly higher than the neural 

networks, which is interesting when compared to their previous work. They 

highlight that the bad performance can be attributed to the weaknesses of 

individual models, and that hybrid models tend to perform better. 
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Ahmed and Shabri (2014) forecasted daily WTI Crude prices using ARIMA 

and comparing them to SVM and GARCH respectively. The study shows 

that ARIMA has strong predicting power but was outperformed by SVM. 

However, the study points out that ARIMA had higher predicting 

capabilities than GARCH. 

 

Zhao and Wang (2014) created an ARIMA model with Crude oil prices from 

1970 to 2006 to forecast annual Crude oil prices. They propose an ARIMA 

model and shows that ARIMA possesses high predicting power, but notes 

that forecasting oil prices is an uncertain and arbitrary process. Forecasting 

of Crude oil prices is influenced by a lot of factors and is complex. Xiang 

and Zhuang (2013) focused on a short-term forecast, and therefore created 

a short-term prediction of international Crude oil prices with an ARIMA 

model application on a one-year basis, with data from November 2012 until 

April 2013. They found that an ARIMA (1,1,1) possessed good prediction 

effects. They concluded that on a short-term basis ARIMA is a good model 

when forecasting international Crude oil prices. 

 

More recent studies performed using ARIMA is Gasper and Mbwambo 

(2023) who researched how forecasting using ARIMA has been affected post 

Covid-19 and war in Ukraine. The study points to the fact that considering 

these crises where we experienced high volatility in the energy markets, 

ARIMA models are still able to forecast Crude oil prices with high accuracy. 

They point to the fact that ARIMA achieves the highest predicting 

capabilities in the short term. 

 

Employing machine learning models for forecasting Crude oil prices has 

become a popular technique. Gupta and Pandey (2018) constructed an 

LSTM neural network to predict Crude oil prices. Their study focused on 

implementing different LSTM tuning with different epochs, lookbacks, and  
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other tuning techniques and finds that LSTM possesses high predictive 

accuracy. However, their research suggests that increasing lookbacks did not 

increase predictive accuracy, but they conclude that the implementation of 

LSTM is promising. 

 

Wu, Wu, and Zhu (2019) continued using LSTM combining it with an 

ensemble empirical mode decomposition (EEMD) to forecast Crude oil 

prices. They experienced that traditional ensemble models broke down 

during training, but when LSTM was introduced, the model was able to 

accurately forecast WTI Crude oil.  

 

This work was extended by Assaad and Fayek (2021) where they also 

introduced CNN as a neural network used to forecast Crude oil prices. They 

implemented a hybrid model consisting of CNN and LSTM and compared 

this model to a regular LSTM and a Deep neural network (DNN). The model 

was based on fluctuations in US stocks, and they used these fluctuations to 

check whether this could help predict Crude prices. Based on their findings, 

the research suggests that LSTM was the best model to predict Crude oil 

prices. 

 

Nasir, Aamir, Haq, Khan, Amin & Naeem (2023) compared different 

ARIMA and LSTM setups and compared their forecasting performance on 

WTI. Their models are a novel hybrid prediction technique that depends on 

local mean decomposition. Their findings suggest that a hybrid model 

between LMD-SD-ARIMA-LSTM performed best. More interesting was the 

fact that their basic ARIMA model performed better than a basic LSTM 

model, where their ARIMA model achieved an RMSE of 1.461. 

 

Through our research we aim to contribute to the existing body of 

knowledge, and investigate the performance of the LSTM, CNN and GRU 

in forecasting Brent Crude oil prices, compared to the ARIMAX model. 



 

Page 6 

2.2 Valuation  

Enterprise DCF remains a favorite of practitioners and academics because 

it relies on the flow of cash in and out of the company, rather than on 

accounting-based earnings. For its part, the discounted economic-profit 

valuation model can be quite insightful because of its close link to economic 

theory and competitive strategy. Economic profit highlights whether a 

company is earning its cost of capital and quantifies the amount of value 

created each year. Koller, Goedhart and Wessels recommend creating both 

enterprise DCF and economic-profit models when valuing a company. Both 

the enterprise DCF and economic-profit models rely on the weighted average 

cost of capital (WACC). WACC-based models work best when a company 

maintains a stable debt-to-value ratio. The authors highlight that the 

discounted cash flow analysis delivers the best results. 

 

Professor Aswath Damodaran (2012) argues in his book Tools and 

techniques for determining the value of any asset that in general terms there 

are three approaches to valuation. The first, discounted cash flow (DCF) 

valuation, relates to the value of an asset to the present value (PV) of 

expected future cash flows on that asset. The second, relative valuation, 

estimates the value of an asset by looking at the pricing of comparable assets 

relative to a common variable such as earnings, cash flows, book values or 

sales. The third, contingent claim valuation, uses option pricing models to 

measure the value of assets that share option characteristics. Damodaran 

highlights the research on valuation in his paper Approaches and Metrics: 

A Survey of the Theory and Evidence (Damodaran, A., 2006). The valuation 

theory and framework used in this thesis is commonly regarded as the best 

literature on valuation and widely used in universities and among 

professionals, and will rely on the following literature: Koller, T., Goedhart, 

M., & Wessels, D. (2020), Damodaran, A. (2006), Damodaran, A. (2012) 

and Petersen C., Plenborg T., & Kinserdal F. (2017). 
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3. Research Methodology 

Throughout the chapter we will explain the methodology behind the 

forecasting and the valuation models.  

3.1 Time Series Analysis 

The selection of ARIMAX over ARMA models is predicated on the 

assumption that the data is non-stationary. The ADF test is used to examine 

the stationarity of the data. We are 95% certain that no unit root exists 

based on the test results. Therefore, we can say that the data is not 

stationary, and a level of integration is required. Exogenous variables that 

will be used for forecasting are represented by the X in the ARIMA model. 

3.1.1 The Autoregressive model (AR) 

The AR model shows that the current value of the series 𝑋𝑡 can be explained 

as a function of 𝑝 past values, 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝑝, where p determines the 

number of steps into the past needed to forecast the current value 

(Shumway, R. H., & Stoffer, D. S. 2011) and is abbreviated as 𝐴𝑅(𝑝). An 

example of an autoregressive model of order p may be expressed as: 

𝑋𝑡 = 𝑐 + ∑ 𝜙𝑖𝑥𝑡−1

𝑝

𝑖=1

+ 𝜖𝑡 

Where 𝑋𝑡 is stationary and 𝜙1, 𝜙2, … , 𝜙𝑝 are constants and where we assume 

𝜖𝑡 is a Gaussian white noise series with mean zero and variance 𝜎𝜖
2. Moving 

average models work as an alternative to autoregressive models where 𝑋𝑡 is 

assumed to be combined linearly. The moving average of order 𝑞, 

abbreviated as 𝑀𝐴(𝑞), assumes the white noise 𝜖𝑡 on the right-hand side of 

the defining equation are combined linearly to form the observed data. An 

example of a 𝑀𝐴(𝑞) can be expressed as: 

𝑋𝑡 = 𝜇 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝜖𝑡−1 + 𝜖 
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Where there are 𝑞 lags in the moving average and 𝜃1, 𝜃2, … , 𝜃𝑞 (𝜃𝑞 ≠ 0) are 

parameters. We assume that 𝜖𝑡 is a Gaussian white noise series with mean 

zero and variance 𝜎𝑤
2  unless otherwise stated. 

3.1.2 The ARIMAX model 

The Autoregressive Integrated Moving Average (ARIMA) model is an 

extension of the Autoregressive Moving Average (ARMA) model that 

incorporates an integration component to account for the non-stationarity 

of the variable of interest. The X is an extension of the ARIMA model where 

the X represents the exogenous variables making it a multivariate time series 

model. The integration component of the ARIMA model enables the 

representation of trends or patterns in the variable that may not be directly 

attributable to its previous values, but rather to other underlying factors. In 

order to eliminate potential trends or seasonality, the procedure of 

integrating the variable involves differentiating the time series data. The 

order of integration, designated by "d," indicates the number of times the 

data has been differentiated to eliminate these components. By taking 

differences, the ARIMA model attempts to transform the original time series 

into a stationary series, making it possible to analyze and model the 

underlying stochastic process.  

 

To determine which model that will be utilized in this study, we apply the 

Akaike information criterion (AIC). AIC is a statistical measure used for 

comparing and selecting models. It provides a trade-off between the model's 

fit and its complexity, with the objective of identifying the model that best 

balances these two factors. AIC is founded on the principles of information 

theory and considers the likelihood of the data given the model and the 

number of parameters. The lower the AIC value, the more desirable the 

model (Akaike, 1974). The AIC may be expressed as: 

𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘 
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3.2 Machine learning 

In this thesis we use three different machine learning models. All the 

different machine learning models use the Adam algorithm. The models 

utilized in this study is the Long Short-Term Memory (LSTM), 1D 

Convolutional Neural Network (1D CNN), and Gated Recurrent Unit 

(GRU). The models use different input parameters, and the complexity of 

the models are different. When comparing the models, we are able to assess 

model performance through accuracy and computational efficiency. 

3.2.1 Recurring Neural Network (RNN) 

RNN is an artificial neural network that employs sequential or time series 

data. Typically, these deep learning algorithms are applied to ordinal or 

temporal problems, such as language translation, natural language 

processing (nlp), speech recognition, and time series analysis (What Are 

Recurrent Neural Networks? | IBM, n.d.). The output from the nodes can 

influence subsequent input to the same nodes in an RNN, a family of 

artificial neural networks where connections between nodes can establish a 

loop. All neural networks is built to minimize the RMSE. 

 

Figure 1. RNN. (Roell. 2017) 

Jason Roell (2017) describes RNNs as the prominent neural network in 

regard to time series analysis because of the use of memory. A typical 

feedforward neural network uses no memory, and therefore will not 

remember the datapoint at 𝑡 − 1 when assessing 𝑡 (Roell. 2017). The use of 

memory is the big advantage of RNN.  
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Adam optimization is a stochastic gradient descent method that is based on 

adaptive estimation of first order and second-order moments. According to 

Kingma and Ba (2014) the algorithm is straightforward to implement, is 

computationally efficient, has little memory requirements, is invariant to 

diagonal rescaling of the gradients, and is well suited for problems that are 

large in terms of data and/or parameters. The algorithm is also appropriate 

for non-stationary objectives and problems with very noisy and/or sparse 

gradients. This makes it a good algorithm to implement in regard to 

forecasting oil prices, since we already have proved that historical data of 

oil price is non-stationary. The algorithm is set to find a set of internal model 

parameters that perform well against some performance measure such as 

logarithmic loss or root mean squared error as in our case. 

3.2.2 Long Short-Term Memory (LSTM) 

LSTM is an artificial deep learning neural network that is a more complex 

subtype of Recurring Neural Network (RNN). It is employed to spot patterns 

in data sequences, like those found in sensor data, stock prices, or spoken 

language. RNNs are able to achieve this because, in addition to including 

the actual value in the prediction, they also include the location of the value 

in the sequence (Lang, 2022). LSTM learns and remembers long-term 

dependencies in the data dynamically, enabling it to capture context and 

make accurate predictions. Based on learned patterns and contextual 

information, the model transforms input data, performs internal 

calculations, and generates output predictions. 

 
Figure 2. Difference between RNN and the subtype LSTM. Bag, S. (2022) 
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3.2.3 Convolutional Neural Network (CNN) 

CNN is a class of artificial NN that has become prevalent in a variety of 

computer vision tasks and is gaining interest in a wide range of fields, 

including time series analysis. CNN is designed to learn spatial hierarchies 

of features automatically and adaptively via backpropagation by employing 

multiple building blocks, including convolution layers, pooling layers, and 

fully connected layers (Yamashita, Nishio, Kinh Gian Do & Togashi, 2018). 

 

Figure 3. Time series 1d CNN. Chandra, R., Goyal, S., & Gupta, R. (2021) 

3.2.4 Gated Recurrent Unit (GRU) 

GRU is part of a specific model of recurrent neural network that intends to 

use connections through a sequence of nodes to perform machine learning 

tasks associated with memory and clustering, for instance, in time series 

analysis. Gated recurrent units aid in adjusting neural network input weights 

to solve the common issue of vanishing gradients in recurrent neural 

networks (Techopedia.com, 2018). Compared to conventional RNNs, GRUs 

offer a number of benefits. GRUs selectively update their internal state via 

gating techniques, which enables them to recall long-term dependencies 

without experiencing vanishing gradient problems. 

 

Figure 4. Difference between GRU and LSTM. Loye, G. (2023) 
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3.3 Forecast performance 

To assess the forecast performance, we use five evaluation metrics. The first 

evaluation metric employed is the Mean Squared Error (MSE), which 

calculates the average squared difference between actual value and the 

predicted value. MSE is calculated by: 

𝑀𝑆𝐸 =
1

𝑁
× ∑(𝑦𝑖 − 𝑦̂)

2

 

The second evaluation metric employed is the Root Mean Squared Error 

(RMSE), which is the squared value of the MSE, representing the standard 

deviation of the residuals. RMSE is calculated by:  

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
× ∑(𝑦𝑖 − 𝑦̂)

2

 

The third evaluation metric employed is the Mean Absolute Error (MAE), 

which is the average absolute error between the actual and the predicted 

value. The MAE is calculated by: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂| 

The fourth evaluation metric employed is the Goodness of fit (𝑅2), which 

measures how well the regression line fits the actual data. The 𝑅2 is 

calculated by: 

𝑅2 = 1 −
∑(𝑦

𝑖
− 𝑦̂)

2

∑(𝑦
𝑖

− 𝑦̅)
2 

The fifth metric employed is the corrected Goodness of fit (𝑅𝑎𝑑𝑗
2 ), which is 

similar to 𝑅2 but adjust for the number of terms in the model.  The 𝑅𝑎𝑑𝑗
2  is 

calculated by: 

𝑅𝑎𝑑𝑗
2  =  1 −  

(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
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3.4 Valuation M ethods 

To value the selected oil and gas companies, we will use two present value 

models, in addition to an option pricing model. We will use the DCF model, 

the EVA model, and the Black-Scholes model as an option pricing model to 

value the companies as of March 31, 2023. 

3.4.1 Present Value Methods 

Discounted Cash Flow model (DCF) 

The discounted cash flow model can be specified in two ways, one estimates 

the enterprise value, and one estimates the equity value. Our research 

employs the enterprise value model. To obtain the market value of equity 

we extract the net interest-bearing from the enterprise value (Petersen et 

al., 2017). According to the model, only the free cash flows and WACC affect 

the market value of the company.  

EV0 = ∑
FCFFt

(1 + WACC)t

n

t=1

+
FCFFn+1

(WACC − g)
×

1

(1 + WACC)n 

Equation 1. The Discounted Cash Flow Model 

 

Economic Value-added model (EVA): 

EVA is a measure of the dollar surplus value created by an investment. It 

is computed as the product of the excess return made on an investment and 

the capital invested (Damodaran, A. 2012). In this thesis, we have employed 

the two-stage model for valuation purposes. According to the EVA model, 

the value of a company is derived by considering the original invested 

capital, which comprises the book value of equity plus net interest-bearing 

debt. In addition to the invested capital, the EVA model incorporates the 

present value of all future EVAs to determine the enterprise value. 

EV0 = ∑
EVAt

(1 + WACC)t

n

t=1

+
EVAn+1

(WACC − g)
×

1

(1 + WACC)n 

Equation 2. The Economic Value-added model 
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3.4.2 Black-Scholes model 

In most publicly traded firms, equity has two features. The first is that the 

equity investors run the firm and can choose to liquidate its assets and pay 

off other claim holders at any time. The second is that the liability of equity 

investors in some private firms and all publicly traded firms is restricted to 

their equity investments in these firms. This combination of the option to 

liquidate and limited liability allows equity to have the features of a call 

option (Damodaran, A. 2006). The equity in a firm is a residual claim; that 

is, equity holders lay claim to all cash flows left after other financial claim 

holders have been satisfied. If a firm is liquidated, equity investors receive 

the cash that is left in the firm after all outstanding debt and financial claims 

have been paid off (Damodaran, A. 2006). 

𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 𝑐𝑎𝑙𝑙: 𝐶0 = 𝑆0𝑒−δT𝑁(𝑑1) − 𝑒−𝑟𝑇𝐾𝑁(𝑑2) 

 

where: 

𝑑1 =  
𝑙𝑛 (

𝑆0
𝐾 ) + (𝑟 −  δ +

σ2

σ ) 𝑇

σ√𝑇
 

and: 

𝑑2 = 𝑑1 − σ√𝑇 

A visualization of the payoff structure is attached in (Appendix 1), and a 

detailed Black-Scholes formula is attached in (Equation 8). 

Relative Valuation 

Valuation based on multiples is a widely used method due to its low level of 

complexity and efficiency. A valuation based on multiples is dependent on 

the relative pricing of comparable companies. Which multiples are most 

appropriate depends on the type of company, whether it is asset heavy or 

asset light and whether the company is in a steady state or not (Petersen et 

al., 2017). Multiples as P/E and P/B estimates the value of equity. The idea 

behind using multiples for valuation is that similar assets should sell for 

similar prices (Koller et al., 2020). 
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4. Data Collection 

The research conducted in this thesis is based on data between January 1, 

2000, and March 31, 2023. To guarantee that the input data used in the 

models is sufficient and representative for Brent Crude oil forecasting, data 

on all variables used are collected from Refinitiv.  

 

Data has been collected at both daily and monthly intervals to provide a 

thorough and accurate study, and to examine whether the models perform 

best on daily or monthly data. As the machine learning models require a lot 

of data to learn trends and patterns in the data, we found it important to 

use an extended dataset of the oil price, containing many learning 

parameters. The data collected on daily Brent Crude oil prices corresponds 

to the daily closing prices. Data APIs that offered real-time and historical 

market data were used to access financial platforms, primarily DataStream 

through Refinitiv, to retrieve data. DataStream retrieves all the selected 

variables within the predetermined time frame and converts the data into a 

structured spreadsheet. The daily variables are presented below. 

Variables 

WTI Crude Spot 

S&P 500 commodities total return 

Gold spot 

Natural Gas spot 

US 10Y 

Table 1. Daily input variables 

To assess whether the machine learning models performed best on daily or 

monthly data, data on the Brent Crude oil were collected with monthly 

closing price observations. A comprehensive validation and cleaning process 

was used to guarantee the accuracy of the data that was obtained. To keep 

the dataset's integrity, missing values, outliers, and other inconsistencies 

were carefully discovered and dealt with using the proper approaches, 
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including data interpolation or data imputation. The acquired data was 

organized and prepared for time series analysis.  

 

Ethical considerations were followed throughout the data collection process. 

To ensure the ethical use of the obtained data, data usage rights, privacy 

rules, and related policies were followed. During the data collection, we 

discovered limitations with the availability of daily data for daily exogenous 

variables in contrast to monthly exogenous variables. Most of the 

macroeconomic variables are published on a monthly or quarterly basis. 

Based on the significant daily variables presented, we were able to generate 

a comprehensive dataset that captured the fundamental temporal patterns 

and trends in Brent Crude oil prices.  

 

Financial data is collected from reputable sources such as Refinitiv, annual 

reports, quarterly reports, and the capital market day reports from the 

selected companies. For this thesis, the analysis is based on annual reports 

from 2015 to 2022, providing a comprehensive view of the companies' 

financial performance during this period. However, it is worth noting that 

the historical financial data presented in the thesis covers the time limit 

from 2017 to 2022. This limitation arises due to the availability of publicly 

accessible data, particularly for Vår Energi, which does not have data 

beyond that period. 

 

To estimate the regression betas, monthly return data from the Oslo Børs 

Benchmark Index (OSEBX), Aker BP, and Vår Energi has been collected. 

It is important to mention that Vår Energi's inclusion in the OSEBX 

commenced on February 16, 2022. Consequently, return data from industry 

peers were gathered to estimate the average peer beta. The market risk 

premium utilized in this study is consistent with the risk premium 

Damodaran, A. (2023) finds for the US stock market. We highlight that the  
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risk premium is also consistent with the one calculated for the Norwegian 

stock market published in PwC's report, "Risk premium in the Norwegian 

market.” Furthermore, the risk-free rate employed in the thesis is the annual 

average of the 10-year government bond rate for 2022, as officially released 

by the Federal Reserve. 

 

It is important to note that the data collection limit for this thesis concludes 

on March 31, 2023, ensuring the relevance and accuracy of the analysis 

within the specified time limit. 

4.1 Preprocessing and splitting the data  

4.1.1 Preprocessing of the data 

We begin by preprocessing the data and standardizing all variables due to 

the differences between the variables. We normalize it by generating z 

values. This process will reduce the likelihood of multicollinearity by 

decreasing the correlation between predictor variables. The standardization 

process produces a dataset with a mean of zero and a standard deviation of 

one. 

4.1.2 Splitting the data 

When forecasting the data, it is important that the model is correctly 

separated between learning and testing set. The concept is that the model 

evaluation is based on how well the model is able to forecast unseen data 

using the training set as a training model. In general, the original dataset is 

divided into two subsets: the training set and the testing set. The ARIMA 

model's parameters are estimated using the training set, and the model's 

forecasting precision is assessed using the testing set. In the ARIMAX 

example, we use an 80:20 ratio, where 80% of the dataset is used for training 

and 20% of the dataset is used for testing. In the machine learning example, 

we use an 80% split in training set, 11% validation set, and a 9% testing set. 
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We also include a validation set, that is separate from the training set. This 

set is then used to validate the model’s performance during the training.  

We can describe this validation set as a way for the model to tell us if the 

training set is moving in the right direction or not. This is done to prevent 

overfitting, and the validation is run simultaneously as the training set. 

 

Figure 5. Model Procedures 

The training set is utilized somewhat differently in the machine learning 

models than in the ARIMAX model, with the ML model running through 

100 epochs, also known as a hypermeter, which specifies the number of times 

the learning algorithm will traverse the entire training set. Each sample in 

the training set has the opportunity to revise the internal model parameters 

during one epoch. An epoch consists of 152 batches in the models. 

4.2 Accounting data 

In this section we will present accounting quality and data structuring.  

4.2.1.1   Accounting quality 

The Financial Accounting Standards Board (FASB) defines accounting 

quality as “the accuracy, completeness, reliability, and transparency of the 

financial information reported by a company. High accounting quality 

implies that the financial statements present a true and fair view of a 

company's financial performance and position. It involves the application of 

appropriate accounting policies, adherence to accounting standards, proper 

measurement and disclosure of financial data, and effective internal controls 

to prevent errors or fraud”.  

ARIMAX

Machine learning

80% 11% 9%

TestTraining

Training Validation Test

80% 20%
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Aker BP and Vår Energi are two oil and gas companies listed on the 

OSEBX. They follow IFRS accounting standards and regulatory 

requirements. Their adherence to these standards suggests a commitment to 

transparent and reliable financial reporting, enhancing investor confidence. 

The use of IFRS promotes standardized reporting, comparability, 

transparency, and reliability of financial information. However, it is 

important to highlight that within IFRS, there is still some flexibility, for 

instance, as the lifespan of a specific asset varies based on its usage, 

maintenance, and the policy regarding the level of updates required for a 

company's assets (Petersen et al., 2017). 

4.2.1.2   Data and analytical reformulation 

We started our research by collecting accounting data from Refinitiv on both 

Aker BP and Vår Energi. We obtained data from the income statement, the 

balance sheet and the cash flow statement between 2015 and 2022. In order 

to ascertain the integrity of the data acquired from Refinitiv, we conducted 

thorough cross-referencing by utilizing the official websites of the relevant 

companies and cross-verified the information against the corresponding 

annual reports published during the identical time frame. 

 

Further, to organize the data for financial analysis and valuation, it was 

necessary to reformulate the income statement, balance sheet, and the cash 

flow statement. The first step involves classifying the items on the balance 

sheet as either operating or financing activities. The second step is to 

reformulate the balance sheet into a Net Operating Assets (NOA) format, 

which distinguishes between items belonging to net working capital (NWC) 

and items belonging to net operating non-current assets (NONCA). NWC is 

calculated as the difference between operating current assets and operating 

current liabilities, while net operating non-current assets are calculated as 

the difference between operating non-current assets and operating non-

current liabilities. These items constitute the NOA (invested capital). 
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On the other side of the balance sheet, we divide into total equity and net 

interest-bearing debt (NIBD). Through the reformulation, we obtain the net 

working capital and the change in net operating non-current assets, which 

are important components in the calculation of free cash flow. Finally, the 

net interest-bearing debt obtained from the other side of the balance sheet 

is used to derive the market value of equity (MVE). To arrive at MVE, we 

subtract NIBD from the enterprise value (EV). 

 

To examine our findings related to Aker BP please see (Appendix 3) for the 

reformulated historical income statement, (Appendix 4) for the reformulated 

historical balance sheet, and (Appendix 5) for the reformulated historical 

cash flow statement. Furthermore, to examine our findings related to Vår 

Energi please see (Appendix 6) for the reformulated historical income 

statement, (Appendix 7) for the reformulated historical balance sheet, and 

(Appendix 8) for the reformulated historical cash flow statement. 

4.3 Assumptions and lim itations 

Historical data on Brent Crude oil and WTI oil are collected from Refinitiv. 

The research conducted is based on data between 2000 and March 31, 2023.  

 

Furthermore, in this research we have used the 10-year US government bond 

as the risk-free interest rate. The rate is measured at 2.95% as an annual 

average for 2022, according to the Federal Reserve. The market risk 

premium used is 5.90%. 

 

The models we have employed in this thesis is the ARIMAX model, in 

addition to three machine learning models (LSTM, CNN, and GRU). In 

addition to the models mentioned, we will construct a future forecast of the 

Brent Crude oil using the Prophet model for application purposes. For 

simplicity and due to the limitations of TensorFlow-based models in 

forecasting beyond the provided dataset, we have opted to utilize the 
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Prophet model. Furthermore, our analysis reveals that Prophet yields 

notably better results when applied to monthly data, a critical aspect 

considering the prevailing challenging macroeconomic environment and the 

lack of daily macroeconomic data. In the valuation chapter, we focus on two 

present value models: the Discounted Cash Flow model (DCF) and the 

Economic Value-Added model (EVA). The final estimate of the fundamental 

value will rely on the DCF model, based on Koller, Goedhart and Wessels 

research who argue that DCF valuation yields the best results. Additionally, 

we have utilized the Black-Scholes model to value the equity of the selected 

companies as a call option. 

 

Regarding the selection of oil and gas companies, we have eliminated based 

on specific criteria. The companies must be listed on the Oslo Stock 

Exchange, have a similar product portfolio, possess significant producing 

assets on the Norwegian continental shelf, have available option prices, 

operate within the same industry, and exhibit similar growth prospects. 

Based on these criteria, we have chosen Aker BP and Vår Energi among the 

Norwegian oil and gas companies. 
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5. Model selection 

5.1 ARIMAX 

The optimal ARIMAX model was found by minimizing the AIC, 

corresponding to an ARIMA (1,1,2) model. We obtained an AIC of -1120. 

The following equation shows the selected ARIMAX model, which exhibits 

a level of integration one. The equation is presented as: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜙1(𝑦𝑡−1 − 𝑦𝑡−2) + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ∑ 𝛽𝑋𝑖  

Equation 3. ARIMAX model 

where ∑ 𝛽𝑋𝑖 is the sum of exogenous variables. The exogenous variables were 

chosen on the background of testing. We examined fifteen independent 

variables and ran the ARIMAX model. Further, we excluded all insignificant 

variables which we believe can cause noise in the model. The variables were 

chosen based on their impact on Brent Crude oil. Each variable’s direct 

impact will be discussed and presented in “results and analysis”. 

5.2 Machine learning 

The machine learning models are grounded in the same principles, albeit 

employing different methods depending on the type of machine learning 

model used. This approach is adopted to facilitate a precise comparison of 

error measurements among the models. By utilizing consistent underlying 

principles while employing different techniques, we can assess and compare 

the model errors in a meaningful manner. 

 

We construct a matrix consisting of five consecutive inputs. The objective 

is to utilize the five preceding inputs to predict the sixth variable. 

Subsequently, the model incorporates the input variables [2,3,4,5] and the 

predicted sixth variable to generate a seventh variable. This process is a 

rolling window method, using five lags to predict the next value. We use five 

lags to capture momentum and patterns in the time series. Hence, the model 
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examines patterns and potential influence of oil prices from input one to five 

on the price observed on output six. The model procedure is presented below.  

Input Output 

[1,2,3,4,5] [6] 

[2,3,4,5,6] [7] 

[3,4,5,6,7] [8] 

Table 2. Machine learning models procedure 

For all the machine learning models, we divide the data as described in the 

chapter "Splitting the Data". This means that the training set matrix has 

the following dimensions: 4837 prices in the first dimension, 6 variables in 

the second dimension, and a window of 5 prices in the third dimension. 

Therefore, we create a 4837x6x5 matrix used as the training set for the 

neural network. The validation set is a matrix with dimensions of 544x6x5, 

while the testing set is a matrix with dimensions of 660x6x5. These matrices 

maintain the same structure as the training set, allowing for proper 

evaluation and testing of the machine learning models. 

5.2.1 LSTM 

The model is a sequential neural network, meaning that the model starts 

with inputs, then goes through different layers sequentially (A. D’Agostino, 

2022). Furthermore, we incorporated additionally layers called “dense” into 

the machine learning model. These dense layers are added to enhance the 

complexity and capability of the model to learn intricate patterns and 

relationships within the data. 

 

We use two types of dense layers in the model: relu and linear. The relu 

dense layer consists of 8 layers with the rectified linear unit activation 

function, while the linear dense layer has 1 layer with linear activation. 

These layers form a structure, allowing the model to learn complex patterns 

and relationships within the data. The layers in a sequential model are 

visualized through the table presented below. 
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Sequential model 

Input 

 
Layer 1 

 
Layer 2 

 
Layer... 

 
Layer n 

 
Output 

Table 3. Visualization of the sequential model 

The LSTM model has a total of 18,449 parameters. These parameters enable 

the model to learn and generate predictions for Brent Crude oil prices.  

Layer (type) Output shape Parameters 

LSTM (None, 64) 17,920 

 

Dense 

 

(None, 8) 

 

520 

 

Dense_1 

 

(None, 1) 

 

9 

 

Total Parameters 

 

 

 

18,449 

Table 4. LSTM model parameters 

The neural network is configured with specified parameters. This involves 

identifying the learning rate, the error function for training, and the 

algorithm to be implemented (Adam). In addition, we use the same number 

of epochs and error metric for all models, while adjusting the learning rate 

proportionately. Our research settles on a learning rate of 0.001 for the 

LSTM model. While it is typically recommended to increase the number of 

epochs when lowering the learning rate (Jason Brownlee, 2020), we decided 

to maintain 100 epochs to conserve data usage, given that the available data 

was already depleted.  
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5.2.2 CNN 

CNN operates differently from LSTM, as explained in the methodology 

section. While the data splitting process remains similar to LSTM and GRU, 

the parameter tuning differs. We use a one-dimensional CNN, with a kernel 

size of two. The model takes on two values, called windows, and combines 

them into one value. The model repeats this process 64 times. To keep the 

model one-dimensional, we include a flatten command that converts the 

output into a one-dimensional vector.  

 

We add relu and linear layers, similar to LSTM and GRU, resulting in a 

total of 2,769 parameters. Weytjens, H., & De Weerdt, J. (2020) found that 

CNNs are typically faster than LSTM, which aligns with our research. CNN 

requires less parameters, therefore less computational power.  

Layer (type) Output shape Parameters 

CNN (None, 4, 64) 704 

 

Flatten 

 

(None, 256) 

 

0 

 

Dense_2 

 

(None, 8) 

 

2056 

 

Dense_3 (None, 1) 9 

 

Total Parameters 

 

 

 

2,769 

Table 5. CNN model parameters 

The parameter tuning of the CNN model is similar to LSTM. During the 

parameter tuning of CNN, we found that the model did not require as low 

learning rate as the LSTM to achieve satisfactory results. Therefore, we 

increased the learning rate to 0.01. 
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5.2.3 GRU 

GRU shares similar parameter tuning to LSTM, utilizing the same input 

layers as LSTM. For the GRU model we had to incorporate additional relu 

layers into the model. Specifically, we had to reduce the learning rate to 

achieve satisfactory results. Consequently, the model contains 24 relu layers 

with a learning rate of 0.0001. The model consists of 15,217 parameters. The 

increased number of relu layers and lowered learning rate indicate that the 

GRU model is more complex compared to other NN models in this thesis. 

Layer (type) Output shape Parameters 

GRU (None, 64) 13,632 

 

Dense_10 

 

(None, 24) 

 

1,560 

 

Dense_11 

 

(None, 1) 

 

25 

 

Total Parameters 

 

 

 

15,217 

Table 6. GRU model parameters 

6. Results and analysis 

In this analysis we will present the overall results. All models examined use 

the exogenous variables presented in (Table 1). Firstly, a visualization of 

the model performance will be presented. Secondly, a visualization of the 

model performance with restrictions will be presented and discussed. 

Thirdly, a summary of the overall performance will be presented as a table. 

Lastly, our findings related to the cost of capital will be presented. 

6.1.1 ARIMAX 

The regular ARIMAX (1,1,2) exhibit the best overall performance during 

our research. We find that commodities such as gas and gold have a 

significant effect on the daily Brent Crude oil price. Further, the S&P 500 

commodity index yields a significant effect, in addition to the US10 Year 

government bond, indicating that the global economic activity plays a role  
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in daily volatility. One could argue that high interest rates can lead to lower 

economic activity, in turn affecting the global oil demand. However, reduced 

investments in the global oil and gas sector can lead to reduced supply. All 

the exogenous variables (Table 1) are significantly different from zero.  

 

 

 

 

 

 

 

From the ARIMAX model we obtain an AIC of 13274. The coefficient 

estimates and their significance are attached in (Appendix 44). The model 

describes how one autoregressive and two moving average variables together 

with the exogenous variables are able to forecast the Brent Crude price with 

high accuracy. However, we find it appropriate to penalize the coefficients 

as the model appears to overfit. This can be done with “Least Absolute 

Shrinkage and Selection Operator” (LASSO) which adds a penalty term to 

the models’ coefficients. This procedure helps to reduce complexity and 

mitigate overfitting.  

 

After adding the LASSO, we observe that the model exhibits lower 

forecasting performance opposite to the original ARIMAX model. The model 

does not seem to overfit, and we observe that the model is able to forecast 

trends, but not as accurately as the original model. To define whether the 

ARIMAX model was adequate, we examined the residuals of the model and 

ran an ACF test to check for autocorrelation. The model shows that all 

residuals are insignificant until lag 20. We do observe a few significant lagged 

residuals, but at an acceptable level (Appendix 2). 

Figure 7. ARIMAX visualization of results Figure 6. ARIMAX visualization w. LASSO 
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6.1.2 Machine learning 

To forecast Brent Crude oil prices, we have employed three machine learning 

models: LSTM, CNN, and GRU. These models were chosen based on their  

ability to detect connections and patterns in time series data. Additionally, 

we will present two additional techniques to adjust for overfitting and noise. 

Firstly, to adjust for overfitting we readjust all models with a dropout term. 

Secondly, we resample all the model’s using cross-validation. 

Basic test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the table below we present the ranking order and the respective RMSE. 

 Neural Network models Rank RMSE 

GRU 1 3.9109 

 

LSTM 

 

2 

 

5.8482 

 

CNN 

 

3 

 

6.7168 

Table 7. Machine learning model comparison 

Figure 9. LSTM visualization of results Figure 8. CNN visualization of results 

Figure 10. GRU visualization of results 
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The analysis shows that GRU exhibit the best forecasting performance when 

comparing the basic machine learning models. We achieved an RMSE of 

3.9109 which was 33.13% lower than LSTM and 41.77% lower than CNN. 

The results are intriguing given that the machine learning models are 

provided with the same variables as the regular ARIMAX model but perform 

worse throughout our analysis. All the ML models exhibit high explanatory 

power which indicates that the exogenous variables are significantly different 

from zero, with an impact on the Brent Crude oil price.  

 

Based on our findings we assume that all the models suffer from overfitting. 

Previous research suggest that all ML models are prone to overfitting, and 

therefore cross-validation techniques and out of sample testing should be 

used to examine the generalizability and robustness of the models in order 

to provide a more accurate assessment on their predicting capabilities. The 

model visualizations show how the model differs in overshooting or 

undershooting. Both GRU and LSTM undershoot in its predictions, while 

CNN overshoots. It is expected that GRU and LSTM will perform and 

operate similarly since they are built using the same framework, while CNN 

is built using a different framework. 

Dropout test 

To minimize overfitting, we add a dropout layer to the models in order to 

test the neural network. Dropout is a tool used to arbitrarily remove units 

and their connections from the training set in order to prevent co-adaptation 

(Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, 

R. (2014)). The desired result is that the model will be less sensitive to the 

specific weights of various neurons, making it more generalizable and less 

vulnerable to overfitting (Brownlee, 2022). We also add more complexity to 

the models with more model layers in order to prevent overfitting together 

with the dropout layers. In the analysis we find that a dropout term changes 

the ranking order based on RMSE.  
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In the table below we present the ranking order and the respective RMSE. 

 Neural Network models Rank RMSE 

CNN w. dropout 1 8.1098 

 

LSTM w. dropout 

 

2 

 

8.6632 

 

GRU w. dropout 

 

3 

 

9.4230 

Table 8. ML model comparison w. dropout 

In the basic NN models, GRU performed best with lowest RMSE and highest 

predicting power. After adding a dropout layer GRU was the worst 

performing model with an RMSE of 9.4120, which is 140.94% higher than 

the original model. CNN was the best performing model with an RMSE of 

8.1098 which is 20.74% higher than original, and LSTM performed 48.13% 

higher with an RMSE of 8.6632. These results indicate that the basic models 

have been prone to overfitting, and that adding a layer of dropout can 

prevent overfitting. 

Figure 11. LSTM visualization w. dropout Figure 12. CNN visualization w. dropout 

Figure 13. GRU visualization w. dropout 
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K-fold cross-validation test 

We apply a second method in order to overcome overfitting and test the 

models with Cross-Validation (CV). This is a resampling technique that fits 

a model k times. This technique involves randomly dividing the set of 

observations into k groups or folds of roughly equal size. The first fold is 

regarded as a validation set, and the method is fit to the remaining k-1 folds. 

On the observations in the held-out crease, the RMSE is then computed. 

This procedure is repeated k times, with a new group of observations serving 

as the validation set each time. These values are averaged to derive the k-

fold CV estimate (James, Witten, Hastie & Tibshirani, 2014, p. 178-183). 

We apply k = 5 in the model. After examining the model, the results did 

not change when adjusting for k. An improperly selected value for k can lead 

to a misrepresentation of the model's accuracy, such as a score with high 

variance (Brownlee, 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. LSTM visualization w. cross-validation Figure 14. CNN visualization w. cross-validation 

Figure 16. GRU visualization w. cross-validation 
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In the table below we present the ranking order and the respective RMSE. 

 Neural Network models Rank RMSE 

LSTM w. cross-validation 1 2.8655 

 

GRU w. cross-validation 

 

2 

 

3.1410 

 

CNN w. cross-validation 

 

3 

 

4.1637 

Table 9. ML model comparison w. cross-validation 

The analysis done on NN with cross-validation shows that the models 

perform better with lower RMSE than the original models. We find that the 

predicting power is higher, and that LSTM was the best performer with an 

RMSE of 2.8655, 51% lower than the original model and 66.92% lower than 

LSTM with dropout. GRU is the second-best performer with an RMSE of 

3.1410, 19.69% lower than originally and 66.67% lower than GRU with 

dropout. CNN is the worst performer of the models with an RMSE of 4.1637 

which is 38.01% lower than originally and 48.66% lower than CNN. 

Discussion of results 

A possible explanation to why the ARIMAX model may outperform the ML 

models is that it may be more effective at capturing the stochastic 

components of the time series data. When data exhibits substantial 

stochasticity, ARIMAX models can capture and predict these random 

fluctuations effectively. The models are able to estimate the parameters that 

best characterize the stochastic process and use them to generate forecasts.  

 

As explained in the data collection chapter, the time period we selected is 

done on the background of price volatility. We believe that due to the 

temporal structure of the time series, seasonality, and potential 

autocorrelation between the variables, the ARIMAX model may be the most 

accurate forecasting technique on our dataset. Our findings are in line with 

research conducted by Nasir, Aamir, Haq, Khan, Amin & Naeem (2023) who 

demonstrated that the ARIMAX model outperformed the basic ML models.  



 

Page 33 

Furthermore, we highlight that the errors obtained from the ARIMAX 

model closely resemble those reported by Nasir, Aamir, Haq, Khan, Amin & 

Naeem in their research on WTI. None of the other papers we have 

highlighted has introduced cross-validation and dropout to the basic ML 

models for comparison reasons. However, Assad and Fayek (2021) found 

that LSTM performed better than CNN on forecasting Crude oil prices. This 

is in line with our findings, where LSTM exhibits the best forecasting 

performance, followed by the CNN model both in the basic models and the 

models with cross-validation. The LSTM model underperforms relatively to 

the CNN model when introducing dropout. The introduction of dropout 

reduced the forecast performance for all our models, which can be attributed 

to several reasons. By incorporating noise, dropout regularizes the model 

and encourages it to learn more robust representations. Still, if the model's 

capacity is insufficient to encompass the complexity of the underlying data, 

dropout may impede the model's ability to discover important patterns.  

 

The introduction of K-fold cross-validation proved to be highly successful, 

delivering the most accurate forecasting performance. Cross-validation gives 

a more precise estimate of a model's performance than a simple split between 

train and test set. By dividing the data into multiple folds and executing 

multiple iterations, the model's generalization performance can be evaluated 

with greater precision. This provides a more accurate estimate of the model 

performance on unobserved data by reducing the bias introduced by a single 

train-test split. 

 

As we emphasized in the data collection, ML models require a lot of data to 

learn pattern and trends. To enhance the performance of the ML models, 

one could examine additional significant variables, better parameter tuning 

or extended datasets. However, we found that when adding more variables, 

our models performed worse. These findings can be attributed to noise, and 

the relevancy of the variables used. 
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Based on our research, we find that the ARIMAX and classical time series 

analysis perform well when forecasting financial time series. These time-

tested methods have demonstrated their dependability and usefulness over 

the years. It is however worth noting that when adding the LASSO 

penalization term, the model performance is the worst among all models 

examined in this thesis.  

 

Among the basic ML models analyzed we find that GRU exhibits the best 

forecasting performance. When adding the dropout term, the ranking order 

changes, and the CNN exhibits the best forecasting performance, however, 

weaker performance in regard to the basic ML models. Further, we find that 

cross-validation enhances the overall ML performance, and the LSTM model 

provided us with an RMSE of 2.8655. 

 

We find evidence that Machine Learning and Neural Network has a place in 

forecasting Brent Crude oil. We have shown sufficient evidence and 

reasoning to say that machine learning and time series analysis are good 

tools for forecasting Brent Crude oil on a daily dataset. 
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6.1.3 Model performance 

In this section we will present all the errors that we have measured. We 

evaluated each model's forecasting performance using the RMSE statistic. 

In addition, we will highlight the MSE, MAE, 𝑅2 and the adjusted 𝑅2. We 

obtain the following results from the models: 

  MAE MSE RMSE 𝑅2 𝑅2𝑎𝑑𝑗 

ARIMAX 0.6820 1.3662 1.1688 0.99720 0.99719 

 

ARIMAX w. LASSO 

 

9.5656 

 

158.6860 

 

12.5971 0.67530 0.67395 

GRU 3.2889 15.2950 3.9109 0.96908 0.96884 

 

LSTM 

 

4.4378 

 

34.2017 

 

5.8482 0.93086 0.93033 

      

CNN 6.0334 45.1147 6.7168 0.90880 0.90810 

GRU w. dropout 8.1923 88.7932 9.4230 0.82050 0.81910 

      

CNN w. dropout 6.9442 65.7687 8.1098 0.86700 0.86600 

      

LSTM w. dropout 7.0513 75.0514 8.6632 0.84830 0.84710 

GRU w. cross-validation 2.4019 9.8660 3.1410 0.98005 0.97990 

      

CNN w. cross-validation 3.2689 17.3362 4.1637 0.96495 0.96469 

 

LSTM w. cross-validation 

 

2.0048 

 

8.2108 

  

2.8655 0.98340 0.98327 

Table 10. Summary of model performance 

From the summary of model performance, we observe that the ARIMAX 

model exhibits the best overall performance. When we add the LASSO 

penalization term, we observe that the ARIMAX model exhibits the worst 

forecasting performance. Among the basic machine learning models, we 

observe that GRU exhibits the best forecasting performance. However, when 

resampling the model using cross-validation, we observe that the LSTM 

model exhibits the best overall ML forecasting performance. 

 



 

Page 36 

6.2 Cost of capital 

The cost of capital represents the minimum rate of return a company must 

generate to add value (Damodaran, A. 2012). Cost of capital, further referred 

to as WACC, is employed as the discount rate in both the DCF and the 

EVA model. The cost of capital plays an important role in the valuation of 

Aker BP and Vår Energi. 

6.2.1 The equity cost of capital (CAPM) 

The CAPM (Equation 4) postulates that the expected rate of return on any 

security equals the risk-free rate plus the security’s beta times the market 

risk premium (Koller et al., 2020). In the CAPM, the risk-free rate and the 

market risk premium, which is defined as the difference between 𝑟𝑚 and 𝑟𝑓 , 

are common to all companies; only beta varies across companies. 

6.2.1.1   Risk-free rate 

The risk-free rate explains the alternative return an investor can get without 

taking on any risk and is therefore referred to as risk-free. We have chosen 

the 10-year government bond as the risk-free rate, as the 30-year government 

bond often include a significant liquidity premium that affects the interest 

rate. To ensure the applicability of the 10-year government bond as the risk-

free rate, we have applied the government bond denominated in the same 

currency as the cash flows of the selected companies. According to data from 

the Federal Reserve, the average yield on the 10-year government bond for 

2022 was 2.95%. 

6.2.1.2   Beta estimation 

Beta represents a stock’s incremental risk to a diversified investor, where 

risk is defined as the extent to which the stock moves up and down in 

conjunction with the aggregate stock market (Koller et al., 2020). The betas 

are estimated through a regression analysis based on historical returns from 

the OSEBX and the selected stocks over a period of 8 years. This approach 
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has been applied because measurement periods for raw regressions should 

include a minimum of 60 data points, and raw regressions should be based 

on monthly returns. Using more frequent return periods, such as daily and 

weekly returns, leads to systematic biases (Koller et al., 2020). 

6.2.1.3   Blume’s adjusted beta 

In this section we seek to adjust the beta closer to the mean of all companies. 

This process aims to reduce beta estimation error and is based on Marshall 

Blume's research (Equation 5), which suggests that betas are mean reverting 

(Koller et al., 2020). Our findings is presented in the table below. 

  Aker BP Vår Energi 

Raw beta 1.92 1.48 

   
Blumes adj. Beta 1.62 1.39 

Table 7. Beta calculations 

6.2.1.4   Market risk premium 

The market risk premium is the premium demanded by investors for 

investing in the market portfolio, which includes all the risky assets in the 

market, instead of investing in a riskless asset (Damodaran, A. 2012). In this 

thesis, a market risk premium of 5.90% is utilized. 

6.2.2 Cost of debt 

The cost of debt (Equation 6) measures the current cost to the firm of 

borrowing funds to finance projects (Damodaran, 2012). When estimating 

the cost of debt, there are several approaches available. One can analyze the 

interest expense in relation to the interest-bearing debt, calculate the cost 

of debt based on the riskless rate and the default spread, or consider the 

credit rating and the associated default spread. In this thesis we have utilized 

the average long-term cost of debt, assuming that the companies will 

maintain its historical borrowing cost. 
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6.2.3 Weighted average cost of capital (WACC) 

Estimating the WACC (Equation 7), we have assumed a target debt-to-

equity ratio (D/E) of 22.5% for both Aker BP and Vår Energi. This 

assumption is justified by (Koller et al., 2020) who argue that “the cost of 

capital should rely on a forecast of target weights, rather than current 

weights, because at any point a company's current capital structure may 

not reflect the level expected to prevail over the life of the business”. We 

obtain the following results based on our research. 

  Aker BP Vår Energi 

WACC 10.44% 9.38% 

 

Re 12.49% 11.14% 

 

Rd 4.60% 5.50% 

 

Tax rate 71.78% 71.51% 

Table 8. WACC calculations 
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7. Future forecast 

The future forecast is derived from historical accounting data spanning from 

2015 to 2022, company guidance, and a modeled forecast of the Brent Crude 

oil price. When creating the future forecast, we consider historical ratios 

between balance sheet items and the income statement. Specifically, we 

consider and incorporate balance sheet items that fluctuate with revenues in 

the forecast. 

7.1 The length of the future forecast 

The length of the future forecast is five years. We have projected accounting 

data five years into the future, with a corresponding terminal year in 2028 

for all the analyzed companies. The Prophet model projects Brent Crude oil 

prices five years into the future, with the terminal year 2028 representing 

the average oil price in the period 2000 to March 31, 2023. 

7.2 Forecast of the oil price 

The limits of TensorFlow-based models like LSTM, CNN, and GRU in 

forecasting beyond the given dataset need the investigation of alternate 

methodologies. In this case, using the Prophet algorithm proposed by Taylor 

and Letham (2017) is a convincing option. Prophet offers a number of 

features that make it a viable model for predicting and forecasting future 

Brent Crude oil prices. Please see (Appendix 42) for the significant variables.  

 

Prophet detects underlying patterns and trends in Brent Crude oil price 

time series data using ML techniques. By designating the required number 

of future periods, we create a data frame that represents the future time 

span for price forecasts. By incorporating this expanded data frame into its 

modeling process, Prophet can generate forecasts. Prophet's adaptability to 

various time series patterns, such as seasonality and non-linear trends in 

Brent Crude oil prices, adds to its viability for this forecasting assignment. 

The daily back test provided us with errors presented in (Appendix 43). 
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In conclusion, when compared to TensorFlow packages for forecasting future 

Brent Crude oil prices beyond the given dataset, Prophet emerges as a 

compelling alternative. We argue that the given macroeconomic conditions 

and the restricted supply/demand balance in the market needs to be 

accounted for. During our research we found that the Prophet model 

produced significantly better results when using monthly variables. In 

addition to the beyond dataset limitations of the TensorFlow-based models 

presented, Prophet allowed us to account for the monthly variables. In order 

to facilitate a comparison between the forecast and the forward curve on 

Brent Crude, we will present a discounted forecast using a risk-free asset. 

This is necessary as the ML algorithms do not incorporate trading, emotions, 

or risk-based discounts. In contrast, a forward curve on Brent Crude is a 

tradable instrument that accounts for time risk over the long-term horizon. 

The forecasted values are presented below. 

 

Figure 17. Prophet model Brent Crude oil forecast 

 

Forecasted values 2023 2024 2025 2026 2027 2028T 

 

Brent Crude oil ($/bbl) 

 

81.69 

 

85.97 

 

91.16 

 

95.86 

 

100.57 

 

65.00 

 

Discounted values 79.35 

 

81.11 

 

83.54 85.34 

 

86.96 

 

65.00 

 

Table 9. Forecasted and discounted Brent values 
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7.3 Forecast of the income statement 

The projected income statement is influenced by various factors, including 

value drivers (Appendix 9) and (Appendix 10), key performance indicators, 

historical trends, company guidance (Appendix 11) and (Appendix 12), 

forward curves, external estimates, and our proprietary model. Specifically 

important is the net operating profit after tax (NOPAT) and depreciation 

& amortization (D&A) when estimating the free cash flow. For income 

related to gas, we have utilized the natural gas price forward curve and 

external estimates. The assumptions for oil and gas prices are presented in 

the table below. 

Price assumptions 2023 2024 2025 2026 2027 2028T 

 

Brent Crude oil ($/bbl) 

 

81.69 

 

85.97 

 

91.16 

 

95.86 

 

100.57 

 

65.00 

 

Natural gas ($/mcf) 15.00 

 

20.00 

 

15.00 12.50 

 

12.50 

 

10.00 

 

Table 10. Oil and gas price assumptions 

Furthermore, the operational expense (OPEX) are derived from the 

companies' guidance on OPEX per barrel during the explicit period, while 

the tax rate is based on the historical tax rate. We do not possess actual 

data for future tax expenses, our best estimate is therefore to utilize the 

average historical tax rate. The USD/NOK exchange rate used in the thesis 

is 10.47 NOK, representing the exchange rate on March 31, 2023. 

 

The projected income statement and our findings related to Aker BP is 

attached in (Appendix 13). Furthermore, the projected income statement 

and our findings related to Vår Energi is attached in (Appendix 14). 

7.4 Forecast of the balance sheet 

The projected balance sheet utilizes balance sheet ratios, primarily linked to 

revenues (Appendix 15) and (Appendix 16). In order to highlight the key 

items, we have included a condensed version of the balance sheet. Of 
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particular importance is the growth in invested capital (NOA), which 

exhibits a consistent increase in the explicit period for Aker BP, and a steady 

increase until the end of 2025 followed by a decline for Vår Energi. This 

trend is primarily attributed to Vår Energi's capital expenditure (CAPEX) 

program aimed at achieving the guided production of approximately 350 

kboepd at the end of 2025. Conversely, Aker BP maintains a high level of 

CAPEX until 2028 to attain the targeted production of approximately 525 

kboepd. 

 

The projected balance statement and our findings related to Aker BP are 

attached in (Appendix 17). Further, the projected balance sheet statement 

and our findings related to Vår Energi are attached in (Appendix 18). 

7.5 Forecast of the cash f low statement 

The projected cash flow statement is derived from the information obtained 

in the income statement and the balance sheet. The change in NONCA 

reflects the cash flow from investing activities, while the disparity between 

free cash flow to the firm and free cash flow to equity holders represents the 

cash flow from financing activities. To support our findings and ensure the 

accuracy of the cash flows, we have included a cash flow control (Appendix 

19) and (Appendix 20), which demonstrates that the cash flows aligns with 

the NOPAT +/- the change in invested capital.  

 

The projected cash flow statement and our findings related to Aker BP are 

attached in (Appendix 21). Further, the projected cash flow statement and 

our findings related to Vår Energi are attached in (Appendix 22). 
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8. Valuation 

In Chapter 8, we will present the results obtained from the present value 

models. Additionally, we will highlight the outcomes derived from the Black-

Scholes model. 

8.1 Discounted cash f low model (DCF) 

To determine the MVE, we have discounted the estimated cash flows using 

the appropriate WACC. We incorporated a mid-year adjustment for the 

discount factor to consider the continuous flow of cash throughout the year.  

8.1.1 Aker BP 

The results provided from the DCF model are presented in the table below. 

 

Figure 18. Aker BP DCF valuation 

8.1.2 Vår Energi 

The results provided from the DCF model are presented in the table below. 

 

Figure 19. Vår Energi DCF valuation 

 

2023 2024 2025 2026 2027 Terminal

DCF WACC

Period 0 1 2 3 4 5 6 10 %

FCF 2 795        1 304          815             1 105          3 661          2 992          

Discount factor 0,91          0,82            0,74            0,67            0,61            

Midyear adj. 0,95          0,86            0,78            0,71            0,64            

PV FCFF 2 660        1 124          636             781             2 342          

PV term x.x.6 28 671        

PV term x.x.0 18 342        

EV 25 884       

NIBD 2 658         

MVE 243 182     

Fundamental Value (NOK) 385            

Forecast horizon

2023 2024 2025 2026 2027 Terminal

DCF WACC

Period 0 1 2 3 4 5 7 9 %

FCF 327         1 310      1 652      3 287      2 122         1 266       

Discount factor 0,91        0,84        0,76        0,70        0,64           

Midyear adj. 0,96        0,87        0,80        0,73        0,67           

PV FCFF 312         1 145      1 320      2 401      1 418         

PV term x.x.6 13 499       

PV term x.x.0 9 017         

EV 15 613        

NIBD 2 720          

MVE 134 997      

Fundamental Value (NOK) 54               

Forecast horizon
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Furthermore, we have assumed a zero percent terminal growth rate due to 

the finite nature of oil and gas resources. Additionally, in the terminal 

period, we have modeled CAPEX higher than D&A, assuming that the 

companies will continue to invest, justifying non-negative terminal growth. 

8.2 Economic value-added model (EVA) 

We discount the EVAs at the appropriate discount rate, with the same 

assumptions for the terminal growth rate. 

8.2.1 Aker BP 

The results provided from the EVA model are presented in the table below. 

 

Figure 20. Aker BP EVA valuation 

8.2.2 Vår Energi 

The results provided from the EVA model are presented in the table below. 

 

Figure 21. Vår Energi EVA valuation 

2023 2024 2025 2026 2027 Terminal

EVA Forecast horizon WACC

Period 0 1 2 3 4 5 6 10 %

NOA 15 086       15 068      16 907        19 118        21 000        20 969        20 379        

NOPAT 2 778        3 143          3 026          2 987          3 630          2 403          

WACC x NOA_t-1 1 574        1 573          1 765          1 995          2 192          2 188          

EVA 1 203        1 571          1 261          992             1 438          214             

PV term x.x.6 2 055          

Discount factor 0,91          0,82            0,74            0,67            0,61            

PV term x.x.0 1 251         

PV EVA 1 090        1 288          936             667             876             

Sum EVA x.x.0 6 107         

MV EVA x.x.0 21 193       

NIBD 2 658         

MVE 194 066     

Fundamental Value 307            

2023 2024 2025 2026 2027 Terminal

EVA Forecast horizon WACC

Period 0 1 2 3 4 5 6 9 %

NOA 4 201          4 842      4 931      5 021      4 259      4 620         4 811       

NOPAT 967         1 399      1 741      2 524      2 484         1 457       

WACC x NOA_t-1 394         454         463         471         399            433          

EVA 573         945         1 279      2 053      2 084         1 023       

PV term x.x.6 10 907       

Discount factor 0,91        0,84        0,76        0,70        0,64           

PV term x.x.0 6 966          

PV EVA 524         790         977         1 435      1 331         

Sum EVA x.x.0 12 023        

MV EVA x.x.0 16 225        

NIBD 2 720          

MVE 141 397      

Fundamental Value 57               
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8.3 Black-Scholes M odel 

In this section the equity is treated as a call option on the firm, where 

exercising the option requires that the firm will be liquidated and the face 

value of the debt (which corresponds to the exercise price) is paid off. In 

addition to the Black-Scholes model we have utilized the Heston model. The 

Heston model incorporates stochastic volatility, which better captures 

market dynamics than the Black-Scholes model, which assumes constant 

volatility.  

 

The Heston model offers a more complex method of pricing options by 

considering the correlation between the asset and its volatility. From the 

Black-Scholes model we obtain a share price of NOK 268 for Aker BP and 

NOK 43.6 for Vår Energi. From the Heston model we obtain a share price 

of NOK 281 and NOK 44, respectively. Please see (Appendix 23) and 

(Appendix 39) for calculations. Furthermore, the Monte Carlo simulations 

is attached in (Appendix 40) and (Appendix 41) 

8.4 Multiples approach 

In this section we have forecasted a set of forward multiples based on our 

estimates. We find that Aker BP trades higher on the P/E multiple, while 

Vår Energi trades higher on the P/B multiple. Furthermore, Aker BP trades 

higher on both the EV/EBITDA and EV/EBIT multiple. When comparing 

the forward multiples to the average forward multiple among peers, our 

findings indicates an upside of 74% and 30% for Vår Energi and Aker BP. 
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8.4.1 Aker BP 

We have examined the forward estimates on the selected peer group and 

find that the average P/E-multiple among analysts is 6.89 for the peer group. 

When applying the P/E-multiple on our forward estimates, our research 

suggests that the company’s fair value spans from NOK 311 to 410 in the 

explicit period. 

 

Figure 22. Aker BP multiple valuation 

8.4.2 Vår Energi 

When applying the same P/E multiple to Vår Energi’s forward estimates, 

we find that the company’s fair value spans from NOK 27 to 71 in the 

explicit period. 

 

Figure 23. Vår Energi multiple valuation 

 

 

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

Valuation (USDm)

Share price (USD end) 24,5 24,5 24,5 24,5 24,5 24,5

Nr shares fully diluted 632 632 632 632 632 631,8

NIBD 1414 1898 2471 2405 127 -1500

Enterprise value 16880 17365 17938 17871 15594 13966

EV/sales 1,3 1,2 1,3 1,3 1,0 1,1

EV/EBITDA 1,4 1,3 1,4 1,4 1,0 1,5

EV/EBIT 1,7 1,6 1,7 1,7 1,2 1,6

P/E 5,7 5,0 5,2 5,2 4,3 6,5

P/B 1,1 1,0 0,9 0,8 0,7 0,7

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

Valuation (USDm)

Share price (USD end) 2,4 2,4 2,4 2,4 2,4 2,4

Nr shares fully diluted 2496 2496 2496 2496 2496 2496

NIBD 2939 2602 1994 242 -363 -772

Enterprise value 9024 8687 8079 6327 5722 5313

EV/sales 1,3 1,0 0,7 0,5 0,5 0,7

EV/EBITDA 1,9 1,3 1,0 0,6 0,5 0,9

EV/EBIT 2,6 1,8 1,3 0,7 0,7 1,0

P/E 6,6 4,5 3,6 2,4 2,5 4,2

P/B 3,2 2,6 2,0 1,5 1,2 1,1
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9. Uncertainty considerations 

In this analysis we will perform sensitivity analysis, scenario analysis and 

variable flexing. 

9.1 Sensitivity analysis 

In this section we want to capture the uncertainty related to the input 

variables. Sensitivity analysis helps to bound the valuation range when there 

is uncertainty about the inputs (Koller et al., 2020).  

9.1.1 Aker BP 

From the sensitivity analysis of the DCF model, we have found that Aker 

BP's fair value spans from 300 NOK to 537 NOK. This range analyze 

sensitivities on WACC and terminal growth assumptions 

 

Figure 24. Aker BP DCF sensitivity analysis 

From the sensitivity analysis of the EVA model, we have determined that 

Aker BP's fair value spans from 276 NOK to 355 NOK (Appendix 33). 

9.1.2 Vår Energi 

From the sensitivity analysis of the DCF model, we have determined that 

Vår Energi's fair value spans from 43 NOK to 75 NOK.  

 

Figure 25. Vår Energi DCF sensitivity analysis 

384,9 9,4 % 9,9 % 10,4 % 10,9 % 11,4 %

-2,0 % 367 348 331 315 300

-1,0 % 397 375 356 337 321

0,0 % 434 408 385 364 345

1,0 % 479 448 420 396 373

2,0 % 537 498 464 434 408

rg

WACC

54,1 8,4 % 8,9 % 9,4 % 9,9 % 10,4 %

-2,0 % 53 50 47 45 43

-1,0 % 56 53 50 48 45

0,0 % 61 57 54 51 48

1,0 % 67 63 59 55 52

2,0 % 75 69 64 60 56

WACC

rg
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From the sensitivity analysis of the EVA model, we have determined that 

Vår Energi's fair value spans from 48 NOK to 73 NOK (Appendix 34). A 

sensitivity analysis of the P/E ratio is attached in (Appendix 24) and 

(Appendix 25), where we flex Brent Crude price on the X-axis and natural 

gas price on the Y-axis for all years in the explicit period. As our research 

suggests, should the Brent Crude oil and natural gas estimates come true, 

we see significant upside from current valuation. Higher energy prices may 

lead to lower WACC due to increased financial robustness and higher 

operability, reducing the risk related to lending and lowering the required 

return on capital. However, inflation may lead to higher required return on 

capital. In addition to the analysis on the P/E ratio and the Brent Crude 

oil price, we modeled a sensitivity analysis on the peer group P/E ratio and 

the USD/NOK exchange rate. The sensitivity analysis for the explicit period 

is attached in (Appendix 26) and (Appendix 27). As our research show, 

should the companies earn a high P/E ratio and should the USD/NOK 

remain at elevated levels, the upside in both companies is significant. 

9.2 Scenario analysis 

When applying the forward curve for the Brent Crude oil on the DCF model, 

we find that the fair value of Aker BP and Vår Energi is 267 NOK and 35 

NOK, respectively. Please see (Appendix 28) and (Appendix 29) for detailed 

estimates. Our findings show that the market valuates Aker BP close to the 

forward curve on the Brent crude, using our estimates for the forward gas 

price. Vår Energi is underpriced using the same assumptions. This is 

consistent with our findings from the multiple valuation, where Vår Energi 

is underpriced relatively to Aker BP on forward estimates. The forward 

curve on Brent Crude used for comparison are presented in (Appendix 32). 

9.3 Monte Carlo simulation 

In this section we perform a Monte Carlo analysis with 50,000 simulations. 

In the sensitivity analysis we analyzed the valuation impact by flexing 
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WACC and terminal growth. In the Monte Carlo simulation, we seek to 

incorporate revenue growth, gross margin, OPEX, CAPEX, working capital 

and NONCA to capture the uncertainty in the underlying estimates. 

9.3.1 Aker BP 

The research conducted show that the mean value is NOK 397. We obtain 

a value of NOK 336 for the 25th percentile, a value of NOK 386 for the 50th 

percentile and a value of NOK 445 for the 75th percentile. 

 
Figure 26. Aker BP MC simulation 

9.3.2 Vår Energi 

The mean value is NOK 56. We obtain a value of NOK 44 for the 25th 

percentile, a value of NOK 55 for the 50th percentile and a value of NOK 67 

for the 75th percentile. 

 
Figure 27. Vår Energi MC simulation 
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10.  Discussion 

All the models examined in this thesis is highly dependent on computational 

power. Hence, the results may be hard to replicate. This is an important 

shortfall with machine learning models. During our research, we tested the 

ML model both on daily and monthly data. We experienced that the ML 

models broke down during the test phase on monthly data. We believe this 

is attributed to the lack of data, and the fact that ML models require a lot 

of data to learn pattern and trends. 

 

During our research we find that the machine learning models exhibit 

different forecasting performance when we add a dropout term and 

generalize our model using cross-validation. While adding a dropout term 

changes the ranking order and significantly reduces the overall forecasting 

performance, generalizing the models using cross-validation significantly 

increases the overall forecasting performance and change the ranking order. 

These results are intriguing, and the overall best results was obtained from 

the LSTM model, contrary to our findings on the basic ML models. These 

findings aligns with Assaad and Fayek (2021) who found that the LSTM 

exhibits the best forecasting performance compared to CNN. The difference 

in RMSE between basic, dropout and cross-validated models, suggests that 

the models is sensitive to noise, and therefore needs to be interpreted with 

caution. 

 

We emphasize that our estimates are highly uncertain and depend on a set 

of assumptions that may not be best estimates. The estimates obtained from 

our present value models depend on a constant WACC estimated during our 

research. This WACC may not represent the true weighted average cost of 

capital. Furthermore, our assumptions for the terminal growth rate may  

be incorrect. Assumptions related to the cash flow from investing activities 

are based on the companies' guidance, and the assumptions related to the  
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working capital are our own best estimates. We emphasize that our 

assumptions related to the net working capital might be wrong and, 

therefore, provide us with incorrect estimates for the fundamental values. 

 

The revenue projections are based on the companies' guided production and 

our forward estimate for Brent Crude oil. We have also incorporated the 

gas-related revenues, for which we have used external estimates. We 

emphasize that the model provides us with an uncertain Brent Crude oil 

estimate, the external estimates on natural gas might be wrong, and the 

guided production might not be achieved, which, in turn, results in incorrect 

fundamental values. We think it is important to highlight these factors and 

the uncertainty in our estimates. 

 

Furthermore, we observe that the different valuation methods provide us 

with different estimates, although all models and methods indicate an upside 

from the current valuation. The fact that different models and methods 

provide us with different values highlights the uncertainty in our 

calculations. To deal with the uncertainty, we have used uncertainty 

analysis through sensitivity analysis and Monte Carlo analysis, flexing 

different input variables that play an important role in calculating the 

fundamental value of the selected companies. We also observe that the 

selected companies trade on different multiples both today and in the 

explicit period. The reasons behind pricing differences are not something we 

investigate in this research, but we leave this open for others to investigate. 

Furthermore, in the course of our research, we have solely examined three 

ML models and one ARIMAX model. We leave the investigation of 

additional ML and time series models, as well as the investigation of existing 

models with enhanced computing power, open for others to research. 

 

We believe that forward estimates are highly uncertain, and all forward 

estimates presented in this thesis should be interpreted with caution.  
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11.  Conclusion 

Based on the analysis conducted in this master's thesis, it can be concluded 

that the ARIMAX model outperformed the machine learning models in 

terms of accuracy, as evidenced by its lower MAE, MSE, and RMSE values, 

as well as its higher 𝑅2 and adjusted 𝑅2 values. However, there are concerns 

regarding overfitting in the ARIMAX model, which suggests that its 

performance on unseen data might not be as reliable. Attempts to mitigate 

overfitting through the implementation of LASSO resulted in a significant 

deterioration in model performance. 

 

Among the basic machine learning models examined, the GRU model 

exhibits the best forecasting performance. It achieved lower MAE, MSE, and 

RMSE values compared to the LSTM and the CNN model. When 

generalizing our models with cross-validation the LSTM model exhibits the 

best overall ML forecasting performance. 

 

The output from the Prophet model on Brent Crude oil prices was tested 

against the fundamental values of Aker BP and Vår Energi using a DCF 

model. The analysis yielded a fair value of NOK 385 for Aker BP and NOK 

54 for Vår Energi, corresponding to an upside of 50% and 112% from their 

current market values. 
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Appendix 

Appendix 1. Black-Scholes model graphical pay-off structure 

 

Appendix 2. ACF of residuals ARIMAX (1,1,2) 

 
Appendix 3. Aker BP reformulated historical income statement 

 

Aker BP 2017 2018 2019 2020 2021 2022

P&L in USD

Revenues 2 562,9 3 742,9 3 379,0 2 925,7 5 693,6 13 010,0

Cost of Revenues 1250,1 1446 1532,2 1749,8 1709,4 2718,5

D&A 726,7 752,5 811,9 1121,9 964,1 1785,7

Gross Profit 1 312,9 2 296,9 1 846,8 1 175,9 3 984,2 10 291,0

SG&A 225,7 295,9 305,5 174,1 353,0 242,2

Other Operating Expense 27,6 17,0 35,3 49,5 29,3 52,6

Operating Expense 1 503,4 1 759,0 1 873,0 1 973,4 2 091,7 3 013,3

Operating Profit before non-rec. 1059,6 1984,0 1505,9 952,3 3601,9 9996,6

Non-Recurring Income/(Expense) -48,1 -34,9 -169,3 -500,3 -312,6 -1 032,2

EBITDA 1 738,2 2 701,6 2 148,5 1 573,9 4 253,4 10 750,1

EBIT 1011,5 1949,1 1336,6 452,0 3289,3 8964,4

NOPAT 344,5 459,3 239,8 290,9 935,1 1653,3

Net Financial items -209,4 -226,7 -204,1 -234,7 -201,3 -187,6

Income before Taxes 811,1 1802,0 1084,3 163,7 3072,8 8776,9

Income Taxes 536,3 1 326,2 943,2 119,0 2 222,1 7 173,9

Net Income 274,8 475,8 141,1 44,7 850,7 1 602,9
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Appendix 4. Aker BP reformulated historical balance sheet 

 

Appendix 5. Aker BP reformulated historical cash flow statement 

 

 

 

 

 

 

 

 

Aker BP - (NOA-FORMAT) 2017 2018 2019 2020 2021 2022

Balance sheet in USD

NONCA 5237,6 5753,6 6627,0 5868,9 5505,1 19192,5

NWC 907,5 -803,7 -766,4 -235,1 -1421,1 -4106,9

NOA (invested capital) 6145,1 4950,0 5860,6 5633,8 4084,0 15085,6

Total Equity 2988,6 2976,5 2367,6 1987,3 2341,9 12428,0

NIBD 3156,5 1973,5 3493,0 3646,5 1742,1 2657,6

Total E + NIBD 6145,1 4950,0 5860,6 5633,8 4084,0 15085,6

Aker BP 2017 2018 2019 2020 2021 2022

Cash flow in USD

NOPAT 344,5          459,3          239,8          290,9          935,1          1 653,3       

+D&A 683,7          713,7          891,1          1 524,1       1 199,2       2 817,9       

-increase in NWC 729,2-          1 711,2       37,3-            531,3-          1 185,9       2 685,9       

-∆NONCA 1 225,1-       1 229,7-       1 764,5-       766,0-          835,3-          16 505,4-    

FCFF 926,1-          1 654,4       670,8-          517,7          2 484,9       9 348,3-       

-inc. NIBD w.o cash 856,3          1 369,6-       1 581,7       584,2          471,3-          1 700,6       

NFI after tax 69,7-            16,5            98,7-            246,2-          84,4-            50,4-            

FCFE 139,5-          301,3          812,2          855,7          1 929,2       7 698,1-       

dividends and ∆equity 264,6          487,9-          750,0-          425,0-          496,1-          8 483,2       

buybacks

Cash surplus 125,1          186,6-          62,2            430,7          1 433,1       785,1          

Cash at the beginning of period 106,4          231,5          44,9            107,1          537,8          1 970,9       

+/- cash surplus 125,1          186,6-          62,2            430,7          1 433,1       785,1          

= Cash at the end of period 231,5          44,9            107,1          537,8          1 970,9       2 756,0       
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Appendix 6. Vår Energi reformulated historical income statement 

 

Appendix 7. Vår Energi reformulated historical balance sheet 

 

 

 

 

 

 

 

Vår Energi 2017 2018 2019 2020 2021 2022

P&L in USD

Revenues 1 910,1 2 716,3 2 855,7 2 893,8 6 072,7 9 827,6

Cost of Revenues 1 247,4 1 490,3 1 862,1 2 764,0 2 994,5 2 591,1

D&A 792,0 985,3 1023,9 1706,7 1704,6 1448,0

Gross Profit 662,7 1226,0 993,6 129,9 3078,2 7236,5

SG&A 113,7 39,4 125,4 102,6 115,8 125,8

Other Operating Expense 183,1 173,3 218,6 158,0 146,5 -57,7

Operating Expense 1 544,3 1 702,9 2 206,1 3 024,5 3 256,9 2 659,2

Operating Profit before non-rec. 365,9 1013,4 649,7 -130,7 2815,8 7168,4

Non-Recurring Income/(Expense) 265,7 0,0 49,5 -2196,7 -1,0 -893,8

EBITDA 1 423,6 1 998,7 1 723,1 -620,7 4 519,4 7 722,6

EBIT 631,6 1013,4 699,2 -2327,4 2814,8 6274,6

NOPAT 175,8 297,3 261,4 -1717,7 700,6 1049,9

Net Financial items -49,2 -17,3 73,8 123,3 -317,1 -418,7

Income before Taxes 582,4 996,1 772,9 -2204,0 2497,7 5855,9

Income Taxes 420,3 703,9 487,5 -577,4 1876,1 4919,5

Net Income 162,1 292,2 285,4 -1626,6 621,6 936,4

Vår Energi - (NOA-FORMAT) 2017 2018 2019 2020 2021 2022

Balance sheet in USD

NONCA 692,5 3952,7 8206,6 7012,5 7019,3 5635,8

NWC -26,8 -1821,7 -1078,8 317,3 -589,2 -1434,4

NOA (invested capital) 665,7 2 131,0 7 127,8 7 329,7 6 430,1 4 201,4

Total Equity 688,1 2494,7 2518,8 1854,9 1502,9 1481,6

NIBD -22,5 -363,7 4609,0 5474,8 4927,2 2719,8

Total E + NIBD 665,7 2131,0 7127,8 7329,7 6430,1 4201,4
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Appendix 8. Vår Energi reformulated historical cash flow statement 

 

Appendix 9. Aker BP income statement drivers 

 

Appendix 10. Vår Energi income statement drivers 

 

 

 

Vår Energi 2017 2018 2019 2020 2021 2022

Cash flow in USD

NOPAT 175,8          297,3          261,4          1 717,7-       700,6          1 049,9       

+D&A 526,3          985,3          974,5          3 903,4       1 705,6       2 341,8       

-increase in NWC n.a. 1 794,9       742,9-          1 396,0-       906,5          845,1          

-∆NONCA n.a. 4 245,5-       5 228,4-       2 709,3-       1 712,4-       958,3-          

FCFF n.a. 1 168,0-       4 735,5-       1 919,6-       1 600,3       3 278,6       

-inc. NIBD w.o cash n.a. 646,1          4 165,9       932,7          801,1-          1 782,1-       

NFI after tax n.a. 5,1-               24,0            91,1            79,0-            113,5-          

FCFE n.a. 527,0-          545,5-          895,8-          720,2          1 382,9       

dividends and ∆equity -              1 514,4       261,3-          962,7          973,6-          957,7-          

buybacks

Cash surplus n.a. 987,4          806,8-          66,9            253,4-          425,2          

Cash at the beginning of period n.a. 15,4            1 002,8       196,0          262,9          9,5               

+/- cash surplus n.a. 987,4          806,8-          66,9            253,4-          425,2          

= Cash at the end of period 15,4            1 002,8       196,0          262,9          9,5               434,7          

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

Ratios (Income statement)

Sales growth 2,9 % 8,7 % -6,1 % -2,0 % 20,0 % -24,4 %

Sales growth reversion rate -125,6 % 5,8 % -14,8 % 4,2 % 22,0 % -44,4 %

Gross profit margin 76,0 % 77,5 % 79,5 % 80,0 % 80,9 % 72,0 %

Operating expense/sales 2,5 % 1,0 % 1,0 % 1,0 % 0,9 % 2,0 %

Depreciation/Gross prior-year PP&E 13,2 % 10,0 % 10,0 % 9,0 % 8,1 % 3,0 %

Interest income/Prior-year cash 2,4 % 2,4 % 2,4 % 2,4 % 2,4 % 2,4 %

Interest expense/Prior-year IBD 4,6 % 4,6 % 4,6 % 4,6 % 4,6 % 4,6 %

Income tax expense/pretax income 71,8 % 71,8 % 71,8 % 71,8 % 71,8 % 71,8 %

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

Ratios (Income statement)

Sales growth -32,0 % 31,8 % 25,6 % 6,8 % -3,9 % -30,4 %

Sales growth reversion rate -93,8 % 63,7 % -6,2 % -18,7 % -10,8 % -26,5 %

Gross profit margin 65,0 % 70,0 % 70,0 % 76,0 % 78,0 % 70,0 %

Operating expense/Sales 14,0 % 14,0 % 14,5 % 0,7 % 0,9 % 5,0 %

Depreciation/Gross prior-year PP&E 9,3 % 9,3 % 9,3 % 9,0 % 9,0 % 4,0 %

Interest income/Prior-year cash 2,5 % 2,5 % 2,5 % 2,5 % 2,5 % 2,5 %

Interest expense/Prior-year IBD 5,5 % 5,5 % 5,5 % 5,5 % 5,5 % 5,5 %

Income tax expense/pretax income 71,6 % 71,6 % 71,6 % 71,6 % 71,6 % 71,6 %
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Appendix 11. Aker BP revenue and cost drivers 

 

Appendix 12. Vår Energi revenue and cost drivers 

 

Appendix 13. Aker BP Income statement explicit period 

 

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

Production (mboepd) 449             445             417             400             460             525             

Total production (mboe) 163 768     162 597     152 143     146 000     167 900     191 625     

Oil (%) 85 % 85 % 85 % 85 % 85 % 85 %

Gas (%) 15 % 15 % 15 % 15 % 15 % 15 %

USD/mcf 15,00          20,00          15,00          12,50          12,50          10,00          

USD/mmbtu 14,46          19,29          14,46          12,05          12,05          9,64            

USD/boe (5,69 mmbtu = 1boe) 82,30          109,74        82,30          68,59          68,59          54,87          

Price per bbl (oil) 81,69          85,97          91,16          95,86          100,57        65,00          

Combined realized price per barrel 81,78          89,54          89,83          91,77          95,77          63,48          

Revenues 13 393,33  14 558,15  13 667,26  13 398,29  16 080,22  12 164,45  

OPEX/boe 7,91            7,67            7,06            7,03            6,99            6,95            

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

Production (mboepd) 224             261             338             355             326             341             

Total production (mboe) 81 640        95 367        123 523     129 575     118 990     124 465     

Oil (%) 66 % 73 % 82 % 83 % 84 % 85 %

Gas (%) 34 % 27 % 18 % 17 % 16 % 15 %

USD/mcf 15,00          20,00          15,00          12,50          12,50          10,00          

USD/mmbtu 14,46          19,29          14,46          12,05          12,05          9,64            

USD/boe (5,69 mmbtu = 1boe) 82,30          109,74        82,30          68,59          68,59          54,87          

Price per bbl (oil) 81,69          85,97          91,16          95,86          100,57        65,00          

Combined realized price per barrel 81,90          92,39          89,57          91,22          95,45          63,48          

Revenues 6 686,20    8 810,77    11 063,49  11 820,30  11 357,92  7 901,10    

OPEX/boe 14,65          14,84          14,55          8,22            7,98            8,11            

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

P&L in USD

Revenues 13 393,3 14 558,2 13 667,3 13 398,3 16 080,2 12 164,4

Cost of Revenues 3214,4 3272,7 2807,5 2679,7 3071,3 3406,0

D&A 2112,4 1820,5 2257,2 2339,0 2419,9 930,0

Gross Profit 10 178,9 11 285,5 10 859,7 10 718,6 13 008,9 8 758,4

SG&A 275,1 119,6 112,3 110,1 118,9 199,9

Other Operating Expense 59,7 26,0 24,4 23,9 25,8 43,4

Operating Expense 3 549,2 3 418,3 2 944,2 2 813,6 3 216,0 3 649,3

Operating Profit before non-rec. 9844,1 11139,9 10723,1 10584,6 12864,2 8515,1

Non-Recurring Income/(Expense) -              -              -              -              -              -              

EBITDA 11 956,5 12 960,4 12 980,3 12 923,7 15 284,0 9 445,1

EBIT 9844,1 11139,9 10723,1 10584,6 12864,2 8515,1

NOPAT 2777,8 3143,5 3025,9 2986,8 3630,0 2402,8

Net Financial items -182,5 -137,8 -135,6 -135,5 -120,0 -51,1

Income before Taxes 9661,6 11002,1 10587,5 10449,2 12744,2 8464,0

Income Taxes 6 935,3 7 897,5 7 599,9 7 500,6 9 148,0 6 075,6

Net Income 2 726,3 3 104,6 2 987,6 2 948,6 3 596,2 2 388,4
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Appendix 14. Vår Energi Income statement explicit period 

 

Appendix 15. Aker BP balance sheet drivers 

 

 

 

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

P&L in USD

Revenues 6 686,2 8 810,8 11 063,5 11 820,3 11 357,9 7 901,1

Cost of Revenues 2 340,2 2 643,2 3 319,0 2 836,9 2 498,7 2 370,3

D&A 1377,9 1659,2 1807,5 1988,8 2010,1 902,5

Gross Profit 4346,0 6167,5 7744,4 8983,4 8859,2 5530,8

SG&A 413,3 544,6 708,3 36,5 45,1 174,4

Other Operating Expense 522,8 688,9 895,9 46,2 57,1 220,6

Operating Expense 3 276,2 3 876,7 4 923,3 2 919,6 2 601,0 2 765,4

Operating Profit before non-rec. 3410,0 4934,0 6140,2 8900,7 8757,0 5135,7

Non-Recurring Income/(Expense) 0,0 0,0 0,0 0,0 0,0 0,0

EBITDA 4 787,9 6 593,2 7 947,7 10 889,5 10 767,1 6 038,2

EBIT 3410,0 4934,0 6140,2 8900,7 8757,0 5135,7

NOPAT 967,1 1399,4 1741,5 2524,4 2483,6 1456,6

Net Financial items -163,2 -169,0 -154,7 -121,7 -59,9 -26,8

Income before Taxes 3246,7 4765,1 5985,5 8779,0 8697,0 5108,9

Income Taxes 2325,9 3413,6 4287,9 6289,1 6230,4 3659,9

Net Income 920,8 1351,5 1697,6 2489,9 2466,6 1449,0

Ratios (Balance sheet) 2023E 2024E 2025E 2026E 2027E 2028T

Account receivable turnover rate 7,43            7,43            7,25            7,25            6,00            8,95            

Inventory turnover rate 42,37          42,82          48,08          48,84          48,84          46,84          

Deferred tax/PP&E 39,4 % 41,1 % 46,3 % 45,3 % 43,5 % 42,0 %

Account payable turnover rate 36,72          36,72          36,72          36,72          50,00          32,44          

Tax payable/Tax expense 70,9 % 70,9 % 70,9 % 70,9 % 70,9 % 85,0 %

Dividends (in millions) 1500 1750 1350 1000 1350 1350

Dividend ratio (Dividend/Net income) 55 % 56 % 45 % 34 % 38 % 57 %

PPE (CAPEX) 2 207          4 367          3 417          3 886          1 126          1 642          

CAPEX/Sales 16 % 30 % 25 % 29 % 7 % 14 %

Installments interest-bearing debt 636,30-        636,30-        636,30-        636,30-        636,30-        -              

NWC 4 259,71-    4 682,64-    5 131,01-    5 473,86-    5 612,29-    6 263,26-    

Change in NWC 152,78-        422,94-        448,37-        342,85-        138,43-        650,97-        

Intangibles/sales 116,3 % 100,0 % 118,0 % 125,0 % 99,0 % 118 %

Other non-current assets/sales 0,6 % 0,6 % 0,6 % 0,6 % 0,6 % 0,5 %

Prepaid expense/sales 1,5 % 1,5 % 1,5 % 1,5 % 1,5 % 1,2 %

Other non-current liabilities/sales 56,2 % 44,9 % 44,3 % 51,0 % 44,3 % 56,2 %

Derivative Instruments - Short term 0,6 % 0,6 % 0,6 % 0,6 % 0,6 % 0,3 %

Other Current Liabilities/sales 9,9 % 8,5 % 13,0 % 16,0 % 13,0 % 20,5 %

Receivables & Loans - Long term 1,3 % 1,5 % 1,2 % 1,2 % 1,2 % 1,2 %

Derivative Liabilities - Short term 0,3 % 0,3 % 0,3 % 0,3 % 0,3 % 0,3 %
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Appendix 16. Vår Energi balance sheet drivers 

 

Appendix 17. Aker BP compressed balance sheet explicit period 

 

 

 

 

 

 

 

Ratios (Balance sheet) 2023E 2024E 2025E 2026E 2027E 2028T

Account receivable turnover rate 8,50            11,20          14,06          15,03          14,44          9,18            

Inventory turnover rate 29,25          32,18          35,39          36,10          36,82          37,00          

Deferred tax/PP&E 60,0 % 60,0 % 58,0 % 58,0 % 58,0 % 58,4 %

Account payable turnover rate 14,50          15,94          23,44          23,44          26,44          14,00          

Tax payable/Tax expense 45,0 % 39,4 % 39,4 % 39,4 % 33,0 % 43,0 %

Dividends (in millions) 500 925 1000 1500 1500 850

Dividend ratio (Dividend/Net income) 54,3 % 68,4 % 58,9 % 60,2 % 60,8 % 58,7 %

PPE (CAPEX) 3 008,79    1 585,94    2 765,87    236,41        227,16        316,04        

CAPEX/Sales 45 % 18 % 25 % 2 % 2 % 4 %

Installments interest-bearing debt -              200,00-        600,00-        600,00-        600,00-        0

NWC 1 624,42-    1 491,25-    1 883,57-    2 746,21-    2 232,33-    2 170,59-    

Change in NWC 190,06-        133,17        392,32-        862,64-        513,88        61,73          

Intangibles/sales 25,8 % 23,2 % 23,2 % 18,0 % 15,0 % 23,8 %

Other non-current assets/sales 0,1 % 0,1 % 0,1 % 0,1 % 0,1 % 0,1 %

Prepaid expense/sales 0,3 % 0,3 % 0,3 % 0,3 % 0,3 % 0,2 %

Other non-current liabilities/sales 35,4 % 38,2 % 44,8 % 38,2 % 38,2 % 56,0 %

Derivative Instruments - Short term 0,2 % 0,2 % 0,2 % 0,2 % 0,2 % 0,2 %

Other Current Liabilities/sales 17,0 % 7,5 % 7,5 % 7,5 % 7,5 % 14,0 %

Derivative Liabilities - Short term 0,4 % 0,4 % 0,4 % 0,4 % 0,4 % 0,4 %

Other current assets/sales 0,3 % 0,3 % 0,3 % 0,3 % 0,3 % 0,3 %

Aker BP - (NOA-FORMAT) 2023E 2024E 2025E 2026E 2027E 2028T

Balance sheet in USD

NONCA 19327,9 21590,0 24248,7 26473,5 26581,1 26642,7

NWC -4259,7 -4682,6 -5131,0 -5473,9 -5612,3 -6263,3

NOA (invested capital) 15068,2 16907,3 19117,7 20999,7 20968,8 20379,4

Total Equity 13654,3 15009,0 16646,6 18595,1 20841,3 21879,7

NIBD 1413,9 1898,4 2471,2 2404,5 127,4 -1500,3

Total E + NIBD 15068,2 16907,3 19117,7 20999,7 20968,8 20379,4
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Appendix 18. Vår Energi compressed balance sheet explicit period 

 

Appendix 19. Aker BP cash flow control 

 

Appendix 20. Vår Energi cash flow control 

 

Appendix 21. Aker BP cash flow statement explicit period 

 

 

 

 

 

 

 

 

 

 

 

 

Vår Energi - (NOA-FORMAT) 2023E 2024E 2025E 2026E 2027E 2028T

Balance sheet in USD

NONCA 6466,2 6422,5 6904,4 7004,9 6852,5 6981,1

NWC -1624,4 -1491,3 -1883,6 -2746,2 -2232,3 -2170,6

NOA (invested capital) 4 841,7 4 931,3 5 020,8 4 258,7 4 620,2 4 810,5

Total Equity 1902,4 2328,9 3026,5 4016,4 4983,0 5582,0

NIBD 2939,3 2602,4 1994,3 242,3 -362,8 -771,5

Total E + NIBD 4841,7 4931,3 5020,8 4258,7 4620,2 4810,5

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

Cash flow control in USD

NOPAT 2 777,83    3 143,49    3 025,86    2 986,81    3 630,05    2 402,82    

+/- ∆NOA 17,40          1 839,14-    2 210,38-    1 881,95-    30,91          589,36        

FCFF 2 795,23    1 304,34    815,49        1 104,86    3 660,96    2 992,18    

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

Cash flow control in USD

NOPAT 967,13         1 399,39    1 741,49    2 524,41    2 483,64    1 456,59    

+/- ∆NOA 640,32-         89,51-          89,55-          762,10        361,48-        190,32-        

FCFF 326,81         1 309,87    1 651,94    3 286,50    2 122,17    1 266,27    

Aker BP 2023E 2024E 2025E 2026E 2027E 2028T

Cash flow in USD

NOPAT 2 777,8       3 143,5       3 025,9       2 986,8       3 630,0       2 402,8       

+D&A 2 112,4       1 820,5       2 257,2       2 339,0       2 419,9       930,0          

-increase in NWC 152,8          422,9          448,4          342,9          138,4          651,0          

-∆NONCA 2 247,8-       4 082,6-       4 916,0-       4 563,8-       2 527,4-       991,6-          

FCFF 2 795,2       1 304,3       815,5          1 104,9       3 661,0       2 992,2       

-inc. NIBD w.o cash 672,6-          636,3-          636,3-          636,3-          636,3-          636,3-          

NFI after tax 51,5-            38,9-            38,3-            38,2-            33,8-            14,4-            

FCFE 2 071,1       629,2          140,9          430,3          2 990,8       2 341,5       

dividends and ∆equity 1 500,0-       1 750,0-       1 350,0-       1 000,0-       1 350,0-       1 350,0-       

buybacks

Cash surplus 571,1          1 120,8-       1 209,1-       569,7-          1 640,8       991,5          

Cash at the beginning of period 2 756,0       3 327,1       2 206,3       997,2          427,6          2 068,4       

+/- cash surplus 571,1          1 120,8-       1 209,1-       569,7-          1 640,8       991,5          

= Cash at the end of period 3 327,1       2 206,3       997,2          427,6          2 068,4       3 059,8       
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Appendix 22. Vår Energi cash flow statement explicit period 

 

Appendix 23. Black-Scholes model valuation 

 

Appendix 24. Aker BP P/E sensitivity 2023 

 

Aker BP P/E sensitivity 2024 

 

Vår Energi 2023E 2024E 2025E 2026E 2027E 2028T

Cash flow in USD

NOPAT 967,1          1 399,4       1 741,5       2 524,4       2 483,6       1 456,6       

+D&A 1 377,9       1 659,2       1 807,5       1 988,8       2 010,1       902,5          

-increase in NWC 190,1          133,2-          392,3          862,6          513,9-          61,7-            

-∆NONCA 2 208,3-       1 615,6-       2 289,4-       2 089,4-       1 857,7-       1 031,1-       

FCFF 326,8          1 309,9       1 651,9       3 286,5       2 122,2       1 266,3       

-inc. NIBD w.o cash 10,8-            206,6-          607,0-          602,3-          598,6-          10,7            

NFI after tax 46,3-            47,9-            43,9-            34,5-            17,0-            7,6-               

FCFE 269,7          1 055,4       1 001,1       2 649,6       1 506,6       1 269,4       

dividends and ∆equity 500,0-          925,0-          1 000,0-       1 500,0-       1 500,0-       850,0-          

buybacks

Cash surplus 230,3-          130,4          1,1               1 149,6       6,6               419,4          

Cash at the beginning of period 434,7          204,4          334,8          335,8          1 485,5       1 492,1       

+/- cash surplus 230,3-          130,4          1,1               1 149,6       6,6               419,4          

= Cash at the end of period 204,4          334,8          335,8          1 485,5       1 492,1       1 911,5       

  EV FV debt t Value call Value debt Pay off P/Share 
 

Aker BP 25 884,18 5 569,00 4,64 21 027,72 4 856,46 16 171,26 268,0 

           
Vår Energi 

  

15 613,49 
  

3 046,00 
  

5,33 
  

13 010,54 
  

2 602,95 
  

10 407,59 
  

43,6 
  

 

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 10,1x 8,5x 7,3x 6,4x 5,8x 5,2x 4,7x

USD/mcf 10 9,3x 7,9x 6,9x 6,1x 5,5x 5,0x 4,5x

USD/mcf 15 8,5x 7,4x 6,5x 5,8x 5,2x 4,8x 4,4x

USD/mcf 20 7,9x 6,9x 6,1x 5,5x 5,0x 4,6x 4,2x

USD/mcf 30 6,9x 6,1x 5,5x 5,0x 4,6x 4,2x 3,9x

USD/mcf 40 6,2x 5,5x 5,0x 4,6x 4,2x 3,9x 3,6x

USD/mcf 50 5,5x 5,0x 4,6x 4,2x 3,9x 3,7x 3,4x

P/E 23e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 9,7x 8,2x 7,0x 6,2x 5,5x 5,0x 4,6x

USD/mcf 10 8,9x 7,6x 6,6x 5,9x 5,3x 4,8x 4,4x

USD/mcf 15 8,2x 7,1x 6,2x 5,6x 5,0x 4,6x 4,2x

USD/mcf 20 7,6x 6,6x 5,9x 5,3x 4,8x 4,4x 4,0x

USD/mcf 30 6,7x 5,9x 5,3x 4,8x 4,4x 4,1x 3,8x

USD/mcf 40 5,9x 5,3x 4,8x 4,4x 4,1x 3,8x 3,5x

USD/mcf 50 5,3x 4,8x 4,4x 4,1x 3,8x 3,5x 3,3x

P/E 24e
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Aker BP P/E sensitivity 2025 

 

Aker BP P/E sensitivity 2026 

 

Aker BP P/E sensitivity 2027 

 

Appendix 25. Vår Energi P/E sensitivity 2023 

 

Vår Energi P/E sensitivity 2024 

 

 

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 10,1x 8,5x 7,3x 6,5x 5,8x 5,2x 4,8x

USD/mcf 10 9,3x 7,9x 6,9x 6,1x 5,5x 5,0x 4,6x

USD/mcf 15 8,5x 7,4x 6,5x 5,8x 5,2x 4,8x 4,4x

USD/mcf 20 7,9x 6,9x 6,1x 5,5x 5,0x 4,6x 4,2x

USD/mcf 30 7,0x 6,2x 5,5x 5,0x 4,6x 4,2x 3,9x

USD/mcf 40 6,2x 5,5x 5,0x 4,6x 4,2x 3,9x 3,7x

USD/mcf 50 5,6x 5,0x 4,6x 4,3x 3,9x 3,7x 3,4x

P/E 25e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 10,5x 8,8x 7,6x 6,7x 6,0x 5,4x 4,9x

USD/mcf 10 9,6x 8,2x 7,1x 6,3x 5,7x 5,2x 4,7x

USD/mcf 15 8,9x 7,6x 6,7x 6,0x 5,4x 4,9x 4,5x

USD/mcf 20 8,2x 7,2x 6,4x 5,7x 5,2x 4,7x 4,4x

USD/mcf 30 7,2x 6,4x 5,7x 5,2x 4,8x 4,4x 4,1x

USD/mcf 40 6,4x 5,7x 5,2x 4,8x 4,4x 4,1x 3,8x

USD/mcf 50 5,8x 5,2x 4,8x 4,4x 4,1x 3,8x 3,6x

P/E 26e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 8,9x 7,5x 6,5x 5,7x 5,1x 4,6x 4,2x

USD/mcf 10 8,2x 7,0x 6,1x 5,4x 4,9x 4,4x 4,0x

USD/mcf 15 7,6x 6,5x 5,8x 5,1x 4,6x 4,2x 3,9x

USD/mcf 20 7,0x 6,1x 5,4x 4,9x 4,4x 4,1x 3,7x

USD/mcf 30 6,2x 5,5x 4,9x 4,4x 4,1x 3,8x 3,5x

USD/mcf 40 5,5x 4,9x 4,5x 4,1x 3,8x 3,5x 3,3x

USD/mcf 50 4,9x 4,5x 4,1x 3,8x 3,5x 3,3x 3,1x

P/E 27e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 13,4x 11,4x 10,0x 8,9x 8,0x 7,2x 6,6x

USD/mcf 10 10,8x 9,5x 8,5x 7,6x 7,0x 6,4x 5,9x

USD/mcf 15 9,0x 8,1x 7,3x 6,7x 6,2x 5,7x 5,3x

USD/mcf 20 7,8x 7,1x 6,5x 6,0x 5,6x 5,2x 4,9x

USD/mcf 30 6,1x 5,6x 5,2x 4,9x 4,6x 4,4x 4,1x

USD/mcf 40 5,0x 4,7x 4,4x 4,2x 4,0x 3,8x 3,6x

USD/mcf 50 4,2x 4,0x 3,8x 3,6x 3,5x 3,3x 3,2x

P/E 23e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 9,9x 8,4x 7,3x 6,4x 5,7x 5,2x 4,8x

USD/mcf 10 8,3x 7,2x 6,4x 5,7x 5,2x 4,7x 4,4x

USD/mcf 15 7,2x 6,4x 5,7x 5,2x 4,7x 4,4x 4,0x

USD/mcf 20 6,4x 5,7x 5,2x 4,7x 4,4x 4,0x 3,8x

USD/mcf 30 5,2x 4,7x 4,3x 4,0x 3,8x 3,5x 3,3x

USD/mcf 40 4,3x 4,0x 3,7x 3,5x 3,3x 3,1x 2,9x

USD/mcf 50 3,7x 3,5x 3,3x 3,1x 2,9x 2,8x 2,7x

P/E 24e
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Vår Energi P/E sensitivity 2025 

 

Vår Energi P/E sensitivity 2026 

 

Vår Energi P/E sensitivity 2027 

 

Appendix 26. Aker BP P/E multiple and USD/NOK sensitivity 2023 

 

Aker BP P/E multiple and USD/NOK sensitivity 2024 

 

 

 

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 7,2x 6,0x 5,2x 4,6x 4,1x 3,7x 3,4x

USD/mcf 10 6,4x 5,5x 4,8x 4,3x 3,8x 3,5x 3,2x

USD/mcf 15 5,8x 5,1x 4,5x 4,0x 3,6x 3,3x 3,0x

USD/mcf 20 5,3x 4,7x 4,2x 3,8x 3,4x 3,1x 2,9x

USD/mcf 30 4,6x 4,1x 3,7x 3,4x 3,1x 2,9x 2,7x

USD/mcf 40 4,0x 3,6x 3,3x 3,0x 2,8x 2,6x 2,5x

USD/mcf 50 3,6x 3,2x 3,0x 2,8x 2,6x 2,4x 2,3x

P/E 25e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 4,9x 4,1x 3,6x 3,1x 2,8x 2,5x 2,3x

USD/mcf 10 4,4x 3,8x 3,3x 3,0x 2,7x 2,4x 2,2x

USD/mcf 15 4,1x 3,5x 3,1x 2,8x 2,5x 2,3x 2,1x

USD/mcf 20 3,7x 3,3x 2,9x 2,6x 2,4x 2,2x 2,0x

USD/mcf 30 3,2x 2,9x 2,6x 2,4x 2,2x 2,0x 1,9x

USD/mcf 40 2,8x 2,6x 2,3x 2,1x 2,0x 1,8x 1,7x

USD/mcf 50 2,5x 2,3x 2,1x 2,0x 1,8x 1,7x 1,6x

P/E 26e

USD/bbl 50 USD/bbl 60 USD/bbl 70 USD/bbl 80 USD/bbl 90 USD/bbl 100 USD/bbl 110

USD/mcf 5 5,1x 4,3x 3,7x 3,3x 2,9x 2,7x 2,4x

USD/mcf 10 4,7x 4,0x 3,5x 3,1x 2,8x 2,5x 2,3x

USD/mcf 15 4,3x 3,7x 3,3x 2,9x 2,7x 2,4x 2,2x

USD/mcf 20 4,0x 3,5x 3,1x 2,8x 2,5x 2,3x 2,1x

USD/mcf 30 3,5x 3,1x 2,8x 2,5x 2,3x 2,1x 2,0x

USD/mcf 40 3,1x 2,8x 2,5x 2,3x 2,1x 2,0x 1,8x

USD/mcf 50 2,7x 2,5x 2,3x 2,1x 2,0x 1,8x 1,7x

P/E 27e

P/E multiple 23e

256,3 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 103,5 142,2 180,9 219,6 258,3 297,0 335,7

9,5 109,2 150,1 191,0 231,8 272,7 313,5 354,4

10,0 115,0 158,0 201,0 244,1 287,1 330,1 373,1

10,5 120,8 165,9 211,1 256,3 301,5 346,7 391,8

11,0 126,5 173,9 221,2 268,5 315,9 363,2 410,6

11,5 132,3 181,8 231,3 280,8 330,3 379,8 429,3

12,0 138,1 189,7 241,4 293,0 344,7 396,3 448,0

P/E multiple 24e

256,3 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 117,8 161,9 206,0 250,0 294,1 338,2 382,3

9,5 124,4 170,9 217,5 264,0 310,5 357,1 403,6

10,0 131,0 179,9 228,9 277,9 326,9 375,9 424,9

10,5 137,5 189,0 240,4 291,9 343,3 394,8 446,2

11,0 144,1 198,0 251,9 305,8 359,7 413,6 467,5

11,5 150,7 207,0 263,4 319,7 376,1 432,5 488,8

12,0 157,2 216,0 274,9 333,7 392,5 451,3 510,1
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Aker BP P/E multiple and USD/NOK sensitivity 2025 

 

Aker BP P/E multiple and USD/NOK sensitivity 2026 

 

Aker BP P/E multiple and USD/NOK sensitivity 2027 

 

Appendix 27. Vår Energi P/E multiple and USD/NOK sensitivity 2023 

 

Vår Energi P/E multiple and USD/NOK sensitivity 2024 

 

 

P/E multiple 25e

256,3 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 113,4 155,8 198,2 240,6 283,0 325,5 367,9

9,5 119,7 164,5 209,3 254,0 298,8 343,6 388,4

10,0 126,0 173,2 220,3 267,4 314,6 361,7 408,9

10,5 132,3 181,8 231,4 280,9 330,4 379,9 429,4

11,0 138,7 190,5 242,4 294,3 346,1 398,0 449,9

11,5 145,0 199,2 253,4 307,7 361,9 416,2 470,4

12,0 151,3 207,9 264,5 321,1 377,7 434,3 490,9

P/E multiple 26e

256,3 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 111,9 153,8 195,6 237,5 279,3 321,2 363,1

9,5 118,1 162,3 206,5 250,7 294,9 339,1 383,3

10,0 124,4 170,9 217,4 264,0 310,5 357,0 403,5

10,5 130,6 179,5 228,3 277,2 326,1 374,9 423,8

11,0 136,8 188,0 239,2 290,4 341,6 392,8 444,0

11,5 143,1 196,6 250,1 303,7 357,2 410,7 464,3

12,0 149,3 205,2 261,0 316,9 372,8 428,6 484,5

P/E multiple 27e

256,3 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 136,5 187,5 238,6 289,6 340,7 391,8 442,8

9,5 144,1 198,0 251,9 305,8 359,7 413,6 467,5

10,0 151,7 208,4 265,2 321,9 378,7 435,4 492,2

10,5 159,3 218,9 278,5 338,1 397,7 457,3 516,9

11,0 166,9 229,3 291,8 354,2 416,7 479,1 541,5

11,5 174,5 239,8 305,1 370,4 435,7 500,9 566,2

12,0 182,1 250,2 318,4 386,5 454,6 522,8 590,9

P/E multiple 23e

25,5 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 8,8 12,2 15,5 18,8 22,1 25,4 28,7

9,5 9,3 12,8 16,3 19,8 23,3 26,8 30,3

10,0 9,8 13,5 17,2 20,9 24,5 28,2 31,9

10,5 10,3 14,2 18,0 21,9 25,8 29,6 33,5

11,0 10,8 14,9 18,9 23,0 27,0 31,0 35,1

11,5 11,3 15,5 19,8 24,0 28,2 32,5 36,7

12,0 11,8 16,2 20,6 25,0 29,5 33,9 38,3

P/E multiple 24e

25,5 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 13,0 17,8 22,7 27,5 32,4 37,3 42,1

9,5 13,7 18,8 24,0 29,1 34,2 39,3 44,5

10,0 14,4 19,8 25,2 30,6 36,0 41,4 46,8

10,5 15,2 20,8 26,5 32,2 37,8 43,5 49,2

11,0 15,9 21,8 27,8 33,7 39,6 45,6 51,5

11,5 16,6 22,8 29,0 35,2 41,4 47,6 53,9

12,0 17,3 23,8 30,3 36,8 43,2 49,7 56,2
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Vår Energi P/E multiple and USD/NOK sensitivity 2025 

 

Vår Energi P/E multiple and USD/NOK sensitivity 2026 

 

Vår Energi P/E multiple and USD/NOK sensitivity 2027 

 

Appendix 28. Aker BP DCF valuation applying forward curve 

 

 

 

 

 

 

P/E multiple 25e

25,5 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 16,3 22,4 28,5 34,6 40,7 46,8 52,9

9,5 17,2 23,7 30,1 36,5 43,0 49,4 55,9

10,0 18,1 24,9 31,7 38,5 45,2 52,0 58,8

10,5 19,0 26,2 33,3 40,4 47,5 54,6 61,7

11,0 19,9 27,4 34,9 42,3 49,8 57,2 64,7

11,5 20,8 28,6 36,4 44,2 52,0 59,8 67,6

12,0 21,8 29,9 38,0 46,2 54,3 62,5 70,6

P/E multiple 26e

25,5 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 23,9 32,9 41,8 50,8 59,7 68,6 77,6

9,5 25,2 34,7 44,1 53,6 63,0 72,5 81,9

10,0 26,6 36,5 46,5 56,4 66,4 76,3 86,2

10,5 27,9 38,4 48,8 59,2 69,7 80,1 90,6

11,0 29,2 40,2 51,1 62,1 73,0 84,0 94,9

11,5 30,6 42,0 53,5 64,9 76,3 87,8 99,2

12,0 31,9 43,9 55,8 67,7 79,7 91,6 103,5

P/E multiple 27e

25,5 2,7 3,7 4,7 5,7 6,7 7,7 8,7

9,0 23,7 32,6 41,4 50,3 59,1 68,0 76,9

9,5 25,0 34,4 43,7 53,1 62,4 71,8 81,2

10,0 26,3 36,2 46,0 55,9 65,7 75,6 85,4

10,5 27,7 38,0 48,3 58,7 69,0 79,4 89,7

11,0 29,0 39,8 50,7 61,5 72,3 83,2 94,0

11,5 30,3 41,6 53,0 64,3 75,6 87,0 98,3

12,0 31,6 43,4 55,3 67,1 78,9 90,7 102,6

2023 2024 2025 2026 2027 Terminal

DCF WACC

Period 0 1 2 3 4 5 6 10 %

FCF 2 880        152             484-             470             1 723          2 420          

Discount factor 0,91          0,82            0,74            0,67            0,61            

Midyear adj. 0,95          0,86            0,78            0,71            0,64            

PV FCFF 2 740        131             378-             332             1 102          

PV term x.x.6 23 189        

PV term x.x.0 14 835        

EV 18 762       

NIBD 2 658         

MVE 168 615     

Fundamental Value (NOK) 267            

Forecast horizon
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Appendix 29. Vår Energi DCF valuation applying forward curve 

 

Appendix 30. Aker BP EVA valuation applying forward curve 

 

Appendix 31. Vår Energi EVA valuation applying forward curve 

 

 

 

 

 

 

2023 2024 2025 2026 2027 Terminal

DCF WACC

Period 0 1 2 3 4 5 7 9 %

FCF 369         1 146      1 086      1 206      1 067         1 011       

Discount factor 0,91        0,84        0,76        0,70        0,64           

Midyear adj. 0,96        0,87        0,80        0,73        0,67           

PV FCFF 352         1 002      868         881         713            

PV term x.x.6 10 782       

PV term x.x.0 7 202         

EV 11 018        

NIBD 2 720          

MVE 86 885        

Fundamental Value (NOK) 35               

Forecast horizon

2023 2024 2025 2026 2027 Terminal

EVA WACC

Period 0 1 2 3 4 5 6 10 %

NOA 15 086       15 016      17 580        20 345        21 895        22 432        22 414        

NOPAT 2 810        2 716          2 281          2 020          2 259          2 403          

WACC x NOA_t-1 1 574        1 567          1 835          2 123          2 285          2 341          

EVA 1 236        1 149          446             103-             26-               62               

PV term x.x.6 592             

Discount factor 0,91          0,82            0,74            0,67            0,61            

PV term x.x.0 360            

PV EVA 1 119        942             331             69-               16-               

Sum EVA x.x.0 2 667         

MV EVA x.x.0 17 753       

NIBD 2 658         

MVE 158 048     

Fundamental Value 250            

Forecast horizon

2023 2024 2025 2026 2027 Terminal

EVA WACC

Period 0 1 2 3 4 5 6 9 %

NOA 4 201          4 818      4 861      4 939      5 414      5 863         6 308       

NOPAT 985         1 189      1 163      1 682      1 516         1 457       

WACC x NOA_t-1 394         452         456         463         508            550          

EVA 591         737         707         1 219      1 008         907          

PV term x.x.6 9 664         

Discount factor 0,91        0,84        0,76        0,70        0,64           

PV term x.x.0 6 173          

PV EVA 540         616         541         851         644            

Sum EVA x.x.0 9 365          

MV EVA x.x.0 13 566        

NIBD 2 720          

MVE 113 559      

Fundamental Value 45               

Forecast horizon



 

Page 72 

Appendix 32. Brent Crude forward curve 

 

Appendix 33. Aker BP EVA sensitivity analysis 

 

Figure 28. Aker BP EVA sensitivity analysis 

Appendix 34. Vår Energi EVA sensitivity analysis 

 

Figure 29. Vår Energi EVA sensitivity analysis 

Appendix 35. Machine learning model summary results 

 

 

307                9,4 % 9,9 % 10,4 % 10,9 % 11,4 %

-2,0 % 334 319 304 290 276

-1,0 % 338 321 305 290 276

0,0 % 342 324 307 291 276

1,0 % 348 328 309 292 276

2,0 % 355 332 312 293 276

rg

WACC

57 8,4 % 8,9 % 9,4 % 9,9 % 10,4 %

-2,0 % 56 54 52 50 48

-1,0 % 59 56 54 52 50

0,0 % 62 59 57 54 52

1,0 % 67 63 60 57 55

2,0 % 73 69 65 61 58

WACC

rg
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Appendix 36. ARIMAX model summary results 

 

Appendix 37. Aker BP beta visualization 

 

Appendix 38. Vår Energi beta visualization 
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Appendix 39. Heston model calculations 

  Aker BP Vår Energi 

S 25884.18 15613.94 

 

K 4856.46 3046.00 

 

T 4.64 5.33 

 

Rf 2.95% 2.95% 

 

Sigma 12.47% 10.57% 

 

Value call 21807.92 13099.99 

 

Share price 281 44 

 

Appendix 40. Aker BP Heston model MC simulations 

 

Appendix 41. Vår Energi Heston model MC simulations 
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Appendix 42. Monthly significant variables 

Variables 

WTI Crude Spot 

S&P 500 commodities total return 

Gold spot 

Natural Gas spot 

US 10Y 

US CPI 

China total import 

 

Appendix 43. Prophet daily errors 

  MAE MSE RMSE 𝑅2 𝑅2𝑎𝑑𝑗 

Prophet daily 4.3481 29.1692 5.4008 0.94031 0.94027 

 

Appendix 44. Coefficients and significance level 

Variables Coefficients z P>|z| 

WTI Crude Spot 0.1963 14.898 0.000 

 

S&P 500 commodities total return 0.0102 

 

36.156 0.000 

 

Gold spot 0.0095 

 

10.507 0.000 

 

Natural Gas spot -1.0419 

 

-15.252 0.000 

 

US 10Y 1.1826 

 

5.533 0.000 
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Equations 

Equation 4 

Equation 4: Capital Asset pricing model: 

𝑟𝑒 = 𝑟𝑓 + 𝛽 × (𝑟𝑚 − 𝑟𝑓) 

where; 

𝑟𝑒  =  𝐸𝑞𝑢𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑝𝑖𝑡𝑎𝑙  

𝑟𝑓  =  𝑅𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 

𝛽 =  𝐴𝑠𝑠𝑒𝑡 𝑏𝑒𝑡𝑎 

(𝑟𝑚 − 𝑟𝑓)  =  𝑀𝑎𝑟𝑘𝑒𝑡 𝑟𝑖𝑠𝑘 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 

Equation 5 

Equation 5: Blume's adjusted beta: 

𝛽̂ = 𝛽 × (1 − 𝑃) + 𝑃 

where; 

𝛽 =  𝑟𝑎𝑤 𝑏𝑒𝑡𝑎 

𝑃 =  𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =  0.33 

(1 − 𝑃)  = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 

Equation 6 

Equation 6: Cost of debt: 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡 =
𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑒𝑥𝑝𝑒𝑛𝑒𝑠𝑒

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑑𝑒𝑏𝑡
 

Equation 7 

Equation 7: Average Cost of Capital: 

WACC = r𝑒 ×
E

(E + D)
+ r𝑑 ×  

D

(E + D)
×  (1 − s) 

where;  

𝑟𝑒  =  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑞𝑢𝑖𝑡𝑦 

𝑟𝑑  =  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑒𝑏𝑡 

𝑠 =  𝑇𝑎𝑥 𝑟𝑎𝑡𝑒 

𝐸 =  𝐸𝑞𝑢𝑖𝑡𝑦 

𝐷 =  𝐷𝑒𝑏𝑡 
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Equation 8 

Equation 8. Black-Scholes formula: 

𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛 𝑐𝑎𝑙𝑙: 𝐶0 = 𝑆0𝑒−δT𝑁(𝑑1) − 𝑒−𝑟𝑇𝐾𝑁(𝑑2) 

where: 

𝑑1 =  
𝑙𝑛 (

𝑆0
𝐾

) + (𝑟 −  δ +
σ2

σ
) 𝑇

σ√𝑇
 

and: 

𝑑2 = 𝑑1 − σ√𝑇 

payoff: 

𝑃𝑎𝑦𝑜𝑓𝑓 =  𝑆 −  𝐾 𝑖𝑓 𝑆 >  𝐾 

 
V = Liquidation value of the firm and  

D = Face value of the outstanding debt and other external claims 

S = Value of the underlying assets = Value of the firm 

K = Exercise price = Face value of outstanding debt 

T = Life of the option = Life of zero-coupon debt 

σ2 = Variance in the value of the underlying asset = Variance in firm value 

r = Riskless rate = Treasury bond rate corresponding to option life 

Payoff to equity investors = 𝑉 −  𝐷 𝑖𝑓 𝑉 >  𝐷 

 

Mean Squared Error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
× ∑(𝑦𝑖 − 𝑦̂)

2

 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂| 

Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
× ∑(𝑦𝑖 − 𝑦̂)

2

 

Akaike Information Criterion (AIC) 

𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘 

where; 

k = number of model parameters 

L = maximum value of the likelihood function of the model 



 

Page 78 

Goodness of fit (𝑹𝟐): 

𝑅2 = 1 −
∑(𝑦

𝑖
− 𝑦̂)

2

∑(𝑦
𝑖

− 𝑦̅)
2 

where; 

𝑦̂ – predicted value of y 

𝑦̅ – mean of value of y 

 

Corrected goodness of fit (𝑹𝒂𝒅𝒋
𝟐 ):  

𝑅𝑎𝑑𝑗
2  =  1 −  

(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
 

where; 

𝑅2 = Sample R-squared 

N = Total Sample Site 

p = Number of independent variables 

 

Dickey-Fuller test: 

𝐷𝐹𝑡 =
𝛾

𝑆𝐸(𝛾)
 

 


