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Abstract 

 

This thesis predicts one-day ahead adjusted closing price estimates of four different 

stocks listed at the Oslo Stock Exchange. The prediction uses a rolling window 

approach, utilizing 60 days of historical adjusted closing prices as input for each 

observation. The thesis conducts a comparative analysis, evaluating the prediction 

performance of five different models: Ordinary Least Squares, Support Vector 

Regression, Random Forest, Extreme Gradient Boosting, and Long Short-Term 

Memory networks. 

 

The findings of the comparative analysis indicate that the Long Short-Term Memory 

(LSTM) network consistently outperforms the other models for all the stocks 

considered. These findings align with previous research that highlights the 

effectiveness of LSTM models in stock market prediction. While the thesis does not 

provide a definitive conclusion on market efficiency or inefficiency, the predictive 

performance of the LSTM model suggests the presence of potential inefficiencies in 

the market. Additionally, this thesis identifies key hyperparameters used to avoid 

overfitting as well as optimizing predictive performance for the LSTM model.  

 

Overall, this research contributes to the existing literature by investigating the 

effectiveness of the models on a different market, the Norwegian stock market, as 

well as noting the importance of model specific hyperparameter tuning. 
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1.0 Introduction 

 

Predicting stock prices has always been a challenging task, often attempted using 

statistical tools and various prediction methods. The stock market is notorious for its 

unpredictable nature, constant fluctuations, and absence of a simple pattern. 

Achieving accurate stock price predictions is difficult due to numerous influencing 

factors, such as political events, global economic conditions, unforeseen incidents, 

and a company's performance. Although each individual stock is subject to unique 

variation, there are also similarities in how different stocks develop, including market 

trends, sector and industry influences, and investor sentiment. 

 

While accounting for all these factors is challenging, it is worth noting that stock 

prices themselves reflect the impact of these factors, potentially containing valuable 

patterns and insights. Machine learning techniques have gained considerable attention 

over the last years as powerful tools to analyze and interpret such patterns. Although 

accurately predicting stock prices, especially based solely on price data, remains 

challenging, we can still learn from emerging patterns and leverage this information 

to make more informed investment decisions. 

 

The existing body of literature on stock price prediction and machine learning models 

is extensive. However, it is important to recognize that different stock markets are 

influenced by various factors, which can lead to variations in the performance of 

machine learning models. Each model may excel in different tasks based on the 

specific characteristics of the market under consideration. While there are studies 

available that compare machine learning models, there is a notable gap in the 

literature when it comes to testing these models across different markets. 

Additionally, existing literature on stock price prediction and machine learning 

models often overlooks the crucial aspects of the hyperparameter tuning tailored to 

specific problems.  
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1.1 Research Question 

This thesis aims to conduct a comparative analysis of five distinct machine learning 

models: OLS (Ordinary Least Squares), SVR (Support Vector Regression), Random 

Forest, XGBoost, and LSTM (Long Short-Term Memory). The primary objective is 

to create a model with the most accurate performance in predicting the adjusted 

closing price across four stocks that represent different industries within the 

Norwegian stock market. We use the adjusted closing price because it provides a 

more accurate depiction of the stock's true value over time. Through the evaluation 

and comparison of these models, the research aims of this thesis is to identify the 

most suitable model for analyzing complex patterns of the Norwegian stock market. 

While answering this question this thesis also addresses the importance of problem 

specific hyperparameter tuning and will also discuss the following questions:  

 

• Is the market truly efficient or is there inefficiencies in the market?  

• Are there any interesting patterns that emerge in the different stocks analyzed? 

 

1.2 Literature review 

Stock price prediction has been a subject of interest for a considerable period, where 

various traditional statistical methods have been employed to forecast stock prices. 

While these approaches may have originated many years ago, many of them continue 

to be utilized today in stock market analysis and prediction. However, with more 

complex algorithms being developed over the years, including more powerful 

computers, there has been an increase in the literature on utilizing advanced machine 

learning algorithms for this purpose. This increased interest can be attributed to the 

potential of machine learning in capturing complex patterns and improving prediction 

accuracy. Despite the growing body of research, there remains a lack of literature 

specifically addressing stock price prediction for the Norwegian stock market, as well 

as the significance of hyperparameter tuning in this context. 

One of the earliest attempts to apply machine learning techniques to stock prediction 

was performed by Galler and Kryzanowski (1993). In their study, they explored the 

use of an artificial neural network (ANN) to predict stock returns based on a range of 
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financial and economic variables. The findings revealed promising results, as the 

ANN achieved a significant level of accuracy in predicting stock returns. 

More recently, Kumar et al. (2018) performed an extensive comparative analysis of 

machine learning models for stock market trend prediction. Their study aimed to 

address the challenges of predicting stock prices by applying various machine 

learning techniques, including Support Vector Machine (SVM), Random Forest, K-

Nearest Neighbor (KNN), Naive Bayes, and Softmax. Their findings indicated that 

the Random Forest algorithm demonstrated superior performance when dealing with 

large datasets, suggesting its suitability for handling complex market dynamics. 

Moreover, Nabipour et al. (2020) performed an investigation on the applicability of 

machine learning models for stock market prediction using data from the Tehran 

Stock Exchange. Their study focused on four specific stock market groups and 

compared the performance of nine machine learning models, including Decision 

Tree, Random Forest, Adaboost, XGBoost, SVC, Naïve Bayes, KNN, Logistic 

Regression, and Artificial Neural Network (ANN). The findings highlighted the 

effectiveness of deep learning methods, specifically Recurrent Neural Network 

(RNN) and Long short-term memory (LSTM), in predicting stock market trends. 

On the topic of importance of hyperparameter tuning for stock price prediction, 

Yadav et al. (2020) Conducted a study on the optimization of LSTM models for time 

series prediction of the Indian stock market. They concluded that the performance of 

LSTM models is highly dependent on the choice of hyper-parameters which needs to 

be carefully considered.  

1.3 Thesis structure  

This thesis will begin by explaining the relevant financial and technical theories 

related to the topic. Chapter 3 will describe the methodology used, including how the 

data is organized, the modeling approach, the specific models used, and how they are 

evaluated. Chapter 4 presents the results obtained from the models. Chapter 5 

discusses and analyzes the findings from the results, and finally, Chapter 6 will 

present the conclusion of the thesis. 
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2.0 Theory  

I will in this chapter discuss various theories utilized in the research. I will start by 

examining the efficient market hypothesis, followed by an exploration of the 

technical theories related to machine learning. 

 

2.1 Theoretical Foundations of Stock Prediction 

2.1.1 The Efficient Market Hypothesis (EMH) 

The random walk theory, proposed by Louis Bachelier in "Théorie de la spéculation," 

offers a foundational concept for comprehending market dynamics. Initially 

developed for games of chance, this theory has found extensive application in 

financial markets. A random walk represents a mathematical model that captures the 

path of a variable through independent and unpredictable steps, without considering 

any relationship to past or future steps (Levy, 1957). 

 

Financial theory posits that a random walk implies that asset price changes are 

random, rendering past prices ineffective in predicting future movements. 

Furthermore, it suggests that the stock market is efficient, reflecting all available 

information, which aligns with the assumptions of the efficient market hypothesis. 

 

The random walk theory challenges the idea that traders can consistently profit from 

timing the market or exploiting stock price trends and patterns through technical 

analysis. However, critics argue that the theory oversimplifies the intricate nature of 

financial markets by disregarding the influence of market participants, their behavior, 

and their actions on prices and outcomes. 

 

The prominence of the random walk concept grew in the 1960s through the research 

of economists like Burton Malkiel and Eugene Fama, who aimed to explain stock 

price behavior. According to the random walk hypothesis, stock prices lack 

discernible patterns or trends and, consequently, cannot be predicted based on past 

prices or other available information. 
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This concept closely connects with the efficient market hypothesis (EMH), asserting 

that financial markets are efficient and asset prices fully incorporate all available 

information. The random walk hypothesis forms the basis for the weak form of EMH, 

which argues that past price movements and trading volume data are already factored 

into stock prices and, thus, cannot predict future price movements (Smith, 2023). 

 

The efficient market hypothesis (EMH), introduced by Eugene Fama in 1970, is a 

fundamental theory in finance that suggests financial markets are efficient, meaning 

that the prices of assets traded in the market reflect all publicly available information. 

The theory has been the subject of much debate and scrutiny since its inception, with 

proponents arguing for its validity and critics raising objections based on observed 

market anomalies and behavioral biases (Naseer & Tariq, 2015; Becker, 2021). 

Despite the ongoing discourse, the EMH remains a widely studied and influential 

theory in finance, providing a framework for understanding market behavior and 

informing investment strategies. 

 

Fama distinguishes between three forms of the EMH: weak form, semi-strong form, 

and strong form. Each form represents a different level of market efficiency and the 

extent to which different types of information are reflected in asset prices (Naseer & 

Tariq, 2015). 

 

Figure 1 The different forms of EMH (adapted from Naseer & Tariq, 2015). 

 

1. Weak Form: The weak form of the EMH states that current stock prices fully 

reflect all historical prices and trading volume data. This implies that it is not 
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possible to predict future stock prices based solely on analyzing past price 

data. According to the weak form of EMH, all security market information 

regarding a company is already incorporated into the stock price, and any 

attempts to generate abnormal returns using this information will be 

unsuccessful. Therefore, the weak form EMH suggests that technical analysis, 

which involves analyzing past price and volume data, is not useful in making 

investment decisions because it cannot identify patterns that will enable 

investors to earn excess returns. 

 

2. Semi-strong form: The semi-strong form of the EMH states that current stock 

prices fully reflect all publicly available information. This includes publicly 

available data such as financial statements, news releases, macroeconomic 

data, and market speculations. The semi-strong form of EMH assumes that all 

information that is publicly accessible is promptly and properly reflected in 

the stock price, eliminating any opportunity for investors to profit excessively 

from trading on this information. Therefore, the semi-strong form of EMH 

suggests that neither technical analysis nor fundamental analysis can be used 

to consistently generate abnormal returns since all publicly available 

information is already reflected in the stock price. 

 

3. Strong form: The strong form of the EMH states that current stock prices fully 

reflect all public and private information. This means that not only is all 

publicly available information incorporated into the stock price, but also all 

private or insider information known to a selected group of people, such as 

company executives or major shareholders. According to the strong form of 

EMH, even information that is known only to insiders is already reflected in 

the stock price, and any attempts to generate abnormal returns using this 

information will be unsuccessful. Therefore, the strong form of EMH suggests 

that no investor, regardless of their level of expertise or access to information, 

can consistently earn abnormal returns. 
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2.1.1.2 Criticism 

While acknowledging the existence of market efficiency to some extent, it is widely 

recognized that certain pockets of inefficiency, termed market anomalies, persist 

within the broader concept. Notable examples of these anomalies include momentum 

effects and value investing strategies. 

 

Momentum trading involves investors buying stocks that have demonstrated strong 

performance over a specific period (winner stocks) while simultaneously short selling 

stocks that have performed poorly during the same period (loser stocks). Empirical 

evidence indicates that this zero-investment strategy can generate a positive annual 

return of up to 12 percent (Singal, 2003). 

 

Value investing is an investment strategy focused on identifying undervalued stocks 

or assets. It operates on the belief that the market occasionally misprices stocks, 

resulting in discrepancies between a company's intrinsic value and its market price. 

Value investors aim to capitalize on these pricing inefficiencies by purchasing 

undervalued stocks with the expectation of future recognition and price appreciation. 

 

Behavioral bias represents another pocket of inefficiency. Investors' irrational 

behaviors, such as reluctance to realize losses, prematurely taking profits, insufficient 

diversification, and cognitive biases, contribute to mispricings in financial markets. 

These mispricings persist as investors may fail to adjust their behavior even when 

new information emerges. For instance, loss aversion may lead investors to hold onto 

declining assets, causing prices to deviate from their true value. Selling winning 

investments prematurely and neglecting diversification can also result in mispriced 

assets. Cognitive biases and selective perception further contribute to the persistence 

of mispricings (Singal, 2003). 

 

These findings suggest the existence of exploitable patterns or trends in stock prices 

that enable investors to earn abnormal profits, contradicting the hypothesis of 

complete market efficiency. 
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It is important to note that the presence of market anomalies does not negate the 

overall efficiency of financial markets. Instead, it underscores markets' intricate 

dynamics and opportunities for investors to exploit mispricings and inefficiencies. 

Ongoing research continues to analyze these anomalies, aiming to better understand 

their underlying causes and their implications for investment strategies. 

 

2.2.1.2 Empirical Evidence  

The efficient market hypothesis is a widely debated concept in finance. Empirical 

evidence plays a critical role in evaluating the validity of this hypothesis. In this 

section, I present a summary of some of the empirical evidence regarding the EMH, 

dividing it into two categories: evidence supporting the EMH and evidence 

contradicting the EMH. By examining these empirical findings, we can gain insights 

into the efficiency of financial markets and its implications. 

 

Empirical evidence supporting EMH 

- Fama, Fisher, Jensen, and Roll (1969) found that the largest positive abnormal 

returns occur in the first 3-4 months after split events, supporting gradual 

price adjustments in capital markets. 

- Konak and Seker (2014) analyzed the FTSE 100 index and found that it 

adhered to the random walk theory, supporting the weak form of the efficient 

market hypothesis. 

- Malkiel (2003) argued that anomalies in stock prices do not create trading 

opportunities for earning extraordinary risk-adjusted returns, indicating that 

capital markets are efficient and less predictable. 

 

Empirical evidence contradicting EMH 

- Ball and Brown (1968) observed that stock prices react slowly to accounting 

income announcements, contradicting the idea of instantaneous price 

adjustments. 

- Bernard and Thomas (1990) found high autocorrelation of stock prices for the 

first 3 lags of the regression, suggesting a slow adjustment process and market 

inefficiencies. 
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- Studies by Chowdhury, Howe, and Lin (1993) as well as Pettit and Vanketash 

(1995) revealed that insiders consistently achieved significant abnormal 

returns, challenging the notion of market efficiency. 

 

2.2 Machine Learning 

Machine learning is a field of study focused on developing computer algorithms that 

can learn from data without explicit programming. It encompasses various 

techniques, with two main branches being supervised and unsupervised learning, each 

offering distinct advantages and limitations. Machine learning is widely applied in 

numerous consumer products and features, including spam filters, recommendation 

systems, and, pertinent to this thesis, stock prediction. Machine learning algorithms 

range from rule-based systems like algorithmic trading to sophisticated deep learning 

networks that learn from their own errors and enhance their performance over time 

(Géron, 2019). 

 

I will delve into different types of machine-learning techniques relevant to the 

modelling framework that will be utilized in the subsequent analyses. 

 

2.2.1 Supervised Learning 

In supervised learning, we work with a dataset of labeled examples {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  

where each observation 𝑥𝑖 among the population 𝑁 is known as a feature vector. A 

feature vector represents an ordered list of numerical properties that describe the 

observed phenomena, with each dimension 𝑗 = 1,… , 𝐷 containing a specific value 

denoted as 𝑥(𝑗) (Burkov, 2019). 

 

Models can learn and generate predictions using supervised learning, a potent 

machine learning technique, by observing input-output pairs. In the context of the 

financial market, supervised learning is essential for assessing and forecasting market 

trends, making investment decisions, and optimizing trading methods. 
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When learning under supervision, the model is given input data that can include a 

variety of financial metrics, such as stock prices, trade volumes, underlying economic 

variables, and technical indicators. A corresponding output label or target value 

describing the desired prediction or result is present for each input data point. In the 

case of stock predictions, the input could for example be past price data, and the 

output label could be the anticipated future price movement. 

 

By analyzing the historical input-output pairs, the model aims to generalize patterns 

and relationships in the data, enabling it to make predictions on new, unseen data 

(Russell & Norvig, 2010). 

 

 

Figure 2 Logic of supervised learning 

 

There are two fundamental tasks that arise based on the nature of the data or the 

approach taken by the model builder. These tasks are known as regression and 

classification. 

 

2.2.1.1 Regression 

Regression is a supervised learning task that involves predicting a real-valued label or 

target for an unlabeled example. It aims to establish a relationship between input 

variables and a continuous output variable. The goal is to create a regression model 

using labeled examples, which can then be used to predict the target value for new, 

unseen data points. The regression model learns patterns and relationships in the 

labeled data to make accurate predictions on unlabeled instances (Burkov, 2019). 
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2.2.1.2 Classification 

Classification is a supervised learning task that involves automatically assigning a 

label to an unlabeled example. It is commonly used for tasks such as spam detection, 

sentiment analysis, and image recognition. In classification, a collection of labeled 

examples is used to train a classification learning algorithm, which then produces a 

model capable of predicting the label for new, unseen data points. The model's output 

can be a direct label or a numerical value, such as a probability, which can be 

interpreted by analysts to determine the appropriate label. Classification can be 

binary, with two classes, or multiclass, with three or more classes (Burkov, 2019). 

The prediction of stocks could be formulated as a classification problem by defining 

if a stock movement is positive or negative.  

 

2.2.2 Unsupervised Learning 

Unsupervised learning involves analyzing unlabeled datasets to uncover patterns and 

structures. Unlike supervised learning, where the data is represented by a collection 

of labeled examples, the dataset in unsupervised learning consists of a collection of 

unlabeled examples {𝑥𝑖}𝑖=1
𝑁  where 𝑥 is a feature vector. The goal is to create models 

that transform or derive insights from these feature vectors to solve practical 

problems. Unsupervised learning explores the data's inherent structure, statistical 

properties, and relationships to extract meaningful representations, identify 

similarities or anomalies, reduce dimensionality, and discover hidden patterns, 

enabling us to gain valuable insights from unstructured data without explicit labels 

(Burkov, 2019). 

 

2.2.4 Neural Networks 

Neural networks, a popular class of machine learning techniques, provide a versatile 

approach capable of approximating various types of target functions. Inspired by the 

learning mechanisms observed in biological organisms, neural networks leverage the 

fundamental role of neurons in the human nervous system. These neurons form 

interconnected networks through axons and dendrites, creating synapses with 

adaptable strengths that facilitate learning in living organisms. In artificial neural 
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networks, computational units called neurons emulate this biological mechanism, 

processing and exchanging information within the network. 

 

Figure 3 Basic architecture of feed-forward network with two hidden layers 

 

Figure 3 depicts the fundamental structure of a feed-forward neural network, a type of 

multilayer neural network widely used in machine learning. This architecture 

encompasses multiple computational layers, including hidden layers positioned 

between the input and output layers. The network's input is processed and 

transformed in large part by the hidden layers, which were given their name because 

of the computations that are hidden from view. From the input layer to the output 

layer, information moves across the network in a single direction. Every node in a 

feed-forward network is often connected to nodes in the layer below it, determining 

the network's interconnectivity. The determination of the number of layers and the 

configuration of nodes in each layer significantly shape the neural network's 

structure, influencing its capacity to learn and make predictions (Aggarwal, 2018). 

 

2.2.4.1 Neurons 

In the context of artificial neural networks, neurons serve as the fundamental units 

responsible for computing the network's output based on the given inputs. The 

network propagates the computed values from the input neurons to the output 

neuron(s), employing intermediate weights as adjustable parameters. Learning takes 

place through the modification of these weights that connect the neurons. Similar to 

the role of external stimuli in learning observed in biological organisms, artificial 

neural networks rely on training data comprising input-output pairs to provide the 
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necessary stimulus for learning the desired function. By analyzing these examples, 

the network adapts its internal parameters to approximate the underlying relationships 

and enhance its predictive capabilities. 

 

Figure xx (Illustration of a neuron) 

 

 

Figure 4 Illustration of a neuron 

 

Figure 4 illustrates a single neuron within a neural network. The neuron receives 

inputs 𝑥 and assigns weights 𝑤 to each input. These weighted inputs are then 

aggregated, and a bias term 𝑏 is introduced. The resulting value undergoes a non-

linear transformation through the neuron's activation function, denoted as 𝑓, to 

compute the output of the neuron. Mathematically, the activation function is 

represented as 𝑓(∑(𝑤𝑥) + 𝑏) or as 𝑓(𝑋̅𝑊̅ + 𝑏). The choice of activation function 

plays a critical role in shaping the neuron's behavior and enabling the network to 

learn complex relationships and make accurate predictions (Aggarwal, 2018). 

 

2.2.4.2 Activation function 

Activation functions are important to the functioning of neural networks because they 

introduce nonlinearity to the network, which enables the network to capture 

complicated patterns in the data. The mathematical notation of the activation function 

can be denoted as Φ, and it is applied to the weighted input of a neuron, denoted as 

(𝑤 ∙ 𝑥). As a result, a neuron performs two distinct functions: the summation of 
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inputs denoted by the Σ symbol and the activation function denoted by Φ. The pre-

activation value refers to the computed value before applying the activation function, 

while the post-activation value represents the value obtained after the activation 

function is applied. Although the output of a neuron is always the post-activation 

value, pre-activation variables are used in various analyses such as the computations 

of the backpropagation algorithm. 

 

The most fundamental activation function, Φ(∙), is the identity or linear activation, 

which lacks nonlinearity. It can be expressed as Φ(𝑣) = 𝑣, where v corresponds to 

the weighted input (𝑋̅𝑊̅ + 𝑏). The linear activation provides a one-to-one mapping 

between the input and output without introducing any nonlinearity. It is often used in 

regression tasks or when the neural network needs to approximate a linear function. 

However, its limited expressive power restricts its effectiveness in modelling 

complex relationships (Aggarwal, 2018). There are several different activation 

functions, but some of the most common are: 

 

Sign function  

The sign function, denoted as 

Φ(𝑣) = 𝑠𝑖𝑔𝑛(𝑣) 

 

maps positive values to 1 and negative values to -1, effectively thresholding the 

output. It is mainly used in binary classification problems, where the goal is to 

separate instances into two classes. 

 

Sigmoid function 

The sigmoid activation function, also known as the logistic function, is defined as 

 

Φ(𝑣) =
1

(1 + 𝑒−𝑣)
 

 

It maps the input to a range between 0 and 1, representing a probability-like value. 

Sigmoid functions are commonly used in binary classification problems, as they can 
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output a probability indicating the likelihood of an instance belonging to a particular 

class. 

 

Tanh 

The hyperbolic tangent (tanh) activation function, denoted as 

 

Φ(𝑣) =
(𝑒2𝑣 − 1)

(𝑒2𝑣 + 1)
 

 

maps the input to a range between -1 and 1. Like the sigmoid function, the tanh 

function is often used in classification problems but provides stronger nonlinearity 

than the sigmoid function. 

 

ReLU 

The Rectified Linear Unit (ReLU) activation function is defined as 

 

Φ(𝑣) = max⁡{𝑣, 0} 

 

and is widely used in deep learning. It introduces nonlinearity by outputting the input 

directly if it is positive and 0 otherwise. ReLU is computationally efficient and helps 

alleviate the vanishing gradient problem, making it suitable for deep neural networks. 

It is often used in various tasks, including image recognition and natural language 

processing. 

 

2.2.4.3 Layers 

Input Layer 

A neural network's input layer is the first layer to take in input data for processing. It 

functions as the link between the network's internal computations and external data. 

The dimensionality of the input data determines how many nodes there are in the 

input layer, where each node stands for a distinct feature or attribute. Instead of 

carrying out any calculations, the input layer acts as a conduit for the input values to 

be transmitted to the network's higher layers. Prior to producing an output, the values 
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from the input layer are propagated forward through the network where they are 

subjected to interactions and transformations in the hidden layers. 

 

Hidden Layer 

The hidden layer is a crucial component of neural networks and plays a significant 

role in processing and transforming the input data. Positioned between the input and 

output layers, the hidden layer consists of multiple neurons that collectively perform 

complex computations on the input. Unlike the input and output layers, the 

computations within the hidden layer are not directly visible or accessible to the user. 

The hidden layer serves as an intermediary, extracting and abstracting relevant 

features from the input data, enabling the network to learn intricate patterns and make 

accurate predictions. The number of hidden layers and the number of neurons in each 

hidden layer are key architectural decisions that heavily influence the network's 

capacity to model complex relationships. The hidden layer acts as a powerful 

information processing unit, transforming the input into a higher-dimensional 

representation that facilitates effective learning and generalization by the neural 

network. 

 

Output Layer 

The output layer is the final layer of a neural network and is responsible for 

producing the network's predictions or outputs. It receives inputs from the previous 

layers, which have been through a series of computations and transformations. The 

structure and functionality of the output layer depend on the nature of the problem. 

For example, in a classification task, the output layer typically consists of multiple 

neurons, with each neuron representing a distinct class and producing a probability 

score indicating the likelihood of the input belonging to that class. In regression tasks, 

the output layer may have a single neuron that directly outputs the predicted 

continuous value. The output layer serves as the final stage of the network's 

computation, providing the desired outputs based on the learned patterns and 

relationships in the input data (Russell & Norvig, 2010). 
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2.2.4.4 Weights 

The weights in a neural network are fundamental components that play a crucial role 

in determining the network's behavior and performance. They serve as the learnable 

parameters that control the strength and importance of the connections between 

neurons. Each connection between neurons is associated with a weight, which 

represents the significance or contribution of the input from one neuron to the 

activation of the connected neuron. 

 

During the training process, the weights are iteratively adjusted to optimize the 

network's performance and improve its ability to accurately model and predict the 

desired outputs. The initial weights are usually assigned randomly, and then updated 

using optimization algorithms. The goal is to find the set of weights that minimizes a 

defined loss or error function, effectively guiding the network towards better 

predictions (Russell & Norvig, 2010). 

 

2.2.4.5 Learning Rate 

The learning rate is a crucial hyperparameter in neural networks that determines the 

step size at which the weights are updated during the training process. It controls the 

rate at which the network learns and adjusts its parameters in response to the training 

data. The learning rate plays a significant role in the convergence speed and the 

quality of the final learned model. 

 

A high learning rate may result in rapid weight updates, which can lead to 

overshooting the optimal solution and instability in the training process. On the other 

hand, a low learning rate may cause slow convergence and potentially get stuck in 

suboptimal solutions. Choosing an appropriate learning rate is essential to strike a 

balance between learning efficiency and convergence stability (Russell & Norvig, 

2010). 

 

2.2.3.1 Recurrent Neural Network (RNN) 

A feed-forward neural network, commonly used for analyzing multidimensional data, 

assumes that the attributes are largely independent of each other. However, in certain 
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data types like time series data, there exist sequential dependencies among the 

attributes (Aggarwal, 2018). These dependencies pose a challenge for traditional 

feed-forward networks but can be effectively addressed by recurrent neural networks 

(RNNs). 

 

Unlike feed-forward networks, RNNs are designed to handle sequential data by 

allowing cycles in the computation graph. These cycles introduce a delay, enabling 

units to take their own output from previous steps as input in the current computation. 

This unique property empowers RNNs with internal state or memory. The inputs 

received at earlier time steps influence the RNN's response to the current input, 

making them well-suited for analyzing sequential data (Russell & Norvig, 2010). 

 

 

Figure 5 RNN architecture 

 

 

Consider a time series dataset, such as stock prices, where the values at different 

timestamps are closely related. Treating each timestamp's value as an independent 

attribute would result in the loss of valuable information regarding the relationships 

among these timestamps. For instance, the value of a time series at time 't' is 

intricately connected to its values in the preceding window. However, this vital 

relationship is disregarded when individual timestamps are treated independently of 

each other.  
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3.0 Methodology 

3.1 Data 

The dataset used in this thesis consists of four stocks listed on the Oslo Stock 

Exchange Benchmark Index (OSEBX) from the period 01.01.2001-01.01.2023. 

OSEBX serves as the primary equity index of the Norwegian stock market. The 

selection of OSEBX as the target index was motivated by two primary 

considerations. 

 

Firstly, this comparative study aims to identify the most suitable models for 

predicting the adjusted closing price of stocks within the Norwegian market. By 

focusing on constituents listed on OSEBX, we can gain valuable insights into the 

performance of different models specifically tailored to the unique characteristics of 

the Norwegian stock market. Secondly, OSEBX was chosen due to its comparatively 

lower liquidity compared to broader indices like the S&P 500. Market liquidity refers 

to the ease with which securities can be bought or sold without causing significant 

price changes (Scott, 2022). Selecting a less liquid index such as OSEBX allows us to 

explore features of a potentially less efficient market, which can lead to interesting 

findings in terms of market predictions. 

 

The analysis includes the following stocks: Equinor, DNB, Telenor, and MOWI. The 

selection of these stocks was based on two main factors: market capitalization and 

industry. These stocks operate in different industries, offering an opportunity to 

investigate potential variations in model performance across diverse sectors. 

Furthermore, by choosing companies with high market capitalization, we ensure 

sufficient liquidity for accurate pattern identification, thus enhancing the precision of 

the models. 

 

3.2 Feature engineering 

Feature engineering is a crucial aspect of machine learning, involving the careful 

selection and transformation of relevant features from raw data to enhance the 
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performance of predictive models. In the context of this comparative thesis, where the 

objective is to identify patterns in the historical data of the Norwegian stock market 

while avoiding overfitting and data leakage, a focused approach will be employed. 

The models will be trained exclusively on the historical adjusted closing price, 

utilizing it as both the feature and target variables. The adjusted closing price refers to 

the stock's closing price that has been modified to account for factors such as 

dividends, stock splits, and other corporate actions (Ganti, 2020).  

 

The adjusted closing price is particularly advantageous because it incorporates 

essential factors such as dividends, stock splits, and other adjustments, providing a 

more accurate depiction of the stock's true value over time. By concentrating solely 

on the adjusted closing price, the models can effectively capture the underlying trends 

and patterns without being influenced by potentially noisy or irrelevant features. This 

streamlined methodology significantly reduces the risk of overfitting and enables a 

robust analysis of the historical price data, facilitating meaningful comparisons 

among different stocks. 

 

Compared to open and closing prices, the adjusted closing price offers notable 

benefits. Firstly, it ensures a more stable and consistent representation of a stock's 

value by accounting for various factors that can impact the stock price. This results in 

a smoother and more reliable signal for the models, enhancing their ability to identify 

meaningful patterns and make accurate predictions. 

 

Furthermore, the utilization of the adjusted closing price helps mitigate bias and noise 

in the data. Open prices can be influenced by market sentiment and trading activities 

at the beginning of the trading session, while closing prices can be affected by news 

announcements or trading volume. By focusing on the adjusted closing price, these 

biases and external factors are minimized, leading to a more precise representation of 

the stock's intrinsic value. 

 

To structure the feature as a target variable, the model uses 60 days of data to predict 

the target variable (the 61st day). The reasoning behind this approach is to capture 
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underlying dependencies in the long-term development in the price, which can be 

shown as the following visual representation:  

 

 

Figure 6 Illustration of a rolling window approach 

 

In summary, the decision to use only the adjusted closing price as the feature and 

target variables in this thesis is driven by the aim to identify models that excel at 

uncovering patterns in the historical data of the Norwegian stock market. By doing 

so, the models can effectively capture the true value of the stocks over time, mitigate 

the risk of overfitting, and facilitate a comprehensive comparative analysis. 

 

3.3 Research design  

3.3.1 Train, test, and validation split 

A well-structured approach to train, test, and validate is crucial for building a good 

machine learning model. The process involves dividing the available data into three 

distinct sets: training, validation, and test. Each set serves a specific purpose in 

evaluating and validating the model's performance. 

 

The training set is used to train the model by feeding it with input data and 

corresponding target outputs. During training, the model learns to generalize patterns 

and make accurate predictions based on the provided examples. However, training 

alone is not sufficient to assess the model's true capabilities. 
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The validation set plays a critical role in fine-tuning the model's configuration, such 

as adjusting hyperparameters like the number of layers or layer sizes. By evaluating 

the model's performance on the validation data, we gain insights into how well it 

generalizes to unseen examples. This process is akin to learning from feedback, as the 

model's performance guides the selection of optimal hyperparameters. However, it is 

important to note that the model is never directly trained on the validation set. 

 

Here comes the crucial point: repeatedly tuning the model based on its performance 

on the validation set can lead to overfitting. Overfitting occurs when the model 

becomes too specialized in capturing the nuances of the validation data, losing its 

ability to generalize to new, unseen data. This happens because information about the 

validation set "leaks" into the model during the tuning process. Although minimal 

leakage may not pose a significant problem, frequent tuning gradually incorporates 

more and more information from the validation set, which compromises its reliability. 

 

In order to accurately assess the model's performance and its capacity to apply 

learned knowledge to new situations, it is essential to utilize a distinct dataset that has 

not been previously encountered, commonly referred to as the test dataset. The test 

set serves as an unbiased benchmark to assess the model's performance on completely 

new data. It is essential that the model has no prior access to any information from the 

test set, even indirectly. By evaluating the model on the test set, we gain a reliable 

estimate of its performance on real-world data. 

 

In summary, a well-designed train, test, and validation split ensures a rigorous 

evaluation of a machine learning model. It prevents overfitting by keeping the tuning 

process separate from the test set, preserving the model's ability to generalize. By 

using distinct datasets for training, validation, and testing, we can build robust models 

that perform well on unseen data, ultimately improving their reliability and real-world 

applicability (Chollet, 2017). 
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3.3.2 Hyperparameters and Cross-Validation 

Hyperparameters are essential components of machine learning models as they are 

predefined parameters that control model capacity and regularization. Setting these 

hyperparameters correctly is crucial to strike a balance between underfitting and 

overfitting, ensuring optimal model performance. However, finding the best 

hyperparameters is a challenging task. While we can learn them from the data, relying 

solely on the training data may lead to overfitting, as it tends to select maximum 

model capacity. To overcome this, a validation set, independent of the training 

process, is employed. In situations where the dataset is small, using a single 

validation set for evaluation may not yield reliable results. To tackle the issue, we can 

implement time series cross-validation (Joseph, 2022). The cross-validation 

procedure involves a set of test sets, where each test set comprises a single 

observation. The training set corresponding to each test set only includes observations 

that occurred prior to the observation in the test set. This ensures that no future 

observations are used in constructing the forecast. However, due to the limited data 

available in small training sets, it is not feasible to obtain reliable forecasts. As a 

result, the earliest observations are excluded from being considered as test sets in 

order to ensure the reliability and accuracy of the forecasting process (Hyndman & 

Athanasopoulos, 2018). 

 

Cross-Validation 

For the models used in this thesis, a time series cross-validation approach is 

implemented to evaluate the performance of the models. The data for different stocks 

is initially divided into two sets: the training set and the test set. The training set is 

used to train the models, while the test set is held out for evaluation purposes. 

Within the time series cross-validation loop, the test set is further divided into five 

folds. Each fold is used as a validation set, and the remaining data from the test set, 

along with the training set, are used for model training. This ensures that the models 

are trained on historical data preceding the observations in the validation set, 

preventing any data leakage from future observations. The cross-validation approach 

used in this thesis is illustrated in figure 7.  
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Figure 7 Fivefold cross-validation 

 

 

Hyperparameters 

Hyperparameters play a vital role in configuring and optimizing the performance of 

machine learning models within the experimental setup. Unlike the parameters that 

are learned from the data during training, hyperparameters are predefined settings that 

govern various aspects of the model's behavior and greatly influence its performance. 

 

To determine the optimal values for hyperparameters, I have implemented 

GridSearch, a technique that exhaustively tests a predefined set of hyperparameter 

combinations. In each fold of the cross-validation loop, the model learns patterns 

based on the range of hyperparameters provided. It remembers these patterns and 

proceeds to the next fold, searching for additional patterns based on the updated 

knowledge. Once the model has traversed all the folds, it employs the best overall 

parameters to make predictions on the test set. This approach allows for systematic 

exploration and selection of hyperparameters that yield the best performance. 
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3.4 Models 

This thesis compares five different models, Ordinary least squares, support vector 

regression, random forest, extreme gradient booster, and long short-term memory 

network. I will in this section present the different models, the model structures, why 

the models are used, fine tuning, and the specific evaluation metrics used.  

 

3.4.1 Model Selection 

3.4.1.1 Linear regression  

For the linear regression model, I use the scikit-learn library’s linear regression 

model, which fits the regression model based on the principles of ordinary least 

squares (OLS) linear regression. 

 

Linear regression is a statistical technique that seeks to model the relationship 

between a dependent variable and a single independent variable. It assumes a linear 

association between the variables and aims to estimate the parameters that define this 

relationship. One commonly used method for fitting a linear regression model is 

Ordinary Least Squares (OLS). OLS involves minimizing the sum of the squared 

differences between the observed values of the dependent variable and the predicted 

values from the linear model (James et al., 2013).  

 

While a simple linear regression model may not be the most suitable approach for 

predicting the adjusted closing price of stocks due to its inherent assumptions of 

linearity and independence, it still holds value as a benchmark model. As a 

benchmark, the linear regression model provides a baseline against which the 

performance of more advanced machine learning algorithms can be evaluated and 

compared. 

 

Moreover, the linear regression benchmark allows us to evaluate the interpretability 

of more complex models. While advanced algorithms may yield higher predictive 

accuracy, they often sacrifice interpretability, making it challenging to understand the 

underlying drivers of the adjusted closing price movements.  
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3.4.1.2 Support Vector Regression 

Support vector regression (SVR) is a machine learning algorithm that aims to 

estimate the relationship between a dependent variable and independent variables by 

minimizing the empirical risk, which is the sum of the loss function and a 

regularization term. The loss function determines the penalty for deviations between 

the predicted values and the actual values. 

 

In SVR, a symmetrical tube of minimal radius is formed around the estimated 

function, and points falling within this tube are considered acceptable predictions. 

The tube is defined by a threshold value, often denoted as 𝜀.  

 

The mathematical representation of SVR can be formulated as follows: 

 

Given a training dataset with 𝑛 observations, denoted as (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, 

(𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 represents the independent variables and 𝑦𝑖 represents the 

corresponding dependent variable, the objective is to find the optimal function 𝑓(𝑥) 

that minimizes the empirical risk. 

 

The basic formulation of SVR involves finding a hyperplane that lies within the tube 

and maximizes the margin around it. The hyperplane is defined by the equation: 

𝑓(𝑥) = 𝑤 ∗ 𝑥 + 𝑏. 

 

Here, 𝑤 represents the weight vector and 𝑏 represents the bias or intercept term. 

 

To incorporate the tube and handle deviations, SVR introduces a loss function that 

penalizes points outside the tube. One commonly used loss function is the 𝜀 -

insensitive loss function, which is defined as: 𝐿(𝑦, 𝑓(𝑥)) = max⁡(|𝑦 − 𝑓(𝑥)| − 𝜀, 0) 

 

In this equation, 𝑦 represents the actual value, and 𝑓(𝑥) represents the predicted value 

by the SVR model. The loss function computes the deviation between the actual and 

predicted values, subtracts the threshold 𝜀, and takes the maximum of this result and 
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zero. Points within the tube will have a loss of zero, while points outside the tube will 

have a positive loss. 

 

The objective of SVR is to minimize the sum of the loss function over all training 

observations, subject to a regularization term to control the complexity of the model. 

The regularization term helps prevent overfitting by adding a penalty for large weight 

values. 

 

The formulation of SVR can be written as an optimization problem: 

 

minimize 1 2⁄ ‖𝑤‖2 + 𝐶 ∑𝐿(𝑦, 𝑓(𝑥)) 

 

subject to the constraints: |𝑦 − 𝑓(𝑥)| ≤ ⁡𝜀 

 

Here, ‖𝑤‖2 represents the squared Euclidean norm of the weight vector 𝑤, 𝐶 is a 

regularization parameter that balances the trade-off between the margin and the loss 

function, and the sum is taken over all training observations. 

 

Solving this optimization problem yields the optimal weight vector 𝑤, the bias term 

𝑏, and the support vectors, which are the data points lying on the boundary of the 

tube. 

By incorporating the appropriate kernel function, SVR can also handle nonlinear 

relationships between variables. The kernel function implicitly maps the data points 

into a higher-dimensional feature space, allowing the use of linear methods in this 

transformed space (Awad & Khanna, 2015). 

In summary, SVR involves finding the optimal hyperplane that maximizes the margin 

while minimizing deviations outside the tube. The optimization problem incorporates 

the ε-insensitive loss function, a regularization term, and a kernel function to handle 

nonlinear relationships. The objective is to estimate the function that best fits the 

training data while maintaining good generalization capabilities. 
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3.4.1.3 Random Forest 

Random Forest is a technique that reduces the variance of prediction functions, 

known as bagging or bootstrap aggregation. It excels in handling high-variance, low-

bias procedures, particularly decision trees. In regression tasks, multiple instances of 

the same regression tree are fitted to bootstrap-sampled versions of the training data, 

and their predictions are averaged. 

Random Forest, introduced by Breiman in 2001, is a significant modification of 

bagging. It constructs a large collection of decorrelated trees and averages their 

predictions. On various problems, Random Forest demonstrates performance 

comparable to boosting while offering simpler training and tuning processes. (Hastie 

et al., 2009).  

The essential idea in bootstrap aggregation is to average as many noisy but 

approximately unbiased models, and hence reduce the variance. 

Mathematically, a Random Forest model can be represented as follows: 

Given a training dataset with 𝑛 observations, denoted as (𝑥1, 𝑦1), (𝑥2, 𝑦2),…, 

(𝑥𝑛, 𝑦𝑛), where 𝑥𝑖 represents the independent variables and 𝑦𝑖 represents the 

corresponding dependent variable, the objective is to find the optimal function 𝑓(𝑥)  

Random Forest constructs 𝐵  individual decision trees by applying the following 

steps: 

For each tree 𝑏 = 1⁡𝑡𝑜⁡𝐵:  

1. Draw a bootstrap sample 𝑍𝑏 of size 𝑁 from the training data. 

2. Grow a decision tree 𝑇𝑏 using the bootstrapped data, recursively splitting 

nodes until a stopping criterion is reached. 

The Random Forest predictor for regression is defined as: 

𝑓𝑅𝐹(𝑥) =
1

𝐵
∑ ⁡𝑇𝑏

𝐵

𝑏=1

(𝑥) 
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In this equation, 𝑓𝑅𝐹(𝑥) represents the predicted value for a given input 𝑥. Each 

individual decision tree 𝑇𝑏 in the Random Forest contributes its prediction 𝑇𝑏(𝑥). The 

predictions of all the trees are then averaged by taking the summation Σ across all 

trees and dividing by the total number of trees 𝐵. This averaging process helps to 

reduce the impact of individual noisy or biased predictions from each tree, leading to 

a more robust and accurate prediction for the Random Forest as a whole (Hastie et al., 

2009). 

By averaging the predictions of multiple trees, Random Forest reduces the variance 

and provides more robust predictions. Each decision tree contributes to the overall 

prediction based on its individual characteristics and the randomness introduced 

during the training process. This ensemble approach enhances the performance of 

Random Forest, making it a popular choice for various predictive modeling tasks. 

 

3.4.1.4 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost), is a machine learning model used for both 

regression and classification tasks. It is an ensemble model that consists of multiple 

decision trees. Each tree in the ensemble represents a weak learner that individually 

makes relatively simple predictions. However, due to the collective power of these 

weak learners, XGBoost is able to learn from a larger number of past errors compared 

to other models. By combining the predictions of these weak learners, the XGBoost 

model generates a final prediction for a given sample. 

Mathematically, the XGBoost model can be represented as follows: 

 

Given a training dataset with 𝑁 samples and 𝑀 features, denoted as {(𝑥𝑖, ⁡𝑦𝑖)}, where 

𝑥𝑖 represents the feature vector and 𝑦𝑖 represents the corresponding target value, the 

XGBoost model is an ensemble of 𝐾 decision trees, where each tree is denoted as 

𝑓𝑘(𝑥) and represents a weak learner. 

 

The prediction of the XGBoost model is given by: 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 , 
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Where 𝑦̂𝑖 represents the predicted value for the i-th sample.  

 

To train the XGBoost model, an objective function is defined based on the training 

data and the current ensemble of trees. The objective function consists of two 

components: the loss function and the regularization term. 

 

The objective function for the XGBoost model is defined as: 

𝑂𝑏𝑗(Θ) = L(y, ∑ 𝑓𝑘(𝑥)
𝐾
𝑘=1 ) + Ω(Θ), 

 

where Θ represents the set of model parameters, L(y, ∑ 𝑓𝑘(𝑥)
𝐾
𝑘=1 ) is the loss function, 

and Ω(Θ) is the regularization term. 

 

During the training process, the XGBoost model iteratively adds new decision trees 

to the ensemble. Each tree is trained to minimize the gradient of the loss function 

with respect to the predicted values of the current ensemble. 

 

The gradient boosting algorithm involves the following steps for each iteration: 

 

1. Compute the negative gradient (residuals) of the loss function with respect to the 

current predictions. 

 

2. Fit a new decision tree to the negative gradient using gradient histogram 

optimization. This technique approximates the optimal structure of the tree by finding 

the best split points for each feature using histograms. 

 

3. Update the ensemble by adding the new tree, using a learning rate 𝜂 to control the 

contribution of the new tree to the overall prediction. 

 

4. Repeat steps 1-3 until the desired number of trees 𝐾 is reached. 

 

The XGBoost model incorporates additional techniques, such as column subsampling 

(feature subsampling), row subsampling (data subsampling), and regularization terms 
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(e.g., L1 and L2 regularization), to enhance its performance and prevent overfitting 

(Chen & Guestrin, 2016). 

 

3.4.1.5 LSTM 

Recurrent neural networks are well-suited for sequential and time-dependent data 

analysis. They excel at tasks where capturing dependencies across different time steps 

is crucial. RNNs, however, face a significant challenge known as the vanishing 

gradient problem. As information propagates backward through time during training, 

the gradients can become exponentially small, hindering the network's ability to learn 

long-term dependencies. This limitation restricts the RNN's capacity to model 

complex sequential patterns. To address this issue, a specialized type of RNN called 

Long Short-Term Memory (LSTM) can be used (Géron, 2019). 

 

LSTM networks are a specialized form of architecture within RNNs that excel at 

capturing and preserving information over long sequences. Unlike basic RNNs, 

which rely on multiplying their memory by a weight matrix at each time step, LSTMs 

incorporate a dedicated long-term memory component called the memory cell (c). 

The memory cell is recurrently copied from one time step to another, allowing new 

information to be added incrementally without the risk of multiplicatively 

accumulating gradients over time. 

 

Figure 8 LSTM cell (adapted from Géron, 2019) 
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LSTMs leverage gating units to control the flow of information within the network. 

These gating units, represented as vectors, modulate the information passing through 

the LSTM via elementwise multiplication with corresponding information vectors. 

Mathematically, a LSTM model can be represented as follows: Given an input 

sequence of length T, an LSTM network consists of a series of memory cells. Each 

memory cell has its own set of parameters, including weight matrices (W) and bias 

vectors (b). The equations for a single memory cell are as follows: 

 

1.  Forget Gate:  

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 

 

Here, 𝑓𝑡 represents the forget gate activation at time step 𝑡. It determines whether 

each element of the memory cell should be retained (remembered) or reset to zero 

(forgotten) at the current time step. 𝜎 represents the activation function used for 

the forget gate, 𝑊𝑓 represents the weight matrix associated with the previous 

hidden state ℎ𝑡−1 and the current input 𝑥𝑡 for the forget gate, and 𝑏𝑓 represents the 

bias for the forget gate. 

 

2. Input gate 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), 

𝐶̂𝑡 = 𝑔(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶), 

 

Where 𝑖𝑡 represents the input gate activation at time step 𝑡. It regulates the extent 

to which memory cell element should be updated by incorporating new 

information from the input vector at the current time step. 𝐶̂𝑡 represents the 

candidate cell state at time step 𝑡, which is a candidate update to the cell state. 𝑔 

represents the activation function used for the candidate cell state. 𝑊𝑖 and 𝑊𝐶 

represents the weight matrices associated with the previous hidden state ℎ𝑡−1 and 

the current input 𝑥𝑡 for the input gate and the candidate cell state, respectively. 𝑏𝑖 

and 𝑏𝐶 represent the bias vectors for the input gate and the candidate cell state, 

respectively.  
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3. Update cell state: 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̂𝑡, 

 

Where 𝐶𝑡 represents the cell state at time step 𝑡, which is updated based on the 

forget output 𝑓𝑡 and the input gate output 𝑖𝑡. ⊙ represents elementwise 

multiplications. 𝐶𝑡−1 represents the previous cell state. 

 

4. Output gate: 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), 

ℎ𝑡 = 𝑜𝑡 ⊙ℎ(𝐶𝑡), 

 

Where 𝑜𝑡 represents the output gate activation at time step 𝑡. It governs whether 

each memory cell element should be transferred to the short-term memory, which 

plays a role similar to the hidden state in basic RNN’s. ℎ𝑡 represents the hidden 

state at time step 𝑡. ℎ represents the activation function used for the hidden state. 

𝑊𝑜 represents the weight matrix associated with the previous hidden state ℎ𝑡−1 

and the current input 𝑥𝑡 for the output gate. 𝑏𝑜 represents the bias vector for the 

output gate.  

 

In these equations, the subscript 𝑡 represents the time step, ℎ𝑡 represents the hidden 

state of the LSTM cell at time step 𝑡, and 𝑥𝑡 represents the input at time step 𝑡. The 

weight matrices 𝑊 and bias vectors 𝑏 capture the network's learnable parameters 

(Géron, 2019). 

 

There are four common activation functions used in LSTM models that can be used 

as input in the equations above, these are mainly; sigmoid activation function, 

hyperbolig tangent activation function, rectified linear unit, and softmax activation 

function which are explained in Chapter 2.2.4.2 Activation function. 
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3.4.2 Model optimization 

Model optimization plays a crucial role in improving the performance and 

effectiveness of learning algorithms. When training a model, we often encounter 

hyperparameters that need to be set to appropriate values to achieve optimal results. 

Hyperparameters are external factors that govern the behavior and performance of a 

learning algorithm, such as the regularization parameter, learning rate, or kernel type. 

 

I will discuss the process of model optimization and specifically focus on 

hyperparameter tuning. Hyperparameter tuning involves finding the best combination 

of hyperparameter values for a given learning algorithm to achieve optimal 

performance on a specific task or dataset. By carefully selecting suitable 

hyperparameter values, we can enhance the predictive accuracy, robustness, and 

generalizability of the models. 

 

Linear Regression 

For the linear regression models, I have chosen four hyperparameters that will be 

used to tune the models’ performance. These hyperparameters are:  

 

1.  fit_intercept:  

• Specifies whether to calculate the intercept for the linear regression 

model.  

• When set to False, the model assumes that the data is already centered 

and does not include an intercept term in calculations. 

• Adjusting this hyperparameter can be useful when dealing with data 

that is already centered or when you want to explicitly exclude the 

intercept from the model. 

 

2. copy_X: 

• Determines whether to create a copy of the input data (`X`). 

• If set to True, a copy of `X` is made, ensuring that the original data is 

not modified during the fitting process. 
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• Setting this hyperparameter to False can be useful when memory 

usage is a concern or when you are certain that the input data can be 

safely overwritten. 

 

3.  n_jobs:  

• Controls the number of parallel jobs to use for computation. 

• This hyperparameter provides speedup when dealing with large 

problems, particularly when `n_targets > 1` (multiple target variables) 

or when `X` is sparse. 

• The default value of `None` means using a single job, unless in a 

`joblib.parallel_backend` context. 

• Setting `n_jobs` to -1 utilizes all available processors for parallel 

execution. Refer to the Glossary for more details. 

 

4. positive:  

• Enforces positive coefficients in the linear regression model. 

• If set to True, the model constrains the coefficients to be positive, 

applicable only for dense arrays (non-sparse data). 

• This hyperparameter is useful when you want to impose positive 

constraints on the coefficients, which can be relevant in certain 

applications or domains  

(scikit-learn, n.d. a). 

 

Support Vector Regression 

For Support Vector regression models, I have chosen ten hyperparameters that will be 

used to tune the models’ performance:  

 

1. C: The regularization parameter, C, controls the trade-off between achieving a 

smaller training error and allowing more deviations in the solution. It 

influences the width of the margin and the number of support vectors used for 

fitting the model. Different values of C can lead to varying degrees of model 

complexity and generalization capability. 
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2. coef0: The coef0 parameter determines the influence of the non-linear terms 

in the model. It affects the shape of the decision function and can impact the 

model's ability to capture complex relationships between the features and the 

target variable. 

 

3. degree: The degree parameter is specific to polynomial kernels and defines 

the degree of the polynomial function used to transform the input data. It 

controls the complexity and flexibility of the model's decision function. 

 

4. epsilon: Epsilon, also known as the epsilon-insensitive loss parameter, sets the 

margin around the regression line within which no penalty is associated with 

errors. It determines the tolerance for errors in the training data and affects the 

model's sensitivity to deviations from the target variable. 

 

5. gamma: Gamma defines the kernel coefficient for 'rbf', 'poly', and 'sigmoid' 

kernels. It influences the shape and reach of the decision boundary and 

controls the influence of individual training samples on the model. Different 

gamma values can result in different levels of model flexibility and 

overfitting. 

 

6. kernel: The kernel parameter specifies the type of kernel function used for 

transforming the input data into a higher-dimensional feature space. SVR 

supports various kernel functions such as linear, polynomial, radial basis 

function (RBF), and sigmoid. Each kernel has different characteristics and can 

capture different types of relationships between the features and the target 

variable. 

 

7. max_iter: The maximum number of iterations allowed for convergence. It 

determines the maximum number of iterations the model will perform during 

training. Setting an appropriate value is important to ensure convergence 

without excessive computation. 
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8. shrinking: The shrinking parameter determines whether to use the shrinking 

heuristic. When set to True, the model applies a shrinking strategy to speed up 

the training process by eliminating some support vectors. However, this may 

slightly affect the model's performance. 

 

9. tol: The tolerance for stopping criterion. It specifies the desired precision of 

the solution. A lower tolerance value can lead to more accurate solutions but 

may increase computation time. 

 

10. verbose: The verbosity parameter controls the amount of output information 

displayed during the model's training process. Setting it to False suppresses 

the output, while setting it to True provides detailed information about the 

training progress. 

(scikit-learn, n.d. b). 

 

Extreme Gradient Boosting (XGBoost) 

I have chosen the following six hyperparameters to tune the Extreme Gradient 

Boosting models’ performance: 

 

1. max_depth: This hyperparameter controls the maximum depth of each tree in 

the boosting process. Increasing `max_depth` allows the model to capture 

more complex relationships in the data but can also lead to overfitting. On the 

other hand, reducing `max_depth` can simplify the model and enhance its 

generalization ability. 

 

2. n_estimators: The number of boosting iterations or decision trees in the 

model is determined by the `n_estimators` hyperparameter. Increasing this 

value can improve the model's performance until a certain point of 

diminishing returns is reached. Adding more trees may result in longer 

training times, so it is important to strike a balance between model 

performance and computational efficiency. 



38 

 

 

3. learning_rate: The learning rate determines the step size at each boosting 

iteration. A smaller learning rate makes the model converge more gradually, 

allowing for finer adjustments and potentially better generalization. However, 

using a very small learning rate may require more boosting iterations to 

achieve optimal performance. 

 

4. subsample: This hyperparameter controls the fraction of samples used for 

training each tree. Setting `subsample` to a value less than 1.0 introduces 

stochasticity into the model and can help prevent overfitting. It is common to 

set `subsample` to a value below 1.0, such as 0.5 or 0.7, to improve the 

model's robustness. 

 

5. colsample_bytree: This hyperparameter determines the fraction of features 

(columns) to be randomly sampled for each tree. By selecting a subset of 

features, the model can focus on the most informative ones, reducing the risk 

of overfitting and improving generalization. Values between 0.5 and 1.0 are 

commonly used for this hyperparameter. 

 

6. min_child_weight: This hyperparameter sets the minimum sum of instance 

weights (hessian) required to further partition a leaf node in the tree. 

Increasing `min_child_weight` can help control overfitting by adding 

regularization. A larger value results in a more conservative model. 

(Chen & Guestrin, 2016). 

 

Random Forest 

Five hyperparameters are chosen to tune the Random Forest models’ performance: 

 

1. max_depth: The max_depth hyperparameter controls the maximum depth of 

the decision trees in the RF ensemble. Increasing the max_depth allows the 

trees to capture more complex relationships in the data. However, a higher 
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max_depth may lead to overfitting, so it is crucial to find the right balance to 

ensure optimal model performance. 

 

2. max_features: This hyperparameter determines the number of features to 

consider when looking for the best split at each tree node. The auto option 

considers all features, while sqrt uses the square root of the total number of 

features. Choosing the appropriate value for max_features can prevent 

overfitting and increase the model's ability to generalize to unseen data. 

 

3. min_samples_leaf: The min_samples_leaf hyperparameter specifies the 

minimum number of samples required to be at a leaf node. A smaller value 

allows the trees to capture more specific patterns in the data, potentially 

leading to overfitting. On the other hand, a larger value promotes a more 

generalized model. It is crucial to find the right balance to avoid underfitting 

or overfitting. 

 

4. min_samples_split: This hyperparameter sets the minimum number of 

samples required to split an internal node. Similar to min_samples_leaf, a 

smaller value leads to more specific splits, while a larger value promotes more 

generalized splits. Careful tuning of min_samples_split is necessary to strike 

the right balance between model complexity and generalization. 

 

5. n_estimators: The n_estimators hyperparameter defines the number of trees in 

the RF ensemble. Increasing the number of estimators can improve the 

model's performance until reaching a point of diminishing returns. However, a 

higher number of estimators also increases the computational cost, so it is 

essential to consider the trade-off between performance and efficiency. 

(scikit-learn, n.d. c). 
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LSTM 

I have chosen seven hyperparameters for tuning the LSTM model’s performance:  

 

1. units: The units hyperparameter determines the dimensionality of the output 

space of the LSTM layer. Increasing the number of units allows the model to 

capture more complex patterns in the data but also increases the model's 

computational complexity. It is important to find the right balance between 

model complexity and efficiency. 

 

2. dropout_rate: Dropout is a regularization technique that helps prevent 

overfitting in neural networks. The dropout_rate hyperparameter determines 

the fraction of the input units to drop during training. Using dropout 

introduces randomness into the model and can improve its generalization 

ability. Tuning the dropout_rate can help find the optimal level of 

regularization for the LSTM model. 

 

3. num_layers: The num_layers hyperparameter defines the number of LSTM 

layers in the model. Adding more layers increases the model's capacity to 

capture complex dependencies but also makes it more prone to overfitting. 

Finding the appropriate number of layers is crucial to balance model 

complexity and generalization. 

 

4. epochs: The epochs hyperparameter specifies the number of times the entire 

training dataset is passed through the LSTM model during training. Increasing 

the number of epochs allows the model to learn more from the data but can 

lead to overfitting if not controlled. It is essential to monitor the model's 

performance on a validation dataset and choose an appropriate number of 

epochs. 

 

5. batch_size: The batch_size hyperparameter determines the number of samples 

to be propagated through the LSTM model at once. It affects the model's 

training speed and memory usage. Smaller batch sizes introduce more noise 
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into the training process but can help the model converge faster. Larger batch 

sizes provide a smoother gradient estimate but require more memory. The 

batch_size should be chosen based on the available computational resources 

and the characteristics of the dataset. 

 

6. optimizer: The optimizer hyperparameter determines the algorithm used to 

update the weights and biases of the LSTM model during training. It plays a 

crucial role in the model's learning process and affects the speed and 

effectiveness of convergence. Different optimizers, such as Stochastic 

Gradient Descent (SGD), Adam, RMSprop, and Adagrad, offer varying 

characteristics and performance. Experimenting with different optimizers can 

help identify the one that works best for the specific problem and dataset, 

striking a balance between convergence speed and accuracy. 

 

7. activation: The activation hyperparameter specifies the activation function to 

be used in the LSTM layers. Common choices include 'relu', 'sigmoid', and 

'tanh'. The choice of activation function can impact the model's ability to 

capture nonlinear patterns in the data. Experimenting with different activation 

functions can help find the one that works best for the specific problem. 

(Keras, n.d.) 

 

By systematically exploring different combinations of hyperparameters for each 

model, we can evaluate the performance of the models using appropriate evaluation 

metrics and select the optimal set of hyperparameters that yield the best performance 

on the validation dataset. 

 

To optimize these hyperparameters, a grid search strategy was employed. This 

involved defining a grid of potential parameter values and exhaustively evaluating the 

model's performance for each combination. The grid search procedure, coupled with 

cross-validation techniques, allowed for robust evaluation and comparison of the 

models' performance across different stocks. Through the hyperparameter 

optimization process, we aimed to strike a balance between model complexity and 
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generalization. A too complex model can lead to model overfit, which occurs when a 

model tries to explain small variations in the data. A model that overfits, predicts 

good on training data, but performs poorly on new unseen patterns (Burkov, 2019). 

 

3.4.3 Evaluating model performance 

When evaluating the numeric outcomes of prediction models, it is important to 

evaluate the effectiveness of the models using a measure of accuracy. There are 

several measures that can be used to evaluate the predictions, each method with its 

own nuance. Some of the typical measures used in machine learning evaluations are 

the proportion of correct predictions, F1-score, sensitivity and many more. However, 

these metrics are used for classification problems. When measuring regression 

problems, you have to use quantitative measures of performance and the most 

common methods are the root mean squared error (RMSE), the mean squared error 

(MSE), the coefficient of determination or “R-squared” (𝑅2) (Kuhn & Johnson, 

2013). The mean absolute error (MAE), and the mean absolute percentage error 

(MAPE) (Hyndman & Athanasopoulos, 2018). 

 

Coefficient of determination (𝑹𝟐) 

The coefficient of determination is a statistical measure that represents the proportion 

of variance in the dependent variable that can be explained by the independent 

variables in a regression model. It indicates how well the regression model fits the 

observed data. The value of 𝑅2 ranges from 0 to 1, where a higher value indicates a 

better fit.  

 

The mathematical representation of 𝑅2 is:  

 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
, 

 

Where SSR is the sum of squared residuals, and SST is the total sum of squares.  
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𝑅2 measures the proportion of the variability in the dependent variable that is 

explained by the regression model. A value of 0 indicates that the model does not 

explain anything of the variability, while a value of 1 explains all the variability.  

 

It is worth mentioning that 𝑅2 has some limitations and should be interpreted with 

caution. It does not determine whether the regression model is good or bad, but rather 

it measures the goodness of fit, and it should rather be used alongside with other 

evaluation metrics to understand the results better (Kuhn & Johnson, 2013).  

 

Mean Squared Error (MSE) 

MSE is an evaluation metric commonly used in regression models to measure the 

average squared difference between the predicted values and the actual values of the 

target variable. It provides a quantitative measure of the average magnitude of the 

residual error. A lower MSE value indicates that the model has smaller average 

squared differences between the predicted and actual values, which suggests better 

overall performance.  

 

The mathematical representation of MSE is:  

 

𝑀𝑆𝐸 =
1

𝑛
∗ ∑(𝑦𝑖 − 𝑦̂𝑖)

2, 

 

Where 𝑛 is the number of samples or observations, 𝑦𝑖 represents the actual values of 

the target variable, and 𝑦̂𝑖 is the predicted values of the target variable.  

 

MSE provides a measure of the average magnitude of the squared errors between the 

predicted and actual values. It gives more weight to larger errors due to the squaring 

operation, making it particularly sensitive to outliers. MSE itself is not in the original 

unit of the target variable, which can make it less interpretable compared to other 

metrics like RMSE (Root Mean Squared Error) (Kuhn & Johnson, 2013). 
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Root mean squared error (RMSE) 

RMSE is an evaluation metric used for regression models that quantifies the average 

magnitude of the residual errors. RMSE is expressed in the same units as the target 

variable, which makes it interpretable and comparable across different datasets. 

RMSE is calculated by taking the square root of the mean of the squared differences 

between the predicted values and the actual values.  

 

The formula for calculating RMSE is:  

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸, 

 

RMSE is beneficial because it penalizes larger errors more heavily due to the 

squaring of differences. It provides a measure of how well the model’s predictions fit 

the observed data, where lower values indicate a better performance (Kuhn & 

Johnson, 2013).  

 

Mean Absolute Error (MAE) 

MAE is typically used in regression problems to measure the average absolute 

difference between the predicted values and the actual values. MAE is expressed in 

the same units as the target variable, which makes it easy to interpret. A lower MAE 

indicates better performance, as it shows that the model’s predictions are closer to the 

actual values on average.  

 

The mathematical representation of MAE is:  

 

𝑀𝐴𝐸 =
1

𝑛
∗ ∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1 , 

 

Where 𝑛 is the number of samples, 𝑦𝑖 is the actual values of the target variable, 𝑦̂𝑖 is 

the predicted value of the target variable, |𝑦𝑖 − 𝑦̂𝑖| represents the absolute of the 

difference between the actual value and the predicted value across all datapoints. The 

absolute difference is taken for each data point and then averaged across all the data 

points to obtain the mean absolute error. 
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Unlike other error metrics that squares the error, such as RMSE, MAE considers the 

absolute difference between the predicted and actual values, making it less sensitive 

to outliers (Hyndman & Athanasopoulos, 2018). 

 

Mean Absolute Percentage Error (MAPE) 

MAPE is used to evaluate the accuracy of a forecasting model, typically in the 

context of time series analysis. MAPE measures the average percentage difference 

between the predicted and actual values, relative to the actual values.  

 

The mathematical representation of MAPE is:  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 ∗ 100, 

 

MAPE is expressed as a percentage, indicating the average percentage deviation 

between the predicted and actual values. It provides a relative measure of the 

forecasting accuracy, allowing comparisons across different datasets or models. 

MAPE is useful in situations where the magnitude of the error is important and needs 

to be considered in a percentage form. However, it has some limitations. MAPE 

becomes undefined or infinite when the actual values are zero or close to zero, and it 

tends to emphasize larger errors due to the percentage calculation. Therefore, it is 

important to interpret MAPE in conjunction with other evaluation metrics and 

consider the specific characteristics of the dataset and the specific context of the 

problem (Hyndman & Athanasopoulos, 2018). 
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4.0 Results 

 

I will in this chapter present the results and key findings of the analyses. First 

descriptive statistics from each model will be presented, and thereafter aggregated 

results will be examined to investigate the overall performance of each model across 

the stocks. Important findings from each model will be highlighted, followed by a 

comparative analysis of the aggregated results from the models.  

 

4.1 Descriptive statistics 

Table 1 contains the results from the evaluation metrics for all models across all 

stocks. I will start by presenting the results of each individual model and highlight 

interesting findings.  

Table 1 Evaluation metric scores 
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4.2 Linear regression model 

Individual stock analysis 

The linear regression model is a benchmark model and is not expected to perform 

very well. This is initially true, except for the case of the stock “DNB”, which I will 

discuss in the findings.  

 

The 𝑅2 results from the stocks; “Equinor, Mowi, and Telenor” are respectively “-

0.198, -4.839, and -11.141”, while the model provides a better 𝑅2 score for Equinor 

and Mowi, than for Telenor. The 𝑅2 scores are still negative, indicating that the OLS 

models do not capture the variability of the data very well. In other words, it suggests 

that there may be additional factors influencing the dependent variable besides the 

independent variable, which could be due to lacking relevant features or underfitting. 

This is expected as other factors can influence the development of stock prices 

besides historical price data. However, there might be more patterns in the historical 

price, which the OLS model is not able to capture since it does not follow a linear 

pattern.  

 

Moreover the 𝑀𝑆𝐸 results are respectively “7144.465, 3699.583, and 1513.926”, 

indicating that there is a substantial difference in the average squared differences 

between the predicted and actual values. On average, the model’s predicted values 

deviate significantly from the true values. By analyzing the 𝑅𝑀𝑆𝐸, we can see the 

results in a more explicit context. Specifically, the 𝑅𝑀𝑆𝐸 scores are “84.525, 60.824, 

and 38.909” which indicate that the model is on average off by 84,525 NOK for 

Equinor, 60,824 NOK for Mowi, and 38,909 NOK for Telenor based on the average 

squared differences. The magnitude of the error of these results depends on the range 

of the target variable. However, since the average adjusted closing price for the stocks 

in the prediction window were respectively “208.77 NOK, 189.01 NOK, and 119.48 

NOK”, it would be safe to assume that this average error is too far off to be 

considered an accurate model, even though outliers may affect these estimates to a 

certain degree.  

 



48 

 

Like the RMSE results, the MAE results can be compared directly to the inputs and 

yield a similar outcome. The key difference is that MAE represents the average 

absolute error instead of the average squared differences. In simple terms, they both 

measure prediction errors, but RMSE is more sensitive to outliers compared to MAE. 

The 𝑀𝐴𝐸 results are respectively “63.245, 56.762, and 30.105”, again indicating that 

the predictions are far off compared to the actual values. Lastly, the 𝑀𝐴𝑃𝐸 values, 

which represent the average absolute percentage error in the model’s predictions, 

indicate that the predictions are off by respectively “27.73%, 29.98%, and 26.59%”. 

 

Aggregated stock analysis 

On average across all the stocks the OLS models’ evaluation metrics 

“𝑅2, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑎𝑛𝑑⁡𝑀𝐴𝑃𝐸” have the following results: “-3.796, 3090.805, 

46.637, 37.926, and 21.38%”, respectively. The results indicate that on average the 

model has a negative fit, and on average it is off by roughly 21%. The results indicate 

a poor model fit, which is to be expected from a linear regression model in predicting 

stock prices.  

 

Key findings 

An interesting finding in the OLS model is the predictions of the DNB stock. Based 

on the evaluation metrics “𝑅2, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑎𝑛𝑑⁡𝑀𝐴𝑃𝐸”, the results are 

“0.994, 5.246, 2.290, 1.593, and 1.22%”, respectively. The 𝑅2 results indicate a near 

perfect fit for the model, and the prediction estimates are only off by 1.22%, which 

seems remarkable. Figure 9 provides a visual presentation of the results. 
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Figure 9 OLS predictions compared to actual prices of DNB 

 

However, it is important to consider these results with caution. It is uncommon for 

any model to accurately predict the complexities associated with stock price 

development with such precision. 

 

4.3 Support vector regression model 

While OLS linear regression models may struggle to effectively predict non-linear 

data, SVR models are expected to excel in such scenarios. In the context of stock 

prices, which often exhibit complex patterns and outliers, OLS models are typically 

sensitive to outliers. On the other hand, SVR's ability to model non-linear 

relationships and its robustness against outliers enhance its predictive capabilities 

compared to OLS linear regression. 

 

Individual stock analysis 

The 𝑅2⁡results for the stocks "Equinor, Mowi, Telenor, and DNB" are respectively "-

2.340, -106.71, -0.480, and -2.660". Surprisingly, the SVR models yield worse 

𝑅2⁡scores on all stocks except for Telenor, indicating that the SVR model is less 

effective at capturing the variability of the data compared to the OLS model. A 

potential explanation for these results is that the stock data exhibits a more linear 

relationship than expected. However, these results do not necessarily mean that the 
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model is worse at predicting stocks, but rather that there may be factors affecting 

stock price development that are not included in the features. Nonetheless, the 

𝑅2⁡score alone does not provide a perfect evaluation of the predictions, so let us 

examine the other evaluation metrics. 

 

The MSE results are respectively "662.470, 9633.430, 123.820, and 324.140". 

Compared to the OLS model, SVR performs better for Equinor and Telenor, but 

worse for DNB. These results still indicate that, on average, the model's predicted 

values deviate significantly from the true values. By analyzing the RMSE scores, we 

can interpret the mean squared error in a format more closely related to the actual 

values. The RMSE scores are "21.390, 82.620, 9.580, and 13.800", indicating that, on 

average, the model's predictions are off by 21.390 NOK for Equinor, 82.620 NOK for 

Mowi, 9.580 NOK for Telenor, and 13.800 NOK for DNB based on the average 

squared differences. It is important to note that the magnitude of these errors depends 

on the range of the target variable, and for Mowi, the prices are still quite far off. 

However, for Equinor, Telenor, and DNB, the prices are closer, suggesting an 

improvement in model performance. 

 

The MAE results provide similar observations, and while the results for Mowi are 

still off by "82.030 NOK", the errors for Equinor, Telenor, and DNB are decreasing 

with values of "16.910 NOK, 7.890 NOK, and 12.050 NOK" respectively. These 

results further suggest an improvement in model performance compared to the OLS 

model. 

 

Finally, the MAPE results (in percentage) show errors of "16.80%, 435.36%, 19.30%, 

and 27.23%". These figures demonstrate that our model performs most accurately for 

Equinor, with an average deviation of only 16.8% from the actual prices. However, 

the results for Mowi deviate significantly more compared to the OLS model. 

 

Aggregated stock analysis  

On average across all stocks, the evaluation metrics "𝑅2, MSE, RMSE, MAE, and 

MAPE" for the SVR model have the following results: "-28.048, 2685.965, 31.848, 
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29.720, and 124.67%". MSE, RMSE, and MAE outperform the OLS model, while 

𝑅2⁡and MAPE perform worse. 

 

Key findings 

The results from the evaluation metrics suggests that the model performs very poorly 

on the Mowi stock. However, by looking at the plot from the predicted values against 

the actual values of Mowi, we can identify an interesting trend.  

 

Figure 10 SVR predictions compared to actual prices of Mowi 

 

The accuracy of the prediction is quite off. However, it seems as if the SVR model is 

still able to capture the trends in the data, even if it is not predicting the scale of the 

prices accurately.  

 

Figure 11 SVR predictions compared to actual prices of Equinor 
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Additionally, an interesting pattern occurs for the prediction of Equinor. From figure 

11 we can see that the model identifies patterns up to a certain point in which it 

follows the opposite pattern of the actual prices until it slowly progresses into static 

values.  

 

4.4 Random forest model 

The SVR model is specifically suitable when the relationship between the input 

features and the target variable is expected to be non-linear and is robust against 

outliers, and stock prices are typically characterized by both non-linearity and 

outliers. The RF model is typically preferred when dealing with complex interactions 

between features. However, since this analysis only includes one feature, one would 

anticipate that the SVR model would perform better, but the RF model might be able 

to identify certain complex patterns in the data that the SVR model cannot identify.  

 

Individual stock analysis 

The 𝑅2⁡results for the stocks "Equinor, Mowi, Telenor, and DNB" are respectively 

"0.17, 0.49, -0.15, and -0.35". Compared to the SVR model, it would seem like the 

RF model produces a higher 𝑅2 for all the stocks. Indicating that the RF model is 

more effective at capturing the variability of the data compared to the SVR model. 

 

The MSE results are respectively “346.750, 109.630, 162.660, and 136.310”. 

Compared to the SVR model, the RF model performs better on all stocks except for 

the Telenor stock. This can indicate that on average, the model’s predicted values 

deviate less than the SVR model. By analyzing the RMSE values, we get a clearer 

picture of what these deviations actually mean. The RMSE results are respectively 

“13.14, 7.68, 9.79, and 9.4”. These results indicate that on average the model’s 

predictions are off by 13.14 NOK for Equinor, 7.68 NOK for Mowi, 9.79 NOK for 

Telenor, and 9.4 NOK for DNB. The RF predictions have fewer errors in all the 

stocks except for Telenor, which indicate a progress in model performance.  
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Aggregated stock analysis 

On average across all stocks, the evaluation metrics "𝑅2, MSE, RMSE, MAE, and 

MAPE" for the RF model have the following results: “0.04, 188.838, 10.003, 7.715, 

and 15.09%”. All metrics outperform the SVR model. 

 

Key Findings 

 

Figure 12 RF predictions compared to actual prices of DNB 

An interesting finding from the predictions of the RF model, is the predictions of the 

DNB stock. From the predicted values, it would seem like the predictions have a kind 

of upper threshold. When the actual values exceed roughly 110 NOK, the predictions 

becomes static. A possible explanation for this finding could be the distribution of the 

adjusted closing price might change as it reaches or exceeds 110 NOK. In other 

words, the underlying patterns might exhibit a shift in linearity after a certain 

threshold and the model is not able to identify this pattern.  

 

4.5 XGBoost 

Random Forest and XGBoost are both ensemble learning methods that combine 

multiple decision trees. The main difference is how they build the ensemble. In 

Random Forest, the trees are trained independently, and their predictions are averaged 

or voted to make the final prediction. XGBoost, on the other hand, builds the trees 

sequentially, with each tree trying to correct the mistakes of the previous trees using 

gradient descent optimization.  
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Individual stock snalysis 

The 𝑅2⁡results for the stocks "Equinor, Mowi, Telenor, and DNB" are respectively 

“0.120, -0.040, -0.170, and -0.510”. Compared to the RF model, the XGB model 

produced a lower 𝑅2 score for all stocks. This indicates that that the XGB model is 

less effective in capturing the variability of the data compared to the RF model. These 

results could be due to the nature of the data. As stated, the RF model is more robust 

to noisy data and outliers. And since stock data can potentially be very noisy, the RF 

model could handle these patterns better than the XGBoost model.  

 

The MSE results are respectively “363.760, 221.780, 166.370, and 151.320”. 

Compared to the RF model, the XGBoost model has on average a slightly worse 

squared error, which could indicate that the model’s predicted values on average 

deviate more than the values of the RF model. By analzying the RMSE results: 

“13.480, 12.070, 10.180, and 10.110”, we can see that the same patterns exist here. 

The RMSE results indicate that the XGBoost predictions are off by 13.48 NOK for 

Equinor, 12.07 NOK for Mowi, 10.18 NOK for Telenor, and 10.11 NOK for DNB. 

These results also indicate that on average, the XGB model have more errors in the 

stock prediction on all stocks compared to the RF model.  

 

If we analyze the MAE values, which is less sensitive to ouliers than RMSE values, 

we still see the same indications, with the following values: “9.760, 10.600, 7.780, 

and 8.020”. The values are still better than the OLS and SVR model, but it seems as 

the XGB model performs worse than the RF model.  

 

Aggregated stock analysis 

On average across all stocks, the evaluation metrics "𝑅2, MSE, RMSE, MAE, and 

MAPE" for the XGB model have the following results: “-0.150, 225.808, 11.460, 

9.040, and 16.71 %”. All metrics perform worse than the RF model. 
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Key findings 

Although the RF model provided better results, it would seem like both models 

follow roughly the same pattern, the only difference is that the RF model provides 

slightly better results.  

 

4.6 LSTM  

LSTM models are specifically designed for handling sequential and time-series data. 

The LSTM model is well-suited for capturing patterns and dependencies in temporal 

sequences, making it specifically good at handling time series forecasting, and the 

model is therefore expected to perform well on stock prediction compared to the other 

models.  

 

Individual stock analysis  

The 𝑅2⁡results for the stocks "Equinor, Mowi, Telenor, and DNB" are respectively  

“0.52, 0.17, 0.65, and 0.53”. Compared to the XGB model, the LSTM model 

produced a higher 𝑅2 score for all the stocks. In fact, it produces a higher 𝑅2 score 

across all models, indicating that the LSTM model is especially effective at capturing 

the variability of the data.  

 

The MSE results are respectively “133.24, 198.47, 22.75, and 26.88” which are the 

best results across all models, having the lowest squared error across the models. The 

LSTM model’s predictions deviate less from the actual prices than the other models. 

By analyzing the RMSE results “10.04, 10.27, 4.48, and 4.36”, we see that the same 

patterns emerge here, and the predicted prices deviate less compared to the other 

models. The RMSE results indicate that the LSTM model’s predictions are off by 

10.04 NOK for Equinor, 10.27 NOK for Mowi, 4.48 NOK for Telenor, and 4.36 NOK 

for DNB. For Equinor, Telenor, and DNB, these are the best RMSE results so far. 

However, the Random Forest model still produces better RMSE results for Mowi. By 

analyzing the MAE score, which is less sensitive to outliers than RMSE, we still see 

the same indications with the following values: “9.04, 9.6, 3.89, and 3.96” indicating 

a very low absolute error on average, but the Random Forest model produces better 
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MAE results for Mowi as well. Interestingly, the MAPE values do not show the same 

pattern, as showed by the following values: “9.24 %, 18.32 %, 7.41 %, 8.77 %”. The 

LSTM model produced the best MAPE results across models for all stocks.  

 

Aggregated stock analysis 

On average across all stocks, the evaluation metrics "𝑅2, MSE, RMSE, MAE, and 

MAPE" for the LSTM model have the following results: “0.47, 95.34, 7.29, 6.62, and 

10.94%”. In this aggregation, the LSTM model produces the overall best results 

across all metrics. 

 

Key findings 

A notable observation emerge from the model's predictions for Mowi and Telenor. 

Upon examining the plots, we notice that the model exhibits some ability to recognize 

the patterns present in the actual prices during the test period. However, it becomes 

apparent that the model suffers from a certain "lag," predicting the price 

developments after they have already occurred in some instances. 

 

Figure 13 LSTM predictions compared to actual prices of Mowi 
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Figure 14 LSTM predictions compared to actual prices of Telenor 

 

Based on these findings, as well as the scores from the aggregated evaluation metrics 

across all stocks in Table 1, it is evident that the LSTM model outperforms all other 

models across all metrics. Overall, the LSTM model is the preferred model to identify 

patterns in the Norwegian stock market.  

 

4.7 Comparison of the different models 

I will conduct a comparative analysis of the different models based on the results 

obtained from the individual analyses. I will examine the similarities, differences, and 

strengths exhibited by each model.  

 

Similarities, differences, and strengths of the models 

OLS (Ordinary Least Squares), SVR (Support Vector Regression), RF (Random 

Forest), XGB (XGBoost), and LSTM (Long Short-Term Memory) are all popular 

machine learning models used for various prediction tasks. While they have certain 

similarities, such as being supervised learning algorithms, they also have notable 

differences in their underlying principles and approaches. 

 

The OLS model is specifically good at estimating the relationship between a 

dependent and independent variable when there is a linear relationship between the 
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two variables. This makes it a reasonable choice, when defining feature importance. 

However, since it assumes linearity in the relationship, it could be difficult to make 

accurate predictions when dealing with non-linear data, such as stock data. This 

seems to be the case from the results, where it is able to capture some patterns, but is 

not able to make accurate predictions. While it cannot necessarily be used to predict 

complex non-linear data, it can be used as a benchmark model, as well as establishing 

feature importance.  

 

Just as the OLS, the SVR assumes a linear relationship between the input feature and 

the target variable. However, while the OLS model focuses on minimizing the sum of 

squared residuals, the SVR model aims to find a hyperplane that maximizes the 

margin while allowing for a certain tolerance of errors. This difference makes SVR 

better at capturing patterns of non-linearity, which is more ideal when dealing with 

time-series data.  

 

While the SVR model is good at handling non-linearity, it has to be explicitly 

specified what type of kernel to use “e.g., linear, polynomial, radial basis function”. 

The random forest model, however, is able to handle non-linear data, without 

transforming the data. It achieves this by randomly selecting subsets of features and 

building trees based on these subsets, allowing for interactions between variables. 

Additionally, the SVR model seems to be more sensitive to outliers than the RF 

model based on the predictions. This would make the RF model better at predicting 

the adjusted closing prices when there is higher volatility which can occur with 

different frequencies on different stocks. The RF model is an ensemble machine 

learning model, which means that it uses predictions from several models and 

combine the predictions to improve the overall performance. This process makes the 

model computationally expensive.  

 

Like Random Forest, XGBoost is also an ensemble machine learning model. 

However, they each have their individual strengths as well. From the predictions, 

both models follow similar prediction patterns, but the RF model has an overall 

higher prediction accuracy. Given the volatility of the data, this could indicate that the 



59 

 

RF model is better at handling outliers and noisy data. As with the Random Forest 

model, The XGBoost model is also computationally expensive.  

 

The LSTM model consistently outperforms other models in predicting the adjusted 

closing price. It demonstrates robustness in handling outliers and effectively adapts to 

changing market trends. However, it requires careful hyperparameter tuning to avoid 

overfitting. This process can be computationally expensive. While the LSTM model 

delivers impressive results, there are instances where a simpler model may be 

preferred due to runtime considerations. 

 

While all models share similarities as supervised learning algorithms, they exhibit 

distinct characteristics and strengths. OLS and SVR are effective for linear 

relationships, with SVR excelling in capturing nonlinear patterns in time-series data. 

RF handles nonlinear data without transformation and performs well in the presence 

of outliers, while XGB achieves high prediction accuracy through a gradient boosting 

framework. The LSTM model consistently outperforms others, demonstrating 

robustness in handling outliers and adapting to shifting market trends. However, it 

requires careful hyperparameter tuning and can be computationally expensive. 

Consideration should be given to the specific data characteristics and runtime 

requirements when selecting the appropriate model for stock price prediction. 
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5.0 Discussion and implications 

In this part of the thesis, I will begin by discussing the results, where I have divided 

the discussion into three categories: stock patterns, overfit, and efficient market 

hypothesis. I will also go through any limitations of my approach, and lastly, I will 

discuss relevant future research.  

 

5.1 Discussion of results 

Stock patterns 

For the SVR model, there are two interesting findings. One of the findings is for the 

stock “Mowi”. The results from the evaluation metrics suggests that the model 

performs poorly. However, when looking at the plot from the predicted values against 

the actual values, we see that the model is still able to capture the trends of the data, 

even if it is not predicting the scale of the pries accurately. A possible explanation for 

this behavior can be traced to the features of the data. Since the model is only trained 

on one feature “adjusted closing price”, it might indicate that the model is able to 

identify complex patterns in the historical price. However, there might be additional 

external factors affecting the development that the SVR model is not able to identify, 

and therefore, the scale of the data is wrong.  

 

Additionally, an interesting pattern occurs for the prediction of Equinor, in which the 

model makes fairly accurate predictions up to a certain point in which it follows the 

opposite pattern of the actual prices until it slowly progresses into static values. This 

effect could indicate that the model has learned the historical patterns well but 

struggles to capture the dynamics of the data beyond that point, most likely due to the 

shift in prices. This phenomenon is commonly referred to as "concept drift" or "data 

drift" in time series forecasting. Concept drift occurs when the underlying patterns or 

relationships in the data change over time, making the previously learned patterns less 

relevant or informative for future predictions. In such cases, the model may struggle 

to adapt to the new patterns and continue to rely on the historical patterns it has 

learned (Wang et al., 2011). 
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One intriguing observation from the RF model's predictions is its behavior in relation 

to the DNB stock, where it appears to have an upper threshold. Once the actual values 

surpass approximately 110 NOK, the predictions become stagnant. One possible 

explanation for this effect is that the distribution of the adjusted closing price 

undergoes a change as it reaches or exceeds 110 NOK. In other words, the underlying 

patterns might exhibit a shift in linearity beyond a certain threshold, which the model 

fails to capture. Alternatively, this behavior could be attributed to the complexity of 

the model, resulting in an underfit of the data. While Kumar et al. (2018) 

demonstrated the Random Forest model's effectiveness in explaining complex market 

dynamics, the current analysis yields different results. However, it is worth noting 

that the Kumar et al. (2018) emphasized the model's efficacy in larger datasets. 

Applying the Random Forest model to even larger datasets with more features might 

yield improved results. 

 

The evaluation metrics indicate that the Random Forest model outperformed the 

XGB model, despite both models exhibited similar patterns. This discrepancy in 

performance could be attributed to the models' treatment of outliers and noisy data. It 

is possible that the Random Forest model displays a higher level of robustness and is 

less affected by these factors thereby leading to superior results. 

 

The LSTM model’s predictions introduced an interesting finding for the two stocks 

Mowi and Telenor, where there was a certain “lag” in the predictions. This lag in 

prediction accuracy may be due to a lack of relevant features. The model seems often 

to struggle with accurately identifying patterns during periods of peaks and lows. 

These fluctuations could be caused by external factors not captured by the price data 

alone. For instance, in the case of Mowi, we observe a significant price drop around 

March 2020, potentially linked to the impact of the pandemic. Although the model 

still manages to capture some aspects of the pattern during this period, its 

performance is not as strong as in other periods. Additionally, this “lag” effect could 

indicate that rather than using previous data to accurately predict what the adjusted 

closing price will be, the model simply assumes that the price tomorrow must be the 

same price as today, further research is however needed to address this.  
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Additionally, some of the models were able to make fairly accurate predictions, but 

most models seemed to perform worse during the end of the test period which was 

the middle of 2021 and 2023. Possible explanations for this effect could be external 

factors that made sudden unexpected shifts in the market. For example, during 2021, 

Norway experienced a surge in inflation that was the biggest in 13 years (Knudsen, 

2021). When inflation rises, stable stocks or value stocks are often traded more due to 

their stability (Zucchi, 2023), which could account for a shift in the development of 

the stock price that the model is not able to capture.  

 

Among the evaluated models, the LSTM model produced the best results, 

demonstrating relatively accurate predictions compared to the other models. This 

finding aligns with previous research suggesting that artificial neural networks, such 

as LSTMs, excel in predicting stock market trends (Galler & Kryzanowski, 1993; 

Nabipour et al., 2020). Thus, the superiority of the LSTM model in capturing the 

dynamics of the Norwegian stock market further strengthens the notion that LSTM 

models are well-suited for this domain. 

 

Overfit 

The OLS model produced an interesting finding regarding the DNB stock, in which 

the model was able to effectively capture the variability of the data. Possible 

explanations for the unusually strong performance could include overfitting, where 

the model has learned noise or specific patterns from the training data too well. 

Additionally, the presence of anomalies or outliers within the dataset may 

significantly impact the model's performance.  

 

Yadav et al. (2020) emphasized the significance of hyperparameter tuning in 

addressing specific modeling problems. In the course of the modelling, the LSTM 

model exhibited signs of overfitting, prompting the exploration of hyperparameters 

that could enhance accuracy while mitigating overfitting. The optimizer and dropout 

rate emerged as the most influential hyperparameters for improving model 

performance and decreasing overfit. Specifically, the adagrad optimizer with a 
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dropout rate of 0.1 demonstrated superior results when predicting the stocks 

considered in this study. These findings support Yadav et al.'s (2020) claims 

regarding the importance of hyperparameter tuning. It is worth mentioning that there 

might be other hyperparameters with greater combined impact, but due to 

computational limitations of this thesis, a more comprehensive analysis was not 

performed. Despite this limitation, the observed effects of optimizing the specified 

hyperparameters underscore the value of hyperparameter tuning in enhancing model 

performance. 

 

Efficient Market hypothesis 

Based on the results, it is difficult to draw a definitive conclusion regarding the 

efficiency of the market. The performance of the LSTM model across all stocks 

yields favorable metric scores, including an R2 score of 0.47, MSE of 95.34, RMSE 

of 7.29, MAE of 6.62, and MAPE of 10.94%. While these scores do not provide 

direct evidence of market inefficiencies, the model's ability to generate reasonably 

accurate results suggests the possibility of existing inefficiencies. The discrepancy 

between the model's predictions and the actual prices can indicate that there may be 

exploitable patterns or factors influencing stock movements that are not fully 

incorporated into the efficient market hypothesis. However, further analysis and 

examination of additional variables would be necessary to make a more conclusive 

determination regarding market efficiency. 

 

5.3 Limitations 

While prediction models provide valuable insights, they will also be prone to 

limitations and difficulties. I will discuss some of the limitations with the chosen 

approach.  

 

5.3.1 Feature Engineering 

One limitation of the analysis is the narrow focus on feature engineering, where only 

the adjusted closing price is considered. While this approach may have its reasons, a 

more comprehensive feature engineering process could potentially yield better results 
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and provide deeper insights into the underlying behavior of the market. By 

incorporating additional relevant features, such as trading volume, technical 

indicators, or macroeconomic data, the models could capture a broader range of 

factors influencing stock prices, which could yield more accurate predictions. 

 

5.3.2 Fixed Window Size 

The utilization of a fixed window size of 60 for both the training and test data is 

another limitation. While this approach captures consistent patterns and relationships 

between historical data and future predictions, it may not be optimal for all stocks. 

Different stocks might exhibit varying behaviors and require different window sizes 

to effectively capture relevant patterns. Exploring adaptive or variable window sizes 

tailored to each stock could enhance the models' ability to uncover meaningful 

insights specific to each stock's dynamics. 

 

5.3.3 Generalization 

One limitation of this thesis is the lack of testing the models' ability to generalize to 

stocks with lower market capitalization or liquidity. The models were primarily 

evaluated on four stocks with relatively high market capitalization, which may not 

adequately represent the broader stock market. It is important to consider that less 

liquid stocks may exhibit different patterns and behaviors due to lower trading 

volumes and limited market activity. Therefore, the findings and performance of the 

models in this thesis may not extend seamlessly to these stocks. 

 

5.3.4 Alternative Models 

Although the used models are based on recommendations from the literature, it is 

important to acknowledge that there are other machine learning models available for 

stock prediction. The selection of models used in the analyses may limit the 

exploration of potentially valuable approaches for identifying meaningful patterns. 

Considering alternative models and comparing their performance could provide a 

more comprehensive understanding of the predictive capabilities in stock market 

analysis. 
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5.4 Future research 

This thesis has primarily focused on exploring different machine learning models best 

suited for the Norwegian stock market. However, future research area should extend 

the complexity of the models. Possible extensions to the performed analysis could 

involve incorporating sentiment analysis in combination with convolutional neural 

networks. By analyzing text from news articles, social media, and other relevant 

sources of stock discussions, the models could account for trends influenced by 

individual investors. Additionally, conducting more extensive feature engineering 

would be beneficial, going beyond mere accuracy improvements, and striving to 

uncover more nuanced patterns and signals that can be utilized for profitable stock 

trading. 

 

Furthermore, to enhance the generalization capabilities of the models, it would be 

important to consider including stocks with varying degrees of liquidity in future 

research. Incorporating less liquid stocks in the training and evaluation process would 

allow for a broader assessment of the models' performance across different market 

conditions. These stocks often exhibit distinct behaviors due to lower trading volumes 

and limited market activity, providing an opportunity to evaluate the models' 

robustness and their ability to generalize beyond highly liquid stocks. 

 

Lastly, simulating different trading strategies using the trained models would be an 

interesting approach to evaluate their practical applicability and assess their 

performance in real-world scenarios. By simulating various trading scenarios and 

analyzing the outcomes, researchers can gain insights into the models' effectiveness 

in generating profitable trading decisions and explore potential avenues for improving 

their performance. 

 

By addressing these research directions, future studies can advance our understanding 

of machine learning models' capabilities in stock market analysis, enhance their 

generalization abilities, and explore their practical applicability in real-world trading 

environments.  
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6.0 Conclusion 

This thesis aimed to explore the predictive performance of five different models, 

namely Ordinary Least Squares, Support Vector Regression, Random Forest, 

Extreme Gradient Boosting, and Long Short-Term Memory networks. The models 

were assessed on their ability to accurately predict the adjusted closing price of four 

stocks: Equinor, Mowi, Telenor, and DNB. The analysis utilized a rolling window 

approach, where each model received 60 days of data for each prediction point, 

covering the period from 01.01.2001 to 01.01.2023. To ensure robustness and prevent 

overfitting, extensive hyperparameter tuning and cross-validation techniques were 

employed. 

 

Evaluation of model performance employed several performance metrics, including 

𝑅2, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑎𝑛𝑑⁡𝑀𝐴𝑃𝐸. Among the models, the Random Forest model 

demonstrated the best performance for predicting the adjusted closing price of Mowi, 

while the LSTM model consistently outperformed across all other stocks and 

achieved the best aggregated results. These findings align with previous research that 

highlights the effectiveness of LSTM models in stock market prediction. Notably, the 

models exhibited decreased performance during periods of exogenous shocks, such as 

the COVID-19 pandemic and spikes in inflation. This suggests that the patterns 

observed in historical prices alone may not adequately anticipate or account for 

sudden market disruptions. 

 

In terms of the efficient market hypothesis, this study does not provide a conclusion 

of an efficient or inefficient market. However, the prediction performance of the 

LSTM model implies that there are potential market inefficiencies that could be 

exploited. Further analysis and investigation of additional variables are necessary to 

draw more definitive conclusions regarding market efficiency. 

 

In summary, this study demonstrates that the LSTM model offers the highest 

prediction accuracy for stocks listed on the Norwegian stock market. The findings 

contribute to the existing literature on stock prediction in various markets and offer 
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insights into potential market inefficiencies. Future research can build upon these 

findings to further enhance prediction accuracy in subsequent models. 
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