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DYSFUNCTIONAL AGILE–STAGE-GATE HYBRID DEVELOPMENT: KEEPING UP 
APPEARANCES 

Increasingly, the development of today’s “smart” products requires the integration of both software and hardware in embedded 
systems. To develop these, hardware firms typically enlist the expertise of software development firms to offer integrated solutions. 
While hardware firms often work according to a plan-driven approach, software development firms draw on Agile development 
methods. Interestingly, empirically little is known about the implications and consequences of working according to contrasting 
development methods in a collaborative project. In response to this research gap, we conducted a process study of a collaborative 
development project involving a software firm and a hardware firm, within which the two firms worked according to contrasting 
development methods. We found that the software firm was gradually compelled to forgo its Agile method, creating a role conflict 
in terms of its way of working. As such, our results contribute to the literature on Agile–Stage-Gate hybrids by demonstrating how, 
in collaborative embedded systems development, hybridization of development methods may cause projects to fail. Our main 
practical implication entails the introduction of the “sequential Agile approach.” 

1. Introduction

Products are becoming more complex, and as a result their development is also becoming increasingly challenging 
(Kaisti et al., 2013; Tura et al., 2017; Kortelainen and Lättilä, 2013; Vatananan and Gerdsri, 2012). Notably, many 
of today’s new smart products, such as smartphones, navigation tools, cars, and even home appliances, involve 
intricate software and hardware. Interorganizational collaborations may serve as a means to cope with the demands 
underlying the development of complex embedded systems (Das and Teng, 2000), as different actors can bring in 
unique and complementary knowledge and skills (Bstieler, 2005). Indeed, collaborations in the form of, for 
example, supplier involvement (Van Echtelt et al., 2008) have been found to improve focal firms’ innovative 
capability and the success of new product development (Faems et al., 2005; Peng et al., 2012; Van Echtelt, 2008). 
This may explain why integrated software and hardware are frequently developed by highly specialized 
cooperating firms. 

Typically, software and hardware firms utilize different development strategies. In answer to the particularities 
of coding complexity, software developers have shifted from plan-driven product development methods to 
fundamentally different Agile approaches1 (e.g., Scrum, XP) (Ågerfalk, et al. 2009; Conboy, 2009; Fowler and 
Highsmith, 2001; Paluch et al., 2020; Annosi et al., 2020). While this transition appears as a logical evolutionary 
step from a software development perspective, it breaks with the long-dominant plan-driven (or “traditional”) 
method, still favored and maintained by many hardware developers. As such, the differences between the two 
development methods may give rise to conflict in collaborative development projects in which software and 
hardware development must go hand-in-hand. 

Scholars have considered the integration or hybridization of Agile and plan-based methods. Several studies 
illustrate, for instance, that elements of an Agile approach may effectively be integrated into a plan-based 
development method (Cooper, 2008; Datar et al., 1997; Cooper and Sommer, 2016; Edwards et al., 2019; Port 
and Bui, 2009) or vice versa (Port and Bui, 2009; Vigden and Wang, 2009; Bianchi et al., 2020). But such insights 
are derived from single-company contexts, where one method is modified to include elements of the other. Other 
studies have suggested that Agile and plan-driven methods may effectively be combined through a process called 
“modularization” (e.g., Lenfle and Loch, 2010; Baldwin and Clark, 2006), in which a project is divided into 
independent modules (Baldwin and Clark, 2006; Ghezzi and Cavallo, 2020) that are then handled by autonomous 
product development teams that can use their own preferred development approach (Austin and Devin; 2009; 
Lenfle and Loch, 2010). While the decomposition of a complex system into discrete subsystems with loose 
coupling might indeed allow for particular projects to be handled more efficiently (Baldwin and Clark, 2006; 
D’Adderio and Pollock, 2014), it seems a less suitable development strategy when there is significant 
interdependence between the different components (Peng et al., 2014), because it might be impossible to truly 
create independent subsystems. In this respect, in the context of collaborative embedded systems development, 
software and hardware are likely developed by different highly specialized firms that need intense cross functional 
and interfirm collaboration to achieve success (Peng et al., 2014).  

1 E.g., in software development, product requirements are very likely to change (significantly) over the course of a project, making for an ill 
fit with the core idea of plan-driven development that system requirements can be reliably established up front. 
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We seek to address this gap in the literature and uncover the implications and consequences of working 
according to contrasting development methods (i.e., Agile vs. plan-based methods) in a collaborative embedded 
systems development project. In fact, very little is known about such a collaborative development context, in 
which diverging development methods are maintained. In response, we conducted an in-depth case study of a 
collaborative embedded systems development project, in which an experienced “Agile” software development 
firm was contracted by a “traditional” incumbent hardware manufacturer. Drawing on a process research approach 
and systems thinking (Langley, 1999; Sterman, 2000; Van de Ven et al., 2000), we uncovered self-destructive 
dynamics that resulted from the use of conflicting development methods. In particular, we found that the software 
firm was gradually compelled to forgo its Agile method, creating a role conflict regarding its way of working. 
Consequently, the software firm resorted to “keeping up appearances” (complying with plan-based milestones 
while trying to maintain Agile development) to please the hardware firm, even though doing so undermined the 
feasibility and quality of the entire project. As a result, by forcing an Agile supplier to comply with plan-driven 
demands, the manufacturer sabotaged its own development.  

Our findings thus show that hybridization of development methods may lead to project failure in collaborative 
embedded systems development. Specifically, our findings contribute to the literature on hybrid development 
tactics that has outlined functional hybrid forms (i.e., successful Agile-plan-based integration within a single 
company context) (e.g., Cooper and Sommer, 2016; Edwards et al., 2019) by pointing to a dysfunctional hybrid 
mode, which manifests in a collaborative context and is driven by keeping up appearances. The formalization of 
such dysfunctional hybridization serves to illustrate boundary conditions for Agile-plan-based integration and 
provides a basis for critical reflection on studies that argue that such integration may readily be achieved (Cooper 
and Sommer, 2016; Edwards et al., 2019). From a practical perspective, based on the rich case data and insights, 
we propose a new project management technique that we call the “sequential Agile approach” and that we 
developed specifically to mitigate the potentially vicious keeping up appearances process. 

2. Plan-Driven and Agile Development in a Collaborative Context 

Arguably, contemporary project management originated from the Manhattan Project, which developed the first 
atomic bomb in the 1940s, followed by the Atlas and Polaris ballistic missile projects of the 1950s (Lenfle and 
Loch, 2010; Meredith and Mantel, 2011). These projects paved the way for what we now refer to as “traditional” 
or “plan-driven” development. This project management technique emphasizes project control and uncertainty 
reduction and is actionable by tools such as PERT, CPM, and the Gantt chart. Even though this development 
tradition is now well over half a century old, it is still widely used, especially for developing physical products 
(Cooper and Sommer, 2016). 

A distinctive feature of plan-driven development is that it is composed of a number of stages that are executed 
sequentially, with a go/no-go decision after each stage (e.g., Cooper, 2001; 2008). Usually, the first stage involves 
determining requirements (and feasibility), and it is followed by development of a design in the second stage. 
Subsequently, this design is executed in the third stage and tested in the fourth, after which the product is released 
in the final stage (and then sometimes maintained). Plan-driven methods thus thrive in a context characterized by 
relatively little uncertainty (although Johansson, 2014, describes how gates may play an important role in reducing 
ambiguity and uncertainty) and in which a project’s requirements can be adequately assessed up front and 
specialized/dedicated teams may handle the various stages of the development process. 

Over time, scholars further developed and customized the plan-driven approach so that it fitted various 
circumstances. For example, depending on a project’s complexity, some stages can (or should) be omitted, 
overlapped, or repeated (Cooper, 2008). In this respect, a complex project is likely to benefit from additional 
development stages compared to a simple development project, which likely requires fewer stages (Cooper, 2008). 
Furthermore, in the case of overlapping stages, also referred to as “concurrent engineering,” a stage may start 
before the previous one is completed, thereby potentially reducing overall development time (Clark and Fujimoto, 
1991; Terwiesch et al., 2002). While this approach increases the risk of redundant work, as the downstream stage 
may apply upstream information that is potentially subject to change later on (Mitchell and Nault, 2007), 
successful implementations of concurrent plan-driven approaches have been found in, for example, the automotive 
industry (Pechmann et al., 2015) and telecom industry (Lin et al. 2008).2  

 
2 Previous research advises against concurrency in cases in which the downstream stage is (highly) sensitive to upstream changes, because 
this circumstance may result in an endless problem-solving cycle (Cantamessa and Villa, 2000; Loch and Terwiesch, 2005). 
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Meanwhile, in the software industry, the need for development speed in combination with the desire to limit 
problem-solving cycles between upstream and downstream stages resulted in the Agile development method 
(Paluch et al., 2020; Annosi et al., 2020; Gonzalez, 2014; Tura et al., 2017). In contrast to the plan-based method, 
this method assumes high levels of uncertainty, because a project’s requirements—often referred to as 
“features”—cannot be reliably determined up front. The approach is characterized by many short development 
iterations (Conboy, 2009; Dingsøyr et al., 2010), executed by a dedicated team to facilitate communication. 
Features are typically added or adjusted until time runs out. As such, Agile development also requires substantial 
customer feedback on the solution offered by the developer (Fowler and Highsmith, 2001). Features that need 
development are placed in a backlog that serves as input for the next iteration—a so-called “sprint” (Dingsøyr et 
al., 2010; Wood et al., 2013). This way of working implies that a software team can only begin a new task when 
the current task is completed, reviewed, tested, and demonstrated to be fully functional and free of bugs, and it 
prevents the generation of unexpected rework in later stages of the project owing to “almost finished” tasks of the 
kind that typically endanger a whole project. 

Table 1 lists key differences in the assumptions and characteristics underlying the plan-driven and Agile 
development approaches. Whereas the Agile method aims to minimize the effects of changes at any time in the 
product life cycle, allowing for flexible/evolving requirements, the plan-driven method aims to minimize 
requirement changes (Karlström and Runeson, 2005; Bianchi et al., 2020; Paluch et al., 2020). In sum, time is the 
fixed variable within an Agile development context, and requirements are allowed to vary, whereas functionality 
is the fixed variable in a traditional development context. 

Table 1. Fundamental assumptions and characteristics for plan-driven and Agile development. 

 Plan-driven development Agile development 

Typical use: Physical product development Digital product development 

Assumed uncertainty: Low High 

Specifications: Determined up front; specifications are fixed 
Determined after each iteration; development 
time is fixed 

Development process: Linear development process Iterative development process 

Team composition: Phase specific (benefits specialization) Integrated team (benefits communication) 

Customer involvement: Typically low High (regular feedback required) 

 
Over time, both practitioners and scholars became interested in developing Agile-plan-based hybrids (Cooper 

and Sommer, 2016; Port and Bui, 2009; Edwards et al., 2019) such as the Agile–Scrum-Gate model (Cooper et 
al., 2019). In practice, under this model each stage of the project uses sprints, or iterations, that are time boxed 
(Cooper et al., 2019). Cooper and Sommer (2018: 19) explain: “an Agile–Stage-Gate hybrid embeds the Agile 
way of working within Stage-Gate stages […], replacing traditional project management tools and approaches, 
such as Gantt charts, milestones, and critical path planning, with Agile tools and processes.” Important differences 
between the Agile–Stage-Gate hybrid and the traditional Stage-Gate approach include much more variable and 
tentative gate deliverables as well as leaner deliverables (e.g., fewer and shorter templates) (Cooper et al., 2019). 
Studies are increasingly reporting the effectiveness of such hybrid models. For instance, Karlström and Runeson 
(2005; 2006) report that both methods can effectively be combined in a single project. Cooper and Sommer (2016) 
also conclude that the two development methods can be compatible, even symbiotic, while stating that more 
research is needed to uncover the advantages, disadvantages, and challenges. Furthermore, Port and Bui (2009) 
conducted simulation experiments to conclude that a mixed development strategy outperforms a single 
development method in some cases. Cooper and Sommer (2018) study manufacturing firms experimenting with 
Agile–Stage-Gate hybrids and find that these companies benefit from increased design flexibility and improved 
productivity. They also find, in a similar vein to Žužek et al. (2020), that hurdles including managerial skepticism 
and dedicated resources must be overcome to reap those benefits. Finally, Edwards et al. (2019) conclude that the 
Agile–Stage-Gate approach is beneficial to larger manufacturing firms and SME manufacturers when it comes to 
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the overall success of new product development—even if only particular Agile project management practices are 
implemented (Žužek et al., 2020). In this respect, there is increasing support for the position that a hybrid 
development strategy may enhance, among other things, cost control, product functionality, team communication, 
and productivity. However, these studies report findings on development contexts in which a plan-based approach 
was “enhanced” with Agile elements—in a within-firm development context.  

As development teams face increasing pressure to develop products better and faster, the need to collaborate 
with key stakeholders, inside as well as outside of the firm, has grown significantly (Pech, Heim, and Mallick, 
2014). Interorganizational collaboration has long been recognized as an important antecedent of innovation 
(Faems et al., 2005; Hofman et al., 2017). Such collaboration may involve, for instance, suppliers, users, and 
customers and/or knowledge institutes (e.g., Belderbos et al., 2004; Van Echtelt, 2008; Brem et al., 2018), and it 
may contribute to both exploitative and explorative innovation (Belderbos et al., 2004). Important reasons to 
collaborate include, but are not limited to, access to complementary assets/knowledge, joint development of new 
resources, or the possibility to share (the sometimes very high) development costs (and associated risks) among 
the different participants (e.g., Faems et al., 2005). A collaborative development setting also involves specific 
challenges, including the mitigation of opportunistic behavior (Gulati, 1995; Alvarez and Barney, 2001), the 
avoidance of coordination gaps (Gerwin, 2004), or the role of contracts in collaborative new product development 
(Hofman et al., 2017). 

We lack, however, an understanding of the dynamics that may arise in the context of collaborative system 
development, in which software and hardware are developed by different actors that maintain potentially 
conflicting development strategies (see Table 1). Although we know about various functional hybrid development 
strategies, these all pertain to a single-firm context. A collaborative setting in which software and hardware 
development must go hand-in-hand adds complexities that remain undiscussed in the current literature. In this 
respect, we do not know whether development hybrids (e.g., the Agile–Stage-Gate hybrid model) are (or are not) 
a solution for a collaborative development project in which the two conflicting development methods are 
maintained in their native form to develop an embedded system. 

3. Research Method 

To explore the implications and consequences of using conflicting development methods in a collaborative 
project, we conducted an in-depth case study (Yin, 2009) on a collaborative embedded systems development 
project in the automotive industry. We adopted a process research approach (Langley, 1999; Langley et al., 2013; 
Van de Ven et al., 2000) and subsequently drew on systems thinking (Sterman, 2000) to uncover the project 
dynamics that emerged over time. This research design is particularly appropriate given our investigation’s 
exploratory and temporal nature, which renders cross-sectional variance studies less suitable.  

3.1. Case Selection 

We selected a development project: 1) that constituted a collaborative embedded systems development project 
involving an Agile software development company that was contracted by a hardware manufacturer and that 
worked according to the plan-driven method; 2) that was part of a mature industry setting, to make sure the project 
was sufficiently representative of a typical embedded systems development project; 3) that had a sufficiently long 
duration (that of the selected project was well over 100 weeks) to allow us to observe patterns and relationships 
over time; 4) about which we were able to consult detailed information over the entire course of the project.  

More specifically, the selected project involved a large and experienced software developer, SoftCo (which 
uses Agile, i.e., Scrum), contracted by an even larger manufacturer, ManuCo (which uses a concurrent plan-driven 
approach). SoftCo has a sound track record in developing highly customized and intricate software. For this 
particular project, SoftCo was hired by ManuCo to develop a custom solution. 

Our primary unit of analysis for this research project is SoftCo. ManuCo was both a supplier to and customer 
of SoftCo. As a supplier, ManuCo provided the software team with the adequate testing setup. And as a customer, 
it specified the boundaries (e.g., through specifications and feedback) within which the software developer needed 
to operate. Indeed, in many development projects that include both software and hardware development, software 
development exists as a subproject in an environment composed of hardware development (Karlström and 
Runeson, 2006), making this a highly relevant setting. 

By adhering to a plan-based approach—for instance, through setting strict up-front specification requirements 
and associated deadlines—ManuCo (unwittingly) enforced plan-based influences on SoftCo’s Agile approach. 
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Furthermore, while ManuCo had a dual role (of both supplier and customer), the power distance between the two 
organizations implied SoftCo had to synchronize to ManuCo’s schedule to a considerable extent. This power 
distance also meant that the immediate consequences of the interaction were especially visible on the software 
developer’s side. 

3.2. Data Collection 

Our data consists of qualitative data in the form of progress meeting presentations; these were supplemented with 
interview data for clarification and triangulation (Yin, 2009). The main data consists of 83 SoftCo progress 
meeting presentations—these detail the progress of the project and emerging challenges or problems for the 
project team—as well as 81 meeting presentations for SoftCo’s senior management team (which oversaw this 
strategically important project). These presentations were delivered over a period of 131 weeks. The weekly 
presentations included the most recent detailed information on topics such as: feature development milestones, 
development velocity and progress, key project activities (feature development and/or testing), requirements and 
specifications, hardware availability, quality issues, technical issues, and so forth. By mainly relying on weekly 
(detailed) presentations, our research design minimized retrospective bias (Golden, 1992). To obtain a complete 
view of the project’s development, we gathered additional data through conducting 11 semistructured interviews 
with various project informants, including the software project leader, software developers, and the manufacturing 
project leader (at ManuCo) (Langley, 1999). Interviews lasted on average 60 minutes, during which interviewees 
were asked to elaborate on the main developments of the project over time, including project planning, (changes 
in) the development method, interaction with the other firm, and problems. All interviews were recorded and 
subsequently transcribed. When necessary, one of the authors went back to validate the findings.  

3.3. Data Analysis 

Data analysis took place in several subsequent steps. First, we constructed a general case narrative from the 
interview data and an initial analysis of the data from the progress meetings. This involved codifying a story that 
served as a preliminary step “aimed at preparing a chronology for subsequent analysis” (Langley, 1999: 695). In 
this respect, the narrative served as a first step in developing a detailed chronological account of the development 
project, pointing to key causal relationships and themes (Langley, 1999). Table 2 offers an overview of the critical 
events and their timing. 
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Table 2. A chronological account of key events. 

Timing (week) Key events 
May 2010 Start of the project; the initial feature adherence plan was developed and agreed upon. 
June/July 2010 First accounts of unrealistic deadlines; growing development backlog. 
September 2010 Failure to meet first mid-term deadline (number of features too low). 
March 2011 Workshop to discuss software validation plan. Lack of input from ManuCo implied that no agreed-

upon validation plan became available.  
March 2011 Decision to focus primarily on feature development, implying no bug fixing, to comply with 

contractual demands. 
June 2011 Realization that solution is inadequate (number of bugs). Testing hardware remains unavailable. 
June 2011 Decision to focus primarily on testing and bug fixing. 
July 2011 Anticipated project deadline not met (solution is unreliable). 
Late 2011–early 2012 Testing hardware becomes increasingly available. 
February–March 2012 Accounts that ManuCo cannot keep up with the development speed of SoftCo. 
June 2012 New project deadline not met (performance issues). 
June 2012 Project received a no-go decision (ManuCo will not use solution). 

 
Subsequently, we systematically analyzed the progress meeting presentations and management team 

presentations. Through doing so, we produced a detailed event list (database) of the project’s weekly dynamics. 
Next, we coded the event list to uncover relevant themes or project activities during the course of the development 
project. The resulting codes, including definitions and example quotes, are presented in Table 3.  
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Table 3. Coding scheme. 

Code Description Example quote from progress presentation 
Development backlog Development backlog compared to progress 

as scheduled in project proposal/agreement. 
Typically, mentions that indicate that the 
project is behind schedule. 

“Not enough front-end development progress to meet the week 42 
deadline” (week 13) 
“Not all expected features included” (week 57) 
 

Quality issues Quality issues, such as (high levels of) bugs 
and/or mentions of robustness/performance 
of the solution. 

“Large backlog of 10.1 defects will directly impact stability of 
10.2. Rate of resolution too slow” (week 6) 
“Robustness of the software is not good” (week 58) 
 

Possibility to test (and fix) 
features 

The (non)availability of testing equipment 
needed for testing the software solution on 
ManuCo’s hardware. 

“Lack of validation materials (cars)” (week 61) 
“Test materials not available” (week 65) 

Lack of specifications from 
ManuCo 

Unclear project specifications and/or 
integration specifications. 

“First software in product unclear” (week 1) 
“No integration plan” (week 57) 

Pressure on feature 
development 

Pressure on SoftCo to comply with 
contractual obligations. 

“High pressure put on SoftCo to respect next ManuCo milestones 
in terms of content and deadlines” (week 58) 

Regeneration of issues Bug proliferation process that results from 
undetected issues in software solution. 

“Number of open issues […] is increasing” (week 50) 
“More issues than expected” (week 68) 

Client (ManuCo) overload Inability of ManuCo to provide timely 
feedback to SoftCo. 

“Nonavailability of up-to-date [hardware]” (week 100) 
“[Client] seems not to be able to handle complexity of [solution]” 

 
The coded event list and interview data pointed to various project phases, in which a particular project activity 

or theme dominated others. Notably, the conflict—and associated change in dominance—between the quantitative 
dimension of the development (i.e., “development backlog”) and its qualitative dimension (i.e., “quality issues”) 
stood out. Figure 1 denotes this interaction over time. More specifically, Figure 1 illustrates the number of 
mentions, depicted as an eight-week moving average, that were made of the development backlog (in black) and 
quality issues (in grey) during SoftCo’s core team’s weekly progress presentations. Using temporal bracketing 
(Van de Ven and Poole, 1995), we were able to divide the total stream of events into four episodes (A to D) to 
characterize further the (sequence of) key events and related themes that defined this development project. Note 
that the different episodes in Figure 1 do not coincide with standard (plan-driven) phases; instead, the episodes 
each mark a significant change in focus or activity within the software development project. 
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Fig. 1. Episodic phases underlying the development project, in terms of quantity versus quality of the solution. 

 
In addition, we drew on systems thinking (Sterman, 2000) to identify the core mechanisms underlying the 

dynamics of these episodic phases and their causal connections. To better understand the observed processes, we 
developed a causal loop diagram (CLD). These are typical in system dynamics (Sterman, 2000) and increasingly 
common in management studies (e.g., Van Oorschot et al., 2013; Perlow et al., 2002). Individuals and 
organizations and the interactions between them constitute dynamic feedback systems that generate complex 
behavior (Lin et al., 2006; Metallo et al., 2021), and CLDs are a powerful tool for representing the core dynamics 
within such systems in terms of feedback (Lin et al., 2006). As such, the use of CLDs has a long tradition in 
academic research. 

4. Findings 

4.1. Case Narrative 

The findings are presented as follows. First, we present the case narrative according to the identified temporal 
brackets. Figure 1 illustrates the four main brackets or episodes (A to D). As we have explained, this figure shows 
the evolution of SoftCo’s focus on its two core activities, namely development (quantity, development backlog) 
versus testing (quality, bugs/issues). The associated narrative aims to clarify critical dynamics that were triggered 
by the collaborative development project and subsequently grounded the feedback loops in the CLD (see Figure 
2). Using this causal loop diagram, we codified the potentially vicious keeping up appearances process.  
  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

A
ve

ra
ge

 o
bs

er
va

tio
ns

Project week

Development 
backlog

Quality issues

Episode A.
Understanding the full 
scale of the software 

system and its features.

Episode B.
Getting control 

of the 
development 

backlog.

Episode C.
Getting control of 

quality issues.

Episode D.
Trying to stabilize the 

software system.

2010 2011 2012



- 9 - 

 
Fig. 2. Causal loop diagram of the keeping up appearances process. The labels B and R denote the nature of the feedback loop: balancing and 
reinforcing, respectively; the + and – denote the polarity of the causal link, while the denotes a substantial delay (see Sterman, 2000). 

4.1.1.  Episode A: A false start due to role conflict 

The project commenced in May 2010. An initial feature adherence plan was developed in the requirement 
definition phase. This plan stated, among other things, the number of features that needed to be developed as well 
as the deadlines for delivering those features. In this respect, the first 10 features were planned for September 
2010, and feature number 150 (the final feature) was scheduled for July 2011. After agreeing on the number and 
nature of specifications as well as on their corresponding deadlines, the contracted software company and its client 
(the hardware company) started development. As tasks among the partners were divided in a modular fashion, the 
plan seemed to allow SoftCo’s team to develop using an Agile approach without too much interference from 
ManuCo’s plan-driven approach. More specifically, ManuCo attempted to create discrete subsystems that allowed 
independent teams to work on the project. As such, after the requirement definition phase, both organizations 
started to work on the design concurrently. 

Nevertheless, developing in an Agile manner can only be truly effective if each sprint (or feature development 
cycle) consists of both development and testing (including customer feedback). Given the nature of this 
collaborative embedded systems development project, testing required the input of validation equipment (i.e., 
hardware) that ManuCo developed. Because ManuCo did not work with short iterative cycles (e.g., through rapid 
prototyping), but with one long design phase, SoftCo was forced to wait for this validation equipment to become 
available. Although some testing and bug fixing was possible (mainly through simulations), a truly thorough 
analysis of the developed features was not possible, which kept SoftCo in the dark about the actual quality of its 
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work. This situation was also acknowledged during an interview with the project manager of the software team. 
He reflects:  

“Actually, the whole project started too early. Against our better judgment, we started the 
project, even though everyone knew the [testing] resources were not available.” 

SoftCo’s core team meeting notes also mentioned in this regard: 
“Some impact on project milestones due to unreliable estimates and resource [i.e., 
hardware] availability” (Core team meeting, July 2010). 

As a result, the software team resorted to “sprints of faith” (Figure 2, “sprint of faith” loop). This implies that 
features were being developed without thorough testing in an attempt to keep the development speed in line with 
expectations and contractual obligations, thereby significantly increasing the length of their Agile iterations. This 
situation finds its origin in role conflict (Katz and Kahn, 1978), whose presence was perceived by the software 
team. Role conflict occurs when there are incompatible demands placed on an actor. That is, role conflict is 
experienced when “we find ourselves pulled in various directions as we try to respond to the many statuses we 
hold” (Macionis et al., 2010: 129). In other words, role conflict concerns the management of two (or more) 
pressures in a context in which compliance with one pressure will make it difficult to comply with the other 
pressure(s) (Katz and Kahn, 1978). 

In this respect, the more the software company attempted to comply with the plan-driven demands of its client, 
the more it forwent its Agile, highly iterative development cycles (which are required for successful development). 
Early on in the project, this tension was fueled significantly by plan-based contractual agreements on 
specifications and associated deadlines. This situation caused a significant delay in the project quite soon after it 
had started—that is, a false start. The “feature development rate” was lower than initially planned owing to the 
many “undetected issues (bugs),” and this resulted in a rapidly increasing feature development backlog. As 
ManuCo’s project manager observed: 

“I remember the presentation from SoftCo stating the next deliveries would be a little 
delayed but after that we would make up some time and in June 2011 everything would be 
done. This was not […] the case in the end…” 

Notably, as the gap between planned and actually developed features kept increasing, so did the pressure on 
SoftCo to adhere to the (plan-driven) schedule. This situation triggered Episode B. 

4.1.2.  Episode B: Keeping up appearances over bug proliferation 

The delay resulted in intense discussions and tension between SoftCo and ManuCo. The latter insisted on 
maintaining the project scope (150 features) and deadline (mid-2011). SoftCo replied that this was simply 
impossible due to the size and complexity of the desired solution. Nevertheless, in an attempt to respond to 
ManuCo’s pressure and contractual demands, a period of gear-up was announced. During this episode, SoftCo 
mapped the backlog, and additional development resources were allocated. The emphasis at this stage was entirely 
on feature development (i.e., quantity over quality):  

“Feature development until [April 2011], so no bug fixing” (core team meeting, March 
2011). 

By directing all attention to feature development, the team was keeping up appearances (Figure 2, “keeping 
up appearances” loop) in an attempt to keep ManuCo satisfied and, as such, reduce tensions by “adhering to” 
contractual demands. Although the team knew that feature quality would likely turn out to be (too) low without 
thorough testing, the feature development rate would at least look good on paper. SoftCo reflects:  

“A part of the problem was that many features were incomplete or not finished. They 
didn’t work or only partly [worked]. Therefore, we decided to finish these features first, 
resulting in [a] full-feature, full-bug [solution].” 

Testing would only be done after all features were developed. However, development was increasingly 
hampered because there were already many problems with the software (i.e., bugs) and because (parts of) features 
were strongly interrelated. In other words, a vast number of bugs were incorporated into newly developed features, 
because the latter were based on features that had been developed earlier in the project and already suffered from 
low quality: 

“The software behaves strangely in [the product]” (Core team meeting, June 2011). 
“The performance is unacceptable” (Core team meeting, June 2011). 
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In other words, Episode A was bound to result in undetected issues (bugs), restraining the “actual number of 
features developed” and increasing the development backlog. This increased the “pressure on feature 
development,” as the team had to meet plan-driven contractual agreements. As such, resources were increasingly 
directed toward feature development—this was an attempt to boost the feature development rate—at the cost of 
the “possibility to test (and fix) features.” As resources constitute a zero-sum game, resources dedicated to 
development were not available for testing, and vice versa. While this full-feature, full-bug “strategy,” initiated 
to keep up appearances, initially had a positive influence on the feature development rate and, therefore, on the 
actual number of features developed, this approach was subjected to strong policy resistance (Senge, 1990; 
Sterman, 2000). More specifically, the quantity of undetected issues (bugs) also dramatically increased as a result 
of a structural lack of bug testing/fixing. However, the feature development rate at this time hid this fact (Figure 
2, “keeping up appearances” loop). Over time, the accumulation of software bugs had an increasingly negative 
influence on the actual number of features developed. 

In developing representative tests to detect bugs, SoftCo remained dependent on ManuCo’s validation 
equipment. More specifically, this equipment would allow SoftCo to test the software on the latest available 
subcomponents. Nevertheless, at this stage, such validation materials were still not a development priority for 
ManuCo, which was directing its focus toward other hardware involved in the development. This was also 
identified during one of the interviews with a SoftCo project manager: 

“There was no one at ManuCo who was responsible for organizing all the validation 
equipment and bringing it up to date.” 

Moreover, new software bugs were generated by old ones that remained undetected. This “bug proliferation” 
process is self-reinforcing: the more undetected bugs there are in a piece of software, the higher the probability 
that they will spread and generate even more bugs (Lin et al., 2008). This process is especially destructive if there 
is a strong interdependence between features. In our case study, the full-feature, full-bug approach, initiated by 
the incompatible development methods and fueled by role conflict (Episode A), drove an inclination on SoftCo’s 
part to keep up appearances. This self-destructive strategy, intended to keep the client satisfied, initiated the 
vicious bug proliferation loop (Figure 2, “bug proliferation” loop). As a result, the actual number of features 
developed fell even further behind schedule. SoftCo was forced to keep on developing features as a result of its 
contractual agreements with ManuCo (specific features with associated deadlines) but was increasingly frustrated 
in executing this task due to the limited availability of validation resources. 

Meanwhile, ManuCo did not yet have a validation plan describing how to precisely integrate the software into 
its hardware solution. Such plans should detail integration steps and typically also prescribe which components 
have priority over others, all of which would have been valuable input for SoftCo’s development. One of SoftCo’s 
managers mentioned during an interview: 

“In March 2011, together with ManuCo, we organized a workshop to look at the 
validation plan and to decide which features needed to be delivered first to validate the 
system. This workshop was a total failure because [ManuCo] did not have a plan […]”  

4.1.3.  Episode C: Firefighting 

By the time the validation equipment and plan from ManuCo finally became available to SoftCo (following the 
plan-driven schedule of the hardware developer), the actual status of the project also became painfully clear. Bugs, 
which had remained hidden for an extended time, were discovered at a truly alarming rate. Bugs that were solved 
led to the discovery of yet more bugs. Testing became an extraordinarily tedious and inefficient ordeal, so much 
so that the decision was made to stop it completely:  

“[At a certain point] I said to the team, stop with testing because we know there are 1,200 
bugs. We first need to cut these back to 600… That will take us four weeks. After that you 
are allowed to test again.”  

The software team was unmasked at this stage, as many (nested) problems within the software solution were 
exposed to the hardware developer. Whereas the software team was initially pressed to develop more features 
while having a decreased ability to test them, this next phase was characterized by an opposing strategy: full 
emphasis on bug testing and fixing (Figure 2, “firefighting” loop). This drove the “firefighting” loop aimed at 
combating the many undetected issues that resulted from the keeping up appearances and bug proliferation loops. 
This further delayed the collaborative project and resulted in Episode D. 
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More specifically, fixing issues to stabilize the system took almost 75% of the time it took to develop all 
features (39 weeks compared to 54 weeks), which was much longer than planned. As a result, despite all SoftCo’s 
increased efforts (e.g., overtime and an increase in capacity), the deadline was severely missed. 

4.1.4.  Episode D: What goes around… 

Although many bugs were fixed during the previous episode, the stability and performance of the overall solution 
left much to be desired. SoftCo therefore decided to give top priority to stabilizing the system in an attempt to 
finish the project before June 2012 (a full year later than the initially agreed completion date). To finish the project 
before the new deadline, SoftCo significantly prioritized the project, including by allocating additional resources 
to it. And with the bug proliferation loop under control, SoftCo was finally able to work in an Agile manner. As 
a result, the feature development rate increased substantially. Nevertheless, the improved workflow now strained 
its client, ManuCo, which also needed to step up its reviewing activities. ManuCo reflects: 

“Receiving new software to validate every day was a nightmare for the team.” 
As a result, the problems around the availability of validation equipment remained, though now they were 

occurring because ManuCo could not handle the increased inflow of work from SoftCo. ManuCo realized too late 
that the validation of the system would require a significant amount of work, and it had not considered such a 
workload in its schedule. This situation again delayed the feedback to SoftCo, once more frustrating development 
speed. Often, testing equipment was not available on the requested date, or hardware was equipped with the wrong 
specifications. SoftCo’s core team meeting notes state, among other things: 

“[Hardware is equipped with the] wrong software for testing” (core team meeting, 
February 2012) 
“Nonavailability of up-to-date test equipment” (core team meeting, March 2012). 

This “what goes around comes around” situation (Figure 2, “what goes around…” loop), is the culmination of 
the keeping up appearances process. As a whole, this process substantially diminishes the chances of success in 
collaborative development projects that try to combine Agile and plan-based development methods. 

In the end, this situation caused further delays and disruptions, and the deadline was missed once more. 
SoftCo’s solution received an overall no-go because its performance was insufficient. The missed deadline had 
significant negative financial implications for both firms. One of SoftCo’s engineer’s recalls: 

“In [June] we received a no-go for the software part, which was a complete crisis for us.” 
The complete causal feedback structure set out in Figure 2, which includes five main feedback loops and 

reflects a “shifting the burden” archetype (Senge, 1990), shows the dynamics that may arise due to the interaction 
of plan-based and Agile development methods in the context of collaborative system development. The causal 
loop diagram (Sterman, 2000), grounded in the case narrative and temporal brackets of the development project, 
identifies and explains the generative mechanisms and patterns underlying the observed development process. 

5. Discussion and Implications 

The complexity of today’s embedded product development implies that software and hardware are often 
developed by different highly specialized firms that typically adhere to potentially conflicting development 
techniques. This study set out to investigate the dynamics underlying such collaborative embedded systems 
development. More specifically, we investigated a development context that is arguably becoming increasingly 
common, in which a plan-based hardware developer collaborates with an Agile software developer to develop 
complex embedded systems (Karlström and Runeson, 2006). Using an in-depth case study from the automotive 
industry, we observed the dynamics arising from the interaction between plan-based and Agile methods. 
Subsequently, by applying a process research approach that included event-based analysis, temporal bracketing, 
and systems thinking, we formalized a causal loop diagram (Figure 2) that captures the keeping up appearances 
process. Our generic theory, unfolding over four main periods, describes how tensions arise in such a collaborative 
development setting and how these tensions damage the project.  

While conclusions drawn from a single case study require some caution, the findings presented in this paper 
provide important insights into the dynamics that underlie keeping up appearances. The process finds its origin in 
role conflict caused by mismatches between the development methods. Once initiated, a series of events unfolds 
along a self-destructive path. Notably, Episode B is key, as this period is characterized by self-reinforcing 
feedback. The negative influence of the keeping up appearances process grows exponentially during this period, 
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and therefore determines to a great extent the additional effort required to fix and finish the development project 
later on (if this is still possible at all). 

Development approaches that combine plan-based and Agile methods are often referred to as “hybrid” 
development methods (Ghezzi and Cavallo, 2020; Paluch et al., 2020), or, more specifically, as Agile–Stage-Gate 
hybrids (Sommer at al., 2015; Edwards et al., 2019; Cooper et al., 2019). Examples of functional hybrid 
development approaches are becoming increasingly widespread (e.g., Cooper and Sommer, 2016; Karlström and 
Runeson, 2005, 2006; Edwards et al., 2019; Žužek et al., 2020). Some scholars suggest making a plan-driven 
approach more Agile by, for instance, introducing rapid prototyping (Cooper, 2008; Cooper and Sommer, 2016; 
Datar et al., 1997). Others propose making an Agile approach more plan driven by, for instance, changing the 
length of the iterative cycles or sprints (Port and Bui, 2009; Vigden and Wang, 2009). Yet other scholars advocate 
modularity, which allows different modules to be developed by utilizing different methods (Austin and Devin, 
2009; Lenfle and Loch, 2010; Loch and Terwiesch, 2005). We contribute to the literature on Agile–Stage-Gate 
hybrids by studying a project that illustrated high interdependence between the different parts (implying a low 
possibility for modularity3). Furthermore, different highly specialized organizations working in collaboration 
developed software and hardware, maintaining conflicting development methods as they did so. We find that such 
a development context renders existing functional hybrid solutions unattainable (Kaisti et al., 2013). In this 
respect, our findings contribute to the literature by detailing a dysfunctional hybrid approach and serve to illustrate 
that plan-based and Agile approaches, in the context of collaborative software and hardware development, cannot 
readily be combined (cf. Cooper 2016; 2017; Edwards et al., 2019; Žužek et al., 2020). Our findings also imply 
that more research is required to uncover the boundary conditions for hybrid development tactics, notably in 
collaborative settings. 

While product development success stories and best practices are widespread in the literature (e.g., Kahn et 
al., 2012), studies on how firms or projects fail are relatively rare (some notable examples are: Ring and Van de 
Ven, 1994; Tripsas and Gavetti, 2000; Van Oorschot et al., 2013; Walrave et al., 2011). Yet detailed knowledge 
of the reasons underlying failure might prevent managers from falling into similar traps. Our study contributes to 
this relatively small yet important body of knowledge by detailing a potentially vicious process by which a 
collaborative systems development project fails. That is, our theory serves to explain why a contracted software 
firm might deliberately follow a potentially self-destructive path through a series of seemingly rational decisions 
and actions.  

Our theory responds to a long-standing call by Dougherty (1996), who argues that, despite a few notable 
examples (e.g., Lewis et al., 2002), scholars are failing to capture the tensions that underlie new product 
development adequately. Tensions have long been considered in organization and management science (e.g., 
Magnusson et al., 2009; Sheremata, 2000). In this respect, many studies highlight the need for managers to cope 
with conflicting and fluctuating demands (e.g., Dougherty, 1996; Lewis et al., 2002). Here, we focus specifically 
on tensions that may arise due to the interaction of plan-based and Agile development approaches in the context 
of a collaborative embedded systems development project. 

5.1. Managerial Contributions 

This study contains important insights for managers who are assigned to collaborative embedded systems 
development projects that involve a software developer and a hardware developer (cf. Tiberius et al., 2021). First 
of all, our in-depth case study illustrates in great detail how the project was effectively hindered by the 
combination of the two development methods favored by each party and the nature of the buyer-supplier 
relationship. This configuration resulted in a process that we call “keeping up appearances,” in which the software 
company was forced to “adopt” a conflicting development strategy to manage the external pressure from its client. 
Interestingly, forcing an Agile supplier to comply with plan-driven demands makes the manufacturer (buyer) 
liable to sabotage its own development. In this respect, managers of such complex projects, informed by our 
results, should be able to better formulate a viable development strategy. 

But what would such a strategy look like, given that the two methods seem to be fundamentally incompatible? 
One of the main advantages of the short cycles in Agile development is frequent testing. Although short cycles 
do not prevent software bugs or issues, these are discovered much earlier, and therefore the reinforcing issue-

 
3 In this respect, our findings also serve to confirm our expectation that it is unlikely that modularization works for collaborative embedded 
systems development. 
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regeneration process (i.e., bug proliferation) is prevented (see Figure 2). Significant reductions of 40-90% in 
defect density are reported when teams perform frequent tests, as they do under Agile approaches (Nagappan et 
al., 2008). Our case analysis illustrates that SoftCo took about 39 weeks to try to fix all issues (Episode C and a 
part of Episode D) in an attempt to deliver a stable system to ManuCo. A 40% reduction of this time implies only 
23 weeks would have been needed for testing. A 90% reduction implies only four weeks of testing. Such a 
reduction could have prevented the project from being unsuccessful. Of course, frequent testing is only possible 
when validation equipment is available. Indeed, the lack of such equipment in the early phases of the collaborative 
project was a major enabler of keeping up appearances (Figure 2). Interestingly, if SoftCo had delayed the start 
of its software development and waited for the validation equipment to become available, it could have maintained 
an Agile development approach. It is very likely that frequent testing would have subsequently reduced the time 
needed for fixing issues and stabilizing the system (Nagappan et al., 2008). This is depicted in Figure 3. In this 
respect, the Agile approach, initiated after a delayed start, is more likely to result in a fully operational system at 
the deadline, through a huge reduction of time and effort spent on fixing (regenerated) issues. Thus, the delayed 
start could have been used to wait for validation equipment to be developed. This potentially functional hybrid 
strategy allows both hardware and software teams to work with their own preferred method, thereby preventing 
the software team from keeping up appearances. 

 
Fig. 3. Delayed start of the software team: sequential Agile approach. 

As such, a sequential Agile approach in which the software team has a delayed start and waits for test 
equipment to be completed by the hardware team allows the software team to work in short cycles that include 
frequent testing, thereby preventing an escalation of issues. The time gained by avoiding these issues is not used 
to finish the project earlier but to delay the start of the software team’s work. This approach differs from the 
existing hybrid strategies described in the literature thus far. First, it differs from the modularizing strategy as it 
allows for a close integration between software and hardware development, which is problematic under a 
modularization approach. Moreover, this approach, building on the Agile–Stage-Gate hybrid approach, could 
make the latter better applicable to collaborative settings. Of course, more research is needed to test such an idea 
for collaborative development in which both hardware and software teams are allowed to follow their own 
preferred development approaches. 

6. Limitations and future work 

Naturally, the fact that our findings are the product of a single in-depth case study has implications on the 
generalizability of the theory that we have developed (Dougherty, 1996). The process theory developed in this 
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paper was grounded in a particular collaboration. However, we postulate that our findings are relevant to complex 
development initiatives that entail a high level of interdependence and in which a plan-based hardware developer 
contracts an Agile software developer. Other forms of cooperation could potentially result in different processes 
for which further research is needed.  

Here, we studied a development context that involved a plan-based hardware manufacturer. Cooper and 
Sommer (2016) and Edwards et al. (2019) argue that the plan-based approach (i.e., Stage-Gate) may be replaced 
by a hybrid Agile–Stage-Gate model. This implies that the plan-based approach is enriched with Agile elements. 
One might wonder whether the Agile–Stage-Gate model is, as such, more compatible with the native Agile 
method—perhaps even compatible enough to prevent the keeping up appearances process from happening. We 
leave this as an open question for future work. 

Future work may also focus on the trust-versus-control aspects in collaborative embedded systems 
development projects (Bstieler, 2005). Our case seems to exhibit a lack of trust between the actors involved, as 
imposed contractual obligations were guiding—and limiting—the (software) development. Previous research has 
already established that trust is a central element in any relationship (Smets et al., 2013). However, the impact of 
trust policies relative to that of control policies is unknown in a collaborative embedded context. Perhaps the 
keeping up appearances process can be mitigated if formal controls (e.g., contracts) and informal controls (e.g., 
trust) are better balanced over time (see, e.g., Hofman et al., 2017; Smets et al., 2013). 

7. Conclusion 

This research set out to uncover the dynamics that may underlie complex collaborative embedded systems 
development projects in which conflicting development methods are maintained. We found that such projects may 
be subject to the keeping up appearances process, which is driven by role conflict and severely diminishes a 
project’s chances of success. Building on the insights we developed, we propose the “sequential Agile approach,” 
a development strategy that aims to counteract the vicious processes that our case study exposed. This potentially 
functional hybrid strategy allows the use of both plan-based and Agile approaches in one collaborative project, in 
which the Agile team delays the start of its part of the project until the plan-based team has made sufficient 
progress on its part. 
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