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ABSTRACT

In complex systems that can be found in semiconductor manufacturing, linear programming production
planning models must consider many products with hundreds of production steps to be performed on
hundreds of machines. To deal with this complexity and solve problems with flexible lead times in a
reasonable CPU time, the new concept of timed route is introduced. In a timed route, each production
step of a product is associated with a specific time period. A new formulation relying on timed routes is
then proposed. Because the number of feasible timed routes can grow exponentially, a column generation
approach is presented. Algorithms to generate relevant timed routes are given, and their complexity an-
alyzed. Computational experiments on industrial data with different lead time profiles, fixed lead times
and flexible lead times, show that computational times are very significantly reduced when using our
approaches, by 92% on average and even divided by more than 1,000 in some cases. The advantages of

timed routes are also discussed.

© 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In many industries, products have to go through a series of pro-
duction steps (called a route) to be completed. When machines
are partially flexible, i.e. can process steps of different products
or different steps of the same product (reentrant flows), control-
ling the production flows is difficult. When the cycle times of the
routes are long (several weeks), production planning is needed to
determine when and how many products should be released, and
how they should be processed in order to meet demands on time.
This is particularly true in semiconductor manufacturing facilities.
In the integrated circuit supply chain, raw wafers need between
two and three months to be completed. There might be hundreds
of products and each requires hundreds of production steps to
be completed, which must be processed on hundreds of partially
flexible machines. Machines are grouped in a limited number of
workcenters, and products have to pass many times through the
same workcenters. Hence, it is often critical for production plan-
ning models to consider internal production flows to deliver prod-
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ucts on time with reasonable cycle times while satisfying the ca-
pacity of machines.

One of the classical ways of modeling congestion in front of
machines is to consider both fixed lead times and limited capacity.
The limited capacity models the amount of time a machine can be
used in a period, while lead times model more exogenous param-
eters such as the waiting time and the scheduling of products on
the machines, see Section 2.3. A fixed lead time is the number of
periods that are needed to entirely process a given quantity in a
production step in the route of a product. Several assumptions are
considered in the literature: (1) The value of the lead time does
not depend on the production quantity, (2) The capacity consump-
tion is only considered in the last period of the lead time, and (3)
The processing time of a production step is assumed to be smaller
than one period. For example, let us consider the products in a
production step with batching (e.g. heating in a oven) that will of-
ten wait for a complete batch before starting. Hence, the fixed lead
time of the production step will be equal to one or more periods
although its processing time is smaller than one period. Note that
fixed lead times can be equal to zero, in particular for production
steps that are short and need to be grouped with other production
steps to exceed one period. In this paper, we also consider flexi-
ble lead times which, although they require much more complex
constraints to be modeled, help to determine more efficient pro-
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duction plans, which better use the machine capacity by allowing
some products to wait more than the fixed lead time in a step if
necessary. However, the resulting linear program may require very
long computational times, up to several hundred hours, as shown
in the numerical results of Section 6. Another drawback of allowing
flexible lead times is that, because lead times have no maximum
limits, products may remain too long in the manufacturing system
and have very long cycle times. To solve the problem in reasonable
computational times, we propose the concept of timed routes to
address the multi-product multi-step capacitated production plan-
ning problem. In the timed route of a product, each production
step of the route of the product is assigned to a period in the plan-
ning horizon. A major advantage of timed routes is that the cycle
time of products can be limited, by only considering timed routes
with a maximum number of periods between the period assigned
to the first step of the route and the period assigned to the last
step of the route. Note that setup costs and times are not explic-
itly considered in this paper.

This paper is structured as follows. Section 2 proposes a litera-
ture review on related problems such as multi-level lot sizing, inte-
grated lot sizing and scheduling and semiconductor manufacturing
production planning, together with an overview on column gener-
ation approaches. Then, in Section 3, mathematical models for pro-
duction planning with fixed lead times and flexible lead times are
presented. In Section 4, a reformulation based on the new concept
of timed routes is proposed. When modeling flexible lead times
instead of fixed lead times, the number of timed routes becomes
exponential. Hence, a column generation approach is presented in
Section 5 to solve the problem with flexible lead times. Computa-
tional experiments on industrial data are conducted in Section 6,
which shows the efficiency of the timed route reformulation. Con-
clusions are drawn and future research directions are provided in
Section 7.

2. Literature review

In this section, lot-sizing problems that show similarities with
the multi-product multi-step production planning problem are first
discussed. However, one main difference is that setup costs and
times are not considered in the multi-product multi-step produc-
tion planning problem. Still, the classical formulation of the prob-
lem is really close to a multi-level dynamic lot-sizing problem. Due
to the detailed production steps, it is also somehow related to in-
tegrated lot-sizing and scheduling problems, although it cannot be
considered as an integrated problem. Because it considers multi-
product multi-step production planning problems, a review on the
semiconductor manufacturing literature on production planning is
then given. Anticipating the need to deal with a large number of
variables, a short summary on column generation approaches in
production planning completes this section.

2.1. Multi-level dynamic lot-sizing

Dynamic lot-sizing problems are classical problems in produc-
tion management, introduced by Wagner and Whitin (1958). Dy-
namic lot-sizing aims at determining the production quantities to
start on a planning horizon discretized in periods to meet the de-
mand while minimizing inventory, setup and other possible costs.
A generalization of this family of problems is the multi-level ca-
pacitated lot-sizing problem (MLCLSP), proposed by Billington, Mc-
Clain, and Thomas (1983). Multi-level lot sizing is generally sepa-
rated in three branches depending on the Bill of Materials (BOM)
structure (note that other specific BOMs may occur). If each prod-
uct has at most one predecessor product and at most one suc-
cessor product, it is called production in series. In an assembly
structure, each product has at most one successor, whereas, each
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product has at most one predecessor in a divergent structure. Lead
times can be used at every level, not only to model capacity (which
is already considered in the capacitated case), but also to consider
various exogenous phenomena. The MLCLSP was solved using var-
ious heuristics, from Lagrangian heuristics to metaheuristics. The
reader is referred to Buschkiihl, Sahling, Helber, and Tempelmeier
(2010) for a literature review on dynamic capacitated lot-sizing
problems.

The problem we want to address is in the family of serial multi-
level capacitated lot-sizing problems with lead times without setup
costs or times. Not only fixed lead times but also flexible lead
times will be considered. Another characteristic of our problem is
the shared capacity between levels.

2.2. Integrated lot sizing and scheduling

Because multi-step production planning seeks to grasp the full
complexity of internal production flows rather than approximating
the cycle times for each product, it can be compared to models
that integrate two decision levels such as integrated lot-sizing and
scheduling models. Although our multi-product multi-step pro-
duction planning problems do not explicitly integrate sequenc-
ing decisions on machines, routing constraints are partly taken
into account by considering lead times for the production steps.
Lead times ensure that two consecutive steps in the route of a
product are performed in the same period or in two different
periods.

Integrated lot-sizing and scheduling problems have often been
studied, according to the review of Copil, Worbelauer, Meyr, and
Tempelmeier (2017). While lot sizing aims at meeting the de-
mand at the lowest cost, scheduling corresponds to assigning and
scheduling products on machines while minimizing the makespan
or other objective functions. Such a junction between operational
and tactical problems can lead to high complexity. Solving the full
integrated mathematical model with multiple machines and mul-
tiple steps is often unrealistic. For this reason, solution methods
can be separated in three kinds: Heuristics which solve the full
problem (e.g. Gomez Urrutia, Aggoune, & Dauzere-Péres, 2014),
hierarchical methods which solve the problems sequentially (e.g.
Liberatore & Miller, 1985), and iterative methods (e.g. Dauzeére-
Péres & Lasserre, 1994). In the literature, focus may vary between
scheduling oriented modeling and lot sizing oriented modeling.
Furthermore, various types of heuristics are proposed depending
on the problem to solve.

In a sense, multi-product multi-step production planning prob-
lems can be seen as production planning problems that inte-
grate intermediate production decisions. Contrary to the inte-
grated lot-sizing and scheduling problems, the uniformity of the
decision variables avoid adversarial decisions between the two
levels.

2.3. Production planning in semiconductor manufacturing

As discussed in Section 1, our multi-product multi-step pro-
duction planning problem is particularly relevant in semiconduc-
tor manufacturing. Hence, the literature on production planning
in semiconductor manufacturing is the most related to our prob-
lem. Note that most research papers in this context only use lin-
ear programming. Integer variables are not considered due to the
dimension and complexity of the industrial problem. A critical
issue in production planning in semiconductor manufacturing is
the modeling of the complex reentrant production flows and of
the congestion on machines. Congestion is modeled in three main
ways.

1. The first and most straightforward way to model congestion is
to use fixed lead times, which are equivalent to the ones used
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in multi-level lot sizing. Although lead times fail to seize the
dynamic of congestion, they can model frequent delays happen-
ing due to fixed bottlenecks in the production step. This is for
example the case in a workcenter that is central in the produc-
tion flows and regularly overloaded, or in production steps that
require auxiliary resources not always available in the period.
The dynamics of the congestion, that can fluctuate due to the
workloads in each workcenter, is taken into account by the ca-
pacity constraints that limit the quantities to be processed in
one period in a workcenter. Lead times are usually determined
based on historical data. Fixed Lead Times are easy to model
and introduce low complexity but they have several drawbacks.
In particular, the workload is not balanced on all periods of the
lead time but is only counted in the last period. In addition,
production flows are not flexible and the values of the lead
times are critical. If the lead times are too short, production
flows must be strongly reduced in order to satisfy capacity con-
straints. Nevertheless, fixed lead times are convenient and can
be improved by using non-integer fixed lead times as shown in
Kacar, Ménch, and Uzsoy (2016).

. An important fact is that lead times are not exogenous param-
eters. In fact, they directly depend on the production flows of
products which compete for the same resource in a period. In
short, lead times depend on the production plan. To address
this circularity between production planning and operational
level execution, Hung and Leachman (1996) propose an iterative
procedure using both linear programming and discrete event
simulation. The linear programming model is used to find a
production plan that takes into account the lead times given by
the simulation model, while the simulation model takes as in-
puts the production plan and evaluate it. These two steps are
repeated until convergence. However, as stated by Missbauer
(2020), processes that iterate only on the lead times, do not
meet the theoretical requirements to insure a convergence. Fur-
thermore, the experiments of Bang and Kim (2010) show that
iterative procedures are affected by the choice of the simulation
model. In addition, a major drawback of iterative procedures is
their computational burden.

. The last main way to tackle congestion is the use of so-called
Clearing Functions (CFs). Initially introduced by Graves (1986),
Clearing Functions give the expected output of machines (or
workcenters) as a function of the workload. In their current
shape (since the paper of Asmundsson, Rardin, & Uzsoy, 2006),
CFs are non-linear functions that are estimated using simula-
tion or historical data. CF constraints are generally linearized
and included in a single linear programming model. In a re-
cent work, Albey, Bilge, and Uzsoy (2017) study a CF that can
deal with multiple products and multiple stages. One of the
main advantages of using CFs is the short computational times
compared to using iterative procedures, because the burden is
moved to the pre-processing phase (i.e. establishing CFs). But
when the structure of the facility changes, e.g. new machines
are added, CFs need to be re-evaluated.

We will not consider CFs in this paper, because they do not
specify lead times and capture the delays in a very different way.
We first consider fixed lead times which are widely used and easy
to implement. Then we use a more flexible definition of lead times
by considering additional constraints.

Within the semiconductor manufacturing literature, the classi-
cal formulation of a multi-step production planning problem can
be tracked back to the step separated formulation of Leachman
and Carmon (1992). This paper is also interesting because it might
be the first one to discuss a route based formulation of the prob-
lem. Unfortunately, the authors discarded the idea due to the large
number of decision variables required by the model.
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2.4. Column generation for production planning

Column generation approaches are known to efficiently deal
with mathematical programs with a large number of decision vari-
ables. Column generation has been successfully applied to vari-
ous optimization problems such as vehicle routing problems (e.g.
Azi, Gendreau, & Potvin, 2010), airplane crew scheduling prob-
lems (e.g. Gamache, Soumis, Marquis, & Desrosiers, 1999) or ma-
chine scheduling problems (e.g. Lopes & de Carvalho, 2007). Col-
umn generation was introduced by Dantzig and Wolfe (1960), and
consists in separating the original problem into a master problem
and a pricing problem that generates useful columns for the mas-
ter problem. At first, a Restricted Master Problem (RPM) with a
limited number of columns is solved. Then, using reduced costs,
the pricing problem is solved to find one or several columns to
add to the RPM. The process is iterated until no new column is
found. To better understand column generation, the reader can
refer to Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance
(1998) where different strategies of generation are discussed (in a
branch and price framework) or the extensive tutorial of Desrosiers
and Liibbecke (2005).

In production planning and lot sizing, the first work on column
generation was published by Manne (1958), two years prior to the
seminal paper of Dantzig and Wolfe (1960). Manne’s paper is par-
tially deficient and was corrected and implemented in Degraeve
and Jans (2007). Column generation was applied to solve lot-sizing
problems in several kinds of industries such as the tire industry
(Jans & Degraeve, 2004), the paper industry (Bredstrém, Lundgren,
Ronnqvist, Carlsson, & Mason, 2004) and the steel industry (Yi, Jia,
Du, & Liu, 2019). The most commonly used column type is a pro-
duction plan column which specifies the production periods. How-
ever, in terms of production planning without setup costs, the pro-
duction periods are not critical. That is why the formulation pro-
posed in our study is significantly different. As far as we know, col-
umn generation was never applied to solve a multi-product multi-
step lot-sizing problem.

In semiconductor manufacturing, to the best of our knowledge,
column generation was never used to solve production planning
problems. Even in the entire semiconductor manufacturing litera-
ture, only four articles using column generation were spotted: On
lot allocation to customer (Ng, Sun, & Fowler, 2010), on cutting
wafers (Nisted, Pisinger, & Altman, 2011), on capacity expansion
(Kim & Uzsoy, 2008) and on scheduling (Jampani & Mason, 2010).

3. Mathematical models with fixed and flexible lead times

In this section, a compact formulation based on the literature is
presented for planning the production of P products over a discrete
time horizon. The time horizon is decomposed into T periods (usu-
ally one period is one day), and demands D, are given per product
p and period t. Each product p needs a sequence of steps £, to be
processed on K workcenters. Each workcenter k can process a fi-
nite set of steps L’f, for each product p and has a finite capacity
G-

The plan is determined by optimizing internal production flows.
The goal is to optimize the quantities X, of product p to be pro-
cessed, at step | and period t. The set of steps of product p and
their resource consumption «, provide the timing of steps. In or-
der to trace production flows, a variable Wy, that models the work
in process (WIP) of product p, at step | and period ¢ is introduced.
A unitary work in process cost wy; is associated with product p
and step .

The goal is to satisfy demands while minimizing inventory,
backlogging and work in process costs. Note that the WIP cost is
the intermediate inventory cost in a multi-level lot-sizing problem.
We introduce a unitary inventory cost hy and a unitary backlog-
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ging cost by for product p and period t. Let us also introduce two
decision variables Ip; and By, that respectively model the inven-
tory and the backlog of product p at time period t. In this model,
we assume that the transportation times and costs between two
workcenters are negligible or constant. Products that complete a
given production step are placed in a waiting queue for the next
step (the queue is supposed to be uncapacitated).

Capacity congestion is first modeled with a fixed lead time LT},
for product p at step I. Note that LT, can be larger than 1 but, as
in the models of the literature, we assume that the capacity is con-
sumed in the last period of the lead time, and that the processing
time of a production step never exceeds one period (and that it
does not overlap two different periods). More precisely, the capac-
ity required to produce X, is consumed in period t when LT, = 0,
in period t +1 when [Ty =1, in period t +2 when LTy =2, etc.
This means that products are waiting in period ¢ if LTy = 1, in pe-
riods ¢ and t + 1 if LT, = 2, etc. Production capacity is consumed
in the same way when flexible lead times are considered.

3.1. Model with fixed lead times

The parameters and decisions variables are summarized below.

e P: Number of products;

o K: Number of workcenters;

e Lp: Sorted list of steps of product p;

. CE: Set of steps for product p processed in workcenter k;

o T: Number of periods in the planning horizon for production;
ap,: Unitary resource consumption of step [ of product p;

C,: Daily available resource capacity of workcenter k;

LTy Lead time of step I € L, of product p;

e Dp: Demand of product p at the end of period t;

hpe: Unitary inventory cost of product p at the end of period t;
byt : Unitary backlogging cost of product p at the end of period
t;
wy: Unitary work in process cost of product p at step [;
Bpo: Initial backlog of product p;

Ipo: Initial inventory of product p;

Whyo: Initial work in process of product p at step .

There are two types of variables: Variables related to the in-
ternal production flow (Xp;/Yp;:/Wp;), and variables related to the
demand (Ip¢/Bpt). Yl‘,’[th is a variable linking both sets of variables.

* X,ir: Quantity of product p to be released in period ¢ at step
l € £p,

. Xli,fg = Xp1¢: Quantity of product p released in period t;

Ypie: Quantity of product p completing step I € £, in period ¢;

Yﬁrm =Yy, et Output quantity of product p in period t;

o Wyt Quantity in the Work in process (WIP) of product p, at
step | € £, at the end of period t;

« Iy Inventory level of product p at the end of period t;

Bp:: Backlogging level of product p at the end of period t.

The mathematical model with fixed lead times is written be-
low.

P T P T
DD WuWoir + ) ) (hpelpe + bpeBye)

min (1)
p=1leL, t=1 p=1t=1
s.t. Yplt:Xp(H])([) Vpe{l,,P} VIEEP VtE{],,T}
(2)
Wplt :Wpl([,])-‘rxpu— plt VPE{],P} VlEEp VtE{l ..... T}
3)

Xplt ZYPI([JrLTpl) Vp € {], ,P} Vi e ,Cp Vt e {1, v T _LTpl}
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Dy +Bpe_1y =Yg +Ipeoty — I + B~ Ype{l..... P} Vtefl,..., T}
(5)
P
S> apYu <G Vkefl,...K} Vte{l,....T} (6)
p=Tleck
Xplts Yplt’ Wp“, Ipt! Bpt > 0 Vp € {1 ..... P} Vie ;Cp Vt e {1 ..... T}
(7)

The objective function (1) minimizes the total inventory, back-
logging and work in process cost. Constraints (2)—(5) model flow
conservation. Constraints (2) link the output of step [, Yy, to the
input of the next step, Xp1;. Constraints (3) balance the work
in process over the planning horizon for each step. Constraints
(4) guarantee that the fixed lead time for each step of each product
is satisfied. Constraints (5) are the flow conservation constraints for
the final products, ensuring the satisfaction of demands through
the inventory and the production at the current period or their
backlogging to subsequent periods. The capacity constraints in
each workcenter are modeled through Constraints (6). Constraints
(7) ensure the non-negativity of decision variables. Note that, due
to Constraints (2), (3) and (4), the decision variables X, Yy, and
W) are correlated and could be replaced by a single family of vari-
ables. However, in this case, the flexible lead times constraints in
the following section cannot be written.

3.2. Model with flexible lead times

Fixed lead times are certainly the most common and easy way
to model lead times, but there are other ways to model lead times
which allow more flexibility. One possibility is to fix minimum
lead times, i.e. that, at each step, products have to wait at least
a given minimum lead time but can wait more. To the best of our
knowledge, only two papers (Chen, Sarin, & Peake, 2010; Hwang
& Chang, 2003) used similar constraints called WIP penetration
constraints. These constraints are expressed in order to limit the
number of steps a product can perform in a single period. Used
with the right parameters, WIP penetration constraints can model
the minimum lead times discussed earlier, but can also model lead
times on several consecutive steps. The first aim of WIP penetra-
tion constraints is to limit the flow of a product, by limiting the
number of steps in a single period. In the following, these con-
straints are called "flexible lead time constraints”. Let us introduce
omax (I) which represents the maximum number of steps after I
(I included) which can be processed in the same period as I. If
there is no such limit, omax (1) is set to +oo. Flexible lead time con-
straints are expressed by constraints (8). In the model with fixed
lead times (1)-(7), Constraints (4) are replaced by Constraints (8).
I[+omax (1)

> Wy Yee{l...T} Vpefl,..P} Vier,
k=l

(8)

Yplromax (Ot <

S.t. Omax () # +o00

Constraints (8) bind the output of step [+ omax(l) with the
work in process of previous steps, i.e. products which have not yet
completed step | — 1 cannot be processed in step [ + omax(1).

If omax () = 0, Constraints (8) ensure that only products already
in the WIP of step | can be produced, i.e., products will have to
wait at least one period in the WIP of [, which is a relaxation of
the fixed lead time when LT = 1. Note that flexible lead times, as
shown later in this article, significantly increase the complexity of
our problem and the computational time needed to solve it. How-
ever, flexible lead times allow internal production flows to be bet-
ter modeled, and some of the issues related to the fixed lead times
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—steplf------- step [-1 | step [ |{ step [+1 |- - - - step |-Z,| b
Fig. 1. A production route.
t t+1 t+3 t(p,n | Zp))
t(p,n,1)=t t(p,rl-1)=t
steplp------- step [-1 H{ step [ step [+1 H---H step |.Z,| b
Periods

Fig. 2. A timed route.

to be fixed (e.g. the lack of decisions on the quantities to process
in intermediate steps). In particular, the use of machine capacity
can be smoothed. However, this smoothing could be at the cost of
products waiting a long time in the same step, and could poten-
tially lead to large cycle times.

4. A novel formulation using timed routes

In this section, a reformulation of the mathematical models in
Section 3 is proposed. The new model is based on the new con-
cept of "timed route” which is formalized in Section 4.1. Timed
routes allow production flows to be fully modeled. The mathe-
matical model using timed routes is introduced in Section 4.2. In
Section 4.3, a polynomial time algorithm to generate all possible
timed routes with fixed lead times is presented.

4.1. Concept of timed route

A production route is the sequence of steps that a product
needs to follow to be completed (see Fig. 1). A timed route is
a production route for which a processing period is assigned to
each step (see Fig. 2). More formally, in a timed route r, a period
t(p,r. 1) is assigned to each step I in the route of product p. For
example, in Fig. 2, the timed route starts at period t and is com-
pleted at period t(p,r, |Lp|). Note also that step [ + 1 is processed
at period t + 3 and has a lead time of 2 periods. Furthermore, the
cycle time of a timed route r of product p is:

CT(p,r) =t(p, 1, |Lp]) —t(p,r, 1) +1

A timed route is a complete representation of one production
flow, with the exact timing of each step. With timed routes, it is
possible to exhaustively detail the productions flows, and to know
exactly where and when capacity is consumed. The cycle time re-
lated to a timed route is explicit, contrary to the classical lead time
formulations of Section 3 where, although the cycle time is also
fixed, determining it means looking at the set of lead time con-
straints on the step of the route to extract the total cycle time.
With the full view of possible production flows, inconsistent or
useless timed routes can be discarded. The timed routes could
be validated based on industrial knowledge. Moreover, new con-
straints on production flows could be introduced such as minimal
and maximal cycle times.

4.2. Mathematical model

In the following, the timed route model is formalized. Let us
denote R, the set of timed routes of product p. With each timed
route r € Rp, a WIP management unitary cost wp, is associated.
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The WIP cost of a timed route is equivalent to the sum of the WIP
costs of the different steps on the time horizon. Only the first step
of each period (except for the first period) carries a WIP cost. This
WIP cost can be counted several times if no step takes place in
the subsequent periods. Let us write the total WIP cost of a given
timed route r, ) bP"wy,, where bf" is the number of periods be-
lep

tween the processing periods of step [ —1 and step [ in timed
route r, i.e. b =t(p,r,1) —t(p,r,1—1). Note that waiting before
the first step of a route is not allowed, i.e. b{" = 0. Let af’ a binary
parameter which is equal to 1 if, in timed route r € R, of product
p, step | is processed in period t, and is equal to O otherwise. Zp;
is the decision variable that corresponds to the quantity released
on timed route r. The timed route formulation is given below.

P P T
Z Z WprZpr + Z Z(hptlpt + bpeBpe)

min 9)
p=1T€eRp p=1t=1
P
st. Y > Y afauZy <G Vke(l,....K} Vte{l,.. T}
p=1T1€Rp ek
(10)
t t
IMED Zafgplfzpr =Y Dy Vpefl,..., P} Vtell,..., T}
reRp t=1 =1
(11)
t t
By >—->" Zafgp‘rzpr +Y Dy Vpefl..., P} Vtefl,..., T}
reRp =1 =1
(12)

Zor Ipt, B =0 Vpel{l,...,P} VreRg, Yte{l,..., T}

(13)

The objective function (9) minimizes the total backlog, inven-
tory and WIP management cost induced by the selected timed
routes, which is equivalent to the objective function (1). Con-
straints (10) model the limit on capacity consumption in each
workcenter at every period, and correspond to Constraints (6).
Constraints (11) and (12) ensure the inventory balance. They are
equivalent to Constraints (5) but are written separately to simplify
the writing of the dual problem. This formulation can be seen as a
covering problem.

4.3. Generation of timed routes associated with fixed lead times

Let us show how the set of timed routes is determined when
fixed lead times are considered. Due to Constraints (2) and (4) in
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Fig. 3. Pattern of timed routes with Fixed Lead Times.

the model with fixed lead times, all production flows on a route
follow the same pattern. If ¢t is the first period of the route and
|£p| the number of steps of product p, then the pattern can be
designed as the timed route in Fig. 3. The pattern is used for every

period t with t <T — Z;i 5‘ LT;. The algorithm generates one timed
route per period for each product p. Since we need to assign a
period to each of the |£p| steps, the complexity of generating all
the timed routes with fixed lead times for a product p is equal
to O(|£p|T). Thus, the complexity of the algorithm that creates all
the timed routes is equal to O(Z’;zl |£p|T). This complexity can
be written as follows: O(P|Z|T), where |Z| is the average number
of steps in a route.

5. A column generation approach for flexible lead times

Because, as shown in this section, the number of timed routes
with flexible lead times is exponential, we propose a column
generation approach to solve the timed route formulation. In
Section 5.1, a dynamic programming algorithm that generates all
the timed routes when considering flexible lead times is described.
The column generation approach is introduced in Section 5.2,
where reduced costs associated with timed routes are evaluated
and used to implement a dominance rule to strengthen the algo-
rithm of Section 5.1.

5.1. Exhaustive generation of timed routes for flexible lead times

Using timed routes, all production flows can be described and
traced. Thus, we can consider other production flows than the ones
generated using fixed lead times. Considering several timed routes
with different lead times for one step leads to more flexibility. This
is the case with the flexible lead times presented in Section 3.2.
Furthermore, when using the timed route formulation with flexi-
ble lead times, it is possible to avoid products with too large cycle
times.

To establish a timed route, each step needs to be assigned to
a period in the horizon. Representing this assignment by a graph,
nodes are labeled (s, c, t, ) where s is the index of the current par-
tial route, ¢ the current partial cost, ¢t the period and [ the last
step that is completed in the partial timed route s. The directed
edges are the possible sequences of nodes. Due to the structure
of a route, the graph can be seen as a tree with a level structure.
Note that, when two or more steps ({I' +1,..., 1”}) are completed
within the same period t (where !’ is the last step completed be-
fore t), we do not create a node for each step I e {lI'+1,...,1"}.
Instead, we contract the steps {I’ +1,...,1”} within a single node
and we create a direct arc to the final step I”. This means that for
a timed route r, aff =1, Vle {I'+1 1"} if (s1,¢q,I',t — 1) and
(s2, ¢y, 1", t) are successive nodes of the timed route. Fig. 4 provides
an example of such graph, with 2 steps and 3 periods. Using this
kind of graphs, an algorithm generating dynamically the edges and
new vertices level by level will work well.

Rather than exploring the total space of possible states, the
number of vertices is reduced by using omax(I), the maximal num-

.....
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ber of steps that can be processed after step I in the same period
than [. The vertices and edges which can be used when omgx(l) =1
for every step are traced with plain arrows and in blue in Fig. 4.
Even with this reduction, the total number of timed routes for
product p is still in O(|£p|T) because, at each step of the route,
a period between 1 and T can be assigned.

The exhaustive generation (which becomes a dynamic program
in Section 5.2) can be implemented as described in Algorithms
1 and 2. The main algorithm (Algorithm 1) generates all timed

Algorithm 1 Generation of timed routes

CTR=¢ ||/ CTR: Set of complete timed routes
PTR=¢ [/ PTR: Set of current partial timed routes
fort=1toTdo
ir /[ ir: Initial partial timed route
laststep(ir) =0 /| No step assigned to ir
PTR = PTR U {ir}
for all s € PTR do
CreateExtensions(s, t)
end for
PTR = PTR — {ir}
end for
return CTR

Algorithm 2 CreateExtensions(s, t)
| = laststep(s) + 1
for e = 0 to omex (1) do
Sr=s
fori=0toedo
step(sr, [ +i) =t
end for
laststep(sr)=1+e
if | +e=Ly| then
CTR =CTR U {sr}
else
PTR = PTR U {sr}
end if
end for

routes. It starts with a set of partial timed routes only containing
the partial timed route with no period assigned, labeled (s,0,0,0).
For each period, the algorithm tries to extend the set of partial
timed routes by looking for the children nodes of each partial
timed route and the initial partial timed route. This procedure is
developed in Algorithm 2. Note that the generated partial timed
routes are not removed in Algorithm 2. Each partial timed routes
can be extended to a subsequent period and the lead time to com-
plete the next step increases accordingly.

In Algorithm 2, the partial time routes are returned, which ex-
tend the input partial timed route in period t. Extending a partial
timed route means looking for each outgoing edge from the last



S. Beraudy, N. Absi and S. Dauzére-Pérés

Period 1

wo

7 (s2.02,1,2) )

’
N

-

European Journal of Operational Research 300 (2022) 602-614

Period 2 Period 3

(S5,05,2,2; )

ST

Non reachable nodes when 0,4 (1) = 1

Fig. 4. Graph of states: Example with 2 steps and 3 periods

node in the graph depicted earlier. The number of partial timed
routes generated is 0max(l) Where [ is the last step assigned in the
input partial timed route. The information on the last step is up-
dated in the new partial timed routes.

The program explores all possibilities, which leads to an expo-
nential number of routes. At each period t, for a product p, omax(l)
states are evaluated. Note that in the worst case omax(l) is equal to
the total number of steps |£p|. The complexity of evaluating each
state is constant. If no dominance rule is used, the total complexity
increases exponentially and is equal in the worst case to O(|£p|T).

Note also that it is possible to generate patterns of timed routes
as in Section 4.3 for fixed lead times. However, this column gener-
ation approach is not the most relevant approach because, for a
pattern, the timed routes starting at different periods may have
different costs. Moreover, if all the timed routes of a selection of
patterns are used, the associated useless decision variables may
burden the linear program.

5.2. Column generation approach

The set of timed routes for flexible lead times is exponential, as
shown by the complexity of the exhaustive generation algorithm.
To handle this issue, we propose a column generation approach, in
which timed routes are generated dynamically. The framework of
the approach can be found in Fig. 5.

The master problem corresponds to the model in Section 4.2.
Thus, the Restricted Master Problem (RMP) is written with a re-
stricted set of timed routes for each product. The restricted set of
timed routes is initialized with the timed routes generated with
fixed lead times. A fast resolution of the pricing problem, that gen-
erates new improving timed routes, is critical to the success of the
column generation approach. An efficient algorithm is proposed in
the following section.

5.2.1. Solving the pricing problem

To determine the timed routes to insert in the RMP, we con-
sider the reduced costs associated with timed routes. The dual
problem associated with the timed route formulation corresponds
to (14)-(17), where Ay denote the dual variables associated with
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Constraints (10), and ,B;[ (resp. ﬂljt) denote the dual variables as-
sociated with Constraints (11) (resp. Constraints (12)).

T K P T t P T t
- chk)‘kt - ZZ(ZDPT)ﬁ;t + ZZ(ZDPT)'BEI

max
t=1 k=1 p=1t=1 t=1 p=1t=1 =1
(14)
K T T ¢
s.t. DI HFTEDS Zafgp\r pt
k=1 t=1 legk =1 1=1
T ¢
+ Zzafnr,,hﬁ;t <wp Vpefl,...,P}, VreR, (15)
t=1t=1
Bi<he VYpell,... Pl Vee{l,. . . T) (16)
Bp<bw Vpefl,....P}, Vte{l,....T} (17)
hie Bl By =0 Vee{l,.Th Vpe{l,... P} Vke(l,.. Kl
(18)

In the dual problem, only Constraints (15) are related to timed
routes. Thus, in the column generation approach, we only need

to look for timed routes which violate the most Constraints (15),
K T

ie. timed routes with reduced cost wpr+» Y Y al oy +
k=1t=1|cck

T ¢t T t
pro g+ pr - ; i

> Zawp\rﬁpt -3 Zawp\rﬂpt < 0. Note that since there is no
t=117=1 t=117=1
constraint linking the products in the pricing problem, timed
routes can be generated separately for each product.

In order to define a route, we need to assign each step I to a pe-
riod t, i.e. to determine aﬁr. The reduced cost can be decomposed
into three parts.

1. A period assignment cost which is denoted oA,
2. The WIP cost of the route, which can be decomposed into the
WIP cost at each period,
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Fig. 5. Framework of column generation approach for production planning

3. Inventory and backlog costs. If the period of the last step (i.e.

when the product is completed) is t*, then the inventory and
T

backlog costs are equal to Z(ﬂ;t - ﬂ;t).

t=t*

5.2.2. Dominance rule

With such a complexity, the dynamic program can hardly be
used in practice. In order to keep the computational times under
control, we consider a dominance rule that relies on Property 1.

Algorithm 3 CreateNonDominatedExtension(s, t, ND[])

/| ND[]: Array (of size |Lp| for product p) of dominant partial
timed routes up to period t-1 indexed by the last step reached.
I = laststep(s) + 1
for e = 0 to omgx (1) do
sr=s || Extend timed route s by e steps to perform at period
t
fori=0toedo
step(sr,l +i) =t
UpdateReducedCost(sr)
end for
laststep(sr)= 1 +e
if | +e=|Lp| then
CTR =CTR U {sr}
else
// Dominance check
if ReduceCost(sr) > ReducedCost(ND[I + e]) then
/| sr dominates the former dominant partial timed route,
which ends at period t with step [ + e
PTR = PTR U {sr}
PTR = PTR\ {ND][I + e]}
ND[l +e] = sr
end if
end if
end for

Property 1. For product p at a period t, if two partial timed routes s,
and s, have achieved the same number of steps I, then the route with
the lowest partial reduced cost dominates the other. In other words,
for s;=(1rcq,t,1) and s, =(2,rcy,t,1), then s; dominates s, if and
only if rcq < rcy.

609

Proof. It can be shown by contradiction that, if the periods or
the last steps are different, then an arbitrary large negative re-
duced cost can be introduced in the complete and dominated
timed route. Thus, we can introduce s3, the optimal part to com-
plete s; and s, to form a complete timed route. We denote rc3 the
reduced cost associated with s3 and s; @ s3 (respectively s, & s3)
the complete timed route associated with s; (resp. s,) and its to-
tal reduced cost rcig3 (resp. rcyg3). Because rcjg3 =rcy +re3 and
rCyg3 = I'Cy + rc3, comparing the total reduced cost r¢yg3 and rcpg3
is equivalent to comparing the partial reduced cost rc; and rc,. O

Note that, if constraints on the duration of cycle times are intro-
duced, some conditions on the start period of partial timed routes
are needed to apply this dominance rule.

By applying this dominance rule in the dynamic program, the
number of new partial timed routes at the end of each itera-
tion/period is at most equal to the number of steps for a prod-
uct. Thus, at iteration t of the algorithm for a given product p,
the number of partial timed routes before dominance is smaller
than |£p|%. It reduces the complexity of Algorithms 1 and 2 to
O(|Lp|?T) for each product. To implement the dominance rule, we
use in Algorithm 3 an array that contains the dominant partial
timed routes (at the currently explored period) for each step of
the route (except for the final step). The size of this array, denoted
NDI], is |£pl|, and thus it does not add any spatial complexity. Thus,
the overall complexity is in O(T 25:1 1£p]?).

6. Computational experiments

Computational experiment have been conducted on industrial
data to show the efficiency of the timed route formulation and our
column generation approach. In Section 6.1, the design of the com-
putational experiments is detailed. In Section 6.2, the compact for-
mulation (1)-(7) and the timed route reformulation (9)-(13) are
compared for fixed lead times. Section 6.3 compares the column
generation approach with flexible lead times and the compact for-
mulation. The advantages of using flexible lead times compared to
fixed lead times are not analyzed in this paper.

6.1. Design of experiments
Experiments are conducted on industrial data of a semiconduc-

tor manufacturing facility in France. Data cannot be made public
for confidentiality reasons, but can be provided on request after
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Table 1
Characteristics of the industrial instances.

Horizon length {91, 119, 147}

Number of workcenters
Number of products
Demand scenario

Number of steps per route

10 (aggregating about 500 machines)
{15, 40, 75}

{Low, Medium, High}

Between 100 and 500

Table 2

Unitary costs used in the experiments.
Backlog 50
Inventory 15
WIP management 0.001

validation by the company and certification by the researchers that
they will not disclose the data to others. We would also want to
recall that the main contribution of the paper is not related to the
quality of the results obtained by the proposed approach but rather
to the significant reduction of the computational times to solve the
problem and to the genericity of the approach. The main character-
istics of the instances can be found in Table 1. Crossing all choices
of the characteristics, 27 scenarios are considered.

Instances are characterized by a number of steps per product
that varies between 100 and 500 and cumulative processing times
of products that vary between 7 and 11 periods. Note that the
planning horizon should be long because products have cycle times
between 40 and 80 periods. To generate demands, the historical
output over 6 months was considered. With these historical data,
the order frequency, the average demand and the standard devi-
ation for each product were estimated. Then, demand scenarios
were randomly generated based on these characteristics. We only
consider the most produced products. For example, products with
very low demands or with less than 50 steps are not considered
since they are generally related to R&D and engineering projects
and not customer demands. To study the influence of the number
of products, we consider 3 sets of products. Each demand scenario,
related to the number of products, is then adjusted with a factor
on the generated demand to produce 3 scenarios where, respec-
tively, demand is low and feasible, demand is medium but stresses
the facility capacity and demand is high and cannot be fully
met. The unitary costs used in our experiments can be found in
Table 2.

Furthermore, three profiles of lead times are studied by solving
the compact models and using the column generation approach.

1. The first profile, Pfixed, corresponds to the classical fixed lead
times.
The second profile, P{‘Tex, corresponds to flexible lead times and
is based on PET"Ed. but products can wait in every step as many
periods as necessary. This implies that the minimal lead times
to be respected are the fixed lead times. This lead time pro-
file reduces the backlog and inventory costs by allowing more
flexible production flows.

. The third profile, Plf};", also corresponds to flexible lead times
but is based on the actual processing times, i.e. it is not related
to the two other lead time profiles. With profile P{}Te". produc-
tion flows are only limited by the maximum number of steps
for a product that can be completed in a period, according to
the cumulative process times of these steps. In a sense, it is a
relaxation of the previous model where delays are not induced
by exogenous parameters. Note that, contrary to P{]Tex where
Constraint (8) is not written, when LT (I) = 0 for a step [, with
Pf,‘f" Constraint (8) is written for every step.

2.

610

European Journal of Operational Research 300 (2022) 602-614

As show in the computational results of Section 6.3.3, 7’{};"
leads to the most difficult problems in terms of computational
time. For example, with the compact formulation, on scenarios
with medium or large dimensions, there is at least a factor of ten
between the computational times for Pflex and Pfiex,

All numerical experiments were executed on a computer with
a processor Intel(R) Xeon(R) CPU W3550 and 16 Gigabyte of RAM
Memory, using a JAVA program (JRE 1.8) and IBM ILOG CPLEX (ver-
sion 12.6) with default settings.

6.2. Comparison between the compact formulation and the timed
route reformulation with fixed lead times

Due to the polynomial number of timed routes with fixed lead
times, all timed routes are generated and included in the model.
Table 3 shows the computational times spent by IBM ILOG CPLEX
for several scenarios. First, note that the computational times do
not seem to change much with the demand level. Thus, only look-
ing at the medium scenarios, it can be seen that the timed route
model performs better than the compact one. On average, the com-
putational time is decreased by 94%, with a minimum decrease
of 88%. When considering the impact of the horizon length, the
results show that the timed route formulation is more sensitive
to the horizon length than the compact model. The gap between
the computational times of both models reduces as the horizon
length increases. For all these scenarios, the computational times
of the timed route formulation are always smaller than the small-
est computational time with the compact formulation. For fixed
lead times, the timed route formulation is efficient when all the
timed routes are generated. One of the reasons behind the de-
crease of the computational times may be that IBM ILOG CPLEX
needs to eliminate much fewer columns to determine the reduced
LP with the timed route formulation than with the compact for-
mulation. We may hypothesize that the reduced LP is close to the
timed route model.

6.3. Column generation approach for flexible lead times

In this section, the compact formulation and the timed route
formulation with flexible lead time profiles are compared. The first
flexible lead time profile studied is P{]Tex. The associated compact
model has a lower number of lead time constraints compared to
the compact model with fixed lead times. This is due to the fact
that lead time constraints are only introduced for positive lead
times. The second flexible lead time profile is P,f};"‘. Its compact
formulation has about the same number of constraints as the com-
pact formulation with fixed lead times, but production flows are
less constrained. The associated flexible lead time constraints are
based on the actual processing times of steps.

As shown in Section 5.1, the timed route formulation with flex-
ible lead times requires an exponential number of timed routes.
To get a feeling of the resulting complexity, we generate all the
timed routes for a reduced data set with 3 products with at most
23 steps and 11 machines. With 8 Gigabyte of RAM and when the
horizon is larger than 15 periods, it is not possible to generate all
timed routes for profile P{lTeX and a memory error arises.

Note that, in this paper, the computational time is defined as
the difference between the time at which the optimization pro-
cess starts and the time at which the optimal solution is found
and extracted. Only the time to load the data and to create the
first mathematical model is omitted.

In Section 6.3.1, the parameters and strategies used in the col-
umn generation approach are detailed. The experimental results
for profile PLﬂTex are presented in Section 6.3.2 while the results for
profile P{,‘f" are analyzed in Section 6.3.3.
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Table 3
Computational times (in seconds) for profile P{‘T"Ed (C: Compact formulation; TR: Timed Route formulation).
Number of products Horizon length Low demand Medium demand High Demand
C TR C TR C TR
Low (15) 91 15 0 15 0 14 0
119 20 1 20 1 19 1
147 25 5 25 3 25 4
Medium (40) 91 40 1 41 1 40 1
119 58 3 57 4 58 4
147 68 7 70 7 71 7
Large (75) 91 84 1 83 1 83 2
119 113 4 114 8 114 5
147 145 16 147 15 145 16
Number of generated timed routes by product by iteration
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Fig. 6. Number of timed routes by product at each iteration vs. ratio of CPU time

6.3.1. Column generation strategy

Dominance rules are used to reduce computational times. To
warm up the column generation approach, all timed routes from
PLﬁTXQd are included in the model. Due to light use of processor dur-
ing the timed route generation, parallelism is enabled while gener-
ating timed routes for each product.

The last parameter to choose is how many timed routes are se-
lected for each product at each iteration. This parameter is tuned
with the case of Medium demand, with profile P{lfx. Fig. 6 shows
the average decrease of the computational time over all scenarios
compared to the case in which only one timed route is generated
by product. This case is used as a reference because it corresponds
to the case with the smallest number of timed routes. This figure
is completed with the maximal and minimal decrease of the com-
putational time obtained among the 27 scenarios. Note that the
average time spent to solve the timed route formulation limited to
one new timed route by product at each iteration is 239 seconds. It
can be seen that, when the parameter varies between 4 and 10, the
decrease of the computational time is quite stable and the lowest.
With up to 150 timed routes by product (which is an upper bound
to the number of non dominated timed routes generated by the
dynamic program when T < 150), it can be seen that the decrease
of the computational time is similar to when the parameter is set
to 2. This figure shows the trade-off between generating numerous
columns to converge with fewer iterations and generating only the
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best columns to accelerate the resolution of the restricted master
problem.

In the following experiments, the number of timed routes by
product at each iteration is set to 5. This choice might not be the
best in every scenario, but is relevant enough to show the strength
of our approach.

6.3.2. Comparison of computational times for profile P{lf"

Contrary to fixed lead times, the computational times for flex-
ible lead time profiles depend on the demand scenario. Table 4
shows the computational times to solve P{lTeX. No simple rule can
be deduced (for both formulations) from the different scenarios
because the complexity of the problem depends on several pa-
rameters. Computational times to solve the timed route model are
quite close with medium and high demands, and are always larger
than the computational times with low demands.

The main result of the experiment is that the column genera-
tion approach always significantly performs better. On average, the
computational time is reduced by 87.5% while the solution time for
the compact model ranges from 2 minutes to 79 minutes. The least
impressive case is 73.3% when the time spent by the compact for-
mulation is the lowest (120 seconds). Unlike fixed lead times, we
cannot conclude anything on the behavior of the compact model
when the horizon increases, only that the computational times in-
crease with the length of the horizon (which is expected due to
the algorithm complexity).
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Table 4
Computational times (in seconds) for profile P{‘Tex (C: Compact formulation; TR: Timed Route formulation).
Number of products Horizon length Low demand Medium demand High Demand
C TR C TR C TR
Low (15) 91 192 14 142 31 120 32
119 409 59 266 67 284 66
147 580 95 595 121 580 124
Medium (40) 91 648 34 469 66 563 63
119 1,190 109 1,086 134 1,254 153
147 1,674 180 2,034 218 2,174 218
Large (75) 91 1,620 23 1,578 107 1,363 109
119 3,693 74 3,000 236 2,145 242
147 4,277 316 3,797 401 4,619 395
Table 5
Computational times (in seconds) for profile P,E'T“ (C: Compact formulation; TR: Timed Route formulation).
Number of products Horizon length Low demand Medium demand High Demand
C TR C TR C TR
Low (15) 91 183 33 1,549 37 1,760 51
119 272 48 2,677 83 2,836 120
147 4,100 161 4,211 255 4,962 407
Medium (40) 91 5,587 84 6,254 156 6,486 233
119 8,939 167 10,092 298 10,277 429
147 13,014 291 14,407 587 16,152 793
Large (75) 91 979 95 10,516 179 11,902 246
119 18,862 193 18,498 346 20,472 460
147 599,443 404 323,891 678 546,596 1,273
Table 6
Number of iterations in the column generation approach with flexible lead time profiles.
Number of products Horizon length Low demand Medium demand High Demand
Pl Ph Pl Ph Pl Pl
91 25 11 46 12 47 17
119 57 12 61 21 60 31
Low (15) 147 60 31 72 50 71° 80
91 22 12 37 23 36 35
119 38 16 43 30 48 46
Medium (40) 147 47 23 46 45 47 2 66 *
91 8 7 32 14 35 19
119 16 11 40 18 43 25
Large (75) 147 42 17 46 25 46 * 542

2 scenarios where the number of iterations for Pfi¢* is higher than for Pfle

6.3.3. Comparison of computational times for profile P{,’?‘
Considering profile Plf};x whose computational results can be
found in Table 5, some conclusions are shared with P{]Te". For ex-
ample, the computational times vary depending on the demand
scenario, but in the case of P,f}TEX, it can also be noted that the
larger the demand, the larger the CPU time to solve the prob-
lem, and the increase depends on the scenario. The computational
times are again highly reduced by the column generation approach
on the timed route formulation. On average, they are reduced by
95.8%. The computational time for the compact model ranges from
3 minutes to more than 6 days (with a median of 2.5 hours).
With the compact formulation, there is a huge gap on the com-
putational times for the three lead time profiles. Due to the ex-
treme computational time in the scenarios with a large number
of products and a long horizon, the average computational time
is a biased indicator. Therefore, we prefer to analyze the median
computational time. Over all the scenarios, the median computa-
tional time is 58 seconds for PfTXEd, 1,190 seconds for P{]Te" and
8,939 seconds for ngx. When using the timed route formulation
and the column generation approach, the computational times also
increase as the lead time profile becomes more complex, but the
increase is much more limited. The overall median of the compu-
tational times for the compact formulation is equal to 3 seconds

for Pfixed 109 seconds for Pf* and 233 seconds for PJEX. One
reason which can explain why computational times for the timed
route formulation with P is close to PfI%, might be the differ-
ence of these two lead time profiles. It can be seen in Table 6 that,
in most scenarios (except when the demand is high and the hori-
zon is long), ngx needs fewer iterations of the column generation
approach to converge to the optimal solution.

The reason is probably that, while the compact formulation
struggles with a huge number of constraints, many useful timed
routes are quickly generated in the column generation approach,
thus fewer iterations are needed before converging. It could be in-
teresting to tune the maximum number of timed routes by product
at each iteration.

Additionally, the mean computational times to generate timed
routes at each iteration for both flexible lead time profiles are
given in Table 7. Note that the first iterations of the column gen-
eration approach usually take longer computational times but, for
most iterations, the computational times are close to the average.
Table 7 shows that the generation of timed routes is almost inde-
pendent of the demand scenario. The computational times to gen-
erate timed routes for profile PIQTEX are about 6 times larger than
the computational times to generate the timed routes for profile

PB?X, and this ratio is stable in all demand scenarios.
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Mean computational time to generate timed routes by iteration, with flexible lead time profiles.

Number of products Horizon length Low demand Medium demand High Demand
Pl i i i i i
91 0.4 2.6 0.4 2.7 0.4 2.6
119 0.5 34 0.5 34 0.5 34
Low (15) 147 0.7 4.3 0.7 4.2 0.7 4.2
91 0.9 6.0 0.9 59 0.9 58
119 1.2 83 1.2 8.0 13 7.7
Medium (40) 147 1.7 9.9 1.6 10.1 1.6 9.6
91 1.7 10.2 1.6 10.2 1.5 10.3
119 2.3 13.9 2.3 14.1 2.3 13.8
Large (75) 147 3.0 17.7 3.0 183 3.1 17.5

7. Conclusions and perspectives

In this paper, we introduced the novel concept of timed route
that enables a new model for multi-product multi-step production
planning problems to be introduced. The timed route approach
was validated on industrial data, and experimental results show
that the new formulation significantly outperforms compact for-
mulations for various lead time profiles. To achieve such perfor-
mance and because considering flexible lead times induces an ex-
ponential number of columns, a column generation approach was
presented with a polynomial dynamic program that generates the
timed routes in the pricing problem.

Many research opportunities are offered by using timed routes
and timed route formulations. An interesting point to investigate is
the various industrial rules that could only be developed for math-
ematical models based on timed routes. As already discussed and
by definition, timed routes allow production flows and their cy-
cle times to be explicitly modeled. On the opposite, flexible lead
time constraints in a compact mathematical model do not easily
allow cycle times to be limited and production flows to be ex-
plicitly managed. Hence, many relevant industrial constraints can
be taken into account through timed routes. For example, timed
routes could be generated by considering minimum or maximum
cycle times of products, or minimum or maximum lead times be-
tween two non-consecutive production steps. Also, a cycle time for
each product could be targeted in the objective function, by intro-
ducing new costs on timed routes instead of the somehow artificial
WIP management costs. These costs could be associated with the
deviation to the target cycle time. In addition, costs based on the
duration of the lead time in a production step could be proposed,
that would be non-linear in compact models but linear in timed
route models.

Moreover, the computational times of the column generation
approach could be accelerated by using smart column generation
heuristics. Another research perspective is to consider initial in-
ventories in the product routes. Shorter timed routes will be re-
quired to flush the initial inventories. Finally, we would like to
study whether timed routes could be used in other contexts, e.g.
when modeling product flows in supply chains where the notion
of "route” is also relevant.
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