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a b s t r a c t 

In complex systems that can be found in semiconductor manufacturing, linear programming production 

planning models must consider many products with hundreds of production steps to be performed on 

hundreds of machines. To deal with this complexity and solve problems with flexible lead times in a 

reasonable CPU time, the new concept of timed route is introduced. In a timed route, each production 

step of a product is associated with a specific time period. A new formulation relying on timed routes is 

then proposed. Because the number of feasible timed routes can grow exponentially, a column generation 

approach is presented. Algorithms to generate relevant timed routes are given, and their complexity an- 

alyzed. Computational experiments on industrial data with different lead time profiles, fixed lead times 

and flexible lead times, show that computational times are very significantly reduced when using our 

approaches, by 92% on average and even divided by more than 1,0 0 0 in some cases. The advantages of 

timed routes are also discussed. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

In many industries, products have to go through a series of pro- 

uction steps (called a route ) to be completed. When machines 

re partially flexible, i.e. can process steps of different products 

r different steps of the same product (reentrant flows), control- 

ing the production flows is difficult. When the cycle times of the 

outes are long (several weeks), production planning is needed to 

etermine when and how many products should be released, and 

ow they should be processed in order to meet demands on time. 

his is particularly true in semiconductor manufacturing facilities. 

n the integrated circuit supply chain, raw wafers need between 

wo and three months to be completed. There might be hundreds 

f products and each requires hundreds of production steps to 

e completed, which must be processed on hundreds of partially 

exible machines. Machines are grouped in a limited number of 

orkcenters, and products have to pass many times through the 

ame workcenters. Hence, it is often critical for production plan- 

ing models to consider internal production flows to deliver prod- 
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cts on time with reasonable cycle times while satisfying the ca- 

acity of machines. 

One of the classical ways of modeling congestion in front of 

achines is to consider both fixed lead times and limited capacity. 

he limited capacity models the amount of time a machine can be 

sed in a period, while lead times model more exogenous param- 

ters such as the waiting time and the scheduling of products on 

he machines, see Section 2.3 . A fixed lead time is the number of 

eriods that are needed to entirely process a given quantity in a 

roduction step in the route of a product. Several assumptions are 

onsidered in the literature: (1) The value of the lead time does 

ot depend on the production quantity, (2) The capacity consump- 

ion is only considered in the last period of the lead time, and (3) 

he processing time of a production step is assumed to be smaller 

han one period. For example, let us consider the products in a 

roduction step with batching (e.g. heating in a oven) that will of- 

en wait for a complete batch before starting. Hence, the fixed lead 

ime of the production step will be equal to one or more periods 

lthough its processing time is smaller than one period. Note that 

xed lead times can be equal to zero, in particular for production 

teps that are short and need to be grouped with other production 

teps to exceed one period. In this paper, we also consider flexi- 

le lead times which, although they require much more complex 

onstraints to be modeled, help to determine more efficient pro- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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uction plans, which better use the machine capacity by allowing 

ome products to wait more than the fixed lead time in a step if 

ecessary. However, the resulting linear program may require very 

ong computational times, up to several hundred hours, as shown 

n the numerical results of Section 6 . Another drawback of allowing 

exible lead times is that, because lead times have no maximum 

imits, products may remain too long in the manufacturing system 

nd have very long cycle times. To solve the problem in reasonable 

omputational times, we propose the concept of timed routes to 

ddress the multi-product multi-step capacitated production plan- 

ing problem. In the timed route of a product, each production 

tep of the route of the product is assigned to a period in the plan-

ing horizon. A major advantage of timed routes is that the cycle 

ime of products can be limited, by only considering timed routes 

ith a maximum number of periods between the period assigned 

o the first step of the route and the period assigned to the last 

tep of the route. Note that setup costs and times are not explic- 

tly considered in this paper. 

This paper is structured as follows. Section 2 proposes a litera- 

ure review on related problems such as multi-level lot sizing, inte- 

rated lot sizing and scheduling and semiconductor manufacturing 

roduction planning, together with an overview on column gener- 

tion approaches. Then, in Section 3 , mathematical models for pro- 

uction planning with fixed lead times and flexible lead times are 

resented. In Section 4 , a reformulation based on the new concept 

f timed routes is proposed. When modeling flexible lead times 

nstead of fixed lead times, the number of timed routes becomes 

xponential. Hence, a column generation approach is presented in 

ection 5 to solve the problem with flexible lead times. Computa- 

ional experiments on industrial data are conducted in Section 6 , 

hich shows the efficiency of the timed route reformulation. Con- 

lusions are drawn and future research directions are provided in 

ection 7 . 

. Literature review 

In this section, lot-sizing problems that show similarities with 

he multi-product multi-step production planning problem are first 

iscussed. However, one main difference is that setup costs and 

imes are not considered in the multi-product multi-step produc- 

ion planning problem. Still, the classical formulation of the prob- 

em is really close to a multi-level dynamic lot-sizing problem. Due 

o the detailed production steps, it is also somehow related to in- 

egrated lot-sizing and scheduling problems, although it cannot be 

onsidered as an integrated problem. Because it considers multi- 

roduct multi-step production planning problems, a review on the 

emiconductor manufacturing literature on production planning is 

hen given. Anticipating the need to deal with a large number of 

ariables, a short summary on column generation approaches in 

roduction planning completes this section. 

.1. Multi-level dynamic lot-sizing 

Dynamic lot-sizing problems are classical problems in produc- 

ion management, introduced by Wagner and Whitin (1958) . Dy- 

amic lot-sizing aims at determining the production quantities to 

tart on a planning horizon discretized in periods to meet the de- 

and while minimizing inventory, setup and other possible costs. 

 generalization of this family of problems is the multi-level ca- 

acitated lot-sizing problem (MLCLSP), proposed by Billington, Mc- 

lain, and Thomas (1983) . Multi-level lot sizing is generally sepa- 

ated in three branches depending on the Bill of Materials (BOM) 

tructure (note that other specific BOMs may occur). If each prod- 

ct has at most one predecessor product and at most one suc- 

essor product, it is called production in series. In an assembly 

tructure, each product has at most one successor, whereas, each 
603 
roduct has at most one predecessor in a divergent structure. Lead 

imes can be used at every level, not only to model capacity (which 

s already considered in the capacitated case), but also to consider 

arious exogenous phenomena. The MLCLSP was solved using var- 

ous heuristics, from Lagrangian heuristics to metaheuristics. The 

eader is referred to Buschkühl, Sahling, Helber, and Tempelmeier 

2010) for a literature review on dynamic capacitated lot-sizing 

roblems. 

The problem we want to address is in the family of serial multi- 

evel capacitated lot-sizing problems with lead times without setup 

osts or times. Not only fixed lead times but also flexible lead 

imes will be considered. Another characteristic of our problem is 

he shared capacity between levels. 

.2. Integrated lot sizing and scheduling 

Because multi-step production planning seeks to grasp the full 

omplexity of internal production flows rather than approximating 

he cycle times for each product, it can be compared to models 

hat integrate two decision levels such as integrated lot-sizing and 

cheduling models. Although our multi-product multi-step pro- 

uction planning problems do not explicitly integrate sequenc- 

ng decisions on machines, routing constraints are partly taken 

nto account by considering lead times for the production steps. 

ead times ensure that two consecutive steps in the route of a 

roduct are performed in the same period or in two different 

eriods. 

Integrated lot-sizing and scheduling problems have often been 

tudied, according to the review of Copil, Wörbelauer, Meyr, and 

empelmeier (2017) . While lot sizing aims at meeting the de- 

and at the lowest cost, scheduling corresponds to assigning and 

cheduling products on machines while minimizing the makespan 

r other objective functions. Such a junction between operational 

nd tactical problems can lead to high complexity. Solving the full 

ntegrated mathematical model with multiple machines and mul- 

iple steps is often unrealistic. For this reason, solution methods 

an be separated in three kinds: Heuristics which solve the full 

roblem (e.g. Gómez Urrutia, Aggoune, & Dauzère-Pérès, 2014 ), 

ierarchical methods which solve the problems sequentially (e.g. 

iberatore & Miller, 1985 ), and iterative methods (e.g. Dauzère- 

érès & Lasserre, 1994 ). In the literature, focus may vary between 

cheduling oriented modeling and lot sizing oriented modeling. 

urthermore, various types of heuristics are proposed depending 

n the problem to solve. 

In a sense, multi-product multi-step production planning prob- 

ems can be seen as production planning problems that inte- 

rate intermediate production decisions. Contrary to the inte- 

rated lot-sizing and scheduling problems, the uniformity of the 

ecision variables avoid adversarial decisions between the two 

evels. 

.3. Production planning in semiconductor manufacturing 

As discussed in Section 1 , our multi-product multi-step pro- 

uction planning problem is particularly relevant in semiconduc- 

or manufacturing. Hence, the literature on production planning 

n semiconductor manufacturing is the most related to our prob- 

em. Note that most research papers in this context only use lin- 

ar programming. Integer variables are not considered due to the 

imension and complexity of the industrial problem. A critical 

ssue in production planning in semiconductor manufacturing is 

he modeling of the complex reentrant production flows and of 

he congestion on machines. Congestion is modeled in three main 

ays. 

1. The first and most straightforward way to model congestion is 

to use fixed lead times, which are equivalent to the ones used 
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in multi-level lot sizing. Although lead times fail to seize the 

dynamic of congestion, they can model frequent delays happen- 

ing due to fixed bottlenecks in the production step. This is for 

example the case in a workcenter that is central in the produc- 

tion flows and regularly overloaded, or in production steps that 

require auxiliary resources not always available in the period. 

The dynamics of the congestion, that can fluctuate due to the 

workloads in each workcenter, is taken into account by the ca- 

pacity constraints that limit the quantities to be processed in 

one period in a workcenter. Lead times are usually determined 

based on historical data. Fixed Lead Times are easy to model 

and introduce low complexity but they have several drawbacks. 

In particular, the workload is not balanced on all periods of the 

lead time but is only counted in the last period. In addition, 

production flows are not flexible and the values of the lead 

times are critical. If the lead times are too short, production 

flows must be strongly reduced in order to satisfy capacity con- 

straints. Nevertheless, fixed lead times are convenient and can 

be improved by using non-integer fixed lead times as shown in 

Kacar, Mönch, and Uzsoy (2016) . 

2. An important fact is that lead times are not exogenous param- 

eters. In fact, they directly depend on the production flows of 

products which compete for the same resource in a period. In 

short, lead times depend on the production plan. To address 

this circularity between production planning and operational 

level execution, Hung and Leachman (1996) propose an iterative 

procedure using both linear programming and discrete event 

simulation. The linear programming model is used to find a 

production plan that takes into account the lead times given by 

the simulation model, while the simulation model takes as in- 

puts the production plan and evaluate it. These two steps are 

repeated until convergence. However, as stated by Missbauer 

(2020) , processes that iterate only on the lead times, do not 

meet the theoretical requirements to insure a convergence. Fur- 

thermore, the experiments of Bang and Kim (2010) show that 

iterative procedures are affected by the choice of the simulation 

model. In addition, a major drawback of iterative procedures is 

their computational burden. 

3. The last main way to tackle congestion is the use of so-called 

Clearing Functions (CFs). Initially introduced by Graves (1986) , 

Clearing Functions give the expected output of machines (or 

workcenters) as a function of the workload. In their current 

shape (since the paper of Asmundsson, Rardin, & Uzsoy, 2006 ), 

CFs are non-linear functions that are estimated using simula- 

tion or historical data. CF constraints are generally linearized 

and included in a single linear programming model. In a re- 

cent work, Albey, Bilge, and Uzsoy (2017) study a CF that can 

deal with multiple products and multiple stages. One of the 

main advantages of using CFs is the short computational times 

compared to using iterative procedures, because the burden is 

moved to the pre-processing phase (i.e. establishing CFs). But 

when the structure of the facility changes, e.g. new machines 

are added, CFs need to be re-evaluated. 

We will not consider CFs in this paper, because they do not 

pecify lead times and capture the delays in a very different way. 

e first consider fixed lead times which are widely used and easy 

o implement. Then we use a more flexible definition of lead times 

y considering additional constraints. 

Within the semiconductor manufacturing literature, the classi- 

al formulation of a multi-step production planning problem can 

e tracked back to the step separated formulation of Leachman 

nd Carmon (1992) . This paper is also interesting because it might 

e the first one to discuss a route based formulation of the prob- 

em. Unfortunately, the authors discarded the idea due to the large 

umber of decision variables required by the model. 
604 
.4. Column generation for production planning 

Column generation approaches are known to efficiently deal 

ith mathematical programs with a large number of decision vari- 

bles. Column generation has been successfully applied to vari- 

us optimization problems such as vehicle routing problems (e.g. 

zi, Gendreau, & Potvin, 2010 ), airplane crew scheduling prob- 

ems (e.g. Gamache, Soumis, Marquis, & Desrosiers, 1999 ) or ma- 

hine scheduling problems (e.g. Lopes & de Carvalho, 2007 ). Col- 

mn generation was introduced by Dantzig and Wolfe (1960) , and 

onsists in separating the original problem into a master problem 

nd a pricing problem that generates useful columns for the mas- 

er problem. At first, a Restricted Master Problem (RPM) with a 

imited number of columns is solved. Then, using reduced costs, 

he pricing problem is solved to find one or several columns to 

dd to the RPM. The process is iterated until no new column is 

ound. To better understand column generation, the reader can 

efer to Barnhart, Johnson, Nemhauser, Savelsbergh, and Vance 

1998) where different strategies of generation are discussed (in a 

ranch and price framework) or the extensive tutorial of Desrosiers 

nd Lübbecke (2005) . 

In production planning and lot sizing, the first work on column 

eneration was published by Manne (1958) , two years prior to the 

eminal paper of Dantzig and Wolfe (1960) . Manne’s paper is par- 

ially deficient and was corrected and implemented in Degraeve 

nd Jans (2007) . Column generation was applied to solve lot-sizing 

roblems in several kinds of industries such as the tire industry 

 Jans & Degraeve, 2004 ), the paper industry ( Bredström, Lundgren, 

önnqvist, Carlsson, & Mason, 2004 ) and the steel industry ( Yi, Jia, 

u, & Liu, 2019 ). The most commonly used column type is a pro-

uction plan column which specifies the production periods. How- 

ver, in terms of production planning without setup costs, the pro- 

uction periods are not critical. That is why the formulation pro- 

osed in our study is significantly different. As far as we know, col- 

mn generation was never applied to solve a multi-product multi- 

tep lot-sizing problem. 

In semiconductor manufacturing, to the best of our knowledge, 

olumn generation was never used to solve production planning 

roblems. Even in the entire semiconductor manufacturing litera- 

ure, only four articles using column generation were spotted: On 

ot allocation to customer ( Ng, Sun, & Fowler, 2010 ), on cutting 

afers ( Nisted, Pisinger, & Altman, 2011 ), on capacity expansion 

 Kim & Uzsoy, 2008 ) and on scheduling ( Jampani & Mason, 2010 ). 

. Mathematical models with fixed and flexible lead times 

In this section, a compact formulation based on the literature is 

resented for planning the production of P products over a discrete 

ime horizon. The time horizon is decomposed into T periods (usu- 

lly one period is one day), and demands D pt are given per product 

p and period t . Each product p needs a sequence of steps L p to be 

rocessed on K workcenters. Each workcenter k can process a fi- 

ite set of steps L 

k 
p for each product p and has a finite capacity 

 k . 

The plan is determined by optimizing internal production flows. 

he goal is to optimize the quantities X plt of product p to be pro- 

essed, at step l and period t . The set of steps of product p and 

heir resource consumption αpl provide the timing of steps. In or- 

er to trace production flows, a variable W plt that models the work 

n process (WIP) of product p, at step l and period t is introduced. 

 unitary work in process cost w pl is associated with product p

nd step l. 

The goal is to satisfy demands while minimizing inventory, 

acklogging and work in process costs. Note that the WIP cost is 

he intermediate inventory cost in a multi-level lot-sizing problem. 

e introduce a unitary inventory cost h pt and a unitary backlog- 
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ing cost b pt for product p and period t . Let us also introduce two 

ecision variables I pt and B pt , that respectively model the inven- 

ory and the backlog of product p at time period t . In this model, 

e assume that the transportation times and costs between two 

orkcenters are negligible or constant. Products that complete a 

iven production step are placed in a waiting queue for the next 

tep (the queue is supposed to be uncapacitated). 

Capacity congestion is first modeled with a fixed lead time LT pl 

or product p at step l. Note that LT pl can be larger than 1 but, as

n the models of the literature, we assume that the capacity is con- 

umed in the last period of the lead time, and that the processing 

ime of a production step never exceeds one period (and that it 

oes not overlap two different periods). More precisely, the capac- 

ty required to produce X plt is consumed in period t when LT pl = 0 , 

n period t + 1 when LT pl = 1 , in period t + 2 when LT pl = 2 , etc.

his means that products are waiting in period t if LT pl = 1 , in pe-

iods t and t + 1 if LT pl = 2 , etc. Production capacity is consumed

n the same way when flexible lead times are considered. 

.1. Model with fixed lead times 

The parameters and decisions variables are summarized below. 

• P : Number of products; 
• K: Number of workcenters; 
• L p : Sorted list of steps of product p; 
• L 

k 
p : Set of steps for product p processed in workcenter k ; 

• T : Number of periods in the planning horizon for production; 
• αpl : Unitary resource consumption of step l of product p; 
• C k : Daily available resource capacity of workcenter k ; 
• LT pl : Lead time of step l ∈ L (p) of product p; 
• D pt : Demand of product p at the end of period t; 
• h pt : Unitary inventory cost of product p at the end of period t; 
• b pt : Unitary backlogging cost of product p at the end of period 

t; 
• w pl : Unitary work in process cost of product p at step l; 
• B p0 : Initial backlog of product p; 
• I p0 : Initial inventory of product p; 
• W pl0 : Initial work in process of product p at step l. 

There are two types of variables: Variables related to the in- 

ernal production flow ( X plt / Y plt / W plt ), and variables related to the

emand ( I pt / B pt ). Y 
out 
pt is a variable linking both sets of variables. 

• X plt : Quantity of product p to be released in period t at step 

l ∈ L p ; 
• X in pt = X p1 t : Quantity of product p released in period t; 
• Y plt : Quantity of product p completing step l ∈ L p in period t; 
• Y out 

pt = Y p|L p | t : Output quantity of product p in period t; 
• W plt : Quantity in the Work in process (WIP) of product p, at 

step l ∈ L p at the end of period t; 
• I pt : Inventory level of product p at the end of period t; 
• B pt : Backlogging level of product p at the end of period t . 

The mathematical model with fixed lead times is written be- 

ow. 

in 

P ∑ 

p=1 

∑ 

l∈L p 

T ∑ 

t=1 

w pl W plt + 

P ∑ 

p=1 

T ∑ 

t=1 

(h pt I pt + b pt B pt ) (1) 

.t. Y plt = X p(l+1)(t) ∀ p ∈ { 1 , . . . , P } ∀ l ∈ L p ∀ t ∈ { 1 , . . . , T } 
(2) 

W plt = W pl(t−1) + X plt − Y plt ∀ p ∈ { 1 , . . . , P} ∀ l ∈ L p ∀ t ∈ { 1 , . . . , T }
(3) 

X plt = Y pl(t+ LT pl ) 
∀ p ∈ { 1 , . . . , P } ∀ l ∈ L p ∀ t ∈ { 1 , ..., T − LT pl }

(4) 
605 
D pt + B p(t−1) = Y out 
pt + I p(t−1) − I pt + B pt ∀ p ∈ { 1 , . . . , P} ∀ t ∈ { 1 , . . . , T }

(5) 

P ∑ 

p=1 

∑ 

l∈L k p 

αpl Y plt ≤ C k ∀ k ∈ { 1 , . . . , K} ∀ t ∈ { 1 , . . . , T } (6) 

X plt , Y plt , W plt , I pt , B pt ≥ 0 ∀ p ∈ { 1 , . . . , P} ∀ l ∈ L p ∀ t ∈ { 1 , . . . , T } 
(7) 

The objective function (1) minimizes the total inventory, back- 

ogging and work in process cost. Constraints (2) –(5) model flow 

onservation. Constraints (2) link the output of step l, Y plt , to the 

nput of the next step, X pl+1 t . Constraints (3) balance the work 

n process over the planning horizon for each step. Constraints 

4) guarantee that the fixed lead time for each step of each product 

s satisfied. Constraints (5) are the flow conservation constraints for 

he final products, ensuring the satisfaction of demands through 

he inventory and the production at the current period or their 

acklogging to subsequent periods. The capacity constraints in 

ach workcenter are modeled through Constraints (6) . Constraints 

7) ensure the non-negativity of decision variables. Note that, due 

o Constraints (2), (3) and (4) , the decision variables X plt , Y plt and

 plt are correlated and could be replaced by a single family of vari- 

bles. However, in this case, the flexible lead times constraints in 

he following section cannot be written. 

.2. Model with flexible lead times 

Fixed lead times are certainly the most common and easy way 

o model lead times, but there are other ways to model lead times 

hich allow more flexibility. One possibility is to fix minimum 

ead times, i.e. that, at each step, products have to wait at least 

 given minimum lead time but can wait more. To the best of our 

nowledge, only two papers ( Chen, Sarin, & Peake, 2010; Hwang 

 Chang, 2003 ) used similar constraints called WIP penetration 

onstraints. These constraints are expressed in order to limit the 

umber of steps a product can perform in a single period. Used 

ith the right parameters, WIP penetration constraints can model 

he minimum lead times discussed earlier, but can also model lead 

imes on several consecutive steps. The first aim of WIP penetra- 

ion constraints is to limit the flow of a product, by limiting the 

umber of steps in a single period. In the following, these con- 

traints are called ”flexible lead time constraints”. Let us introduce 

 max (l) which represents the maximum number of steps after l

 l included) which can be processed in the same period as l. If 

here is no such limit, o max (l) is set to + ∞ . Flexible lead time con-

traints are expressed by constraints (8) . In the model with fixed 

ead times (1) - (7) , Constraints (4) are replaced by Constraints (8) . 

 pl + o max (l ) t ≤
l + o max (l ) ∑ 

k = l 
W pk (t−1) ∀ t ∈ { 1 , ..., T } ∀ p ∈ { 1 , ..., P} ∀ l ∈ L p (8) 

s.t. o max (l) � = + ∞ 

Constraints (8) bind the output of step l + o max (l) with the 

ork in process of previous steps, i.e. products which have not yet 

ompleted step l − 1 cannot be processed in step l + o max (l) . 

If o max (l) = 0 , Constraints (8) ensure that only products already 

n the WIP of step l can be produced, i.e., products will have to 

ait at least one period in the WIP of l, which is a relaxation of

he fixed lead time when LT = 1 . Note that flexible lead times, as

hown later in this article, significantly increase the complexity of 

ur problem and the computational time needed to solve it. How- 

ver, flexible lead times allow internal production flows to be bet- 

er modeled, and some of the issues related to the fixed lead times 
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Fig. 1. A production route. 

Fig. 2. A timed route. 
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o be fixed (e.g. the lack of decisions on the quantities to process 

n intermediate steps). In particular, the use of machine capacity 

an be smoothed. However, this smoothing could be at the cost of 

roducts waiting a long time in the same step, and could poten- 

ially lead to large cycle times. 

. A novel formulation using timed routes 

In this section, a reformulation of the mathematical models in 

ection 3 is proposed. The new model is based on the new con- 

ept of ”timed route” which is formalized in Section 4.1 . Timed 

outes allow production flows to be fully modeled. The mathe- 

atical model using timed routes is introduced in Section 4.2 . In 

ection 4.3 , a polynomial time algorithm to generate all possible 

imed routes with fixed lead times is presented. 

.1. Concept of timed route 

A production route is the sequence of steps that a product 

eeds to follow to be completed (see Fig. 1 ). A timed route is

 production route for which a processing period is assigned to 

ach step (see Fig. 2 ). More formally, in a timed route r, a period

(p, r, l) is assigned to each step l in the route of product p. For

xample, in Fig. 2 , the timed route starts at period t and is com-

leted at period t(p, r, |L p | ) . Note also that step l + 1 is processed

t period t + 3 and has a lead time of 2 periods. Furthermore, the

ycle time of a timed route r of product p is: 

T (p, r) = t(p, r, |L p | ) − t(p, r, 1) + 1 

A timed route is a complete representation of one production 

ow, with the exact timing of each step. With timed routes, it is 

ossible to exhaustively detail the productions flows, and to know 

xactly where and when capacity is consumed. The cycle time re- 

ated to a timed route is explicit, contrary to the classical lead time 

ormulations of Section 3 where, although the cycle time is also 

xed, determining it means looking at the set of lead time con- 

traints on the step of the route to extract the total cycle time. 

ith the full view of possible production flows, inconsistent or 

seless timed routes can be discarded. The timed routes could 

e validated based on industrial knowledge. Moreover, new con- 

traints on production flows could be introduced such as minimal 

nd maximal cycle times. 

.2. Mathematical model 

In the following, the timed route model is formalized. Let us 

enote R p the set of timed routes of product p. With each timed 

oute r ∈ R p , a WIP management unitary cost w pr is associated. 
606 
he WIP cost of a timed route is equivalent to the sum of the WIP

osts of the different steps on the time horizon. Only the first step 

f each period (except for the first period) carries a WIP cost. This 

IP cost can be counted several times if no step takes place in 

he subsequent periods. Let us write the total WIP cost of a given 

imed route r, 
∑ 

l∈L p 
b 

pr 

l 
w pl , where b 

pr 

l 
is the number of periods be-

ween the processing periods of step l − 1 and step l in timed 

oute r, i.e. b 
pr 

l 
= t(p, r, l) − t(p, r, l − 1) . Note that waiting before

he first step of a route is not allowed, i.e. b 
pr 
1 

= 0 . Let a 
pr 

lt 
a binary

arameter which is equal to 1 if, in timed route r ∈ R p of product

p, step l is processed in period t , and is equal to 0 otherwise. Z pr 

s the decision variable that corresponds to the quantity released 

n timed route r. The timed route formulation is given below. 

min 

P ∑ 

p=1 

∑ 

r∈R p 

w pr Z pr + 

P ∑ 

p=1 

T ∑ 

t=1 

(h pt I pt + b pt B pt ) (9) 

.t. 

P ∑ 

p=1 

∑ 

r∈R p 

∑ 

l∈L k 
a pr 

lt 
αpl Z pr ≤ C k ∀ k ∈ { 1 , . . . , K} ∀ t ∈ { 1 , . . . , T } 

(10) 

 pt ≥
∑ 

r∈R p 

t ∑ 

τ=1 

a pr 

|L p | τ Z pr −
t ∑ 

τ=1 

D pτ ∀ p ∈ { 1 , . . . , P } ∀ t ∈ { 1 , . . . , T } 
(11) 

 pt ≥ −
∑ 

r∈R p 

t ∑ 

τ=1 

a pr 

|L p | τ Z pr + 

t ∑ 

τ=1 

D pτ ∀ p ∈ { 1 , . . . , P } ∀ t ∈ { 1 , . . . , T } 
(12) 

 pr , I pt , B pt ≥ 0 ∀ p ∈ { 1 , . . . , P } ∀ r ∈ R (p) ∀ t ∈ { 1 , . . . , T } 
(13) 

The objective function (9) minimizes the total backlog, inven- 

ory and WIP management cost induced by the selected timed 

outes, which is equivalent to the objective function (1) . Con- 

traints (10) model the limit on capacity consumption in each 

orkcenter at every period, and correspond to Constraints (6) . 

onstraints (11) and (12) ensure the inventory balance. They are 

quivalent to Constraints (5) but are written separately to simplify 

he writing of the dual problem. This formulation can be seen as a 

overing problem. 

.3. Generation of timed routes associated with fixed lead times 

Let us show how the set of timed routes is determined when 

xed lead times are considered. Due to Constraints (2) and (4) in 
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Fig. 3. Pattern of timed routes with Fixed Lead Times. 
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he model with fixed lead times, all production flows on a route 

ollow the same pattern. If t is the first period of the route and 

L p | the number of steps of product p, then the pattern can be

esigned as the timed route in Fig. 3 . The pattern is used for every

eriod t with t ≤ T − ∑ |L p | 
l=2 

LT l . The algorithm generates one timed 

oute per period for each product p. Since we need to assign a 

eriod to each of the |L p | steps, the complexity of generating all 

he timed routes with fixed lead times for a product p is equal 

o O (|L p | T ) . Thus, the complexity of the algorithm that creates all

he timed routes is equal to O ( 
∑ P 

p=1 |L p | T ) . This complexity can

e written as follows: O (P | L | T ) , where | L | is the average number

f steps in a route. 

. A column generation approach for flexible lead times 

Because, as shown in this section, the number of timed routes 

ith flexible lead times is exponential, we propose a column 

eneration approach to solve the timed route formulation. In 

ection 5.1 , a dynamic programming algorithm that generates all 

he timed routes when considering flexible lead times is described. 

he column generation approach is introduced in Section 5.2 , 

here reduced costs associated with timed routes are evaluated 

nd used to implement a dominance rule to strengthen the algo- 

ithm of Section 5.1 . 

.1. Exhaustive generation of timed routes for flexible lead times 

Using timed routes, all production flows can be described and 

raced. Thus, we can consider other production flows than the ones 

enerated using fixed lead times. Considering several timed routes 

ith different lead times for one step leads to more flexibility. This 

s the case with the flexible lead times presented in Section 3.2 . 

urthermore, when using the timed route formulation with flexi- 

le lead times, it is possible to avoid products with too large cycle 

imes. 

To establish a timed route, each step needs to be assigned to 

 period in the horizon. Representing this assignment by a graph, 

odes are labeled ( s, c, t, l) where s is the index of the current par-

ial route, c the current partial cost, t the period and l the last 

tep that is completed in the partial timed route s . The directed 

dges are the possible sequences of nodes. Due to the structure 

f a route, the graph can be seen as a tree with a level structure.

ote that, when two or more steps ( { l ′ + 1 , . . . , l ′′ } ) are completed

ithin the same period t (where l ′ is the last step completed be- 

ore t), we do not create a node for each step l ∈ { l ′ + 1 , . . . , l ′′ } .
nstead, we contract the steps { l ′ + 1 , . . . , l ′′ } within a single node

nd we create a direct arc to the final step l ′′ . This means that for

 timed route r, a 
pr 

lt 
= 1 , ∀ l ∈ { l ′ + 1 , . . . , l ′′ } if ( s 1 , c 1 , l 

′ , t − 1 ) and

 s 2 , c 2 , l 
′′ , t) are successive nodes of the timed route. Fig. 4 provides

n example of such graph, with 2 steps and 3 periods. Using this 

ind of graphs, an algorithm generating dynamically the edges and 

ew vertices level by level will work well. 

Rather than exploring the total space of possible states, the 

umber of vertices is reduced by using o max (l) , the maximal num- 
607 
er of steps that can be processed after step l in the same period 

han l. The vertices and edges which can be used when o max (l) = 1

or every step are traced with plain arrows and in blue in Fig. 4 .

ven with this reduction, the total number of timed routes for 

roduct p is still in O (|L p | T ) because, at each step of the route,

 period between 1 and T can be assigned. 

The exhaustive generation (which becomes a dynamic program 

n Section 5.2 ) can be implemented as described in Algorithms 

 and 2 . The main algorithm ( Algorithm 1 ) generates all timed 

lgorithm 1 Generation of timed routes 

CT R = ∅ // CT R : Set of complete timed routes 

P T R = ∅ // P T R : Set of current partial timed routes 

for t = 1 to T do 

ir // ir: Initial partial timed route 

laststep( ir) = 0 // No step assigned to ir

P T R = P T R ∪ { ir} 
for all s ∈ P T R do 

CreateExtensions( s, t) 

end for 

P T R = P T R − { ir} 
end for 

return CT R 

lgorithm 2 CreateExtensions( s, t) 

l = laststep (s ) + 1 

for e = 0 to o max (l) do 

sr = s 

for i = 0 to e do 

step( sr, l + i ) = t 

end for 

laststep( sr)= l + e 

if l + e = |L p | then 

CT R = CT R ∪ { sr} 
else 

P T R = P T R ∪ { sr} 
end if 

end for 

outes. It starts with a set of partial timed routes only containing 

he partial timed route with no period assigned, labeled ( s 0 ,0,0,0). 

or each period, the algorithm tries to extend the set of partial 

imed routes by looking for the children nodes of each partial 

imed route and the initial partial timed route. This procedure is 

eveloped in Algorithm 2 . Note that the generated partial timed 

outes are not removed in Algorithm 2 . Each partial timed routes 

an be extended to a subsequent period and the lead time to com- 

lete the next step increases accordingly. 

In Algorithm 2 , the partial time routes are returned, which ex- 

end the input partial timed route in period t . Extending a partial 

imed route means looking for each outgoing edge from the last 
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Fig. 4. Graph of states: Example with 2 steps and 3 periods 
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ode in the graph depicted earlier. The number of partial timed 

outes generated is o max (l ) where l is the last step assigned in the

nput partial timed route. The information on the last step is up- 

ated in the new partial timed routes. 

The program explores all possibilities, which leads to an expo- 

ential number of routes. At each period t , for a product p, o max (l)

tates are evaluated. Note that in the worst case o max (l) is equal to

he total number of steps |L p | . The complexity of evaluating each 

tate is constant. If no dominance rule is used, the total complexity 

ncreases exponentially and is equal in the worst case to O (|L p | T ) . 
Note also that it is possible to generate patterns of timed routes 

s in Section 4.3 for fixed lead times. However, this column gener- 

tion approach is not the most relevant approach because, for a 

attern, the timed routes starting at different periods may have 

ifferent costs. Moreover, if all the timed routes of a selection of 

atterns are used, the associated useless decision variables may 

urden the linear program. 

.2. Column generation approach 

The set of timed routes for flexible lead times is exponential, as 

hown by the complexity of the exhaustive generation algorithm. 

o handle this issue, we propose a column generation approach, in 

hich timed routes are generated dynamically. The framework of 

he approach can be found in Fig. 5 . 

The master problem corresponds to the model in Section 4.2 . 

hus, the Restricted Master Problem (RMP) is written with a re- 

tricted set of timed routes for each product. The restricted set of 

imed routes is initialized with the timed routes generated with 

xed lead times. A fast resolution of the pricing problem, that gen- 

rates new improving timed routes, is critical to the success of the 

olumn generation approach. An efficient algorithm is proposed in 

he following section. 

.2.1. Solving the pricing problem 

To determine the timed routes to insert in the RMP, we con- 

ider the reduced costs associated with timed routes. The dual 

roblem associated with the timed route formulation corresponds 

o (14) –(17) , where λ denote the dual variables associated with 
kt 

608 
onstraints (10) , and β+ 
pt (resp. β−

pt ) denote the dual variables as- 

ociated with Constraints (11) (resp. Constraints (12) ). 

max −
T ∑ 

t=1 

K ∑ 

k =1 

C k λkt −
P ∑ 

p=1 

T ∑ 

t=1 

( 
t ∑ 

τ=1 

D pτ ) β+ 
pt + 

P ∑ 

p=1 

T ∑ 

t=1 

( 
t ∑ 

τ=1 

D pτ ) β−
pt 

(14) 

.t. −
K ∑ 

k =1 

T ∑ 

t=1 

∑ 

l∈L k 
a pr 

lt 
αpl λkt −

T ∑ 

t=1 

t ∑ 

τ=1 

a pr 

|L p | τβ
+ 
pt 

+ 

T ∑ 

t=1 

t ∑ 

τ=1 

a pr 

|L p | τβ
−
pt ≤ w pr ∀ p ∈ { 1 , . . . , P } , ∀ r ∈ R p (15) 

+ 
pt ≤ h pt ∀ p ∈ { 1 , . . . , P } , ∀ t ∈ { 1 , . . . , T } (16) 

−
pt ≤ b pt ∀ p ∈ { 1 , . . . , P } , ∀ t ∈ { 1 , . . . , T } (17) 

kt , β
+ 
pt , β

−
pt ≥ 0 ∀ t ∈ { 1 , . . . , T } , ∀ p ∈ { 1 , . . . , P } , ∀ k ∈ { 1 , . . . , K} 

(18) 

In the dual problem, only Constraints (15) are related to timed 

outes. Thus, in the column generation approach, we only need 

o look for timed routes which violate the most Constraints (15) , 

.e. timed routes with reduced cost w pr + 

K ∑ 

k =1 

T ∑ 

t=1 

∑ 

l∈L k 
a 

pr 

lt 
αpl λkt + 

T 
 

=1 

t ∑ 

τ=1 

a 
pr 
|L p | τ β

+ 
pt −

T ∑ 

t=1 

t ∑ 

τ=1 

a 
pr 
|L p | τ β

−
pt ≤ 0 . Note that since there is no 

onstraint linking the products in the pricing problem, timed 

outes can be generated separately for each product. 

In order to define a route, we need to assign each step l to a pe-

iod t , i.e. to determine a 
pr 

lt 
. The reduced cost can be decomposed 

nto three parts. 

1. A period assignment cost which is denoted αpl λkt , 

2. The WIP cost of the route, which can be decomposed into the 

WIP cost at each period, 
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Fig. 5. Framework of column generation approach for production planning 
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3. Inventory and backlog costs. If the period of the last step (i.e. 

when the product is completed) is t ∗, then the inventory and 

backlog costs are equal to 

T ∑ 

t = t ∗
(β+ 

pt − β−
pt ) . 

.2.2. Dominance rule 

With such a complexity, the dynamic program can hardly be 

sed in practice. In order to keep the computational times under 

ontrol, we consider a dominance rule that relies on Property 1 . 

lgorithm 3 CreateNonDominatedExtension( s, t, ND [] ) 

// ND [] : Array (of size |L p | for product p) of dominant partial

timed routes up to period t-1 indexed by the last step reached. 

l = laststep (s ) + 1 

for e = 0 to o max (l) do 

sr = s // Extend timed route s by e steps to perform at period

t

for i = 0 to e do 

step( sr, l + i ) = t

UpdateReducedCost( sr) 

end for 

laststep( sr)= l + e 

if l + e = |L p | then 

CT R = CT R ∪ { sr} 
else 

// Dominance check 

if ReduceCost( sr) > ReducedCost( ND [ l + e ] ) then 

// sr dominates the former dominant partial timed route, 

which ends at period t with step l + e 

P T R = P T R ∪ { sr} 
P T R = P T R \ { ND [ l + e ] } 
ND [ l + e ] = sr 

end if 

end if 

end for 

roperty 1. For product p at a period t, if two partial timed routes s 1 
nd s 2 have achieved the same number of steps l, then the route with 

he lowest partial reduced cost dominates the other. In other words, 

or s 1 = (1, rc 1 , t, l) and s 2 = (2, rc 2 , t, l), then s 1 dominates s 2 if and

nly if rc ≤ rc . 
1 2 

609 
roof. It can be shown by contradiction that, if the periods or 

he last steps are different, then an arbitrary large negative re- 

uced cost can be introduced in the complete and dominated 

imed route. Thus, we can introduce s 3 , the optimal part to com- 

lete s 1 and s 2 to form a complete timed route. We denote rc 3 the

educed cost associated with s 3 and s 1 � s 3 (respectively s 2 � s 3 ) 

he complete timed route associated with s 1 (resp. s 2 ) and its to- 

al reduced cost rc 1 �3 (resp. rc 2 �3 ). Because rc 1 �3 = rc 1 + rc 3 and

c 2 �3 = rc 2 + rc 3 , comparing the total reduced cost rc 1 �3 and rc 2 �3 

s equivalent to comparing the partial reduced cost rc 1 and rc 2 . �

Note that, if constraints on the duration of cycle times are intro- 

uced, some conditions on the start period of partial timed routes 

re needed to apply this dominance rule. 

By applying this dominance rule in the dynamic program, the 

umber of new partial timed routes at the end of each itera- 

ion/period is at most equal to the number of steps for a prod- 

ct. Thus, at iteration t of the algorithm for a given product p, 

he number of partial timed routes before dominance is smaller 

han |L p | 2 . It reduces the complexity of Algorithms 1 and 2 to

 (|L p | 2 T ) for each product. To implement the dominance rule, we 

se in Algorithm 3 an array that contains the dominant partial 

imed routes (at the currently explored period) for each step of 

he route (except for the final step). The size of this array, denoted 

D [] , is |L p | , and thus it does not add any spatial complexity. Thus,

he overall complexity is in O (T 
∑ P 

p=1 |L p | 2 ) . 

. Computational experiments 

Computational experiment have been conducted on industrial 

ata to show the efficiency of the timed route formulation and our 

olumn generation approach. In Section 6.1 , the design of the com- 

utational experiments is detailed. In Section 6.2 , the compact for- 

ulation (1) –(7) and the timed route reformulation (9) –(13) are 

ompared for fixed lead times. Section 6.3 compares the column 

eneration approach with flexible lead times and the compact for- 

ulation. The advantages of using flexible lead times compared to 

xed lead times are not analyzed in this paper. 

.1. Design of experiments 

Experiments are conducted on industrial data of a semiconduc- 

or manufacturing facility in France. Data cannot be made public 

or confidentiality reasons, but can be provided on request after 
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Table 1 

Characteristics of the industrial instances. 

Horizon length {91, 119, 147} 

Number of workcenters 10 (aggregating about 500 machines) 

Number of products {15, 40, 75} 

Demand scenario {Low, Medium, High} 

Number of steps per route Between 100 and 500 

Table 2 

Unitary costs used in the experiments. 

Backlog 50 

Inventory 15 

WIP management 0.001 
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alidation by the company and certification by the researchers that 

hey will not disclose the data to others. We would also want to 

ecall that the main contribution of the paper is not related to the 

uality of the results obtained by the proposed approach but rather 

o the significant reduction of the computational times to solve the 

roblem and to the genericity of the approach. The main character- 

stics of the instances can be found in Table 1 . Crossing all choices

f the characteristics, 27 scenarios are considered. 

Instances are characterized by a number of steps per product 

hat varies between 100 and 500 and cumulative processing times 

f products that vary between 7 and 11 periods. Note that the 

lanning horizon should be long because products have cycle times 

etween 40 and 80 periods. To generate demands, the historical 

utput over 6 months was considered. With these historical data, 

he order frequency, the average demand and the standard devi- 

tion for each product were estimated. Then, demand scenarios 

ere randomly generated based on these characteristics. We only 

onsider the most produced products. For example, products with 

ery low demands or with less than 50 steps are not considered 

ince they are generally related to R&D and engineering projects 

nd not customer demands. To study the influence of the number 

f products, we consider 3 sets of products. Each demand scenario, 

elated to the number of products, is then adjusted with a factor 

n the generated demand to produce 3 scenarios where, respec- 

ively, demand is low and feasible, demand is medium but stresses 

he facility capacity and demand is high and cannot be fully 

et. The unitary costs used in our experiments can be found in 

able 2 . 

Furthermore, three profiles of lead times are studied by solving 

he compact models and using the column generation approach. 

1. The first profile, P 

fixed 
LT 

, corresponds to the classical fixed lead 

times. 

2. The second profile, P 

flex 
LT 

, corresponds to flexible lead times and 

is based on P 

fixed 
LT 

, but products can wait in every step as many

periods as necessary. This implies that the minimal lead times 

to be respected are the fixed lead times. This lead time pro- 

file reduces the backlog and inventory costs by allowing more 

flexible production flows. 

3. The third profile, P 

flex 
PT 

, also corresponds to flexible lead times 

but is based on the actual processing times, i.e. it is not related 

to the two other lead time profiles. With profile P 

flex 
PT 

, produc- 

tion flows are only limited by the maximum number of steps 

for a product that can be completed in a period, according to 

the cumulative process times of these steps. In a sense, it is a 

relaxation of the previous model where delays are not induced 

by exogenous parameters. Note that, contrary to P 

flex 
LT 

where 

Constraint (8) is not written, when LT (l) = 0 for a step l, with
flex 
P 

PT 
Constraint (8) is written for every step. p

610 
As show in the computational results of Section 6.3.3 , P 

flex 
PT 

eads to the most difficult problems in terms of computational 

ime. For example, with the compact formulation, on scenarios 

ith medium or large dimensions, there is at least a factor of ten 

etween the computational times for P 

flex 
LT 

and P 

flex 
PT 

. 

All numerical experiments were executed on a computer with 

 processor Intel(R) Xeon(R) CPU W3550 and 16 Gigabyte of RAM 

emory, using a JAVA program (JRE 1.8) and IBM ILOG CPLEX (ver- 

ion 12.6) with default settings. 

.2. Comparison between the compact formulation and the timed 

oute reformulation with fixed lead times 

Due to the polynomial number of timed routes with fixed lead 

imes, all timed routes are generated and included in the model. 

able 3 shows the computational times spent by IBM ILOG CPLEX 

or several scenarios. First, note that the computational times do 

ot seem to change much with the demand level. Thus, only look- 

ng at the medium scenarios, it can be seen that the timed route 

odel performs better than the compact one. On average, the com- 

utational time is decreased by 94%, with a minimum decrease 

f 88%. When considering the impact of the horizon length, the 

esults show that the timed route formulation is more sensitive 

o the horizon length than the compact model. The gap between 

he computational times of both models reduces as the horizon 

ength increases. For all these scenarios, the computational times 

f the timed route formulation are always smaller than the small- 

st computational time with the compact formulation. For fixed 

ead times, the timed route formulation is efficient when all the 

imed routes are generated. One of the reasons behind the de- 

rease of the computational times may be that IBM ILOG CPLEX 

eeds to eliminate much fewer columns to determine the reduced 

P with the timed route formulation than with the compact for- 

ulation. We may hypothesize that the reduced LP is close to the 

imed route model. 

.3. Column generation approach for flexible lead times 

In this section, the compact formulation and the timed route 

ormulation with flexible lead time profiles are compared. The first 

exible lead time profile studied is P 

flex 
LT 

. The associated compact 

odel has a lower number of lead time constraints compared to 

he compact model with fixed lead times. This is due to the fact 

hat lead time constraints are only introduced for positive lead 

imes. The second flexible lead time profile is P 

flex 
PT 

. Its compact 

ormulation has about the same number of constraints as the com- 

act formulation with fixed lead times, but production flows are 

ess constrained. The associated flexible lead time constraints are 

ased on the actual processing times of steps. 

As shown in Section 5.1 , the timed route formulation with flex- 

ble lead times requires an exponential number of timed routes. 

o get a feeling of the resulting complexity, we generate all the 

imed routes for a reduced data set with 3 products with at most 

3 steps and 11 machines. With 8 Gigabyte of RAM and when the 

orizon is larger than 15 periods, it is not possible to generate all 

imed routes for profile P 

flex 
LT 

and a memory error arises. 

Note that, in this paper, the computational time is defined as 

he difference between the time at which the optimization pro- 

ess starts and the time at which the optimal solution is found 

nd extracted. Only the time to load the data and to create the 

rst mathematical model is omitted. 

In Section 6.3.1 , the parameters and strategies used in the col- 

mn generation approach are detailed. The experimental results 

or profile P 

flex 
LT 

are presented in Section 6.3.2 while the results for 

rofile P 

flex 
PT 

are analyzed in Section 6.3.3 . 
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Table 3 

Computational times (in seconds) for profile P fixed 
LT 

(C: Compact formulation; TR: Timed Route formulation). 

Number of products Horizon length Low demand Medium demand High Demand 

C TR C TR C TR 

Low (15) 91 15 0 15 0 14 0 

119 20 1 20 1 19 1 

147 25 5 25 3 25 4 

Medium (40) 91 40 1 41 1 40 1 

119 58 3 57 4 58 4 

147 68 7 70 7 71 7 

Large (75 ) 91 84 1 83 1 83 2 

119 113 4 114 8 114 5 

147 145 16 147 15 145 16 

Fig. 6. Number of timed routes by product at each iteration vs. ratio of CPU time 

6

w

P
i

a

l

w

t

c

b

t

i

p

a

o

c

d

W

t

d  

o

t

c

b

p

p

b

o

6

i

s

b

b

r

q

t

t

c

t

i

m

c

w

c

.3.1. Column generation strategy 

Dominance rules are used to reduce computational times. To 

arm up the column generation approach, all timed routes from 

 

fixed 
LT 

are included in the model. Due to light use of processor dur- 

ng the timed route generation, parallelism is enabled while gener- 

ting timed routes for each product. 

The last parameter to choose is how many timed routes are se- 

ected for each product at each iteration. This parameter is tuned 

ith the case of Medium demand, with profile P 

flex 
LT 

. Fig. 6 shows 

he average decrease of the computational time over all scenarios 

ompared to the case in which only one timed route is generated 

y product. This case is used as a reference because it corresponds 

o the case with the smallest number of timed routes. This figure 

s completed with the maximal and minimal decrease of the com- 

utational time obtained among the 27 scenarios. Note that the 

verage time spent to solve the timed route formulation limited to 

ne new timed route by product at each iteration is 239 seconds. It 

an be seen that, when the parameter varies between 4 and 10, the 

ecrease of the computational time is quite stable and the lowest. 

ith up to 150 timed routes by product (which is an upper bound 

o the number of non dominated timed routes generated by the 

ynamic program when T < 150 ), it can be seen that the decrease

f the computational time is similar to when the parameter is set 

o 2. This figure shows the trade-off between generating numerous 

olumns to converge with fewer iterations and generating only the 
t

611 
est columns to accelerate the resolution of the restricted master 

roblem. 

In the following experiments, the number of timed routes by 

roduct at each iteration is set to 5. This choice might not be the 

est in every scenario, but is relevant enough to show the strength 

f our approach. 

.3.2. Comparison of computational times for profile P 

flex 
LT 

Contrary to fixed lead times, the computational times for flex- 

ble lead time profiles depend on the demand scenario. Table 4 

hows the computational times to solve P 

flex 
LT 

. No simple rule can 

e deduced (for both formulations) from the different scenarios 

ecause the complexity of the problem depends on several pa- 

ameters. Computational times to solve the timed route model are 

uite close with medium and high demands, and are always larger 

han the computational times with low demands. 

The main result of the experiment is that the column genera- 

ion approach always significantly performs better. On average, the 

omputational time is reduced by 87.5% while the solution time for 

he compact model ranges from 2 minutes to 79 minutes. The least 

mpressive case is 73.3% when the time spent by the compact for- 

ulation is the lowest (120 seconds). Unlike fixed lead times, we 

annot conclude anything on the behavior of the compact model 

hen the horizon increases, only that the computational times in- 

rease with the length of the horizon (which is expected due to 

he algorithm complexity). 
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Table 4 

Computational times (in seconds) for profile P flex 
LT 

(C: Compact formulation; TR: Timed Route formulation). 

Number of products Horizon length Low demand Medium demand High Demand 

C TR C TR C TR 

Low (15) 91 192 14 142 31 120 32 

119 409 59 266 67 284 66 

147 580 95 595 121 580 124 

Medium (40) 91 648 34 469 66 563 63 

119 1,190 109 1,086 134 1,254 153 

147 1,674 180 2,034 218 2,174 218 

Large (75) 91 1,620 23 1,578 107 1,363 109 

119 3,693 74 3,000 236 2,145 242 

147 4,277 316 3,797 401 4,619 395 

Table 5 

Computational times (in seconds) for profile P flex 
PT 

(C: Compact formulation; TR: Timed Route formulation). 

Number of products Horizon length Low demand Medium demand High Demand 

C TR C TR C TR 

Low (15) 91 183 33 1,549 37 1,760 51 

119 272 48 2,677 83 2,836 120 

147 4,100 161 4,211 255 4,962 407 

Medium (40) 91 5,587 84 6,254 156 6,486 233 

119 8,939 167 10,092 298 10,277 429 

147 13,014 291 14,407 587 16,152 793 

Large (75) 91 979 95 10,516 179 11,902 246 

119 18,862 193 18,498 346 20,472 460 

147 599,443 404 323,891 678 546,596 1,273 

Table 6 

Number of iterations in the column generation approach with flexible lead time profiles. 

Number of products Horizon length Low demand Medium demand High Demand 

P flex 
LT 

P flex 
PT 

P flex 
LT 

P flex 
PT 

P flex 
LT 

P flex 
PT 

91 25 11 46 12 47 17 

119 57 12 61 21 60 31 

Low (15) 147 60 31 72 50 71 a 80 a 

91 22 12 37 23 36 35 

119 38 16 43 30 48 46 

Medium (40) 147 47 23 46 45 47 a 66 a 

91 8 7 32 14 35 19 

119 16 11 40 18 43 25 

Large (75) 147 42 17 46 25 46 a 54 a 

a scenarios where the number of iterations for P flex 
PT 

is higher than for P flex 
LT 
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.3.3. Comparison of computational times for profile P 

flex 
PT 

Considering profile P 

flex 
PT 

whose computational results can be 

ound in Table 5 , some conclusions are shared with P 

flex 
LT 

. For ex-

mple, the computational times vary depending on the demand 

cenario, but in the case of P 

flex 
PT 

, it can also be noted that the

arger the demand, the larger the CPU time to solve the prob- 

em, and the increase depends on the scenario. The computational 

imes are again highly reduced by the column generation approach 

n the timed route formulation. On average, they are reduced by 

5.8%. The computational time for the compact model ranges from 

 minutes to more than 6 days (with a median of 2.5 hours). 

With the compact formulation, there is a huge gap on the com- 

utational times for the three lead time profiles. Due to the ex- 

reme computational time in the scenarios with a large number 

f products and a long horizon, the average computational time 

s a biased indicator. Therefore, we prefer to analyze the median 

omputational time. Over all the scenarios, the median computa- 

ional time is 58 seconds for P 

fixed 
LT 

, 1,190 seconds for P 

flex 
LT 

and 

,939 seconds for P 

flex 
PT 

. When using the timed route formulation 

nd the column generation approach, the computational times also 

ncrease as the lead time profile becomes more complex, but the 

ncrease is much more limited. The overall median of the compu- 

ational times for the compact formulation is equal to 3 seconds 
612 
or P 

fixed 
LT 

, 109 seconds for P 

flex 
LT 

and 233 seconds for P 

flex 
PT 

. One

eason which can explain why computational times for the timed 

oute formulation with P 

flex 
PT 

is close to P 

flex 
LT 

, might be the differ- 

nce of these two lead time profiles. It can be seen in Table 6 that,

n most scenarios (except when the demand is high and the hori- 

on is long), P 

flex 
PT 

needs fewer iterations of the column generation 

pproach to converge to the optimal solution. 

The reason is probably that, while the compact formulation 

truggles with a huge number of constraints, many useful timed 

outes are quickly generated in the column generation approach, 

hus fewer iterations are needed before converging. It could be in- 

eresting to tune the maximum number of timed routes by product 

t each iteration. 

Additionally, the mean computational times to generate timed 

outes at each iteration for both flexible lead time profiles are 

iven in Table 7 . Note that the first iterations of the column gen-

ration approach usually take longer computational times but, for 

ost iterations, the computational times are close to the average. 

able 7 shows that the generation of timed routes is almost inde- 

endent of the demand scenario. The computational times to gen- 

rate timed routes for profile P 

flex 
PT 

are about 6 times larger than 

he computational times to generate the timed routes for profile 

 

flex , and this ratio is stable in all demand scenarios. 
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Table 7 

Mean computational time to generate timed routes by iteration, with flexible lead time profiles. 

Number of products Horizon length Low demand Medium demand High Demand 

P flex 
LT 

P flex 
PT 

P flex 
LT 

P flex 
PT 

P flex 
LT 

P flex 
PT 

91 0.4 2.6 0.4 2.7 0.4 2.6 

119 0.5 3.4 0.5 3.4 0.5 3.4 

Low (15) 147 0.7 4.3 0.7 4.2 0.7 4.2 

91 0.9 6.0 0.9 5.9 0.9 5.8 

119 1.2 8.3 1.2 8.0 1.3 7.7 

Medium (40) 147 1.7 9.9 1.6 10.1 1.6 9.6 

91 1.7 10.2 1.6 10.2 1.5 10.3 

119 2.3 13.9 2.3 14.1 2.3 13.8 

Large (75) 147 3.0 17.7 3.0 18.3 3.1 17.5 
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. Conclusions and perspectives 

In this paper, we introduced the novel concept of timed route 

hat enables a new model for multi-product multi-step production 

lanning problems to be introduced. The timed route approach 

as validated on industrial data, and experimental results show 

hat the new formulation significantly outperforms compact for- 

ulations for various lead time profiles. To achieve such perfor- 

ance and because considering flexible lead times induces an ex- 

onential number of columns, a column generation approach was 

resented with a polynomial dynamic program that generates the 

imed routes in the pricing problem. 

Many research opportunities are offered by using timed routes 

nd timed route formulations. An interesting point to investigate is 

he various industrial rules that could only be developed for math- 

matical models based on timed routes. As already discussed and 

y definition, timed routes allow production flows and their cy- 

le times to be explicitly modeled. On the opposite, flexible lead 

ime constraints in a compact mathematical model do not easily 

llow cycle times to be limited and production flows to be ex- 

licitly managed. Hence, many relevant industrial constraints can 

e taken into account through timed routes. For example, timed 

outes could be generated by considering minimum or maximum 

ycle times of products, or minimum or maximum lead times be- 

ween two non-consecutive production steps. Also, a cycle time for 

ach product could be targeted in the objective function, by intro- 

ucing new costs on timed routes instead of the somehow artificial 

IP management costs. These costs could be associated with the 

eviation to the target cycle time. In addition, costs based on the 

uration of the lead time in a production step could be proposed, 

hat would be non-linear in compact models but linear in timed 

oute models. 

Moreover, the computational times of the column generation 

pproach could be accelerated by using smart column generation 

euristics. Another research perspective is to consider initial in- 

entories in the product routes. Shorter timed routes will be re- 

uired to flush the initial inventories. Finally, we would like to 

tudy whether timed routes could be used in other contexts, e.g. 

hen modeling product flows in supply chains where the notion 

f ”route” is also relevant. 
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