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Abstract

Motivated by real challenges on energy management faced by industrial firms,
we propose a novel way to reduce production costs by including the pricing of elec-
tricity in a multi-product lot-sizing problem. In incentive-based programs, when
electric utilities face power consumption peaks, they request electricity-consuming
firms to curtail their electric load, rewarding the industrial firms with incentives if
they comply with the curtailment requests. Otherwise, industrial firms must pay
financial penalties for an excessive electricity consumption. A two-stage stochastic
formulation is presented to cover the case where a manufacturer wants to satisfy
any curtailment request. A chance-constrained formulation is also proposed, and its
relevance in practice is discussed. Finally, computational studies are conducted to
compare mathematical models and highlight critical parameters and show poten-
tial savings when subscribing incentive-based programs. We show that the setup
cost ratio, the capacity utilization rate, the number of products and the timing of
curtailment requests are critical parameters for manufacturers.

KEYWORDS
Lot Sizing; Optimization; Stochastic programming; Incentive-based programs;
Energy management

1. Introduction

1.1. General introduction

Production operations can be divided into three levels: Strategic, tactical and op-
erational. At the strategic level, long-term supply chain design decisions (often for

* Corresponding author.



several years) are made by creating or removing facilities, selecting suppliers, and
defining the targeted client segments. At the tactical level, decision makers determine
production plans over a finite time horizon to fulfill customer demands while respecting
objectives and guidelines imposed by the strategic level. Finally, the operational level
corresponds to short-term decisions, such as job/lot scheduling. At the tactical and op-
erational levels, energy is one of the critical raw materials necessary for manufacturing
finite products, as it is used for supplying power to machines in production facilities.
According to the U.S. Energy Information Administration (U.S. Energy Information
Administration 2017), the industrial sector is the largest consumer of electricity in the
U.S., consuming 30% of the total available electricity.

Up until a few years ago, electricity management was hardly considered as a chal-
lenge to address (Biel and Glock 2016). Today, notably due to the 50% increase in
electricity prices over the last 10 years, considering electricity in production manage-
ment has become a primary concern for manufacturers. Consequently, the industrial
sector must manage its electricity consumption to remain competitive, in particular
process industries that are among the largest electricity consumers. There exist sev-
eral ways for manufacturing companies to manage consumption: 1) Lower production
rates; 2) Turn off machines instead of letting them idle; and/or 3) Buy newer, more
efficient machines. Unfortunately, these decisions are often risky since they can lead to
a reduced quality of service and may damage machines and/or decrease their lifetime
(Dai et al. 2013; Lu et al. 2017). Furthermore, while buying state-of-the-art machines
may be a viable solution, the required return on investment is often significant and is
not guaranteed to give desirable results if the price of electricity keeps increasing.

Another innovative way to reduce electricity costs is to study the needs of electric
utilities and control or reduce electricity consumption during critical hours of the day,
known as on-peak power consumption periods. During these on-peak periods, electric
utilities are under pressure to provide electricity to a large number of customers while
simultaneously preserving their grid integrity and limiting greenhouse gas emissions.
To encourage the industrial sector to control or reduce their load during on-peak peri-
ods, electric utilities have been developing demand response energy programs. Among
these demand response programs, two types of energy plans can be distinguished:
incentive-based programs and price-based programs.

In price-based programs, the price of electricity can vary up to each hour of the day.
During nights and weekends, which are the off-peak periods, electricity is cheap and
affordable; in the middle of a day, an on-peak period, electricity becomes very expen-
sive. Furthermore, the price of electricity is seasonal (i.e., it is more expensive during
the summer months than during the winter months). In incentive-based programs,
electric utilities send curtailment requests to manufacturing companies asking them
to reduce their electric load by a short period of a few hours during the time frame
when the utility expects to face an upcoming consumption peak. If manufacturing
companies comply with such a request, they receive monetary rewards. As manu-
facturing companies receive curtailment requests during on-peak periods, compliance
forces production to be rescheduled to off-peak periods (i.e., non-critical periods for
electric utilities). With such energy plans, the actors within the energy supply chain
collaborate to reduce costs and the impact of the change on production operations,
whether at the utility level with the production of energy or at the industrial level
manufacturing operations. Depending on their locations, manufacturing companies
can choose among different demand response programs proposed by electric utilities.
In the U.S., the Office of Energy Efficiency and Renewable Energy references demand
response programs by state (Department of Energy 2018). For instance, a Californian
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manufacturing company that decides to opt for demand response programs proposed
by Pacific Gas and Electric Company (2018) has the option between four different
tariffs.

1.2. Literature review

In the literature, most researchers have studied energy implications at the oper-
ational level through production scheduling problems (Biel and Glock 2016; Gahm
et al. 2016; Giret, Trentesaux, and Prabhu 2015; Merkert et al. 2015; Stahl, Taisch,
and Kiritsis 2016) while decisions at strategic and tactical levels, which are also crucial
in production management, have been rarely addressed.

Most publications, which include demand response programs in production plan-
ning (tactical level) problems, consider price-based programs. Denton et al. (1987)
investigate a production planning problem where industrial firms face decisions at
multiple levels. Each day, the manufacturer must define how many shifts must occur.
On a weekly basis, it must determine whether it must start activities during weekends.
On an annual basis, it must find the best periods (months) to manufacture products.
Denton et al. (1987) consider a Time-Of-Use tariff (TOU), in which price of electricity
is much more expensive during on-peak periods, as a demand response program with
other energy sources. They show that the structure of the TOU tariff has a great influ-
ence on total costs when an industrial firm has the possibility to be energy-efficient by
shifting production to off-peak periods. They also underline the trade-off between en-
ergy and labor costs, as labor cost is much more expensive during off-peak periods. This
is a result shared by Fethke and Tishler (1990). They conclude that industrial com-
panies whose energy costs are low and labor costs high have little interest to consider
a price-based program such as TOU. Salahi and Jafari (2016) analyze a production
planning problem with a one-day planning horizon where demands are random. They
study energy performances with two demand response programs, a TOU tariff and a
Real-Time Program (RTP) where the price of electricity varies at each hour of the
day. They are notably interested in knowing how the features of a machine, such as its
energy consumption and processing speed, can impact the production plan with such
tariffs. Masmoudi et al. (2017) propose several energy-aware heuristics for a lot-sizing
problem where the production system is organized as a flow line with N machines
and M buffers. Numerous contributions that consider demand response programs in
production planning study air separation plants that are energy-intensive. An air sep-
aration plant is a production facility that takes valuable natural gas from air by a
separation mechanism and redistributes the gas to its customers. Karwan and Keblis
(2007), Castro, Harjunkoski, and Grossmann (2011), and Mitra et al. (2012) analyze
the behavior of air separation plants under price-based programs using features proper
to these industries, notably the fact that switching between operating nodes causes a
modification of electricity consumption and production rates between each product.
Doing so, manufacturers can reduce the energy impact of production operations and
costs but must pay ramp-up losses each time a new operating node is selected. Wich-
mann, Johannes, and Spengler (2019) model a multi-item lot-sizing and scheduling
problem where the energy price is time-dependent. In their problem, energy in batter-
ies can be saved, e.g. when energy costs are small, for later use to reduce production
costs when energy costs are larger. They show that production costs for manufacturing
industries can be significantly reduced when energy prices are highly volatile, machine
utilization rates high and products heteregenous. Tang, Che, and Liu (2012) study a
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production planning problem in a steel-rolling mill production facility. The objective
consists in minimizing production costs and energy consumption. The demand is as-
sumed to be stochastic and energy consumption is assumed to be nonlinear to better
model the real energy consumption of heat furnaces. A tailor-made heuristic is shown
to be promising to solve the studied problem. Golp̂ıra, Khan, and Zhang (2018) study
an integrated multi-item multi-machine lot-sizing and jop-shop scheduling problem.
Energy generation and distribution is included in the problem. More precisely, the
production facility generate electricity, and it must be decided to either store it, use it
for production or sell it to the main grid. They show that including energy generation
and distribution in the problem lead to promising savings.

There are other contributions that consider fixed cost for energy with constraints on
the total energy consumption by period. Giglio, Paolucci, and Roshani (2017) propose
a relax-and-fix heuristic to solve an integrated lot-sizing and job-shop scheduling prob-
lem with re-manufacturing when processing times of machines are controllable. Energy
consumption is considered with a fixed cost. Processing times can be compressed to
save energy costs, and thus to reduce the overall production costs. Hajej and Rezg
(2019) consider a single-item lot-sizing problem on multiple machines where energy
costs are fixed and the demand is stochastic. In their problem, one must decide when to
produce and when to perform maintenance operations to meet the demand. However,
financial penalties must be paid if too much energy is consumed. Rapine et al. 2018
and Rapine, Goisque, and Akbalik (2018) consider a single-item lot-sizing problem
on parallel machines where one must decide when to produce to meet time-varying
demands. New machines can be started up if the production capacity is insufficient
to meet the demand. However, producing and starting-up machines consume energy
and a global budget on energy consumption must be respected. The global budget on
energy consumption is a hard constraint in their paper. The complexity of the problem
is studied and exact algorithms are also proposed to solve the problem.

To our knowledge, Latifoğlu, Belotti, and Snyder (2013) and Li and Hong (2017)
are the only authors who analyze production planning problems with incentive-based
programs. Latifoğlu, Belotti, and Snyder (2013) also study an air separation plant
providing gas to hospitals. As hospitals have a critical need of gas, Latifoğlu, Belotti,
and Snyder (2013) propose a robust framework for being able to have enough gas
in inventory at any time to satisfy demands when a curtailment request occurs. In
their problem, if the manufacturing company can comply with curtailment requests,
it takes advantage of a discount fixed-rate energy plan. Li and Hong (2017) include an
incentive-based program in a lithium-ion battery manufacturing system. To comply
with curtailment requests, they opt for a reactive approach by turning machines off
as soon as a notice is received. If they manage to comply, they receive a monetary
reward for their reduced electricity consumption, calculated using historical electric
load data. If they do not comply, there is no financial penalty.

1.3. Contributions and organization of the paper

The number of publications that address energy-aware industrial production plan-
ning problems considering incentive-based programs and/or lot-sizing is very limited.
Moreover, the literature on stochastic lot-sizing problems is limited compared to the
literature on deterministic lot-sizing problems. Also, most stochastic lot-sizing papers
consider that only the demand is stochastic (Brahimi et al. 2017). However, on a
short-term horizon, considering uncertain demand is not very realistic since the de-
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mand forecast is usually reliable, in particular in process industries where the demand
in the next few days/weeks is often well known. There is still a lot to do when the
demand is deterministic but other parameters are stochastic. Such problems are in-
teresting to study for short-term production planning, where other critical parameters
than the demand might be stochastic such as the timing of the curtailment requests.
In addition, contrary to existing works on lot-sizing problems with energy constraints,
we will consider incentive-based programs, which are not studied in the lot-sizing lit-
erature and little studied overall.

In this paper, we propose to pursue the work of Latifoğlu, Belotti, and Snyder
(2013) and Li and Hong (2017) on incentive-based programs. We focus on an inte-
grated stochastic lot-sizing problem with real constraints imposed by incentive-based
programs. More precisely, we study how a manufacturing company can take advan-
tage of incentive-based programs to minimize costs. Our work differs from Li and Hong
(2017) because we propose a predictive approach to answer curtailment requests, where
not answering a request is penalized. Because the demand is deterministic, the stochas-
tic dimension of the problem comes from the incentive-based program. Contrary to
Latifoğlu, Belotti, and Snyder (2013), monetary incentives are distributed only if a
curtailment request is received, and the production facility can keep producing under
a curtailment request (see Section 2.1). We also propose a chance-constrained for-
mulation where monetary penalties are incurred when a curtailment request is not
respected.

This paper is organized as follows. In Section 2, the problem is introduced and for-
malized. In Section 3, the stochastic modeling of the problem is introduced: (1) The
modeling of scenarios for the stochastic models is presented, (2) A two-stage formula-
tion to determine a production plan that covers all possible curtailment requests, and
(3) A chance-constrained formulation where not answering some curtailment requests
is allowed. In Section 4, a computational study on the two-stage formulation, inspired
by the glass industry is conducted, where critical parameters and potential savings
considering an incentive-based program are analyzed. In Section 5, a computational
study is proposed to compare the two-stage and chance-constrained formulations. In
Section 6, managerial insights are provided. Finally, in Section 7, we conclude and
propose perspectives.

2. Problem modeling

2.1. Problem description and notations

Lot-sizing considerations. We consider a manufacturing system producing P
products on a single critical machine or production line. We consider a short-term
planning horizon (at most a week) with a deterministic demand. The planning hori-
zon is divided into a finite number of time periods, T , and back orders are allowed.
Inventory holding costs must be paid if products are in stock at the end of a time
period. The setup state for a product of the machine or the production line between
two consecutive time periods is kept; this feature is also known as setup carryover. If
production for another product must be started, then a setup is performed.

Energy considerations. Energy considerations are explored by considering that
the machine has two states (i.e., idle and busy) that consume energy, but in differ-
ent quantities, and by considering an incentive-based program, which is subscribed
annually or for multiple years (strategic decision).
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Firstly, an electricity-consuming manufacturer (“the manufacturer”) pays a fixed
rate per kW-hr based on electricity usage (kWh) measured by the electric utility at
regular time intervals (i.e., 15-minute or 30-minute time intervals). Secondly, the man-
ufacturer can receive curtailment requests, which occur in a very precise time interval
known as the performance period. The uncertainty in the problem comes from the fact
that, as it is the case in practice, the occurrence of a curtailment request is known
very late (i.e., between 15 minutes and an hour before), and a curtailment request can
arrive at any time period during the performance period. However, the duration of the
performance period is bounded (e.g., between 2:00 PM and 6:00 PM), the number of
requests is limited to at most one per day and the duration of a curtailment request is
a predetermined constant (e.g., four hours). The two last assumptions are consistent
with most incentive-based programs, which are designed so that the manufacturer does
not have to endure more than one curtailment request per day (the total number of
curtailment requests by year is also limited to a fixed number) that must be answered
and whose duration is fixed.

When the manufacturer receives a curtailment request, it must reduce and maintain
its electric load below a predetermined level, the Firm Service Level (FSL). Produc-
tion can then continue if the electric load is below the firm service level. The firm
service level is defined as the difference between the historical electric load level and
the Load Reduction Threshold (THR). The historical electric load level is the elec-
tric load consumed by the manufacturer and measured by the electric utility before
subscribing to an incentive-based program. The manufacturer has the possibility to
select the most appropriate load reduction threshold for its production facility, but it
must respect the minimum load reduction threshold imposed by the demand response
program.

For each time interval under a curtailment request, if the electric load exceeds the
specified firm service level, the manufacturer must pay financial penalties. The typical
length of a time interval in the performance period is 15 or 30 minutes. Otherwise,
the manufacturer gets monetary rewards, which are proportional to the electric load
reduction ($/kW). The electric load reduction is equal to the difference between the
historical electric load level and the current electric load. The rewarded electric load
reduction is an average over the curtailment request. The rewards are also limited
to a Demand Saving Goal, denoted by DSG, by curtailment request. DSG is always
greater or equal to THR. If the manufacturer receives γ curtailment requests in the
horizon, it is rewarded γ times, and rewards are therefore limited to γ × DSG. In
practice, electric utilities may not always reward load reduction beyond THR (Pacific
Gas and Electric Company 2015; Southern California Edison 2014).

Finally, we assume that there is no energy storage.
Figure 1 illustrates the energy considerations for a demand saving goal of 25 kW,

a load reduction threshold of 10 kW, and a historical electric load of 30 kW. The
performance period starts 12:00 PM and ends at 2:30 PM. A curtailment request is
received at 12:30 PM and lasts to 2:00 PM. The manufacturer must therefore reduce
its electric load so that it does not exceed 30 - 10 = 20 kW.

Objective. The objective is to determine a feasible production plan that respects
the capacity constraints, considers the curtailment requests, and minimizes the total
cost minus the monetary rewards. The three following assumptions are considered.

• Curtailment requests occur at the beginning of a time period during the perfor-
mance period.
• Curtailment requests last an integer number of time periods.
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Figure 1. Example of the studied incentive-based program.

• Idle times do not break setup states.

Indices and sets:
i: Index for products, i ∈ {1, ..., P},
t: Index for periods, t ∈ {1, ..., T}.

Parameters:
dit: Demand for product i at period t,
Ct: Capacity available (in time units) at period t,
ai: Production time (in time units) per unit of product i,
bi: Setup time (in time units) of product i,
Epi: Energy consumed (kWh) per unit of product i,
Esi: Energy consumed (kWh) for setting up product i,
Cpit: Production cost ($/unit) per unit of product i at period t,
Csit: Setup cost ($) for product i at period t,
h+
it : Holding cost ($/unit) per unit of product i at the end of period t,
h−it : Backlogging cost ($/unit) per unit of product i at the end of period t,
P idl: Electric load (kW) when the machine is idle,
f : Fixed rate ($/(kWh)) to pay for consuming electricity,
f rwd: Rewards ($/kW) received for reducing electric load during curtailment requests,
THR: Load reduction threshold (kW),
St: Is equal to 1 if a curtailment requests starts at period t, and 0 otherwise,
DSG: Demand saving goal (kW) by curtailment request,
Ht: Historical electric load (kW),
Iend: Maximum units of demand that can be backlogged at the end of the planning
horizon,
I+
i,0: Initial inventory of for product i at the beginning of the planning horizon,

I−i,0: Initial backlog of product i at the beginning of the planning horizon.

Decision variables:
Xit: Quantity of product i (lot size) to be manufactured at period t,
Yit ∈ {1, ..., P} : Is equal to 1 if there is a setup for product i at period t, and 0
otherwise,
I+
it : Inventory level of product i at the end of period t,
I−it : Backlog of product i at the end of period t,
IDLt: Time duration (in time units) the machine must be idle in period t,
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Wit ∈ {1, ..., P}: Is equal to 1 if the setup state of product i is carried over from
period t− 1 to period t, and 0 otherwise,
Et: Energy consumption (kWh) in period t,
RLR: Rewarded Load Reduction (kW).

Additionally, the set Ωt′ is introduced, which describes the set of consecutive pe-
riods where a curtailment request is active after starting in period t′, i.e. Ωt′ =
{t′, t′ + 1, ..., t′ +Nt′ − 1}.
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2.2. Mathematical formulation

Minimize∑
i,t

(CpitXit + CsitYit) +
∑
i,t

(h+
itI

+
it + h−itI

−
it )

+ f
∑
t

Et − f rwdRLR (1)

Subject to

I+
i,t−1 − I

−
i,t−1 +Xit = dit + I+

it − I
−
it ∀i,∀t > 2 (2)

I+
i,0 − I

−
i,0 +Xi,1 = di,1 + I+

i,1 − I
−
i,1 ∀i (3)

I−iT ≤ I
end ∀i (4)

Xit ≤
T∑
l=1

dil(Wit + Yit) ∀i,∀t (5)∑
i

Wit ≤ 1 ∀t ≥ 2 (6)

Wit ≤ Yi,t−1 +Wi,t−1 ∀i,∀t ≥ 2 (7)

Wit +Wi,t−1 + Yj,t−1 ≤ 2 + Yi,t−1 ∀i,∀j 6= i,∀t ≥ 2 (8)

Wi1 = 0 ∀i (9)

Ct =
∑
i

(aiXit + biYit) + IDLt ∀t (10)

Et =
∑
i

(EpiXit + EsiYit) + P idlIDLt ∀t (11)

THR ≤ Ht′ −
Et′

Ct′
∀t s.t. St = 1,∀t′ ∈ Ωt (12)

RLR ≤ DSG
∑
t

St (13)

RLR ≤
∑

t,Nt 6=0

1

Nt

t+Nt−1∑
t′=t

(Ht′ −
Et′

Ct′
) (14)

RLR ≥ 0 (15)

Xit ≥ 0 ∀i,∀t (16)

I+
it ≥ 0, I−it ≥ 0 ∀i,∀t (17)

IDLt ≥ 0 ∀t (18)

Yit,Wit ∈ {0, 1} ∀i,∀t (19)

The objective function (1) includes manufacturing, setup, holding, backlogging and
energy costs, and monetary rewards. Constraints (2)-(10) are the traditional lot-sizing
constraints, while Constraints (11)-(12) are constraints related to the incentive-based
program. Constraint (2) and (3) ensure the balance flow. Constraint (4) defines a limit
on the backlogged demands at the end of the planning horizon. Constraint (5) ensures
that a product i can only be manufactured in period t if a setup operation is conducted
for i at period t, or if the setup state for i is carried over from the preceding period.
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Constraint (6) limits to one the number of setup states that can be carried over from
period t−1 to period t. Constraints (7)-(8) model the multi-period setup carryovers. In
particular, Constraint (8) ensures that, if a setup state is carried over from period t−2
to period t, and if there is a setup operation for another product at period t− 1, then
the machine needs to be setup again for the first product at period t−1. Constraint (9)
corresponds to the initial conditions for setup states. Constraint (10) corresponds to
the production capacity constraints. It is also used to compute how long the machine
is idle in a period. Constraint (11) calculates the electricity consumption for each
time period. Constraint (12) is the load reduction threshold constraint that forces the
electric load in period t, Et

Ct
, to be reduced by a given threshold THR for each t under

curtailment request. Constraints (13) and (14) calculate the rewarded load reduction.
Constraint (13) limits the rewarded load reduction to the demand saving goal DSG
multiplied by the number of curtailment requests received in the planning horizon
as St = 1 if a curtailment request is received at period t. Constraint (14) compute
the load reduction as an average of the curtailment amount during the periods where
a curtailment request is active. It also considers the number of curtailment requests
received in the horizon. Constraint (15) ensures that the model is bounded. Finally,
Constraints (16)-(19) are the non-negativity and integrality constraints.

Let us discuss below some important characteristics of our problem:

• Production costs consists of labor costs and raw material purchasing costs.
• If idling time do not consume electricity, it can be simpler to combine production

costs with electricity consumption costs.
• We assume that the processing of two products require different electricity con-

sumption on the same machine (or production line). This is possible, for instance,
when products can require different ramp-up and ramp-down temperatures and
processing times.

2.3. Illustrative example

Let us provide an example to illustrate the consequences on production plans of
an incentive-based program, especially how curtailment requests are handled. In this
example, production is planned for 24 hours for three products. During a curtailment
request, the FSL is set up to 50% of the historical electric load and the average capacity
utilization rate to 75%.

There are two options for respecting the load reduction threshold and answering
curtailment requests:

(1) A front-loaded production plan where lots of each product are stored before the
beginning of the performance period, thus incurring holding costs,

(2) A back-loaded production plan where some of the demands are backlogged during
the performance period, thus incurring backlogging costs.

Through this illustrative example, note that the first option is widely utilized while
the second one is not exploited. The first option is favored because the capacity utiliza-
tion rate is low enough to enable a large inventory for each product. Moreover, doing
this is rather inexpensive since average hourly inventory costs are often negligible in
industrial contexts. Figure 2 shows that the model builds a large inventory of product
3 from period 6 to period 15 in order to satisfy the demands between periods 16 and
24. This has a two-fold impact: The electric load is reduced during the curtailment

10



Figure 2. Illustrative example - Inventory profile, with request.

request and setup operations, which are very expensive, are saved. A large inventory
of product 3 is built because this is the product for which the machine consumes the
most electricity to manufacture lots. Similar to product 3, for other products, lots
in inventory are used to satisfy most of the demands during the performance period
and to reduce the electric load. Finally, note that the inventory profile illustrates the
traditional trade-off in lot-sizing problems between setup costs, inventory costs, and
manufacturing costs. The second option, which would consist in backlogging some of
the demands during the performance period, has not been exploited. This is because,
in contrast to average hourly holding costs, backlogging is usually very costly.

Figure 3 compares the electric load when there is a curtailment request (“Request”),
and when there is no curtailment request (“No request”). With a curtailment request,
the electric load over the performance period is constant, the load reduction threshold
is satisfied in a very tight way, which is caused by the fact that THR = DSG and
there is no point in saving more than DSG kW since the electric utility will not
reward additional savings. Respecting load reduction constraints tightly is risky and
could lead to a tense situation in practice, since it is always possible to deviate from
the initial production plan. Hence, a decision maker might want an additional margin.
For example, he/she could use a larger load reduction threshold but states a lower
one to the electric utility to make sure the production system will be able to answer
a curtailment request.

3. Stochastic modeling

In practice, it is often difficult, if not impossible, to know exactly when curtailment
requests are active. It is only known where they can occur (during the performance
period), typically between 11:00 AM and 7:00 PM for week days (Pacific Gas and
Electric Company 2015), weekends being request-free days. Moreover, it is known that
the number of curtailment requests and their cumulative duration are limited over a
year. Finally, there can be at most a single curtailment request per day. However, it is
more difficult to evaluate in practice when electric utilities send curtailment requests
and how long they last.

To address this, a simple way to generate scenarios, which describe where curtail-
ment requests occur and how long they last, and compute their associated probabilities
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Figure 3. Illustrative example - Electric load profiles.

is proposed in Section 3.1. Two stochastic optimization models are then proposed in
Section 3.2 to cover both the case where all the curtailment requests must be answered
and the case where not answering some curtailment requests is tolerated.

In the remainder of the paper, let us use the subscript s ∈ {1, ..., S} for scenarios
with an associated probability ps.

3.1. Scenario management

3.1.1. Scenario generation

Even though it is difficult to predict when curtailment requests occur, it is possible
to generate scenarios with two reasonable assumptions.

The first one is on the duration of the requests. When electric utilities state in their
contract that they can send curtailment request that can last up to X hours, they
will send requests that last exactly X hours when they are not limited by the end of
the performance period of the incentive-based program. This assumption is reasonable
since electric utilities are limited by the demand response programs to a limited number
of curtailment requests by year, and because electric utilities do not reward the electric
consumption reduction ($/kWh), but the average electric load reduction ($/kW). For
instance, consider that the performance period starts at 12:00 PM and ends at 6:00
PM, and that a curtailment request can last up to 6 hours. If the electric utility sends
a curtailment request at 12:00 PM, then it is assumed the curtailment request will last
exactly 6 hours. In this case, there is no reason that curtailment requests should be
smaller than 6 hours, as it should help electric utilities reduce their operating costs and
limit greenhouse gas emissions. Similarly, if a curtailment request is sent at 12:30 PM,
the curtailment request is assumed to last 5 hours and 30 minutes. In other words, all
curtailment requests that do not last exactly X hours or do not end at the end of the
performance period are not considered.

The second assumption is on the time at which the requests occur. The electric
utility measures energy usage at regular time intervals, e.g., every 15 minutes (Pacific
Gas and Electric Company 2015) or 30 minutes (Southern California Edison 2014),
and not on a continuous time basis. Then, it can be assumed that at the beginning of
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each time period during the performance period, which corresponds to the beginning
of a time interval, a curtailment request starts being active. This assumption is very
close to those we formulated in Section 2 for the deterministic model. In addition,
this assumption implies that the curtailment requests last a multiple integer of time
intervals within the performance period.

Based on these two assumptions, generating scenarios is performed as follows: At
the beginning of each time interval in the performance period, a scenario is generated
and valid if it either last the maximum duration of curtailment requests or ends at
the very last period of the performance period. We give an example of such a scenario
generation in Figure 4 for a five-hour performance period between 11:00 AM and 4:00
PM when electricity usage is measured every 30 minutes and requests last 4 hours. In
total, there are 11 scenarios, 10 of them contain a curtailment request.

Figure 4. Scenario generation - Example.

We also show the scenario generation for the incentive-based programs that can
be found in Pacific Gas and Electric Company (2015) and Southern California Edison
(2014) for an interruptible day because they will be studied in the computational study.
Pacific Gas and Electric Company 2015 contains 35 scenarios (see Appendix B), and
Southern California Edison (2014) 15 scenarios (see Appendix A). For a planning
horizon of a week with five interruptible days, Pacific Gas and Electric Company
(2015) contains 355 = 52, 521, 875 scenarios, and Southern California Edison (2014)
contains 135 = 371, 293 scenarios.

As curtailment requests are assumed to last a multiple integer of time intervals and
are assumed to start at the beginning of a time interval, curtailment requests follow a
discrete distribution probability as the number of outcomes is finite. In Section 3.1.2,
we elaborate on the probabilities associated to scenarios.

3.1.2. Discrete distribution probabilities

In an incentive-based program, it is often known:

(1) How many interruptible days there are in a year dint,
(2) How many curtailment requests an electric utility sends in a year Nyear,
(3) How many curtailment requests an electric utility can send in a day Nday.

When Nday = 1 (Pacific Gas and Electric Company 2015; Southern California Edi-
son 2014), we propose to use this information to compute a simple way to estimate the
probability of receiving a curtailment request in an interruptible day. Let us denote P
this probability and p1 the probability of not receiving any request in an interruptible
day:
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p1 =
dint −Nyear

dint
(20)

P =
∑
s≥2

ps = 1− p1 (21)

Numerical examples are provided in Table 1. Example 1 corresponds to the contracts
proposed by Pacific Gas and Electric Company (2015) and Southern California Edison
(2014), and examples 2, 3, and 4 are provided for comparison.

Table 1. Numerical example: Estimating probability distributions

Example dint Nyear Nday p1 P
1 260 30 1 0.885 0.115
2 260 50 1 0.808 0.192
3 200 30 1 0.850 0.150
4 200 50 1 0.750 0.250

Recall that the subscript s is used for scenarios. P is the probability of receiving a
curtailment request in an interruptible day, but it is not the probability of an actual
curtailment request ps for s ≥ 2. Under the assumption that all curtailment requests
are equiprobable, ps = P

N for s ≥ 2, where N is the number of possible curtailment
requests in the performance period.

3.2. Stochastic optimization models

The deterministic formulation shows how curtailment requests and load reduction
constraints can be modeled. In real-life environments, this formulation is limited be-
cause it does not consider the underlying uncertainty related to curtailment requests,
especially the fact that the time at which a request occurs is unknown. The occur-
rence of a curtailment request is known very late (i.e., between 15 minutes and an
hour before). Hence, we propose two stochastic formulations in this section. The first
one assumes that every load reduction threshold constraint must be respected, i.e. the
manufacturer wants to answer any curtailment request. This is motivated by the fact
that the electric utility might break the contract if the manufacturer does not respect
the load reduction constraint even for a single time period. The second formulation
assumes that penalties are acceptable for a limited number of time periods when the
load reduction threshold constraints are violated. In both formulations, uncertainty is
represented through scenarios with discrete distribution probabilities (see Section 3.1
to see how scenarios are managed).

3.2.1. Two-stage formulation: Penalties are forbidden

The objective of the first stochastic model is to propose a formulation that de-
termines production plans that can tackle uncertainty on curtailment requests by
answering any curtailment request. Hence, there is no risk of a possible curtailment
request violation. Such an optimization problem can be modeled by using a two-stage
or multi-stage modeling. In a two-stage formulation, decision variables are partitioned
into two sets. The first set contains the first-stage decision variables, also known as

14



here-and-now decisions, which must be taken before any realization of uncertainty for
the whole planning horizon. The second set contains the second-stage decision vari-
ables, which are also known as the wait-and-see decisions, and represents an available
recourse when uncertainty unfolds. In a multi-stage formulation, the uncertainty is
revealed over time. Production decisions are taken at different stages based on the
knowledge of uncertainty at the stage (Shapiro, Dentcheva, and Ruszczynski 2009).
In our model, the first-stage decisions are the lot-sizing and sequencing decisions, and
the second-stage decisions are decisions related to the incentive-based programs.

In this paper, we propose a two-stage model to evaluate incentive-based programs.
A two-stage model does not fit all industries, but it is realistic for manufacturing
systems with little operational flexibility such as process industries. This is why the
glass industry is considered in the computational study in Section 4.

A two-stage approach is also relevant because violating a curtailment request may
have serious consequences on the relationship with the electric utility and break the
program. Therefore, a two-stage model is more reliable as it does not rely on oper-
ational response time as much as a multi-stage model. It is always possible to force
the shutdown of a piece of running equipment but at the expense of its lifetime and
by increasing the probability of scraps and reworks. For process industries such as the
steel, glass, or semiconductor industries where the capital investment can be signifi-
cant, rescheduling short-term production is not desirable and is often not acceptable.
In this case, managers may be reluctant to assess potential benefits of incentive-based
programs with a multi-stage model. With a two-stage model, there is still a risk on
the first possible curtailment request of the performance period due to production
variability. Nevertheless, managers can decide to add an additional margin, for exam-
ple fifteen minutes, to answer the curtailment request. Additional margins cannot be
defined in a multi-stage formulation as the uncertainty is not yet realized. For this
problem, the two-stage formulation produces robust solutions because it ensures that
any curtailment request is satisfied.

We present the two-stage mathematical formulation below. Constraints involving
the first-stage decision variables remain unchanged compared to the deterministic
formulation. To model the second-stage, we introduce new decision variables RLRs.
These decision variables calculate the Rewarded Load Reduction for each scenario s.
We assume that the first scenario, i.e. when s = 1, is the scenario where there is no
curtailment request. Similarly to the set Ωt′ , the set Ωs,t′ is introduced to model the
set of consecutive periods where a curtailment request is active after starting in period
t′ in scenario s, i.e. Ωs,t′ = {t′, t′ + 1, ..., t′ +Nst′ − 1}. Observe that |Ωs,t′ | = Ns,t′ .

It is interesting to note that many constraints in Constraints (12) of the determin-
istic model would be redundant in a two-stage formulation if there were indexed by s.
This is because a period can be covered by more than one curtailment request (sce-
nario). In other words, if the load reduction threshold is (not) respected in period t for
a given scenario, it is actually (not) respected in t for all scenarios, and Constraints
(12) do not need to be indexed by s in a two-stage formulation. In addition, there
is no possible recourse action as production must be planned before the realization
of the curtailment requests, and the electricity consumption Et is identical to all sce-
narios. RLRs is only used to compute the outcome for each scenario. The two-stage
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formulation can therefore be formulated as follows:

Minimize∑
i,t

(CpitXit + CsitYit) +
∑
i,t

(h+
itI

+
it + h−itI

−
it )

+ f
∑
t

(Et)− f rwd
∑
s≥2

(psRLRs) (22)

Subject to

(2)− (11), (16)− (19)

THR ≤ Ht −
Et

Ct
∀t ∈ Ω′ (23)

RLRs ≤ DSG
∑
t

Sst ∀s (24)

RLRs ≤
∑

t,Nst 6=0

1

Nst

t+Nst−1∑
t′=t

(Ht′ −
Et′

Ct′
) ∀s (25)

RLRs ≥ 0 ∀s (26)

The objective function (22) is the expected value of total costs when all scenarios
representing the uncertainty on curtailment requests are considered. Constraints (23)
ensure that curtailment requests are satisfied. Similarly to the deterministic model,
Constraints (24) and (25) calculate the rewarded load reduction for each scenario.
Constraints (24) limit the rewarded load reduction to the demand saving goal DSG
multiplied by the number of curtailment requests received in the planning horizon and
scenario s. Constraints (25) compute for scenario s the load reduction as an average
of the curtailment amount during the periods where a curtailment request is active
for scenario. It also considers the number of curtailment requests received. Constraint
(26) is the non-negativity constraint for decision variables RLRs.

In the case where THR = DSG, as all curtailment requests must be respected, we
necessarily have DSG

∑
t Sst = RLRs ∀s, and Constraints (24) and (25) are no longer

relevant. The optimization model can be simplified as follows:

Minimize

f1 =
∑
i,t

(CpitXit + CsitYit) +
∑
i,t

(h+
itI

+
it + h−itI

−
it )

+ f
∑
t

(Et)− f rwd
∑
s≥2,t

(psSstDSG) (27)

Subject to

(2)− (11), (16)− (19), (23)

The objective function (27) is the expected value of total costs when all scenar-
ios representing the uncertainty on curtailment requests are considered. However,
f rwd

∑
s≥2,t(psSstDSG) is now a constant term, and can be computed before (or after)

solving the optimization problem.
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3.2.2. Chance-constrained formulation: Penalties are authorized

Mathematical formulation. In the chance-constrained model, not answering cur-
tailment requests is now tolerated with a risk level α ∈ [0, 1]. In our problem, the only
constraint candidate that can be probabilistic is Constraint (12). The other constraints
are not subject to uncertainty or are used to calculate an outcome. Constraint (12) is
modeled as a joint probabilistic constraint as follows:

Pr[THR ≤ Ht′ −
Et′

Ct′
∀s, ∀t s.t. Sst = 1, ∀t′ ∈ Ωs,t] ≥ 1− α (28)

If a curtailment request is violated, the manufacturer pays financial penalties pro-
portional to the excessive electric usage. We propose the following mathematical for-
mulation which models the financial penalties and the probabilistic constraint based
on the fact that scenarios follow a discrete probability distribution.

Similar to the two-stage model, there is no need to introduce many additional vari-
ables to model the joint probabilistic constraint. This is because, if the load reduction
threshold is not respected in a period for a given scenario, it is actually not respected
for all scenarios that contains this period. Consequently, only new variables indexed
by t, and not by s are necessary to model the joint probabilistic constraint.

To compute the joint probabilistic constraint and better evaluate the expected pro-
duction costs, penalties and rewards, the periods where the electric load is correctly
curtailed have to be distinguished from the periods where the electric load is not
correctly curtailed. Binary and continuous indicator variables are introduced for this
purpose. Let us introduce the following new parameters and decision variables.

New parameters:
fpen: Penalty rate ($/kWh) for excessive electric usage,

M+
t = M−t =

∑
t′,i(Epidit′+Esi)+P idlCt

Ct
: Upper bounds on electric load at period t.

New decision variables:
RLRt: Rewarded Load Reduction (kW), which is positive if the curtailment request
at period t is respected, and equal to 0 otherwise,
Eexcess

t : Excessive electric usage (kWh) at period t,
∆−t : Is positive (unit in kW) if the load reduction threshold at period t is violated,
and equal to 0 otherwise,
∆+

t : Is positive (unit in kW) if the load reduction threshold at period t is respected,
and equal to 0 otherwise,
zt: Is equal to 1 if curtailment request at period t is respected, and equal to 0 otherwise.
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Minimize

f2 =
∑
i,t

(CpitXit + CsitYit) +
∑
i,t

(h+
itI

+
it + h−itI

−
it ) + f

∑
t

(Et)

− f rwd
∑

s≥2,t,Nst 6=0

(ps

t+Nst−1∑
t′=t

RLRt′

Nst
) + fpen

∑
s≥2,t

(psE
excess
t ) (29)

Subject to

(2)− (11), (16)− (19)

p1 +
∑

t,s≥2,Nst 6=0

ps

t+Nst−1∑
t′=t

(
zt′

Nst
) ≥ 1− α (30)

Ht − THR−
Et

Ct
= ∆+

t −∆−t ∀t ∈ Ω′ (31)

∆+
t ≤M

+
t zt ∀t ∈ Ω′ (32)

∆−t ≤M
−
t (1− zt) ∀t ∈ Ω′ (33)

RLRt ≤ THR ∀t ∈ Ω′ (34)

RLRt ≤ DSGzt ∀t ∈ Ω′ (35)

Eexcess
t ≥ Ct∆

−
t ∀t ∈ Ω′ (36)

Eexcess
t , RLRt,∆

+
t ,∆

−
t ≥ 0 ∀t ∈ Ω′ (37)

zt ∈ {0, 1} ∀t ∈ Ω′ (38)

In the objective function (29),
∑

i,t(CpitXit + CsitYit) +
∑

i,t(h
+
itI

+
it + h−itI

−
it ) +

f
∑

t(Et) are the classical production costs, fpen
∑

s≥2,t(psE
excess
t ) is the summa-

tion term that penalizes the excessive electric usage over the planning horizon, and
−f rwd

∑
s≥2,t,Nst 6=0(ps

∑t+Nst−1
t′=t

RLRt′

Nst
) is the summation term that rewards the re-

spect of curtailment requests over the planning horizon. In this summation term,
RLRt′ is divided by Nst, which corresponds to the number of periods in the per-
formance period affected by scenario s, not to overestimate the expected rewards
when the electric load could only be correctly curtailed for only a smaller number
of periods than Nst. This implies that, for scenario s, rewards are fully paid, i.e.∑t+Nst−1

t′=t
RLRt′

Nst
= DSG

∑
t Sst, by the electric utility only if the electric load is cur-

tailed for all the periods in Ωst and therefore Nst periods.
Constraints (30)-(33) model the risk. Constraint (30) models the probabilistic con-

straint and ensures that the maximum risk level is satisfied. Note that p1 is out of
the summation term since it is the scenario that contains no request. Constraint (31)
calculates the margin to the load reduction threshold, i.e. sets ∆+

t greater than 0 if the
margin is positive, and sets ∆−t greater than 0 if the margin is negative. Constraint
(32) ensures that the binary variable zt is equal to 1 if the load reduction threshold
constraint at period t is respected. Otherwise, zt is equal to 0 through constraint (33).

If zt is equal to one, then it increases the value of
∑

t,s≥2,Nst 6=0 ps
∑t+Nst−1

t′=t ( zt′
Nst

), which
is used to ensure that the maximum risk level is satisfied. Scenario s contributes to-
tally, i.e. by an amount of ps, to Constraint (30) when zt = 1 for the periods associated
to scenario s. Otherwise, scenario s contributes to Constraint (30) by an amount that
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is equal to 1
Nst

for each period where the electric load is correctly curtailed. For these
periods, the manufacturer receives rewards. For non curtailed periods, the manufac-
turer must pay penalties. Constraints (34)-(36) model the penalty and reward aspects.
Constraint (34) calculates the saved electric load at period t. Constraint (35) limits
the rewarded load reduction RLRt to the demand saving goal and sets RLRt to 0
when the load reduction threshold constraint is not respected for period t. Constraint
(36) calculates the financial penalty associated to when the load reduction threshold
is not respected at period t. Constraints (37)-(38) are the non-negativity and binary
constraints.

To avoid unnecessary summation of many terms in the objective function and Con-
straint (30), which can lead to a large consumption of memory for a large number of
scenarios when the model is implemented by using the libraries of standard solvers
(that we experienced), both expressions can be reformulated. Reformulating both ex-
pressions is possible because: (1) if the load reduction threshold is not respected for
a period in performance period, then it is not respected for all scenarios that con-
tain this period, and (2) it is possible to count for each period in performance period
the number of scenarios (and their associated probabilities) that contain the period.
Mathematically, the reformulation is provided through Equations (39)-(41):

− f rwd
∑

s≥2,t,Nst 6=0

(ps

t+Nst−1∑
t′=t

RLRt′

Nst
) + fpen

∑
s≥2,t

(psE
excess
t ) =

− f rwd
∑
t∈Ω′

(RLRtβt) + fpen(1− p1)
∑
t

(Eexcess
t ) (39)

∑
t,s≥2,Nst 6=0

ps

t+Nst−1∑
t′=t

(
zt′

Nst
) =

∑
t∈Ω′

(ztβt) (40)

βt =
∑

s≥2,t′∈Ω′|t∈Ωs,t′

ps
|Ωs,t′ |

∑
t′′ Sst′′

∀t (41)

Discussion on practicability of the chance-constrained formulation. In real
conditions, it is likely that the load reduction threshold constraints are violated for
some time intervals during the performance period. A violation leads to incurring
financial penalties calculated using a fixed rate ($/kWh) multiplied by the excess
electricity usage. This excessive electricity usage is not insignificant, and it may have
serious consequences on the relationship between the manufacturer and the electric
utility. Typically, this means that the first time the manufacturer does not comply
with a curtailment request, it is asked to change its FSL and is tested for the new
value of the parameter. If the test is conclusive, the manufacturer’s incentive-based
program stays active. If not, the manufacturer is asked to change this parameter
until the test is conclusive or the electric utility decides to break the contract. This
operation is exceptional and cannot be repeated more than a few times in practice
because otherwise, the electric utility cannot count on the manufacturer for reducing its
electric load when facing an upcoming power consumption peak (see e.g., Pacific Gas
and Electric Company (2015) and Southern California Edison (2014). Thus, although
financial penalties are authorized, they must not be ubiquitous. Financial penalties
are also extremely expensive as fpen is much larger than f , costing 6.50 $/kWh (see
e.g., Pacific Gas and Electric Company 2015), contrary to at most a few tens of cents
for f . In other words, a mathematical model for production planning that allows not
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answering curtailment requests has little chance to be relevant as violating financial
penalties will be too expensive to be practicable.

4. Computational study without penalties

The objectives of the computational study are to emphasize the potential of an
incentive-based program for energy-intensive industries and to highlight critical pa-
rameters that should be considered when evaluating such a program.

We propose to carry out a computational study where production is scheduled for
a week with daily demands. Backlogging and holding costs are incurred at the end of
each day. The two-stage model is used to solve the instances.

Two metrics are used to evaluate incentive-based programs: The savings (%) and the
Price of Uncertainty (PoU) in dollars. The savings represent what the manufacturer
can save with the new production plan by considering an incentive-based program.
They are evaluated on a yearly basis (incentive-based programs are subscribed an-
nually) by assuming that the optimized week is representative of the year. The price
of uncertainty is generally interpreted as the reachable gain if a company had access
to better forecasting technologies (Gorissen, Yanıkoğlu, and den Hertog 2015). In our
problem, this corresponds to having an early notice of the curtailment request, e.g.,
one week instead of 30 minutes, or, for each week knowing the days where the cur-
tailment requests are received. Metrics are evaluated for each experimental case and
instance size. Mathematically, both metrics are defined as follows:

Savings (%) = 100× 52× fNoRequest − (52× fRequest −NyearRWD)

52× fNoRequest

Price of Uncertainty (%) =
fRequest
stoch. − fRequest

determ.

fRequest
determ.

fNoRequest is the objective function when production is planned without an
incentive-based program. fRequest

stoch. are the production costs of the two-stage pro-

gram with an incentive-based program. fRequest
determ. are the production costs of the

deterministic program with an incentive-based program. More precisely, produc-
tion costs correspond to the costs without the monetary rewards and is equal to∑

i,t(CpitXit + CsitYit) +
∑

i,t(h
+
itI

+
it + h−itI

−
it ) + f

∑
t(Et). Note that, fRequest is ei-

ther equal to fRequest
stoch. or fRequest

determ. , depending on whether savings are computed for
the deterministic case or the stochastic case. To better estimate RWD, which are the
estimated monetary rewards in the planning horizon, instead of using probabilities,
we will use the fact that the deterministic and two-stage programs cover all possible
requests. Consequently, RWD = f rwdRLR∗, where RLR∗ is the value of the decision
variable RLR of the deterministic program.

Similarly, as both the deterministic and two-stage programs cover all possible cur-
tailment requests in the horizon, it is sufficient to compare production costs to compute
the PoU as they have the same rewards.

The achieved savings are expected to cover the additional production costs caused by
curtailment requests and to lower production costs significantly. The PoU is expected
to be relatively high because in the deterministic case, it is possible to anticipate
curtailment requests and adapt production plans.

20



Note that the Expected Value of Perfect Information (EVPI) and the Value of the
Stochastic Solution (VSS, Birge 1982) could also be used to assess the performance
of the stochastic approach. However, evaluating the EVPI can be quickly computa-
tionally intractable because it requires to solve S deterministic models of a NP-Hard
problem. The VSS consists in comparing the objective function when optimizing a
linear program for the expected values of the stochastic parameters with the objective
function of the stochastic program. In our case, the VSS is difficult to measure for the
first two-stage formulation for multiple reasons. First, the average scenario is not easy
to define, both in terms of timing and time range. The average scenario is easier to
define when the demand or the capacity are stochastic. Moreover, in our case, the first
two-stage formulation answers any curtailment request. Even if an average scenario
(e.g., Wednesday in the middle of the time range) could be defined for curtailment
requests, finding a production plan for an average scenario does not guarantee that the
manufacturer answers all curtailment requests, which is not compatible with the goal
of the first two-stage model in this paper. For these reasons, we evaluate the stochastic
program in terms of PoU. Although the PoU is more often used in robust optimization
(Gorissen, Yanıkoğlu, and den Hertog 2015), it can be used in the computational study
because the first two-stage model tends to determine robust solutions as it seeks to
satisfy any curtailment request.

4.1. Computational study settings

Generation of parameters. The computational study is inspired from the glass in-
dustry, which is known to be an energy-intensive industry (Worrell 2008). In actual
systems that manufacture container glass, modern production lines are able to pro-
duce about “200 containers” per minute (Worrell 2008). Assuming that on average a
container weights 0.3 kg, one lot of 200 containers weights 60 kg. In the report, it is
also indicated that producing one ton of container glass requires at least 2,000 kWh for
the manufacturing process. If 2,000 kWh are required for one ton, it is assumed that
2kWh are required for one kg and consequently, 120 kWh for a lot. It is also assumed
that the only source of energy that is used is electricity, which implies that energy
costs represent about 30-50% of the total cost. Based on Worrell (2008), Tables 2 and
3 illustrate how parameters are randomly generated for simulating different products
in the glass industry.

Table 2. Computational study - Traditional lot-sizing parameters.

Parameters Cpit Csit ai (min) bi (min) h+
it h−it

Value U[15,22] CpU[25,50] U[1,3] U[2,6] 0.3Cpit

365 10Cpit

Table 3. Computational study - Electric parameters.

Parameters Esi Epi P idl f ($)
Value U[12,18] U[12,18]*10 U[1,2]*25 0.08

Equation (43) is used to approximate the average capacity utilization rate CUR of
the tool set for a day (setup times are not considered).
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CUR =
Average Manufacturing Time Required To Satisfy Demands

Total Capacity Available
(42)

CUR =

∑
i aid̄i

1, 440
(43)

We generate the demands to meet a given average capacity utilization rate using
Equations (42) and (43): Given ai the manufacturing time of a lot of product i and
P the number of products, equation (43) gives the average daily demand for product

i. More precisely, dit is drawn in the interval [0.90 ∗ 1,440×CUR
P×ai

,1.101,440×CUR
P×ai

], where
1,440 is the number of minutes in a day. Finally, the historical electric load Ht is

assumed to be constant over the planning horizon: Ht =
∑

i,t′ (Epidit′ )∑
t′ Ct′

.

For all experiments, we assume that all demands must be satisfied by the end of
the planning horizon, i.e., I−i,end = 0 ∀i. The initial inventory, I+

i,0, and backlog, I−i,0,
are both set to zero.

In the deterministic case, curtailment requests are assumed to be received on
Wednesdays. They correspond to Scenario 2 in Appendix A and Appendix B.

Scenarios are generated using the method described in Section 3.1.1. Probabilities of
receiving one curtailment request in a day are computed by using Table 1. We further
assume that each curtailment request within the performance period is equiprobable.
Relaxing this assumption is left for future research.

Experimental cases. We want to evaluate the influence of the incentive-based pro-
gram for 12 different experimental cases (Table 4) and for 6, 9 and 15 products. These
experimental cases show the sensitivity of the savings and the PoU when most the
significant parameters in lot-sizing problems vary. The values of f rwd and Nst are in-
spired from actual incentive-based programs (Pacific Gas and Electric Company 2015;
Southern California Edison 2014). Experiments 1-3 analyze the influence of FSL with
the program proposed by Southern California Edison (2014). Similarly, experiments
4-6 analyze the program of Pacific Gas and Electric Company (2015). Experiments 7-9
study the sensitivity of the setup cost ratio, and experiments 10-12 analyze the sen-
sitivity of the average capacity utilization rate, on the additional charge and savings
combined with the incentive-based program proposed by Southern California Edison
(2014). Note that for studied contracts, THR = DSG.

Table 4. Computational study: Penalties are forbidden - Experimental cases.

Experiment CUR(%) Csit (× Cpit) THR (%Ht) f
rwd Duration of curtailment

requests (hours)
Electric contract

1 80 50 30 20 6 Southern California Edison (2014)
2 80 50 50 20 6 Southern California Edison (2014)
3 80 50 70 20 6 Southern California Edison (2014)
4 80 50 30 8 4 Pacific Gas and Electric Company (2015)
5 80 50 50 8 4 Pacific Gas and Electric Company (2015)
6 80 50 70 8 4 Pacific Gas and Electric Company (2015)
7 80 25 50 20 6 Southern California Edison (2014)
8 80 60 50 20 6 Southern California Edison (2014)
9 80 150 50 20 6 Southern California Edison (2014)
10 60 50 50 20 6 Southern California Edison (2014)
11 75 50 50 20 6 Southern California Edison (2014)
12 85 50 50 20 6 Southern California Edison (2014)

Sizes of instance: The number of time periods depends on the performance period
and the length of time intervals at which the electric utility measures electricity us-
age. In the contract of Pacific Gas and Electric Company (2015), electricity usage
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is measured every 15 minutes and the performance period is between 11:00 AM and
7:00 PM. In the contract of Southern California Edison (2014), electricity usage is
measured every 30 minutes and the performance period is between 12:00 AM and 6:00
PM. During the performance period, a time interval is equal to one period. Otherwise,
hours out of the performance period are gathered into a single time period. We illus-
trate the division of the planning horizon in Table 5 and Figure 5 for the two-stage
(and chance-constrained) formulation. In order to model daily demands, demands are
equal to zero for all time periods except for the last period of a day (e.g. Figure 5).

Table 5. Number of time periods per day per contract.

Contract Sunday and Saturday Monday, ..., Friday
Pacific Gas and Electric Company (2015) 1 34

Southern California Edison (2014) 1 14

Figure 5. Division of the planning horizon for Southern California Edison (2014)

For the case where there is no curtailment request, which is used to compute poten-
tial savings, dividing the horizon into 7 periods of 24 hours is sufficient for a horizon
of one week. For the deterministic case, it is assumed that a single curtailment re-
quest is received on Wednesday, which corresponds to scenario 2 in Appendix A and
in Appendix B. The horizon can therefore be divided into 6 periods for Sunday, Mon-
day, Tuesday, Thursday, Friday, and Saturday, and 14 or 18 periods depending on the
incentive-based program, for Wednesday. Both cases contain much fewer periods than
the stochastic formulations.

4.2. Numerical results

Ten data replications are generated for each instance (experimental case and size
of instance). They are solved by using the Java libraries of the standard solver IBM
ILOG CPLEX (version 12.9) and the strong facility location formulation, which gives
tighter linear relaxations (Brahimi et al. 2017), and is presented in Appendix C. The
computational time limit is set to one hour. All other settings are the default settings.
An Intel-Xeon CPU E3-1240 V5 @3.5 GHz with 32GB of RAM is used. Tables 6, 7,
8 and 9 illustrate numerical results for experiments presented in Table 4.

Influence of Firm Service Level (FSL) on savings. The FSL has a strong impact
on savings and the PoU.

In the deterministic case, increasing the FSL leads to more savings. Consider the
contract proposed by Southern California Edison (2014) through Experiments 1, 2
and 3 (Table 6). For instance, consider the case with six products, savings are equal
to 7.99% when the FSL is equal to 30% and reach 18.27% when the FSL reaches 70%.
Savings are also interesting for the contract proposed by Pacific Gas and Electric
Company (2015) although savings are smaller. For six products, savings reach 7.07%
when the FSL reaches 70%. Savings are smaller as the number of products increases as
more setups are required to satisfy the demand. This also can be explained by the fact
that f rwd is more than three times higher in Southern California Edison (2014) than
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in Pacific Gas and Electric Company (2015), and the performance period is shorter.
As f rwd is much higher, the additional charge incurred due to building inventories are
compensated. Secondly, as the performance period is shorter, the planning horizon has
fewer time periods (Table 5), which makes the second contract easier to solve with a
standard solver.

Results can be quite different in the stochastic case. In the stochastic case, poten-
tial savings reach 11.07% for the contract Southern California Edison (2014) with six
products, 4.76% for nine products (Table 6). The case with fifteen products is to be
analyzed carefully since the gaps for the stochastic case become too large (>10%). For
the contract Southern California Edison (2014), potential savings vary between -0.64%
and -2.48%. Similarly, for the contract Pacific Gas and Electric Company (2015), po-
tential savings vary between -3.85% and -30.04% (Table 7) no matter the number
of products. For six and nine products, and experiments 4 and 5, as gaps are large
(greater than 10%) and potential savings slightly less than 10%, there might be room
for improvement by giving more time to the solver, or by developing tailored solu-
tion approaches. However, for experiment 6 for any number of products, as gaps are
smaller than 8% whereas potential savings are smaller than -11%, potential savings
are arguably negative. Therefore, subscribing to an incentive-based program can cost
a lot of money to the manufacturer if the FSL is not well selected, in particular un-
der the settings proposed in experiments 6, or for a large number of products, or if
there is no effective method to generate a good production plan. In the deterministic
case, potential savings are much higher, and actually positive, which means that being
noticed of a curtailment request in advance lead to much better savings.

Although potential savings in the stochastic case can be quite significant, the PoU
significantly increases when the FSL increases. For experiments 1, 2 and 3 and with
six and nine products, the PoU is approximately multiplied by three when the FSL
increases from 30% to 70%. For experiments 4, 5 and 6 and with six products, the PoU
is also multiplied by three. With nine and fifteen products, the PoU is multiplied by
almost four. This indicates that there is a large gap between potential savings in the
deterministic case and the stochastic case. Additional savings could be further reached
if the manufacturer knew in advance when to answer a curtailment request.

These results show that the potential savings can be significant if FSL is selected in
a clever way. Note that although it is rather natural to subscribe an incentive-based
program where curtailment requests are short, it can be preferable to subscribe
an incentive-based program where curtailment requests are long because they are
associated to a higher reward rate.

Influence of setup cost ratio on savings. As building inventories for a large number
of different products requires setup operations, the higher the setup cost ratio, the
lower the savings (Table 8). The larger the number of products, the more this trend is
pronounced, since there are more setup operations to perform. In the stochastic case,
potential savings vary between 12.95% and -8.39%.

Similarly to experiments 1 through 6, when the setup cost ratio increases, the PoU
increases. However, the PoU increases to a larger extent. Between experiments 7 and
9, the PoU is approximately multiplied by five. Although the PoU becomes larger,
potential savings can still be interesting either for a small setup cost ratio or a small
number of products. However, experiments 8 and 9 show that negative savings can be
reached if the number of products is equal to 9 or 15.

Experiments 7, 8 and 9 show that there is no point in subscribing to an incentive-
based program when the setup cost ratio is large, especially for production facilities
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with a high number of products. Therefore, setup costs are parameters that should
be carefully considered when evaluating possible gains associated to demand response
programs.

Influence of the capacity utilization rate on savings. The capacity utilization
rate is a critical parameter for lot-sizing problems, especially in our problem since it
influences the capability of production systems to build inventories and make front-
loaded production plans before possible curtailment requests. In the stochastic case,
the higher the capacity utilization rate, the lower the savings (Table 9). This is due
to the fact that the additional charge is increasingly expensive: For a high capacity
utilization rate, large inventories have to be made and part of the demand has to be
backlogged. This effect is increasingly pronounced as the number of products increases.

In the stochastic case, potential savings reach 12.03% when the capacity utilization
rate is equal to 60% for six products and attain -0.24% when the capacity utilization
rate is equal to 85% for nine products.The capacity utilization rate has less influence on
savings in the deterministic case than in the stochastic case since curtailment requests
are scheduled and it is relatively easy to adapt the production plan. Although gaps
are relatively large, most often larger than 5%, in the stochastic gap, subscribing an
incentive-based program can be interesting as savings can be larger than 5%.

Similarly to experiments 10, 11 and 12, when the capacity utilization rate increases,
the PoU increases. For six products and nine products, the PoU is multiplied by
two and three between experiments 10 and 12. For fifteen products, the savings are
negative because gaps are larger than 15%. With larger computational times, it is
probable that larger savings could be achieved.

Observations on optimality gaps. The deterministic case is “easily” optimized by
the solver because gaps are always smaller than 1.0%, except for experiment 10 and
fifteen products where the gap is equal to 1.01%. The stochastic case is much more
difficult to optimize, gaps are always greater than 3%, often go beyond 10%, and the
computational time limit of one hour is always reached. With a more practical meaning,
it is much more difficult to plan production when short notices are sent by electric
utilities. However, although stochastic solutions are suboptimal and much smaller than
in the deterministic case, savings can still be interesting for the manufacturer to reduce
its production costs under different parameter settings. In contrast, there may exist
some settings such as in experiments 1, 2 and 3 with fifteen products, where potential
savings could be positive if near optimal solutions were reached.

The difference between the deterministic and stochastic cases can be explained by
several factors. In general, for large instance sizes, the studied problem is too difficult
for standard solvers. This is first due to the complexity of the basic problem since
the multi-item Capacited Lot-Sizing Problem (CLSP) is NP-Hard in the strong sense
(Bitran and Yanasse 1982; Chen and Thizy 1990). Moreover, the feasibility problem
of the CLSP when setup times are considered, as it is the case in our study, is already
NP-Complete (Trigeiro, Thomas, and McClain 1989). Also, the regular time intervals
used to measure electricity consumption heightens the problem complexity by adding
a very large number of time periods (up to 172 periods for a week!) overcoming the
benefits brought by the facility location formulation. Hence, for problems of industrial
size, a tailor-made solution approach is required to determine solutions of good quality
in a reasonable computational effort.
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Table 6. Numerical results for experiments 1, 2 and 3.

Case Without Request Deterministic case Stochastic case Deterministic Stochastic

Instance (P × T ) Experiment Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Yearly Gain (%) Yearly Gain (%) PoU ($)

6× 92
1 0.01 161,180 1 0.01 138,384 17 6.62 142,305 3,601 7.99 5.43 3,921
2 0.01 161,180 1 0.01 123,248 24 5.20 127,826 3,601 13.25 10.28 4,578
3 0.01 161,180 1 0.02 108,482 375 4.14 119,521 3,602 18.27 11.07 11,039

9× 92
1 0.01 167,538 4 0.01 146,739 645 10.64 152,233 3,601 6.93 3.51 5,495
2 0.01 167,538 4 0.01 133,077 804 9.56 142,276 3,601 11.43 5.62 9,198
3 0.01 167,538 4 0.10 119,415 714 5.30 137,443 3,602 15.94 4.76 18,028

15× 92
1 0.01 200,332 143 0.86 180,257 3,603 17.06 192,870 3,601 5.66 -0.65 12,613
2 0.01 200,332 144 0.79 167,403 3,603 15.45 185,743 3,602 9.15 -0.14 18,340
3 0.01 200,332 145 0.53 155,016 3,602 9.27 184,423 3,602 12.42 -2.48 29,407

Table 7. Numerical results for experiments 4, 5 and 6.

Case Without Request Deterministic case Stochastic case Deterministic Stochastic

Instance (P × T ) Experiment Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Yearly Gain (%) Yearly Gain (%) PoU ($)

6× 172
4 0.01 161,180 1 0.01 152,122 21 11.84 163,008 3,600 3.15 -3.85 10,886
5 0.01 161,180 1 0.01 146,106 15 9.90 159,776 3,601 5.25 -3.64 13,669
6 0.01 161,180 1 0.01 140,491 98 3.25 169,074 3,602 7.07 -11.69 28,583

9× 172
4 0.01 167,538 4 0.04 159,489 1,172 17.89 178,471 3,601 2.60 -9.27 18,983
5 0.01 167,538 4 0.01 154,067 605 12.65 175,930 3,601 4.37 -9.12 21,862
6 0.01 167,538 4 0.01 148,837 225 3.90 193,643 3,602 6.03 -21.80 44,806

15× 172
4 0.01 200,332 144 0.87 192,511 3,602 35.18 273,135 3601 2.15 -39.61 80,624
5 0.01 200,332 144 0.62 187,439 3,603 24.64 250,657 3,601 3.51 -28.27 63,219
6 0.01 200,332 144 0.58 183,218 3,464 7.06 251,001 3,602 4.45 -30.04 67,783
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Table 8. Numerical results for experiments 7, 8 and 9.

Case Without Request Deterministic case Stochastic case Deterministic Stochastic

Instance (P × T ) Experiment Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Yearly Gain (%) Yearly Gain (%) PoU ($)

6× 92
7 0.01 144,127 0 0.01 106,009 368 2.55 108,763 3,602 14.97 12.95 2,754
8 0.01 167,919 1 0.01 130,011 26 7.48 136,564 3,601 12.70 8.62 6,553
9 0.01 224,468 1 0.01 186,696 44 13.56 201,132 3,601 9.44 2.82 14,436

9× 92
7 0.01 141,935 1 0.01 107,057 172 5.20 111,624 3,603 13.83 10.46 4,567
8 0.01 177,625 7 0.16 143,382 1,101 10.80 153,473 3,601 10.65 4.74 10,091
9 0.01 256,072 6 0.16 223,317 1,650 18.24 249,513 3,601 6.78 -3.71 26,197

15× 92
7 0.01 158,695 43 0.50 125,349 3,379 10.33 134766 3602 11.83 5.74 9,417
8 0.01 215,118 99 0.60 182,250 3,603 17.03 203,487 3,601 8.49 -1.66 21,237
9 0.01 327,582 35 1.00 297,054 3,588 24.59 339,885 3,601 4.85 -8.39 42,831

Table 9. Numerical results for experiments 10, 11 and 12.

Case Without Request Deterministic case Stochastic case Deterministic Stochastic

Instance (P × T ) Experiment Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) Yearly Gain (%) Yearly Gain (%) PoU ($)

6× 92
10 0.01 117,482 6 0.01 88,851 12 4.05 90,837 3,601 13.79 12.03 1,986
11 0.01 149,098 1 0.01 113,696 398 6.36 117,666 3,601 13.31 10.53 3,970
12 0.01 174,124 0 0.01 133,833 60 5.40 142,648 3,602 13.03 7.75 8,814

9× 92
10 0.01 121,041 2 0.01 94,493 276 9.97 98,107 3,601 12.51 9.45 3,614
11 0.01 154,255 5 0.01 121,754 422 9.93 127,737 3,601 11.81 7.75 5,982
12 0.01 183,914 11 0.07 147,081 1393 6.33 158,879 3,603 11.18 4.37 11,798

15× 92
10 0.01 141,614 29 1.01 116,260 3601 14.85 122,396 3,600 10.22 5.82 6,136
11 0.01 182,763 308 0.99 151,855 3,603 15.04 164,195 3,601 9.42 2.53 12,340
12 0.01 220,993 165 0.57 186,082 3,603 11.51 205,568 3,603 8.78 -0.24 19,486
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5. Computational study without penalties

This computational study is designed to compare the two-stage and chance-
constrained formulations, and in particular compare what would be production costs,
including monetary rewards and penalties, when the occurrence of curtailment requests
is unknown as it would be the case in practice. In particular, we want to study the
influence of the risk level α on expected savings proposed by the chance-constrained
formulation, and compare savings of the two-stage and chance-constrained formula-
tions. Parameters are generated the same way as in Section 4.

Two metrics are used for to compare formulations: The amount of Financial Penal-
ties (FP) in dollars that must be paid if some curtailment requests are not answered,
and the Difference between the Expected Objective Function (DEOF) of both formu-
lation. Mathematically, both metrics are defined as follows:

FP = fpen
∑
s≥2,t

(psE
excess
t ) = fpen(1− p1)

∑
t

(Eexcess
t )

DEOF(%) = 100× f1 − f2

f1

FP can only be computed for the chance-constrained formulation as the two-stage
formulation ensures that the manufacturer answers any curtailment request. If DEOF
is positive, the chance-constrained formulation leads to better production plans. If it
is negative, two-stage formulation proposes better production plans.

5.1. Experimental cases

We want to evaluate the influence of the risk level α for 4 different experimental
cases and for 6, 9 and 15 products (see Table 10).

Table 10. Computational study: Penalties are tolerated - Experimental cases.

Experiment CUR(%) Csit (× Cpit) THR (%Ht) f
rwd Duration of curtailment

requests (hours)
Electric contract fpen ($/kWh) α

13 80 50 50 20 6 Southern California Edison (2014) 6.50 1
14 80 50 50 20 6 Southern California Edison (2014) 6.50 0.2
15 80 50 50 20 6 Southern California Edison (2014) 6.50 0.1
16 80 50 50 20 6 Southern California Edison (2014) 6.50 0.05

5.2. Numerical results

Similarly to the first computational study, ten data replications are generated for
each instance (experimental case and size of instance). They are solved by using the
Java libraries of the standard solver IBM ILOG CPLEX (version 12.9) and the strong
facility location formulation, which gives tighter linear relaxations (Brahimi et al.
2017), and is presented in Appendix D. The computational time limit is set to one
hour. All other settings are the default settings. An Intel-Xeon CPU E3-1240 V5 @3.5
GHz with 32GB of RAM is used.

Table 11 illustrate numerical results for experiments presented in Table 10.
It can be observed that expected production costs between production plans opti-

mized by the chance-constrained and two-stage formulations are actually very close.
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The absolute value of DEOF is actually smaller than 1.05%. For six products, DEOF
is positive for experiments 13, 14 and 16, which means that the chance-constrained
model leads to better production plans in terms of expected production costs, without
paying any financial penalties (FP = 0), even for experiments 13 where α = 1, i.e.
when answering curtailment requests is not enforced. Financial penalties are equal to
$57 for experiments 14, which is very small. In addition, it is worth observations that
DEOF is actually very small, varying between 0.23% and 0.44%. For experiments 15,
the two-stage formulation leads to better production plans in terms of expected pro-
duction costs although production plans are not much better than the ones proposed
by the chance-constrained formulation as DEOF = −0.10%. Similar observations can
be made when nine or fifteen products are considered. For nine products, the two-stage
formulation is better for experiments 13, 14 and 15 and DEOF varies between -0.33%
and -0.07%. The chance-constrained formulation is slightly better for experiments 16,
DEOF = 0.29% and FP = $6. For fifteen products, the two-stage formulation is
better and DEOF varies between -1.05% and -0.36% for all experiments.

Although the chance-constrained formulation is more flexible because it can allow
not answering some curtailment requests, which could theoretically lead to smaller
production costs, optimized production plans rarely violate potential curtailment re-
quests because financial penalties are too costly. Observe that financial penalties are
smaller than $200, which is arguably very small. This means that production plans
optimized by both formulations are actually very close in terms of costs. Because
violating curtailment requests is costly and may prevent the manufacturer from con-
tinuing to participate to incentive-based programs, we argue that using the two-stage
formulation is better in practice.

Table 11. Numerical results for experiments 13, 14, 15 and 16.

Chance-constrained model Two-stage model

Instance (P × T ) Experiment Gap (%) Obj. CPU (sec.) Gap (%) Obj. CPU (sec.) DEOF (%) FP ($)

6× 92

13 5.80 154,262 3,602 6.41 154,550 3,601 0.23 0
14 5.60 154,199 3,602 6.41 154,550 3,601 0.26 57
15 6.40 154,723 3,602 6.41 154,550 3,601 -0.10 0
16 5.29 153,936 3,602 6.41 154,550 3,601 0.44 0

9× 92

13 11.16 164,354 3,601 10.64 163,814 3,601 -0.33 21
14 10.55 164,175 3,601 10.64 163,814 3,601 -0.18 0
15 10.34 163,953 3,601 10.64 163,814 3,601 -0.07 50
16 10.06 163,382 3,601 10.64 163,814 3,601 0.29 6

15× 92

13 17.15 206,229 3,600 17.25 204,443 3,601 -0.97 47
14 16.83 205,285 3,601 17.25 204,443 3,601 -0.47 80
15 17.66 206,435 3,600 17.25 204,443 3,601 -1.05 124
16 16.98 204,965 3,601 17.46 204,461 3,601 -0.36 97

6. Managerial insights

In this section, managerial insights are provided from computational studies to guide
decision-makers when assessing incentive-based programs for their manufacturing sys-
tem:

• Manufacturing systems with a small setup cost ratio and a small number of
products can significantly benefit from incentive-based programs,
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• Manufacturing systems with low capacity utilization rates (e.g. smaller than
80%) benefit more than manufacturing systems with high capacity utilization
rates (e.g. larger than 90%) because it is easier to reschedule production to
satisfy curtailment requests and demand,
• Incentive-based programs with longer notices (a few days), or short notices but

knowing in advance days when curtailment requests are received, lead to better
savings than incentive-based programs with short notices (a few hours) because
production is more easily planned (smaller computational complexity). If pos-
sible, negotiate with electric utilities to have large notices even if not initially
proposed in the incentive-based program,
• Counter-intuitively, incentive-based programs with longer curtailment requests

should be favored as they are often associated to larger monetary rewards,
• Incentive-based programs with larger time intervals in the performance period

should be favored as production is more easily planned (smaller computational
complexity),
• The FSL should be selected in a clever way. A large value may constrain the

production system and reduce savings.
• Computational studies show that allowing the violation of curtailment requests

may actually only lead to small savings on production costs while potentially
preventing manufacturers from continuing to participate to incentive-based pro-
grams. It is recommended that manufacturers plan production to satisfy any
curtailment request.

It is important to note that if electric utilities do not offer long notices in their
incentive-based programs, it might be because predicting peaks in electric load in a
few days or weeks is unreliable. However, this is arguably the most profitable aspect for
manufacturing systems because they can more easily answer to curtailment requests.

7. Conclusions and industrial perspectives

In this paper, we propose new energy-aware lot-sizing models for dealing with elec-
tricity and reducing costs by collaborating with actors in the energy supply chain,
especially electric utilities. Our study is focused on incentive-based demand response
programs that have to be subscribed for at least a whole year. This paper is motivated
by the fact that electricity has become a critical aspect of manufacturing operations
and it is surprising to see that few papers have dealt with lot-sizing problems while
they are as important as scheduling problems.

Firstly, we present a deterministic mathematical formulation and an example il-
lustrating how curtailment requests can be handled. However, the practicality of the
deterministic model is limited, because curtailment requests are not always sched-
uled well in advance. Two new stochastic models are then proposed. The first one,
a two-stage model, can be used when a manufacturer needs or wants to answer any
curtailment request. The second stochastic model, a chance-constrained model, can be
used when not answering some curtailment requests is tolerated. A method to generate
scenarios, representing possible curtailment requests, is developed by using real con-
straints on energy measurement in incentive-based programs after making reasonable
assumptions.

Thirdly, inspired by the glass industry, two computational studies are performed.
The first computational study is designed to show how incentive-based programs can
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reduce production costs. The study shows that high firm service levels, high setup
costs and a large number of products or high capacity utilization rate make front-
loaded production plans too expensive to make curtailment requests profitable. In such
configurations, manufacturing systems with little operational flexibility are likely not
to take advantage of incentive-based programs. Otherwise, the computational study
shows that interesting savings can be achieved. The second computational is designed
to compare the two-stage and chance-constrained formulations, and in particular com-
pare what would be production costs, including monetary rewards and penalties, when
the occurrence of curtailment requests is unknown as it would be the case in practice.
We show that as financial penalties are very large, the optimized production plans
almost never violate potential curtailment requests even tough it is allowed.

Finally, managerial insights are provided to guide decision-makers when assessing
incentive-based programs for manufacturing systems.

As all curtailment requests must necessarily be answered and production cannot be
rescheduled in the same day, the two-stage formulation is designed for industries with
little operational flexibility. For more flexible industries where daily production re-
scheduling is possible, the two-stage linear program can still be used without resorting
to multistage stochastic linear programming. This is possible by applying a rolling
horizon approach, i.e., each time a new parameter is revealed, the two-stage linear
program is solved on the remainder of the planning horizon. Another option is to
develop a new two-stage stochastic programming model where production decisions
until time period t are the first-stage variables and production decisions from t to T
(end of the planning horizon) are the second-stage variables. We refer readers to Clark
and Clark (2000), Balasubramanian and Grossmann (2004), and Curcio et al. (2018)
for details on both possible approaches.

In addition, note that some industries, such as the container glass industry, are
known to have sequence-dependent setups (Guimarães, Klabjan, and Almada-Lobo
2014). In this case, not including sequence-dependent setups may have an impact
on production plans, thus affecting total costs and energy consumption, therefore
potential savings induced by incentive-based programs. We decided to consider setup
carryovers, which can also have an impact on production plans, and the inclusion of
sequence-dependent setups is left for future research.

Finally, this work should be seen as a starting point for other research work on
energy-aware lot-sizing problems with incentive-based programs. We believe the fol-
lowing perspectives are worth investigating in the future:

• Improving the modeling by, for instance, adapting the formulation when man-
ufacturing or setup times exceed the duration of time intervals used to mea-
sure electricity consumption, and including sequence-dependent setups, which
are common features for energy-intensive industries,
• Comparing the potential savings between price-based, incentive-based and both

types of programs combined,
• Working on the incentive-based program by including several performance pe-

riods in a day with different reward rates, considering a time-varying price of
electricity, and considering settings where THR 6= DSG,
• Improving the stochastic modeling by extending the two-stage formulation to a

multi-stage formulation for more flexible production lines,
• Evaluating a rolling horizon approach based on the two-stage formulation with-

out resorting to multistage stochastic linear programming to manage curtailment
requests,
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• Evaluating an approach where production decisions until time period t are the
first-stage variables and production decisions from t to T are the second-stage
variables,
• Developing new solution approaches to solve problems, for instance by proposing

heuristics and meta heuristics,
• Differentiating the probability of occurrence of a curtailment request based on

the hour of a day. Some hours may be more critical for electric utilities than
others.
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Appendix A. Scenario generation for Southern California Edison (2014)

Figure A1. Scenario generation for Southern California Edison (2014)
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Appendix B. Scenario generation for Pacific Gas and Electric Company (2015)

Figure B1. Scenario generation for Pacific Gas and Electric Company (2015)
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Appendix C. Facility location reformulation: Penalties are forbidden

In this section, the two-stage facility location reformulation used in the compu-
tational study performed in Section 4 is presented. A new decision variable Zi,t,t′ is
introduced, which represents the quantity of product i made in period t to cover the
demand at period t′. Let hd+

i,t,t′ be the inventory cost for producing one unit of item i

in period t and holding it until period t′. hd+
i,t,t′ =

∑t′−1
u=t h

+
i,u when t < t′, and is equal

to 0 otherwise. Similarly, let hd+
i,t,t′ be the backlogging cost for delaying the production

of one unit of item i in period t for t′. hd−i,t,t′ =
∑t−1

u=t′ h
−
i,u when t > t′, and is equal to

0 otherwise.

Minimize∑
i,t

T∑
t′=t

(hd+
i,t,t′Zi,t,t′) +

∑
i,t

t∑
t′=1

(hd−i,t,t′Zi,t,t′)

+
∑
i,t

(CsitYit +

T∑
k=1

(CpitZitk))

+ f
∑
t

(Et)− f rwd
∑
s≥2

(psSstDSG) (C1)

Subject to∑
i

Wit ≤ 1 ∀t (C2)

Wit ≤ Yi,t−1 +Wi,t−1 ∀i,∀t ≥ 2 (C3)

Wit +Wi,t−1 + Yj,t−1 ≤ 2 + Yi,t−1 ∀i,∀j 6= i,∀t ≥ 2 (C4)

Wi1 = 0 ∀i (C5)

Zi,t,t′ ≤ di,t′(Yp,t +Wp,t) ∀i,∀t,∀t′ (C6)

T∑
k=1

Zi,k,t = di,t ∀i,∀t (C7)

Ct =
∑
i

(biYi,t +

T∑
k=1

aiZi,t,k) + IDLt ∀t (C8)

Et =
∑
i

(EsiYi,t +

T∑
k=1

EpiZi,t,k) + P idleIDLt ∀t (C9)

THR ≤ Ht −
Et

Ct
∀t ∈ Ω′ (C10)

Zi,t,t′ ≥ 0 ∀i,∀t,∀t′ (C11)

Wi,t ∈ {0, 1} ∀i,∀t (C12)

Yi,t ∈ {0, 1} ∀i,∀t (C13)

Equation (C1) includes, in order, inventory costs, backlogging costs, production
costs, setup costs, energy costs, and expected financial rewards. Constraints (C2)-
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(C5) are setup carryover constraints. Constraint (C6) is the new setup constraint.
Constraint (C7) is the balance inventory constraint. With this constraint, all demand
must be satisfied by the end of the planning horizon. Constraint (C8) ensures that ca-
pacity constraints are respected. Constraint (C9) computes the energy consumption at
each period of the planning horizon. Constraint (C10) is the load reduction threshold
constraint. Finally, constraints (C11)-(C13) are the binary and non-negativity con-
straints.

Appendix D. Facility location reformulation: Penalties are tolerated

In this section, the chance-constrained facility location reformulation used in the
computational study performed in Section 5. Similarly to Appendix C, a new decision
variable Zi,t,t′ is introduced, which represents the quantity of product i made in period
t to cover the demand at period t′. Let hd+

i,t,t′ be the inventory cost for producing one

unit of item i in period t and holding it until period t′. hd+
i,t,t′ =

∑t′−1
u=t h

+
i,u when t < t′,

and is equal to 0 otherwise. Similarly, let hd+
i,t,t′ be the backlogging cost for delaying

the production of one unit of item i in period t for t′. hd−i,t,t′ =
∑t−1

u=t′ h
−
i,u when t > t′,

and is equal to 0 otherwise.

Minimize∑
i,t

T∑
t′=t

(hd+
i,t,t′Zi,t,t′) +

∑
i,t

t∑
t′=1

(hd−i,t,t′Zi,t,t′)

+
∑
i,t

(CsitYit +

T∑
k=1

(CpitZitk)) (D1)

+ f
∑
t

(Et)− f rwd
∑
t∈Ω′

(RLRtβt) + fpen(1− p1)
∑
t

(Eexcess
t )

Subject to

(C2)− (C9), (C11)− (C13), (30)− (38)

Equation (D1) includes, in order, inventory costs, backlogging costs, production
costs, setup costs, energy costs, and expected financial rewards and penalties.
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