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—— Abstract

Minimum weighted vertex cover is the NP-hard graph problem of choosing a subset of vertices
incident to all edges such that the sum of the weights of the chosen vertices is minimum. Previous
efforts for solving this in practice have typically been based on search-based iterative heuristics or
exact algorithms that rely on reduction rules and branching techniques. Although exact methods
have shown success in solving instances with up to millions of vertices efficiently, they are limited in
practice due to the NP-hardness of the problem.

We present a new hybrid method that combines elements from exact methods, iterative search,
and graph neural networks (GNNs). More specifically, we first compute a greedy solution using
reduction rules whenever possible. If no such rule applies, we consult a GNN model that selects a
vertex that is likely to be in or out of the solution, potentially opening up for further reductions.
Finally, we use an improved local search strategy to enhance the solution further.

Extensive experiments on graphs of up to a billion edges show that the proposed GNN-based
approach finds better solutions than existing heuristics. Compared to exact solvers, the method
produced solutions that are, on average, 0.04% away from the optimum while taking less time than
all state-of-the-art alternatives.
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1 Introduction

Consider an undirected graph G = (V, E) where V is the set of vertices and F is the set of
edges. A vertex cover is a set C' C V such that V{u,v} € E = uw e CVwv e C, or with
words, that each edge has at least one of its endpoints in C'. The minimum vertex cover
problem (MVC) is to find a vertex cover where |C| is minimized. The minimum weighted
vertex cover problem (MWVC) includes a positive weight w : V' — R for each vertex and
the problem is then to find a vertex cover where ) - w(u) is minimized. The decision
version of MVC was one of Karp’s original 21 NP-complete problems and it thus follows
that MVC is NP-hard [13]. MWVC is at least as difficult as MVC since the case where the
weights are all one is precisely the same as the unweighted version.

It is well known that kernelization techniques can speed up the computation of solutions
to NP-hard problems. They shrink the instance by applying reduction rules so that an
optimal solution for the reduced instance can be expanded to an optimal solution for the
original instance. Several such reduction rules have been developed both for the MVC and
the MWVC problem. Using reduction rules, Lamm et al. were able to solve large instances
of both MVC and MWVC with millions of edges and vertices [8,10,18].

Reduction rules have also been used to speed up heuristics for computing vertex covers
and solving associated problems. It is straightforward to see that such rules can be used as a
preprocessing step before running an iterative search heuristic [19]. However, they can also
be used in combination with heuristics that classify vertices when no reduction rules apply.
This technique was introduced by Chang et al., who named it reducing-peeling [6]. Examples
of such methods that have been used for MVC include genetic algorithms [17] and graph
neural networks [21].

We present a hybrid approach that combines several strategies to create an effective
heuristic for the MWVC problem. First, we use a combination of reduction rules, a graph
neural network, and an exact solver to compute an initial vertex cover. The vertex cover is
then further enhanced using an improved iterative search strategy. The proposed heuristic is
compared to the best existing methods, yielding the following main results:

We demonstrate the first successful application of graph neural networks on the MWVC
problem.

We give an improved local search implementation for MWVC on very large sparse graphs.
On instances that can be solved exactly we compute solutions that are on average 0.04%
heavier than the optimal ones.

We obtain consistently better solutions than existing heuristics for the MWVC problem.
Finally, we give results on several hundred graphs from SuiteSparse, including instances
with more than 1 billion edges, which is significantly larger than those computed in
previous efforts. Even at these sizes, our proposed heuristic finds vertex covers in less
than one hour using a standard CPU.

In the remainder of the paper, we first introduce the main concepts along with previous
work in Section 2 and present our approach in Section 3. Sections 4 and 5 present our
experiments along with their results, while Section 6 concludes the paper.

2 Background and Related Work

The MWVC problem has several real-world applications, including dynamic map labeling [2],
biological network alignment [1], and network engineering [26]. Furthermore, the problem
of finding a minimum vertex cover is equivalent to the problem of finding a maximum
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independent set. For any feasible vertex cover C, the vertices not in the vertex cover V' \ C
make an independent set, and if |C| is a minimum vertex cover, then V' \ C' is a maximum
independent set. This also extends to the weighted versions of these problems. Thus, results
for the maximum weighted independent set problem (MWIS) carry over to MWVC.

When constructing a cover C' for a graph G = (V, E), each decision whether a vertex
u € V should be in C or not has immediate implications for its neighborhood N (u), i.e. the set
of vertices adjacent to u. The resulting graph G’ is smaller and can be solved independently
from previous decisions. If u is added to C, then every edge connecting u to the rest of the

graph will be covered. From that point, the problem is to find an MWVC on G’ = G\ {u}.

Similarly, if u is excluded from C, it follows from the definition of a vertex cover that N(u)
must be in C. In that case, u and its neighborhood can be removed from the graph, yielding
G' = G\ NJu], where N[u] = N(u) U {u}.

This observation points to two immediate questions. First, how to decide for a vertex u
whether to include u or N(u), and second in which order such decisions should be made. In
the following, we discuss the principal ways in which this has been done previously.

2.1 Reduction Rules

There has been extensive research on computing exact solutions to NP-hard problems
using kernelization combined with various branch-and-bound (BB) techniques. BB makes
temporary decisions but is able to backtrack in order to find an exact solution.

The currently best exact solver for the MWVC problem is the branch-and-reduce solver
B & R by Lamm et al. [18]. B & R is actually an MWIS solver, but as stated earlier, it can
be directly applied to solve the MWVC problem as well. B & R selects vertices for branching
based on degree, breaking ties based on weight. Clique covers are used to find an upper
bound for the optimal solution to prune the search. What extends it from branch-and-bound
to branch-and-reduce is the addition of reduction rules. Before each branch, the remaining

graph is checked to see if any reduction rules can be applied to the current remaining graph.

It is crucial to check before each branch, not only the first, since branching on a vertex
and temporarily labeling it can enable further reductions. The graph is also checked for
connectivity after applying reduction rules. If there are multiple connected components,
these are solved separately, combining the partial results afterward. Reduction rules are not
always applicable, but they are exact in the sense that decisions taken by reduction rules
never prevent an optimum solution. By using an extensive set of reduction rules, B & R can
often find minimum weight vertex covers on graphs with millions of vertices in a reasonable
amount of time.

Our heuristic makes use of the same reduction rules as B & R. Therefore, only an outline

of the main ideas is provided here. At a high level, reduction rules come in two varieties.

Rules of the first type, called removal, directly decide whether vertices should be added to
the cover and remove vertices or neighborhoods from the graph. Rules of the second type,
called folding, also reduce the size of the graph, but without making immediate decisions
about vertices. The idea is that after solving the reduced graph, it can be unfolded to extend
the solution to the original graph. The following rules are examples. Other rules used in our
heuristic are described by Lamm et al. [18].

Neighborhood Removal. If the weight of a vertex is greater than or equal to the combined
weight of its neighborhood, i.e, w(u) > w(N(u)), then some MWVC C includes N(u) and
not u. To see this assume u € C'. Then the cost of the solution will not increase if w is
replaced by N (u).
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Neighborhood Folding. Let u be a vertex such that no vertices in N(u) are adjacent and
let v € N(u) be a lightest neighbor. If w(u) < w(N(uw)) but w(u) > w(N(u) \ v) then some
MWVC includes exactly one of u and N(u). This follows since if a vertex cover includes u
and at least one vertex from N (u), then swapping u for the remaining vertices in N (u) will
not increase the cost. Unlike the previous rule, there is still the possibility that an MWVC
could include u and no vertices from N(u). Therefore, N(u) cannot directly be classified
yet. Instead, Nu] is folded into a new vertex u’ connected to every vertex adjacent to N(u).
The weight of this new vertex is set to w(N(u)) — w(u). The new vertex u’ represents the
choice between N(u) and u. Choosing N(u) costs more than u, but could cover more edges.
To unfold the reduced graph, include N (u) if v’ was part of the solution and u otherwise.

Note that if there had been any edges between vertices in N (u), these edges would need
to be covered. Therefore, selecting u and no vertices from N (u) would not be an option, and
N (u) should be added and its neighborhood removed as in the first rule.

Typically, different reduction rules are executed in a fixed order, checking the applicability
of the rule for each vertex before moving on to the next rule. The precise order is based on
the computational cost associated with each rule, and the idea is to apply the cheaper rules
frequently and the more expensive ones less often. Whenever a rule successfully reduces the
graph, the vertices whose neighborhoods have changed are checked again, starting from the
least expensive rule.

2.2 Local Search

Since the MWVC problem is NP-hard, only heuristics and approximation algorithms are
feasible for large instances. Popular heuristics include genetic algorithms [22], ant-colony
approaches [12], tabu search [27], and local search [3,19,20,23]. Among these, local search
heuristics are the most successful.

Consequently, local search plays an essential part in our proposed approach. These
heuristics efficiently search for improvements to an existing solution, with a predictable
running time for each iteration of the search. Previous studies show that local search can
quickly find high-quality solutions and scale to graphs with several million vertices and
edges [20].

Algorithm 1 Local search overview, outlining the core ideas used by several iterative local search
procedures for the MWVC problem.

1: C + ConstructWVC > Construct the initial vertex cover
2: O+ C > Best vertex cover found
3: while elapsed_ time < max__time do

4: Remove vertex u with lowest score(u) from C

5: while C is not a vertex cover do

6: Add vertex v with highest score(v) to C

7: Add 1 to the weight of each uncovered edge

8: end while

9: if w(C) < w(C") then
10: C'+C
11: end if

12: end while
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Most of the heuristic algorithms utilize an edge weighting strategy that dynamically
changes as the search proceeds [3,20,27]. The edge weights, denoted by edge,,, are initialized
to one. We show the common strategy of these heuristics in Algorithm 1. Here

cost(C) = Z edgew ({u,v})

{u,v}€E|lugCAvg¢C

cost(C\{u}) — cost(C), ueC

dscore(u) = {cost(C) —cost(CU{u}), ugC

score(w) — dscore(u)
() = Seorete)

In addition to the procedure described so far, all heuristics mentioned above make use of
configuration checking, which was first introduced by Cai et al. [4]. This aims at preventing
a vertex that was recently removed or added to the solution from going back to its previous
state in the next iteration. Only after some other change has occurred in its neighborhood
will it be allowed to change state again. Incorporating configuration checking can be as
simple as defining a Boolean flag for each vertex. Only vertices with set flags are eligible
for selection (Line 4). When a vertex is added to C' (Line 6), the flag is set to false, but its
neighbors’ flags are flipped to true.

Each search iteration always starts and ends with a valid vertex cover. However, the
solution quality is not guaranteed to improve during every iteration. This relaxation is
necessary to escape local minima since restricting the search to only make changes that
improve the solution cost will cause it to get stuck quickly. To better understand how local
search works, consider the initial iteration when every edge weight equals one. The first step
of each iteration removes a vertex from C' with the lowest score value. The score of a vertex
u € C is the weight of every edge that u alone covers, divided by w(u). As a sanity check, if u
is redundant and could be removed without leaving any edges uncovered, then score(u) would
be zero. In general, vertices with high weight and a low number of covered edges will have
low scores and are likely candidates for removal. The idea being that these vertices contribute
less to the overall solution. After removing a vertex, the neighbors that are not part of the
solution are added back in order of their score, increasing the weight of the uncovered edges
along the way. The effect of increasing the edge weights is that a newly added vertex gets

higher scores than it would otherwise, and is therefore less likely to be chosen for removal.

This scheme effectively handles the balance between intensifying and diversifying the search
and has been demonstrated to be an efficient technique in practice [3,19,20,27].

Many successful heuristics have used the technique outlined in Algorithm 1. One such
heuristic, FASTWVC [20], improved performance on large graphs using a new construction
procedure and exchange step that removed two vertices instead of one. This was further
improved in DYNWVC2 [3] by using dynamic strategies for vertex selection. Another
heuristic, Hybrid Iterated Local Search (HILS) [23], alternated between efficient neighborhood
swaps and random permutations to balance quality and diversity. NUMWVC [19] used simple
reduction rules to construct the initial solution, improved configuration checking, and dynamic
vertex selection strategies. The most recent heuristic named Master-Apprentice Evolutionary
Algorithm with Hybrid Tabu Search (MAE-HTS) [27] showed further improvements over
NuMWVC.

12:5
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2.3 Graph Neural Networks

Graph neural networks (GNNs) [25] are machine learning architectures adapted to handle
graph data. There are several issues with conventional neural network architectures when
working on graphs. For instance, typical convolutional neural networks (CNNs) [15] work on
images of fixed size. However, graphs differ in size and cannot easily be scaled. Furthermore,
results for graphs should be invariant to different vertex permutations, which CNNs do
not normally support. GNNs overcome these limitations and, following the success of
CNNs, neural network architectures for graphs have recently made significant progress on
combinatorial optimization problems [5]. GNN models can be trained for several different
tasks, including vertex labeling, edge prediction, or whole graph predictions. GNNs can learn
structural information about graphs since they consider neighborhood information for each
vertex.

Starting from a feature vector on each vertex, the GNN propagates information along the
edges of the graph for a fixed number of rounds. When finished the GNN outputs a value
for each vertex that indicates if this vertex should be part of the solution or not. Values
that are being moved between two neighbors are processed using a multi-layered perceptron
that has been trained on graph instances where an optimal solution is known. Like local
search, decisions taken by the GNN are not exact. A previous study on the MVC problem
demonstrated the effectiveness of graph neural networks in this setting, but at a significantly
smaller scale [21].

3 Approach

Our proposed heuristic consists of two stages, where the first computes a vertex cover using
reduction rules, output from a GNN model, and an exact solver. In the second stage, the
obtained vertex cover is improved using an efficient local search procedure. In the following,
we outline the stages in more detail.

3.1 Initial Computation

The first stage starts with all vertices unclassified. It then follows a greedy strategy where
reduction rules are used whenever possible to classify vertices, thereby reducing the size
of the remaining unsolved graph. Classified here refers to the decision made for a vertex,
regardless of whether it is in the vertex cover or not. A connectivity check is performed
when no reduction rule applies, and any sufficiently small component is solved exactly using
a branch-and-reduce strategy. For larger components that cannot be reduced further, the
vertex with the highest probability of being either in or out of the solution is classified,
according to the GNN’s evaluation. This procedure is repeated until a complete vertex cover
for the whole graph has been obtained.

As the computation progresses, the size of the remaining unclassified graph shrinks. As a
consequence, the predictions from the GNN will also change. However, computing predictions
from the GNN has a cost that is linear in the size of the remaining graph, and thus, it can
be expensive to apply this too often. Therefore, it is essential to decide when to update
the probabilities by rerunning the GNN and when to use probabilities from the last GNN
computation. The following scheme is used to decide when to recompute the probabilities
from the GNN.
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Each application of the GNN gives a prediction for each vertex regarding whether or
not it should be part of the vertex cover. The list of predictions is ordered by decreasing
assurance. When consulting this list, the top choice might already have been classified by a
reduction rule. If the current configuration of that vertex and the prediction by the GNN
disagree, it is an indication that the predictions should be updated. This could still occur
often, so it is also required that the remaining graph’s size has shrunk sufficiently since the
last time the GNN output was computed.

Like the GNN computation, checking the graph’s connectivity also has a cost that is linear
in the size of the remaining graph and is therefore only done before each GNN computation.
Small connected components are solved exactly using a simplified version of the solver
presented by Lamm et al. [18]. Due to the limited input size, some aspects have been omitted,
such as branch elimination based on lower and upper bounds and connectivity checking.
Instead, it is more important to target the worst-case scenario, which seems to occur in
very dense graphs. To this end, a degree-based branching technique is used, as described by
Imamura and Iwama [11], and based on an observation by Karpinski and Zelikovsky [14].
The idea is that for some set S C V with |S| = k, where Yu € S = degree(u) > k. Then
an optimal solution C' will either include the whole set S C C' or the entire neighborhood for
one of the vertices Ju € S : N(u) C C. In a branch-and-reduce setting, this means that one
can branch based on k + 1 options, and each of these branches will already have at least k
vertices classified. This should be compared to a traditional branching on a single vertex,
where one branch typically only reduces the size of the problem by one.

To recap the construction procedure, first, apply reduction rules. Then check if the size
of the graph has been sufficiently reduced. If so, perform a connectivity check, solve small
connected components exactly, and apply the GNN model to the rest. If the size of the graph
has not decreased enough, consult the most recent GNN predictions. Finally, when the size
of the remaining graph reaches zero, unfold the graph up until the first non-exact decision
was made. The last unfolding only occurs after local search.

3.2 Graph Neural Network Architecture

The GNN architecture used is a combination of message-passing steps interleaved with
multi-layered perceptrons (MLPs). The message-passing step is inspired by the layer-wise
propagation rule presented by Kipf and Welling [16]. It is slightly modified using a few
handcrafted features and a direct passthrough, similar to a residual link used in CNNs [9].
The message-passing step then looks like this:

H'™' = AH'|H'|D|W|N.

Here, H' is the |V| x f matrix at layer [, where f is the number of activations for each vertex
at this layer and A is the graph’s adjacency matrix. Then, H' is concatenated unchanged,
followed by D, W, and N, who are |V| x 1 matrices corresponding to vertex degree, weight,
and neighborhood weight. The output H'*! then becomes a |V| x 2f + 3 matrix. Initially,
f = 1 since the only attribute of a vertex is its weight.

The MLPs used are extensions of the original perceptron model introduced by Rosen-
blatt [24]. Each layer is a dense matrix of trainable weights, and in between the layers are
non-linear activation functions. The forward flow through one of these layers is given by:

H* = o(H'W' + 0

12:7
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where o is the activation function, W' are the trainable weights, and ' is the bias term at
this layer. The dimensions of W' is f! x f'*! meaning these layers can scale f as desired.
The vector b is added to each row of H'W*. The activation functions used are ReLU and
sigmoid. These are elementwise functions defined as:

ReLU(z) = maz(0, )

B 1

Cl4e

The model used in the proposed heuristic consists of three message-passing layers interleaved
with three-layer MLPs. The MLP layers consist of 32 activations with a single activation
for each vertex at the output layer. ReLU is used between every MLP layer, except in the
output layer, where sigmoid is used. The benefit of the sigmoid activation in the output
layer is that each value can be interpreted as a probability.

sigmoid(x)

3.3 Optimized Local Search

For the second stage, a local search procedure is employed, similar to that shown in Al-
gorithm 1. However, this contains three costly operations that need to be analyzed carefully.

1. Finding the next vertex u to remove (Line 4)
2. Reconstructing the vertex cover (lines 5-7)
3. Storing the new solution if it turns out to be an improvement (Line 10)

When done naively, the first and third points will take O(|V]) time and the second
O(|N(u)]?), where u is the vertex from Line 4. This might not be too costly if the graph
is small and the current solution is close to the optimal. However, since our aim is to find
vertex covers on massive graphs with millions of vertices, a more careful implementation
could make a significant difference.

To address the linear cost of finding the next vertex to remove, we store every vertex
in the graph in a binary heap. Whenever the score of a vertex changes, its position in the
heap is also updated. In one remove and reconstruct step, the neighborhood of v and the
neighborhood of every added vertex will change their score value. This means that the cost
of maintaining the heap during each iteration will be log(|V|) times the size of the distance-2
neighborhood of u.

The next point is how to reconstruct the solution efficiently. Since u is not allowed to
enter the solution again in the same step as it was removed, the vertices with a positive score
are precisely the neighbors of u that are currently not in the vertex cover. Furthermore,
since these vertices are not part of the vertex cover, every other neighbor they might have
besides u, will already be in the vertex cover. This means that the score value for each
v € N(u) where v ¢ C will be equal to the weight of its edge incident on u divided by w(v).
To improve the speed of reconstructing the vertex cover, we sort the adjacency list of u based
on edge weight and then add them in that order. This improves the running time for this
step from O(|N(u)|?) to O(]N(u)|log(|N(u)])). Reconstructing the vertex cover this way
is not equivalent to Algorithm 1. However, it is faster and based on our experiments, has
negligible impact on solution quality.

Finally, the last consideration is how to keep track of the best solution found. The best
solution is not used for anything during the execution of the algorithm. It is only stored to be
returned at the end. If the initial solution is far from the eventual local minima, repeatedly
storing the improved vertex covers could become a bottleneck. To address this issue, multiple
iterations are performed without checking if the solution quality has improved. Initially,
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the number of iterations is high, but gradually shrinks as the search continues. This idea is

not new, as NUMWVC uses a similar technique called self-adaptive-vertez-removing [19].

However, in NUMWVC, the authors changed the number of vertices removed during each
iteration, unlike here, where only the updating is omitted. Compared with NUMWVC, our
approach also varies significantly in scope. NUMWYVC starts by removing three vertices
and gradually moves down to one, whereas in our approach, the idea is to let the search run
for thousands of iterations without updating the best solution. It is important to note that
these improvements only speed up the search and does not necessarily lead to solutions that
other existing heuristics would not have found given sufficient time.

4 Experimental Setup

In the following, we present the computation platform, benchmark datasets, and details
on how the GNN model was trained. We refer to our heuristic as GNN with local search
(GNN & LS). The exact solver is employed on connected components with < 75 vertices
and requires a 5% size reduction before each connectivity check and recomputation of GNN
probabilities. We require a minimum of 1024 iterations during the local search before
updating the best solution.

Computing Platform. All heuristics are implemented in C++ and compiled using GCC 9.3
with the O3 optimization flag. All the experiments were run on a single thread of an Intel
Xeon Silver 4112 CPU with 2.60 GHz and 38 GB of memory. The machine runs Ubuntu
18.04.6 and Linux kernel version 5.4.0-109.

4.1 Benchmark Data

We use graphs from the SuiteSparse collection [7]. In order to get graphs with a wide variety
of meaningful sizes and densities, a subset of the entire SuiteSparse collection was used,
selected on the basis of file size. The first set of graphs, Dataset 1, contains graphs with a file
size between 40 MB and 4 GB, 371 graphs in total. The smallest graphs start at roughly 500
thousand edges, while the largest exceed 180 million?. Most of these graphs do not initially
have vertex weights or undirected edges, so the graphs are first converted to the correct
format. This is done by considering each edge as undirected, removing any duplicates or self
edges, and then generating vertex weights uniformly at random. There are some differences
in previous studies on how weights are assigned. For instance, weights in the integer range
[20, 100], [20, 120], or [1, 200] have all been used. We use weights drawn uniformly at random
in the integer range [1, 200], which is similar to B & R [18] and Hius [23]. However, based

on preliminary experiments, different weight ranges did not significantly impact the results.

Some of the other heuristics used for comparison contain built-in input size limitations.

For instance, NUMWVC only accepts graphs with less than 9 million vertices. Therefore,
Dataset 2 consist of the graphs from Dataset 1 that every heuristic accepted as input. The
exact solver B & R [18], in its default configuration and with a time limit of 1200 seconds,
was able to find exact solutions for 111 graphs from Dataset 1. These 111 graphs constitute
Dataset 3. Lastly, six massive graphs with more than one billion edges are also included as
Dataset 4.

2 A complete list of graphs along with results and source code can be found at this repository: https:
//github.com/KennethLangedal/MWVC-GNN-LS
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4.2 Training the GNN Model

When training a GNN model directly on vertex classification, one has to take into consideration
that a minimum weighted vertex cover might not be unique. One idea that has already
been successfully used for the MVC problem is to have multiple vertex covers as output and
use a hindsight loss that only acts on the best output [21]. We propose another approach
for MWVC, where one increases the weight range to lower the chance for multiple optimal
solutions. Therefore, the weights assigned to the training data are drawn uniformly at
random from the integer range [10, 2000] instead of [1, 200]. The input to the model is then
linearly scaled down to the real interval [0, 1], to ensure that the data is in the same range
when training as during inference. Roughly 1400 graphs from the SuiteSparse collection with
sizes less than 40 MB were used as training data. The exact solver B & R [18] was able to
find optimal solutions for 929 of these graphs, thus giving us over 8 million labeled vertices
that we could then use for training.

Mean squared error (MSE) and stochastic gradient descent (SGD) with momentum were
used to fit the model’s parameters to the training data. The training data was divided into
90% for training and 10% for validation. Additional parameters used during the training
include a 0.01 learning rate, 0.9 momentum, and a batch size of 250,000 vertices. The results
from the training can be seen in Figure 1.

0.5 100
0.4} = 80 + 8
S
0.3 4 < 60 |
= g
2 N
02} 1% a0 .
<
0.1 - 20 + =
0 | | | 0 | | |
0 25 50 75 100 0 25 50 75 100
FEpoch FEpoch
Training —— Validation
Figure 1 GNN training over 100 epochs, showing MSE and accuracy for training and validation
sets.

5 Experimental Results

In this section, we report on a set of experiments to gauge the performance of our new GNN-
based approach. We start with results from Dataset 2 compared to other state-of-the-art
heuristics. Then, based on Dataset 1 and 3, we present a deeper analysis of the different
components of our GNN-based approach. Finally, we include results on Dataset 4.
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5.1 Comparison with State-of-the-art Heuristics

The first set of experiments compares GNN & LS with the following heuristics: DYNWVC2,
Hirs, FASTWVC, and NUMWVC. The source codes for all of these are available online,
except NUMWVC, where the authors provided the code. There is one newer heuristic,
MAE-HTS [27], but we were unable to obtain the code for it. Each heuristic ran for 1000
seconds, while recovering the best solution found. Dataset 2 was used here due to the built-in
limitations on some implementations. Figure 2 shows the solution quality compared to the
best solution found by any of the heuristics on each graph. The y-axis gives the percentage
of graphs that a heuristic was able to solve with increasing distance to the best solution given
by the x-axis. Here, the distance is measured as a percentage of the best solution. Thus the
values initially show the percentage of graphs where each heuristic gave the best solution.
The absolute numbers are also given in the first row of Table 1.

e

w 0.8
=
o
=
2006 s
o
g
= 0.4 —— GNN & LS |
o — DYNWVC(C2
=
0.2 HiLs N
FAsTWVC
ol NuMWVC
| | | | |
0 0.5 1 1.5 2

Gap to best (%)

Figure 2 Solution quality on Dataset 2, based on the gap to the best solution found by one of
the heuristics.

Table 1 Summary of results on Dataset 2.

GNN & LS DynNWVC2 HiLs FAsTWVC NuMWVC

Best solutions 262 7 29 19 10
Average gap to best 0.06% 0.84% 2.3™% 1.44% 2.33%
Average time in sec. 480.79 735.83  907.9 826.75 669.91

As shown in Table 1, GNN & LS finds higher-quality solutions on significantly more
test instances than the other heuristics. It is also, on average, closest to the best solution
and uses the least time.

Table 1 gives the time it took to find the reported solution. Measuring the running time

this way does not necessarily give meaningful insight into how fast the different methods are.

A heuristic that finds a good solution quickly but then makes a small improvement after a
long time would register as slow in this metric, while one that finds the same solution but
does not make the improvement would register as fast, even though it never had a better
solution than the first heuristic. In order to get a better understanding of the speed of the
heuristics, we run the programs for a shorter duration and compare the results, as shown in
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Figure 3. The GNN-based approach spends considerable time constructing the initial vertex
cover, 27.7 seconds on average. Before that point, GNN & LS has nothing to report. Figure
3a shows the results when using the time the GNN spent constructing the initial solution
as the time limit for the other programs, effectively testing the GNN construction part in
isolation against the other heuristics.

Again, as can be seen from the results, GNN & LS also find higher-quality solutions
with these lower time limits. Figure 3a shows that the advantage of the new heuristic is even
greater when comparing the construction step alone against the other heuristics. A reason
for the drop in performance from Figure 3a to 3b is due to graphs where GNN & LS did
not finish constructing the initial vertex cover in the first 100 seconds.

[y

Fraction of graphs
=)
ot

(a) GNN time

(b) 100 seconds

(¢) 500 seconds

0.5

0.5

0 \ 0 L 0 \ L
1 1 1 2
Gap to best (%) Gap to best (%) Gap to best (%)
—— GNN & LS — DYNWVC2 Hivs FastWVC NuMWVC ‘

Figure 3 Solution quality on Dataset 2 using different time limits. Quality is measured based on
the gap to the best solution found by one of the heuristics.

5.2 Evaluation of Different Configurations

In this section, we perform a deeper evaluation of the different components of our heuristic
in isolation, with the main focus on the GNN component. The GNN’s part is to label one
vertex when reduction rules fail to make progress. One sensible alternative is to exclude the
heaviest vertex, breaking ties based on degree, similar to how exact solvers pick a vertex
to branch on. This modified version of GNN & LS will be referred to as QUICK & LS.
Additionally, to measure the importance of local search, both GNN and QUICK without
local search are also included. Lastly, a pure local search (LS) is used for comparison. These
different configurations are evaluated w.r.t. running times and solution quality, including
results on graphs where the optimal solution is known.

Table 2 Summary of results on Dataset 1.

| GNN GNN & LS Quick Quick & LS LS
Best solutions 65 242 57 122 7
0.68% 0.01%  2.52% 0.22%  0.95%

Average gap to best

When comparing different configurations of the proposed heuristic, GNN & LS wins on
both the number of best solutions and the average gap to the best solution, as shown in
Table 2. Taking away components from GNN & LS all lead to worse performance, but to
different extents. Taking away the GNN, represented by QUICK & LS, is the second-best
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Figure 4 Solution quality on Dataset 1, based on the gap to the best solution found by one of
the configurations.

configuration and shows that using reduction rules during the construction of the initial
solution benefits the subsequent local search. Comparing the GNN and QUICK results, both
without local search, highlights the impact of the GNN model at this stage. Ultimately, the
GNN, local search, and reduction rules are all responsible for significant parts of the quality
of the final vertex cover.

Table 3 Summary of results on Dataset 3.

| GNN GNN & LS Quick  QuIcK & LS LS
Optimal solutions 52 57 52 56 10
Average gap to optimal | 1.12% 0.04%  3.27% 0.60% 1.77%

On Dataset 3, GNN & LS is on average closest to the optimal solutions, shown in Table 3,
while the other configurations are noticeably worse. In order to find optimal vertex covers on
graphs of these sizes, the graphs need to be especially amenable to reduction rules. Counting
the number of vertices remaining after the initial reduction step confirms this, as 43 graphs
were completely solved by reduction rules alone. On the graphs that had more than zero
vertices left, the average on Dataset 3 was a reduction of 46.44%, while for Dataset 1, it
was 26.7%. These numbers further demonstrate the power of reduction rules on the MWVC
problem.

5.3 Running Time

So far, the focus has been on solution quality within a fixed time window. Since Dataset 1
contains several hundred graphs of various sizes, condensing this data to a single number
or figure can oversimplify the results. For instance, on some graphs, the local search could
quickly get stuck in a local minimum, while on others, an improved solution could be found
after a long time. The interesting feature is how the solution quality changes over time. For

example, the GNN-based approach takes considerable time to construct the initial solution.
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Figure 5 Performance profile on Dataset 1 showing the fraction of graphs solved over time,
including different definitions of solved. Before GNN & LS and Quick & LS have solutions to
report on a graph, it counts as not being solved regardless of defined threshold.

However, if that solution is better than what a pure local search could do in the same
amount of time, it would likely be worthwhile. The same argument can be made for the
QUICK alternative as well. However, there is no guarantee that this is the case, and a worse
initial solution can produce a better final solution after local search. To show how the
solution quality changes over time, we ran each configuration for 1000 seconds, reporting the
best solution at 10-second intervals.

The results, seen in Figure 5, show that there is a time/quality tradeoff that comes with
the GNN component. When the best solution quality is desired, GNN & LS is the best
choice (Figure 5a). However, since GNN & LS is slowest to produce a feasible solution,
there comes the point where omitting the GNN component becomes beneficial, as shown in
Figure bc.

5.4 Large Instances

Table 4 Results from Dataset 4. Each configuration ran for 3000 seconds. The best solutions are
indicated in bold.

GNN & LS Quick & LS LS
Graph Cost Time Cost Time Cost Time
webbase-2001 | 3,440,309,297 311.03  3,442,765,890 176.72  3,539,284,688 62.68
it-2004 1,438,951,442 749.59  1,439,091,400 490.23  1,480,088,254 76.98
GAP-twitter 1,160,408,463 724.04  1,160,512,688 712.48  1,201,023,583 30.18
twitter? 1,160,187,362  763.95 1,160,291,460  680.71 1,200,789,078  29.82
GAP-web 1,861,729,481 2,562.73 1,883,467,468 1,724.99 1,932,504,652 227.39
sk-2005 1,861,502,940 2,797.92 1,882,779,425 1,788.75 1,932,262,816 221.15

Dataset 4 contains six larger graphs to show that our GNN-based approach can scale
beyond the problems sizes investigated in previous work. The results are shown in Table 4,
with GNN & LS giving the best quality on all of these instances. The final solution cost of
GNN & LS and Quick & LS is very similar. This is due to the effect the reduction rules
has on these graphs, as shown in Table 5. They are particularly effective on GAP-twitter
and twitter7, with less than 200,000 vertices left after the initial round of reductions. As
a consequence, no matter how the remaining graphs are solved, the solution quality of the
different methods is very close, but it is relevant that the GNN finds better solutions.
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Table 5 Reduction rules on Dataset 4.

Graph [V] |E| |V] after reduction
webbase-2001 | 118,142,155 854,809,760 4,936,598
it-2004 41,291,594 1,027,474,946 8,826,771
GAP-twitter 61,578,415 1,202,513,046 164,512
twitter7 41,652,230 1,202,513,046 165,489
GAP-web 50,636,151  1,810,063,329 16,803,173
sk-2005 50,636,154  1,810,063,329 16,756,003

6 Conclusion and Future Work

We have demonstrated that GNNs can boost the performance of heuristics for the MWVC
problem. We have also introduced a local search implementation for large sparse graphs that
avoids frequently occurring O(|V]) steps. Our complete heuristic also incorporates previously
established reduction rules and an exact solver. Extensive experiments on several hundred
large graphs show that our heuristic significantly outperforms previous methods. We also
demonstrate that every part of our strategy is needed to achieve these results and show that
it can scale to larger graphs than previously considered, including graphs with more than 1
billion edges.

Despite our promising results, it is clear that each component of our strategy can be
improved further based solely on existing work. For instance, the exact solver used on
small connected components could also be significantly improved, evident by the success of
solvers like B & R. The proposed improvements to local search are primarily focused on
implementation, and there is undoubtedly room to include techniques from recent work in
this area as well. Similarly, using a more sophisticated GNN architecture or increasing the
amount of training data is likely to improve the performance. Naturally, it is also possible to
apply the same strategy to new problems. This is something we intend to investigate in the
future.
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