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Abstract 

This paper aims to create accurate predictive models for the bike-sharing system 

operated by Oslo City Bikes. The three different machine learning methods are 

used to predict user demand within a specified area of Oslo. Furthermore, the 

paper intends to discover which factors that most influence bike-sharing usage pre- 

to mid-pandemic. Different factors of bike-sharing systems will be evaluated to 

create a reliable model. Recommendations for further research topics, as well as 

possible business implementations for the model will be explained. The machine 

learning method with the best performance was GRU with an MAE score of 14.30, 

RMSE of 20.80 and R  of 0.77. Multiple COVID-19 features indicating varying 

intensities of lockdown were tested, however they did not have as much of an 

effect as expected.   
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1 Introduction 

Bike-sharing systems (BSS) is a sharing service that provides the public with short-

term bike rentals, usually within a municipality. In order to rent the bikes, a fee or a 

subscription is required. They also tend to have docking stations where users can 

pick up and return the bikes. The municipality can choose the model of operation, 

ranging from governmentally run to privately run.  

Many cities across the globe have a BSS. BSS tend work complementary with public 

transport. Bike-sharing is considered a public good, reasons being that it reduces car 

usage and has an added health benefit related to cycling. In addition, it improves 

connectivity to other modes of transportation by reducing travel time and providing 

a solution to the first/last-mile problem (Du et al., 2019). With the occurrence of a 

pandemic, many businesses and forms of transportation were negatively impacted. 

The BSS was one of these businesses that saw an impact due to the pandemic. The 

pandemic led to stay at home orders which significantly decreased the amount of 

people who commuted to work, school, or social gatherings. It also led to a decrease 

in the overall bike usage for BSS. Given the rapidly changing environment, to better 

allocate resources and design strategies to better suit current needs, it is important 

to analyse the factors that influence bike usage. The demands of the Oslo bike-

sharing system, Oslo City Bikes (OCB), will be the focus of this thesis. The 

proposed predictive model can be further be applied to other systems, which will be 

discussed in the last chapter.  

OCB is a station-based system located in the city of Oslo, Norway, and operates 

around the city centre. Demand prediction is particularly relevant for station-based 

systems, as they require an adequate supply of bikes at each station. The research 

question is to find the factors that influence the demand for bikes in Oslo. In this 

study, Grünerløkka, the area with the greatest demand, will be investigated first. 

Many factors that have been studied in the existing literature are included in the 

proposed model, such as temporal factors and weather conditions. In this paper, 

some novel factors related to the pandemic are considered and their potential 

contributions to model accuracy and robustness are analysed. Based on several data 
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sources, a machine learning model is built to identify the most influential factors 

and predict future demand. With the proposed model, OCB may benefit by 

allocating resources based on more accurate demand forecasts. The influencing 

factors found in this model can also be used as a reference for the design of pricing 

strategies, hoping to further increase the utilization rate of city bikes. 

BSS demand prediction is a commonly researched topic with many different articles 

covering it. Recent research has found that machine learning methods have high 

efficiency when predicting demand in comparison to traditional forecasting models. 

Demand forecasting models have multiple approaches within the field of BSS. Most 

of the research share a common thread, where they focus on station specific levels 

for their forecasting. This might lose some factors of influence from neighbouring 

stations.  

With the introduction of COVID-19 in early 2020, there has not been much BSS 

research on how pandemics effect bike demand. With such, it would be of interest 

for the city to see how the pandemic influences their BSS and changes in user 

behaviour. Public mobility was in large part effected by measures taken by the 

various countries. Norway did not have as restrictive of a lockdown as some other 

countries, and this led to BSS usage throughout the pandemic. The constant usage 

of bikes in Oslo leads to an opportunity to see how different stages of lockdown 

influence the BSS.  

This paper creates models by using previous techniques used in BSS research. Three 

machine learning models are chosen due to their high performance when compared 

with other models and approaches. The features used are proven to have high 

importance for BSS demand prediction. The intention is to test how different 

COVID-19 measures compare to these features for BSS demand prediction.  

 

This thesis is structured as follows. In Chapter 2, the background of bike-sharing 

systems and Oslo City Bikes is described. Chapter 3 reviews the related literature, 

including bike-sharing demand and machine learning models for demand 



 
 

 
3 

 

forecasting. Chapter 4 covers data preparation and modelling. Chapter 5 presents 

the results of the predictive models and performance evaluation. In Chapter 6, the 

potential benefits of business implementation for the model are explained. The 

conclusions and future work are summarized in Chapter 7. 

 

2 Background 

DeMaio (2009) states that there have been three generations of bike-sharing and 

describes a fourth and future generation. The first generation of a BSS was 

introduced in the 1960s, where bikes could be used for free and placed in random 

locations in the city. However, the system failed when bikes were thrown in the 

canals or stolen for private use. The second generation brought better bikes revenue 

generation in the form of advertising and coin deposit to unlock them. Despite the 

improvements, the second-generation system still struggled with the earlier problem 

of bike theft. The third generation used advanced technology, combined with policy 

incentives which led to rapid growth of the bike-sharing system (Garcia-Gutierrez 

et al., 2014). Smartcards, fobs, or mobile phones could keep track of user profiles, 

and additional safety features were implemented with electronically locking racks 

being one of them. As more advanced technology improved bike security and user-

experience, the concept grew in popularity in the 2000s (DeMaio, 2009). 

 

Among different BSS, the station-less bike-sharing, also called free-floating bike-

sharing, is popular because of its ease-of-access for users. This becomes more viable 

as a system due to the improved technology used to avoid misappropriation of the 

bikes when the system was first introduced. However, this system could lead to 

bikes being dropped off in inconvenient places for the public, which is why station-

based systems are sometimes preferred. There is a trade-off between the flexibility 

and cost-effectiveness of a free-floating BSS versus the predictability and running 

costs of stations of a station-based system. One major disadvantage of a station-
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based system is that the company running the system must balance the inventory at 

each station to meet demand. 

 

DeMaio (2009) summarized different BSS models, from public to private, as shown 

in Figure 2.1. There are benefits and disadvantages to each system. The “Advertising 

Company” is most relevant to our case as it is the one used in Oslo. This BSS is 

feasible thanks to a beneficial arrangement between the advertising company and 

the municipality. The advertising company can arrange favourable terms with the 

city public advertising space, in exchange for running the BSS. 

 

Figure 2.1: Models of Provision by DeMaio (2009) 
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2.1 Oslo City Bikes 

The city of Oslo and Clear Channel Norway have collaborated to create the city bike 

scheme1. UIP is the urban infrastructure company that runs the city bike scheme for 

Oslo, as well as schemes in Bergen and Trondheim.  UIP has physical ownership of 

all the bikes and stations and does all the operational activities. The city bike scheme 

is financed through advertising, subscriptions, and a sponsorship. In order to use and 

unlock a bike, a person must have the “Oslo Bysykkel” app. Through the app, the 

user will be able to purchase a daily, weekly, monthly, or seasonal pass which will 

allow them to use the bikes. There are around 254 stations across the city. With the 

large number of stations, the travel time to the next closest station is minimal. This 

leads to a reduction in travel time for longer trips, but also trips within walking 

distance. 

As of 2021, there are around 1 million people living in the city of Oslo.  Of those 1 

million people, about 100 thousand people are city bike users. These 100 thousand 

people make around 2.7 million trips a year. 

 

3 Literature review 

Schuijbroek et al. (2017) identify four research substreams in bike-sharing 

literature: strategic design, demand analysis, service level analysis, and rebalancing 

operations. Within these sub streams, this article will focus on the demand analysis. 

More specifically demand prediction of bikes based on public data. In this section, 

a literature review of factors considered in demand forecasting is conducted, 

followed by an introduction to various machine learning models proposed in related 

research. 

 

 

1 This follows the “Advertising Company” structure mentioned in section 2.1, with Oslo being the 
municipality and Clear Channel Norway being the advertising company. 
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3.1 Key factors for bike demand forecasting 

For BSS with stations, demand forecasting and prediction are crucial. For truck-

based rebalancing there are two approaches one being station level target intervals, 

while the other being station level demand prediction. With an accurate station level 

demand prediction there is improvement on the bike rebalancing seen in both studies 

Guo et al. (2019) and Liu et al. (2016) 

Adequate supply, benefits the users by ensuring that they can pick up and drop off 

bikes during their preferred time at their intended station. There are constant 

fluctuations in demand for city bikes. These fluctuations are influenced by many 

factors with some of the most influential factors being weather, time, and day of the 

week.  

Many studies have investigated the impact of weather conditions on bike demand 

(Nankervis, 1999; Bean et al., 2021). According to research by Nankervis (1999), 

wind, rain, and temperature were found to be the most critical factors affecting the 

number of riders. Bean et al. (2021) further identified precipitation as the most 

important weather factor. The higher the amount of precipitation the less bikes are 

used. In this case, people tend to take public transport.  Bean et al. (2021) also found 

that there was a turning point on demand at around 22.5 degrees Celsius. This means 

that the demand increases as the temperature increases up until 22.5 degrees Celsius, 

and then starts to decline when the temperature rises above 22.5.   

 

Another common factor used to analyse demand is the time of day (Nankervis, 1999; 

Kim, 2018; Du et al., 2019;  Bean et al, 2021). Bean et al. (2021) found that the hour 

of day was the most significant variable. They found a bimodal usage frequency 

with one peak being early in the day, and another peak being in the early evening. 

These peaks are due work and school commuters. The peak starts early in the 

morning when people are biking to work and shows up again in the evening when 
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people are heading home from work. This pattern of bike usage can be seen during 

the weekday in several other studies.  

In addition to the expected factors mentioned above, other unexpected factors may 

also have a significant impact on demand, such as government policies or epidemic 

outbreaks. Since 2020, the COVID-19 pandemic has severely affected all aspects of 

daily life around the world. BSS have also been affected by the pandemic and have 

seen significant changes in usage and demand during this period. According to 

Kubaľák et al. (2021) there was a 46.25 percent decrease in bike usage during the 

pandemic period in Slovakia, with the summer months having the largest decrease 

in usage. This reduced usage was due to infection control measures, which meant 

that people worked and studied from home and thus they did not need to commute 

by bike. When the restrictions were lifted in December, the bike usage was similar 

to pre-pandemic figures. Furthermore, Kubaľák et al. (2021) found that the average 

length of rides increased, which they attributed to a change in purpose of bike usage. 

This purpose change would be from using the bikes as a method to get to work or 

school, to using the bikes to travel more leisurely around the city.  Chai et al. (2021) 

notes that there was a 64.8 percent drop in the shared bike usage in Beijing, China 

during the pandemic. They found that the mobility in high tech areas, subway 

stations and shopping plazas was greatly reduced due to the quarantine restrictions. 

The overall bike usage was significantly influenced by the pandemic, and it still has 

some lasting effects.  

 

3.2 Demand prediction model 

In an effort to improve BSS, different analytical methods have been used over time 

and in different areas. Almannaa (2019) notes that bike prediction commonly uses 

one of these four approaches: statistical models, exploring and clustering 

algorithms, machine learning algorithms, and time series models. The focus will be 

on machine learning algorithms in the form of recurrent neural networks and random 

forest. Previous articles on this subject tend to either choose a specific time interval 

(Yang et al., 2018), or compare several of them (Boufidis et al., 2020).  
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Random forest (RF) is a supervised machine learning method for classification and 

regression (Du et al., 2019). RF creates an ensemble of decision trees. Each tree has 

randomly selected features, which are then used to compare the resulting mean 

squared error (Ashqar et al., 2017). According to Biau & Scornet (2016) the 

popularity of RF is greatly contributed by fact they can be applied to a wide range 

of prediction problems and have few parameters to tune. Within the topic of bike-

sharing, RF has been used to find useful features of bike use characteristics 

regarding bike usage demand (Du et al., 2019), as well as predicting demand 

(Ashqar et al., 2017; Boufidis et al., 2020; Feng & Wang, 2017; Zeng et al., 2016). 

 

In recent years, deep learning approaches have been used for various prediction 

problems including bike usage prediction (Boufidis et al., 2020; Wang & Kim, 2018; 

Xu et al., 2018; Zeng et al., 2016). The recurrent neural network (RNN) is one of 

the typical deep learning models used for sequential prediction problems, such as 

language modelling, speech recognition and machine translation (Zaremba et al., 

2014). RNN is a recently developed deep learning method for time series data 

modelling. As opposed to artificial neural networks, RNN accounts for temporal 

dependencies in the model structure. This is done by recurrently connecting hidden 

layers at different timestamps. However, RNNs are known to have suffered from 

the gradient vanish problem, which means that it is difficult for a RNN model to 

learn the weights after many timesteps. To overcome this problem, an extension of 

RNNs, called long-short-term memory (LSTM), was developed. More details can 

be found in the literature Xu et al. (2018). 

LSTM and GRU have previously been compared with other models and approaches 

within time series prediction. In a comparison with three different varieties of RNN 

as well as other nonparametric and parametric approaches2, LSTM outperformed 

the other algorithms in terms of accuracy and stability (Ma et al., 2015). Similar 

 

2 The models compared were the RNN models Elman NN, Time-delayed NN, Nonlinear 
Autoregressive NN, with the other approaches being SVM, ARIMA and Kalman filter. 
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results were found in traffic flow predictions by (Fu et al., 2016), who in their 

comparison of LSTM, GRU and ARIMA saw better performance for the RNN 

models. LSTM thus shows a proficiency in time series prediction with longer 

temporal dependencies. GRU is an RNN based on LSTM, and saves more 

computational resources than LSTM with similar performance (Wang & Kim, 

2018). Both LSTM and GRU have been used in bike-sharing demand forecasting 

(Xu et al., 2018), and the results show that  the two models perform similarly. 

However, the results of GRU are more accurate while the training time is also faster 

than LSTM.  

LSTM, GRU and RF are three models that have been commonly used when 

predicting bike usage demand due to their high accuracy. While studies such as 

Drevland & Finseth (2018) and Xu et al. (2018) have used similar models with the 

intention of predicting demand, they predict for shorter intervals between 10 to 60 

minute intervals. The paper by Drevland & Finseth (2018) also predicts for the BSS 

in Oslo, however with the intention of predicting demand station by station. The 

BSS system predicted by Xu et al. (2018) is a station-free system which is likely to 

have different user behaviour and demand. 

 

4 Research methodology and design 

4.1 Data preparation 

4.1.1 Data collection 

This study used three data sources, namely bike trip data, weather data, and COVID-

19 data. The details of each data source and its limitations are explained below. 

The main dataset was collected from OCB and includes historical trip data from 

April 2019 to December 2021.  The data is published under the Norwegian License 

for Open Government Data (Norwegian Digitalisation Agency, 2020). This data 

complies with GDPR regulations and does not include sensitive or confidential 

customer information. The machine learning models and datasets used in the work 
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can be found on GitHub3. The raw data for each month is split into separate files 

going back to April 2016. The April 2019, data format was updated to include 

geolocation variables. This gives a natural cut-off point for the data used in the 

analysis. This bike data will later be merged with the corresponding weather data. 

However, weather information for some parts of Oslo is not sufficient. In this case, 

in order to better match the corresponding weather information, the bike demand of 

Grünerløkka, one of the busiest areas in Oslo, will be the focus of this study. 

The historical meteorological data for Oslo is gathered from the Norwegian Centre 

for Climate Services (NCCS, n.d.). There are 38 weather stations in Oslo, each of 

which may collect different weather elements. The dropdown selection on this 

website offers the added benefit of being able to choose the time resolution, time 

period, weather station, and various weather information. On the webpage, up to 

five weather elements can be selected from the following categories:  temperature 

(daily mean temperature), wind (highest wind speed of the day), snow (snow depth), 

and precipitation (daily precipitation). In this study, the hourly precipitation, 

minutes of precipitation within an hour and temperature will be used. The data is 

collected at the Blindern station, as this station provides the most accurate weather 

for the city of Oslo with the desired variables for this study.  

Lastly, the final data source is related to COVID-19, as it has led to a reduction in 

mobility due to lockdown and government recommendations. The data was 

created based on a timeline of these measures taken by the (Oslo Municipality, 

2022). 

The open data used in this thesis is limited in terms of explanatory features. This led 

to the need for additional data from varying sources. Also, there was missing data 

during data collection which had to be worked around. Another challenge is that 

weather stations for certain parts of Oslo lacked relevant weather information 

gathered on an hourly basis. This led to the choice of Blindern station for weather 

 

3 https://github.com/nithun96/BSSThesisOslo 
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information. There is also a lack of unified data on COVID-19 restrictions in Oslo. 

Which led to a manual input of the COVID-19 feature.  

 

4.1.2 Data exploration 

For the data that was collected, Python was used to properly prepare it. The first 

piece of data that was changed was data from OCB. As the datasets were composed 

of individual trips, code was made to create rows for each hour. Data was then 

created to fill the times there were no trips. There was also an analysis done on the 

data to see the influential features. Figure 4.1 shows the user demand for the time of 

day. OCB has a bimodal usage frequency like the usage frequencies from the articles 

mentioned in section 3.1. The demand in the figure has a small peak around 5 am to 

6 am and another peak from 2 pm to 3 pm. These peaks are for when people start 

heading to work and when people start heading home.  

 

Figure 4.1: Users per time of day 

 

Figure 4.2 shows the demand levels from Monday to Friday. It is clearly seen that 

there are more users during the weekdays than there are during the weekends. This 

is also explained by the change in trip purpose from weekday to weekend. Figure 

4.3 shows the demand per time period and day of week. There are six, four-hour 

time periods. In the figure, the hourly demands are identical from Monday to Friday. 

The weekend hourly demand differs from the weekday as seen by the bell curved 
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shaped demand on Saturday and Sunday. The weekends are also characterized by 

its low overall demand in comparison to the weekdays, with mornings (04-07) being 

heavily reduced. This also influenced the DemandTime feature for the model which 

will be mentioned in more detail later in the paper. 

 

 

Figure 4.2: Day of the week 

 

 

Figure 4.3: Users per time and day of week 
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Figure 4.4 shows the user demand for temperature in Celsius. Just like mentioned in 

section 3.1 it is seen that an increase in temperature up to around 17.5 degrees leads 

to an increased bike demand. Temperatures higher than 18 degrees leads to a 

decrease in bike demand. A similar decrease can be seen at lower temperatures that 

likely correlate with winter months. 

 

Figure 4.4: Users by temperature 

 
4.1.3 Data pre-processing  

For any data driven model to work as intended, it is necessary to have data that has 

been cleaned and prepared properly. Data with missing values or incorrect symbols 

could throw off the model and lead to inaccurate results.  There are several different 

methods used to prepare the data.  

The OCB data records details of each trip, such as start time, end time and the 

corresponding station name. After selecting trips that were departure from the 

Grünerløkka region, only the start time of each trip was kept, and other information 

not relevant to this study was excluded from the following analysis. Based on the 

starting time, several temporal features are generated and will be used as input data 

for modelling. These features are hour, month, day of month, day of week, time 

period, weekend and season as shown in Table 4.1. 
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Data source Features Description 

Weather Precipitation 

(Numeric) 

Average precipitation during the time period. 

Weather PrecipitationMinutes 

(Numeric) 

Total minutes of precipitation. 

Weather Temperature 

(Numeric) 

Average temperature in Celsius during the time 

period. 

Weather TempLimit  

(Binary Dummy) 

Binary variable for temperature limit, with 0 

being below 4 degrees and above 21 degrees 

Celsius. And 1 being temperatures between 4 and 

21 degrees Celsius 

OCB Day  

(Categorical) 

Categorical value between 1-31 showing the day 

of the month the observation occurred. 

OCB Day  

(Binary Dummy) 

Seven variables for each day (Monday-Sunday) 

showing the day the observation occurred. 

OCB Month  

(Binary Dummy) 

Twelve variables for each month (January-

December) showing the month the observation 

occurred. 

OCB Time period  

(Binary Dummy) 

Six variables for each time period the data set is 

split into (0-3, 4-7, 8-11, 12-15, 16-19. 20-23). 

OCB  DemandTime 

(Categorical) 

3 different values. 0 being for the times with the 

least amount of demand (0-3,20-23). 1 being the 

time periods with the second most demand (4-

7,8-11). And 2 being the periods with the most 

demand (8-11 and 12-15). 

OCB Weekend  

(Binary Dummy) 

Binary variable with 0 being Monday to Friday, 

and 1 being Saturday to Sunday  

OCB Season  

(Binary Dummy) 

Binary variable. November to March being 0 and 

April to October being 1  

Oslo 

Municipality  

Restrictions  

(Binary Dummy) 

Five binary variables showing the intensity of the 

restrictions. These levels are none, mild level, 

medium level, high level, and total lockdown.  

Table 4.1: Table of features 



 
 

 
15 

 

The model in this paper will be predicting BSS demand, which is the number of 

users that start a bike ride within a given period of time. As shown in figure 4.1, 

there are multiple peaks and troughs in demand throughout a day. A way to 

accurately portray them is by splitting the day into several time periods. The focus 

will be on specific time interval of four hours, thereby splitting the day into six 

different sections. The hourly data was combined into six time periods as shown in 

figure 4.5. These time periods were then explained by dummy variables split into 6 

periods: 12 AM – 3 AM, 4 AM – 7 AM, 8 AM – 11 AM, 12 PM – 3 PM, 4 PM – 7 

PM and 8 PM – 11 PM. The creation of the days into 6 time periods also led to some 

engineering of other features.  

 

Figure 4.5: Time periods of final dataset 

Both the precipitation and temperature variables had to be modified in order to fit 

into the specific time periods. The most reasonable way to modify it was to create 

the sum of precipitation as well as an average temperature for each time period. The 

season variable was chosen based on the number of users per time of year. From 

November to March there is a reduction in the supply of bikes and in the demand 

for the bikes. As for the COVID-19 lockdown features, binary variables were 

created by selecting the time period when restrictions were in place for Oslo and the 

intensity of restrictions. None is before covid with zero restrictions. Mild is when 

there are few restrictions consisting mostly of recommendations to keep distance 

from people and to stay away from public transport. Medium is when restaurants 
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and stores are mostly closed and recommended to work from home.  Strong is when 

schools and workplaces are mostly closed. And total lockdown is when there is a 

lockdown on any social interaction and only grocery stores are open.  To determine 

the demand of city bikes, it is necessary to find which variables effect the demand. 

The variables that were chosen based on the analysis of the features, were the 

weather variables (Temperature and Precipitation), time variables (Time of Day, 

Day of week), and COVID-19 variable (if there were COVID-19 restrictions in 

place or not). 

The final step in data pre-processing is feature scaling the values within a range of 

0 to 1. (Nkikabahizi et al., 2022) explain that feature scaling is a pre-processing 

method of data that consists of transforming numerical attributes with different 

ranges into the same scale, between 0 and 1. This improves numerical input stability, 

reduced the time for learning the predictive model and can make a significant 

improvement in prediction model performance. The scaling is based on the target 

variable and the features in the training set, which is then applied to all four sets of 

data.  

 

4.1.4 Data split  

The dataset is divided into two subsets: the first 75 percent of the dataset is 

considered as the training set, which is used to train the models, and the remaining 

25 percent is the test set, which is used to evaluate the performance and robustness 

of the model. This splits the dataset with 5282 rows into a training dataset with 1057 

rows and a training dataset with 4225 rows. The split data is shown in figure 4.6. 

The x-axis of the graph represents the observation period, and the y-axis indicates 

the number of users (i.e., trips) recorded in the BSS system during that period. The 

time period of the whole dataset is from April 2019 to December 2021, with the data 

being split at the 13. of June 2021. 
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Figure 4.6: Train-test data split 

 

4.2 Modelling 

4.2.1 Model description 

The models chosen are RF, LSTM and GRU as mentioned in section 3.2. RNNs 

were initially used for language models, yet they have also in recent years been used 

for time series predictions due to their performance. In this paper, LSTM and GRU 

have multiple, yet the same set of hyperparameters that are run with the same layers. 

RF on the other hand, has the benefit of having fewer parameters to tune. Compared 

to other classifiers the advantages of RF include: “(1) very high classification 

accuracy; (2) a novel method of determining variable importance; (3) ability to 

model complex interactions among predictor variables; (4) flexibility to perform 

several types of statistical data analysis, including regression, classification, survival 

analysis, and unsupervised learning; and (5) an algorithm for imputing missing 

values” (Cutler et al., 2007). 

The model used is in the scikit-learn package in Python (Pedregosa et al., 2011). For 

LSTM and GRU, Keras is used to run and create the model (Chollet, 2015)  with 

scaling done by scikit-learn. Both matplotlib and seaborn are used to create the 

graphs shown later. Pandas and NumPy are used for data manipulation. 
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As for the features used, feature importance of multiple features was looked at 

before choosing the final set of features shown in table 4.1. There were several other 

features that could have been selected, but when looking at the feature importance 

for the model it was seen that those features did not have any significant effect. 

When other weather variables such as amount of snow, cloudiness, and amount of 

humidity were looked at, it was seen that it was unnecessary to include in the model.  

 

The relevant metrics in this study are mean absolute error (MAE), root mean square 

error (RMSE) and  R . These metrics are commonly used within this subject, among 

them Yang et al. (2018). The metrics are chosen due to them having different 

focuses, with MAE explaining by how many pickups the predictions are off and 

RMSE penalizing predictions far away from the actual observations. R , being the 

coefficient of determination, represents the goodness of fit for the models used. 

 

4.2.2 Model creation (GRU and LSTM) 

With the dataset fully pre-processed (section 4.1.3) and split into training and test 

sets (section 4.1.4), there are some additional steps remaining when using GRU and 

LSTM. These normalized datasets are then used to create a three-dimensional 

matrix:  

 Timestep (t): Number of observations required to predict the next value. 

 Features (p): 38 input features including 29 temporal features, 4 weather 

features and 5 covid-related features.   

 Samples (k): k = N-t+1, where N is the number of observations before 

transformation. 

 Learning rate (l): Controls the rate of which a model adjusts after each 

iteration. 

 Unit (n): The number of nodes in a layer. 
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The value of timestep, is one of multiple hyperparameter value that have to be 

decided. The baseline value for timestep is one. Yet, as the timestep value is related 

to time, it is logical to test 24-hour intervals. Figure 4.5 shows how each observation 

in the dataset is split into six. Each sixth observation would be the equivalent of a 

day and is used as a basis for the values tested. However, only a couple of timestep 

values are tested and those are: [1, 12, 24]. Two other hyperparameters are tested, 

while others were chosen by acquiring a better understanding of the model 

behaviour.   

 

The two other hyperparameters tested were learning rate and unit. The learning rate 

is vital as it determines how quickly a model forgets what it learned in its previous 

iterations. This is determined by how relevant the older data is when predicting 

newer observations. A balanced learning rate can be found when looking at the loss 

of a function over time after running the model. Examples of different learning rates 

can be seen in figure 4.7. A high learning rate will be too quick at trying to adjust 

and will finish before being able to find a good solution. If it is far too high, it will 

cause too drastic updates in its search for the solution. A low learning rate, however, 

will be adjusting at a too slow rate to the point it will get stuck at a local minimum 

without being able to find a better solution. The tested learning rates were [0.01, 

0.001, 0.0001]. This will be shown in section 5.1 with the results of the model. 

 

Figure 4.7: Loss function (Stanford, n.d.) 
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The final hyperparameter tested was the number of units in each layer. Units are 

also called neurons and defines the dimension of hidden states. This 

hyperparameter, along with timestep, determines the time it takes for the model to 

learn. 64 is a common value for units, and the tested values are: [16, 32, 64, 128]. 

 

To determine suitable hyperparameter values the following experiment were 

performed. The model is run three times for every combination of the 

hyperparameters mentioned earlier. The metrics are gathered for each run, and the 

table shows the mean of those three runs to avoid any possible inaccuracies. The 

desired result is a high R  (R-squared) as well as low RMSE and MAE values. 

Table 4.2 shows 36 different combinations of hyperparameters with varying 

performance for LSTM and GRU. The results are colour coded to show 

distinguish better between the different values. 

The best performance can be found for index of 4 and has the best combination of 

values for both models. The optimal hyperparameters would be a timestep of 1, 

learning rate of 0.001 and unit of 16. In this model, the runtime is not taken into 

consideration, however that would disadvantage higher values for timestep and 

unit. Coincidentally, the optimal model in this case also has a low runtime. 
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Table 4.2: Time step comparison 
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A typical setting for LSTM and GRU is used in this study, which include an input 

layer, a hidden layer, and output layer. The Glorot uniform4 initializer is used for 

weight initialization and the Rectified Linear Unit5 (ReLU) is used as the activation 

function. ReLU is commonly used for neural networks because it runs quickly and 

reduces the likelihood of a vanishing gradient. The model also includes two dropout 

layers to prevent overfitting.  

 

Several hyperparameters also should be determined to ensure the effectiveness of 

the learned model and avoid overfitting. First, an optimization technique called 

EarlyStopping6 is used in the model. It monitors whether a valuation loss is no 

longer decreasing. This stops the model from running the set number of epochs if 

there is no improvement in the model over a longer period of time. An additional 

hyperparameter, called patience, can be used in this approach is added to give the 

model more lenience at runtime, thereby improving the model. The value for 

patience is set to 20, which means that if the model runs for 20 epochs without any 

improvement, it stops training. 

 

The next set of hyperparameters and their values are listed in Table 4.3, with some 

of them being reliant on each other. The number of epochs is the number of iterations 

that the model will work through the entire training dataset (Bell & Gaillard, 2017). 

In this case, the EarlyStopping function is likely to stop the model from reaching 

the max number of epochs set. The batch size on the other hand, determines the 

number of training samples utilized in one epoch (Murphy & Gaillard, 2017). Steps 

per epoch is the total number of batches the model uses before declaring an epoch 

finished and starting the next (Team Keras, n.d.). The value is commonly set to be 

the number of batches required to run the entire training dataset, which is 

 

4 https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform 
5 https://keras.io/api/layers/activation_layers/relu/ 
6 https://keras.io/api/callbacks/early_stopping/ 
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automatically done with Keras. While it is possible to adjust both batch size and 

steps per epoch, the value calculated does not need optimization.  

 

Hyperparameter – Model fit Value 

Max number of epochs 200 

Validation split 0.2 

Batch size default 

Steps per epoch default 

Table 4.3: Hyperparameters used in the model fitting function 

 

Based on the above setting, the model is finally compiled with an optimizer as the 

last step. The Adam7 algorithm was chosen as the optimization method. 

 

4.2.3 Model creation (RF) 

After the data split mentioned in 4.3.2 the data is ready to be used on the RF 

model.  The model used is RandomForestRegressor in the scikit-learn package8. 

Several hyperparameters can be tuned to learn a random forest model. The number 

of trees in the forest is set to 1000. The remaining hyperparameters are the default 

setting for the model.  The mean square error is used as evaluation criterion. Mean 

absolute error (MAE) is an option for evaluation criterion, however it increases the 

runtime of the model drastically while not providing any improvement in model 

performance. The minimum samples required to split a node is set to 2. And there 

is no limit to the depth of tree.  

The model is then built based on the training dataset. In the next step, the model is 

used to predict the target variable.  

 

7 https://keras.io/api/optimizers/adam/ 
8 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html 
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5 Model Evaluation 

This paper aims to create an accurate predictive model for OCB that can describe 

bike demand in both pre-pandemic and post-pandemic period. The results of 

different predictive models are evaluated and discussed in this Chapter. 

 

5.1 Result 

5.1.1 LSTM and GRU 

Graphs showing training and validation loss and predictive comparisons have been 

used to gauge the accuracy and performance of the LSTM and GRU models. This 

is in in addition to key metrics in the form of MAE and RMSE and R . These metrics 

gives the user a better understanding of the model performance. The following 

graphs in this section is from a randomly chosen run of the model. 

 

The purpose of these training and validation loss graphs in figure 5.1 and 5.2, is to 

show the model performance and to identify parts of the model with room for 

improvement. It gives an understanding of model fit, and whether model is 

underfitting or overfitting. If the training loss is much more than the validation loss, 

the model is underfitting and is not accurate in its predictions. If the training loss is 

less than the validation loss it would be overfitting and not be a reliable model for 

general situations. As can be seen in the two figures, the train loss never reaches the 

validation loss, yet it is not underfitting. There is room for improvement in terms of 

model fit, however it does not seem like there is any underfitting or overfitting in 

the model. On the x-axis of the two graphs, there is a difference in the number of 

epochs due to the early stopping mentioned in 4.3.4. This is meant to decrease the 

likelihood of overfitting. If the training and validation loss have similar values, then 

the model predicts well and that it does not overfit or underfit. 
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Figure 5.1: LSTM training and validation loss 

 

  

Figure 5.2: GRU training and validation loss 
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In figure 5.3 and 5.4, the predicted values are overlayed over the true values. In the 

figures it is seen the predictions are overestimating between the hours of 300 – 600 

and that it underestimates from 600 – 900. However, both models follow the 

general trend when compared to the true future.  

 

Figure 5.3: LSTM prediction compared to true future 

 

Figure 5.4: GRU prediction compared to true future 
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5.1.2 RF 

A random forest model was also created as a comparison to the GRU and LSTM 

models above. The graph below follows a similar format with predicted values 

over true values. The random forest predictions follow the general trend as seen in 

GRU and LSTM. However random forest unlike the two previous models mostly 

overestimates in the early predictions and underestimates from time period of 800 

– 1100.  The random forest prediction overall is accurate in its demand prediction.  

 

Figure 5.5: RF prediction compared to true future 

 

Due to the number of nodes of this RF model being 1000, and there not being any 

limits to the depth of the tree, any visualization of the trees in the model would be 

too large to visualize as well as uninformative. However, the feature importance 

created with the RF model will be looked into in section 5.1.4. 

 

5.1.3 Performance comparison 

Table 5.1 shows the different metrics that were used to score the accuracy and 

reliability for the machine learning models. The three metrics are MAE, RMSE, and 
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R , which are mentioned in section 4.2. To add context to the MAE values, it is 

worth looking at table 5.2. It shows that the highest variation in user demand is 321 

with the mean at 56.84. The MAE for the models shows the number of users that 

the model can over or under predict for each time period. Here, this means that if 

the true value is 56.84 and the MAE score is 14.30, then the prediction score will be 

within the range of [42.54, 71.14]. All the models have a fairly high R  score with 

the lowest being LSTM at 0.7 and the highest being GRU with an R  score of 0.77. 

GRU has the best scores for MAE and RMSE as well and is seen as the best model 

of the three. LSTM has better MAE and RMSE but has a lower R  score compared 

to RF.  

 

Table 5.1: Comparison of LSTM, GRU and RF 

 

 

Table 5.2: Descriptive statistics of user demand 

 

RMSE treats the larger errors more harshly compared to MAE which treats all errors 

equally. For both RMSE and MAE the lower the number is, the better the model is 

at predicting. R  is measured separately to RMSE and MAE and gives an intuition 

on how accurate the features are at predicting demand. 
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The results show that the models perform to a high degree of satisfaction and can 

reliably be used. From the results it can be see that they are not 100 % accurate. 

This indicates that they are not overfitted to the testing data which would lead to it 

not being reliable to use with new data. The model that performs the best and has 

the most accurate predictions, is the GRU model. It outperforms both RF and 

LSTM in all three metrics used to judge the models. This falls in line with GRU’s 

performance shown in table 4.2 where different hyperparameters were tested. The 

performance of the two other models is fairly similar, with small margins in the 

different metrics. With the best performing model, it could be used for area-

specific demand prediction by OCB in order to make some tweaks and changes 

within their operations. Even though the level of performance for this model is 

satisfactory, it can be further improved with better data input.  

 

5.1.4 Feature importance 

Figure 5.6 is created by using the RF model’s feature importance function9. The 

figure shows that the most influential features are the weather and time related 

features. DemandTime is the most influential feature in the model with 

Temperature being the second most important. Most of the top features for the 

model are expected, but one of the less expected features is the Day feature. The 

numerical day of the month seems to have some significance in BSS usage. 

Compared to the other features, the five COVID-19 restriction features do not 

seem to have as much as an effect as expected. Restrictions None, however, has a 

high significance on the model meaning that the bike usage was affected by the 

lockdown, but the intensity of the lockdown had less of an effect. Other features of 

note would be the Month binary variables having varying levels of significance, 

while the Season feature achieves better results by aggregating months.  

 

9 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensem
ble.RandomForestRegressor.feature_importances  
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Figure 5.6: Feature importance for RF 

 

5.2 Discussion 

In their paper, Wang & Kim (2018) studied the same machine learning models 

however with short-term forecasting of station usage. They discovered that the 

three models achieve good performance with acceptable error and comparative 

accuracies. While LSTM and GRU are similar, GRU has more accurate results and 

faster training time than LSTM. This behaviour is consistent with the results in 

5.1.3. The paper compares the models in different time intervals and discover that 

RF is better when the time interval is short. The time interval in this case is not 

short, however it is likely that model performance would be achieve similar results 

with a short time interval. Overall, the findings in this paper confirm the findings 

in previous research with these models. The results of all three models are strong 

given the hyperparameter tuning done on the RNN models. RF did not require 

similar work, due to the model structure and the scikit-learn package’s ease of use. 

Extensive testing of hyperparameters for RF could lead to additional 

improvements to the model. 
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There are several limitations identified regarding this study. The majority of the 

data is affected by COVID-19 lockdown and measures, possibly making it less 

suited for bike-usage post-pandemic.  

Additional relevant features worth researching in the future include public 

transportation station location as well as their schedules. Further information on 

public transportation could lead to more accurate results as public transport and 

BSS complements each other. Public demographic data as well as user 

demographic data from OCB are also potentially relevant features which would be 

influential when using the model across several different regions at the same time.  

With more data directly from OCB features such as pass type and price could lead 

to a prediction model for optimal pricing. The model could then provide a price 

recommendation based on predicted demand.  

Implementing features without knowing its accuracy and relevancy in advance can 

be time consuming and leads to prioritizing known quantities. This leads to there 

being a number of features that were not included due to time constraints.   

With the extensive research present in this field, there is much that can be done. 

This would include looking deeper into additional features for demand prediction. 

Or could include modification to the model to create a better supply rebalancing 

method or even a dynamic pricing model. Accessing additional data that is not 

publicly available could also lead to either more accurate models, or the ability to 

look into different yet adjacent subjects. Further hyperparameter tuning is possible, 

in addition to implementing new methods that improves it. One example would be 

to implement a learning rate scheduler with Keras, which would adjust the 

learning rate as the model runs. Tensorboard is also identified as a tool possibly 

able to improve hyperparameter tuning, modelling, and visualization. 
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6 Potential benefits of business implementation 

OCB are likely to be using multiple demand models for different purposes already. 

Traditionally such models would be used to know the demand for stations and 

determine the number of bike racks needed. It would also be vital for OCB to 

stock bikes evenly across the city by creating separate models for bike supply 

rebalancing. These uses of the models have their focus on the logistics involved in 

the BSS system, yet they could be used to improve the pricing as well. One option 

would be dynamic price changes based on predicted demand. This would mean the 

city bike could predict the demand in a specific area and then with such predicted 

demand they could reduce or increase the price it would cost to rent the bike for a 

single trip. This would lead to some financial benefits, as well as give them a way 

to control number of bikes within a specified area. Dynamic pricing and incentives 

can also be used at a station-specific level to improve the distribution of bikes.  

Decrease in price would increase the amount of people that take out bikes from a 

specific area and vice versa with an increase in price. In areas with high demand, 

transport is usually arranged to move bikes from station to station. If this could be 

solved by the user themselves, it would save OCB money and reduce the 

environmental impact of city bikes. This could justify a heavier discount or 

incentives for the user. This incentive-based system would either give users a 

discount or some coupons for dropping off or taking their bike from certain 

stations.  

 

The model in this paper could also be used in conjunction with other models to 

look into smaller areas such as at a station-specific level. Demand forecasting 

could also be used for longer time periods in order to find potential station 

locations. For the potential station benefits features such demographics, public 

transport, and property information would have a large influence.  
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7 Conclusion 

The data gathered from OCB’s public database was lacking in some areas but with 

additional data pre-processing and feature selection, informative enough to create 

an accurate predictive model. The Random Forest and Recurrent Neural networks 

used in the model predictions had high accuracy. The best model was GRU and gave 

an MAE of 14.30, RMSE of 20.80 and R  of 0.77. The introduction of COVID-19 

influenced user demand from April 2020 to December 2022 and is a feature that 

would be important for city bikes when predicting demand during future pandemic 

or lockdowns. The results from the model are accurate and reliable, which means 

that this model could potentially be integrated into the current bike sharing system.  

Many trips were gathered with the OCB data from early 2019 to the end of 2021. 

With such data there was a clear pattern on the behaviour of BSS users in Oslo. This 

behaviour was very similar to behaviour seen in previous BSS research. These 

patterns pointed towards users using the bikes as a complement to public 

transportation as well as a way to get to and from work or school. There was an 

expectation that the intensity of lockdown measures would have a large influence 

on the overall model, but it ended up not being as significant of a feature for the 

prediction model as expected.   

Collaborating directly with OCB and spending further time on feature 

implementation could lead to improved scores for the model. This would also lead 

to more options in the model creation and could lead a model which uses demand 

forecasting that would influence other parts of OCB’s organization.  

This is a relevant and interesting topic for us due to the city BSS’s role as a short-

distance public transport. Emerging competitors in short-distance transport is an 

important challenge going forward. Private companies providing sharing-systems 

for electric vehicles (scooters and bikes), as well as users buying these vehicles for 

personal use will give OCB increased competition and an impetus to keep 

improving. By improving the existing BSS, there is the potential to reduce 

frustration for the city’s populous and lead to greater benefit for the city.  
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