
Handelsh0ysllolen Bl

GRA 19703 Master Thesis

Thesis Master of Science 100% - W

Predefinert informasjon

Startdato:

Sluttdato:

Ellsamensform:

Flowkode:

Intern sensor:

Delta�er

Navn:

16-01-2022 09:00

01-07-2022 12:00

T

202210ll10936IIIN00IIWIIT

(Anonymisert)

Alexandros Stee Peratinos og Johannes Piene

lnformasjon fra delta�er

Termin:

Vurderingsform:

202210

Norsk 6-trinns sllala (A-F)

Tittel •: Optimal Location of Electric Vehicle Charging Stations in Norway using the Flow refueling Location Model

Naun pli ueileder •: Karim Tamssaouet

lnneholder besuarelsen Nei
konfidensielt
materiale7:

Gruppe

ljruppenaun:

ljruppenummer:

Andre medlemmer i
gruppen:

(Anonymisert)

152

Kan besuarelsen
offentliggj•res?:

Ja

WISEflow
� Europe/Oslo(CEST)

01 Jul 2022

Optimal Location of Electric Vehicle
Charging Stations in Norway using the

Flow refueling Location Model

By

Johannes Piene
Alexandros Peratinos

And Supervised By

Dr. Karim Tamssaouet

Abstract

This thesis investigates optimal locations for charging stations across the road net-
work of Norway. To solve this problem, we deploy a flow-refueling location model,
which considers the optimal locations based on traffic flows of inter-city and other
long distance travel. To solve the model for a large network, such as the Norwegian,
heuristic approaches are necessary. We have constructed a greedy-adding algorithm
with and without substitutions and a genetic algorithm to solve the problem. These
are compared and used together to produce quality solutions in an effective manner.
We find that the current system of charging stations are sufficient to cover all the
demand for longer electric vehicle ranges, but not sufficient for the shortest ranges
below 200km

BI Norwegian Business School
Department of accounting, auditing and business analytics -

Master of Science in Business Analytics
2022

Acknowledgements
We would like to thank BI Norwegian Business School for five both challenging
and rewarding years, and give a special thanks to the Department of Account-
ing, Auditing and Business Analytics for providing us the knowledge needed
for this thesis. We would like to express our gratitude to our supervisor, Dr.
Karim Tamssaouet, for his insightful comments and feedback.

1

Contents
1 Introduction 4

1.1 Background . 4
1.2 Problem statement and thesis contribution 6

2 Literature review 7
2.1 Facility Location Problems . 7
2.2 Flow Refueling Models . 8
2.3 Heuristic approaches for large location problems 10

3 Data Collection and Preparation 11
3.1 Data Collection . 11

3.1.1 Selection of O-D Pairs 12
3.1.2 Gravity Model . 12

3.2 Data Preparation . 14

4 Optimization Models 21
4.1 The FRLM . 21

4.1.1 MILP formulation . 21
4.1.2 Challenges . 23

4.2 Implementation of Algorithms 24
4.2.1 Calculating objective value 25
4.2.2 Greedy Algorithms . 27
4.2.3 Genetic Algorithm . 29

5 Performance and Results 33
5.1 Current System . 34
5.2 Performance of the Heuristics Algorihms 37

5.2.1 Test Network . 37
5.2.2 Road Network of Norway 40

5.3 Results . 45
5.3.1 Greedy-adding Algorithm 45
5.3.2 Genetic Algorithm . 47
5.3.3 Combining the GA and GAAL 48

6 Discussion 49
6.1 Implications of Results . 49
6.2 Further Research . 54

7 Conclusion 55

References 56

2

8 Appendices 59
8.1 A: Technical Considerations . 59
8.2 B: Links to Code and source data 59

3

1 Introduction
This section will start by briefly introducing the background and motivation
behind the location of electric vehicle charging stations. Following this, the
problem is defined, and the objective of the thesis is presented.

1.1 Background

For a long time, electric vehicles (EVs) have been regarded as one of the most
propitious ways to reduce C02 emissions produced by road traffic. Many coun-
tries have begun implementing aggressive targets for the future adoption of EVs
(Perkowski, 2017), and some have even set an end date for the sale of internal
combustion engine vehicles (ICEV) (Petroff, 2017). One of these countries is
Norway.

In the National Transport Plan 2018-2029, the Norwegian government pro-
posed that all new passenger and light vans sold as of 2025 must be zero-
emission vehicles (Ministry of Transport, 2017). This aspiring goal means that
zero-emission vehicles must be able to replace all the uses that ICEVs cur-
rently hold, and it may not be reached unless the current infrastructure is
improved. As transport stands for about 20% of the global C02 emissions,
whereas roughly 75% of this stems from road transportation (Ritchie et al.,
2020), it is apparent that making EVs a more viable option can drastically
reduce the C02 emissions going forward.

Figure 1: Electric passenger cars registered in Norway (Statistics Norway,
2022a)

In recent years, the number of registered EVs in Norway has increased consid-
erably, starting at 1 693 in 2008, while there being over 460 000 in 2021. As

4

illustrated in Figure 1, it is apparent that there is a growing demand for EVs
in Norway. However, certain barriers must be addressed until electric vehicles
can fully replace ICEVs as primary vehicles. As of 2018, the leading EV user
group has been households with multiple vehicles, while only a tiny portion of
single-vehicle households prefer EVs over ICEVs. Therefore, to meet the pro-
posed 2025 goal, single-vehicle households and multi-vehicle households must
adopt EVs as their primary vehicle (Figenbaum, 2018). Although the demand
for EVs is increasing, this has mainly resulted from economic incentives given
to EV owners by the Norwegian Government. In 2018, the Norwegian Center
for Transport Research released a report stating that mastering long-distance
travel is one of the last obstacles that remain before electric vehicles can be
mass adopted as the primary vehicle type in Norway (Figenbaum, 2018). In
light of Figure 2 below, it is evident that mass adoption has yet to occur, which
implies that challenges related to long-distance travel must be resolved before
it is expected that EVs can fully replace the role of ICEVs. As of 2021, only
19% of all registered vehicles in Norway are EVs.

Figure 2: Total number of registered vehicles compared to EVs in Norway

One of the challenges related to long-distance travel is how to locate fast-
charging stations (hereby known as CSs), so that older, less mobile EVs can be
used effectively. Although the Norwegian government is world-leading when it
comes to incentivising the use of EVs, both from an economic and behavioural
point of view, newer models with a longer range are still considerably more ex-
pensive than the older ones. Many would therefore prefer to obtain a cheaper
model with a lower range. These models may struggle to complete some long-
distance routes in Norway, as the current infrastructure is sub par. For ex-
ample, traveling from Lekanger to Nesna can be a significant challenge for an
EV with a range less than 200km as the 250km long route lacks the required
amount of CSs to ensure reachability(Christiansen, 2018).

5

Thus, sufficient infrastructure is required before EVs can be deployed on
a large scale. Today, after centuries of ICEV use, refueling stations can be
said to be omnipresent, as drivers of ICEVs hardly ever find themselves in a
situation where a refueling station is out of reach. Notwithstanding, this is
not the case when it comes to the location of CSs. EV Norway states that, as
of February 2022, the current infrastructure is only capable of fast charging
4 600 vehicles simultaneously across the entire country of Norway (Elbil.no,
2022). This lack of recharging infrastructure may limit the utilization of EVs,
restricting their adoption. As the EV user base is smaller compared to ICEVs,
the demand is, by implication, also smaller. Therefore, the incentive to develop
a functioning CS network is considerably lower. Many recognize this challenge
as the “chicken or the egg” dilemma. (Chung & Kwon, 2015; MirHassani
& Ebrazi, 2013). While the customer’s adoption of EVs heavily relies on
the already existing charging availability and infrastructure, market-driven
investments in the infrastructure are not likely to happen until a certain level
of adoption has occurred. Although we already see private actors like Tesla
investing in infrastructure, the primary responsibility should still lie with the
Norwegian government, as the current system is arguably inadequate for the
mass adoption of EVs.

1.2 Problem statement and thesis contribution

The main objective of this thesis is to identify the optimal locations for CSs
across the Norwegian road network using the Flow-Refueling Location Model
(FLRM), as proposed by (Kuby & Lim, 2005). This model seeks to optimally
place a given set of refueling stations in a geographical network to maximize
the traffic flow between a set of prespecified origin and destination pairs (O-D
pairs). In this context, a flow indicates the demand for CSs along the shortest
path between each O-D pair. Therefore, CSs are placed in a way that seeks
to maximize the total demand captured. The model assumes that there is no
deviation from the shortest paths.

Improving the current infrastructure concerning long-distance travel is the
main focus of this thesis, given that this seems to be the main challenge until
full adoption of EVs can occur. Improving the infrastructure implies that the
system must be able to compete with the current ICEV infrastructure. Regular
charging stations can not compete with refueling stations when considering
long-distance travel due to the inconveniently long recharging time. For this
reason, we only consider fast charging stations capable of supplying an output
of 40 kW or more.

It is also important to note that this thesis does not consider battery ca-
pacity in terms of kWh. Instead, battery capacities are translated into a range
distance in kilometers. The EV ranges considered in this thesis are 170, 325,

6

and 585km, equivalent to battery capacities of 30, 45 and 95 kWh, respectively.
The three EV ranges can be considered short, medium, and long-range.

Although the FRLM can be solved as a MILP problem, finding a globally
optimal solution for large networks is generally not feasible. Thus, this thesis
seeks to solve the problem by constructing three different heuristic algorithms:
greedy-adding, greedy-adding with substitution, and the genetic algorithm. To
assess the performance of the algorithms compared to the MILP solution, we
have constructed a small test network with 25 nodes.

Finally, the proposed optimal solutions are compared with the current lo-
cation of universal public CSs in Norway, which will indicate where the current
system lacks a supply of CS and whether certain stations should be replaced
to more effectively cover the demand. However, the universal stations are sup-
plied by several competing operators, and it is not necessarily in their best
interest to cooperate on where to build new CSs. Hence, we should expect
the current system to deviate from the more effective solutions. Tesla has
more than 80 CS in Norway, which until recently only provided charging for
their cars, but as of mid-2022, they opened most of their network to the uni-
versal standard used by the other EV brands. The universal Tesla chargers
will therefore be included in the set of existing CSs to which we compare our
solutions.

2 Literature review
This section will introduce previous research on facility location models most
relevant for alternative-fuel refueling stations. The study of facility location
theory dates back to 1909, and since then, researchers from various fields have
created new models while investigating extensions of already existing ones
(Owen & Daskin, 1998). The general idea behind facility location models is
to determine the optimal location for a set of facilities, given certain con-
straints. Most facility location problems aim to maximize profit, minimize
distance or cover the most demand possible. Research related to the location
of alternative-fuel refueling stations has seen massive growth in recent years
and has been explored in all parts of the world, with the exception of Africa
(Pagany et al., 2019).

2.1 Facility Location Problems

One of the most common facility location problems is the p-median problem
(PMP). The PMP is a distance-based optimization problem that seeks to min-
imize the total demand-weighted travel distance between demand points and
their corresponding facilities by locating p facilities (Owen & Daskin, 1998).
Today, the applications of the PMP includes allocation of warehouses (Baumol

7

& Wolfe, 1958; Dejax, 1988), fire stations (Plane & Hendrick, 1977; Yao et al.,
2019) and shopping centers (Nwogugu, 2006), to mention a few. Both lin-
ear programming and heuristics are common approaches to solve the PMP
(Gwalani et al., 2021).

Another common facility location problem is the Set Covering Problem
(SCP). The SCP is a classic combinatorial optimization problem similar to the
p-median problem, but instead of minimizing the average distance traveled, the
number of facilities to be located is minimized. Further, a maximum service
distance is set so that all demand points are covered by at least one facility that
is reachable within this distance(Owen & Daskin, 1998). The SCP has many
real-life applications, ranging from vehicle routing (Cacchiani et al., 2014) to
conservation biology (Moore et al., 2003).

2.2 Flow Refueling Models

Common facility location problems, like the PMP and SCP, assume that the
demand originates in different point-based nodes. Using this assumption, the
distance of interest is on the path from the demand node to the closest facility.
In this lies a notion that travel is conducted with the primary purpose of
reaching the facility.

The nature of customer demand for alternative fuel, however, differs from
the demand for standard commodities. In most cases, refueling a vehicle is
mainly exercised while traveling to a predefined destination for purposes other
than refueling the vehicle. Thus, it may be inappropriate to express the de-
mand at nodes. When goods and services are obtained during a trip, a more re-
alistic way to model the demand may be as flows of customers passing through
the nodes. Some previous methods evaluated locations based on passing traffic
counts. However, this may cause double counting of traffic flows and fails to
consider the problem of locating facilities too close to each other, resulting in
self-cannibalization. (Hodgson, 1990) implemented this assumption in a flow
model called the flow capturing facility-allocation model (FCLM). It uses a
network of nodes that represents all potential facility locations. Each pair of
nodes, termed origin-destination (O-D) pairs, has a path between them with
an assumed flow representing the demand. A flow is captured, i.e., the de-
mand on the path is served only if a facility is located somewhere along the
shortest path between an O-D pair. One facility along a path is assumed to be
able to capture the entire flow for the given path. The model further assumes
that all flows are generated on the path between the O-D pairs and that all
drivers make choices in a system-optimal manner and do not deviate from the
shortest path. An origin node i and destination node j is given a single sub-
script as O-D pair q. The objective function aims to allocate locations for a
given set of facilities that maximize the combined flow between all O-D pairs.

8

Facilities can be restricted to be located at intersections rather than midway
along paths. This allows the facility to capture all flows crossing through the
intersection and its connected arcs. The model can be solved by binary linear
programming or by heuristic approaches. An intuitive greedy algorithm starts
by locating facilities at the most heavily traveled node, calculates non-captured
flow by removing captured flow from consideration, and selects the node most
heavily traveled by the non-captured flow. This procedure is repeated until
the selected number of facilities have been located.

(Kuby & Lim, 2005) proposed a more specialized flow model for the prob-
lem of refueling vehicles, namely the flow refueling location model (FRLM). In
this model, the vehicle range becomes a key factor for considering whether a
flow through a path is captured. While the basic assumptions are the same,
some constraints are modified to account for a vehicle’s range such that mul-
tiple facilities may be needed along each path to capture the flow. Suppose
the range of the vehicle is shorter than the distance between a facility and the
O-D node. In this case, the vehicle will not be able to complete its traveling
distance as it will run out of fuel before completing the route. This implies
that the actual facility location in an O-D path matters, unlike the FCLM,
where facilities anywhere along the path will suffice to capture the flow. For
this reason, restricting the facilities to be located at intersections will not guar-
antee all crossing paths to be captured and adding facilities midway between
two junction nodes can increase the number of viable solutions.

(Kuby et al., 2009) uses the concepts of the FRLM and further includes
capacitation at each facility in the capacitated flow refueling location model
(CFRLM). Each facility’s refueling capacity is limited to an exogenously set
value. With this constraint, nodes with large flows passing through may not
be sufficiently refueled by 1 station, and the optimal solution may be to locate
multiple stations at the most trafficked nodes. They also performed a case
study with the model, using data from a simplified road network of Arizona
highways. The flows between nodes were allocated based on the population at
each node, using a gravity model, and test solutions with a different number of
facilities to be placed. By adding the capacity constraint, they aim to resolve
one of the FRLM’s shortcomings, providing a more realistic representation of
refueling limitations. Nonetheless, the model is limited by assumptions that
should be addressed before the CFRLM becomes a truly realistic model. The
model also assumes a uniform flow, whereas vehicle traffic has a significant
temporal variation. If a refueling facility can barely handle the average refu-
eling demands over a given period, this temporal variation would put it over
its capacity during peak periods. Furthermore, a considerable downside of the
flow models presented is that they only take the EV users into account, and
the costs of setting up these stations and distribution of power to the stations
are not included.

9

2.3 Heuristic approaches for large location problems

One of the first heuristic algorithms used for solving location problems is the
vertex substitution algorithm, developed by (Teitz & Bart, 1968). This algo-
rithm swaps facilities from the non-selected set of facilities to a selected set in
iterations until an optimal local solution is found. As this algorithm lacks a
method to break out of the local optima, it is often run multiple times with
different randomly generated sets of selected facilities to increase the chance
of reaching a global optimum (Kuby et al., 2009). The vertex substitution
algorithm is considered to be significantly more computationally demanding
than more recent heuristic algorithms.

The greedy-adding algorithm (GAAL) is a recent, more frequently used al-
gorithm for solving location problems. Instead of finding the optimal solution
that maximizes the total flow volume that can be refueled in one iteration, the
GAAL adds one facility at a time to maximize the additional flow covered in
the selected set. For each iteration, the facility resulting in the highest increase
of the objective value is added to the selected set. This process is repeated
until a specified amount of facilities have been included (Daskin, 1997). The
term greedy is used because the algorithm only considers the best solution for
the current iteration when selecting a facility. A variant of this algorithm is
the greedy-adding algorithm with substitution (GAAL with substitution). This
algorithm performs the same steps as the GAAL, but it also attempts to sub-
stitute one selected facility at a time with other facilities. If the objective value
increases, the substitution associated with the most significant improvement is
kept in the solution for the next iteration. Thus, the GAAL with substitution
usually performs better than the GAAL as it is better equipped to break out
of local optimums. However, this is more computationally demanding, and
the substitutions often lead to significantly longer runtimes. Both the GAAL
and GAAL with substitution have previously been used to solve the maxi-
mal covering problem (Church & ReVelle, 1974) and the set covering problem
(Chvatal, 1979).

The genetic algorithm (GA) is another heuristic inspired by the evolution-
ary theory in biological organisms. Like natural selection of the fittest gene
pools over time in a population, the GA generates multiple generations of can-
didate solutions that change from merging and randomly mutating. For each
iteration, only the best solutions are kept in the solution domain, and the al-
gorithm continues to the next iteration (Mitchell, 1998). When working with
the GA, the term chromosome may refer to a candidate solution consisting of
smaller pieces called genes. For facility location problems, a gene refers to a
specific facility location, and a chromosome is a set of facility locations that
constitute a possible solution. When beginning the algorithm, an initial pop-
ulation of random chromosomes is generated. The chromosomes are further

10

separated into two sub-populations before a crossover operation of the genes
between them is performed. Next, a new member selection takes place by
evaluating each chromosome with a fitness function (equivalent to an objec-
tive function for location problems). The solutions with the best fitness values
are kept in the population following an exogenously determined population
limit. Before repeating this process with this new generation of chromosomes,
mutations of genes may occur in a certain percentage of the population. This
mechanism is included to help escape local optimums that may restrict new
generations from improving their fitness. (Efthymiou et al., 2017) use a GA
to allocate charging stations in the city of Thessaloniki. The algorithm ac-
counted for the demand at a predefined set of candidate location nodes and
the cost-weighted distances between locations.

(Kuby & Lim, 2010) developed heuristic algorithms per GAAL, GAAL with
substitution, and GA and used them to solve the FRLM. They conducted a
case study, optimally locating alternative refueling stations in Florida. They
found that relatively standard implementations of the algorithms produced
reasonably good results for a complex problem, except when the vehicle ranges
were short compared to the length of the path edges. In general, the genetic
algorithm produced slightly better results at the cost of significantly longer
runtimes.

3 Data Collection and Preparation
This section describes the data collection process and how the data was man-
aged and prepared to give the best representation of the current Norwegian
road network and environment.

3.1 Data Collection

The data used in this thesis was collected from various publicly available
sources. The road network of Norway was retrieved from the Norwegian
Public Roads Administration (NPRA) through GeoNorge, the national web-
site for map data and location information in Norway. At Geonorge.no, the
dataset Road network for routing by the National roads database was col-
lected (GeoNorge, 2022). This dataset represents the road network of Norway
as nodes (locations) and edges (roads leading from and to each location). It
also contains important characteristics like road lengths, road classes, drive
times as well as the geographic coordinates of the roads. As the dataset did
not contain any information about road gradients, this was retrieved using the
Google Maps API in combination with OSMnx, a Python package that enables
analyzing and modeling geospatial geometries (Boeing, 2017). The current lo-
cation of all operational fast-charging stations in Norway was retrieved using

11

OpenChargeMap’s API (OpenChargeMap, 2022). Finally, the data for number
of dwellings and holiday homes in each O-D node was retrieved from Statistics
Norway’s API (Statistics Norway, 2022b).

3.1.1 Selection of O-D Pairs

The selection of O-D nodes is central to the model. A total of 41 nodes were
manually selected across Norway, resulting in 1640 O-D pairs (41*40) with
directed links across the network. Most of the nodes included are municipalities
containing large cities, as this will presumably capture most of the intercity
travel. The cities included are chosen to some extent based on the population
size, where all the ten most populated cities are included. However, many
of the 30 largest cities are placed close to each other in the southern parts.
To get a more diversified set of O-D pairs with paths covering larger areas
of the country, some less populated cities were included rather than larger
alternatives lying close to cities that are already included.

In addition, many Norwegians have holiday homes in the mountains or
near the coast, frequently used during weekends and vacations. For this rea-
son, municipalities with the most holiday homes across the country, such as
Hemsedal and Kragerø, are included as O-D nodes. The coordinates for each
O-D node were found in google maps and stored for later implementation in
the network.1. The location of the O-D can be viewed in Figure 3.

3.1.2 Gravity Model

A gravity model was used to estimate the flow volumes between each O-D pair.
Each node is assigned a weight, which is usually determined by the population
within the node(Black, 2003). However, the habits of long-distance travel in
Norway are significantly impacted by holiday travelers. Using only the pop-
ulation count in nodes with many holiday homes would likely underestimate
the number of people traveling to and from this node. For this reason, it
may be reasonable to determine the weight based on the number of registered
dwellings and holiday homes within the municipality. In addition, one can ar-
gue that a holiday home is likely to influence the flow to and from the node to
a higher degree than a dwelling, as they are traveled to from longer distances
for holidays and weekend trips. Hence, the number of dwellings and holiday
homes are summed, with double weight given to the number of holiday homes.
The weight for node i can be formulated as:

wi = Dwellingsi + 2 ∗ HolidayHomesi (1)

1All O-D pairs can be found on the Github link in Appendix B

12

For each O-D pair, the weights of the origin and destination node are multi-
plied:

wq = wo ∗ wd (2)

This equation implies that the flow is higher between more populated nodes
in terms of dwellings and holiday homes. At the same time, the flow volume
for an O-D pair should be reduced in some proportion to the distance between
the nodes. The distance is considered by multiplying the path weight with a
generalized cost valuecq. Finding a reasonable cost can be challenging and will
depend on the given case. A generic way is to use the square of the distance
between the nodes (Black, 2003). However, the standards of the interstate
roads across Norway vary greatly, where some of the paths go through steep
mountain passes. Using only the geographical distance may overestimate the
flow between nodes seemingly close to each other, but the time it takes to drive
between them is long. (Kuby & Lim, 2010) use a generalized cost given as:

cq = 0.75 ∗ kilometers + 0.5 ∗ hours (3)

Here, it is assumed that the distance is slightly more influential for the flow
volumes than the drive time, but whether that is actually the case is not easily
proven. One could argue that people are less likely to have reasons to travel
places that are farther away, as alternative options somewhere closer are more
likely to exist, and the flow may therefore be comparably less influenced by
the drive time. Another concern, may be the fact that the units (distance
and time) are completely different, and combining them in one variable like
this could be viewed as illogical. However, the generalized cost will affect
each flow equally relative to each other, and the flow used for the model will
be standardized into a percentage of total flow. Thus, we believe this cost
function to be sufficient for capturing the general tendencies for long distance
travel, despite the fact that more accurate formulations probably exists and
should be included with further research.

The flow volume for an O-D pair q can subsequently be calculated as:

fq = wq/cq (4)

The flow value is standardized to a fraction of the total sum of flows across
the network and stored in a list for each O-D pair. It should be noted that
the flow volume is an estimate for all vehicle types, and this will not influence
the optimization results if the fraction of EVs for the population is the same
within each node. Notwithstanding, this is not a reasonable assumption, as the
geographic and socioeconomic differences throughout the country are likely to
cause the percentages of EVs in different nodes to deviate. This point can be
substantiated by looking at the distribution differences for Oslo and Hauge-

13

sund, which are the largest and 12’th largest cities of Norway respectively. In
Oslo, 22% of the vehicle fleet are EVs, as opposed to only 11% in Haugesund
(Røed, 2021). While data for identifying the actual distributions of EVs exist
for some nodes, we have not been successful in finding extensive data for all
nodes of the network and were thus unable to account for the differences in
EV distributions.

3.2 Data Preparation

The Road network for routing dataset was first imported into QGIS, an open
source geographic information system (GIS) used for geospatial data analyses,
where a filtering operation was performed. The filtering process consisted of
only keeping functional road class between 0 and 4, which are the five most
important road classes in Norway2 The dataset was exported into Python
using the package Geopandas before it was transformed into a network graph
by using the Python package NetworkX. This network consisted of 205,531
nodes and 217,531 edges. As mentioned in section 3.2, although heuristics
makes it possible to solve the FLRM, the runtime of the algorithms is heavily
dependent on the network size. With a network size of over 200 000 nodes and
edges, none of the heuristics could produce any solutions within a reasonable
time frame, even for a small number of CSs to be located3. The average path
length, i.e., the number of nodes in a path, was 3 120, while the max path
length was 9 697. Therefore, the objective function (see chapter 5.1) would
spend an immense amount of time calculating whether a given combination
of CSs could recharge each path in the network. Consequently, the network
graph had to be simplified.

OSMnx(Boeing, 2017) offers a simplification solution where all interstitial
nodes, i.e., all nodes that are not intersections nor dead-ends, are removed
from the network graph. Unfortunately, this package could not be used, as
it caused some of the O-D pairs to be removed. Furthermore, even after this
simplification was performed, there were still 25 380 nodes and 74 857 edges
remaining, resulting in a seemingly low reduction of the processing runtimes.
To ensure that the degree of simplification could be adjusted and tested, the
simplification process had to be custom-built. Thus, a simplification function
was created, where the distance between each node in the network could be
set to a specific value, hereby known as a cut-off value.

The cut-off value splits all paths in the network into intervals where only
the first and last node within the interval is kept. For example, a cut-off value
of 1km would mean that every path in the network is split into intervals with a
length of 1km. All the nodes and edges within this interval are then removed,

2This includes state highways, smaller highways, county roads and trunk roads.
3The algorithms were run with p=5 and had not finished after 12 hours

14

before creating a new edge between the first and last node in each interval.
This process enabled the creation of several simplified networks with varying
path lengths and network complexity. The pseudo-code for this function is
presented as algorithm 1.

Algorithm 1 Shorten Edges by cut-off
1: Input: Unsimplified graph G, cut-off value
2: Output: Simplified Graph B by cut-off value
3: Initialize Empty Graph B
4: Initialize Empty list of used nodes UsedNodes
5: AllCSnodes := List of nodes in G closest to each unique charging station

location
6: Q := Shortest path between each O-D pair in G
7: for each q ∈ Q do
8: CumNodes := empty cumulative list of nodes
9: CumLength := empty cumulative list of edge lengths

10: for each edge ∈ q do
11: Add length(edge) to CumLength
12: Append edge to CumNodes
13: if CumNodes[−1] is in UsedNodes or AllCSnodes then
14: NewEdge := CumNodes[0], CumNodes[−1]
15: Add NewEdge to B
16: Empty CumNodes and set CumLengths :=0
17: else if CumNodes[−1] is in Q then
18: NewEdge := CumNodes[0], CumNodes[−1]
19: Add NewEdge to B
20: Append (CumNodes[0], CumNodes[−1]) to UsedNodes
21: Empty CumNodes and set CumLengths :=0
22: else if CumLength > cut-off Value then
23: if Distance CumNodes−1 − qD is < cut-off value /2 then
24: Pass
25: else
26: NewEdge := CumNodes[0], CumNodes[−1]
27: Add NewEdge to B
28: Append (CumNodes[0], CumNodes[−1]) to UsedNodes
29: Empty CumNodes and set CumLengths :=0
30:
31: Return B

Lines 3 and 4 initialize an empty graph B and an empty list of UsedNodes.
Line 5 retrieves a list of the nodes in G closest to the actual location of all
unique current CS locations. Line 6 retrieves the shortest path between all
O-D pairs Q. In lines 7 to 29, each path q is looped through. In lines 8 and
9, the empty lists CumNodes and CumLengths are initialized. Lines 10-12
loop through each edge in path q, and every edge is appended to CumNodes
while the length of the edge is added to CumLengths. Line 13-16 creates a
simplified edge between the first and last node in CumNodes if the last node

15

of the last edge added to CumNodes is in UsedNodes or AllCSNodes. If the
last node of the last edge added to CumNodes is in UsedNodes, this means
that the current path is entering a previously simplified path, and UsedNodes
is therefore used to synchronize the paths. Line 16 empties CumNodes and
CumLengths. Lines 17-21 repeat this process if the last node in CumNodes
is an O-D node. Additionally, line 20 appends the first and last node in
CumNodes to the list of UsedNodes. Lines 22-29 also repeat this process if
CumLengths exceeds the cut-off value, but only if the distance between the
last node n added to CumNodes and the destination node qD is longer than
the cut-off value/2. This is to avoid regular nodes being added too close to
O-D nodes. If regular nodes were added regardless of the remaining distance
to the destination node, the result would be clusters of nodes around the O-D
nodes.

To summarize, lines 17-21 ensure that no O-D nodes are removed. Further,
lines 22-29 create a simplified edge with an approximate length of the cut-off
value specified. Finally, lines 13-16 ensure that current CS locations are kept in
the simplified network, as well as ensuring that paths do not overlap. It is vital
to emphasize the importance of UsedNodes. This list keeps track of all nodes
that have been added to the simplified network. Including this list ensures that
edges do not overlap when multiple paths run through the same area of the
road network. However, it causes some edges to have a shorter length than the
cut-off value. To get a better understanding of how UsedNodes works, consider
the following example:

In this example, there are two O-D paths. The first path is [1,2,3,4] while
the second path is [5,6,2,3,4]. Further, a cut-off value of 10 is assumed. It is
also assumed that the first path was simplified prior to the second path. In
the second path, the first edge [5,6] has a length of 10. However, the second

16

edge [6,2] only has a length of 4. This is because [2] was added to the list
of used nodes during the simplification of the first path. Therefore, for the
shared part of the paths [2,3,4], the length between each edge is constant at
10. If an EV range of 15 is assumed, it would be natural to place CSs at nodes
[1,2,3,4]. However, if the list of used nodes was not considered, simplification
of the second path would result in the following scenario:

Two unnecessary nodes, [7] and [8], are added, as well as edges [6,7] and [7,8].
Thus, the second path would now be [5,6,7,8,4]. Obviously, this counteracts
the point of the simplification process. More importantly, in this case, the
second path completely ignores [2] and [3]. Thus, these nodes would not be
considered as potential CS locations for this path. If the same EV range
and CS locations are assumed, EVs traveling on the second path are not able
to complete the trip as the vehicle would run out of electricity before when
traveling from [6,7]. Extending this to the 820 O-D paths in the road network
of Norway, this would ultimately lead to major misallocations of CSs.

An important feature of Shorten Edges by cut-off is that it stores the
removed nodes and edges and their respective attributes in the simplified net-
work4. Doing this allows for a more precise calculation of the grade-adjusted
length of each path in the simplified network, as the grade-adjusted road
lengths in the simplified network can be calculated using the precision of the
unsimplified network.

The gradient of the roads will significantly impact the energy consumption
of EVs (Liu et al., 2017), which can be defined as how many units traveled ver-
tically for each unit traveled horizontally. For example, a road gradient of 5%
stipulates that for every meter traveled horizontally, there is a vertical gain of

4This is done by calling the function GetEdgeAttributes in line 17. For the complete
codes, please use the authors’ Github link in Appendix A, where all functions are included.

17

0.05 meters. Considering the mountainous geography of Norway, disregarding
the road gradient could potentially result in significant electric consumption
estimation errors. Using the OSMnx package in conjunction with the Google
Maps API, node elevations for each node was retrieved. Next, each edge gra-
dient was calculated using the node elevation and edge direction. (Liu et al.,
2017) investigate how road gradient impacts the energy consumption of electric
vehicles by combining the use of GPS and digital elevation mapping for 492
electric vehicles in Japan. Table 2 shows their proposed model for estimating
how road gradient affects electricity consumption for vehicles:

Ind. Variable (Gradient Intervals) Coefficient (kWh per Km)

β0 0.372

< –9% -0.332

[–9%, –7%) -0.217

[–7%, –5%) -0.148

[–5%, –3%) -0.121

[–3%, –1%) -0.073

[1%, 3%) 0.085

[3%, 5%) 0.152

[5%, 7%) 0.203

[7%, 9%) 0.306

[9%, 11%) 0.358

> 11% 0.552

Table 1: How Road Gradient Affects Electricity Consumption

The constant variable β0 represents how many kWh an electric vehicle on
average consumes when traveling one kilometer on a road with 0% gradient. In
contrast, the rest of the variables explain how much the electricity consumption
changes depending on the road’s gradient. In this thesis, battery capacity
(kWh) has been translated into vehicle range. Thus, instead of using the
change in kWh per kilometer, we consider how the effective length changes
based on the road gradient. The effective length can be defined as the adjusted
length when accounting for road gradient, or more formally:

effective length = lengthi ∗ ∆consumption

β0
, ∀i (5)

∆conumption = β0 ∗ grade interval consumptionj, (6)

18

Using equation (5) and (6), we are able to translate (Liu et al., 2017) findings
into lengths instead of EV kWh consumption. From the equation, it can be
seen that the effective length decreases when the grade interval consumption
is negative and vice versa. This reflects that negative road gradients reduce
electricity consumption while positive road gradients increase the electricity
consumption. The equation is applied twice to each edge in the network since
both directions must be considered. First, equation (5) and (6) is used to
calculate the effective length from edgei to edgej, using the stored gradients
for all previously removed edges. For edgej to edgei, the sign of each gradient
is reversed before using the equation. Both values are then stored, allowing
for a simple retrieval of the effective length for both directions of each edge.
Consequently, the graph becomes directed, which will have implications for
the optimization models that we implemented in the next sections.

The final network, consisting of 1 583 nodes and 1 1802 edges, is presented
in Figure 3. The figure also shows the location of all 41 O-D nodes, marked in
red.

Figure 3: Road Network of Norway

19

As illustrated in Figure 3, there is, for the most part, a systematic distance
between each node in the network. This is due to the simplification process
performed, ensuring that most edges have a length of approximately 10km5.
However, since O-D nodes and current CS locations are kept in the network,
areas around these locations are generally highly populated by surrounding
nodes. This is visible in the figure, especially around the Oslo area. Conse-
quently, this inevitably affects the average edge length, which Table 3 reports
to be 8.315km. Thus, there is a slightly imbalanced node distribution, where
areas with many already existing CSs receive extra nodes. However, this does
not significantly affect the results as it only leads to a potentially more accurate
location of CS allocation in these areas.

Statistics Simplified Network (10Km) Unsimplified Network

Nodes 1 583 205 531

Edges 1 918 217 581

Density 0.001532 0.000010

Average Degree 2.4232 2.1173

Max Degree 7 5

Avg Path Length 91.2756 3 119.9463

Max Path Length 297 9 697

Avg Dist. Between Each Node 8 314.50 180.50

Table 2: Network Statistics Simplified vs Unsimplified Network

Table 3 also illustrates the trade-off between precision and runtime. While
the nodes in the unsimplified network, on average, only have a distance of 180
meters between them, the average path length is over 3000 nodes. Using this
network, one could locate the optimal set of CS with high accuracy. However,
the time it would take to find the optimal solution, even for a relatively small
set of CS, makes this network impractical, if not infeasible. In the simplified
network, the average path length is approximately 91 nodes, drastically reduc-
ing the runtime compared to the unsimplified network. However, the average
distance between each node is close to 8km, imposing a restriction in terms
of accuracy. Nonetheless, as only inter-city/long-distance traveling is consid-
ered in this thesis, trading away some precision for a significantly reduced
computational burden can be considered fair.

5The cut-off value used was 10km. The reason for this is explained in section 5.1

20

4 Optimization Models
This section presents the optimization process performed to locate CSs across
the Norwegian road network. To solve the location problem in the Norwegian
context, this thesis will apply the solution approaches proposed by (Kuby
& Lim, 2010). First, the FLRM and its challenges is presented. Next, the
logic behind the objective function is explained. Finally, the implementation
of the heuristics algorithms is explained in depth, as well as some important
considerations and assumptions.

4.1 The FRLM

To find the optimal locations for CS across the Norwegian road network, we will
use the FRLM model, as proposed by (Kuby & Lim, 2010). Although heuristics
is well-suited to solve the model, an explanation of the MILP formulation of
the model may provide a better understanding of the underlying concepts and
challenges.

4.1.1 MILP formulation

The FRLM can be formulated as the following mixed integer linear program
(MILP):

Notations:
Q = Set of all O-D pairs
H = Set of all CS combinations
K = Set of all potential CS locations
q = index of O-D pairs
h = index of CS combinations
k = potential CS location
fq = flow volume for shortest path between O-D pair q

bqh = 1 if CS combination h can recharge the shortest path between O-D pair
q, 0 otherwise
ahk = 1 if CS k is in combination h, 0 otherwise
p = Number of CSs to be located
Variables:
xk = 1 if CS k is used, 0 otherwise
yq = 1 if the flow on the shortest path between O-D pair q is captured, 0
otherwise
vh = 1 if the CSs in combination h are used, 0 otherwise

21

max Z =
∑
q∈Q

fqyq (1)

subject to:
∑
h∈H

bqhvh ≥ yq ∀q ∈ Q (2)

xk ≥ ahkvh ∀k ∈ K (3)∑
k∈K

xk = p (4)

xk ∈ {0, 1} ∀k, h, q (5)
0 ≤ vh ≤ 1 ∀h (6)
0 ≤ yq ≤ 1 ∀q (7)

The objective function (1) maximizes the sum of flows fq that is captured in
the network, where the flow through each O-D pair q is considered captured if
at least one eligible CS combination h is initialized to recharge the path (2).
Constraint (3) will set vh to 1 if all the CS in combination h are open, and
(4) requires p number of CSs to be initialized. This means that the model is
solved for an exogenously determined number of CSs. From constraint (5) it
follows that all the variables are binary.

A set of O-D pairs Q must be selected across the network for the model.
The list of potential CS locations K will have all the O-D nodes, but can also
include additional nodes. The model also needs an estimate of the flow volume
associated with each O-D pair.

To deploy the model, a set H with all possible combinations of CS locations
that can recharge the paths of the network must be identified. Figure 3 shows
an O-D path going from the origin node A, through B and C, to the destination
node D. This path will help illustrate the logic behind which combinations are
counted as eligible and included in H, where an EV range of 16 is assumed.

Figure 4: Exemplified O-D path

Before knowing the combinations of locations that can recharge the path, an
assumption must be made about the battery’s state of charge 6 before begin-
ning the trip from the origin node. If a CS is placed in A, the EV can charge
before leaving, and the range should reflect a fully charged battery. If there

6State of charge (SoC) is the battery lever for an EV, ranging from 0-100%.

22

is no station in A, some EVs may not have a fully charged battery when be-
ginning the path. Thus, an average EV is assumed start with half of the total
range if no CS is initialized in the origin node.

With this assumption, there must be a CS in B if A does not have one, as C
is out of range with half a battery charge (8 in this example). If there is a CS
in A, the vehicle can reach C without a CS in B. A CS in B would allow the
vehicle to travel to the destination node and back to C, but it would then be
unable to return to B before running out of electricity. This exemplifies why
the round-trip on the path should be considered. With a CS in B, either C or
D must have a CS to complete the round-trip. A possible combination would
also be to initialize in both C and D together with B. Nonetheless, this would
be a superset of another valid combination. Because only one CS is required
to recharge the path in conjunction with B, it is not necessary to include the
bigger combination in the MILP model.
In this example, the possible combinations (excluding combinations that are
supersets of other combinations) of stations that can recharge the path would
be [A, C],[B, C] or [B, D]. These combinations are included in H, and the
process is repeated for all O-D paths in the network.

4.1.2 Challenges

A flow-based demand may be a realistic approach for optimizing CS alloca-
tion, but several challenges must be considered. Solving the MILP formulation
requires an exogenously pre-generated set of all possible combinations of CSs
that can recharge each path (H). While this works for small-sized networks,
generating all the combinations will be highly computationally expensive, if
not infeasible, for most real-world problems considering long-distance travel. It
may be particularly challenging if many potential facility nodes are included
midway along paths, between intersections in the network. If the nodes in-
cluded in Figure 3 represent intersections, additional nodes could be added
midway between them to increase the precision of the optimized solutions.
However, as this would further increase the problem’s complexity, heuristic
algorithms are often required to solve the problem.

In addition, the trade-off between the solution quality and runtime must be
considered. More extensive networks generally contain more nodes along each
path, increasing the number of possible combinations of CSs that can recharge
a path. While this gives the model flexibility to produce better solutions, the
runtime is expected to increase drastically as the network expands. Conversely,
less complex networks may not include enough potential station locations, thus
concealing the optimal locations.

Moreover, road gradients should be accounted for when using the model on
networks with considerable elevations. The nature of battery consummation

23

for different grades displayed in table 2 implies that the consumption of a path
will differ depending on the direction being traveled. Consequently, Traveling
the path sequence O-D-O will not be the same as D-O-D, which may result in
a separate set of CSs being eligible to recharge a depending on the direction.
Consequently, the model cannot handle each O-D pair as an undirected path
with a single subscript q, and the optimizing algorithm must calculate the
validity of a combination of CSs twice (one time for each direction), drastically
increasing the processing time to solve the model. To fully implement the
feature of undirected graphs, the flow volume should also be differentiated
depending on the direction. Two different flows for each path would allow
one direction to be recharged, and the flow counted as captured, even though
the opposite direction cannot be recharged. Nonetheless, this is not easily
implemented in the sterile gravity model deployed for this thesis and is left for
potential further research. For this implementation, the flow on a path will
only be considered captured if a set of CSs can successfully recharge the flows
in both directions.

Moreover, lack of data is generally a significant obstacle when conducting
refueling/charging allocation experiments (Pagany et al., 2019). As no data
shows the habits for people long-distance traveling, defining the number and
location of O-D nodes can be a considerate challenge. Specific qualitative con-
siderations must be made to determine the reasonable origin and destination
nodes in the network, which is difficult to confirm and validate. The biggest
challenge for the FLRM is the estimation of traffic flows between each O-D
pair, as the data required to do so generally does not exist. Due to the lack
of data, preceding research on this topic has often applied a gravity model to
obtain an estimated flow (Kuby & Lim, 2005; Capar & Kuby, 2012). The only
publicly available data in Norway is traffic flow counts registered by traffic
points. While such data may be used to calculate traffic flows for intra-city
travel, it can not effectively be used for inter-city travel, as it gives no infor-
mation about each vehicle’s origin or destination.

4.2 Implementation of Algorithms

In the algorithms, K refers to the full set of potential CS locations, which are
the 1583 nodes of the network referred to as G. A certain set of CS locations
is noted K with an upper subscript, for instance Kt, and k is referring to a
singular CS node. Q is the full set of O-D pairs in the network, and q refers
to one such pair. To be precise, each q represents a list of potential CS nodes
on the shortest path between the origin and destination node.

All the information needed for the following algorithms is stored in the
graph that represents the Norwegian road network. This includes which nodes
that have been selected as O-D nodes, and the flow volumes between them.

24

4.2.1 Calculating objective value

The optimizing algorithms compare different solutions with an objective func-
tion, which in this case calculates the flow volume that is captured by initial-
izing a given set of CS. To get the objective value, an algorithm for evaluating
whether initializing a set of stations would be able to recharge an O-D path
is required. Algorithms 2 and 3 are designed to operate together to find the
objective value in the heuristic algorithms, so that only the O-D pairs with a
CS anywhere on the path are evaluated. This approach is considerably less
computationally expensive than making a complete set of all potential CS
combinations that can recharge each path, the way it would be in a MILP
model.

Algorithm 2 Evaluate set of CSs for recharging path
1: Caption: EvaluateCSCombination(Kt, q, r, G)
2: Input: A set of CS (Kt), an O-D path (q), EV range (r), a graph G
3: Output: a = 1 if Kt can recharge path q, 0 otherwise
4: qf := Entire path for a round-trip between origin and destination in q
5: korigin := The origin node in q
6: RemainingRange := r/2
7: if korigin is ∈ Kt then
8: RemainingRange = r

9: for each k on the path qf do
10: k+1 := The next node on the path qf

11: dk,k+1 := Effective length between k and k+1 in G
12: Subtract dn from RemainingRange
13: if RemainingRange < 0 then
14: a = 0
15: break loop
16: if k+1 is ∈ Kt then
17: RemainingRange = r
18: continue loop
19: if k+1 = korigin then
20: a = 1
21: break loop
22: return a

Algorithm 2 takes a list of CS, Kt, a list of nodes in the network on the shortest
path between an O-D pair, q, and a constant for the EV range r. In addition, it
needs a graph G to access the distance between any two nodes in the network.
The output is a binary variable, a, which equals 1 if the set of CS is able to
recharge the path and 0 otherwise.

As discussed in section 3, we have to consider round trip travel between
the origin and destination node. Line 4 creates a round trip path, qf . If for
example a path goes from node A, through B to the destination node C, qf

will be a vector [A - B - C - B - A], resembling a round trip between A and

25

C. Line 5 saves the origin node for the path a separate variable. Lines 6 to 8
initialize a variable for the remaining range of the vehicle, RemainingRange,
which will be used as the indicator of whether the EV is capable of driving
a given distance. If the origin node has a charging station, the vehicle can
recharge before beginning its travel and the initial remaining range value is set
to equal the full EV range. Otherwise, the initial range is assumed to be half
of the EV range.

From line 9 to 21 is a loop, where each iteration resembles an EV traveling
from one node k to next k+1 on the shortest path from origin to destination
and back to origin. Each node represents a potential CS location. Traveling
from one node to the next, the remaining range variable is reduced by the
distance between the nodes, represented by lines 10 to 12. The distance is the
effective length between the nodes where the gradient is accounted for.

If the remaining range becomes negative after the inter-node travel, it
means the vehicle has run out of power before reaching the next CS, and the
given set of Kt CS will not be able to recharge the path. Lines 13 to 15 check
if the remaining range has become negative and will set a = 0 and breaks out
of the loop to stop the algorithm if that is the case. If not, lines 16 to 18 are
executed when the node traveled to is in the given set of CS, Kt. The vehicle
can now fully recharge its batteries and the remaining range is set to equal the
full EV range. Lines 19 to 21 are executed if the node the vehicle traveled is
the origin node. This means the vehicle has successfully been able to travel
the full round trip, and a is set equal 1 before stopping the algorithm. The
loop continues until the first or third if-statement above is executed, stopping
the algorithm and returning the indicator variable a.

Algorithm 3 Objective function
1: Caption: ObjectiveFunction(G, Kt, r)
2: Input: A graph (G), a set of CS (Kt), EV range (r)
3: Output: Captured flow by initializing Kt

4: Q := Set of paths for each O-D pair in G
5: F := List of flow volumes through each q ∈ Q
6: CapturedFlow := 0
7: for each q ∈ Q do
8: if q effective length · 2 <= r/2 then
9: Add fq ∈ F to capturedFlow

10: continue to next loop iteration
11: if any k ∈ Kt is in q then
12: qr := The reverse order of nodes in path q
13: aq = EvaluateCSCombination(Kt, q, r, G)
14: aqr = EvaluateCSCombination(Kt, qr, r, G)
15: if aq + aqr = 2 then
16: Add fq ∈ F to capturedFlow
17: return capturedFlow

26

Algorithm 3 is the objective function, which evaluates the flow volume captured
by a given set of CS using algorithm 2 on each O-D path in the network. The
input is the list of CS to be evaluated, Kt, a graph G and an EV range r, and
the output is a value of the flow captured in the network. Line 4 stores the
list of nodes on the shortest path between each O-D pair in a data frame, Q,
and F is a list of the respective flow volumes. Line 6 initializes a variable for
storing the flows that is capture for each path.

Lines 7 to 14 loop through each path q to identify which can be recharged
by the set of CSs given as input. For the longer EV ranges, some O-D pairs
will be short enough for a flow to be captured without any CS on the path.
Lines 8 to 10 immediately add the flow volume through q if the distance for a
round-trip on the path is shorter than half the EV range7. If the path can be
recharged without CS on the path, the loop can immediately go to the next
loop iteration. If that is not the case, line 11 ensures that algorithm 2 is only
executed for paths with at least one CS in Kt along the path. If there is a CS in
the path, lines 12 to 14 are executed. Because the paths are directed from the
inclusion of road gradients, traveling a path form origin (O) to the destination
(D) and back to O, will not result in the exact same battery consumption as
traveling from D to O and back to D. Thus, line 12 makes a path of the nodes
in q in the reverse order, qr. Lines 13 and 14 executes algorithm 2 for both q

and qr, and returns two indicator variables aq and aqr. If the set of CS, Kt, is
able to recharge the path for both directions, aq + aqr will equal two and line
16 adds the flow volume to the total captured flow.

4.2.2 Greedy Algorithms

To solve the FRLM on the Norwegian road network, we aimed to use three
heuristic approaches: Greedy-adding, Greedy-adding with substitution and a
genetic algorithm. For the greedy algorithms, the number of CS to be deployed,
p, and the number of substitution iterations8, s, must be decided.

7If no CS is placed in origin, we assume a starting EV range of half the full range.
8Setting the number of substitutions=0 corresponds to greedy-adding, while values above

this corresponds to greedy-adding with substitution

27

Algorithm 4 Greedy-adding/ Greedy-adding with substitution
1: Input: A graph G, EV range (r), number of CS (p), sub-iterations (s)
2: Output: A list of CS Ko

3: K := Set of potential CS locations in G
4: Ko := Empty list
5: for CS= 1, 2, . . . , p do
6: ObjectiveV aluemax := 0
7: kmax := 0
8: for each k ∈ K ∈/ Ko do
9: Ktemp := copy of Ko

10: Append k to Ktemp

11: ObjectiveV aluek = ObjectiveFunction(G, Ktemp, r)
12: if ObjectiveV aluek > ObjectiveV aluemax then
13: ObjectiveV aluemax := ObjectiveV aluek

14: kmax := k

15: Append kmax to Ko

16: for Sub-iteration= 1, 2, . . . , s do
17: SubObjectiveV aluemax := 0
18: Subkmax := 0
19: ksub := 0
20: for each k ∈ Ko do
21: if k ̸= kmax then
22: Ktemp := Ko with k removed
23: for each ki ∈ K ∈/ Ko do
24: Ksub := Ktemp with ki appended
25: ObjectiveV alueki = ObjectiveFunction(G, Ksub, r)
26: if ObjectiveV alueki > SubObjectiveV aluemax then
27: SubObjectiveV aluemax := ObjectiveV alueki

28: Subkmax := ki

29: ksub := k

30: if SubObjectiveV aluemax > ObjectiveV aluemax then
31: Remove ksub from Ko

32: Append Subkmax to Ko

33: ObjectiveV aluemax := SubObjectiveV aluemax

34: kmax := Subkmax

35: if SubObjectiveV aluemax < ObjectiveV aluemax then
36: break substitution loop
37: return Ko

Algorithm 4 displays the logic of how the greedy-adding algorithms are imple-
mented for this problem. Line 3 creates a set of all the potential CS nodes
in the network. Line 4 initializes an empty list where the CS capturing the
most flow will be added with each iteration of lines 5 to 36. Line 6 and 7
define two empty variables that will contain information on the current max
objective value and the associated CS. Lines 8 to 15 iterate through each CS
node in the network not already included in ko, and calculate the objective
value associated with adding each CS to Ko in isolation. The station that

28

generates the highest flow volume will be stored in kmax and appended to Ko

in line 15. This part constitute the greedy-adding algorithm, and is the only
part that will be executed if the the number of substitution iterations s is set
to 0.

Lines 16 to 36 sequentially substitute out stations in ko to see whether
a better solution is available after adding each new station. The number of
substitution iterations depends on the user input s. Lines 17 to 19 initialize
variables that will be updated with the information from the best solutions
provided by the substitutions. Subkmax is the CS that is substituted into ko to
provide the SubObjectiveV aluemax, and ksub is the CS being replaced. Lines
20 to 29 sequentially substitute each CS in ko, except for the one last added
(kmax), with every CS in K that is not already in ko. The substitution that
results in the highest objective value is then compared to the current max
objective value, and if it is higher, lines 30 to 34 will perform the substitution
and update the max objective value. If no substitution produced a higher
objective value, line 35 and 36 stop the substitution loop, as the next iteration
would produce the same result. When all p CS has been iterated through, line
37 returns the list of flow optimizing CS, Ko, as output.

4.2.3 Genetic Algorithm

The GA is inspired by the evolutionary theory of natural selection from mixing
gene pools by making offspring and random mutations in the genes of new
generations. In this implementation, a gene is referring to a certain CS location
k. A chromosome is made up of multiple genes, meaning it will represent a set
of CSs. The size of each chromosome (how many genes it consists of), will be
determined by the number of CSs, p, we want to optimize. The fitness value
of a chromosome refers to the flow volume it captures in the network, and
the population is the entire collection of chromosomes. Figure 5 illustrates a
population with two chromosomes (sets of CSs) with five genes in each (p=5).
The total gene pool consists of CSs 1-9.

Figure 5: Relationship between genes, chromosomes and population

29

The algorithm works by first making a random set of chromosomes to con-
stitute an initial population (IP). Figure 5 shows an IP with a size of two
chromosomes. This will subsequently be split into a mother and father sub-
population. A new sub-population of offspring is then made by pairing the
chromosomes in mother and father. The genes in the first chromosome in
mother will be merged with the genes in faters’s first chromosome, and so on.
This is called a crossover of genes is visualized in Figure 6.

Figure 6: Gene crossover between mother and father

The offspring sub-population now has p ∗ 2 = 10 genes in each chromosome, p

from mother and p from father. The red and green colors have been applied to
the genes in the offspring chromosome to visualize which come from mother and
which is taken from father. To reduce number of genes in each chromosome,
p genes can either be picked at randomly, or by identifying and keeping the
genes with the highest fitness value. We have implemented an algorithm for
greedy deletion of genes, which iteratively removes genes that results in the
least reduction in objective value. In the exemplified offspring chromosome in
Figure 6, the objective value is calculated for all combinations of nine genes
out of the total ten. These are compared, and the genes associated with the
highest value will be kept. This process is repeated until five genes remain.
Such a greedy deletion of the crossover genes will help the GA converge quicker,
but reduce the diversity of genes in the populations as the generations evolve.

30

The next phase conducts a the new member selection, where the fitness
value of each corresponding mother, father and offspring chromosome is com-
pared. In the example from Figure 6, the objective value for the three chro-
mosomes displayed will be compared and the two fittest chromosomes are
included in the population to represent the next generation. The same is done
for each corresponding chromosome index across the three sub-populations.
This method, as opposed to ranking all the chromosomes and choosing only
the fittest, will result in a higher diversity of genes, and reduce the risk of
getting stuck in local optimums.

Lastly, random mutations are inflicted upon some of the chromosomes,
where genes are substituted with a randomly selected new gene. The algorithm
iterates through multiple generations to let the populations evolve and produce
better solutions.

To initiate the algorithm, the number of generations, mutation frequency
and a population limit must be specified. These values will depend on the
problem at hand and certain qualitative assessments must be made to balance
the processing time and the quality of the solution. The number of genera-
tions, gen, determines how many generations of offspring will be produced, in
other words how many iterations it will run before terminating and returning
the chromosome capturing the most flow. This depends on how quickly the
best chromosomes for each generations converge towards a certain value and
do not continue to improve. The population limit, PL, determines both the
initial and maximum number of chromosomes in each generation. A large PL

will increase the probability of a better solution, as a more diverse gene pool
of unique CS locations decreases the likelihood of missing a station in the op-
timal solution. However, large populations drastically increase the processing
time. The mutation frequency, mf , determines the rate at which mutations
occur in new generations. When a gene within a chromosome mutates, it will
be substituted by a new CS k from the full set of potential locations. This is
included to help escaping local optimums, but setting the frequency too high
will make the algorithm slower to converge and possibly produce worse solu-
tions as it has a higher chance of changing out CS in too many of the effective
chromosomes. The pseudo code for this algorithm can be found below.

31

Algorithm 5 Genetic algorithm
1: Input: Graph G, EV range (r), number of CS (p), number of generations

(gen), population limit (PL), mutation frequency (MF)
2: Output: A list of CS Ko

3: K := List of all potential CS locations in G
4: P := Population of chromosomes with p genes each from K
5: for generation= 1, 2..., gen do
6: M := PL/2 random chromosomes from P
7: F := P − M
8: C := Union chromosomes in M and F
9: for each KC ∈ C do

10: for gene= 1, 2..., p do
11: ObjectiveV aluemax := 0
12: kmax := 0
13: for each k ∈ Kc do
14: Ktemp := Kc with k removed
15: ObjectiveV aluek = Objective function(G, Ktemp, r)
16: if ObjectiveV aluek > ObjectiveV aluemax then
17: ObjectiveV aluemax := ObjectiveV aluek

18: kmax := k

19: Remove kmax from Kc

20: P := M + F + C
21: for i= 1, 2..., (PL/2) do
22: V alueM,i =Objective function(G, KM,i, r)
23: V alueF,i =Objective function(G, KF,i, r)
24: V alueC,i =Objective function(G, KC,i, r)
25: V aluemin = min(V alueM,i, V alueF,i, V alueC,i)
26: if V aluemin == V alueM,i then
27: Remove KM,i from P
28: if V aluemin == V alueF,i then
29: Remove KF,i from P
30: if V aluemin == V alueC,i then
31: Remove KC,i from P
32: if P is larger than PL then
33: Keep the PL fittest chromosomes in P

34: for each Kp ∈ P do
35: Replace k ∈ Kp with a random k ∈ K with probability MF

36: ObjectiveV aluemax := 0
37: Ko := Empty list
38: for each Kp ∈ P do
39: ObjectiveV aluekp = Objective function(G, Kp, r)
40: if ObjectiveV aluekp > ObjectiveV aluemax then
41: ObjectiveV aluemax := ObjectiveV aluekp

42: Ko := Kp

43: return Ko

Line 3 creates a list of all potential potential CS locations included in the
network G. Line 4 generates a set of chromosomes to represent the initial pop-
ulation. The size of the initial population is often set to equal the population

32

limit, but can also be of a different size. To ensure that all the unique genes
are included for the first generation, the chromosomes are made sequentially
using p genes that has not been included in any of the other chromosomes until
at least one instance of each is included.

Lines 5 to 35 iterate through the generations of the genetic algorithm.
Line 6 and 7 splits the population into two sub-populations of mother and
father chromosomes. Line 8 initializes a new sub-population of offspring by
performing a crossover of genes in each chromosome from the mother and father
sub-population, using the logic displayed in Figure 6. Lines 9 to 19 is a greedy
deletion algorithm for choosing which genes to keep in each chromosome of
the offspring sub-population. This is done by sequentially removing one gene
k from each chromosome Kc and identifying which set of remaining genes will
result in the highest objective value.

Line 20 sets the total population P to equalize the sum of chromosomes
across the three sub-populations. As a result, the population will now have
more chromosomes in the population than the population limit allows. Lines
21 to 31 iterate through each chromosome in each sub-population to remove
the least fit chromosome so that the population limit is satisfied. In detail, lines
22, 23 and 24 calculate the objective value for each chromosome in position i

in the mother (KM , i), father (KF , i) and offspring (KC , i) sub-populations.
Then, Lines 25 to 31 identify the chromosome associated with the lowest value
and removes it from the population.

For the first generation, the population size could be larger than the pop-
ulation limit, depending on the initial population. If that is the case, line
32 and 33 picks the chromosomes with the highest objective vale, so that the
population size can be reduced in accordance with the set limit.

Lines 34 and 35 iterate through each chromosome Kp in the population and
mutates one gene with a probability equal to the mutation frequency given as
input. Line 32 ensures that no mutations occur in the last generation of the
algorithm, so that the best solution of the last generation is kept.

Lines 36 to 42 are executed after all the generations have been iterated,
and identifies the chromosome with the highest objective value in the last
generation. This set of CS, Ko, is returned as the output when the algorithm
terminates.

5 Performance and Results
This section starts by presenting the current CS system in Norway, as well as
how it is modeled in the network, taking the steps performed in section 4.2 into
consideration. Next, the performance of the heuristics algorithms is evaluated
for both a 25-node test network and the Norwegian road network. Finally, the
results produced by the heuristics algorithms are presented.

33

5.1 Current System

In section 3.2, the concept of using a cut-off value to simplify the network graph
was discussed. Determining a suitable cut-off value is important, as too high
values limit the number of potential CS locations, which further decreases
the representativeness of the actual system. Conversely, a low cut-off value
gives rise to a more complex network, drastically increasing the computational
processing requirements. Previous research on applying heuristics to solve the
FLRM shows that changing p from 5 to 10 increases the genetic algorithm’s
runtime by up to 6 times, while setting p=25 may cause the algorithm to run
for 60 times as long (Kuby & Lim, 2010). This is an important consideration
as the GA should be run multiple times due to its random nature. Table
1 shows the runtimes reported in seconds for all cut-off values tested. All
heuristics algorithms were executed with p=5 and an EV range of 325km. The
GA was run with a population limit of 500, mutation frequency of 0.1, and
15 generations. The greedy-adding with substitutions was run with one sub
iteration. It should be noted that we let the algorithms run for a maximum of
6 hours when testing the cut-off values. Hence, runs that did not finish within
6 hours are marked as 21 600*.

Statistics Runtime (in Seconds)
Cutoff Value(km) Nodes Edges Greedy-Adding Greedy-Adding w/1 sub Genetic Algorithm

0 205 531 217 581 7 937 21 600* 21 600*
10 10 535 11 812 407 14 933 4 809
20 6 084 6 878 196 9 544 3 088
50 2 828 3 286 96 8 671 2 853
100 1 583 1 1918 60 372 500

Table 3: Runtimes for Various Cutoff Values

Considering both time-efficiency and the representational potential of the net-
work, a cut-off value of 10km meters deemed sufficient. At this cut-off value,
the heuristics algorithms were able to produce solutions for a low p, while
keeping the runtimes relatively low. Examining a cut-off value of 5km, the
runtime of the GAAL with substitution and the GA is significantly higher.
Thus, trading away 5km of precision on average, for a drastic reduction in
runtime can be considered a reasonable trade.

It should be mentioned that for a cut-off value of 10km, Shorten Edges by
cut-off was unable to capture all current CSs along each O-D path. Therefore,
after the network graph had been simplified, a new list of RemaningCSNodes
was created, which contained the coordinates of each CS that had not been
placed in the network. For each element in this list, the closest node in the
simplified network was found. If the distance between the node in the network
and the CS in the list was less than 10km, the CS would be added to the
network. Naturally, this caused a slightly higher average deviation between the

34

estimated CS locations and their actual location, but as discussed in section
6.1, this does not significantly affect the outcome of this thesis.

According to OpenChargeMap’s API, a non-profit open source collection of
worldwide EV charging stations, there exist 582 publicly available, operational
fast charging stations in unique locations in Norway, as of spring 2022. Out of
these, only 330 can be placed in a unique location in the simplified network.
The reason for this lies in the logic of the model. Since the FLRM only
considers the flow between O-D pairs, roads that are not used when travelling
the paths between each O-D pair are not considered. This is because this thesis
assumes that there is no deviation from the shortest path. This logic can also
be applied to CSs across the country. If a CS is located on a road that is
not used by any of the O-D paths, including this CS would serve no practical
purpose as no vehicles will travel on this path. Therefore, only relevant CS
locations are included in the current network system. The comparison between
the actual system and the network system is represented in Figure 4 below.

Figure 7: CS Locations in current system (left) vs current network system
(right)

To further clarify why the current network system does not contain all 582
available CSs, Figure 5 below aims to visualize why this is the case. In this
figure, the red nodes represent the CS locations in the current network sys-
tem, while the blue nodes reflect the CSs that are not included in the current
network system. Examining the figure, a significant amount of the blue nodes
are not located inside the road network. These CSs can therefore not be used
in the current network system, as their location lie outside all of the shortest
O-D paths in the network. However, in some parts of the network, especially
in the Oslo-area, some of the blue nodes seem to be placed on the paths. In
many of these instances, the nodes are in fact located slightly outside of the
path and are thus not included in the network. Even if some of the blue nodes
do lie on the path, this is not considered an issue as these instances only occur

35

in areas where there in general exist clusters of CSs, and it would therefore
not affect how the current situation is modelled significantly.

Figure 8: Included and non-included CSs in the current network system

Table 4 reports the minimum, maximum, mean and median deviation in kilo-
meters between CS locations in the current system and to the current network
system. Although all 582 charging stations are not modeled in the network,
the 330 estimated ones are generally modeled with fairly high accuracy. How-
ever, as previously mentioned, some CSs had to be added to the network after
the simplification had been performed, as the Shorten Edges by cut-off func-
tion was unable to capture all CS locations in each path. This implies that
some CS locations may deviate with up to 10km, which is the cut-off value
used when simplifying the network. This is evident in the table, where the
maximum deviation reported is 9.935km. However, seen in light of the median
and mean deviation, as well as Figure 5, the current network system can be
said to represent the current CS infrastructure sufficiently.

Min Dev. Max Dev. Mean Dev. Median Dev.

0.0002 9.932 1.639 1.521

Table 4: Deviation between actual and modeled CS locations (metres)

Lastly, Table 5 presents the flow captured in the current situation. As it can be
seen from the table, the current allocation of fast charging stations in Norway
is not sufficient for low-range EVs as only 87.9% of the flow is captured. At

36

first glance this might appear as an acceptable flow coverage. However, with
the current CS infrastructure, low-range EVs can only complete 375 out of the
total 820 paths in the network. Furthermore, for the non-captured paths, the
average path distance is approximately 1 260km. This is significantly higher
than the average network path distance of 779km. This implies that the cur-
rent infrastructure does not support long-distance travel for low range EVs.
The current infrastructure seems to be sufficient for both medium and long
range EVs. EVs with a range of 325 km or more can therefore travel between
any O-D pair without running out of electricity.

EV Range 170km 325km 585km

Flow Captured 87.9% 100% 100%

Table 5: Flow Captured with current CS locations

5.2 Performance of the Heuristics Algorihms

5.2.1 Test Network

A significant obstacle when solving the FLRM as a MILP is the pre-generation
of valid combinations of CSs than can recharge each path in the network. Con-
sidering the road network of Norway, it is practically impossible to pre-generate
every possible combination, even after the network simplification process has
been performed. Consequently, assessing how well the heuristic algorithms per-
form is impossible, as one cannot compare the results to the optimal solution.
Therefore, to analyze the algorithms’ performance, a test network consisting
of 25 nodes, serving as origins, destinations, and potential CS locations, was
created (Berman & Simchi-Levi, 1988). Following (Hodgson, 1990) process,
each node and edge was assigned a weight and length, as shown in Figure 5
below.

37

Figure 9: 25-node Test Network

Next, 300 O-D pairs (n(n-1)/2) were defined and each pair was assigned a
flow using the following gravity model (Hodgson, 1990):

ODi,j = WiWj

di,j ∗ ∗1.5 (7)

This thesis considers three different vehicle ranges for solving the FLRM.
Therefore, an important part of the testing process was to investigate how
the heuristics algorithms performed for different vehicle ranges. The chosen
vehicle ranges were 4,10 and 16, as they can be considered short, medium and
long range, respectively. For each vehicle range the problem was solved using a
p of 5, 10, 15, 20 and 25. The greedy-adding with substitutions was used with
up to three substitutions and for the genetic algorithm we used a population
limit of 50 and a mutation rate of 0.1. The MILP was solved in Python using
Pulp, an open source LP modeler written in Python. In order to be able to
solve the MILP, all valid combinations of CS that could recharge each path

38

for a given range had to be pre-generated (Kuby & Lim, 2005), before setting
up the parameters. Needless to say, this had to be done for each set of vehicle
ranges.

Optimality Gap (% of gloabl optimum)
Range p Optimal Solution GA Greedy-Adding Greedy Sub 1 Greedy Sub 2 greedy Sub 3

4 5 26.34 0.00 0.70 0.00 0.00 0.00
4 10 56.26 0.00 0.42 0.42 0.42 0.21
4 15 66.56 0.00 0.38 0.38 0.38 0.00
4 20 70.10 0.00 0.40 0.33 0.22 0.00
4 25 70.30 0.00 0.00 0.00 0.00 0.00
10 5 66.81 0.00 0.03 0.00 0.00 0.00
10 10 92.74 0.00 0.02 0.00 0.00 0.00
10 15 99.71 0.00 0.00 0.00 0.00 0.00
10 20 100.00 0.00 0.00 0.00 0.00 0.00
10 25 100.00 0.00 0.00 0.00 0.00 0.00
16 5 77.35 0.00 0.00 0.00 0.00 0.00
16 10 99.03 0.00 0.00 0.00 0.00 0.00
16 15 100.00 0.00 0.00 0.00 0.00 0.00
16 20 100.00 0.00 0.00 0.00 0.00 0.00
16 25 100.00 0.00 0.00 0.00 0.00 0.00

Table 6: Results of test network with vehicle range of 4,10,16

To measure the performance of the heuristics algorithms a measure known as
the optimality gap is used. For maximization problems this can be defined as:

global optimal value − heuristics value

global optimal value
(8)

In this case, the global optimal value is the optimal solution produced by using
the MILP formulation defined in section 3.1. Evident from Table 6, the greedy
algorithms did not perform well for a low vehicle range. With a vehicle range
of 4 and a p=10, the highest possible flow captured is 56.26%. With 0 and 1
substitution, the greedy algorithm is only able to capture 42% of the optimal
flow volume. The result does not improve until 3 substitutions, nonetheless, an
optimality gap of 21% is still significantly far away from the optimal solution.
For a vehicle range of 10 and 16 the greedy algorithms are generally able to
find the global optimum, with some minor exceptions. The genetic algorithm
performs flawlessly, finding the global optimum 100% of the time. In fact,
the GA is able to find the optimal optimum in only three generations in most
instances. Utilizing multiprocessing9, the GA is also able to produce a result
faster than the greedy-adding with 2 and 3 substitutions. To understand why
the greedy algorithms perform so poorly for a low vehicle range, the logic
of the algorithms must be broken down. Since the greedy-adding algorithm
(GAAL) only considers the best solution in the current iteration, hence the
name greedy, the chance of becoming trapped in a local optima is fairly high,

9This is further explained in Appendix A.

39

especially for low vehicle ranges. For low vehicle ranges, the first CS selected
can only recharge the shorter paths in the network, but this CS might not
be part of the optimal combination of CSs. If this is the case, it is ,already
after the first iteration, determined that the GAAL will not find the global
optimum. This also explains why the GAAL with substitution performs better
for short vehicle ranges, as it can substitute the first CS with a more viable
location. However, as apparent from Table 6, even three substitutions may
be insufficient in order to break out of the local optima in some cases. The
results indicate that the genetic algorithm performs better than all variants of
the greedy algorithm, especially for lower vehicle ranges. This coincides with
the findings that (Kuby & Lim, 2010) reported.

5.2.2 Road Network of Norway

The previous section presented the performance of all three heuristic algo-
rithms in a small 25-node test network. Due to the size of the network, exe-
cution time was not an issue for any of the algorithms. The genetic algorithm
could be executed with a fairly high population limit for all values of p. There
was also no need to consider different mutation frequencies, as a mutation rate
of 0.1 was sufficient to obtain the optimal solution. However, for the more
complex road network of Norway, these parameters need to be carefully cali-
brated in order to find the best balance between time efficiency and optimality.
Furthermore, the performance of the greedy algorithms must be assessed to
determine whether they can handle a network size of 1 583 nodes.

Greedy Algorithms
Although time-efficiency wasn’t an issue when the 25-node test network was
used, it was uncertain how the greedy algorithms would perform when applied
to the road network of Norway. Both algorithms were expected to be able
to produce solutions for for a low p, especially since the code had been opti-
mized several times10. The GAAL was expected to handle this network size
as its runtime is relatively linearly increasing with p. However, it was uncer-
tain whether GAAL with substitutions would be able to produce any output
in a timely-manner when increasing p. The reason behind this is that once
substitutions are considered, the relationship between p and runtime becomes
nonlinear. This is illustrated in Figure 6 below, where the GAAL and GAAL
with up to three substitutions were executed in the 25-node test network.

10This is explained in Appendix A

40

Figure 10: Runtime for the greedy algorithms in the 25-node test Network

It is important to note that each variation of the GAAL was run once with
a vehicle range of 25 and p=25. Thus, the figure represents the runtime of
adding an additional CS to the selected set. As expected, the runtime of the
GAAL is relatively stable for each new CS added. The general concave form of
the substitution algorithms’ runtime represents the additional time it takes to
attempt one substitution. Since the algorithm breaks out of the substitution
loop if no substitutions increase the objective value, all three substitution
variants generally have an equal runtime. However, when p is between 9 and
12, it is illustrated how the execution time is affected once more than one
substitution is performed. In these instances, the substitution loop is not
broken, and multiple substitutions are performed. Naturally, this increases
the runtime significantly. However, even if only the case with one substitution
is considered, the runtime per CS added is still almost eight times as high on
average compared to the GAAL.

Unfortunately, due to the non-linearity described above, it was not possible
to apply the GAAL with substitutions to the road network of Norway. When it
was attempted to run the algorithm with p=50, the algorithm had only selected
27 CSs after 23 hours. Given the nonlinear relationship between runtime and
p, it was therefore likely that the algorithm would require several days, if
not longer, before it could provide a solution. As a consequence of this, this
variation of the GAAL could not be used. The GAAL without substitution,
however, was kept.

Genetic Algorithm
The GA is more flexible for the user to calibrate and shape to best fit the
problem it is applied for. We tested different values for the population limit
(PL), initial population (IP) and mutation frequency (MF) to identify the most
efficient way to produce high quality solutions with the algorithm.

41

Population limit and initial population
The PL given as input determines the maximum set of chromosomes in each
generation. A low PL allows the algorithm to run significantly quicker and it
tends to converge faster. However, it may compromise the gene diversity in the
population, increasing the risk of omitting the optimal set of CS. Hence, the
PL must be calibrated to balance the processing efficiency and the quality of
the solutions. The IP is the population of chromosomes that is initiated to be
used for the first generation. When there are many unique genes to consider,
the IP must be large enough to include at least one instance of each gene. To
ensure this, sets of chromosomes with p genes each are generated iteratively
until every unique gene has been included.

With the 1583 different potential CS locations in the Norwegian network,
the IP must have at least 1583/p chromosomes to have all the unique genes
included (provided that there are no duplicates of the genes). If for example
the algorithm solves for 10 CSs (p=10), at least 159 chromosomes are needed
to include all the unique genes. It is normal for GAs to have the size of the IP
follow the given PL. However, this will result in considerable processing times.
In the example of p = 10, a population limit above 160 can be considered a
high population. At the same time, reducing both the PL and IP will cause
genes to be excluded from the algorithms solution space. For this reason,
we have performed tests with a PL lower than the size of the IP. The IP is
constructed to include all the unique genes, and the first generation will follow
the process of crossover and new member selection with this population. Then,
only the fittest chromosomes are selected to be part of the next generation. The
number of chromosomes selected are determined by the PL, so the subsequent
generations can run more effectively with a smaller population while having
included all the genes for the initial generation to use.

Table 7 displays the results from using different PLs with p = 10 and
200km range. A mutation frequency of 10% is used for the rests, despite the
fact that it has not been tested and calibrated yet. With 10 genes in each
chromosome, the IP must have at least size of 159. Thus, the PL of 160 allows
all the unique genes to be included in each generation, while the lower PLs
reduce the population after the first generation. The tests were conducted
with a mutation frequency of 10% and the results reflect the averages from
three executions.

42

PL Flow Captured Runtime

40 56.11% 456

80 59.68% 615

120 59.98% 892

160 60.84% 1170

Table 7: PL testing

Reducing the PL to 80 and 120 (50% and 75% of the IP) produced slightly
worse solutions while reducing run times by 42% and 24% per generation re-
spectively. This is arguably a trade-off worth taking, especially for the further
testing and tuning of parameters. A PL of 50% of the size of the IP appears to
be the optimal method for balancing the processing time and solution quality.
To investigate whether this method would work sufficiently for optimizations
many CS, we tested the GA to optimize 70 CS for all three ranges considered
in this thesis. To include all genes in the IP, 1583/70 = 23 chromosomes must
be generated. Table 8 compares the results from a PL of 23 and 12 (50% of
23 rounded up), while using the same IP.

PL EV Range Percent Flow Captured Runtime (seconds)

23 170 95.15% 16091

12 170 95.44% 9493

23 325 100% 23816

12 325 100% 14587

23 585 100% 15383

12 585 100% 13192

Table 8: PL testing with p = 70

This test suggests that the PL can be reduced to 50% of the IP to significantly
reduce the run times, without compromising the quality of the solutions. The
captured flow was even slightly higher with the reduced PL. It should be noted,
however, that these results come from only one execution and not averages of
multiple runs of the algorithm 11. Hence, The fact that the lower PL produced
a better solution for 170km is likely random for this instance, but indicate
nonetheless that it should be equally proficient. From these tests, we find
it reasonable to apply the efficient implementation of the PL for the further
testing and the final results in this thesis. To conclude, the IP will consist of

11Given the long run times, multiple executions was not considered a practical option.

43

1583/p chromosomes and the PL for the subsequent populations is set to 50%
of the IP size rounded up.

Calibrating Mutation Frequency
The MF determines how many chromosomes that are mutated in each gener-
ation. Such mutations are performed to help the algorithm escape local op-
timums. Notwithstanding, if the MF is too high, the algorithm may struggle
to converge towards the optimal solution and potentially also produce worse
solutions, as genes in the optimal solutions risk being substituted with less
efficient CSs. To find an appropriate MF for the application on the Norwegian
network, we compare the average results from 4 executions of the algorithm
with different MFs. To save computational time, the tests were executed to
optimize 10 CSs and with an EV range of 200km 12. Table 9 displays the
results form using frequencies of 0, 5, 10 and 20%. In addition, a frequency of
50% was tested to see whether setting it too high would cause evident prob-
lems to the convergence of the solutions. "First generation optimum" shows
how quickly the algorithm converged to the best solution it was able to find.

Mutation Frequency Flow Captured First Generation Optimum

0% 59.78% 11.67

5% 59.70% 13.0

10% 59.09% 15.0

20% 59.45% 14.67

50% 58.83% 15.34

Table 9: Mutation frequency effect on GA results

Interestingly, the results indicate no apparent benefit from using a MF, while
there is a tendency that higher frequencies cause a slower convergence.

However, the way in which the MF is implemented, it is applied to each
chromosome in the population and not the genes directly. As algorithm 5
illustrates, each chromosome has a certain chance of mutating, and if it does,
one gene will be substituted. This makes the chance for a gene to mutate
highly dependent on number of genes in each chromosome, or in other words,
the number of CSs the algorithm solves for. For instance, if a 10% MF is
used to solve for 10 CSs, each gene will have a 1% chance of mutating (10%
* 10%). However, if this MF is used when we solve for 20 CSs, the marginal
probability for a gene to mutate will only be 0.5%. As a result, the fact that
these tests were conducted with 10 CSs, means that the results only apply to

12It follows from the previous section that we set the PL=80 when p=10: 50%*(1583/10)
rounded up

44

this exact problem, and a different MF may be optimal when solving for a
different number of CSs. A way to omit this problem would be to give each
gene an equal chance of mutating. We modified the algorithm to test this
approach with the same input as above, and a MF for each gene of 0.5% and
1%. This corresponds to a MF of 5% and 10% with the original method.
However, as Table 10 shows, the average results from three executions for each
MF were worse compared to the original implementation displayed above. In
addition, the runtimes increased by 15-20%.

Mutation Frequency Flow Captured First Generation Optimum

0% 59.78% 11.67

0.5% 58.40% 12.34

0.1% 58.69% 14.0

Table 10: Mutation frequency for each gene directly

This is not something we would expect, as the marginal mutation probability
for each gene is identical, but we will not investigate this any further and keep
the MF in its original implementation. Nevertheless, as Table 10 displays, a
MF between 0% and 20% does not appear to influence the results, but the
higher frequencies need more generations to converge. For this reason, we
decided to set a low MF of 5% in the GA for the optimization of CSs in the
Norwegian road network, as it may assist the algorithm escape local optimums
in some cases and does cause any apparent problems for the solutions.

5.3 Results

This section presents the optimal solutions produced by the GAAL and the
GA. Further, it is investigated whether a combination of the two algorithms
can provide a superior solution.

5.3.1 Greedy-adding Algorithm

To produce comparable results between the GAAL and GA, it was decided
to run both algorithms for three different numbers of CSs for each EV range.
For each EV range, it was decided to choose 25, 40 and 70 CSs to be located.
The results are presented in Table 11 below in the form of a result-matrix.
Computing all nine values took 11.2 hours in total.

45

170km 325km 585km

25CSs 71.46% 85.97% 99.36%

40CSs 77.11% 95.08% 100%

70CSs 90.11% 99.70% 100%

Table 11: GAAL result-matrix

The GAAL produces three seemingly good solutions for each EV range, indi-
cating that the process of greedy-adding CSs may be a valuable approach to
capture a high flow, considering the EV range. For an EV range of 585km,
the GAAL identifies solutions capturing 100% flow by placing both 40 and
70 CSs. Naturally, as the EV range decreases, the same number of CSs is no
longer sufficient to capture 100% of the flow. For an EV range of 325km, the
captured flow is 99.70% when 70 CSs are placed, and this number drops to
90.11% once an EV range of 170km is considered.

In addition, we wanted to identify which number of CSs that is able to cover
all the flow in the network for each range. The GAAL was slightly modified to
add CSs until the solution could no longer be improved. Instead of iterating for
a specified p number of times, as in the original implementation, the algorithm
would now add p CSs until the objective function no longer improved. With
this implementation, the GAAL was executed three times, one for each EV
range. The results are presented in Table 12.

EV Range (km) #CS Flow Captured Runtime (sec)

170 88 94.40% 6 711

325 62 99.70% 5 138

585 35 99.99% 3 815

Table 12: Results from GAAL for maximizing captured flow

As evident from the table, the GAAL cannot find a solution that captures
100% flow for any of the given EV ranges. For an EV range of 170km, the
GAAL suggests that the number of CSs required to maximize the flow is 88.
However, this allocation of CSs only results in a flow coverage of approximately
94.4%. Moreover, for an EV range of 325km, the highest captured flow the
GAAL reaches is approximately 99.7% with 62 CSs. Finally, for an EV range
of 585km, the algorithm identifies a set of 35 CSs that captures 99.99% of the
flow volume.

Interestingly, for an EV range of 325 and 585km, the modified GAAL does
not improve the captured flow presented in Table 11 for p=70. The flow

46

capture for the 585km range is, in fact, lower. Nonetheless, the number of
CSs the GAAL picks in this implementation is lower than the 70 chosen in the
previous execution. In some paths, a set of CSs will be required for the flow to
be successfully recharged. The GAAL, however, only considers the extra flow
generated from adding one new station in each iteration. Thus, when there are
no non-captured paths left that can be recharged by only one additional CS,
the algorithm must add a random instance to the solution and try again for a
new iteration. As a result, the GAAL is unsuitable for identifying the optimal
number of CSs and their locations to capture 100% of the flow. Nevertheless,
considering the simple logic behind the algorithm, the results produced can be
said to be surprisingly good.

5.3.2 Genetic Algorithm

To compare the results between the GA and the GAAL, they were executed
with the same number of CSs for each EV range. For the GA specifically, the
population limit and mutation frequency were set according to the calibration
results in section 6.2.2. It should be noted that the GA was only executed
twice for each range for two main reasons. The first reason is the considerable
time consumption, especially for high values of p. In addition, the GA proved
seemingly robust after the algorithm-specific parameters were calibrated, pro-
ducing consistent results over multiple runs. The results produced by the GA
are presented in Table 13.

170km 325km 585km

25CSs 73.69% 88.32% 99.85%

40CSs 79.60% 97.26% 100%

70CSs 94.16% 100% 100%

Table 13: GA Result-matrix

Examining the table, it is evident that the GA is a time-consuming yet powerful
algorithm. The total runtime was more than 16 hours, which is considerably
longer than the GAAL. Nevertheless, it produced significantly better results,
justifying the required computational resources. As the results from Table 12
display, the GAAL was incapable of finding a solution that could capture 100%
flow for any EV range by strictly greedy-adding CSs. For this reason, it would
be necessary to use the GA to investigate the minimum number of stations
needed to capture 100% of the flow. However, this would entail initiating the
algorithm for every p until the exact number of CSs needed to cover 100%
is identified. Considering the long run times, this is not a feasible endeavor.

47

Hence, the following section investigates how the GA and GAAL can be used
in combination to identify quality solutions in a time-efficient manner.

5.3.3 Combining the GA and GAAL

Combining the two algorithms could be a time-efficient method for producing
high-quality solutions. This can be done by executing the GA to optimize a
given number of CSs, then adding new CSs to this solution with the greedy
algorithm until the desired flow volume is captured. To further maximize the
quality of the solution, the GA may be deployed to solve for the new number
of CSs identified after the greedy-adding is performed. To further save time,
this solution can be included as a chromosome in the initial population for the
GA when it is initialized the second time, supplying the algorithm with a good
starting point and enabling a rapid convergence. The alternative would be to
run the GA for each p until the desired flow has been identified, which is highly
time-consuming, if not infeasible, to perform for all three vehicle ranges.

We tested the efficiency of combining the algorithms by trying to find the
number of CSs needed to capture 100% flow for each EV range. First, the GA
is initialized to find a solution from the GA below 100%. If the first execution
resulted in 100% flow, there would be no way of knowing how many CSs in
the solution are redundant to capture all the flow, and the algorithm must be
executed again with a lower p. Thus, an output solution below 100%, while
close to it, is the ideal starting point. From the results in Table 13, we have
solution outputs from the GA that are close to 90% for each range. The CS
locations for 70, 40, and 25 CSs for 170, 325, and 585km range, respectively,
were inserted into the GAAL, adding CSs to the solutions until the flow no
longer increases or it reaches 100%. If the GAAL gets stuck before the flow
reaches 100%, which occurs when two or more stations are needed to recharge
a path, the GA is deployed with the current best solution as a chromosome in
the initial population. If the flow is still not 100% from the second iteration of
the GA, the process continues until it is reached. The results for each range
are displayed in Table 14.

Algorithm Iteration Flow Captured Number of CSs Runtime (sec)

1. GA 94.16% 70 16 026

1. GAAL 97.49% 98 7 485

2. GA 98.83% 98 16 500

2. GAAL 100% 108 6 792

Table 14: 100% flow capture for 170km range

48

Algorithm Iteration Flow Captured Number of CSs Runtime (sec)

1. GA 97.26% 40 15 100

1. GAAL 98.70 % 59 8 900

2. GA 99.97% 59 34 800

2. GAAL 100% 64 3 000

Table 15: 100% flow capture for 325km range

Algorithm Iteration Flow Captured Number of CSs Runtime (sec)

1. GA 99.85% 25 8 800

1. GAAL 100% 38 4 100

Table 16: 100% flow capture for 585km range

For the 585km EV range, the solution able to capture 100% flow was identified
by just one execution of each algorithm. For 325km, two iterations were needed
and it was found that 64 CSs can cover all the flow. With the second execution
of the GA taking more than 34 000 seconds, which amounts to 9.5 hours, it is
clear that this combining of the algorithms was the only feasible way to identify
the optimal solutions for 100% flow coverage. For 170km, two iterations were
also needed to capture 100% flow by locating 108 CSs. With a runtime of over
14 hours, this would not have been practical to perform by "guessing" the right
number of CSs with the GA.

6 Discussion
This section discusses the implications of the results presented in section 6 and
certain weaknesses and limitations that affect the results. Following this, the
reader will be presented with suggestions for further research.

6.1 Implications of Results

An important aspect of the allocation process of charging stations across the
Norwegian road network is the relationship between the captured flow and the
number of CSs. Naturally, it is desirable to cover the most demand in a cost-
efficient manner. Figure 7 attempts to illustrate this relationship by showing
how the flow coverage changes as the number of allocated CSs increases for all
given EV ranges.

49

Figure 11: Flow captured for different numbers of CSs

It should be noted that the numbers used in the above figure are results from
the GAAL. The GA would likely identify a better allocation capturing a higher
amount of flow for each number of CSs. Notwithstanding, deploying the GA
for these results would not be feasible. For this reason, the results displayed
only estimate the number of CSs needed to capture each flow in the graph,
offering some insights into the relationship between the number of CSs and
the flow captured. Unsurprisingly, there is a non-linear relationship between
the number of CSs and the captured flow, as the marginal gain of adding new
CSs decreases as the number of initialized stations increases.

In the current system of existing CSs in Norway, 100% of the flow for
325 and 585 km EV ranges is captured. However, the current infrastructure
only captures 87.9% of the flow for an EV range of 170km, which is arguably
insufficient. Figure 12 illustrates the locations of all current CS locations (left)
compared to an alternative allocation that provides approximately the same
flow coverage using the GA. It was found that 55 CSs were sufficient to capture
a slightly higher flow than the current infrastructure.

50

Figure 12: Comparison of current system and a similar flow coverage provided
by the GA

The left part of this figure shows the 330 current CS locations in Norway in
the network. Despite having a high number of CS with an even distribution
across the country, this current infrastructure is only capable of capturing
87.9% flow with a 170km range according to our model. The sub-figure to the
right shows the estimated locations of 55 CSs as calculated by the GA, which
captures 89.5% flow for the same EV range. This finding is surprising when
considering the visual representation of the two maps, especially considering
how the GA solution has entirely omitted to locate CSs north of "Bodø," failing
to recharge large geographical parts of the country. This is partly due to the
modeled flows, which are estimated to be negligible for this area. When the
GA accounts for this, it focuses on placing the stations where it can capture
more flow.

Another reason is that the estimates for the current system rest on the
simplifying assumptions of the model, such as no deviations from the shortest
path between an origin and destination node. This assumption can result in a
very different objective value for seemingly identical solutions, as many nodes
are less than 1km apart. When a flow reaches a destination node, it is assumed
to return precisely the way it came, and the model neglects the opportunity to
recharge here at a neighboring node only meters away. When the GA locates
each CSs, it can account for these minor differences and adjust accordingly by
moving a station within the range of a passing flow to capture it. As a result,
the way the model is constructed, this comparison with the current system
does not provide much insight. If we could model the possibility for slight
deviations from the shortest paths, the current system should indeed be able

51

to cover 100% flow for the shortest range.
Furthermore, another potential weakness in the solution provided by the

GA is the possible reason for the lack of CSs allocated in the most northern part
of the country. In the current system, there is seemingly a fair amount of CSs in
the northern region. It may therefore seem like the GA is more concerned with
capturing the flow in the middle and southern regions of Norway, whereas the
current system is seemingly lacking the sufficient infrastructure to fully cover
these areas. One hypothesis that may explain why the GA does not locate any
CSs in the northern parts of the country is that the generated flow from the O-
D nodes in the northern parts of the country is exceedingly low. As explained
in section 3.1.2, the flow generated is decreasing with both drive time and the
length of path. Furthermore, it was seen in Figure 3 that the vast majority
of O-D nodes lie in the middle and southern parts of the country. Thus, it
becomes apparent that the flow generated by traveling between the northern
and southern/middle O-D nodes is significantly lower than if one were to travel
exclusively in the middle parts of the country. This being said, the proposed
allocation is not necessarily better than how the current system is modeled,
as it is contingent on several assumptions and estimations that may not be
entirely correct.

However, we can compare the current system with the solutions that cap-
ture 100% flow. This may provide some insights into the current system’s
inefficiencies and where CSs could be redundantly placed. With the results
from Table 14, we can visualize the location of all CSs required to capture
100% flow for an EV range of 170km. This is arguably the most interesting
range to compare with the current system, as a 100% flow coverage for an EV
range of 170km also ensures full coverage for EV ranges beyond this. Figure
13 below shows the proposed locations of all 108 CSs required to capture 100%
flow for an EV range of 170km.

52

Figure 13: Location of CSs to capture 100% for EV range of 170km

Unlike the solution in Figure 12, CSs are now located throughout the whole
country, including the most northern parts. Although the solution is able to
capture 100% flow with only 108 stations, certain factors should be considered
before accepting the locations as an optimal solution. The first is the fact that
the model does not account for the capacity at each CS. Nevertheless, more
stations appear to be placed in more densely populated areas, which to some
extent satisfies the capacity demands in the areas associated with more flow.

There are several assumptions that must hold if the proposed solution can
be said to be an optimal solution. One of the core assumptions that the model
is based on are the flow volumes assumed to travel between each O-D pair.
Estimating the flows correctly is a difficult task and often relies on a gravity
model with many implied assumptions. The gravity model used for this thesis
can be considered a simple version, where the flow on an O-D path increases
in relation to the number of dwellings and holiday homes, while decreasing in
the drive time and distance of the path. Despite this logic holding true in a
general sense, how much each of these factors influences the exact flow is not
sufficiently modeled for this thesis. To do this requires substantial research on
the geographical area being investigated.

Furthermore, the flows are estimated with the assumption that the distri-
butions of EVs are the same across all the O-D nodes, which is unlikely to
be true. It is reasonable to assume that the concentration is higher in urban
areas, resulting in an overestimation of the flows of EVs traveling between the
rural nodes of the network. In addition, the selection of the O-D pairs, both
which to choose and the number to include, could be a weakness in our im-
plementation. We made assessments based on general tendencies and aspects

53

assumed to affect Norwegians’ travel habits. For instance, some of the most
popular municipalities for holiday homes was chosen and most of the largest
cities.

6.2 Further Research

In light of the discussion above, it is clear that there are several model assump-
tions and limitations that could and should be further investigated in order to
improve the feasibility of the proposed solutions.

Firstly, since the generated flows are such a significant part of the solution,
further research to identify an accurate implementation of a gravity model for
Norwegian intercity and long distance travel would be highly beneficial for the
quality of the results proposed by the model. The implemented gravity model
is a simple model where the generated flow is a function of drive time, path
distance, number of dwellings and holiday homes. Furthermore, finding data
or using general qualitative assessments to account for the differences in EV
distributions are also suggested for further research to better model the flow
volumes of EVs in the network.

Secondly, due to the importance of the number of O-D nodes, as well as
their respective locations, more extensive research may be necessary to select
a set of O-D locations that more realistically represents the reality of long
distance traveling occurring in Norway.

Finally, The assumption of no deviation from the shortest paths is also
a significant weakness in this model. If a path cannot be recharged by a
given solution, it is assumed that the entire flow cannot be captured. This is
a simplification of reality, as most EV drivers would accept to deviate from
the path in order to avoid becoming stranded. It should therefore be further
researched how to model the human behaviour better. One idea could be to
implement the use of deviation paths, to reflect that multiple paths can be
used to reach the same destination.

54

7 Conclusion
In this thesis, the FRLM has been applied to investigate an optimal allocation
of charging stations in Norway for electric vehicles. Vehicle ranges of 170, 325
and 585km was considered and a . Since the FLRM cannot by solved as a
traditional MILP, the use of alternative methods, like heuristics, is a necessity.
Although the genetic algorithm generally produced better results than the
greedy-adding algorithm, it is too computationally demanding to be used by
itself. Thus, it was found that a combination of the greedy-adding algorithm
and the genetic algorithm is better suited for solving this problem, rather than
relying on one heuristics approach alone.

Furthermore, this thesis highlights potential inefficiencies in the current
system and proposes one solution for each vehicle range where 100% flow cov-
erage is obtained. Although the model employed has certain weaknesses and
does not consider the capacity at each charging station location, it can help
relevant decision-makers in determining where charging stations should be lo-
cated in order to maximize the demand covered.

55

References
Baumol, W. J., & Wolfe, P. (1958). A warehouse-location problem. Operations

research, 6 (2), 252–263.
Berman, O., & Simchi-Levi, D. (1988). Finding the optimal a priori tour

and location of a traveling salesman with nonhomogeneous customers.
Transportation Science, 22 (2), 148–154.

Black, W. R. (2003). Transportation: a geographical analysis. Guilford Press.
Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyz-

ing, and visualizing complex street networks. Computers, Environment
and Urban Systems, 65 , 126–139.

Cacchiani, V., Hemmelmayr, V. C., & Tricoire, F. (2014). A set-covering based
heuristic algorithm for the periodic vehicle routing problem. Discrete
Applied Mathematics, 163 , 53–64.

Capar, I., & Kuby, M. (2012). An efficient formulation of the flow refueling
location model for alternative-fuel stations. Iie Transactions, 44 (8), 622–
636.

Christiansen, H. (2018). Det er enklere enn noensinne å dra på el-
bilferie. slik planlegger du turen. Aftenposten. Retrieved 2022-
06-16, from https://www.aftenposten.no/motor/i/na9pzd/
det-er-enklere-enn-noensinne-aa-dra-paa-elbilferie-slik
-planlegger-du-turen

Chung, S. H., & Kwon, C. (2015). Multi-period planning for electric car charg-
ing station locations: A case of korean expressways. European Journal
of Operational Research, 242 (2), 677–687.

Church, R., & ReVelle, C. (1974). The maximal covering location problem. In
Papers of the regional science association (Vol. 32, pp. 101–118).

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathe-
matics of operations research, 4 (3), 233–235.

Daskin, M. (1997). Network and discrete location: models, algorithms and
applications. Journal of the Operational Research Society, 48 (7), 763–
764.

Dejax, P. J. (1988). A methodology for warehouse location and distribution
systems planning. In Freight transport planning and logistics (pp. 289–
318). Springer.

Efthymiou, D., Chrysostomou, K., Morfoulaki, M., & Aifantopoulou, G.
(2017). Electric vehicles charging infrastructure location: a genetic algo-
rithm approach. European Transport Research Review, 9 (2), 1–9.

Elbil.no. (2022). Norwegian ev policy. Retrieved 2022-05-11, from https://
elbil.no/english/norwegian-ev-policy/

Figenbaum, E. (2018). Electromobility status in norway: mastering long
distances–the last hurdle to mass adoption. TØI report(1627/2018).

56

https://www.aftenposten.no/motor/i/na9pzd/det-er-enklere-enn-noensinne-aa-dra-paa-elbilferie-slik-planlegger-du-turen
https://www.aftenposten.no/motor/i/na9pzd/det-er-enklere-enn-noensinne-aa-dra-paa-elbilferie-slik-planlegger-du-turen
https://www.aftenposten.no/motor/i/na9pzd/det-er-enklere-enn-noensinne-aa-dra-paa-elbilferie-slik-planlegger-du-turen
https://elbil.no/english/norwegian-ev-policy/
https://elbil.no/english/norwegian-ev-policy/

GeoNorge. (2022). National roads database - road network for routing.
Kartkatalogen. Retrieved 2022-01-13, from https://kartkatalog
.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan
-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313

Gwalani, H., Tiwari, C., & Mikler, A. R. (2021). Evaluation of heuristics for the
p-median problem: Scale and spatial demand distribution. Computers,
Environment and Urban Systems, 88 , 101656.

Hodgson, M. J. (1990). A flow-capturing location-allocation model. Geograph-
ical Analysis, 22 (3), 270–279.

Kuby, M., & Lim, S. (2005). The flow-refueling location problem for
alternative-fuel vehicles. Socio-Economic Planning Sciences, 39 (2), 125–
145.

Kuby, M., & Lim, S. (2010). Heuristic algorithms for siting alternative-fuel
stations using the flow-refueling location model. European Journal of
Operational Research, 204 (1), 51–61.

Kuby, M., Lim, S., & Upchurch, C. (2009). A model for location of capacitated
alternative-fuel stations. Geographical Analysis, 41 (1), 85–106.

Liu, K., Yamamoto, T., & Morikawa, T. (2017). Impact of road gradient on
energy consumption of electric vehicles. Transportation Research Part
D: Transport and Environment, 54 , 74–81.

Ministry of Transport. (2017). Meld. st. 33 (2016–2017) [Stortingsmelding].
Regjeringen.no. Retrieved 2022-01-11, from https://www.regjeringen
.no/no/dokumenter/meld.-st.-33-20162017/id2546287/

MirHassani, S., & Ebrazi, R. (2013). A flexible reformulation of the refueling
station location problem. Transportation Science, 47 (4), 617–628.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
Moore, J. L., Folkmann, M., Balmford, A., Brooks, T., Burgess, N., Rahbek,

C., . . . Krarup, J. (2003). Heuristic and optimal solutions for set-covering
problems in conservation biology. Ecography, 26 (5), 595–601.

Nwogugu, M. (2006). Site selection in the us retailing industry. Applied
mathematics and computation, 182 (2), 1725–1734.

OpenChargeMap. (2022). OpenChargeMap API. Retrieved 2022-04-17, from
https://api.openchargemap.io/v3

Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review.
European journal of operational research, 111 (3), 423–447.

Pagany, R., Ramirez Camargo, L., & Dorner, W. (2019). A review of spatial
localization methodologies for the electric vehicle charging infrastructure.
International Journal of Sustainable Transportation, 13 (6), 433–449.

Perkowski, J. (2017). How china is raising the bar with aggressive
new electric vehicle rules. Forbes.com. Retrieved 2022-06-01,
from https://www.forbes.com/sites/jackperkowski/2017/10/
10/china-raises-the-bar-with-new-electric-vehicle-rules/

57

https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://www.regjeringen.no/no/dokumenter/meld.-st.-33-20162017/id2546287/
https://www.regjeringen.no/no/dokumenter/meld.-st.-33-20162017/id2546287/
https://api.openchargemap.io/v3
https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac
https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac
https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac

?sh=2a44162d77ac
Petroff, A. (2017). These countries want to ban gas and diesel cars. CNN

Money, 11 .
Plane, D. R., & Hendrick, T. E. (1977). Mathematical programming and the

location of fire companies for the denver fire department. Operations
Research, 25 (4), 563–578.

Ritchie, H., Roser, M., & Rosado, P. (2020). Co and greenhouse gas emissions.
Our world in data.

Røed, G. (2021). Så stor er elbil-andelen i storbyene. Motor.com. Re-
trieved 2022-06-19, from https://www.motor.no/bompenger/sa-stor
-er-elbil-andelen-i-storbyene/101148

Statistics Norway. (2022a). 07849: Registered vehicles, by type of transport
and type of fuel (M) 2008 - 2021. Retrieved 2022-05-06, from https://
www.ssb.no/statbank/table/07849/

Statistics Norway. (2022b). 06265: Dwellings, by type of building (M) 2006 -
2022. Retrieved 2022-04-03, from https://www.ssb.no/en/statbank/
table/06265/

Teitz, M. B., & Bart, P. (1968). Heuristic methods for estimating the gener-
alized vertex median of a weighted graph. Operations research, 16 (5),
955–961.

Yao, J., Zhang, X., & Murray, A. T. (2019). Location optimization of urban
fire stations: Access and service coverage. Computers, Environment and
Urban Systems, 73 , 184–190.

58

https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac
https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac
https://www.forbes.com/sites/jackperkowski/2017/10/10/china-raises-the-bar-with-new-electric-vehicle-rules/?sh=2a44162d77ac
https://www.motor.no/bompenger/sa-stor-er-elbil-andelen-i-storbyene/101148
https://www.motor.no/bompenger/sa-stor-er-elbil-andelen-i-storbyene/101148
https://www.ssb.no/statbank/table/07849/
https://www.ssb.no/statbank/table/07849/
https://www.ssb.no/en/statbank/table/06265/
https://www.ssb.no/en/statbank/table/06265/

8 Appendices

8.1 A: Technical Considerations

This section will briefly go through the most important technical aspects that
we encountered during the implementation of the code. The algorithms were
executed on a computer with 16GB RAM and an Intel Core i5-8500 3.00 GHz
CPU.

During the implementation of the heuristics algorithms many steps were
conducted in order to optimize the runtime of the greedy-adding, greedy-
adding with substitution and the genetic algorithm. The main network that
was used in this thesis consists of 1 583 nodes and 1 918 edges. Although this
may not be considered large in a general context, it is relatively big compared
to previously used networks that have been solved by using the FLRM. The
main challenge in this regard was the initially long runtime for the genetic al-
gorithm. The first step that was taken to reduce the runtime of this algorithm
was to implement multiprocessing for the greedy-deletion crossover part of the
algorithm. By implementing multi-processing for this part, the genetic algo-
rithm could perform the greedy-deletion crossover for multiple chromosomes
simultaneously instead of looping through one chromosome at a time. This
ultimately led to a 600% decrease in the runtime of the genetic algorithm.
Unfortunately, this was not possible to implement for the greedy algorithms,
as multiprocessing only works for loops that can be parallelized.

However, we were successful in further reducing the runtime of all algo-
rithms by performing relatively simple steps. By using tuples and dictionaries
wherever possible, we were able to reduce the overall runtime of all heuristics
algorithms by approximately 300%. For the genetic algorithm, this was in
addition to the already 600%. If the steps above was not performed, there is
no way it would have been feasible to use the genetic algorithm. The greedy-
adding algorithm could have been possible to use, but this is not certain. This
being said, it might seem like Python is not the optimal programming language
to use for processor-intensive tasks as those performed in this thesis. A more
fitting programming language is C, as this is a structure-oriented language,
while Python is a object oriented language.

8.2 B: Links to Code and source data

All code, figures and data required to replicate the results is available on one
of the authors’ Github page:
https://github.com/aperatinos/Optimal-Location-of-Electric-Vehicle-Charging-
Stations-in-Norway-using-the-FLRM

The dataset used to create the road network of Norway can be found here:
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-

59

https://github.com/aperatinos/Optimal-Location-of-Electric-Vehicle-Charging-Stations-in-Norway-using-the-FLRM
https://github.com/aperatinos/Optimal-Location-of-Electric-Vehicle-Charging-Stations-in-Norway-using-the-FLRM
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313

34f9-4423-be12-8e8523089313

60

https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313

	Introduction
	Background
	Problem statement and thesis contribution

	Literature review
	Facility Location Problems
	Flow Refueling Models
	Heuristic approaches for large location problems

	Data Collection and Preparation
	Data Collection
	Selection of O-D Pairs
	Gravity Model

	Data Preparation

	Optimization Models
	The FRLM
	MILP formulation
	Challenges

	Implementation of Algorithms
	Calculating objective value
	Greedy Algorithms
	Genetic Algorithm

	Performance and Results
	Current System
	Performance of the Heuristics Algorihms
	Test Network
	Road Network of Norway

	Results
	Greedy-adding Algorithm
	Genetic Algorithm
	Combining the GA and GAAL

	Discussion
	Implications of Results
	Further Research

	Conclusion
	References
	Appendices
	A: Technical Considerations
	B: Links to Code and source data

