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Abstract 

Price promotions can drive up short-term sales substantially. To establish whether and 

how a business can truly benefit from a price promotion bump, previous research has 

proposed multivariate linear regression models decomposing the performance effect of 

promotion into three constituent parts: cross-brand effects, cross-period effects, and 

category expansion effects. However, under missing data conditions, the original 

models fail to perform well, with a large part of constituent effects unexplainable. In 

this study, we propose a system of models that possess both explanatory and predictive 

power and can directly work on an imperfect dataset. Results show that the Bayesian 

linear regression models are able to conduct standard decomposition by demonstrating 

uncertainty and that our proposed deep neural networks drive predictive performance 

up to 42.14%. 

    

 

 

 

 

 

 

 

 

  



   
 

I. Introduction 

Sales promotion usually comes with a sales bump for the promoted item (Neslin, 2002, 

p. XI). However, the sales increase does not always bode well. To illustrate, suppose 

one promoted brand experiences a large sales surge. The increase can come from other 

brands of the same product category dropping sales (cross-brand effect) or from 

bringing in sales from other time periods (e.g., through stockpiling). The retailer can 

hardly gain any significant benefit from these two effects unless there exists a possible 

difference in margins. In comparison, both retailers and manufacturers would benefit 

from price promotions with conspicuous category consumption increase (category-

expansion effect). Thus, it is meaningful to decompose the effect of a price promotion 

into its elemental parts.  

For this purpose, Van Heerde et al. (2004) developed a series of standard 

decomposition models based on multivariate linear regression. The models break down 

the own-brand sales effect into net cross-brand, cross-period, and category-expansion 

effects. However, in real life, data is usually messy and incomplete. It is often 

unfeasible for retailers or manufacturers to track and collect all the relevant data 

perfectly. The reasons can be sensor failure, data transformation errors or more 

commonly that costly data storage systems constrain the businesses to collect based on 

priority. In our case, in the event of missing regular price and display form data, the 

previously proposed standard decomposition models fail to perform well with the 

incapability to model uncertainty, model fits dropping and a large part of constituent 

effects unexplainable.  

In this study, we use store-level scanner data and build a system of explanatory and 

predictive models based on Bayesian linear regression and deep neural networks. 

Directly working on less and incomplete data, the Bayesian linear regression models 

proposed by us are able to conduct standard decomposition through demonstrating 

uncertainty. Furthermore, using RMSE as the evaluation metric, our proposed deep 

neural networks drive predictive performance up to 42.14%. 

The paper is organized as follows. In section §2, we present related theoretical 

framework. §3 discusses our scanner dataset, and §4 shows the specifications of 

previous models and models proposed by us. We provide empirical results in §5, and 



   
 

in the last section, §6 we present the conclusions, implications, and limitations for 

future research.   



   
 

II. Theoretical Background 

2.1 Unified Framework for sales promotion decomposition 

Van Heerde et al. (2004) adopt a unit-based approach to decompose sales-promotion 

effects into its constituent parts. In their work, they define secondary demand effects 

as the net effect of a promotion on the sales of nonpromoted brands in the same week, 

category, and store, and primary demand effects as the net effect of a promotion on 

category sales within the same week in the same store. 

Primary demand effects are further split into cross-period effects and category-

expansion effects. The former stand for short-period sales shift caused by lead effects 

(Doyle & Saunders, 1985; Gonul & Srinivasan, 1996; Kalwani et al., 1990; Macé & 

Neslin, 2004; van Heerde et al., 2000) and lagged effects (e.g., van Heerde et al., 2000). 

The latter effects may consist of increased consumption (Ailawadi & Neslin, 1998; 

Assuncao & Meyer, 1993; Chandon & Wansink, 2002), deal-to-deal purchasing 

(Krishna, 1994), category switching (Walters, 1991), and store switching (Bucklin & 

Lattin, 1992). 

Previous studies form a unified framework capable of defining sales-promotion effects 

mathematically. First, a series of criterion variables are specified for both the own-

brand sales effect and its constituent effect. More specifically, variable OBS which 

stands for own-brand sales set as the criterion variable for the own-brand sales effect. 

Similarly, cross-brand sales, cross-period categorical sales, and total category sales are 

set as criterion variables for cross-brand effect, cross-period effect, and category-

expansion effect, respectively. Then, they regress these criterion variables on the same 

set of independent variables constructed by promotion variables of interest such as 

price index, cross-brand price index, and regular price, and sensible covariates such as 

the lag terms of the price index. Across models, only the left-hand side of the equations 

differs. This stability makes it possible to achieve a decomposition of performance 

effect of promotion by comparing the parameters of interest across equations.     

 

 

 

 



   
 

2.2. Multiple Linear Regression 

The regression analysis aims to uncover the correlations between two or more variables 

with causal effects and make predictions for the topic using the relation. The regression 

models with one dependent variable and more than one independent variable are known 

as multivariate regression analysis (Büyüköztürk, 2002; Köksal, 1985; Tabachnick & 

Fidell, 1996). 

In multivariate regression analysis, an attempt is made to account for the variation of 

the independent variables in the dependent variable synchronically (Ünver & Gamgam, 

1999). The multivariate regression analysis model is formulated as: 

𝑌 =  𝛽0 + 𝛽1𝑥1+ . . +𝛽𝑛𝑥𝑛 +  휀 

where, 𝑌 = dependent variable 

𝑥𝑖 = independent variable 

𝛽𝑖 = parameter 

휀 = error term 

The assumptions of multivariate regression analysis are normal distribution of errors, 

linearity, freedom from extreme values and having no multiple ties between 

independent variables (Büyüköztürk, 2002) 

 

2.3. Bayesian linear regression 

The way we estimate parameters of a multivariate linear regression model is to 

minimize its loss function Mean Squared Error (MSE) either analytically or through 

using gradient descent algorithms. 

𝑀𝑆𝐸1 =  
1

𝑁
∑(𝑦𝑖 − 𝑦′𝑖)2

𝑛

𝑖=1

 

where 𝑦𝑖is the actual value and 𝑦′𝑖 the predicted value derived from provided 

variables. In our case,  

                                                     𝑀𝑆𝐸2 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦′′𝑖)2𝑛

𝑖=1  

where 𝑦𝑖is the same actual value with 𝑀𝑆𝐸1 and 𝑦′′𝑖 the predicted value derived from 

approximated variables due to the failure of gathering complete data.  

Thus, the missing regular price data inject uncertainty into parameter estimation 

compared to the case with complete data. However, multivariate linear regression 

adopts the frequentist point estimate method, which only summaries the posterior 



   
 

distribution. Interpreting models via tables of point estimates throws out the uncertainty 

of the parameters added due to incomplete data.  

In contrast, from a Bayesian perspective, a parameter is a distribution or density 

displaying copious information regarding uncertainty (e.g., the most probable values, 

the degree of skewness, and credible interval). Therefore, adopting Bayesian inference 

allows us to decompose sales promotion effect through modelling both intrinsic 

uncertainty and extrinsic uncertainty added by the missing data.  

We introduce the Bayesian linear regression models by illustrating the Bayesian 

perspective, prior distributions and MCMC estimation.  

2.3.1 Bayesian Inference 

Utilizing probabilistic models, the Bayesian perspective focuses on making inferences 

regarding target parameters of interest through using data and subjective analysis. The 

adoption of subjective analysis characterizes the Bayesian analysis approach. More 

specifically, one would first gather all the available information about the parameter of 

interest to derive a prior distribution accordingly, and the choice of the prior 

distribution can affect the final inference hinging on data availability.     

Among the types of prior distributions, the conjugate priors are set after one makes 

assumptions based on mathematical or computational convenience and have the same 

parametric form of the likelihood function. As a result of conjugacy, one can calculate 

the posterior distribution using an analytical approach and produce posterior samples 

directly.   

Mathematically speaking, let θ = (θ0, …, θd-1) 
T be a vector of parameter of interest, 

and y = (y1, …, yn ) 
T a vector of realization of the random variables with distribution 

p(yi|θ). The likelihood function of yi is as follows: 

Ը (θ|y) = ∏ p(yi|θ)𝑛
𝑖=1       (1) 

Equation (1) contains all the information from the observations yi given θ. According 

to the Bayes' theorem, θ is the joint posterior distribution: 

p(θ|y) = 
Ը (θ|y)p(θ)

∫ Ը (θ|y)p(θ)dθ
ʘ

               (2) 

where ʘ  is the parametric space of θ and p(θ) stands for the prior distribution. 

∫ Ը (θ|y)p(θ)dθ
ʘ

 is the marginal distribution of y and independent on θ, the equation 

(2) can thus be expressed as: 



   
 

p(θ|y) ∝ Ը (θ|y)p(θ)           (3) 

The predictive posterior distribution which makes the prediction of unknown values of 

the dependent variable y′ and the marginal distribution of y: 

p(y`|y) = ∫ p(y`|θ, y)p(θ|y)dθ 
ʘ

,             y` ~ p(y`|θ, y) 

p(y) = ∫ Ը (θ|y)p(θ)dθ
ʘ

.     

Bayesian inference takes all the available information into account. The prior 

information is included via the prior distribution and combined with the likelihood 

function that represents the data. The inference is conducted based on the posterior 

distribution.  

 

2.3.2 Linear model: conjugate priors 

A Bayesian linear model in the form 

𝒚 =  X𝛽 +  𝜺 where 𝜺 ~ 𝑁𝑛(𝟎, 𝜎2𝐈𝑑) 

Where 𝜎2 > 0, 𝐈𝑑 stands for identity matrix,  𝜷 =  (𝛽0, … , 𝛽𝑑−1)T a d × 1 vector, X an 

n × d design matrix, and we assume that 휀𝑖′𝑠 are independent. The likelihood function 

is also: 

𝑓𝑦(𝐲|𝐗, 𝜷, 𝜎2) = (2𝜋𝜎2)−𝑛 2⁄ exp {−
1

2𝜎2
(𝐲 − 𝐗𝜷)T(𝐲 − 𝐗𝜷)} 

From Bayesian perspective, the inference process centers around data and prior 

information. Thus, we assume a 𝑵𝑑(𝒎, 𝜎2V), which is a conjugate prior distribution 

for 𝜷|𝜎2 as follows 

  𝑓(𝜷|𝜎2, 𝐦, 𝐕) = (2𝜋𝜎2)−𝑑 2⁄ |𝐕|−𝑑 2⁄ exp {−
1

2𝜎2
(𝜷 − 𝐦)T𝐕−1(𝜷 − 𝐦)} 

 

For 𝜎2, we also set a conjugate prior distribution given by an Inverse Gamma denoted 

by IG(a,b) in the form of 

𝑓(𝜎2|𝑎, 𝑏) = 
𝑏𝑎

Γ(𝑎)
(𝜎2)𝑎−1exp {−

𝑏

𝜎2
} 

where a > 0 and b > 0. Since we have the likelihood function and the proper priors, we 

can then find the posterior distribution to make inference on the parameters β and 𝜎2. 

Using the Bayes' theorem, we have 

  𝑓(𝜷, 𝜎2|𝐲, 𝚾) =
𝑓𝑦(𝐲|𝐗, 𝜷, 𝜎2

)𝑓(𝜷|𝜎2, 𝐦, 𝐕)𝑓(𝜎2
|𝑎, 𝑏)

𝑓𝑦(𝒚)
 



   
 

  ∝  𝑓𝑦(𝐲|𝐗, 𝜷, 𝜎2)𝑓(𝜷|𝜎2, 𝐦, 𝐕)𝑓(𝜎2|𝑎, 𝑏),  

  ∝  (𝜎2)−𝑛
2⁄ −𝑑

2⁄ +𝑎−1(exp {−
𝐴

2𝜎2
},     

Where, 

𝐴 =  (𝐲 −  𝚾𝜷)T(𝐲 −  𝚾𝜷) +  (𝜷 − 𝐦)T𝐕−1(𝜷 − 𝐦) + 2𝑏, 

  =  𝐲T𝐲 − 𝐲𝚾𝜷 −  𝜷T𝚾T𝐲 +  𝜷T𝚾T𝚾𝜷 +  𝜷T𝐕−1𝜷 −  𝜷T𝐕−1𝐦 −

 𝐦T𝐕−1𝜷 +  𝐦T𝐕−1𝐦 +  2𝑏,    

  = 𝜷T(𝚾T𝚾 +  𝐕−1)𝜷 + 𝜷𝑇(𝚾T𝐲 + 𝐕−1𝐦) + (𝐦T𝐕−1𝐦 + 2𝑏 +

  𝐲T𝐲) −  (𝐲T𝚾 + 𝐦T𝐕−1)𝜷.   

For convenience, let Λ =  (𝚾T𝚾 +  𝐕−1)−1 a d × d matrix and μ = (𝚾T𝚾 +

 𝐕−1)−1(𝚾T𝐲 +  𝐕−1𝐦) a d × 1 vector. Therefore, 

𝐴 =  𝜷T𝚲−1𝜷 −  𝜷T𝚲−1𝝁 −  𝝁T𝚲−1𝜷 +  𝐦T𝐕−1m + 2𝑏 + 𝐲T𝐲, 

         = (𝜷 − 𝝁)T𝚲−1(𝜷 − 𝝁) −  𝝁T𝚲−1𝝁 +  𝐦T𝐕−1𝐦 + 2𝑏 +  𝐲T𝐲. 

Finally, the joint posterior distribution for β and 𝜎2 is given by 

𝑓(𝜷, 𝜎2|y, Х) ∝ 𝑓𝑦(𝒚| 𝐗, 𝜷, 𝜎2)𝑓(𝜷|𝜎2, 𝐦, 𝐕)𝑓(𝜎2|𝑎, b),  

             ∝ 𝜎2−
𝑑

2 exp {−
(𝜷−𝝁)T𝚲−1(𝜷−𝝁

2𝜎2
} 

  × (𝜎2)−
𝑛

2
+𝑎−1 exp {−

𝐦T𝐕−1𝐦− 𝝁𝑇𝚲−1𝝁+2𝑏+ 𝐲T𝐲

2𝜎2
}.   (4) 

Therefore, the equation (4) shows that the posterior distribution 𝑓(𝜷, 𝜎2 |y, Х) is 

proportional to the multiplication of kernels of the 𝑵𝑛(𝝁, 𝜎2𝚲)  and IG (𝑎∗ =  −
𝑛

2
+

𝑎, 𝑏∗ = 𝑏 +  
𝐦T𝐕−1𝐦− 𝝁𝑇𝚲−1𝝁+ 𝐲T𝐲

2
).  

 

2.3.3 MCMC methods 

This section introduces the MCMC algorithm used in our study: Metropolis-Hastings.  

When it is unfeasible to find an analytical solution to compute a finite integral  

        ∫ 𝑔(𝜃)𝑝(𝜃)𝑑𝜃,                    (5) 

Where g(*) is an integrable function and p(*) is a probability density function. 

Independent and identical distributed samples are drawn from p(*) and estimated at 

g(*) and then averaged. Under affluent samples, the Strong Law of Large Numbers 

states that this average value eventually converges to (5). When directly sampling from 

p(*) is impossible, Metropolis-Hastings is an alternative to draw samples from p(*) 

following a Markovian dependence structure. 



   
 

Suppose we want to draw a sample from the posterior distribution p(θ|y) . The 

Metropolis-Hastings proposes distribution q(θ(t-1)) that generates candidate values θ* 

that are accepted as values from p(θ|y) with a certain probability (Ahmed Ali et al., 

2014) 

The Metropolis algorithm is presented below: 

Algorithm Metropolis-Hastings 

1. Initialize t = 1 and define the initial values 𝜃1
(0), 𝜃2

(0), … , 𝜃𝑑
(0)

 for the vector 

𝜽 = (𝜃0, 𝜃1, … , 𝜃𝑑−1);  

2. Sample 𝜽∗ from the proposal distribution q(𝜽(𝑡−1)); 

a. Compute 

𝛼(𝜽(𝑡−1), 𝜽∗) = min{1,
𝑝(𝜽∗

|𝐲)𝑞(𝜽(𝑡−1))

𝑝(𝜽(𝑡−1)|𝑦)𝑞(𝜽(∗))
}, 

b. Compute u ~ U[0,1]. If u < α(𝜽(𝑡−1), 𝜽∗), then 𝜽(𝑡) = 𝜽∗, otherwise, 

𝜽(𝑡) = 𝜽(𝑡−1); 

3. Take t = t+1 and return to step 2 until the desired posterior sample has been 

obtained. 

 

2.4. Deep Neural Networks 

Previous research has explored the implementation of neural network on predicting 

online product sales via promotion strategies (Chong et al., 2016). The result suggests 

that the neural network model shows reliability with low average relative error. 

Theoretically, when the linear restriction of the model form is relaxed, the possible 

number of non-linear structures that can be used to predict sales is numerous. Artificial 

neural networks (ANNs) are flexible computing frameworks for modeling a broad 

range of non-linear problems. One significant advantage of the ANN models over other 

classes of non-linear models is that ANNs are universal approximators which can 

approximate a large class of functions with a high degree of accuracy (Zhang et al., 

2001). Drawing on the practical and theoretical advantages of neural networks, we 

explore the predictive performance of deep neural network models in our case.           

We provide an introduction to ANNs and deep neural networks (DNNs) and how to 

implement them for regression. In essence, a DNN is an ANN with many hidden layers. 

Both of them are represented by a network of nodes. Each node first sums its inputs 



   
 

and then applies an activation function onto the result to achieve a non-linear 

transformation. 

Let xi be the ith input to the node of a neural network, wi be the weight of the ith input, 

bi be the bias of the ith input, n the total number of inputs, o the output of the node and 

𝜎 the activation function. For each node: 

o = 𝜎 (∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1 ), 

In our study, we use RELU as an activation function: 

𝜎(𝑥) = max (0, 𝑥)  

For regression problems, the output layer is a layer of a single node with a linear 

function as its activation function: 

 o = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1  

Fig 1 below presents the structure artificial neural network. The arrows show how the 

output of one node in a certain layer gets fed forward as the input to the nodes in the 

next layer. In our study, each node is connected with all the nodes in the next layer, 

thus constructing a fully-connected neural network. The input layer is symbolled with 

V, the output layer with O, and the hidden layers are labelled with Hj,k, where j 

represents the layer number and k the node number.  

 

Figure 1. A feedforward neural network with two hidden layers 

 

The training process of neural networks aims to minimize the loss function by updating 

weights and biases using the backpropagation algorithm. Each time the 



   
 

backpropagation runs over the entire training data, it forms an epoch. Typically, many 

epochs need to perform until the algorithm reaches a termination criterion, such as a 

fixed number of epochs or the error falling below a threshold.   

 

III. Model Specification 

3.1 Standard Decomposition via multivariate linear regression 

The standard decomposition divides the own-brand sales bump into three sources: 

cross-brand effect, cross-period effect, and category-expansion effect. In calculation, 

cross-brand effects are the shift from other brands' sales to the promoted brand's sales 

in this week when the price promotion of the focal brand exists. Cross-period effects 

represent the shift of both own-brand and cross-brand sales from pre- and post-

promotion period to the price promotion period. Since the cross-period effect is defined 

at the category level, it contains accelerated brand switching. Lastly, category-

expansion effects are expansion effects shown in own-brand sales that cannot be 

ascribed to other brands or periods.  

In total, the soda category contains J brands. When calculating cross-period and 

category-expansion effects, we define the time window as [t-T*, t+T] and estimate the 

models pooled across stores (i=1, … l). Following the work of van Heerde et al. (2004), 

in order to derive equal effects across stores with different category sales volumes, we 

calculate the divisions of all criterion variables by the average category sales per store 

(CSi). 

Let Sijt be the unit sales of brand j in store i in week t, the criterion variables for the 

standard decomposition are calculated as follows: 

𝑂𝐵𝑆𝑖𝑗𝑡= - 
𝑆𝑖𝑗𝑡

𝐶𝑆𝑖
,                                        𝐶𝐵𝑆𝑖𝑗𝑡= ∑

𝑆𝑖𝑘𝑡

𝐶𝑆𝑖

𝐽
𝑘=1
𝑘≠𝑗

,     

𝑃𝑃𝐶𝑆𝑖𝑡=∑ ∑
𝑆𝑖𝑘𝑡+𝑠

𝐶𝑆𝑖

𝐽
𝑘=1

𝑇
𝑠=−𝑇∗

𝑠≠0
,               𝑇𝐶𝑆𝑖𝑡=− ∑ ∑

𝑆𝑖𝑘𝑡+𝑠

𝐶𝑆𝑖

𝐽
𝑘=1

𝑇
𝑠=−𝑇∗    

And in the end, 

𝑂𝐵𝑆𝑖𝑗𝑡 =  𝐶𝐵𝑆𝑖𝑗𝑡 + 𝑃𝑃𝐶𝑆𝑖𝑡 + 𝑇𝐶𝑆𝑖𝑡                                               (6) 

where, minus Own-Brand Sales (OBS) stands for the own-brand effect, Cross-Brand 

Sales (CBS) represents cross-brand effect, Pre- and Post-Promotion Category Sales 

(PPCS) stands for the cross-period effect and Total Category Sales (TCS) stands for 

the category-expansion effect.  



   
 

In this study, we adopt a price index variable also used in ACNielsen's Scan∗Pro model 

(Wittink et al., 1988) to distinguish promotional prices from regular prices. The price 

index variable (PI) for each item equals the actual unit price divided by its regular unit 

price. In the case of the changes in the regular unit price, we update the price index 

according to the changed regular unit price. In the end, the price index only reflects 

temporary price promotion.    

Standard decomposition linear regression model specification: 

𝑂𝐵𝑆𝑖𝑗𝑡 = 𝛼1𝑗 + 𝛽𝑜𝑏,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾11𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾21𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾31𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾41,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾51,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾61,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾71,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾81,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝜇1𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1               (7)   

 

𝐶𝐵𝑆𝑖𝑗𝑡 = 𝛼2𝑗 + 𝛽𝑐𝑏,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾12𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾22𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾32𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾42,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾52,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾62,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾72,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾82,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝜇2𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1                (8) 

 

𝑃𝑃𝐶𝑆𝑖𝑗𝑡 = 𝛼3𝑗 + 𝛽𝑐𝑝,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾13𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾23𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾33𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾43,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾53,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾63,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾73,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾83,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝜇3𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1                 (9) 

 

𝑇𝐶𝑆𝑖𝑗𝑡 = 𝛼4𝑗 + 𝛽𝑐𝑒,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾14𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾24𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾34𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾44,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾54,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾64,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾74,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾84,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝜇4𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1                (10) 

 

for i= 1, …, I (stores), j= 1, …, J(brands), and t= T+ T*+1, …, Tmax – T-T* (weeks), 

where, 

PIijt = price index for brand j in store i in week t; PIijt equals 1−d/100 if there is a d 

percent discount for brand j with support l in week t in store i, and 1 otherwise. 

CPIijt = average price index across brands k, k=1, …, J, kj. 

RPijt = regular price for brand j in store i in week t. 

CRPijt = average regular price across brands k, k=1, …, J, kj. 

Wt = week dummy: 1 for week t, 0 otherwise. 



   
 

µ1ijt, µ2ijt, µ3ijt, µ4ijt = disturbance terms for brand j in store i in week t for equations 

T* is the number of leads, T is the number of lags, and Tmax is the total number of 

weeks 

βob,j  = for brand j, the effect on minus own-brand sales of the price index 

βcb,j  = for brand j, the cross-brand effect of the price index 

βcp,j  = for brand j, the cross-period effect of the price index 

βce,j  = for brand j, the category-expansion effect of the price index 

 

For equations (7)-(10), each dependent variable is regressed on the same set of 

independent variables. Thus, we derive the following equation from equation (6): 

βob,j = βcb,j + βcp,j + βce,j                                                (11) 

Put in words, equation (11) shows that for each brand, the own-brand effect equals the 

sum of its cross-brand effect, cross-period effect, and category-expansion effect. 

van Heerde et al. (2003, 2004) define the fraction of each effect as follows:  

 

fraction cross-brand effect= 
βcb,j

βob,j
 

fraction category-expansion effect=
βce,j

βob,j
 

fraction cross-period effect=
βcp,j

βob,j
 

 

RPijt and CRPijt serve as control for regular price effects. Given the lack of regular price 

data, we approach each brand's regular price in store i at week t by calculating the mode 

value. Similarly, CPIijt controls for cross-brand price-promotion effects. Besides, 

weekly indicator variables Wt accounts for the seasonal effect in sales. We also put in 

the same set of lead and lagged variables for PI and CPI to achieve mathematical 

consistency.  

The time window T for post-promotion period and T* for pre-promotion period should 

be as smallest as possible to prevent the diminishing of the number of degrees of 

freedom due to the rapid increase of the number of independent variables and decrease 

of the sample size. In our study, we use T = T*= 6, based on van Heerde et al. (2000), 

Macé & Neslin (2004), Nijs et al. (2001), and Pauwels et al. (2002).  

 



   
 

3.2 Standard Decomposition via Bayesian linear regression 

We use the same equations (Equation (7) - (10)) when conducting Bayesian linear 

regression. The residuals follow Gaussian distributions with means of 0 and unknown 

standard deviations. 

𝑒1𝑖𝑗𝑡~ 𝑁(0, 𝜌1)                (12) 

  𝑒2𝑖𝑗𝑡~ 𝑁(0, 𝜌2)                 (13) 

𝑒3𝑖𝑗𝑡~ 𝑁(0, 𝜌3)               (14) 

𝑒4𝑖𝑗𝑡~ 𝑁(0, 𝜌4)               (15) 

Next, we must define the likelihood for the data and priors for all parameters in the 

model. To keep the models most consistent with least-squares regression, we use the 

most common choice-Gaussian distribution: 

𝑂𝐵𝑆𝑖𝑗𝑡~ 𝑁(𝑢1, 𝜌1)              (16) 

𝐶𝐵𝑆𝑖𝑗𝑡~ 𝑁(𝜇2, 𝜌2)              (17) 

𝑃𝑃𝐶𝑆𝑖𝑗𝑡~ 𝑁(𝜇3, 𝜌3)            (18) 

𝑇𝐶𝑆𝑖𝑗𝑡~ 𝑁(𝜇4, 𝜌4)               (19) 

which says that each dependent variable follows a Gaussian (normal) distribution with 

a mean= µ and a standard deviation. The mean is equal to the right side of equations 

(7)- (10), and the standard deviation is the same standard deviation as in equation (12)-

(15). Thus, equations (16)- (19) can be rewritten into: 

𝑂𝐵𝑆𝑖𝑗𝑡~𝑁(𝛼1𝑗 + 𝛽𝑜𝑏,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾11𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾21𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾31𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾41,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾51,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾61,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾71,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾81,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝑒1𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1 , 𝜌1) 

 

𝐶𝐵𝑆𝑖𝑗𝑡~ 𝑁(𝛼2𝑗 + 𝛽𝑐𝑏,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾12𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾22𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾32𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾42,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾52,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾62,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾72,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾82,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝑒2𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1 , 𝜌2) 

 

𝑃𝑃𝐶𝑆𝑖𝑗𝑡~ 𝑁(𝛼3𝑗 + 𝛽𝑐𝑝,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾13𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾23𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾33𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾43,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾53,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾63,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾73,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾83,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝑒3𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1 , 𝜌3)                   



   
 

 

𝑇𝐶𝑆𝑖𝑗𝑡~ 𝑁(𝛼4𝑗 + 𝛽𝑐𝑒,𝑗𝑃𝐼𝑖𝑗𝑡 + 𝛾14𝑗𝐶𝑃𝐼𝑖𝑗𝑡 + 𝛾24𝑗𝑅𝑃𝑖𝑗𝑡 +

𝛾34𝑗𝐶𝑅𝑃𝑖𝑗𝑡 + ∑ 𝛾44,𝜏𝑗𝑊𝑡
𝑇𝑚𝑎𝑥−𝑇−𝑇∗
𝜏=𝑇+𝑇∗+1 + ∑ 𝛾54,𝜏𝑗𝑃𝐼𝑖𝑗𝑙+𝜏

𝑇+𝑇∗
𝜏=1 + ∑ 𝛾64,𝜏𝑗𝑃𝐼𝑖𝑗𝑙−𝜏 +𝑇+𝑇∗

𝜏=1

∑ 𝛾74,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙+𝜏
𝑇+𝑇∗
𝜏=1 + ∑ 𝛾84,𝜏𝑗𝐶𝑃𝐼𝑖𝑗𝑙−𝜏 + 𝑒4𝑖𝑗𝑡

𝑇+𝑇∗
𝜏=1 , 𝜌4)         

 

The bambi package in Python will intelligently generate priors for all model terms and 

standard deviations by loosely scaling them to the observed data. The generated priors 

for parameters of PI and standard deviation are (see Appendix 1 for the priors of all 

parameters): 

𝛽𝑜𝑏,𝑗~ 𝑁(0,2.5972) 

𝜌1~𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(4,1.0123) 

𝛽𝑐𝑏,𝑗~ 𝑁(0,2.5808) 

𝜌2~𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(4,1.006) 

𝛽𝑐𝑝,𝑗~ 𝑁(0,2.5653) 

𝜌3~𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(4,0.9999) 

𝛽𝑐𝑒,𝑗~ 𝑁(0,2.5640) 

𝜌4~𝐻𝑎𝑙𝑓𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(4,0.9994) 

 

3.3 Deep Neural Network Prediction 

In order to achieve high-performance predictive modeling results, we construct deep 

neural networks for each equation (7)-(10). However, due to its nonparametric and 

black-box nature, it becomes unable to decompose the own-brand sales effect.  

The unavoidable randomness emerging from the results when training any type of 

neural network puts a single developed and trained model with good performance into 

question: Is the model performing well due to fine-tuned parameters or randomness? 

This study follows Hansen & Salamon's method (1990) and tackles this problem using 

grid-search cross-validation and an ensemble of similar neural networks.  

 

 

 

 

 



   
 

Table 1. Hyperparameter tuning result for each model 

 Optimizer Batch size Epochs 

OBS ‘adam’ 2000 70 

CBS 'rmsprop' 500 50 

PPCS 'rmsprop' 3000 50 

TCS 'rmsprop' 500 50 

 

Large deep neural networks with four hidden layers of 20, 20, 40, and 30 neurons, 

respectively, are constructed. We set the activation function as 'RELU' for each hidden 

layer to avoid vanishing gradient or exploding gradient problem and 'linear' for the 

output layer to tackle regression problems.  

 

IV. Data 

We have collected one-year worth of weekly, store-level scanner data from a local 

supermarket chain, starting in the 1st week of 2021 and ending at the week 53 of 2021. 

The dataset contains week number, store id (475 stores in total), sales and quantity for 

each transaction but fails to include regular price data.  

We select the soda category as our main target category due to the convenience of 

extracting brands. The original dataset does not contain brand information, which 

demands us to extract brands from the Sales description, a text file with brands 

randomly embedded. The brands in the soda category show an aligned pattern and thus 

can be collected through algorithms. Also, we limit our analysis to seven brands sold 

in the category due to data completeness.  

To tackle on the problem of missing regular price data in the original dataset, we 

approximate regular price by calculating the mode value. If the item's unit price is less 

than 5% of the regular price, it is considered under a promotion and set with a 

promotional tag. There is no information about the supermarket's feature advertising or 

display activity provided during the chosen period. 

The descriptive statistics are presented below.  

 

 

 



   
 

Table 2. Descriptive Statistics for Dataset  

  

 

Brands              

Price promotion 

(%) 

Total sales 

(million kroner) 

 

Total quantity  

(l) 

 

Coca-cola 81.28 31.65 2,786,584.25 

Cola 82.79 14.63 1,935,838.5 

Pepsi 1.83 0.76 53,877 

Solo 

Sprite 

Fanta 

Hansa 

33.87 

4.48 

5.04 

5.56 

0.99 

9.20 

7.21 

1.06 

60,444 

592,830 

567,017.75 

78,756.55 

 

For deep neural network prediction and standard decomposition using multiple linear 

regression, we conduct train-test split with train: test ratio = 8:2 before feeding into 

models. Each train set contains 104,034 rows. For each Bayesian linear regression 

model, we randomly sample 3,000 rows from the corresponding train set after train-

test split as above.   

 

V. Result 

In this section, we obtain the results of our explanatory and predictive models after 

conducting a series of model estimations and evaluations. For the explanatory 

modeling part, we present results for the "standard decomposition via multiple linear 

regression" in §5.1 and results for the "Bayesian standard decomposition" in §5.2. For 

the predictive modeling part, we present evaluation metrics of the deep neural networks 

in §5.3. 

 

5.1 Standard Decomposition via multivariate linear regression 

We deploy multiple linear regression models and decompose the own-brand sales 

effect into cross-brand, cross-period, and category expansion effects in Table 3.  

 

 

 



   
 

Table 3. Average Decomposition of Constant Price Effects 

 Own-brand 

effect  �̂�𝑜𝑏 

Cross-brand 

effect �̂�𝑐𝑏/�̂�𝑜𝑏 

Cross-period 

effect �̂�𝑠𝑝/�̂�𝑜𝑏 

Category-

expansion 

effect �̂�𝑐𝑒/�̂�𝑜𝑏 

Category: soda     

Price Index 0.1234 (0.004) 11.02% 3.08% 2.51% 

 

R2 – train 

 

Percentage 

significant 

(two-sided,  

p <0.05) 

 

0.460 

 

 

99% 

 

0.590 

 

 

99% 

 

0.814 

 

 

89% 

 

0.815 

 

 

81% 

 

The last row in Table 3 points out that for all the brands in the soda category, 99 % of 

all-own brand effect and cross-brand effect, 89% of all cross-period effect and 81% of 

the category-expansion effect are statistically significant (two-tailed, p < 0.05). A 

previous study has indicated that the power in models of purchase quantity and 

interpurchase time gradually reduces (Neslin et al., 1985, fig. 2). Moreover, Bell et al. 

(1999) reported a low signal-to-noise ratio for the quantity portion of primary demand 

effects in the elasticity decomposition based on household data. In our study, the 

gradually decreased pattern in the frequency of significant primary demand effect is 

aligned with all previous studies mentioned above.  

The results in Table 3 are the mean value of brand-level estimates. The first column 

stands for the mean own-brand effect across all brands corresponding to equation (7). 

Column 2 to column 4 indicate the fraction cross-brand effect, fraction cross-period 

effect and fraction category-expansion effect in percentage corresponding to equation 

(8)-(10). All mean coefficient estimates show positive signs as expected.  

The coefficient estimates indicate the magnitude of influence of the price index exerted 

on the criterion variables. In this study, since we have standardized all dependent 

variables and independent variables before feeding them into the models, the 

interpretation of the coefficient estimates has changed accordingly. To illustrate, the 



   
 

value of the price index variable equals 1 when there is no price promotion and changes 

to 0.7 when there is a 30% discount. The coefficient of 0.1234 for the own-brand effect 

for soda implies that 1 standard deviation change in the price index variable results in 

0.1234 standard deviation change in the own-brand sales. 

In the absence of regular price data, R2 value only reaches 0.460 for the regression 

model with own-brand sales as the dependent variable in the training dataset, which 

suggests an undesirable model fit. The underperformed model fit reflects that the 

approximated independent variables have biases against their actual values. As 

illustrated in section 2.3, using point estimate, multivariate linear regression models 

choose to average out these biases or uncertainties rather than model them out. The 

results are shown in Table 3, on average, the own-brand sales effect is decomposed 

into 11.02% of the cross-brand effect, 3.08% of the cross-period effect and 2.51% of 

the category-expansion effect. 83.39% stays unexplainable. Thus, the multiple 

regression models fail to fulfil as explanatory decomposition models.  

 

5.2 Bayesian Standard Decomposition  

We fit the Bayesian linear regression models as illustrated in section 3 using Bambi 

package in Python. In each model, we set up 2 chains to sample for each parameter, 

and each chain draws 1,500 samples from the posterior.  

5.2.1 Convergence 

First, we examine the 2 chains of each model to make sure the convergence of MCMC 

sampling, which indicates that the samples are indeed drawn from the posterior. The 

right-hand side of Fig 2 shows trace plots for 𝛽𝑜𝑏,𝑗, 𝛽𝑐𝑏,𝑗, 𝛽𝑐𝑝,𝑗, 𝛽𝑐𝑒,𝑗, where the x-axis 

and y-axis display the iteration number and the sampled parameter value, respectively.  

 

 

 

 

 

 

 

 



   
 

𝛽𝑜𝑏,𝑗       R̂=1 

 

𝛽𝑐𝑏,𝑗       R̂=1 

 

𝛽𝑐𝑝,𝑗      R̂=1 

 

𝛽𝑐𝑒,𝑗       R̂=1 

Fig 2. Traceplot and posterior density for PI 

 

 

McElreath, (2016) states that trace plots should possess two attributes: stationary and 

good mixing. For each trace plot in Fig 2, different chains and iterations fluctuate 

within the identical parameter space. Besides, each trace plot bounces up and down 

around the posterior. Consequently, in each chain, sequentially related samples are 

uncorrelated, and the chain is drawing samples from all parts of the posterior. Thus, 

Fig 2 shows that all the trace plots are stationary and have good mixing.      



   
 

To inspect the convergence of chains, we use the criteria provided by the Gelman-

Rubin statistic (R̂) (Gelman & Hill, 2007). Fig 2 indicates that all R̂ equals to 1. For 

each model, the variability is the same between chains and within chains. Thus, we can 

conclude that all the chains have reached convergence.     

 

5.2.2 Effects Interpretation 

After establishing convergence, next, we use the simulations to make inferences from 

the model. The left-hand side of Fig 2 shows the posterior distribution for each chain. 

Since we set priors as weakly informative normal distribution, the posterior distribution 

of each chain also follows a normal distribution, which is confirmed through our result.   

Table 4 summarizes the mean and standard deviation of parameters of interest 

(𝛽𝑜𝑏,𝑗, 𝛽𝑐𝑏,𝑗 , 𝛽𝑐𝑝,𝑗 , 𝛽𝑐𝑒,𝑗) and R2 for each model.  

 

Table 4. Posterior summary  

 R2-train mean std 

𝛽𝑜𝑏,𝑗 0.474 .097 .023 

𝛽𝑐𝑏,𝑗 , 0.600 .004 .019 

𝛽𝑐𝑝,𝑗 0.818 .009 .013 

𝛽𝑐𝑒,𝑗 0.810 -.003 .013 

Sample size N: 3000 

 

The first column indicates that training through a much smaller dataset with 3000 

samples, Bayesian linear regression models have shown a better fit to the training 

dataset except for the last model (𝛽𝑐𝑒,𝑗) than the multivariate linear regression models. 

From the Bayesian perspective, the cross-brand effect, cross-period effect, and 

category-expansion effect are all ratios between two normal variables, which would 

follow a ratio distribution (Leal et al., 2014). To pinpoint the type, first, we need to 

check the correlation for each effect.  

 

 

 

 



   
 

Table 5. Correlation between parameters 

 𝛽𝑜𝑏,𝑗 𝛽𝑐𝑏,𝑗 𝛽𝑐𝑝,𝑗 𝛽𝑐𝑒,𝑗 

𝛽𝑜𝑏,𝑗 1 0.0085 -0.022 -0.040 

 

Table 5 shows the correlation between each parameter. The highest absolute value 

0.040 is still negligible when it comes to correlation. Thus, random variables 

𝛽𝑐𝑏,𝑗 , 𝛽𝑐𝑝,𝑗 , 𝛽𝑐𝑒,𝑗  , 𝛽𝑐𝑏,𝑗 , 𝛽𝑐𝑝,𝑗 , 𝛽𝑐𝑒,𝑗  are uncorrelated and the probability density 

functions of each ratio between 𝛽𝑐𝑏,𝑗 , 𝛽𝑐𝑝,𝑗 , 𝛽𝑐𝑒,𝑗  𝑎𝑛𝑑 𝛽𝑜𝑏,𝑗   follow the formula of 

uncorrelated normal ratio distribution: 

 

𝑓𝑧(𝑤) =  

(𝛽𝑤𝜎2 + 1)𝑒
−

𝜎2(𝑤−𝛽)2

2𝛿𝑦
2(𝑤2𝜎2+1)𝐸𝑟𝑓(

√ 1
2𝑤2𝜎2 + 2

(𝛽𝑤𝜎2 + 1)

𝛿𝑦

√2𝜋√𝑤2 +
1

𝜎2 (𝛿𝑦 + 𝛿𝑦𝑤2𝜎2)

 

where, Erf is error function- a complex function of a complex variable defined as: 

erf 𝑧 =  
2

√𝜋
∫ 𝑒−𝑡2

 𝑑𝑡
𝑧

0

 

 

Fig 3 below is the probability density distribution for each effect, and Table 6 shows 

the corresponding statistics summary. The mean indicates the most probable estimate 

for each effect. In our case, 1 standard deviation change in the price index variable 

most probably results in 0.097 change in the own-brand sales in standard deviation. 

Own-brand sales effect can be most probably decomposed into 3.71% cross-brand 

effect, 9.16% cross-period effect, and -2.81% category-expansion effect. A previous 

study (Simonson et al., 1994) finds that when customers are uncertain about the values 

of products and about their preferences, such features and premiums provide reasons 

against buying the product and are seen as susceptible to criticism. In our case, if 

customers who perceive the promotion for a brand as offering little or no value or who 

become uncertain about their preferences after the discount outnumbers the customers 

who find the feature attractive, the promotion can reduce a product's overall choice 

probability and thus results in negative category-expansion effect.  



   
 

Besides the mean estimates, Bayesian linear regression models present uncertainty 

regarding the parameters to avoid put excessive confidence on a noisy estimate through 

Bayesian credible intervals. A 95% credible interval indicates the upper and lower 

bound for the middle 9% of the total distribution (Kruschke, 2015). Compared to the 

frequentist viewpoint where each effect is a point estimate representing how brands 

respond to price promotions on average, the Bayesian perspective deals with the 

uncertainty by counting how much specific brands are expected to vary around that 

average. For example, when it comes to the cross-period effect for the soda category, 

most brands have 3.71% effect. However, some specific brands respond well off the 

average in specific stores at specific weeks. Given that 95% of the posterior distribution 

falls between -26.30% and 35.90%, 95% of the cross-period effect is between -26.30% 

and 35.90% across the brands, stores and weeks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

Own-brand effect 

 

Cross-brand effect 

 

 

Cross-period effect 

 

 

 

 

 

 



   
 

Category-expansion effect 

 

Fig 3. Ratio distribution for each effect 

 

Table 6. Summary for each effect 

 mean 95% CI  

OBS 0.097 0.055; 0.139 

CBS 3.71% -26.30%; 35.90% 

PPCS 9.16% -11.22%; 33.46% 

TCS -2.81% -22.50%; 20.54% 

 

5.3 Predictive Modelling 

The predictive performance of the regression models employed in this study is assessed 

with R2 along with the regression evaluation metric RMSE. RMSE (Root Mean 

Squared Error) is the most frequently used metric in practice for the purpose of gauging 

accuracy for continuous variables and regression analysis. The square root standardized 

the scale of the errors to the same scale of targets. The equation of RMSE is presented 

in the formula below, where for a testing vector of length n, actual value O and 

predicted value P. Smaller values of RMSE indicate better performance. 

RMSE=√
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
 

The R2 and RMSE of the performance of each model on the test dataset are shown in 

Table 7. The deep neural network regression models that we designed have the lowest 

RMSE and highest R2 compared to the multivariate linear regression and Bayesian 

linear regression models. Given an imperfect dataset without regular price data, our 

proposed deep neural network models can still make accurate predictions on own-brand 



   
 

sales, cross-brand sales, cross-period sales, and category-expansion effect for price 

promotion.  

 

Table 7. Model Performance on test dataset 

 Linear Regression Bayesian Linear 

Regression 

Deep Neural Network 

 R2-test RMSE-test R2-test RMSE-test R2-test RMSE-test 

OBS 0.456 0.738 0.442 0.747 0.817 0.427 

CBS 0.593 0.638 0.585 0.644 0.700 0.548 

PPCS 0.812 0.434 0.809 0.437 0.817 0.428 

TCS 0.813 0.432 0.810 0.436 0.825 0.418 

 

 

VI. Conclusion 

Working with imperfect data, we construct a system of models for unit-sales-based 

decomposition and prediction for store-level price promotion. In a real-world setting, 

gathering relevant regular price data of each brand in each store for each week is often 

unfeasible. Approximating through various approaches, in our case through calculating 

mode values, bias is still unavoidable. Under this uncertainty, the original multivariate 

linear regression models for standard decomposition proposed by Van Heerde et al. 

(2004) fail to explain the decomposition of own-brand sales effect for price promotion, 

with a large part of it (83.39%) staying unexplained.  

In an attempt to conduct decomposition under data feature deficiency, we build a series 

of Bayesian linear regression models, which clarify uncertainty in parameter estimates. 

Training with only 3000 samples, the Bayesian linear regression models show an 

overall better fit than multivariate linear regression models, and each chain reaches 

convergence when conducting MCMC sampling. Subsequently, each effect is 

presented via a ratio distribution between two normal random variables (coefficient of 

price index for each model). In this way, we manage to decompose the own-brand sales 

effect from a Bayesian perspective. It deals with uncertainty not only representing 

mean value that stands for how brands respond to price promotions on average but also 

counting how much specific brands are expected to vary around that average. 



   
 

Furthermore, we lift the restriction on parametric estimation and construct deep neural 

network for regression models. The metrics indicate that the proposed deep neural 

networks have the lowest RMSE and highest R2 and thus the best prediction 

performance compared to multivariate linear regression and Bayesian linear regression 

models.  

Our study has several managerial implications. First, when it is difficult for retailers to 

collect and store regular price data for all brands each week in all stores, managers can 

still not only understand how own-brand sales effect decompose for price promotion 

but also how specific brands will react to the price promotion compared to the average. 

From a retailer perspective, category-expansion effects are the most sought-after 

because cross-brand effects cannibalize other brands' sales, and cross-period effect 

hinders future sales. From a manufacturer's perspective, cross-period effects are also 

not beneficial except that they diminish sales opportunities for other brands. 

Consequently, a conservative estimate for the net effect for the manufacturer is the sum 

of cross-brand and category-expansion effects. Overall, from a category management 

perspective jointly pursued by manufacturers and retailers, category-expansion effects 

are potentially the most favorable among the three standard decomposition effects. 

Second, our designed deep neural network regression models can give managers 

accurate predictions on own-brand, cross-brand, cross-period and cross-category sales. 

Managers will be able to adjust the extent of price promotion and whether or not to 

start promotion campaigns based on the prediction results.  

Our study has several limitations: first, our computation power is very limited for 

model training and hyperparameter tuning. With more capacity, MCMC sampling and 

deep neural network hyperparameter settings can be largely improved. Second, the 

proposed system of models is still highly restricted by the lacking of features such as 

regular price and display form. The performance of our models will further improve 

with the arrival of more complete data. Third, in this study, each constituent effect is 

still decomposable. For example, the category-expansion effect can be further split into 

cross-category effects. A further limitation is that we study in a stable environment 

where promotional magnitude stays the same for a given period. Future direction can 

thus focus on exploring decomposition methods in an evolving environment where 

promotional intensity constantly changes.   



   
 

Appendix 1 

a. OBS 

 
mu sigma 

Intercept -0.0057 3.61 

regular_price 0 2.5574 

PI 0 2.5972 

CPI 0 2.5461 

crp 0 2.5604 

week7 0 16.8832 

week8 0 15.9038 

week9 0 16.765 

week10 0 14.9166 

week11 0 15.0819 

week12 0 15.8055 

week13 0 16.2104 

week14 0 16.1061 

week15 0 16.2104 

week16 0 14.9166 

week17 0 14.3798 

week18 0 15.4305 

week19 0 14.4528 

week20 0 14.6024 

week21 0 15.0819 

week22 0 14.099 

week23 0 14.679 

week24 0 14.0314 

week25 0 15.2531 

week26 0 14.527 

week27 0 13.7711 

week28 0 14.8361 

week29 0 15.341 

week30 0 15.7091 



   
 

week31 0 14.7569 

week32 0 14.099 

week33 0 15.341 

week34 0 15.1668 

week35 0 16.2104 

week36 0 16.3168 

week37 0 15.0819 

week38 0 17.5154 

week39 0 17.3831 

week40 0 17.004 

week41 0 16.8832 

week42 0 17.3831 

PI1 0 2.5386 

PI2 0 2.4804 

PI3 0 2.5197 

PI4 0 2.4212 

PI5 0 2.5154 

PI6 0 2.4529 

PI11 0 2.6063 

PI22 0 2.5982 

PI33 0 2.5636 

PI44 0 2.518 

PI55 0 2.6195 

PI66 0 2.5387 

CPI1 0 2.5682 

CPI2 0 2.5255 

CPI3 0 2.6283 

CPI4 0 2.5584 

CPI5 0 2.55 

CPI6 0 2.5876 

CPI11 0 2.4952 

CPI22 0 2.5705 



   
 

CPI33 0 2.5235 

CPI44 0 2.5154 

CPI55 0 2.4918 

CPI66 0 2.5901 

 

Auxiliary parameters 

    sigma ~ HalfStudentT(nu: 4, sigma: 1.0123) 

 

b. CBS 

 
mu sigma 

Intercept -0.0046 3.5874 

regular_price 0 2.5413 

PI 0 2.5808 

CPI 0 2.5301 

crp 0 2.5444 

week7 0 16.7771 

week8 0 15.8038 

week9 0 16.6597 

week10 0 14.8229 

week11 0 14.9872 

week12 0 15.7062 

week13 0 16.1086 

week14 0 16.005 

week15 0 16.1086 

week16 0 14.8229 

week17 0 14.2895 

week18 0 15.3336 

week19 0 14.362 

week20 0 14.5106 

week21 0 14.9872 

week22 0 14.0104 

week23 0 14.5868 



   
 

week24 0 13.9433 

week25 0 15.1573 

week26 0 14.4357 

week27 0 13.6846 

week28 0 14.7429 

week29 0 15.2446 

week30 0 15.6104 

week31 0 14.6642 

week32 0 14.0104 

week33 0 15.2446 

week34 0 15.0715 

week35 0 16.1086 

week36 0 16.2143 

week37 0 14.9872 

week38 0 17.4053 

week39 0 17.2739 

week40 0 16.8972 

week41 0 16.7771 

week42 0 17.2739 

PI1 0 2.5227 

PI2 0 2.4648 

PI3 0 2.5039 

PI4 0 2.4059 

PI5 0 2.4996 

PI6 0 2.4375 

PI11 0 2.5899 

PI22 0 2.5819 

PI33 0 2.5475 

PI44 0 2.5022 

PI55 0 2.603 

PI66 0 2.5227 

CPI1 0 2.5521 



   
 

CPI2 0 2.5096 

CPI3 0 2.6118 

CPI4 0 2.5423 

CPI5 0 2.534 

CPI6 0 2.5713 

CPI11 0 2.4796 

CPI22 0 2.5544 

CPI33 0 2.5076 

CPI44 0 2.4996 

CPI55 0 2.4761 

CPI66 0 2.5739 

 

Auxiliary parameters 

    sigma ~ HalfStudentT(nu: 4, sigma: 1.006) 

 

c. PPCS 

 
mu sigma 

Intercept 0.0015 3.5657 

regular_price 0 2.526 

PI 0 2.5653 

CPI 0 2.5149 

crp 0 2.529 

week7 0 16.6758 

week8 0 15.7084 

week9 0 16.5591 

week10 0 14.7334 

week11 0 14.8966 

week12 0 15.6113 

week13 0 16.0112 

week14 0 15.9083 

week15 0 16.0112 

week16 0 14.7334 



   
 

week17 0 14.2031 

week18 0 15.2409 

week19 0 14.2752 

week20 0 14.423 

week21 0 14.8966 

week22 0 13.9258 

week23 0 14.4986 

week24 0 13.8591 

week25 0 15.0657 

week26 0 14.3485 

week27 0 13.6019 

week28 0 14.6538 

week29 0 15.1525 

week30 0 15.5161 

week31 0 14.5756 

week32 0 13.9258 

week33 0 15.1525 

week34 0 14.9804 

week35 0 16.0112 

week36 0 16.1163 

week37 0 14.8966 

week38 0 17.3002 

week39 0 17.1695 

week40 0 16.7951 

week41 0 16.6758 

week42 0 17.1695 

PI1 0 2.5074 

PI2 0 2.4499 

PI3 0 2.4888 

PI4 0 2.3914 

PI5 0 2.4845 

PI6 0 2.4227 



   
 

PI11 0 2.5742 

PI22 0 2.5663 

PI33 0 2.5322 

PI44 0 2.4871 

PI55 0 2.5873 

PI66 0 2.5075 

CPI1 0 2.5367 

CPI2 0 2.4944 

CPI3 0 2.596 

CPI4 0 2.5269 

CPI5 0 2.5187 

CPI6 0 2.5558 

CPI11 0 2.4646 

CPI22 0 2.5389 

CPI33 0 2.4925 

CPI44 0 2.4845 

CPI55 0 2.4611 

CPI66 0 2.5583 

 

Auxiliary parameters 

    sigma ~ HalfStudentT(nu: 4, sigma: 0.9999) 

 

d. TCS 

 
mu sigma 

Intercept -0.0012 3.5639 

regular_price 0 2.5247 

PI 0 2.564 

CPI 0 2.5136 

crp 0 2.5278 

week7 0 16.6676 

week8 0 15.7007 

week9 0 16.551 



   
 

week10 0 14.7262 

week11 0 14.8894 

week12 0 15.6037 

week13 0 16.0034 

week14 0 15.9005 

week15 0 16.0034 

week16 0 14.7262 

week17 0 14.1962 

week18 0 15.2335 

week19 0 14.2683 

week20 0 14.4159 

week21 0 14.8894 

week22 0 13.919 

week23 0 14.4916 

week24 0 13.8523 

week25 0 15.0584 

week26 0 14.3415 

week27 0 13.5953 

week28 0 14.6467 

week29 0 15.1451 

week30 0 15.5085 

week31 0 14.5685 

week32 0 13.919 

week33 0 15.1451 

week34 0 14.9731 

week35 0 16.0034 

week36 0 16.1084 

week37 0 14.8894 

week38 0 17.2917 

week39 0 17.1611 

week40 0 16.7869 

week41 0 16.6676 



   
 

week42 0 17.1611 

PI1 0 2.5062 

PI2 0 2.4487 

PI3 0 2.4875 

PI4 0 2.3902 

PI5 0 2.4833 

PI6 0 2.4215 

PI11 0 2.573 

PI22 0 2.565 

PI33 0 2.5309 

PI44 0 2.4859 

PI55 0 2.586 

PI66 0 2.5062 

CPI1 0 2.5355 

CPI2 0 2.4932 

CPI3 0 2.5947 

CPI4 0 2.5257 

CPI5 0 2.5174 

CPI6 0 2.5546 

CPI11 0 2.4634 

CPI22 0 2.5377 

CPI33 0 2.4913 

CPI44 0 2.4832 

CPI55 0 2.4599 

CPI66 0 2.5571 

 

Auxiliary parameters 

    sigma ~ HalfStudentT(nu: 4, sigma: 0.9994) 
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