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Banks collect data x; in loan applications to decide whether to grant credit and accepted applications
generate new data x, throughout the loan period. Hence, banks have two measurement-modalities,
which provide a complete picture about customers. If we can generate X, conditioned on x; keeping the
relationship between these two modalities, credit and behavior scoring may be enabled simultaneously
(at the time x; is obtained) to support cross-selling, launching of new products or marketing
campaigns. Therefore, we develop a novel conditional bi-modal discriminative (CBMD) model for credit
scoring, which is able to generate x, based on x; and can classify the outcome of loans in an unified
framework. The idea behind CBMD is to learn joint (among modalities) latent representations that
are useful to generate x, using the available data x; during the application process. The classifier
model introduced in CBMD encourages the generative process to generate X, accurately. Further, CBMD
optimizes a novel objective function introduced in this research, which maximizes mutual information
between the latent representation z and the modality x, to improve the generative process in the
model. We benchmark the generative process of our proposed model and CBMD outperforms other
multi-learning models. Similarly, the classification performance of CBMD is tested under different
scenarios and it achieves higher or on a par model performance compared to the state-of-the-art

in multi-modal learning models.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction Multi-modal learning designs models that utilize different
measurements-modalities of the same object to learn joint data

Retail banks model the relationship between customer’s in- representations between modalities. Examples of multi-

formation x and the outcome y of a loan to decide whether
to grant credit, where y = 0 if a customer repays the loan
otherwise y = 1. Traditionally, ¥ has been limited to information
captured during the application process, even though banks have
access to more data that is generated by granted applications
throughout the loan period, e.g. repayment or purchase behavior.
Therefore, banks have two measurement-modalities that provide
complementary information about a given customer. The first
data modality, or view of data, is generated before the loan is
granted and we denote it as ¥1. The second modality is generated
throughout the loan period and we called this modality x,, see
Fig. 1. Commonly, banks use x; to develop credit scoring models,
while X, can be used to develop behavior models or to support
cross-selling activities, launching of new products or marketing
campaigns in banks.
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modalities, or views of data, are audio, video, and text, words and
context, or credit data before and after the application process. A
traditional application for multi-modal learning is downstream
classification in a two-steps approach [1,2]. That is, a joint data
representation is learned in the first stage and then, in the second
stage, it is used to train a classifier model. The two steps ap-
proach has two major shortcomings. First, it can become a burden
for practitioners if domain-specific classifiers need to be used,
e.g. hidden Markov classifier with Gaussian mixtures as in [2].
Second, it uses a disjoint optimization for data representations
and classification, which discards any possible synergy between
these two.

Some multi-modal learning models are able to generate the
input modalities using autoencoder-like architectures,! which
clearly requires that all modalities are available at test time. This
is not the case in the context of credit scoring, where x; is not
available at the same time as x;. If we can generate x, conditioned

1 Such an architecture is designed to reconstruct the input data, i.e. f(x;) =z
and f(z) = X, where f(-) is a neural network.
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Fig. 1. Bi-modal credit data. At the time of the applications process ty, only x; is available. This data modality, which commonly is composed of socio-demographic
features, is generated during t < to and is used in credit scoring models. After the loan is granted, a new data modality x, is generated, providing complementary
information about the customer. Modality x, is used to develop behavior models or to support cross-selling activities among others.

on x; keeping the relationship between these two modalities,
credit and behavior scoring may be enabled simultaneously (at
the time x; is obtained) to support cross-selling, launching of new
products or marketing campaigns. Therefore, the main motivation
for this research is to develop a novel bi-modal methodology that
generates the modality x, based on x;, which is our best source
of information for future customer behavior. In other words, we
use conditional distributions to keep the relation between x; and
x; since it makes sense to anchor the prediction of future bureau
scores to its current value for example.

To that end, we develop a conditional bi-modal discrimina-
tive (CBMD) model that (i) learns to generate x, conditioned
on modality x; together with data representations z, and (ii)
can classify class labels y using the learned data representations.
The reason to include a classifier model into CBMD is twofold.
First, to improve the generative process through the optimiza-
tion of the classifier in an unified framework, which creates a
synergy between representation learning and classifier training
as in [3]. Second, to enable downstream classification with data
representations using a classifier model that is relatively simple.
This makes our proposed CBMD model useful for downstream
generative and classification tasks in scenarios where only Xy is
available at test time.

The contributions of this paper are as follows: (i) we develop
the first bi-modal learning methodology for credit scoring, which
generates the modality ¥, conditioned on modality x; and can
classify the outcome of loans using latent representations, (ii)
we show how can we utilize the generative properties of our
proposed CBMD model to generate future credit data, and (iii)
we introduce a novel objective function that maximizes mutual
information between the common latent representation z and
modality x,, which helps to improve the generative process of
our proposed CBMD model.

The rest of the paper is organized as follows. Section 2 reviews
the related work on multi-modal learning and Section 3 presents
the proposed model. Further, Section 4 explains the data sets
used in this research and presents the benchmark results. Finally,
Section 6 discusses the main findings of this research.

2. Related work

This section reviews the research on multi-modal learning
focusing on the development from the seminal canonical corre-
lation analysis (CCA) [4] to models that optimize a variational
lower bound and use neural networks to do amortized inference
for model parameters. To facilitate model comparison, we use a

common notation for all models where different data modalities
are represented by x and are distinguished with a subscript,
common latent transformations are represented by z, private
latent representations are denoted by h and a subscript referring
to their data modality. Finally, labels are denoted by y. The plate
notation for variational-based models included in this section are
shown in Table 1.

Canonical correlation analysis finds linear projections by max-
imizing correlation between the transformations in multi-modal
data. The objective is to learn the underlying semantic in the dif-
ferent modalities [5]. Originally, CCA deals only with linear pro-
jections of the data, but a kernel version of CCA was introduced
in [5-9] to handle non-linearities.

Both CCA and kernel-CCA maximize

{f, g} = argmax cov(f(x1), g(x2))
’ f.g «/var(f(xl )) . Uar(g(XZ)) ’

where f(x1) and g(x,) are the projections of modalities #; and x-,
subject to the constraints that fj(x;) is uncorrelated with fj(x;),
gj(x,) is uncorrelated with gj(x,), and fj(x;) is uncorrelated with
gi(xy) for all i # j. The difference between CCA and kernel-CCA is
that the former assumes linear projections i.e. f(x;) = v"x;, while
the latter uses linear combinations of the kernel k; evaluated at
the data set, i.e. f(x;) = Z:\’Zl aiki(x1, X1,1), where «; determines
the direction of the projections. Similar functions are used for the
projection g(x;).

A probabilistic interpretation of CCA is presented in [10]. The
modalities x; € R%1 and x, € R% are generated given a common
latent representation z, that is

z ~N(0,1y),
X1z ~N(Wiz + py, Pr),
Xz ~N(Waz + py, Us),

(1)

where min(d;, d;) > d > 1and W4, Wy, uq, #y, ¥4, and ¥, are
parameters defining a Gaussian distribution N(-). These parame-
ters are commonly estimated using the expectation-maximization
(EM) algorithm [11] and their updating equations can be found
in [10]. Furthermore, [10] show that linear discriminant analysis
(LDA) [12] is a special case of CCA where one of the views is the
label y.

Deep canonical correlation analysis [17] (DCCA) couple to-
gether deep neural networks and CCA with the objective to train
neural networks able to maximize the correlation p(f(x1), g(x2))

2 The method presented in [9] is an approximation based on random Fourier
features.
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Overview over some generative and inference models presented in Section 2. We have harmonize the notation in all previous models with the one used in this
paper. That is, given a bi-modal data, modality x; is available during training and test time, while modality x; is only available during training. Furthermore, common
latent variables are denoted by z, while private latent representations are represented by hy, and hy,.

(Year) Author

Generative model

Inference model

Learning approach

(2015) Wang W. [1]

&

e Unsupervised representation learning
e Loss function: AE + ACC
e Training: SGD

(2016) Wang W. [2]

D®
10

e Unsupervised representation learning
e Loss function: VI lower bound
e Training: SGD

(2016) Suzuki M. [13]

D
=CY)

®
@@

e Unsupervised representation learning
e Loss function: VI lower bound
e Training: SGD

(2018) Wu M. [14]

e Unsupervised representation learning
e Loss function: VI lower bound with product of experts (PoE)
e Training: SGD

(2018) Du C. [15]

e Semi-supervised classification
e Loss function: VI lower bound
e Training: SGD

(2018) Vedantam R. [16]

e Supervised representation learning
e Loss function: VI lower bound
e Training: SGD

(2019) Du E. [3]

e Supervised classification

e Loss function: VI lower bound

@ e Training: SGD

between modality x; and x,. DCCA cannot only handle non-
linearities, but can also capture high-level abstractions of the data
in each of the multiple hidden layers. Note that the correlation
objective function is a function of the entire data set, i.e. it is
a fully batch objective function, and therefore it can be costly
for large data sets. In a similar approach, [1] develop a model
called deep canonically correlated autoencoder (DCCAE), where
the objective function minimizes reconstruction error for both
modalities (as in regular autoencoders) and optimizes canonical
correlation between the learned representations (as in CCA). The
main difference between DCCA and DCCAE is that the latter
can reconstruct both modality x#; and x,, and DCCAE scales to
large data sets using stochastic gradient descent to optimize its
objective function.

A problem with DCCAE is that the CCA term in its objective
function dominates the optimization procedure [1]. As a conse-
quence, the reconstruction of x; and x, is poor. To overcome
this problem, [2] use variational inference and deep generative
models to generate latent representations of the input modalities
and to reconstruct them. The authors in [2] present a model
called variational CCA (VCCA) that uses a common latent variable
to generate both modalities. In a second version, VCCA uses

common and private latent variables to generate modality x;
and x,. Note that when only common latent variables are used,
it is not clear how to specify the inference model, i.e. q(z|x;)
or q(z|x,). Therefore, the authors propose the objective function
L= ULyzpxy) + (1 = W)Lq(zixy), WheTe Logixy) (Lyizixy)) is the loss
function when q(z|x1) (q(z|x-)) defines the inference model and
u € [0, 1] is a weight parameter controlling the importance of
each term in the objective function.

A supervised extension of VCCA is proposed by [3], which
combines multi-modal learning and classification in one unified
framework. The authors propose a discriminative multi-modal
deep generative model (DMDGM) that generates both modal-
ities based on private and common hidden variables. Unlike
most approaches for downstream classification, DMDGM uses
the available modalities at test time for classification, e.g q(y|x1)
or q(y|x1, X2). This is not the only model where classification is
addressed in a unified objective function, [15] develops a semi-
supervised deep generative model for missing modalities where
the latent variable is shared across modalities. To further improve
the flexibility of the latent space, the authors model the inference
process as a Gaussian mixture model (GMM). However, it is worth
mentioning that modeling the inference process as GMM harms
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the tightness of the lower bound since the entropy of a GMM is
intractable.

The joint multimodal variational autoencoder (JMVAE) is in-
troduced in [13]. The first model presented by the authors re-
places missing modalities with zeros, e.g. q(z|X1, X2) ~ q(z|x1, 0)
if x, is missing. The second model presented in [13] includes two
individual inference models q(z|x;) and g(z|x,), and one global in-
ference model q(z|x1, %2 ). Further, the objective function includes
two Kullback-Leibler (KL) divergence terms, KL[q(z|xi,x2)]|
q(z|x1)] and KL[q(z|X1, X>)||q(z|x2)], which force q(z|x;) and
q(z|x,) to be close to q(z|x, X3). The authors argue that including
these two KL terms is equivalent to minimizing the lower bound
of variation of information (Val). This is not the only model opti-
mizing the information theoretic measure Val, [ 18] use restricted
Boltzmann machines to develop a multi-modality model, which
objective function is fully derived from a Val perspective.

All previous models in this section assume data with only two
modalities. A model that generalizes to more than two modalities
is presented in [14]. Their deep generative model assumes that
the posterior distribution p(z|xq, x5, --- ,X,) is proportional to
the product of individual posteriors p(z|x1) - - - p(z|x,;) normalized
by the prior distribution p(z). Additionally, they assume that
individual posteriors are approximated by variational densities
q(z|x;) fori =1, - - - , n. Hence, the joint posterior distribution is a
product of experts (PoEs). Another model using PoEs is presented
in [16]. However, in this case, the authors use a PoEs to deal with
missing modalities, i.e. q(hy, |x2) &< p(hx,) [ I1co q(hx, |x’2‘), where
O are the observed attributes in modality x,.

Objective functions optimizing a mutual information (MI) term
have been introduced in infoGAN [19] and infoVAE [20], which
are uni-modal unsupervised learning methods. infoGAN approx-
imates MI by using the variational information maximization
approach, which is a variational lower bound, and optimizes a
minimax game based on generative adversarial networks [21].
On the other hand, infoVAE adds a MI term to the objective
function to learn amortized inference distribution and to learn
representations that embed information about z. [20] show, in a
two-steps classification experiment with latent representations,
that infoVAE achieves the same classification as an unregularized
autoencoder using a latent space with more than 10 dimensions.
Meaning that the learned representations embed information
about x.

Our proposed CBMD model uses a prior distribution p(z|x;)
that is conditioned on modality x; to generate the modality x,
using the generative process p(X2|X1, z). Such a generative mech-
anism keeps the relationship between x; and x, and allows us to
generate X, at the same time a loan application is received. CBMD,
unlike infoGAN, optimizes a novel objective function based on
variational inference, which maximizes MI between latent rep-
resentations z and modality x, to effectively learn amortized
inference distributions and to generate accurate x, samples. How-
ever, unlike infoVAE, our motivation to include a MI term stems
from the restriction imposed by the variational lower bound on
MI.

3. Conditional bi-modal discriminative model

Before we introduce our proposed CBMD model,> we de-
fine some variables that are used throughout this section. Let
x;1 be the data modality available at the time a loan applica-
tion is received. Common features in this modality are: age,
income, gender, geographical location, etc. Once an application
is approved, customers generate new information constituting
modality x,. The sort of information in this modality can be

3 https://github.com/rogelioamancisidor/cbmd.
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updated values for features in X1, e.g. latest income, current age,
latest marital status etc. Other kind of features in x, can be
repayment or purchase behavior. In the context of this research,
we have access to class labels y, where y = 0 denotes if a
customer repaid a loan, otherwise y = 1. Finally, we assume that
there is a common latent representation q(z|xq, X,) with prior
p(z|x1) and a private posterior representation q(hy, |x,) with prior
p(z2). Both latent representations contain high-level information
of both data modalities providing complementary information
about the outcome of the loan.

3.1. Deriving the CBMD lower bound

We observe labeled bi-modal data {(xgl), x(zl),y(”), . (x(] )
x(zN), y™))} that is generated at different point in times, where only
X is available at application time. Further, the modality ¥, and
class label y are generated after a loan application is granted.

We focus on learning a joint latent representation z and a
private representation hy, that can be used for downstream clas-
sification and to generate xX,. For that purpose, we assume a
conditional prior distribution p(z|x;) for the modality that is
available at test time and an uninformative private distribution
p(hy,) for the modality x,, which is missing at test time. Under
this scenario, the joint generative process is given by

p(X21x1, 2)p(z|%1)p(hy, ), (2)

where p(x;|X1, z) is the generative process for future credit scor-
ing data. Note that the posterior distribution of the latent variable,
which is exactly the joint latent representation that we want to
learn,

p(x2, 2, hy, |%1) =

p(%2, 2, hy, |%1)
[ p(%2, z, hy, |x1)dzdh,
requires a marginal distribution that is not available in closed
form. Therefore, we approximate the true posterior distribution
p(z|x1, ®3) in Eq. (3) with the variational distribution q(z|x1, X3).
Taking the log of the marginal distribution in Eq. (3) we obtain
the lower bound

log p(,|x1) =log / / p(%2, z, hy, |X1)dzdh,,

p(X2, 2, hy, |X1)
=1 h , dzdh
Og// 2. o) T I 1, 2) 22

p(x2,2, hy, le)]
q(z, hy, %1, X2)

p(%2, 2, hy, le)]
q(z, hy, %1, X;) '

p(z|x1, %) =

(3)

=log Eq(l,hxz [x1.%2) [

ZEq(z,th |%1.%2) [IOg (4)
where the inequality is a result of the concavity of log and
Jensen’s inequality. Eq. (4) is the variational lower bound £(x;, X1)
on the conditional log-likelihood log p(x|x1), which in principle
can be optimized using the stochastic variational gradient Bayes
(SVGB) approach introduced in [22].

Expanding the lower bound in Eq. (4) and assuming
q(z, hy,|X1, X2) = q(z|x1, X2)q(hy, |X,), we get that

L(X2, X1) =Eq(z|x, x,)[l0g P(*2]X1, 2) + log p(z]x1) — log q(z|x1, X2)]
+Eq(hy, 1x,)[108 P(Ix, ) — log q(hy, [X2)]
=Eq(z|x,.xy)[10g p(X2|%1, 2)] — KL[q(2]%1, 2)|p(z|21)]
—KL[q(hy, |%2)||p(%2)]. (5)
While in some cases optimizing Eq. (5) should be sufficient to do
amortized inference and to reconstruct x, correctly, it has been
shown that this formulation of the lower bound has two main
problems [20,23]. First, it can fail to learn an amortized inference
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distribution q(z|x1, x;) that correctly approximates p(z|xi, X2).
Second, the model can focus on reconstructing x, ignoring the
latent data representation z, which implies that z does not de-
pend on x;. This problem is called posterior collapse [24] and
we attempt to solve it by the explicit optimization of the mutual
information between x, and z.

To solve the aforementioned challenges, we propose a new
objective function that maximizes mutual information between z
and x,. Note that, assuming the factorizations q(x1)q(x2|%x1)q(z|%x1)
and q(z|x2, %1)q(x21%1) = q(x2, z|x1), the conditional mutual in-
formation I(x;, z|x;) can be written as

q(x2, z|x7) }

q(*2]%1)q(z|x1)

q(z]%1, X2)q(X2 |X; )}
q(x21x1)q(z]x1)

log q(z|x1)

1(x;, z|x1) qu(xz,z,xl) |:10g

=Eq,,2.%1) [log

=Eqx, 22108 q(2]%1, %2) —
+log p(z|x1) — log p(z|x1)]
=Eq(xy.x) [ KLIG(z|%1. %,)|p(2]%1)]]

—Eqe) [KLIg(z|%1)[Ip(2[%1)]], (6)

where q(x,, x1) and g(x) are estimated using the empirical data
distribution. Hence, adding the mutual information term (1 —
w)l(x,, z|x;) to Eq. (5) we obtain the objective function for a
single data point

L(X1, X3) =Eq(zjx, x,)[10g P(X2]%1, 2)] — KL[q(z|X1, X2)|[p(2]|%1)]
—KL[q(hy, |%2)]|p(%2)] + (1 — @)[KLIq(z]%1, X2)I|p(z]%1)]
—KL[q(z|x1)l|p(z|%1)]]
=Eq,x, 1) [108 P(X21%1, 2)] — KL[q(hy, |%2)]|p(hy, )]
—wKL[q(z|%1, %2)||p(z|%1)] + (1 — w)KL[q(z|x1)|p(z|1)],

(7)

where w € [0, 1] is a weight hyperparameter. The first two KL
divergence terms in Eq. (7) have an analytical solution. How-
ever, the last KL divergence is intractable, due to the marginal
distribution ¢q(z|x;), but can be replaced by any strict diver-
gence term [20], e.g. maximum mean discrepancy divergence
(MMD) [25]. We choose the non-parametric squared MMD that
can be estimated numerically and is given by

MMD[F, p, q] = Epx x)[k(X, )] — 2Ep) q2)[K(%, 2)]
+ Eqz.2n[k(z, 2')], (8)

where F be a unit ball in a universal reproducing kernel Hilbert
space H, p and q are Borel probability measures and k(-, -) is a
universal kernel. We use a Gaussian kernel in our proposed model
to obtain the objective function

L(x1, X2) =Eqqy, ) [108 P(X2|X1, 2)] — KL[q(hy, [x2)[|p(hy, )]
—wKL[q(z|x1, %2)|[p(z|%1)]
+(1 — @)AMMD(q(z|x1)||p(2|%1)], (9)

where A counteracts the loss imbalance between X, and Z
spaces. Eq. (9) give us more flexibility to reconstruct all features
in modality x, utilizing the joint latent representation z and to
learn amortized inference distributions g(z|xy, x2).

It is worth analyzing Eq. (5) and (6). Given that the KL diver-
gence is non-negative, Eq. (6) implies that (for one observation)
KL[q(z|%1, %2)||p(z|x%1)] > I(X2, z|x1). In other words, the diver-
gence KL[q(z|x1,X2)||p(z|%1)] is an upper bound on the condi-
tional mutual information. Further, note that the upper bound is
the same KL divergence as in Eq. (5). Hence, optimizing the reg-
ular lower bound imposes an upper bound on I(x,, z|x;), which
can result in the undesired posterior collapse problem.
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However, we are interested in developing a model that, in
addition to generate modality X, can also classify the outcome
of the loan. Further, given that we have a supervised data set,
we want to use label information to learn joint latent represen-
tations. Hence, we add a classification loss q(y|z, hy,) and replace
q(z|x1, x3) by q(z|x1, x2,y) in Eq. (9) to obtain the following final
loss function in our proposed model

J = —L(X1,X2,y) — alogq(y|z, hy,), (10)

where « controls the importance of the classification loss in the
objective function, and its plate notation is shown in Fig. 2.

We minimize Eq. (10) using SVGB and automatic differen-
tiation routines in Theano [26]. Note that the reconstruction
term of Eq. (9) can be efficiently estimated using the reparam-
eterization trick [22], the KL divergence term has a closed-form
expression [22,27], and the MMD divergence is approximated
numerically by sampling from q(z|x,, X5, ¥) and p(z|x;) for a given
mini-batch of data as suggested by [25].

Finally, we assume the following density functions in our
proposed CBMD model

(hXQ NN(Ov 1)
p(z|x1) ~N(z|%1; = fo(%1), 6% = fo(x1)),
P(X2|X1,2) ~N (%2121, 25 k= fo(%1, 2), 0% = fy(*1, 2)),
N(

by, 1%5) ~N (B, %55 1 = fy(%2), 0% = f(2)),

)
)
)
(Zle,xz, Y) ~N(ZIX1, %2, V5 1= fy(R1, %2, ), 6% = fy(%1, X2, Y)),
)
(ylz hy,) ~Bernoulli(y|z, hy,; my;, h, = fp(z, hy,)), (11)

where N denotes the Gaussian distribution and f(-) is a multi-
layer perceptron (MLP) network [28]. That is, the density param-
eters p, o2, and Tyjz hy, A€ parametrized using neural networks
with learnable parameters denoted by 6 and ¢.

The first density in Eq. (11) is non-informative about the
future credit data, while the second equation learns a latent
representation (z) based on the available information (%) during
the loan application process. In other words, p(z|x;) represents
our prior beliefs about the joint representation z and it is based
on information available during the application process. The third
density learns a data generating process to draw future credit
scoring data (x,) based on available information (x;) and the
joint representation (z). The fourth density function, where we
add the class label information (y), learns the posterior latent
representation for credit data. The fifth density learns a latent
representation for future credit data. Finally, the last density
function classifies the outcome of a loan y using latent represen-
tations (z and h,,) for credit scoring data, and encourages latent
representations to capture higher-level of abstractions that are
useful for classification and to generate modality x,.

4. Experiments and results

The motivation for the experiments is threefold. First, we com-
pare the generative process of our proposed methodology with
existing multi-modal learning models using two modalities. Sec-
ond, we show how financial institutions can utilize the generative
network in the CBMD model to generate future data. Third, we
compare the predictive power of the learned data representation
for all models. In all experiments, we assume that only x; is
available at test time to generate joint representations z which
are further used for downstream generative and classification
tasks

The models included in this section are CCA [4], KCCA [9],
DCCA [17], and DCCAE [1], which all are based on canonical
correlation. We also include VCCA [2] and JMVAE [13] that are
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Fig. 2. Plate notation for our proposed bi-modality discriminative model for credit scoring. The left side shows the generative model, where the prior distribution of
z is condition on the modality x;. The right side shows the inference model, where we explicitly optimize maximum mean discrepancy to minimize the information

preference problem.

variational-based methods.* To allow a fair comparison to CBMD,
all models are tested without pre-trained weights as in [1] or
without adding generative adversarial networks to further im-
prove reconstructed values as in [13]. In the classification ex-
periments, we use fixed variance parameters in the generative
networks for VCCA and JMVAE as suggested in their original
papers. Otherwise, downstream classification is poor. It is worth
mentioning that, in our experiments, VCCA is more prone to poor
classification than JMVAE if the variance parameters are learned
during the optimization process.

In order to test the generalization properties of our proposed
model, we include a real data set for purchase prediction con-
taining 200 features. Hence, we can test CBMD on scenarios with
large number of missing features at test time. Note, data modal-
ities do not need to be time-dependent. Therefore, creating a
bi-modal data set based on the predictive power for each feature,
which we explain in the next section, is a valid approach.

4.1. Data description

We use two real and publicly available data sets in this sec-
tion.” The first data set corresponds to customers at Banco San-
tander and it contains 200 (anonymized) numerical features for
purchase prediction, i.e. which customer will make a future trans-
action regardless of the amount. A training and test data set are
available, but we only use the training data set since the test data
set has no label information. The training data set contains 200
000 observations and there are 20 098 customers that made a
purchase, which corresponds to 10.05% of customers. Given that
behavioral models have higher model performance than credit
scoring models [29], we assume that features with high predictive
power® correspond to modality x,. Therefore, in the experiments
conducted in Section 4.3.2, we select the top 50 features as
modality x,, while the rest of the features correspond to view x;.
Given the number of features in this data set, we also tested all
models under a more challenging scenario where modality x; and
x, contain 100 features each.

The second data set consists of peer-to-peer loan applications

from January 2009 to December 2013 at Lending Club.” We only

4 In our experiments, we use the implementations for CCA, KCCA, DCCA,
DCCAE, and VCCA at https://ttic.uchicago.edu/ wwang5/. While, results for JMVAE
are based on our own implementation.

5 Banco Santander data set: https://www.kaggle.com/c/santander-customer-t
ransaction-prediction/data. Lending Club data set: https://github.com/nateGeorg
e/preprocess_lending_club_data.

6 We use the method introduced in [30] to estimate feature importance.

7 Lending Club is the world’s largest peer-to-peer lending company and it
was the first peer-to-peer lender to register its offerings as securities with the
Securities and Exchange Commission in the U.S,, and to offer loan trading on a
secondary market.

include accepted loans with 36-months maturity and some obser-
vations have been excluded using the same criteria as in [27,31].
This data set contains 89 998 accepted applications, where 10
896 are defaulted loans, i.e. default rate is 12.11%. Further, we
choose the modality x; to be all common features in accepted and
rejected applications, which are only 5 features. All categorical
features in modality x; are transformed to one-hot-encoders,
resulting in a 18D vector. On the other hand, the modality x;
contains 72 features and we select only features that are both
continuous and with empirical distributions resembling Gaussian
densities. Hence, we select 8 features for the modality x, in the
experiments conducted in Section 4.3.2. This choice is driven by
the fact that modality x; has only 5 original features. Details
about data modalities in the Lending Club data set are shown in
Appendix A.

4.2. Model training and testing

We use MLP networks with softplus activation functions in
all hidden layers to parametrise g, o and Tlyjzhy, i0 Eq. (11).
For the output layers parameterizing p and o2, we use linear
activation functions, while for the classifier we use a softmax
activation function. The minimization of the loss function is done
using the Adam optimizer [32] with learning rate equal to 1e-4.
The final architectures that we used in our proposed model, as
well as all architectures used in the grid-search to tune the MLPs,
are shown in Table B.1 in the Appendix B and are chosen based
on both classification and generative performance. All CCA-based
and variational-based models are trained with similar architec-
tures to CBMD for a fair comparison. Further, for DCCAE we tune
the A parameter by grid search as suggested in [1]. Similarly, we
tune the « and variance parameters by grid search in J]MVAE and
VCCA respectively. Finally, both data sets are scaled between 0
and 1 for better training stability.

During training we have a supervised data set containing both
x1 and x,, as well as the class label y. At test time we assume
that only modality x; is available. Therefore, at training time
we draw samples from q(z|x1, X2, y) to reconstruct modality x,
using the generative process p(x,|Xq,z) in our proposed CBMD
model. While at test time, we need to rely on the conditional prior
distribution p(z|x;) to draw z. Then, we use that representation
to generate X, using p(x;|X1,z). In other words, we generate
future credit data (x,) based on current information about the
loan application (x1) and based on the prior distribution (p(z|x1))
of the joint latent representation. Note that the conditional prior
distribution in our proposed model is more informative than the
classical choice z ~ N0, I).

We observed in our experiments that training the classifier
with z ~ q(z|xq,x2,y) leads to unstable classification perfor-
mance. This problem arises because we assume that x, is missing
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Fig. 3. Forward propagation in our proposed model. The dotted arrow indicates a forward pass during training, which is replaced by the dashed arrow at test time.

Solid arrows depict a common forward propagation during training and test.

at test time and we only can draw z from the prior, i.e. we
need to test the classifier using representations from the prior
distribution. We hypothesize that the prior and posterior are
characterized by different statistical properties, e.g. different kind
of representation and correlational structure. Hence, the prior dis-
tribution reproduces the test scenario more accurately compared
to the posterior distribution.® On the other hand, we generate
hy, from q(hy, |X,) at training and test time, drawing X, from the
generative process p(X,|xq, z). For clarity, Fig. 3 shows the for-
ward propagation during training and test time in our proposed
methodology.

Inspired by JMVAE, we tried to bring together the private la-
tent representation q(hy,|x;) and the joint representation
q(z|x1, X2, y), but using MMD as divergence measure and the
sampling approach described at the end of Section 3.1. While we
do not see a clear benefit in the generative process of the model
or in the predictive power of it, we see faster model convergence.

4.3. Experimental design

We use 70% of the data to learn a common data representation
for both data modalities, which is further used to generate the
modality x; and to train a multilayer perceptron (MLP) classifier.
Note that CBMD trains a classifier at the same time as it learns
shared data representations and generates x,. For this 70% of the
data, we down-sample the majority class (y = 0) to balance
both class labels. Further, we use 25% of the data to test the
predictive power of the classifier for all models and the quality
of the reconstructed modality ¥, using JMVAE, DCCAE and CBMD.
Note that the test data set preserves the original balance between
the two classes and that it is only used for testing purposes.
Finally, we use the remaining 5% of the data to calibrate class
probabilities using the beta calibration approach [33]. We report
average values over 10 different runs.

8 In [2] latent representations conditioned on the available modality at test
time also give relatively stable performance.

4.3.1. Generating modality x, — Lending club

Accuracy

Of all models tested in this research, only DCCAE, JMVAE and
CBMD are able to generate modality x, based on the available
modality x; during test time. Models with autoencoder-like ar-
chitectures, e.g. VCCA or DMDGM, learn to reconstruct X, based
on X, and therefore cannot be used under the test scenario
in this research. Note that both JMVAE and CBMD estimate a
posterior distribution for modality x,. Hence, using a quadratic
loss function £ = (x, — &,)* we obtain a point estimate &, =
argminE[£ = (x, — &,)?|x1, z]. Taking the first derivative of the
expectation with respect to X, and forcing the result equal to
0, we obtain &, = E[x,|x;, z]. This expectation is exactly what
JMVAE and CBMD parametrise with MLPs (see Eq. (11)), and it
is our choice for a point estimate in this section. On the other
hand, DCCAE utilizes deterministic neural networks to generate
X,, hence its output is a single point estimate. Note that to draw
x, with DCCAE, we use latent representations generated with x;.

Table 2 shows true and average and standard deviation values
for all generated features in the modality x, for the test data
set. Interestingly, all models estimate highly accurate the support
of the empirical distribution for each feature. However, ]MVAE
clearly fails at recognizing the dispersion in each feature. This
results is most likely due to the information preference problem,
meaning that p(x,|z) is basically the same for all z [20]. Similarly,
DCCAE does not match the empirical standard deviation for all
features. On the other hand, our proposed CBMD model matches
the variation for most of the features in modality x,. For features
1, 4, and 6, CBMD fails to capture the dispersion in the features. A
possible solution to overcome this problem is to choose a model
architecture for CBMD based only on its generative performance.
Another alternative to further improve the generative process in
CBMD is to use generative adversarial networks like in JMVAE.

Fig. 4 shows histograms for all true (solid curve) and gener-
ated features in modality x,. The generated features are depicted
by the dashed and dotted curves, and the dotted vertical line,
which correspond to CBMD, JMVAE, and DCCAE respectively. It
is interesting to see that CBMD centers it mass in the main mode
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Average and standard deviation values for the true and reconstructed x, features in the test data set using CBMD, JMVAE, and DCCAE. All models are able to capture
the empirical mean for each feature. However, JMVAE and DCCAE fail at capturing the variation across different customers.

Feature name True x, CBMD &, IMVAE %, DCCAE %,

Average Std. deviation Average Std. deviation Average Std. deviation Average Std. deviation
Feature 1 0.17728 0.11037 0.18052 0.03246 0.18232 1.49011e—08 0.17613 0.01057
Feature 2 0.68461 0.15871 0.71402 0.14718 0.68072 1.19209e—07 0.70614 0.05208
Feature 3 0.74140 0.14333 0.75308 0.13515 0.74729 5.96046e—08 0.74132 0.02919
Feature 4 0.19370 0.08624 0.19388 0.03549 0.19306 1.48926e—08 0.16939 0.01109
Feature 5 0.46439 0.20650 0.41057 0.21793 0.46315 1.98431e—08 0.39902 0.09241
Feature 6 0.23878 0.12198 0.24361 0.03986 0.23649 1.49216e—08 0.21474 0.02407
Feature 7 0.20347 0.15674 0.20166 0.12713 0.20162 6.12372e—09 0.21303 0.03387
Feature 8 0.22988 0.19139 0.23108 0.16712 0.22704 1.49011e—08 0.23958 0.04155

CBMD generated values for view x, observe that the classifier in CBMD encourages the generative

feature 1 feature 2 feature 3 feature 4 model to draw X2 accurately.

>

|

feature 5 feature 6 feature 8

Fig. 4. Solid curves show the true empirical distributions for all features in
modality x, in the Lending Club test data set, while the dashed and dotted
curves show the empirical distributions for the generated features using CBMD
and DCCAE respectively. The dotted vertical line shows generated values using
JMVAE.

of complex densities such as those for feature 2 and 3. Further,
skewed densities like feature 5, 7, and 8 are reconstructed highly
accurate. On the other hand, both JMVAE and DCCAE fail to
capture the dispersion across different customers.

Ablation experiments

To further analyze the quality of the drawn x, variables, we
create 5 equally-sized groups with different risk profiles based
on posterior class probabilities estimated with q(y|z, hy, ). Group
A has the lowest class posterior probability, while group E has the
highest class posterior probability. Table 3 shows these 5 groups,
together with true and generated average values for all features
in the test data set. True values are shown in the first row for each
group, while in the second and third row we generate x, using the
optimal w* value and w = 1 in our proposed objective function
(Eq. (9)). The latter corresponds to the classical lower bound in
deep generative models (Eq. (4)). We can see that for all groups,
but A, the optimal w* value generates relatively more accurate
features as suggested by the root mean squared error (rmse),
showing the positive effect of optimizing the mutual information
term in our proposed model. For some features in some groups
the generated x, values are highly accurate. Note that for group
A the high rmse for w* is mainly driven by feature 2. The last row
in each group, X, CBM(w*), shows the average of the generated
features with our proposed model and with the optimal w* value,
but without the discriminative model (hence the CBM name). We

Table 3 shows from another perspective why models should
not use fixed variance parameters in the generative process, as is
the case for JMVAE and VCCA. Such a practice impedes a model
to capture the variability among customers. Similarly, using de-
terministic neural networks to generate x,, as in DCCAE, makes it
more challenging to capture the variation across customers.

The 5 groups that we created are shown in the left panel of
Fig. 5, which are two-dimensional t-sne [34] components of the
latent space z ~ p(z|x;) for the test data set. Note that the
5 groups that we have defined are clustered in a well-defined
structure with minimal overlap. Furthermore, the right panel of
Fig. 5 shows a colormap of the same t-sne components where
the color is given by the posterior class probability estimated
using q(y|z, hy,). Note that there is a smooth transition across
the two dimensions. This is a characteristic of the learned latent
space with deep generative models, which preserves the spatial
coherence of creditworthiness [35].

Business application

Financial institutions use repayment data or behavior data,
which is generated after x; is obtained, for launching new prod-
ucts, cross-selling or marketing campaigns. This section presents
an alternative approach where we use the modality x; at test
time and the generative process of the trained CBMD model of
Section 4.2 to generate future data x,. To that end, we define
anchor customers, which serve as point of reference.

Suppose a bank wants to launch a new private loan for high-
risk customers. At test time, we define as anchor customer the
client in group E (the group with lowest creditworthiness) with
the highest posterior class probability. This customer is depicted
in the right panel of Fig. 5 by a red scatter point in the zoom box
at the top-left corner. Then, we use x; for the anchor customer
to draw the latent representation z ~ p(z|x;). Further, we use
the generated representation z together with x; to generate the
future credit data using the generative process p(x;|x1, z).

Note that CBMD assumes per-observation latent variables and
density functions, hence the Gaussian generative process for the
i'th anchor customer is given by the distribution
N (x(z')lx(l'), 20 u® g20) That is, CBMD estimates a density func-
tion for the i'th anchor customer and hence we can draw several
values for x,. At the bottom of Table 3, we show the average of
100 different x, values. We can see that on average the anchor
customer will have, just as expected, a low risk score (feature 3).
Similarly, the bottom row in Table 3 shows average values for a
different anchor customer, this time an anchor customer with the
lowest class probability (see the yellow scatter in the zoom box
at the top-right corner of Fig. 5). Note that instead of looking at
average values for the i'th anchor customer, banks can utilize any
value from the whole distribution, e.g. top or bottom quantiles,
depending on the task at hand.

Another possibility to choose anchor customers is to select
a set of customers within a given segment of interest. In this
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We use estimated class probabilities using CBMD to create 5 equally-sized groups (A-E). Further, we show true x, average values and generated X, average values
using our proposed lower bound and the classical lower bound denoted by w* and w = 1 respectively. The last column shows root mean squared error.

Group & model Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 rmse
true X, 0.1992 0.6304 0.8565 0.1531 0.2349 0.2222 0.2447 0.3129
A X (%) 0.1904 0.7332 0.8291 0.1559 0.2171 0.2119 0.2352 0.3096 0.0386
X(w=1) 0.2134 0.6481 0.7885 0.1661 0.2600 0.2070 0.2398 0.2976 0.0284
X, CBM(w*) 0.1938 0.6600 0.7845 0.1562 0.2466 0.2039 0.2300 0.2878 0.0304
true x, 0.1852 0.6242 0.8199 0.1602 0.4077 0.2142 0.2627 0.3239
B X (%) 0.1830 0.6729 0.7515 0.1681 0.3627 0.2150 0.2466 0.3067 0.0348
X(w=1) 0.1997 0.6317 0.7260 0.1804 0.4090 0.2060 0.2465 0.2880 0.0373
X, CBM(w*) 0.1754 0.6399 0.7108 0.1611 0.4011 0.19 0.2411 0.2767 0.0441
true x; 0.1826 0.6317 0.7973 0.1636 0.4764 0.2134 0.2674 0.3205
C X (0*) 0.1771 0.6342 0.7191 0.1743 0.4287 0.2147 0.2469 0.2952 0.0347
X(w=1) 0.1922 0.6274 0.6966 0.1859 0.4780 0.2047 0.2368 0.2669 0.0428
X, CBM(w*) 0.1659 0.6299 0.6808 0.1619 0.4706 0.1816 0.2407 0.263 0.0487
true x, 0.1768 0.6362 0.7834 0.1694 0.5044 0.2140 0.2576 0.3016
D X (%) 0.1682 0.6068 0.6967 0.1788 0.4766 0.2130 0.2392 0.2762 0.0359
Xw=1) 0.1855 0.6250 0.6733 0.1914 0.5293 0.2048 0.2264 0.2475 0.0467
X, CBM(w*) 0.1581 0.6241 0.6608 0.1628 0.5208 0.1753 0.232 0.2441 0.0516
true x, 0.1663 0.6396 0.7646 0.1805 0.5322 0.2240 0.2318 0.2638
E X (0*) 0.1585 0.5829 0.6766 0.1890 0.5278 0.2212 0.2177 0.2406 0.0385
X(w=1) 0.1790 0.6240 0.6477 0.2071 0.5889 0.2151 0.2108 0.2203 0.0505
X, CBM(w*) 0.1582 0.6229 0.6462 0.1728 0.5735 0.1825 0.2086 0.2105 0.0515
Highest = 0.1310 0.5704 0.6526 0.2138 0.5884 0.2518 0.1280 0.1260
Lowest & 0.1798 0.6656 0.9791 0.1146 0.0122 0.1547 0.0348 0.0471
Lending Club Lending Club
Latent space z ~ p(z|x;) Latent space z ~ p(z|x;)
J Q N x |l = 0.30
. C : "
o D o
E 0.25
X 0.20
e
1 1 0.15
0.10

(a)

(b)

Fig. 5. Two-dimensional t-sne components of the latent space z ~ p(z|x;) for the Lending Club test data set. The left panel shows the 5 groups that we created
based on average values for posterior class probabilities, while the right panel shows a colormap of the same t-sne components where the color is given by the
posterior class probability estimated by the CBMD model. Note the smooth transition across the two dimension.

case, it might be preferable to use the expectation for each x(zl)
in the set of the selected customer, which is the u¥ parameter
in AV (x(zl)lx(l'), z0; u 620y and that has been parametrized by a
neural network in CBMD. Given the flexibility of this approach
to generate the future modality X, anchor customers and their
generated X, data can be used as support when designing market-
ing campaigns, cross-selling strategies or launching new financial
products. However, a detailed development of real-life strategies
require access to more customer’s information, e.g. target vari-
ables in actual cross-selling strategies, that we do not have at
hand.

4.3.2. Classification using data representations

Even though the main motivation to include a classifier model
in our proposed methodology is to generate accurate features
in modality x,, Table 4 compares classification performance for
all benchmark models in terms of AUC, GINI, and H-measure to
provide different angles from which to examine the classification

performance.? Given that the Santander Bank data set has 200
input features, we train all models in two different scenarios.
In the first scenario x; has 150 features and x, has 50 features,
while in the second scenario both modalities have 100 features.
Model M-x; provides a baseline for the traditional credit scoring
approach where only x; is used for training and testing.

Our experiments show that on average CCA-based models per-
form better for credit scoring than VCCA and JMVAE. This result
has been explained in [1] and it happens when the modalities
in the data sets are uncorrelated. Remember that the objective
function in CCA-based models maximize canonical correlation.
Further, it is interesting to see that both CCA and KCCA have
slightly higher performance than the base model for the Lending
Club data set. On the other hand, DCCA, DCCAE, and VCCA have
the lowest model performance for the Lending Club data set.

9 In credit scoring models, score-specific performance metrics, e.g. recall or
precision, are not common to use since banks use the probabilities myz,n,, to
rank customers.
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The first model M-x; uses only modality x; to classify y with a MLP model. All CCA-based models, VCCA and JMVAE use shared data representations to classify y
in a two-stage approach. On the other hand, our proposed CBMD model classifies labels in a unified framework. Average AUC, GINI, and H-measure are shown in

the above table.

Model name Lending Club (x; : 18 %, :8)

Santander Bank (x; : 150 x, : 50)

Santander Bank (x; : 100 x, : 100)

AUC GINI H-measure AUC GINI H-measure AUC GINI H-measure
M-x; 0.61986 0.23972 0.04720 0.73844 0.47688 0.18509 0.63245 0.26490 0.06035
CCA 0.62004 0.24009 0.04733 0.73299 0.46597 0.17779 0.63141 0.26282 0.05919
KCCA 0.61996 0.23993 0.04684 0.74495 0.48989 0.19382 0.63152 0.26303 0.05822
DCCA 0.60783 0.21566 0.03787 0.74002 0.48004 0.18740 0.62420 0.24841 0.05246
DCCAE 0.60798 0.21597 0.03797 0.73756 0.47511 0.18273 0.62282 0.24564 0.05169
VCCA 0.60909 0.21818 0.04062 0.73621 0.47243 0.18211 0.63060 0.26120 0.05801
JMVAE 0.61920 0.23840 0.04654 0.68974 0.37948 0.11839 0.59354 0.18708 0.03200
CBMD 0.62049 0.24098 0.04764 0.74014 0.48028 0.18764 0.63395 0.26790 0.06146

However, DCCA achieves on-pair model performance compared
to the baseline model for the Santander data set with 50 features
in modality x,. It is important to note that [1] used pre-trained
weights for DCCAE. We do not follow such practices to allow a fair
comparison with CBMD. Hence, it might be possible to improve
DCCAE performance by doing so.

Our proposed CBMD model performs slightly better than the
baseline in all 3 experiments. Similarly, we also observe that
CBMD achieves higher performance than most benchmark mod-
els. The only model with higher performance than CBMD is KCCA,
which achieves the highest performance for the Santander data
set with 150 features in modality x;. However, when we in-
crease the number of features in x, to 100, CBMD has a marginal
improvement in performance compared to both KCCA and the
baseline model. The fact that none of the benchmark models
are able to achieve a significant improvement over the baseline,
may suggest that the data modalities are not conditional inde-
pendent given the data representations, which is an assumption
in downstream classification tasks with multi-modal learning
models [2].

It is important to mention that CBMD does not need to use
fixed values for the variance parameters in the generative net-
work p(x3|Xx1, z), as opposed to VCCA and JMVAE, since CBMD is
able to learn these parameters during the optimization procedure.
It is also worth mentioning that we use the same model architec-
ture and hyperparameter values in the experiment where both x;
and x, have 100 features as in the experiments where x; has 150
features. If we tune the w parameter in CBMD for the experiments
with 100 features in both modalities, we obtain an average AUC of
0.63414. It would be interesting to see if pre-trained weights, as
done in [2], can improve the classification performance. Likewise,
adding dropout layers to the classifier might help to use repre-
sentation from the posterior distribution g(z|x;, X, y) to train the
classifier, which can lead to higher classification performance.

Finally, Fig. 6 shows average AUC as a function of w in Eq. (9).
A value w = 1 corresponds to the classical lower bound (Eq. (4)),
while @ = 0 maximizes mutual information I, zix,)(X2, ), and
values between 0 and 1 maximize our proposed lower bound
in Eq. (9). We can see that our proposed objective function
achieves higher AUC compared to the classical lower bound, both
for the Santander (solid lines) and Lending Club (dashed line) data
sets. These results show that optimizing the mutual information
term in our proposed model not only improves the generative
process but also the classification performance.

5. Model interpretability

Model performance in advanced deep generative models, like
CBMD, comes at the cost of model interpretability. Fortunately, in
the last decade, there has been an increasing interest in designing
approaches to explain these advanced models. [36] introduce
a unified approach, Shapley Additive Explanations (SHAP), for

10

AUC as a function of w

0.6339 1 r 0.7401

0.6296 1
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Fig. 6. Average AUC performance for the Santander (solid lines) and Lending
Club (dashed line) data set. For « = 1 CBMD optimizes the classical lower bound
in generative models, while w = 0 optimizes mutual information between z and
x,. For w values in between, CBMD optimizes the lower bound introduced in
this paper. Note that the optimal w value, 0.8 for Lending club and 0.05 for
Santander data set, achiever AUC.

interpreting any model prediction. The SHAP values for a given
feature is the average expected marginal contribution of this fea-
ture after all possible feature combinations have been considered.
Hence, it considers both the effect the feature has by itself and in
combination with the other features in the model. SHAP values
offer an intuitive approach for model interpretability, providing
useful insight to understand the CBMD output. Such informa-
tion is valuable in different applications such as credit scoring,
healthcare, and insurance to name a few.

We estimate SHAP values for the Lendig Club data set using
the Kernel SHAP method introduced in [36] and utilize the python
library developed by the same authors.'? Fig. 7 shows SHAP val-
ues'! for the classification prediction (a panel) and the generative
process for the feature revolving utilization in the modality x, (b
panel). Each point in each of the two panels is the SHAP value
for one specific feature and one specific observation in a sub-
sample of the test data set. The x-axis shows the SHAP values
and the color represents values of the feature from low to high.
As can be seen from the figure, the loan amount has the largest
impact on the classification performance and generative process
of CBMD. Larger loan amounts increase both the output of the
classifier and the revolving utilization of the credit line. There
is no clear pattern on the effect of debt-to-income and bureau
score values for the classification prediction. This result implies
that both features reflect customers creditworthiness at the time

10 https://github.com/slundberg/shap.

1 we only plot SHAP values for the continuous features in modality x; and
not for the ones converted to one-hot-encoding. SHAP values for the rest of
features in X, can be found in Appendix C.
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Fig. 7. SHAP values for the classification output in CBMD (a panel) and for the CBMD generated revolving utilization feature in modality x, (b panel).

of application and can deteriorate with time. On the other hand,
bureau score is the second most import feature for generating
the revolving utilization feature. The higher the score, the larger
revolving utilization amount.

6. Conclusion

In this research, we develop a novel conditional bi-modal
discriminative (CBMD) model that learns a joint representation
z and generates the modality x, conditioned on data representa-
tions and the modality x;, which is our best source of information
about future customer behavior. CBMD is not only able to gen-
erate X, but also can classify the outcome of loans using the
joint representations z. Further, its generative process keeps the
relationship between the modalities #; and x, for each customer
and it is useful in scenarios where only one modality is available
at test time. We show, under a simple scenario, the potential use
of CBMD in launching new products. With access to the right
data, CBMD can be used to design effective real-life cross-selling
and marketing strategies or to analyze the difference in default
probabilities by incorporating future behavior data.

Our proposed CBMD model optimizes a novel objective func-
tion that maximizes mutual information between the latent data
representation z and the modality X,. This loss function learns
an amortized inference distribution for q(z|x1, x5, ¥), which con-
tributes to an efficient generative model for x,. Therefore, we
do not need to fix the variance parameters in the generative
process as VCCA and JMVAE do. To further improve the generative
process, we introduce a classifier model that encourages the gen-
erative model to draw X, accurately. Our empirical results suggest
that including the classification loss and the mutual information
term in the objective function effectively improve the accuracy of
generated features in x,. Finally, our proposed objective function
also achieves higher AUC compared to the classical lower bound
in generative models.

To the best of our knowledge, this research presents the first
credit scoring model based on bi-modal learning able to generate
future credit data x, and therefore it opens an interesting avenue
for future research. Likewise, our proposed methodology offers
new possibilities on how banks could implement the use of
generated x;, values in their activities that involve the prediction
of customer’s credit behavior.
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Table A.1
Lending Club data modalities.

Variable name

Loan amount

Fico score

Address state

Debt to income ratio
Employment length

Modality x4

Modality x, (feature 1) days_earliest_cr_line
(feature 2) days_last_pymnt_d
(feature 3) last_risk_score
(feature 4) open_acc

(feature 5) revolv_util

(feature 6) total_acc

(feature 7) total_pymnt
(feature 8) total_rec_prncp
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Appendix A. Data sets

We select modality x; for the Lending Club data set using the
common features for accepted and rejected applications, since
this is the case in real loan application process. These features are
loan amount, Fico scores, address state, debt to income ratio, and
employment length. Further, we follow the practice as in [27,31]
and create 4 different groups using address state, which are
further transformed to one-hot encoders. Similarly, given that
employment length has 11 different categories, we also convert
it to one-hot encoders. Therefore, modality x; has 18 features.

From the remaining 72 features for accepted applications, we
select those variables whose empirical distribution resembles a
Gaussian density. Remember that our proposed CBMD model
assumes a multivariate Gaussian distribution for modality x,.
Given that we only have 5 original features for modality x;, we
select 8 features for modality x, and can be found in Table A.1.

Appendix B. Model architectures

Table B.1 shows all architectures tested for hyperparameter
optimization for our proposed CBMD model, J]MVAE, VCCA, and
DMDGM model. We use the notation for CBMD to specify the
different MLP networks, but all models have a similar network
just with different inputs. For example, JMVAE uses q(z|x1, X2) as
inference network. For models with two inference or generative
networks, e.g. JMVAE has p(x;]z) and p(x;|z), we use the same
architecture for both networks.
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Fig. C.1. SHAP values for the CBMD generated features in modality x;.

Grid for hyperparameter optimization for CBMD, JMVAE, and VCCA. The numbers within brackets specify the number of neurons in each hidden layers, i.e. [10 10]
means two hidden layers with 10 neurons each. Superscripts *, **, *** show the final architecture for CBMD, JMVAE, and VCCA, respectively.

Lending Club

MLP network

Number of hidden layers and dimensions

p(X21%1,2)

p(z|%1)
q(z]x1, %2, y)

q(ylz)

[50], [60], [70], [80], [100], [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100]***, [120 120], [150 150]**,

[200 200]%, [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]
[20], [30], [40], [50], [60], [70], [80], [100]*, [120], [150]

[40]*** [50], [60], [70], [80], [100]***, [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100], [120 120], [150 150],
[200 200], [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]
[50], [60], [70],[80], [100], [120], [150], [50 50], [60 60], [70 701,80 80], [100 100J*, [120 120], [150 150]

Parameter/hyperparameter

Value

z dimension
19}
A
[

10, 20, 30, 40, 50%******=** 70, 90, 110, 130, 150, 170
0, 0.1, 0.2, 03, 04, 0.5, 0.6, 0.7, 0.8%, 0.9, 1

1000, 2000, 3000, 4000*

1, 5, 10, 15, 20™***, 30, 40, 50

Santander Bank

p(X2]x1,2)

p(z|x1)
q(z|x1, %2, y)

q(ylz)

[100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100],[200 200 200], [300 300 300],[500 500 500],
[700 700 700], [900 900 900]*

[100], [200], [300]*, [400], [500]

[100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100], [200 200 200], [300 300 3001,[500 500 500],
[700 700 700]*, [900 900 900]

[100], [200], [300], [400], [500], [700]*, [900]

Parameter/hyperparameter

Value

z dimension
w
A
o

100, 200, 300, 400******, 500, 600, 700, 800, 900
0, 0.1%, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1

1000, 2000, 3000, 4000*

1, 5, 10, 15, 20™***, 30, 40, 50
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Table B.2
Average root mean squared errors between the generated features by CBMD and
their true values in the test data set. We generate the features in the modality x,
using the tanh, sigmoid and softplus activation function in the hidden layers of
CBMD. The last row shows the AUC in the test data set for each of the activation
functions.

Group Activation function

tanh sigmoid softplus
A 0.2396 0.6845 0.0285
B 0.2224 0.5014 0.0252
C 0.2142 0.4286 0.0248
D 0.2104 0.4028 0.0275
E 0.2046 0.3969 0.0310

Classification performance

tanh sigmoid softplus
AUC 0.6190 0.6147 0.6229

Activation function. Table B.2 shows the 5 different groups cre-
ated in Section 4.3.1 and the average root mean squared errors
between the generated features by CBMD and their true values
in the test data set. We generate features using the tanh, sig-
moid and softplus activation function in the hidden layers of
our proposed CBMD model. Further, the last row in Table B.2
shows the AUC for each activation function. Note that the rest
of hyperparameters are the same as in Table A.1.

Appendix C. SHAP values

Fig. C.1 shows SHAP values for the generative process in CBMD.
Each point is the SHAP value for one specific feature and one
specific observation in a sub-sample of the test data set for
Lending Club. The x-axis shows the SHAP values and the color

represents values of the feature from low to high.
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