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The ongoing transformation of the electricity market has reshaped the hydropower production paradigm for
storage reservoir systems, with a shift from strategies oriented towards maximizing regional energy production
to strategies aimed at the revenue maximization of individual systems. Indeed, hydropower producers bid their
energy production scheduling 1 day in advance, attempting to align the operational plan with hours where
the expected electricity prices are higher. As a result, the accuracy of 1-day ahead prices forecasts has started
to play a key role in the short-term optimization of storage reservoir systems. This paper aims to contribute
to the topic by presenting a comparative assessment of revenues provided by short-term optimizations driven
by two econometric models. Both models are autoregressive time-adapting hourly forecasting models, which
exploit the information provided by past values of electricity prices, with one model, referred to as Autoarimax,
additionally considering exogenous variables related to electricity demand and production. The benefit of using
the innovative Autoarimax model is exemplified in two selected hydropower systems with different storage
capacities. The enhanced accuracy of electricity prices forecasting is not constant across the year due to the
large uncertainties characterizing the electricity market. Our results also show that the adoption of Autoarimax
leads to larger revenues with respect to the use of a standard model, increases that depend strongly on the
hydropower system characteristics. Our results may be beneficial for hydropower companies to enhance the
expected revenues from storage hydropower systems, especially those characterized by large storage capacity.

1. Introduction demand and production and thus guarantee the needed voltage levels

and frequencies across the power grid [4]. These peculiar character-

Hydropower generation is an important human action affecting the
water-energy nexus, representing about 15% of the world’s electricity
generation [1]. Due to the high amounts of precipitation and potential
energy, hydropower generation in the Alpine regions is even more
important as electric energy production largely exceeds the regional de-

istics identify storage hydropower systems as fundamental actors in
electricity production, able both to provide large amounts of clean en-
ergy and to support the integration of other renewable energy sources,
such as wind or solar, which are intermittent because of their intrinsic

mand [2]. Among Renewable Energy Sources (RES), hydropower is also
typically considered one of the cleanest power-generating sources [3].

Hydropower generation depends on the location, as well as on
the type of hydropower system. Run-of-the-river systems are directly
influenced by streamflow regimes, whilst storage hydropower systems
can both adopt different management strategies to match electricity
market dynamics and ensure energy balance and stability to national
power grid networks [4,5]. In particular, due to their flexibility, storage
hydropower systems can cover possible mismatches between energy

dependency on climate conditions [6]. Storage hydropower systems
thus operate as
“charge” [7,8]: during high solar or wind generation, the reservoir

¢

‘virtual batteries” with stored water acting as the

system accumulates water; this water is then used for production when
wind and solar energy generation is low (or even absent) or to meet
fluctuating electricity demands.

The introduction of deregulated electricity markets to several na-
tions entailed new challenges for hydroelectricity producers and water
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resources managers [9]. In particular, the ongoing process of mar-
ket liberalization induced a change in the hydropower production
paradigm, which has shifted from the maximization of the regional en-
ergy production to the revenue maximization of individual systems [10,
11]. The resulting competition between all energy suppliers introduced
some peculiar effects: (i) electricity prices fluctuate at hourly and/or
sub-hourly time scales [12]; (ii) hydropower producers, as well as all
the other market participants, bid their energy production in advance
and then are forced to schedule their operation plans according to the
taken commitments [10,13]; and (iii) electricity prices are unknown
during the bidding process [12,13]. Except for a few examples world-
wide, in most electricity markets the main auction is represented by
the so called “1-day ahead market”, where day-ahead electricity prices
are determined for each hour of the following day, by the intersection
of the aggregated curves of demand and supply [14,15]. Besides the
1-day ahead market, there are several intra-day markets used by the
suppliers to modify the production schedule resulting from the 1-day
market. Furthermore, other balancing markets take place where the
Transmission System Operator (TSO) may modify the production plans
to meet electricity grid balance requirements [10,16,17].

While the transformation of the electricity market led to a non-
significant alteration in energy production from run-of-the-river plants
[18], on the contrary, electricity prices became the main driver for the
management of storage hydropower systems, which indeed have the
flexibility and the capability to align electricity production with the
hours in which the forecasted prices are higher [19]. In this context,
a prominent role is played by the electricity production optimization
process, which should rely on the identification of a 1-day ahead
plan for scheduling water releases (i.e., 1-day-ahead production plan),
aiming at maximizing the expected revenue. Specifically, the object of
this optimization process is to maximize the revenue of a single day
of production by exploiting the use of forecasts for inflows and 1-day
ahead electricity prices [20,21].

Optimization of hydropower generation is indeed a complex prob-
lem requiring the accurate prediction of electricity prices and water
availability under given installation, management and regulatory con-
straints (i.e., maximum capacity of the penstock channel, minimum and
maximum regulation levels in the reservoirs, respect of environmental
flows, etc.). Furthermore, the optimization problem is highly non-linear
and affected by both hydrological and econometric uncertainties [22].
The comprehension of the mutual interaction between these sources of
uncertainty remains largely unquantified in the existing literature and,
in particular, limited attention has been given to the investigation of
the role played by electricity prices forecast accuracy [11]. A vast ma-
jority of the literature has hitherto paid attention either to optimizing
short-term electricity production, thus neglecting the role of electricity
prices [23], or to analysing short-term forecasting errors of hydrological
inflows to storage systems [24-26].

A limited number of papers have studied short-term hydropower
optimization by explicitly considering forecasts of electricity prices.
In these works, forecast prices are replaced by real prices [e.g. 27]
or are generated statistically using the recorded time series of elec-
tricity prices [28]. These approaches suffer, however, from important
limitations: relying only on actual prices ignores the econometric un-
certainties and, more generally, neglects the forecast challenge. Few
exceptions are represented by the works of Fleten and Kristoffersen
[13] and De Ladurantaye et al. [10], which adopt stochastic opti-
mization autoregressive models in order to model day-ahead electricity
prices. However, both works limit their attention to single electricity
prices forecast model and the optimization problem is presented with
reference to a few individual days, thus not considering the limita-
tions imposed by the seasonal management of storage reservoirs. To
the best of the authors’ knowledge, no studies investigated the effect
of the accuracy of short-term econometric forecasts on the resulting
hydropower optimization by also considering the constraints imposed
by the seasonal management of storage reservoirs.
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In order to overcome the aforementioned limitations, in this work
we try to answer the ensuing research questions: (i) what is the rev-
enue gain provided by using accurate forecasts of electricity prices in
short-term optimization of storage hydropower systems?; (ii) how do
electricity market dynamics affect econometric-driven optimizations in
different periods of the year? (iii) how do reservoir characteristics affect
such optimizations?

Specifically, two econometric models for 1-day ahead hourly prices
forecasting have been considered, both belonging to the class of “adap-
tive autoregressive” models. Autoregressive models have been widely
used in electricity price forecasting given the econometric features of
the data such as mean reversion and autocorrelation [29]. These models
employ past values of electricity prices and a non-linear combination
of the forecasted errors [30]. The first model, hereafter referred to as
the “Benchmark”, is a model that exploits econometric properties of
the electricity prices augmented with dummy variables (i.e., an inde-
pendent variable which takes the value 0 or 1 in order to consider or
omit categorical data, respectively) to account for seasonal and weekly
patterns of electricity prices in a deterministic fashion. The second
model, referred to as “Autoarimax” [31], extends the specification
of the Benchmark model with fundamental time-varying exogenous
variables related to electricity demand and production, such as 1-
day ahead hourly forecasts of demand, production from renewable
energy and fossil sources, and the physical flow of electricity from
neighbouring areas. Recent works by Gianfreda and Grossi [32] and
Gianfreda et al. [33] show how important are these fundamental vari-
ables for predicting Italian (regional) prices. Both models automatically
select the relevance of the different variables by using a time-adaptive
minimization criterion, i.e., the coefficients of the autoregressive mod-
els are updated for each hour of the forecast day on the basis of
information belonging to a preceding time window of fixed length
(2 years in our specific case). The Autoarimax approach has been shown
to produce accurate 1-day ahead predictions of northern Italian zonal
electricity prices by taking advantage of hourly forecasts for demand
and production variables, including RES [31]. Furthermore, our work
also provides interesting indications into whether more accurate and
statistically superior models can offer economic gains in the framework
of hydropower optimization.

In order to study the effects of different storage capacities, as
well as of seasonal reservoir dynamics, on hydropower revenue, the
optimization is performed with reference to two hydropower systems
located in the upper part of the Adige river basin (south-eastern Alps).
Specifically we selected two systems with significantly different regu-
lation capacities in order to investigate their capability of adjusting the
daily pattern of turbined water discharges according to the forecasts
provided by the two aforementioned econometric models. Econometric
driven optimizations are then evaluated for both reservoirs and span an
entire chronological year (i.e., by solving 365 independent optimization
problems for each reservoir and econometric model). With the intention
of preventing the addition of unnecessary complexity and of filtering
out other sources of uncertainty, we considered the following assump-
tions: the reservoirs’ inflows are simulated by a distributed hydrological
model and thus considered as exact and not affected by forecasting
errors; mid-term management of the storage reservoirs is imposed on
the basis of historical simulations provided by a regional hydropower
systems model.

The paper is organized as follows: Section 2 illustrates the frame-
work adopted for the assessment of econometric driven short-term
hydropower optimization; Section 3 presents the case studies and the
set-up of the modelling framework; In Section 4, the econometric driven
optimization outcomes are described; and finally, Section 5 discusses
the main results followed by Section 6 where conclusions are drawn.

2. Methods

The methodological approach developed in this study for assessing
short-term optimization driven by a suite of econometric models is
detailed in the subsections that follow.
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2.1. Formulation of the short-term hydropower optimization problem
Following the approach proposed by Azizipour et al. [34], the short-

term optimization problem for the generic 1-day ahead forecast d can
be mathematically defined as:

R

==

24
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where the subscript 7, with ¢+ € [1,24], indicates the tth hour of the
selected optimization day d and the superscript M refers to the econo-
metric model adopted; the term Rg‘ represents the daily aggregated
forecasted revenue generated by the hydropower system; WM and PM
are the power generated by the hydropower plant and the electr1c1ty
price at a given hour ¢, respectively; g is the gravity acceleration; 5
is the efficiency of the hydropower unit; H) M is the hydraulic head
at hour ¢ computed according to Eq. (1)(d) as the difference between
the reservoir water elevation at hour ¢ (hM ), estimated by means
of a specific volume-elevation reservoir funct10n and the elevation
of the turbine nozzle zpp at the plant connected to the reservoir
through the penstock of the hydropower system; QT”’b M are the hourly
turbined water discharges; VM is the hourly water volume stored in
the reservoir; Q is the hourly reservoir water inflow; Q'""' is the
Minimum Ecologlcal Flow imposed at the reservoir; and At is the hourly
modelling time step. We underline how forecasted inflows Q’" and
forecasted electricity prices PM represent the independent varlables
of the problem, while the hourly turbined water discharges QT“’b M
represent the decision variables computed by means of the optlrmzatlon
algorithm described in Section 2.4.

The short-term hydropower optimization problem depicted in
Eq. (1) is subject to both hard and soft constraints [26,35,36]. The hard
constraints are conditions for the variables of the problem that must be
satisfied by any feasible solution, while soft constraints are require-
ments that the optimization algorithm tries to satisfy, although they
can be violated without causing an interruption in the optimization
process [37].

Hard constraints considered in this work read as follow:

Vinin SV S Viar V1 €[1,24]; (2) @

0< Qde;’b'M <QTwb vt e [1,24]; (b)

where Eq. (2)(a) represents the constraint for reservoir volume,
bounded to vary between a minimum V,,, and a maximum storage,
Vax» and Eq. (2)(b) imposes a limit on the maximum value of tur-
bined water discharge QT"® that the diversion channel connecting the
reservoir and the hydropower plant can convey.

Soft constraints are defined as follows:

At z QTMrb M
2440, i Vi < VM 44t Z (€1 -0,") <V @
2%
< AIZQ’" VSV i Va0 (00 -0, ) < Vi ® (3)
&
& Z o itV a Y (01, -0,"") > Viusi ©

=1

—Turb
where Eq. (3)(a) expresses the upper bound, 244:Q dw , for the daily
turbined water volume At Zr | Q;‘:’bM , introduced in order to guar-
antee the accomplishment of a realistic seasonal pattern of reservoir
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dynamics and simultaneously to avoid unrealistic emptying of the reser-
voir, with V. dO M being the initial reservoir volume of day d; Eq. (3)(b)
imposes that the daily turbined water volume does not exceed the daily
incoming streamflow in the cases in which the minimum water volume
V,un is reached; and Eq. (3)(c) softens the upper limit of the daily
turbine water volume in the case in which V,,,, is reached and overflow
may occur. We remark how the 3 conditions in Eq. (3) are determined
for a given day on the basis of tE(%“rrr;ass balance Eq. (1)(c) and they are
mutually exclusive. The term Q,  has been computed on the basis
of historical simulations provided by a regional hydropower systems
model as described in Section 2.3.

The volume obtained at the end of the optimization of a given day d,
V04, Tepresents the initial volume of the reservoir for the optimization
conducted in the ensuing day d + 1, V. Finally, it has to be
noticed that the system of Egs. (1) refers to a single daily optimization
problem within a set of 365 sequential optimizations conducted during
a reference year of simulations.

2.2. Econometric models

Autoregressive models have been widely used in electricity price
forecasting given the mean-reverting nature of market fundamentals,
the highly repetitive nature of electricity auctions and also the in-
creased market integration, see for example [29,38-40]. Following the
definition of econometric versus fundamental types of modelling in
the seminal review paper of Weron [9], we considered two types of
autoregressive models for forecasting 1-day ahead hourly electricity
prices. The first one, labelled Benchmark, is an econometric model
that exploits econometric properties of the historical hourly data prices
with a set of dummy variables to account for seasonality. The sec-
ond model, labelled Autoarimax, extends the previous specification
by employing market fundamental time-varying variables relative to
electricity demand and supply. For example, Gianfreda and Grossi [32]
and Gianfreda et al. [33] show how important are these fundamental
drivers for predicting Italian (regional) prices. Specifically, the northern
area is characterized by a varied, flexible generation mix, with a large
role of hydropower and a growing role of solar, and conventional
thermal generation (principally gas) covering the remaining portion.
This zone is also connected with four foreign countries. Indeed, because
of the relevant interconnection capacity between foreign countries and
northern Italy, it is possible to import electricity at a lower price.
Accordingly, we included an additional variable, termed weighted
imports, using prices in interconnected countries and in the central
northern Italian zone weighted by the cross-border physical flows thus
accounting for the different areas generating portfolio. Therefore, in
the Autoarimax formulation we considered forecasts of demand, fore-
casts of RES (hydropower, solar and wind) and fossil production (gas
and CO,), and the weighted imports. Autoarimax model thus includes
fundamental information on electricity demand and supply, but also
market features, such as imports of electricity from neighbouring areas.
Therefore, the model applies exogenous stochastic variables to predict
hourly electricity prices.

The Benchmark model can be written as:

p X
(1 - Z¢:L") (1-1"’ (Pd’f, - ﬂd,,)
i=1
q
= <1+Z‘9ij>5d,z edyt~./\/'(0,62); (€©))
j=1

Hyy = M+V/]Dl+ +W1|D“+}/Weekendd+§Mondayd,

where PR is the t-hourly electricity price observed on day d, L is the
generic kth lag operator defined as L“P% = P}, , and f is the first-
differencing parameter which allows to model the price itself (f = 0) or
the first-order difference of the price (f = 1). The parameters p and ¢

represent the autoregressive and moving average orders, respectively.
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The error term at time 1, ¢, is assumed to follow a Normal conditional
distribution with mean 0 and finite constant variance o2. Ds for k =
1,...,11 are dummies for months (excluding December), Weekend,
is a dummy for weekends and holidays, Monday, is a dummy for
Mondays, and y,, ¢ and y are their coefficients, respectively. This last
set of dummy variables accounts for deterministic seasonal and weekly
patterns. The coefficients ¢;, 0,i=1,....,p,j=1,...,q, p=q =" (max
order of lags), u, f, y;, ¢ and y are selected and estimated iteratively
over time, that is lags and dummies are selected, and their coefficients
are re-estimated when a new forecast is produced.

The Autoarimax model extends the benchmark specification in
Eq. (5) with a vector x,, of exogenous regressors in the following way:

P
(1= Z o) 01 (28 - )
i=1
q
= <1+2'9ij>511,1 g~ N (0.6°); ®)
=1

Hay = H+ W D:J + -ty D[lil +yWeekend, + EMonday, + A’ - X445

where x,, includes hourly forecasts of demands, wind and solar PV
generation, weighted imports, natural gas, CO, prices, and hydropower
generation, and A is the vector containing the associated coefficients
that need to be estimated iteratively in addition to those already present
in Eq. (4).

Specifically, we compared the two models in terms of forecast
accuracy of the electricity zonal prices predicted over individual hours;
i.e. each hourly forecast is modelled separately by using past values
of prices and drivers available for the same hour. We assumed that
market operators submit their bids on day d — 1 for the ensuing day d,
on the basis of hourly price forecasts simulated for day d. These latter
forecasts are obtained by considering fuel prices available on day d —I;
the forecasted values for RES and zonal demand available on day d —1;
the hydropower generation and weighted imports observed on day d—1
for hours 1—10 and their realized values observed at hour 10 as a proxy
for the electricity prices of hours 11-24, as suggested in [41] and [42].
Because all information is available or reconstructed before 11 a.m. of
day d—1 (i.e. before the market closure when traders must submit their
offers), we are indeed able to forecast all the 24 h for the ensuing day
d by employing a simple prediction process on the basis of the time-
adaptive autoregressive models calibrated for the set of 24 h belonging
to day d. Therefore, at 11 a.m. of day d — 1 our models predict the
electricity prices for all the 24 h on day d, Pd’“’f, t=1,...,24.

The estimation process for both models is based on a maximum
likelihood estimator and it is executed using the R software using
the function “auto.arima” in the “forecast” library [43]. In particu-
lar, we use the first 730 days of our dataset (i.e. from 1/1/2016 to
31/12/2017) for the in-sample coefficients estimation, and then the
first out-of-sample predictions are performed independently for the 24
price values of 1/1/2018. Thereafter, the window is rolled one day
ahead with further estimation and forecasts obtained for 2/1/2018, and
so forth, until the last day in the simulation period.

2.3. Hydrological modelling

The hydrological modelling component adopted in this work feeds
the optimization algorithm with the hourly time series of inflows at the
selected storage reservoirs, ’d” .- Inflows have been computed using the
ICHYMOD hydrological model [Integrated Catchment-scale Hydrologi-
cal Model, see, 44,45]. This choice is corroborated by two important
characteristics of ICHYMOD. Firstly, ICHYMOD is easily applicable
due to the limited requirements of input meteorological forcing. In
particular the model relies solely on precipitation and temperature
data, information easily retrievable from weather stations located in the
case study region [44]. Secondly, ICHYMOD is particularly suitable for
applications in mountainous catchments, where hydropower reservoirs
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are typically located [46], by exploiting the use of accurate and reliable
modules for snow accumulation and melt dynamics [47-49]. ICHYMOD
is also equipped with the GLUE (Generalized Likelihood Uncertainty
Estimation Beven and Binley [50]) calibration method, which allows
for the set of parameters that maximizes a given objective function
between observed and simulated water discharges to be identified. As
is customary in hydrological simulations, we used the Nash-Sutcliffe
index [NSE 51] as an efficiency metric.

2.4. Optimization algorithm

In this work, the Speed-constrained Multi-objective Particle Swarm
Optimization algorithm (SMPSO) has been adopted as the optimization
algorithm [52]. The SMPSO is a more sophisticated variant of the
classic PSO (Particle Swarm Optimization, Kennedy and Eberhart [53]
and Majone et al. [54]). Compared to PSO, SMPSO is characterized
by a velocity constraint mechanism, which is designed to prevent the
so-called ‘swarm explosion’ [55], that is an inconsistent movement of
the particles when the velocities are high. SMPSO thus implements
a limitation on the maximum velocity of the particles that allows
for a more effective search of the optimal solution. Moreover, the
algorithm is equipped with an external archive to store the solutions
that are non-dominated and also a polynomial mutation is applied to
perturbate particle locations and further enhance the exploration of the
hyperspace.

In the implementation of the optimization algorithm, particular
attention has been given to avoid the identification of local optima,
which can produce solutions that are far from the absolute optimum.
Specifically, convergence of the optimization algorithm for each simu-
lation day d has been ensured by implementing the approach proposed
by Do et al. [56] and Zanfei et al. [57], in which multiple runs of
the same optimization problem (i.e., one for each day and for each
econometric scenario considered, see Section 2.2) are performed in
order to generate a set of possible solutions. Therefore, a solution is
identified for each econometric scenario by selecting the one providing
the highest revenue for each day. A comprehensive explanation of the
SMPSO algorithm is provided in Appendix.

2.5. Econometric and optimization performance metrics

In order to analyse the performance of the optimizations con-
ducted using the two identified econometric models (See Section 2.2),
a reference optimization problem has been introduced. This solution,
hereafter referred to as “Real”, is obtained by solving 20 runs of the
optimization problem described in Section 2.1 for each day d by using
the real electricity prices Pd’ft as the input. The obtained solutions thus
represent the best possible economic scenario, in which perfect 1 day-
ahead foresight is assumed and the hourly distribution of the turbined
water discharges (i.e., Q:“i"b'R) attempts to perfectly match the elec-
tricity price dynamics given the installation constraints of the storage
reservoirs (see Fig. 1a). In doing so, the optimization problem driven
by real electricity prices provides the maximum revenue obtainable in

a given simulation day, Rf, which reads as:
24
R _ R pR
Ry = 2 WaiPas (6)
t=1

On the contrary, actual daily revenues obtained using the two dif-
ferent econometric forecasting models are computed considering the
optimized production plan (i.e., Qde:’b’M in Eq. (1)(b)) and the real
electricity prices for day d, which actually represent the realized market
price value obtained in the 1-day ahead electricity market. Actual

revenues can then be computed as follows:

24

M* _ M pR .

Rd - Z Wd,r Pa',t’ @)
1=1
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where Wdff;’ are the hourly powers generated by the plant computed
according to the optimization process driven by the M —th econometric
model (Eq. (1)(a)). Notice that the actual revenue, Ry " obtained after
the bidding as driven by the Benchmark (Model = B) and the Autoari-
max (Model = A) econometric models (see Fig. 1b and c, respectively),
differs from R(’y , which represents the daily revenue value maximized
during the optimization process. Actual revenues are compared with
the reference optimization by means of the percentage ratio metric 45{’1” ,
which can be expressed as follows:

e
M _ d

o) = R - 100 ®
d

For the sake of completeness, we also introduced a metric to assess
electricity price forecasting accuracy. The metric expresses the relative
change of hourly forecast prices P;‘j , at hour 7 and for a given day
d, with respect to the real hourly prices P(ft, and can be expressed as
follows:

M
1t

M
4PM =1 - |- 100 ©)

dit

3. Case study

The comparative assessment between optimizations conducted us-
ing the Autoarimax and Benchmark econometric models has been
performed with reference to the storage reservoirs of Vernago and
Monguelfo, both located in the south-eastern Alps (see Fig. 2). Water
stored in the reservoir of Vernago is used in the Naturno hydropower
plant, while water stored in the reservoir of Monguelfo is utilized in the
power plant of Brunico. Both power plants deliver the produced elec-
tricity to the northern Italian power grid and operate in the northern
Italian electricity market.

The drainage basins of the two reservoirs (69 km? and 430 km?
for Vernago and Monguelfo, respectively, see Table 1) are located in
the Adige river basin, an Alpine watershed in north-eastern Italy. The
Adige is the second longest Italian river, and its watershed hosts the
presence of a dense network of man-made channels, reservoirs and
plants associated to intense hydropower exploitation [58-61]. Both the
Vernago and Monguelfo drainage basins are characterized by a typi-
cal snow-dominated streamflow regime with water discharges varying
significantly across seasons [62-65]. High flows occur typically in late
spring due to snow melt and in the autumn triggered by moist air flows
blowing from the Mediterranean area [49,66,67].

Both reservoirs are managed according to their regulation capacity,
with different operating policies resembling the hydrological regime of
the related watersheds. In particular, Vernago has a storage capacity of
about 37.79 - 10° m? and is managed following a seasonal regulation:
a minimum level is typically maintained at the beginning of the snow
melt season (end of April), while a maximum level is normally reached
at the end of the summer season (end of September). Volume regulation
aims to refill the reservoir volume during high flow period (late spring
and summer) and maximize the hydropower production during low
flow period (i.e., late autumn and winter) when electricity prices are
usually higher because of heating demand [68]. On the contrary, due
to its limited storage capacity (about 6.45 - 10° m3), the Monguelfo
reservoir follows a multi-weekly regulation. Scheduling of the produc-
tion is typically performed during the winter season only, when the
incoming flow rate is limited and comparable with the storage capacity
of the reservoir. During high flow periods (late spring and summer),
Monguelfo behaves like a run-of-the-river power plant because inflows
largely exceed maximum penstock capacity. An overview of the main
characteristics of the two reservoirs and of the connected hydropower
plants is presented in Table 1.
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Table 1
Main characteristics of the Monguelfo and Vernago storage reservoirs and of the
associated hydropower plants.

Unit Monguelfo Vernago
Hydropower station name Brunico Naturno
Gauging station name Rienza Gerstgras
Contributing area [km?] 430.00 69.00
Reservoir V,,;, [m? - 1e3] 0.00 2.84
Reservoir V,,,, [m? - 1e%] 6.44 40.64
Mean hydraulic head [m] 200.00 1135.00
Penstock capacity [m?3/s] 22.00 13.7
Maximum regulation level [m] 1055.00 1689.50
Minimum regulation level [m] 1026.70 1637.65

3.1. Set-up of the modelling framework

In this work, the year 2018 has been selected as the reference period
for econometric driven optimization. Since the econometric models
are calibrated on two-year data, 2016 and 2017 data are then used
to produce the first forecast for 1 January, 2018 and so on for the
following days. Anticipating the investigation period to pre-2018 would
imply calibrating models on data from before 2016. However, the year
2015 presented a large-scale deployment of intermittent renewables in
Italy, which caused substantial modifications in the electricity market,
henceforth denoted with a higher degree of uncertainty in electricity
demand and supply, and consequently we prefer to exclude all the years
before 2016 as suitable for the optimization assessment [69].

The hourly northern Italy zonal electricity prices' have been ex-
tracted from the Italian system operator GME (Gestore dei Mercati
Energetici), while the European Network of Transmission System Oper-
ators — Electricity (ENTSO-E) [70] has provided the day-ahead hourly
load forecasts, used as a proxy for local electricity demand, and the
day-ahead hourly forecasts of RES generation. We remark that ENTSO-
E and GME data are public available without fees and as described in
Section 2.2 market participants can access them before submit theirs
bids before 11 a.m. on day d-1 for day d. For fossil production, to
account for the marginal costs of conventional thermal generation, we
use the costs of conventional thermal generation: the Dutch TTF natural
gas prices (for delivery over the next month) and the EEX-EU CO,
emissions E/EUA prices in euros, all collected from Datastream [71].
We assume the same hourly price in the 24 h of the day for thermal
generation. Furthermore, the following data have been collected in
order to take into account neighbouring markets: hourly day-ahead
prices observed in Austria, France, Switzerland, Slovenia, and in central
northern Italy; actual hourly electricity physical flows into the northern
Italy electricity zone. Though we tested both physical and market flows
during the development of the econometric model, in the end we
opted for using physical flows because they were superior in terms of
electricity price forecast accuracy.

1 The Italian electricity market is structured into geographical and foreign
virtual zones. The geographical zones represent a portion of the national grid
delimited by bottlenecks in transmission capacity, and these are northern Italy,
central-northern Italy, central-southern Italy, southern Italy, Calabria, Sicily,
and Sardinia. The foreign virtual zones are points of interconnection with
neighbouring countries. This paper considers northern Italy because it covers
the Alpine region where the investigated storage reservoirs are located. The
foreign virtual zones are France, Switzerland, Austria, and Slovenia. Each geo-
graphical and virtual zone yields an hourly (clearing) price, obtained from an
implicit bidding mechanism in which pairs of quantities (in MWh) and prices
(in € /MWh) are considered by accounting for the market splitting in case of
congestions. Therefore, in the same hour, zonal prices in contiguous market
zones can differ depending on transmission bottlenecks. The zonal prices
concur to generate the single national price (or prezzo unico nazionale, PUN),
that is the average of zonal day-ahead prices weighted for total purchases, net
of purchases for pumped-storage units, and purchases by neighbouring zones.
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Fig. 1. Scheme representing the procedure adopted to compute hydropower revenue for a given day d driven by (a) real electricity prices P

t, (b) Autoarimax forecasted electricity

prices P;, and (c) Benchmark forecasted electricity prices Pf. The term Oy, represents the hourly inflow to a reservoir in the day d; QT“"’R, QT"’“ and QT"’b B represent the
optimized daily operational plans (i.e., hourly turbined water discharges) as drlven by real, Autoarimax and Benchmark electricity prices, respectlvely, and RE, R} and R} are the

associated revenues.

The ICHYMOD hydrological model has been used to compute the
hourly time series of inflows Q , for the two selected reservoirs during
the year 2018. In particular, the calibration of ICHYMOD for the
Vernago drainage basin has been performed using the streamflow
data of the Gerstgras gauging station during the period 1 October
2018-30 September 2019; in the case of Monguelfo, the data from
1 October 1994 to 30 July 1998 retrieved from the Rienza gauging
station have been used (see Fig. 2). According to the classification
provided by Moriasi et al. [72], calibrations can be considered as
very good and satisfactory with NSE = 0.90 and NSE = 0.61 for
the Vernago and Monguelfo drainage basins, respectively. Afterwards,
the parameterizations obtained for the ICHYMOD hydrological model
during calibration have been used to simulate hourly inflows to the
reservoirs during the year 2018.

The daily upper bounds of turbined water discharge Qjmb (which
implicitly represent a limitation for the water volume that can be
turbined in a given day) have been obtained from [61], where the

hydrological model HYPERstreamHS [61,73] has been presented and
used to simulate historical time series of water releases from the reser-
voirs in the investigated study region, i.e., the entire Adige river basin.
HYPERstreamHS is indeed a hydrological model embedding modules
for simulating the presence of infrastructures, such as reservoirs and
diversion channels. Historical operational rules of storage reservoirs
present in the Adige river basin have been inferred from regional
electricity production data that is publicly available from the Italian
Energy Services Manager [74]. In this work, the simulated time series of
daily simulated turbined flows at the Vernago and Monguelfo reservoirs
during the period 1989-2013, retrieved from [61], have been averaged
to provide the daily targets of water releases over the year 6:”

For the sake of completeness, the parameters adopted in the op-
timizations conducted with the SMPSO algorithm are also reported.
Specifically, the swarm size and the so-called archive size are both
set equal to 1000, the mutation probability is equal to 25%, and the
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Fig. 2. Location of the Vernago and Monguelfo storage reservoirs with their associated drainage basins (black line) within the South-Tyrol region (northern Italy). Locations of
weather stations and stream gages stations used as input data for hydrological modelling is also presented. The inset shows the geographic location of the South-Tyrol region

within the Alpine region.

max number of generations is fixed at 10000. For additional details
concerning SMPSO algorithm parameters, please refer to [52].

4. Results
4.1. Electricity prices forecasting

The relative change (expressed as percentage) of hourly forecasted
electricity prices for the Autoarimax and Benchmark econometric mod-
els with respect to the real electricity prices is presented in Fig. 3a. The
relative changes are presented as an average of all the 365 daily fore-
casts performed during 2018, with the corresponding hourly averages
of real prices highlighted in Fig. 3b. The Autoarimax model provides
better forecasting performances with respect to the Benchmark model,
with an overall average relative change of 9.38%, a value that is lower
than the 10.21% obtained with the Benchmark model (see the dashed
lines in Fig. 3a).

A visual inspection of Fig. 3a shows that the maximum average
differences between the two econometric forecast models are located in
the hours when the maximum deviance from the real prices also occurs:
at the beginning of the first price ramp-up (i.e. 3rd-4th hours); at the
8th hour, in correspondence with the first peak of electricity prices (see
Fig. 3b); and at the 14th hour, at the beginning of the second price
ramp-up. Price ramp-ups are associated with higher price volatility
and market uncertainty, therefore informative regressors, such as the
ones applied in the Autoarimax, can increase forecast accuracy and
substantially reduce forecast errors. It is worth noticing that during
the price recession phase after the evening price peak (from 19th
to 23th hour), both models present a similar forecast accuracy. We
attribute this result to two reasons: (i) the forecasting accuracy of RES,
electricity demand and electricity import flows employed in the Au-
toarimax model decrease across the day [75], reducing its predictability

14 ——— Autoarimax

-——— Benchmark

2 3 45 6 7 8 010111213 14 15 16 17 18 19 20 21 22 23 24
[hour]

Fig. 3. (a) Average percentage relative change EIM of hourly forecasted electricity
prices for both the Autoarimax and Benchmark econometric models; and (b) hourly

averages of real electricity prices F,R. The overbar notation indicates that the average
has been performed over all the 365 forecasts conducted during 2018. Dashed lines
indicate the overall relative change of both models.

power; and (ii) there is an intrinsic and time-varying electricity price
uncertainty. This increases with the forecasting time and its cause is
still being debated in the econometric literature.

4.2. Real prices driven optimizations

Results of daily optimizations driven by real electricity prices (i.e.,
the reference optimization) are presented in Fig. 4 with reference to
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the two investigated storage reservoirs of Monguelfo (left column) and
Vernago (right column) during the year 2018. The upper bounds of
the daily turbined water discharges from the two reservoirs (subplots
4a,b) are presented as yellow lines and represent the historical seasonal
pattern of releases as obtained by the simulations performed by Avesani
et al. [61] by using the hydropower production module embedded
in the HYPERstreamHS model (see Section 3.1). Furthermore, Fig. 4
presents the time series of daily inflows to the reservoirs as simulated
by ICHYMOD hydrological model (blue lines in subplots 4a,b) and
the time evolution of reservoir water volumes (subplots 4c,d). Finally,
revenues obtained by solving the daily optimization problems driven
by real electricity prices are presented as red lines in subplots 4e,f.

Indeed, a strong connection between water inflow and turbined
water discharge is observed at Monguelfo (Fig. 4a) as a consequence of
the multi-weekly regulation capacity of the reservoir. High inflow rates
fill the reservoir rapidly (few days) resulting in prolonged periods in
which maximum turbined water discharge is released (see the plateaus
of turbined flows in Fig. 4a). As a consequence, in these periods
the reservoir water volume remains at the maximum value V,,,, (see
Fig. 4c). On the contrary, in periods of low inflows the reservoir water
volume rapidly dwindles to the minimum storage capacity (V,,;, in
Fig. 4c) with turbined discharges equalling the inflows. These reservoir
dynamics exert a strong control on optimized daily revenues, which
present significant seasonal variations resembling those of the incoming
flows (see Fig. 4e).

The strong correlation between incoming flows and reservoir water
volumes is lost for Vernago due to its larger storage capacity (see
Fig. 4b,d). In this case, a prolonged filling phase is observed, which
lasts from late April to early September (Fig. 4.d). In the remaining
periods of the year, when low inflows typically occur, the water stored
in the reservoir gradually decreases to reach its minimum level by the
end of March. As a consequence, the seasonal pattern of turbined water
discharges is much smoother with respect to the Monguelfo case and it
does not resemble that of the incoming flows. Similarly, the optimized
daily revenues do not present abrupt variations with a seasonal pattern
that is well correlated with the time series of both reservoir volumes
and turbined water discharges (Fig. 4f).

For sake of completeness, Fig. 5 exhibits as an example the results
of the optimization process at Vernago reservoir driven by real prices
in two consecutive days: 6-7 April 2018. As expected, the hourly
operational plan for both days is perfectly aligned with the pattern
of electricity prices, with turbined flows (red vertical bars in Fig. 5a)
scheduled in the hours where the prices are higher. Coherently, power
at the hydropower plant is generated in the hours where turbined
flows are scheduled (Fig. 5b). No significant differences are observed
in the power generated at individual hours as a consequence of the
limited water level oscillation occurring at Vernago (~ 0.5 m), which
we remind is a reservoir presenting a significant storage capacity.

4.3. Econometric forecasts driven optimizations

The forecast performances of the Autoarimax and Benchmark econo-
metric models are assessed here in terms of actual daily revenue values
(see Eq. (7)), as compared to reference revenues obtained using real
prices as input to the optimization problem. In particular, we consider
the differences in the percentage ratio metric as introduced in Eq. (8).

Average monthly percentage ratios, @Y, for the two econometric
models are illustrated in Fig. 6a and c for the Monguelfo and Vernago
reservoirs, respectively. @ is always larger than 82% for all months
and for both models, thus indicating a satisfactory performance of both
econometric models in reproducing the reference revenues. This is con-
firmed by the values of annual average percentage ratios (dashed lines
in Fig. 6a and c), which approach about 95% for the two econometric
models in both the investigated reservoirs. At the monthly time scale,
the use of Autoarimax forecasts leads to a revenue increase at Vernago
up to 2.31% with respect to the case in which Benchmark forecasts
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are used in the optimizations. This maximum gain decreases to 1.31%
at Monguelfo. For both hydropower systems, the maximum gain is
registered in April.

Peculiar differences are indeed observed at the two reservoirs. At
Monguelfo, optimizations driven by the forecasts of the two economet-
ric models indeed provide similar performances in terms of revenues.
The average monthly percentage ratios approach 100% (i.e., almost
equalling the maximum reference value) in three months (May, Septem-
ber and November), while during the remainder of the year they exhibit
larger differences from the reference revenue with maximum devia-
tions observed, for both econometric models, in February and March.
On the other hand, monthly percentage ratios obtained at Vernago
show an attenuated seasonal variability, though associated with larger
dissimilarities between monthly values of the @4 and &2, which are
particularly evident in the spring season (see April and May in Fig. 6c¢).

The Empirical Cumulative Distribution Functions (ECDFs) of daily
revenue percentage ratios, tbg” , at the Monguelfo and Vernago reser-
voirs are illustrated in Fig. 6b,d with reference to both econometric
models. In agreement with the monthly behaviour, the two ECDFs at
Monguelfo are almost overlapping, with both @4 and ®Z exhibiting
values of daily percentage ratios larger than 98% in nearly 25% percent
of the simulated days (i.e., the three aforementioned months). At
Vernago, the two ECDFs present uni-modal behaviour (i.e., smaller dif-
ferences between the revenues obtained in the different days), though
larger deviations between (D(’l‘ and <I>5 are indeed observed (see 0-0.2
probability interval in 6d).

This last result is particularly relevant since it highlights that op-
timized revenues differ not only as a consequence of the different
accuracies of the two forecasting econometric models but are also
strongly influenced by reservoir characteristics. This aspect will be
further discussed in Section 5.2.

5. Discussion
5.1. Temporal dynamics of electricity prices forecasting

Results presented in Section 4.1 highlighted that the forecasting
accuracy of the two econometric models changes significantly across
the year. Electricity prices are indeed determined by an equilibrium
between time-varying factors affecting both electricity supply and de-
mand. These factors include seasonal variations in electricity demand
and seasonal variations in meteorological forcing, which in turn affect
RES generation, and variations in the temporal availability of electricity
flows from surrounding regions [76]. Some of these features are indeed
particularly relevant for the northern Italian zone market: the peaks in
electricity demand occur in summer and in winter in correspondence
with consumption peaks for heating and cooling, respectively [77,78];
electricity supplies from solar and wind generation have a strong sea-
sonal component correlated with seasonal variations of meteorological
forcing [79,80]. Additional insights about the Italian electricity market
can also be found in [81-83].

The temporal dynamics of electricity prices in the northern Ital-
ian zone are indeed highly variable, as illustrated in Fig. 7a, where
observed daily average prices during the year 2018 are presented.
Electricity prices are higher between February and March and from
September to November, when solar generation is typically lower,
while the prices dwindle during spring and summer seasons. This is in
agreement with the seasonality patterns identified in [78] by means
of Fourier Transform (FT) analysis applied to the electricity price
time series of the northern Italian zone market during the 2005-2015
period. Volatility of electricity prices (i.e., fluctuations in prices over
a given time period) are presented in Fig. 7b as a measure of price
uncertainty in the electricity market. Here we assumed that volatility
can be estimated by calculating the standard deviation (SD) of the
hourly observed prices over a moving time window of 7 days centred
around the investigated day d. Indeed, periods with large volatility are
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hydropower plant.

those also characterized by relatively high daily electricity prices (see
Fig. 7a,b). This uncertainty in the electricity market can be attributed
to seasonal unbalances in supply and demand, as previously discussed,
but also to short-term effects, such as unpredictable changes in elec-
tricity demand, RES generation or the physical flow of electricity from
neighbouring areas. The latter can be particularly relevant at certain
hours of the day and is affected by bottlenecks in the transmission grid,
which further add uncertainties into market dynamics [84-86].

The seasonal dissimilarities between the Autoarimax and Bench-
mark models in reproducing real prices (see Section 4.1) can thus be
interpreted in terms of the different capabilities of the two econo-
metric models in considering the dependence of the market from the
aforementioned time-varying factors relative to electricity supply and
demand. The superior performance of the Autoarimax model is also in
line with the recent findings of [75], where the comparison between
several autoregressive models have been performed with reference to

the time window 1,/1/2017 to 31/12/2018 for the northern Italian zone
market.

The temporal evolution of the forecasting accuracy of the two
adopted econometric models is further investigated in Fig. 8 with refer-
ence to the entire year of 2018. Average monthly relative changes with
respect to real prices, @, are larger for both models in the first half of
the year (subplot a) with maximum deviations observed in March and
April and minimum deviations in August and October. The difference
in the performances between the two model is not constant throughout
the entire year, with the largest relative differences being observed in
March and April and from August to October. The maximum difference
is registered in March, with the Autoarimax being more accurate than
the Benchmark by about 2.84%. Notably, the Autoarimax outperforms
the Benchmark in the months with both high prices and volatility (see
Fig. 7). In other words, the Autoarimax model is capable of better
handling uncertainties in the electricity market with respect to the
Benchmark model due to the adoption of exogenous variables related
to electricity supply and demand. On the contrary, the Autoarimax and
Benchmark models present similar accuracy in May and June. These
months are indeed characterized by lower volatility of electricity prices
and thus a predominant role in the time-adapting calibration of the two
autoregressive models is played by the information provided directly
in the time series of past prices (see Egs. (4)-(5)) without the need
to rely on exogenous regressors. The average annual difference in the
forecasting accuracy between the two models is about 0.80% in favour
of Autoarimax (see dashed lines in 8a).

The difference in accuracies between the Autoarimax and Bench-
mark forecasts is confirmed by a visual inspection of Fig. 8b, where
the ECDF of the differences in the daily relative change between the
two models, AP‘;4 - APf, is presented. We notice how positive values of
such differences indicate better daily accuracy of the Autoarimax model
(APdA < APdB). Two important considerations can be drawn: (i) the
Autoarimax model outperforms the Benchmark in 60% of days (right
side of the plot); and (ii) when the Autoarimax model provides better
performances, the relative difference (APf - APdA) reaches values up to
nearly 30%, while in the opposite case (when the Benchmark model
provides better performances) the maximum relative difference in AP dB
- APdA reduces to 15% (considering the modulus of the difference). The
presence of days where the Benchmark model is more accurate can
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be attributed to overfitting problems in periods where the information
provided by exogenous variables may be redundant and thus create
collinearity issues between the various predictors [87-89].

The daily difference in forecasting accuracy between the two econo-
metric models is highlighted in Fig. 8c, which illustrates the evolution
over the year of APdB - AP‘;‘. Notice that the grey area highlights the
region of the plot where AP[f - AP[;,4 is positive, i.e., where the relative
deviation of Autoarimax forecasts from observed prices is lower than
that of the Benchmark. In accordance with the results shown in Fig. 8a,
the maximum daily differences in APdB - APdA are observed in March
and April and, albeit with smaller values, from mid-July to December.

10

In the period from August to October, the Autoarimax outperforms
the Benchmark model in almost all the simulation days, although with
values of APdB - APdA that are smaller than those recorded from March
to May.

5.2. Impact of electricity prices modelling accuracy on hydropower opti-
mization

Results presented in Section 4.3 showed that reservoir characteris-
tics and their associated water storage dynamics play a major role in
controlling the expected revenues as provided by optimization process.
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Indeed, large storage reservoir hydropower systems have the capability
to adjust their energy production (i.e., to modulate the time alloca-
tion of turbined water discharges) according to the forecasts of the
electricity prices and thus are able to increase expected revenues by
taking full advantage of the improved accuracy provided by innovative
econometric models. These systems are indeed flexible [following the
definition provided by 90] and are less subject to limitations imposed
by reservoir size and water availability.

This result is further confirmed by the analysis presented in Fig. 9,
where the ECDFs of the difference between the actual revenues (as
described by the difference in the percentage ratios metric, difi‘ - 055 s

11

see Eq. (8)), obtained by using the forecasts provided by the two
different econometric models in the optimization, are presented for
both the Monguelfo and Vernago reservoirs, respectively. We notice
how positive values of such differences indicate larger actual revenues
obtained from the use of the Autoarimax forecasts ((D&‘ > th). At
Monguelfo (low storage capacity), Autoarimax driven optimizations
provide larger daily revenues with respect to the Benchmark model
(@4 > @2) in about 30% of the simulation days (0.7-1.0 probability
interval in 9). In another 50% of the days (0.2-0.7 probability interval)
both econometric forecasts lead to the same performance in term of
actual daily revenue (dj? ~ diff), while in the remaining 20% of the
days the Benchmark driven optimizations lead to larger revenues than
the Autoarimax counterpart. The differences in the actual revenues are
indeed amplified at the Vernago reservoir (high storage capacity). The
number of days when the Autoarimax driven optimizations guarantee
larger revenues with respect to the Benchmark increases significantly
up to 50% of the total (from the 30% at Monguelfo). In addition,
the number of days where the forecasts of two econometric models
lead to similar revenues reduces to 30%, from the 50% in the case of
Monguelfo.

These different responses can indeed be ascribed to the different
characteristics of both storage reservoirs and associated hydropower
plants, namely: reservoir capacity and the ratio between inflows and
maximum turbined water discharge that can be conveyed to the plant.
When inflows are larger than the penstock capacity and the storage size
is limited (i.e., the Monguelfo case), the reservoirs fill rapidly and the
maximum turbined water discharge is released constantly. On the con-
trary, in low flow periods the Monguelfo reservoir operates the closest
to the minimum storage capacity and the amount of water available
for optimization is strongly reduced (see Fig. 4a,c). We note that since
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the soft and hard constraints imposed in the optimization algorithm
are the same for all the daily optimization problems solved at the
two reservoirs, the time evolution of daily turbined water discharges,
inflows and storage volumes depicted in Fig. 4 is representative of all
the investigated electricity prices models (i.e., Autoarimax, Benchmark
and Real prices). The limited flexibility of the Monguelfo reservoir thus
curbs the possibility to take full advantage of the superior performance
of the Autoarimax econometric model. This occurrence is not present
at Vernago, where the larger storage capacity leads to significantly
larger daily actual revenues obtained using the forecasts provided by
the Autoarimax model (see the right side of Fig. 9).

Daily differences in actual revenue obtained using the forecasts of
the two econometric models are also highlighted in Fig. 10, which
illustrates the evolution over the year of @? - @5 for both reser-
voirs. Consistently with the previous considerations, prolonged periods
where the actual revenues are substantially equivalent between the
two models are observed at Monguelfo (see the limited oscillations of
@4 — @5 from May to December in Fig. 10a), which are aligned with
periods in which the storage capacity is generally either at maximum
or minimum storage capacity. Indeed, the limited storage capacity of
Monguelfo dampens the effects of the improved accuracy of Autoarimax
forecasts. Positive values of <D§‘ - <D5 are observed at Vernago through-
out the entire year (Fig. 10b), thus indicating that reservoir dynamics
are not representing a limiting factor in the exploitation within the
optimization of the improved accuracy provided by the Autoarimax
model. Consistently with the improved electricity prices forecasting
accuracy provided by the Autoarimax model, the largest differences in
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percentage ratios (cb"} —dﬁf) are observed for both reservoirs during the
period from January to April, with maximum daily deviations reaching
about 31% at the end of March for both reservoirs. Though limited in
the magnitude, positive deviations in the percentage ratios between the
Autoarimax and Benchmark are generally observed at Vernago during
the period June to December.

The difference in flexibility for the investigated storage reservoirs
is further highlighted in Fig. 11, where we show the ECDFs of the
correlation coefficient o(Pd’ft, W M) between the real prices P, dl?t observed
at a given day d and power generated Wd{‘f in the same day as provided
by the Autoarimax (M=A) and Benchmark (M=B) driven optimizations.
Namely, a(P[fr, Wd’}f) indicates the capacity of the reservoir to align
the daily operational plan with respect to real prices. In other words,
higher values of o(P, dl?t’ Wd’,‘f ) thereby denote a better capacity of the
hydropower system to generate electricity when real prices are higher.
Visual inspection of Fig. 11a shows that the two ECDFs at Monguelfo
are very similar, thus confirming that the limited capacity of the reser-
voir is not able to fully exploit the higher accuracy of the Autoarimax
model. On the contrary, at Vernago there is an evident amplification of
the difference between the ECDFs of the correlation coefficients, which
is a clear indication that the reservoir, thanks to its higher flexibility,
is able to substantially increase the actual revenues as a consequence

of the improved accuracy of the price forecasts.

Reservoir characteristics and the presence of hard and soft con-
straints thus lead to a non-linear relationship between the improved
econometric model accuracy provided by the Autoarimax, which is
the same for the two investigated reservoirs, and actual revenues.
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The presence of small storage capacity, as in the case of Monguelfo,
thus represents an important limiting factor for reservoir operations,
since the system does not have enough degrees of freedom to align
electricity production to the improved forecasts provided by innovative
econometric models.

6. Conclusion

In this paper, we have evaluated the effects of the improved fore-
casting accuracy of innovative econometric models on short-term hy-
dropower revenue optimizations. The analysis is conducted with ref-
erence to the 1 day-ahead electricity market by employing two dif-
ferent autoregressive and time-adapting models, namely Autoarimax
and Benchmark. We considered 365 daily independent optimizations
driven by the different econometric models bounded by hard and soft
constraints mimicking the seasonal management of storage reservoirs
in the Alpine region. Finally, the analyses considered two storage
hydropower systems of different sizes.

Our results highlight that 1 day-ahead hydropower optimizations
driven by Autoarimax forecasts can substantially increase actual rev-
enues with respect to the adoption of a more standard autoregressive
model, such as the Benchmark. However, these increases depend on
two main factors: (i) the improved forecasting accuracy of the innova-
tive econometric model, which, however, varies significantly over the
year; and (ii) reservoir characteristics and storage capacity.

The different time-varying performance of the Autoarimax model
with respect to the Benchmark is linked to the role played by the
exogenous variables embedded in the econometric model, which in-
clude factors affecting both electricity supply and demand. The added
valued of the information provided by these variables is indeed not
constant over time and across hours of the day. Autoarimax forecasts
are generally more accurate than their Benchmark counterparts, though
the increased accuracy is more evident in some periods of the year and
certain times of the day. Autoarimax outperforms the Benchmark model
when the electricity price and its volatility are typically higher, while in
periods characterized by relatively low volatility, the Benchmark model
provides better performance, albeit to a lesser extent, with respect to
the Autoarimax. This is a clear indication that the Autoarimax model
is more capable of handling uncertainties in the electricity market with
respect to the Benchmark model due to the adoption of exogenous
variables related to electricity supply and demand. This result also
suggests the possibility of using an ensemble of econometric forecasts to
drive the optimizations, in order to account for the documented model
uncertainty.

Reservoirs with low storage capacity (i.e., Monguelfo) indeed work
like run-of-the-river plants during most of the year. In this case, the
improved econometric model accuracy of the Autoarimax model is not
transformed directly into a substantial increase in the actual revenues
resulting from the optimization process. On the contrary, hydropower
systems characterized by large storage capacity (i.e., Vernago) are able
to better exploit the advantage of more accurate forecasts and thus
provide a larger increase in actual revenues.

Reservoir characteristics and the presence of constraints in the opti-
mization process leads to a non-linear transformation of the improved
econometric model accuracy provided by the Autoarimax, which is the
same for the two investigated reservoirs, and actual revenues. The pres-
ence of small storage capacity, as in the case of Monguelfo, thus rep-
resents an important limiting factor for reservoir operations, since the
system does not have enough freedom to align energy production with
the improved forecasts provided by innovative econometric models.
This also indicates a significant dependence of the temporal evolution
of the actual revenues on the characteristics of the hydropower system,
thereby calling for plant-specific analyses to evaluate the benefit of
using more accurate econometric models in the optimization of storage
reservoir systems.
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Our results may also provide useful indications to hydropower com-
panies to enhance their expected revenues from storage hydropower
systems, especially those characterized by large storage capacity, by
considering the use of innovative econometric models capable of deal-
ing with the large uncertainties associated with the electricity market.
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Appendix. The SMPSO algorithm

The SMPSO is a more sophisticated variant of the classic PSO
algorithm that is designed to handle multi and single objective prob-
lems. PSO is an iterative method belonging to the swarm intelligence
category, which is based on the exploration of the space of parame-
ters by N particles, called bees. Particles locations are first randomly
initialized and then iteratively updated in the search of the optimal
solution. The location updating procedure usually involves three steps:
particle initialization, the calculation of velocities and the update of the
positions and of the archive (i.e., the memory of all locations visited by
the whole collection of particles). Formally, each ith particle is located
in a position Z (¢) at a time step 7. Then, the position Z (t+1) is updated
by adding the velocity 17: (t + 1) of the particle to its previous location
according to the following equations:

Z (t+1) =z, O+ 0, (t+ 1) (A1)

0 (14 1) = x[w 0, (1) + C1y(xpi— 71 (0) + Copy(xpi— 2 O (A2)

where the coefficient w is the inertial weight, which controls the
particle memory (i.e. how the previous velocity affects the actual one),
the variables ¢, and ¢, are two uniformly distributed random numbers
between 0 and 1 that weight the particle best position (x,;) and the
global best (x,,), C| and C, are uniformly distributed random numbers
between 1.5 and 2.5, and y is a constriction factor. Differently from
PSO, SMPSO implements the constriction factor y to limit the particles
velocities thus allowing a more effective search of the optimal solution:

2

2oy -2 —dy

7= *3)
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where the coefficient y is expressed as:

_fc+G if
Y= 4 if

SMPSO algorithm also includes an additional constriction mecha-
nism to further bound the jth component of the velocity v; ; associated
to each particle i, withi = 1,...,N,j = 1,...,N,, and N, being the
dimension of the parameter space. The constraint is applied as follows:

C +Cy >4 (a)

C +C, <4 (b) A4

5; if v () > 65 (a)
vy =y -5, if v ;0)<-5; (b) (A.5)
v, otherwise; (c)
where the term §; is expressed as:
upper_limit; — lower_limit ;
5 = 4 ! (A.6)

/ 2
This latter mechanism verifies if the velocities may lead to particle
positions (calculated on the basis of Egs. (A.1) and (A.2)) outside the
bounds of the parameters space, as identified by the lower (lower_limit D)
and upper (upper_limit;) limits of each dimension j. If this occurs, the

velocities are limited according Eq. (A.5).
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