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Abstract

When crises potentially originate from coordination failures, does a deterioration in

the quality of the information available to market participants contribute towards in-

stability? We address this question in a general global game of regime change with a

unique equilibrium and illustrate the implications in a debt rollover application. We

show that a reduction in the quality of information increases the likelihood of regime

change, thus reducing stability, when the net payoff in the case of a successful attack is

more sensitive to the fundamentals than the net payoff in the case of status quo survival.

We also discuss welfare implications.
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1 Introduction

Information quality is a central concern in macroeconomics and finance. During major disruptive

events, such as debt runs or currency crises, market participants have to rely on imprecise infor-

mation to make their decisions. Additionally, these decisions often include important coordination

aspects. However, what is the effect of a change in information quality on financial stability?

We examine this question in a general global game of regime change. This environment features

imperfectly informed agents facing a binary decision of whether to attack the status quo. A strategic

complementarity arises from discrete payoff changes that occur when a sufficiently large group of

agents choose to attack and trigger regime change. An imperfectly observed state variable (the

fundamentals) determines the strength of the status quo in terms of the minimum fraction of agents

that must attack in order for regime change to occur. Importantly, the state also directly affects

agent payoffs in the events of both regime change and status quo survival. Specifically, the net

payoff from attacking the status quo relative to not attacking the status quo decreases weakly in the

state, as stronger fundamentals weaken the incentives to attack. Indeed, the sensitivity of payoffs

to the fundamentals is a central driver of the results we present.

The unique equilibrium of this game is characterized by two endogenous thresholds. The first

is a strategic threshold, which determines the value of the private signal realization below which an

agent attacks the status quo. The second is a regime-change threshold, which determines the value

of the fundamentals below which regime change occurs.

Our main exercise consists of studying under which conditions a decrease in the precision of

private information increases the regime-change threshold and thus makes the status quo less stable.

This occurs whenever the sensitivity of the net payoff to the fundamentals is higher in the case of

regime change than in the case of status quo survival. It reduces the regime change threshold in

the opposite case, when the net payoff given a regime change is less sensitive than the net payoff

given the survival of the status quo.

The intuition for this result is the following. Consider the game under perfect information.

If an agent is sure of regime change, she finds it optimal to attack. In other words, the net

payoff in the case of regime change is positive. Analogously, if an agent is sure of regime survival,

the optimal action is to refrain from attacking: the net payoff given survival is negative. In the

imperfect-information game, the probability-weighted net payoff associated with regime change

provides incentives to attack, while the weighted net payoff in the case of survival provides opposing

incentives. Less precise information makes more extreme realizations of the fundamentals more

likely, increasing the absolute value of both weighted net payoffs. The increase in the value of the

first one is larger than the change in the value of the second one whenever the net payoff given

regime change is more sensitive. Therefore, more agents favor attacking, and the regime change

threshold increases.

The model nests two important special cases that further clarify this mechanism: currency crises

and bank runs. As commonly modeled, these cases allow only one of the two payoff differentials to be
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sensitive to the fundamentals. In the case of currency crises (as in Morris and Shin, 1998), payoffs are

sensitive to the fundamentals only in the case that the currency peg is abandoned (regime change).

In contrast, a bank run model based on Goldstein and Pauzner (2005) features sensitive payoffs

only when the bank survives (status quo survival). As a consequence, a decrease in information

quality has a destabilizing effect in the former and a stabilizing effect in the latter. Moving away

from these cases, we present a debt rollover environment in which both payoff differentials respond

to fundamentals.

We initially focus on the case in which information is purely private and priors are improper.

We then extend our results to the case in which agents have informative priors regarding the

fundamentals or receive public signals that create some degree of common knowledge. We study

the effects of a change in absolute information quality (the overall precision of an agent’s posterior

beliefs) and the effects of a change in relative information quality (the relative precision of public

and private information). We show that relative payoff sensitivities matter for the effects of changes

in absolute information quality. In contrast, the effects of changes in relative information quality

depend solely on the position of the prior mean.

We additionally discuss welfare in this framework. An externality is present because agents fail

to internalize the effect of their individual actions on the determination of the equilibrium regime.

This creates scope for welfare-improving policy, particularly through policies that affect information

quality. We also extend the model to allow for externalities from agents’ actions in the net payoff

differentials of other agents in addition to the determination of the regime-change cutoff. This case

is of particular interest for bank run modeling, as payoffs upon liquidation typically depend on the

fraction of agents that choose to run on the bank. We show that our main result continues to hold

in that case. Finally, we study other dimensions of information quality besides the precision of

information and link our results to the growing literature on endogenous information acquisition.

Global games of regime change have been widely applied in the modeling of crisis episodes,

such as currency attacks (Morris and Shin, 1998, Corsetti, Dasgupta, Morris, and Shin, 2004,

and Guimaraes and Morris, 2007), debt crises (Corsetti, Guimaraes, and Roubini, 2006), bank

runs (Rochet and Vives, 2004 and Goldstein and Pauzner, 2005) and short-term debt rollover

problems (Morris and Shin, 2004).1 Many of these contributions apply the insights of Carlsson and

van Damme (1993) to derive a unique equilibrium in the presence of imperfect information in an

environment otherwise characterized by multiplicity.

Despite its significance, information quality has, for the most part, not been the focus of these

studies, which have instead focused on other aspects of the information structure of agents or on

the nature of equilibria.2 In our setting, the noisy information structure is more than a device used

1Beyond crisis modeling, regime-change games have been extensively used in other contexts, for example, to
understand issues in investment (Dasgupta, 2007) and political change (Edmond, 2013), among others. Regime-
change games have also been used in dynamic contexts (Angeletos, Hellwig, and Pavan, 2007) and particularly for
modeling dynamic debt runs (He and Xiong, 2012a).

2Notable exceptions are Angeletos, Hellwig, and Pavan (2006) and Angeletos, Hellwig, and Pavan (2007), who also
study the implications of different information structures on regime stability in global games of regime change. In the
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to derive a unique equilibrium prediction, but rather the central element of the analysis. The rich

payoff structure we allow for, which nests most of this literature, is central to the description of the

equilibrium consequences of a change in information quality.

Recent papers have described how changes in information quality affect the probability of regime

change in particular environments that feature a one-sided payoff sensitivity. Angeletos and Pavan

(2013) examine a regime change game with payoff sensitivity in the case of regime change that

generalizes the currency attack model of Morris and Shin (1998). They show that a decrease in the

precision of private information increases the regime-change cutoff, making crises more frequent, a

result that can be understood using our comparison of relative payoff sensitivities.3 In the other

direction, Moreno and Takalo (2011) investigate the effect of transparency in a bank-run model and

find that in their framework increasing precision actually increases the probability of a bank run.

The conditions we study in our paper shed light on this result as well.

This paper’s emphasis on the effect of information quality on equilibrium behavior in a coordi-

nation game relates the paper to the work by Morris and Shin (2002), Angeletos and Pavan (2004),

and Angeletos and Pavan (2007), who consider the welfare effects of more precise public and private

information in economies with strategic complementarities. In particular, we use insights from the

latter two papers and decompose the effects of absolute and relative information quality in the

presence of an informative prior.

The focus of our paper on the information structure itself is shared by a growing literature

on endogenous information acquisition (Hellwig and Veldkamp, 2009, Myatt and Wallace, 2012,

Colombo, Femminis, and Pavan, 2013, Yang, 2013, Szkup and Trevino, 2013). Our analysis com-

plements this literature by examining how particular changes in the information structure (i.e.

information quality) map into changes in equilibrium regime determination.

Finally, our motivating environment relates to papers that study the effects of information in

bank run models without elements of dispersed information (Chen, 1999, and Chen and Hasan,

2006). In addition, the environment is related to recent work that addresses issues of transparency,

complexity, and information quality in the context of financial crises (Dang, Gorton, and Holmstrom,

2009, Caballero and Simsek, 2013) as well as the work on the importance of rollover risk to financial

stability (Acharya, Gale, and Yorulmazer, 2011, He and Xiong, 2012b). Our paper complements

this literature by studying how changes in the quality of individual information can affect financial

stability by influencing the coordination between dispersed short-term creditors.

The remainder of the paper is organized as follows. Section 2 presents the general model of

a regime-change game with flexible payoffs, provides applications, defines the equilibrium concept,

and derives a uniqueness result. Section 3 presents the main results of the paper: the relative

sensitivity condition and how it determines the effect of information quality on the regime-change

first paper, information quality is endogenous due to the signaling effects of policy interventions. In the second paper,
agents accumulate signals over time and observe whether the regime has survived past attacks.

3Heinemann and Illing (2002) report a result in a similar spirit for a particular example of the currency attack
model.
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cutoff. Section 4 provides several extensions, including an analysis of information quality in the

presence of public information and a welfare discussion. The last section concludes the paper.

2 Model

We describe a general set-up that focuses on the coordination problem among atomistic agents

engaged in a regime-change game. Several examples of specific environments that are nested in

our framework are described afterwards, including our main motivating example of a debt rollover

crisis.

2.1 General environment

The economy is characterized by a continuum unit measure of agents indexed by i ∈ [0, 1] and a

state θ ∈ R, which nature draws from a distribution to be described shortly. Depending on the

specific application, θ may reflect the fundamentals of the economy or of the financial institution

which determine the agents’ final payoffs. Throughout the analysis, a higher θ is associated with

stronger fundamentals. Agents simultaneously choose to take a binary action ai ∈ {0, 1}. A denotes

the measure of agents choosing ai = 1, so that A =
´
i aidi is the average action in the economy.

As a result, one of two regimes R ∈ {0, 1} is realized depending on A and a critical threshold

g (θ). Regime change (R = 1) occurs whenever A > g (θ), while the status quo (R = 0) is preserved

whenever A ≤ g (θ). The function g (θ) is assumed to be continuously differentiable and (weakly)

increasing in θ: a higher value of θ implies that a (weakly) higher value of A is necessary for regime

change to occur.

We have two main applications in mind, which are detailed in Section 2.2. In both currency

attacks and debt rollover games, we associate action ai = 1 with an action that induces the collapse

of the currency peg or of the borrower. Analogously, regime change is related to this failure episode.

A higher value of θ in both environments determines the capacity to survive a larger attack by

speculators or a run by lenders.

Given the binary action structure, agents only take into account the payoff differential from the

two alternatives when choosing their optimal action. To streamline the presentation and bring more

clarity to our theoretical results, we describe the model in terms of these payoff differentials directly.

In Section 2.2, we provide examples that illustrate how such net payoff differentials may be derived

in important applications. In particular, the net payoff from choosing ai = 1 relative to ai = 0 is:

π (θ,A) ≡

U (θ) , if A ≤ g (θ)

D (θ) , if A > g (θ)
, (1)

in which U (θ) < 0 is the net payoff in the case of status quo survival and D (θ) > 0 is the net

payoff in the case that regime change occurs. We assume that U (θ) and D (θ) are bounded and

non-increasing in θ. That is, a higher value of the state θ always biases agents’ choice towards
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ai = 0.4 Figure 1 illustrates the function π (θ,A) if one holds A constant while varying θ on the

left-hand side panel or holds θ constant while varying A in the second panel.5

(a) Fixed A. (b) Fixed θ.

Figure 1: Net payoff from ai = 1.

Agents have imperfect information about the state θ. In particular, all agents have a common

prior over θ given by θ = θ0 + σθε with θ0 ∈ R and σθ > 0, and the random noise ε is distributed

according to the cumulative distribution function Fε with zero mean. As in the rest of the global

games literature, one can think of the common prior as resulting from the incorporation of public

information, the realization of which is common knowledge across agents. In that interpretation,

σθ represents the quality of public information.

Additionally, each agent i observes a private signal θi = θ+ σηηi with ση > 0, and ηi is a mean-

zero random variable that is independently and identically distributed according to the cumulative

distribution function Fη. Furthermore, ηi is independent of ε and θ for all i. As standard, we define

an expectation operator Eθi [f (θ)] as the expectation with respect to the posterior distribution

of an agent that has received a signal θi, and Prθi (θ ∈ Z) ≡ Eθi [1Z ] as the posterior probability

distribution. We assume that Fε and Fη have full support on the real line and admit densities fε

and fη, respectively.6

We will start our theoretical analysis by focusing on the limiting case of an uninformative public

signal (a uniform prior over the entire real line) but return to the informative prior case in Section

4.1 for the case where ε and ηi are normally distributed. The main advantage of this initial approach

4Note that for equilibrium uniqueness, we will require at least one of U (θ), D (θ) and g (θ) to be strictly monotone
in θ.

5We generalize these payoffs by allowing an impact of A on both differentials in Section 4.2 and show that our
main result still holds.

6Our main result extends to the case where signals are uniformly distributed and the private signal is sufficiently
informative.
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is that agents’ posteriors about θ show no dependence on the prior mean, so a change in the quality

of private information ση does not imply a common change of agents’ beliefs towards or away from

this prior mean. We discuss this issue more thoroughly in Section 4.1.

Although the prior is improper, the posterior is well defined. We obtain it by studying the

distribution

Pr (θ ≤ y | θi) = Pr (θi − σηηi ≤ y | θi) = 1− Fη
(
θi − y
ση

)
Thus,

θ | θi ∼ 1− Fη
(
θi − θ
ση

)
.

2.2 Specific Examples

The environment presented in the previous section nests a number of specific regime change games.

In this section, we provide three examples: one on currency attacks, one on debt rollover, and a

bank run.

2.2.1 Currency attack - Morris and Shin (1998)

We present a version of the classical Morris and Shin (1998) currency attack model. This model

is a particular instance of the more general regime change model studied by Angeletos and Pavan

(2013) once one abstracts from the signaling aspect of the game in their paper.

The economy features a central bank and a continuum of speculators. The policy maker decides

on whether to maintain a particular exchange rate peg (R = 0) or to abandon it (R = 1). The

speculators decide on whether to attack the peg by short selling the currency (ai = 1) or to abstain

(ai = 0), with the aggregate action given by A =
´
i aidi. Agent payoffs depend on a variable θ ∈ R,

which describes the country’s fundamentals.

The currency attack is successful whenever A > g (θ) for some threshold function g (θ). If the

attack is successful, the currency is allowed to float at rate f (θ), where f (·) is an increasing function.

Otherwise, the peg is maintained at e∗. The payoff of an attacker is e∗ − f (θ)− t > 0 if the attack

is successful and −t < 0 if the attack fails, where t represents the cost of attacking the peg. An

agent who does not attack has a payoff of 0 in either regime. Therefore, in this set-up, net payoffs

are given by U (θ) = −t and D (θ) = e∗ − f (θ)− t.7

2.2.2 A rollover game

The economy lasts for two dates t = 0 and t = 1. A financial institution enters t = 0 with liabilities

in the form of expiring collateralized short-term debt contracts and an investment in long-term loans

that mature only at t = 1. There is a continuum of creditors, each of whom holds a unit of this

7We also implicitly assume that t < e∗ − f (θ), ∀θ, so that D (θ) > 0.
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contract. Creditors choose whether to roll over their short-term contracts (ai = 0) or refuse to roll

over (“run”, ai = 1).

In the case of a refusal to roll over, a creditor receives a pre-determined fixed value of r. An

agent that rolls over is promised a repayment of R at t = 1. The institution can resell any fraction α

of its portfolio at a price of αr at t = 0 to meet repayment requests. If long-term loans are allowed

to mature and are properly monitored (regime R = 0), they can generate a per-loan payoff of Y > R

with probability pH (θ), and zero otherwise. If no monitoring is done (regime R = 1), they pay out

Y with probability pL (θ) < pH (θ). Both pL (θ) and pH (θ) are increasing and differentiable, with

p
′
H (θ) ≥ p

′
L (θ), and pL (θ)R < r < pH (θ)R. An insider in the financial institution can monitor

any amount of loans at a fixed cost of C. Incentive compatibility thus requires

C ≤ (pH (θ)− pL (θ)) (Y −R) (1−A) . (2)

We define g (θ) = 1−C (Y −R)−1 [pH (θ)− pL (θ)]−1 as the critical threshold, which is increasing in

θ. Therefore, the net payoff differentials are given by U (θ) = r− pH (θ)R and D (θ) = r− pL (θ)R,

so U (θ) and D (θ) both vary with the fundamental.8

The main components of this example are that the liquidation of long-term projects is inefficient,

and creditor decisions are strategic complements. These features are standard in debt-rollover and

bank-run environments.

2.2.3 Bank run - Goldstein and Pauzner (2005)

We present a simplified version of the Goldstein and Pauzner (2005) model of demand deposits and

bank runs, in which we disregard individual heterogeneity over discount factors.

A continuum of agents hold demand deposit contracts in a bank. The contract allows each agent

to demand a fixed repayment r > 1 now (run, ai = 1) or wait (ai = 0). The bank has invested in a

scalable long-term project that delivers 1 unit of a consumption good if liquidated now. Otherwise,

if held until maturity, it delivers R units with probability p (θ) and 0 with probability 1− p (θ).

The bank follows a sequential service constraint and fails (R = 1) whenever it runs out of

resources to repay early withdrawers at par, i.e., Ar > 1. In that case, agents that withdraw early

are repaid r with probability 1
Ar and 0 otherwise, while agents that wait are paid 0. In case the

bank survives (R = 0), agents that withdraw early are repaid r with probability 1, while agents

that wait are residual claimants on the future output, i.e., they are paid
(
1−Ar
1−A

)
R with probability

p (θ) and 0 otherwise.

We can then define g (θ) = 1
r , U (θ, x) = r −

(
1−Ar
1−A

)
Rp (θ) and D (θ, x) = 1

A . Note that these

payoff differentials depend on both θ and A, which differs from our framework in Section 2.1, which

assumes a dependence on θ only. However, as we show in Section 4.2, our main results carry through

8This is a feature that plays a central role in the analysis of the role of information quality. In addition, to anticipate
our main result from Section 3 as applied to this example, note that even though |U ′ (θ)| > |D′ (θ)| , ∀θ, it does not
imply that condition (11) holds.
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with a dependence on both θ and A.

2.3 Equilibrium

We first define the Bayesian Nash Equilibrium (BNE) for the regime change game. We then charac-

terize the equilibria under two assumptions that ensure the existence of upper and lower dominance

regions. Under these assumptions, we show that the game has a unique BNE, and furthermore,

that this equilibrium is in monotone strategies, a standard result from the global games literature

(Morris and Shin (2003)).

Definition 1. A Bayesian Nash Equilibrium (BNE) for the regime change game consists of a

strategy a : Θ→ {0, 1} and a fraction A : Θ→ [0, 1] of agents that play ai = 1 s.t.

1. a (θi) is an individually optimal decision which sets:
a (θi) = 1, if Eθi [π (θ,A (θ))] > 0,

a (θi) ∈ {0, 1} , if Eθi [π (θ,A (θ))] = 0,

a (θi) = 0, if Eθi [π (θ,A (θ))] < 0;

2. A (θ) = Eθ [a (θi)].

A monotone strategy is such that a (θi) = 1 if, and only if, θi < θ∗, for some θ∗ ∈ R, which we refer

to as the strategic threshold.

We will characterize the equilibrium under the following assumptions:

A1. There exists a θ such that ∀θ ≤ θ, g (θ) ≤ 0 with a strict inequality for θ < θ.

A2. There exists a θ such that ∀θ ≥ θ, g (θ) = 1.

A3. For every ση ∈ (0, σ], A ∈ [0, 1], and θ ∈
[
θ, θ
]
, Eθi [π (θ,A)] and Eθi [π̂θ (θ,A)], in which

S0 (θ,A) ≡


∣∣∣U ′ (θ)∣∣∣ , if A ≥ g (θ)∣∣∣D′ (θ)∣∣∣ , if A < g (θ)

,

exist and are finite.

(A1) ensures the existence of a lower dominance region, which is a region in which the state is so

low that in a perfect information benchmark, playing ai = 1 becomes a strictly dominant action.

(A2) ensures that an upper dominance regions exists: for a sufficiently high state θ, choosing ai = 0

is a strictly dominant action. In principle, both dominance regions can be made arbitrarily small.9

(A3) consists of two simple integrability assumptions.

Proposition 1 below, characterizes the unique equilibrium of this game under these assumptions.

9Note that (A1) and (A2) are sufficient conditions for the existence of dominance regions. Our results will go
though for any alternative assumptions on model primitives that induce dominance regions.
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Proposition 1. Suppose that (A1), (A2), and (A3) hold. Then every BNE in monotone strategies

of this economy can be described by a unique threshold θ∗, which solves

ˆ 1

0
π
(
θ∗ − σηF−1η (A) , A

)
dA = 0. (3)

such that each agent attacks when observing a signal below θ∗ and refrains from attacking when

observing a signal above θ∗. Furthermore, this equilibrium is the (essentially) unique BNE of the

game.

Proof. See Appendix.

3 Understanding the role of information quality

We now turn to our main question: how information quality influences the equilibrium outcome in

a regime change game. To reduce the level of abstraction and for expositional clarity we frame this

discussion in the context of our main motivating example on debt rollover even though the results

we present apply more generally.

In the case of a financial firm, such as a bank, we seek to understand how information quality

affects its stability by changing the set of fundamentals for which rollover crises occur and lead to

its failure. We characterize a necessary and sufficient condition that is centrally related to payoff

sensitivities and ensures that a decrease in the quality of individual information about the state θ

(the firm’s fundamentals) increases the set of fundamentals over which the financial institution fails

(regime R = 1 is realized). Given the diffuse prior assumption, these effects are consequences of a

pure increase in the variance of beliefs, without any driving forces originating from changes in the

mean beliefs, as would be the case with an informative prior. In Section 4.1, we extend our analysis

to this second case.

In the unique equilibrium, two cutoffs are central to understanding the behavior of the economy.

The first one is the strategic cutoff itself. Agents choose to run (ai = 1) if and only if their signal

about the fundamental state θ is worse than θ∗. As a consequence, the actual share of agents

running upon the realization of any state θ is given by

A (θ) = Fη

(
θ∗ − θ
ση

)
. (4)

The lower the state, the higher the share of agents who receive a signal below their strategic cutoff

and choose to run. The cutoff state in which the bank is on the verge of failure is thus given by θf ,

which satisfies

A
(
θf
)

= Fη

(
θ∗ − θf

ση

)
= g

(
θf
)
. (5)

We refer to this second cutoff θf as the failure cutoff in the case of debt rollover or, more generally,

as the regime-change cutoff. Figure 2 illustrates its equilibrium determination. Notice that there is
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a wedge between the two cutoffs, as equation (6) below shows.

θ∗ = θf + σηF
−1
η

(
g
(
θf
))

(6)

Figure 2: Equilibrium determination of the failure cutoff given strategies.

To understand the behavior of the equilibrium of the economy, it is necessary to study an

agent who has received the cutoff signal, that is, an individual for which θi = θ∗. This agent has

posterior beliefs about the underlying state given by θ | θ∗ ∼ 1 − Fη

(
θ∗−θ
ση

)
and is indifferent

between running (ai = 1) and rolling over (ai = 0). Additionally, this agent believes that the

bank survives with probability Prθ∗
[
θ > θf

]
≡ Fη

(
θ∗−θf
ση

)
= g

(
θf
)
. Notice that g

(
θf
)

gains an

important equilibrium interpretation as the probability of successful rollover (status quo survival,

more generally), as perceived by the marginal agent.

Additionally, the indifference of this marginal agent implies that

ˆ θf

−∞
D (θ)

1

ση
fη

(
θ∗ − θ
ση

)
dθ =

ˆ +∞

θf
|U (θ)| 1

ση
fη

(
θ∗ − θ
ση

)
dθ, (7)

which can also be written as

Eθ∗
[
D (θ) | θ ≤ θf

]
Pr
θ∗

[
θ ≤ θf

]
= Eθ∗

[
|U (θ)| | θ > θf

]
Pr
θ∗

[
θ > θf

]
. (8)

The indifference condition can be summarized as the equalization of the expected net payoff from

attacking relative to not attacking when the bank fails (on the left-hand side), and the expected net
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payoff in case the bank survives (on the right-hand side), which must exactly offset each other. An-

other informative way of writing equation (8) is to substitute for the failure and survival probabilities

and rearrange terms to get:

g
(
θf
)

=
Eθ∗

[
D (θ) | θ ≤ θf

]
Eθ∗ [|U (θ)| | θ > θf ] + Eθ∗ [D (θ) | θ ≤ θf ]

. (9)

Therefore, the probability of successful rollover according to the marginal lender is a function of the

ratio of the expected payoff differentials in case of bank survival and failure.

We use equation (6) to write a function θ∗
(
θf , ση

)
and equation (7) to define an auxiliary

function, which is useful for understanding the impact of information quality, as summarized by ση,

on the failure threshold:

ψ
(
θf , ση

)
≡ Eθ∗(θf ,ση)

[
U (θ) | θ > θf

]
Pr

θ∗(θf ,ση)

[
θ > θf

]
+

+Eθ∗(θf ,ση)

[
D (θ) | θ ≤ θf

]
Pr

θ∗(θf ,ση)

[
θ ≤ θf

]
.

(10)

The restriction ψ
(
θf , ση

)
= 0 implicitly defines the failure cutoff as a function of information quality,

ση. We study its partial derivatives ψθf and ψση . It turns out that ψθf is always negative, and as

a consequence, the direction of the change of θf is determined by the sign of ψση , as indicated in

Proposition (2) below.

Proposition 2. Let θf be the threshold of the state θ below which regime change (R = 1) occurs.

Then ∂θf

∂ση
> 0 if, and only if,

Eθ∗
[
S
(
θ, θf

)(
θ − θf

)]
< 0, (11)

where θ∗ is the unique threshold defined in Proposition 1, and S
(
θ, θf

)
≡


∣∣∣U ′ (θ)∣∣∣ , if θ ≥ θf∣∣∣D′ (θ)∣∣∣ , if θ < θf

.

Additionally, ∂θf

∂ση
= 0 if, and only if, Eθ∗

[
S
(
θ, θf

) (
θ − θf

)]
= 0.

Proof. See Appendix.

Condition 11 represents a covariation between the sensitivity in the marginal agent’s payoff

differentials and deviations of θ from θf . We can rewrite it as

Eθ∗
[∣∣∣U ′ (θ)∣∣∣ (θ − θf) | θ > θf

]
Eθ∗ [|U (θ)| | θ > θf ]

<
Eθ∗

[∣∣∣D′ (θ)∣∣∣ (θf − θ) | θ ≤ θf]
Eθ∗ [D (θ) | θ ≤ θf ]

. (12)

We can interpret this version of our main condition in the following way. It represents a measure

of the responsiveness of payoffs to the fundamentals, behaving similarly to two elasticity terms.

Holding the cutoff fixed, if the payoff differential in the case of bank failure becomes more elastic,
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condition (11) holds more easily. This elasticity interpretation is precise in the noiseless limit as

shown in Proposition 3.

A decrease in information quality increases the expected net payoff in the case that the financial

institution fails (regime change) but also lowers the expected net payoff in the case of successful

rollover (status quo survival). Whenever the payoff difference in the case of bank failure is more

sensitive than the payoff difference in the case of successful rollover, in the sense of condition (11) or

(12) holding, a decrease in information precision causes an agent’s net payoff from running versus

rolling over to strictly increase. As a consequence, condition (11) ensures that when information

quality decreases, the equilibrium marginal agent must change towards an agent that observes

a higher signal realization. Thus, the failure cutoff θf increases and bank failure becomes more

common.

To provide a clearer interpretation of payoff sensitivities, we consider several special cases in the

next section.10

3.1 Special cases

A clear example in which a decrease in information quality decreases financial stability (i.e., it

expands the set of fundamentals θ for which regime change occurs) is the situation in which θ

influences the determination of the failure threshold and the net payoff in the case of bank failure,

while the net payoff in the case of successful rollover is fixed. In terms of our notation, this is

represented by a situation in which g (θ) and D (θ) show dependence on the state, but U (θ) is

independent of θ. We summarize this and other possible configurations below.

Corollary 1.

1. Suppose that U (θ) = U , ∀θ and D (θ) is strictly decreasing everywhere. Then ∂θf

∂ση
> 0.

2. Suppose that D (θ) = D, ∀θ and U (θ) is strictly decreasing everywhere. Then ∂θf

∂ση
< 0.

3. Suppose that U (θ) = U and D (θ) = D, ∀θ. Then ∂θf

∂ση
= 0.

Proof. See Appendix.

This result is intuitive because with no sensitivity in the net payoff in the case of successful rollover,

lenders are exposed only to downside risks – the possibility that they face a financial institution

with a very low fundamentals θ. Therefore, decreasing the precision of their beliefs can only increase

their net payoff from running versus rolling over. On the other hand, with no sensitivity in the net

payoff in case of bank failure, lenders are exposed only to upside risks - the possibility that they

face a financial institution with a high fundamentals θ. In that case, a decrease in precision can

only decrease their expected net payoff.

10For an additional interpretation of condition (11) as a comparison between the variance sensitivities of two options
that comprise lender net payoffs, please consult the working paper version of this article (Iachan and Nenov, 2013).
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Applying this result to the canonical currency attack model of Morris and Shin (1998), reintro-

duced in section 2.2.1, we notice that risk is concentrated on one side: agents that short the currency

have large payoff gains if fundamentals are low without suffering increasing losses in the region of

fundamentals where the peg survives. As a consequence, lower information quality increases the

expected gains from attacking the currency and facilitates currency crises by increasing θf .

Another way to analyze the importance of the relative sensitivity of the two net payoff differen-

tials to the effect of information quality on the regime change cutoff θf is to consider a class of net

payoff functions for which one of the two payoff differentials is more sensitive than the other at any

distance from that cutoff. The definition of such payoff functions is similar to Albagli, Hellwig, and

Tsyvinski (2011):

Definition 2. For a given regime change threshold θf , the net payoff function π is dominated

by upside risks at θf if
∣∣∣U ′ (θf + x

)∣∣∣ > ∣∣∣D′ (θf − x)∣∣∣ for all x ≥ 0. The net payoff function π is

dominated by downside risks at θf if
∣∣∣U ′ (θf + x

)∣∣∣ < ∣∣∣D′ (θf − x)∣∣∣ for all x ≥ 0.

Therefore, for functions dominated by upside risks, marginal changes in the payoff in the case

of status quo survival always dominate marginal changes in the payoff in the case of regime change,

as we move away from the regime change threshold. The opposite holds for functions dominated

by downside risks. Hence, if we look at a mean preserving spread of a distribution centered at θf ,

the expected net payoff will decrease for a function dominated by upside risks. The effect is the

opposite for a function dominated by downside risks.

Given this definition, we have the following illustrative corollary to Proposition 2.

Corollary 2. Suppose that ηi follows a symmetric distribution, i.e. fη (x) = fη (−x), ∀x ∈ R and

fη (x) is (weakly) decreasing in x for x ∈ R+.

1. If π is dominated by upside risks at θf and g
(
θf
)
≥ 1

2 , then ∂θf

∂ση
< 0.

2. If π is dominated by downside risks at θf and g
(
θf
)
≤ 1

2 , then ∂θf

∂ση
> 0.

Proof. See Appendix.

This result confirms the intuition for the result of Proposition 2. If the payoff differential in the

case of regime change is more sensitive to the fundamentals than its counterpart and the marginal

financial institution is sufficiently fragile (in the sense that it requires less than half of the agents to

run for the institution to fail), then a lender who is originally indifferent between running and rolling

over has a strictly higher expected payoff from running given a marginal decrease in precision. As

a consequence, the failure cutoff moves up and institutions fail for a larger set of fundamentals.
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3.2 A limit result

The limit of a noiseless economy is also informative about how the regime change threshold’s re-

sponse to information quality depends on the relative payoff sensitivities in economies with suffi-

ciently small uncertainty.

Proposition 3. The limit noiseless economy obtained by taking the limit of a sequence of economies

for which ση → 0, satisfies

U
(
θf
)
g
(
θf
)

+D
(
θf
)(

1− g
(
θf
))

= 0. (13)

and θ∗ = θf . Furthermore,

lim
ση→0

∂θf

∂ση
> 0 ⇐⇒

∣∣∣∣∣U
′ (
θf
)

U (θf )

∣∣∣∣∣ <
∣∣∣∣∣D
′ (
θf
)

D (θf )

∣∣∣∣∣h(g (θf)) , (14)

in which h : [0, 1] → R++ satisfies h
(
g
(
θf
))

= −
limση→0 Eθ∗

[
θ−θf
ση
|θ<θf

]
limση→0 Eθ∗

[
θ−θf
ση
|θ≥θf

] . If η ∼ N (0, 1), then h is

strictly decreasing in g
(
θf
)
.

Proof. See Appendix.

Proposition (3) shows that two factors determine whether a change in information quality favors

the status quo or regime change in economies with small amounts of noise. The first factor is clearly

the relation between the two net payoff elasticities, which in this limit are simply evaluated at the

regime-change cutoff itself. A sufficiently high payoff elasticity in the case of regime change relative

to regime survival implies that less precise information favors regime change.

The second factor is related to the value of the critical threshold g
(
θf
)
, suggesting that the effect

of information quality on the regime change threshold can also depend on exogenous parameters

that shift it. Let us illustrate this possibility with a simple example based on our debt rollover

motivation. Remember that g (θ) represents the share of agents that needs to run in order for the

institution with fundamentals given by θ to fail. Therefore, g (θ) can also be interpreted as the

resilience of that institution. This degree of resilience can depend on aggregate conditions in asset

and credit markets, for example. We can imagine two situations: one in a relatively stable financial

environment, where g (θ) = Γh, ∀θ, in which a high share of agents needs to run to induce failure,

and another in a more fragile environment where g (θ) = Γl < Γh, ∀θ, so a run by fewer agents

leads to failure. Proposition 3 then shows that a decrease from Γh to Γl (for example, due to a

deterioration in credit market conditions) adds to the effects of lower information quality. Therefore,

in that context, holding payoff sensitivities fixed, condition (14) holds more easily in an economy

with worse credit market conditions. Intuitively, an increase in the level of fragility in the economy

acts as an amplifier of changes in information quality.11

11In this example, Γi serves as an exogenous shifter of the threshold g (θ), which is constant for all values of θ.
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4 Extensions

4.1 Informative Priors and Public Information

So far, we have studied the effect of changes in information quality in the case of a diffuse prior. In

that case, the marginal agent believes that the fraction of the population attacking the status quo

is distributed uniformly on the [0, 1] interval12 irrespective of the quality of information the agent

uses to form his posterior belief over θ. As a consequence, an increase in the precision of private

information does not facilitate coordination. This is generally not the case under an informative

prior, as in that case the source of information (public versus private signal) matters for agent actions

beyond the overall quality of information by affecting the agents’ ability to coordinate (Morris and

Shin, 2002, Angeletos and Pavan, 2004, Angeletos and Pavan, 2007).

In this section, we investigate how changes in information quality affect regime-change in the

presence of an informative public signal (a non-diffuse prior). As we show, in that environment, our

main result carries over, but there are additional effects arising from the position of the prior mean

relative to the failure cutoff.

We conduct our analysis under the assumption of a normally distributed prior and private

signals. In particular, we assume that ε ∼ N (0, 1) and η ∼ N (0, 1). Given these distributions,

standard results from Bayesian learning imply that the posterior belief about θ for an agent that

observes a signal θi is normally distributed with a posterior mean µ (θi, ρ) given by

µ (θi, ρ) = ρ2θi +
(
1− ρ2

)
θ0

and a posterior variance σ given by

σ2 =
σ2εσ

2
η

σ2ε + σ2η
,

where

ρ2 ≡ σ2ε
σ2ε + σ2η

=
σ2

σ2η
∈ [0, 1]

is the weight that an agent puts on his private signal. Notice that ρ is directly related to the

information content of public relative to private information, and in that sense, it is not related

to the overall quality of information. In particular, an increase in ρ holding σ fixed, corresponds

to a decrease in the ratio
ση
σε

, that is, a deterioration in the quality of public relative to private

information.

To understand the role of information quality in the case of an informative prior, it is partic-

ularly useful to consider changes in the posterior variance σ2 holding ρ and θ0 constant. Such a

decomposition is similar to that in Angeletos and Pavan (2004) and allows us to discuss information

These results can be generalized for other cases involving shifters in the cutoff function g (θ). It can also be shown
to be a possible source of non-monotonicity in the effects of information quality depending on the initial value of θf

(Iachan and Nenov, 2013).
12The agent has Laplacian beliefs, in the sense of Morris and Shin, 2003.
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quality effects, holding the relative quality of public and private information constant. In turn, a

change in the quality of public (σε) or private (ση) information will have an effect through these

absolute information quality (σ) and relative information quality (ρ) channels on the regime change

cutoff θf .

As in the diffuse-prior model, we can characterize equilibria as the intersection of two conditions.

The first condition is related to the behavior of the marginal agent, who knows that regime change

occurs for θ < θf and observes a private signal at the strategic cutoff θ∗ (so he has posterior beliefs

centered at µ = ρ2θ∗ +
(
1− ρ2

)
θ0). That agent is indifferent between attacking and not attacking

the status quo. The second condition is given by the mass of agents who attack given that θ equals

the regime change threshold θf .

We consider the effects of absolute and relative information quality on the regime change thresh-

old in a neighborhood of the economy where public information has zero precision.

Proposition 4. As private information becomes arbitrarily more precise than public information,

i.e., ρ → 1, the effects of absolute information quality (σ) and relative information quality (ρ) on

the equilibrium failure threshold are given by

lim
ρ→1

∂θf

∂σ
> 0 ⇐⇒ Eθ∗

[
S
(
θ, θf

)(
θ − θf

)]
< 0 (15)

and

lim
ρ→1

∂θf

∂ρ
> 0 ⇐⇒ θ0 >

θf + θ∗

2
(16)

where θ∗ = θf + σ
ρΦ−1

(
g
(
θf
))

, and S
(
θ, θf

)
≡


∣∣∣U ′ (θ)∣∣∣ , if θ ≥ θf∣∣∣D′ (θ)∣∣∣ , if θ < θf

.

Proof. See Appendix.

To interpret this result, note first that the effect of absolute information quality ∂θf

∂σ depends

on the exact same condition as that in Section 3, namely on the relative sensitivity of net payoff

differentials.

The effect of relative information quality ∂θf

∂ρ on the other hand depends only on the position

of the prior mean θ0. If the prior mean is low, i.e., θ0 <
θf+θ∗

2 , an increase in ρ (a decrease in the

relative precision of public information) moves the posterior mean away from the prior. This acts as

a rightward shift in the belief distribution. As a result, the regime change cutoff falls. The opposite

effect occurs when the prior mean is high, i.e., θ0 >
θf+θ∗

2 .

An even stronger result is obtained when one considers the limit of both σ → 0 and ρ → 1. In

that case, for the effect of absolute information quality we recover the result from Proposition 3,

whereas for the effect of relative information quality we obtain

lim
σ→0,ρ→1

∂θf

∂ρ
> 0 ⇐⇒ θ0 > θf (17)
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Therefore, in the limit, the effect of relative information quality depends on the position of the prior

mean relative to the regime change cutoff.

A result similar to Proposition 4 is obtained away from the limit where ρ equals one, as we

show in the online supplement. In particular, the effect of absolute information quality depends on

a modified version of our main condition (11), which includes an additional effect from a change

in σ apart from the effect through payoff sensitivities. Similarly to the effect of changes in ρ,

this additional effect also depends on the position of the prior mean relative to the regime change

cutoff.13

4.2 Payoff Externalities in Addition to Regime Determination

In many important regime-change games, payoffs can be affected by the actions of others beyond

the determination of the equilibrium regime. For instance, in a typical bank run environment, if

the bank is liquidated, the payoff for each withdrawer depends on the mass of agents choosing each

action. In this section, we show that the results from Section 3 are maintained when we consider

more general net payoff differentials, which also depend on the fraction of agents that play ai = 1.

We look at payoffs of the form:

π (θ,A) ≡

U (θ,A) , if A ≤ g (θ)

D (θ,A) , if A > g (θ) .
(18)

Therefore, agents’ actions are allowed to exert an additional externality by influencing not only the

regime outcome R, but also other agents’ payoffs in the case of a particular regime realization. We

maintain all previous assumptions about the function g (θ) and additionally assume that U (θ,A) < 0

and D (θ,A) > 0, and that both net payoffs are twice continuously differentiable in (θ,A) and non-

increasing in θ.14

We have the following

Proposition 5. Let θf be the cutoff of fundamentals for which regime change occurs. Then, ∂θf

∂ση
> 0

if, and only if,

Eθ∗
[
S
(
θ, θf

)(
θ − θf

)]
< 0 (19)

13For the case where net payoff differentials are not sensitive to changes in fundamentals, the effects of both absolute
and relative information quality depend only on the position of the prior mean relative to the regime change cutoff.
These effects are directly related to existing results in the global games literature (Metz (2002), Bannier and Heinemann
(2005), and Angeletos, Hellwig, and Pavan (2007)).

14Note that these payoff assumptions are not sufficient to guarantee a unique equilibrium in cutoff strategies. A
simple possibility is to assume that U and D are non-decreasing in A and have negative cross-partials, Uθ,A < 0 and
Dθ,A < 0, making the game supermodular in (θ,−A). The steps of the proof would then follow Proposition 1. Weaker
assumptions on the effects of A such as those in Goldstein and Pauzner (2005) also lead to uniqueness. Even without
a unique equilibrium, the comparative static in Proposition 5 still holds around every equilibrium cutoff θf .
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where θ∗ = θf + σηF
−1
η

(
g
(
θf
))

and

S
(
θ, θf

)
≡


∣∣∣Uθ (θ, Fη ( θf−θση

+ F−1η

(
g
(
θf
))))∣∣∣ , if θ ≥ θf∣∣∣Dθ

(
θ, Fη

(
θf−θ
ση

+ F−1η

(
g
(
θf
))))∣∣∣ , if θ < θf

Proof. See Appendix.

This result is essentially the same as that in Proposition 2, and one can again re-write the con-

dition obtained as a comparison of relative payoff sensitivities. Therefore, the effect of more precise

information still depends on the relative responsiveness of net payoff differentials to fundamentals.

The result above can be applied directly to the study of information quality in bank run models

based on Diamond and Dybvig (1983) and Goldstein and Pauzner (2005). In particular, Condition

19 fails to hold in the original formulation of Goldstein and Pauzner (2005) and, as a consequence, an

improvement in information quality makes bank runs more likely by increasing the failure threshold.

Corollary 3 (Corollary to Proposition 5). Consider the bank run model as described in Section

2.2.3. Then, Eθ∗
[
S
(
θ, θf

) (
θ − θf

)]
> 0 and ∂θf

∂ση
< 0.

Proof. See Appendix.

The reason for this result is that depositors who do not withdraw early in that model are always

residual claimants on the non-liquidated fraction of a long-term project. The quality of this project

depends on the fundamentals, while its liquidation value does not. This generates sensitivity for

the net payoff conditional on bank survival, while the net payoff in the case of failure remains

independent of the fundamentals.

4.3 Welfare and Policy

The seminal contribution of Carlsson and van Damme (1993) illustrates that small amounts of pri-

vate information can ensure unique equilibrium predictions in environments where strategic com-

plementarities create a force towards multiplicity.15 Their abstract 2-player 2-action environment

has a particular feature shared by most other global games applications: equilibria, in the com-

mon knowledge benchmark, can be Pareto ranked and inefficiencies originate from the inability to

coordinate on a superior alternative.

In settings with a continuum of players and dispersed information, such as the ones we analyze,

coordination failures manifest themselves in two ways: the regime switching cutoff is generically at

an inefficient level; and agents that receive extreme signals fail to take the action that is optimal

given the equilibrium regime. Agents fully incorporate this latter possibility of individual mistakes

in their decisions, but the former generates an externality that policy could target.

15Frankel, Morris, and Pauzner (2003) generalize these results to multi-agent multi-action games with strategic
complementarities.
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We formally describe these results in the online supplementary material. We consider a con-

strained efficiency benchmark as in Angeletos and Pavan (2007) in which a planner can mandate

that agents play strategies that are not privately optimal but cannot transmit any information

across agents. The planner takes into account the relationship between the strategic cutoff and the

regime-change cutoff and so internalizes both the direct effect of the strategic cutoff θ∗ on indi-

vidual welfare as well as its effect through the determination of the regime-change cutoff θf (the

externality). The sign of the externality is the same as the effect of θf on welfare. For instance, in

any environment in which decreasing θf increases welfare, agents would choose individual strategies

that too frequently lead to regime change from a social perspective.

As a consequence of the underlying externality, there is a natural role for policy in these envi-

ronments. There is also a natural benchmark to evaluate its effects: whether a policy mitigates or

exacerbates the underlying inefficiency is directly related to the direction of the change it induces

on θf . This provides a justification to our positive focus on comparative statics with respect to the

regime change cutoff in the previous sections.

Any policy that induces a change in the information structure has both a direct and an indirect

effect on equilibrium welfare. For instance, a policy that ultimately makes private information more

precise has a positive direct impact on welfare, as the private value of information is positive because

agents can better tailor their actions to the underlying state. The indirect effect is related to the

change in the externality and is fully summarized by the change in the regime-change cutoff.

4.4 Information acquisition

We have focused on an exogenous information structure with a very tractable notion of information

quality. Agents are endowed with a particular information generation technology, and we study the

equilibrium consequences of changes in information quality. We have abstracted from the tradeoffs

that agents would face when choosing among alternative information structures, which is the main

focus of the growing literature on endogenous information acquisition (Hellwig and Veldkamp, 2009,

Myatt and Wallace, 2012, Colombo, Femminis, and Pavan, 2013, Yang, 2013, Szkup and Trevino,

2013, among others).16 Our analysis is complementary to this literature. It can be particularly useful

in helping map changes in equilibrium information structures, which could originate from variations

in exogenous costs or from policy interventions, into changes in equilibrium regime determination.

The earlier literature on endogenous information acquisition has focused on restricted informa-

tion structures, where agents choose among alternative distributions and precisions of signals in a

costly way. Following the “rational inattention” approach of Sims (2003), a promising new branch of

research initiated by Yang (2013) allows agents to choose any arbitrary signal generation structure

16As the class of games we consider includes strategic complementarities, general results from the literature hold in
our setting. For example, agents would prefer to observe and act more intensely on signals that are more correlated
(Hellwig and Veldkamp (2009)). There may also be multiple information structures that are consistent with an
equilibrium. For regime-change games, which display the strong complementarities in the sense of Angeletos and
Pavan (2004), an over-reliance on a correlated signal may end up restoring equilibrium multiplicity.
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subject to a cost that is proportional to the reduction of entropy it induces. In other words, agents

can specifically tailor which events they become better informed about.

To extend our analysis in this direction, we propose the following exercise in the online supple-

mentary material. We assume that a change in an information acquisition parameter or a change

in equilibrium beliefs occurs in an arbitrary but continuous way. We still impose an additive signal

structure, with noise that is independent from the fundamentals and i.i.d. across agents.17 Then,

ηi ∼ H (ηi, α) ≡ αFη,1 (ηi) + (1− α)Fη,0 (ηi) .

By studying small perturbations away from Fη,0 using this mixture formulation, we describe

the consequences of a change in the distribution of private noise towards an arbitrary Fη,1 (ηi). We

provide a condition that incorporates the effects of payoff sensitivities in this context. In particular,

if under Fη,1, extremely high realizations of ηi are very likely, the agent understands that a signal

θi = θ∗ can still occur very frequently, even for low values of θ; that is, the agent puts more weight

on payoffs from low realizations of θ as α increases.18 This induces an increase in the strategic

threshold, caused by an effect that depends on the net payoff sensitivities.

5 Concluding comments

This paper examines how information quality affects the unique equilibrium outcome of a global

game of regime-change. We show that a deterioration in information quality leads to regime instabil-

ity whenever the net payoff in the case of regime change is more sensitive to the fundamentals than

the net payoff in the case of the survival of the status quo. An externality is present in this class of

environments, as agents do not internalize the effect of their individual strategies on the likelihood

of regime change. Therefore, policies that influence information quality can be welfare-improving.

The model we analyze is general and involves flexible reduced-form payoff functions. When

applied to the context of debt rollover, it takes a short-term debt contract as given. A natural

direction for future research includes the explicit modeling of one particular financial contracting

problem. Such an exercise may lead to additional restrictions on payoffs and a better understanding

of the consequences of alternative policy interventions.

Furthermore, understanding the overall effectiveness of any policy, including disclosure policies,

must ultimately take into account the strategic incentives of a regulator for releasing or withholding

information. Such signaling issues bring forth concerns about possible policy traps (Angeletos, Hell-

wig, and Pavan (2007), Angeletos and Pavan (2013)), which should be incorporated in a thorough

welfare evaluation of a particular disclosure policy. Lastly, questions about the dynamic revelation

of information, which is naturally irreversible, emerge as an important step for future research.

17Yang (2013) shows that in environments with discontinuous payoffs, like the regime-change games we study, there
is a continuum of equilibria. We avoid this issue with this particular approach.

18The condition also contains an effect originating from the change in the relationship between the strategic and
the regime-change cutoffs as one moves across noise distributions.
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Appendix

A Proofs

Proof of Proposition 1

Proof. Let us first define A
(
θ, θ̃
)
≡ Fη

(
θ̃−θ
ση

)
as the fraction of agents that play ai = 1 (attack) if the state is θ

when agents follow a strategy with cutoff θ̃. Secondly, we define

v
(
θi, θ̃

)
≡ Eθi

[
π
(
θ,A

(
θ, θ̃
))]

=

ˆ ∞
−∞

π
(
θ,A

(
θ, θ̃
)) 1

ση
fη

(
θi − θ
ση

)
dθ

as the expected net payoff from playing ai = 1 versus ai = 0 for an agent that observes a signal θi and expects other

agents to follow cutoff strategies with cutoff θ̃, where fη is the probability density function of Fη. Lastly, we

define θf
(
θ̃
)

implicitly by A
(
θf , θ̃

)
= Fη

(
θ̃−θf (θ̃)

ση

)
= g

(
θf
(
θ̃
))

. Note that θf is continuous and increasing in θ̃

by the implicit function theorem. Also, by assumptions (A1) and (A2), θf → θ, as θ̃ →∞, and θf → θ, as θ̃ → −∞.

We first show several important properties of v
(
θi, θ̃

)
.

First, v
(
θi, θ̃

)
is continuous and strictly decreasing in θi. Continuity follows, since

π
(
θ,A

(
θ, θ̃
)) 1

ση
fη

(
θi − θ
ση

)

is continuous in θi and, by assumption (A3), π
(
θ,A

(
θ, θ̃
))

1
ση
fη
(
θi−θ
ση

)
is integrable, ∀θi ∈ R. To show strict

monotonicity, notice that we can write v
(
θi, θ̃

)
as

v
(
θi, θ̃

)
=

ˆ θf (θ̃)

−∞
D (θ)

1

ση
fη

(
θi − θ
ση

)
dθ+

+

ˆ ∞
θf (θ̃)

U (θ)
1

ση
fη

(
θi − θ
ση

)
dθ =

ˆ ∞
−∞

π̃
(
θ, θ̃
) 1

ση
fη

(
θi − θ
ση

)
dθ

where π̃
(
θ, θ̃
)

=

D (θ) , θ ≤ θf
(
θ̃
)

U (θ) , θ > θf
(
θ̃
) . Then, v

(
θi, θ̃

)
is strictly decreasing in θi, since π̃

(
θ, θ̃
)

is decreasing in

θ, and since an agent’s posterior probability over events {θ < y}, 1 − Fη
(
θi−y
ση

)
, is strictly decreasing in θi, i.e. an

increase in θi leads to a shift in an agent’s belief in a first-order stochastic dominance sense.

Secondly, v
(
θi, θ̃

)
is continuous, and strictly increasing in θ̃, for θ̃ > θ. Continuity follows, since bothD (θ) 1

ση
fη
(
θi−θ
ση

)
and U (θ) 1

ση
fη
(
θi−θ
ση

)
are integrable, given (A3), and θf

(
θ̃
)

is continuous in θ̃. Monotonicity follows from differen-

tiation of v
(
θi, θ̃

)
with respect to θ̃ and application of the Leibniz rule.

Next, we define the function ṽ
(
θ̃
)
≡ v

(
θ̃, θ̃
)

. The function is continuous, and strictly decreasing in θ̃, for

θ̃ > θ. Continuity follows from the continuity of v
(
θi, θ̃

)
. To show monotonicity, first note that for θ̃, we have that

A
(
θ, θ̃
)

= Fη
(
θ̃−θ
ση

)
, or inverting this function, θ = θ̃ − σηF−1

η (A). Hence, we can do a change of variables in ṽ
(
θ̃
)

and rewrite it as

ṽ
(
θ̃
)

=

ˆ 1

0

π
(
θ̃ − σηF−1

η (A) , A
) 1

ση
fη
(
F−1
η (A)

) ση

fη
(
F−1
η (A)

)dA (A.1)

or equivalently

ṽ
(
θ̃
)

=

ˆ g(θf (θ̃))

0

U
(
θ̃ − σηF−1

η (A)
)
dA+

ˆ 1

g(θf (θ̃))
D
(
θ̃ − σηF−1

η (A)
)
dA (A.2)
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Differentiating with respect to θ̃, we get:

∂ṽ

∂θ̃
=
[
U
(
θ̃ − σηF−1

η

(
g
(
θf
(
θ̃
))))

−D
(
θ̃ − σηF−1

η

(
g
(
θf
(
θ̃
))))]

gθ
∂θf

∂θ̃

+

ˆ g(θf (θ̃))

0

U ′
(
θ̃ − σηF−1

η (A)
)
dA+

ˆ 1

g(θf (θ̃))
D′
(
θ̃ − σηF−1

η (A)
)
dA

Each of these terms is non-positive, given the assumptions on U (θ) and D (θ), with at least one the three terms

strictly negative, given the assumption that at least one of U (θ), D (θ), and g (θ) are strictly monotone in θ.

Given assumptions (A1) and (A2), θf → θ, as θ̃ → ∞ and θf → θ, as θ̃ → −∞, so g
(
θf
(
θ̃
))
→ 0 as

θ̃ → −∞ and g
(
θf
(
θ̃
))
→ 1 as θ̃ → ∞. Furthermore, U and D are bounded, so U (θ) ≥ U , ∀θ and D (θ) ≤ D,

∀θ. Therefore,
´ g(θf (θ̃))

0 U
(
θ̃ − σηF−1

η (A)
)
dA >

´ g(θf (θ̃))
0 UdA. Furthermore,

´ g(θf (θ̃))
0 UdA → 0 as θ̃ → −∞ and´ 1

g(θf (θ̃))D
(
θ̃ − σηF−1

η (A)
)
dA > 0, ∀θ̃, since D (θ) > 0 for some θ and D (.) is non-increasing. Hence, there is a θ̃L,

such that ṽ
(
θ̃
)
> 0 for θ̃ ≤ θ̃L. Similarly, there is a θ̃H , such that ṽ

(
θ̃
)
< 0 for θ̃ ≥ θ̃H . Therefore,

ṽ (θ∗) = 0 (A.3)

has a unique solution θ∗.

Note that θ∗ describes the threshold for a monotone equilibrium, if, and only if,

v (θi, θ
∗) < 0, ∀θi > θ∗ (A.4)

and

v (θi, θ
∗) > 0, ∀θi < θ∗. (A.5)

which follow from the properties of v
(
θi, θ̃

)
. Therefore, the solution to:

ˆ 1

0

π
(
θ∗ − σηF−1

η (A) , A
)
dA = 0 (A.6)

describes the unique threshold for the monotone equilibrium.

To show that this is the only equilibrium of this game, we proceed by showing that the monotone strategy with

cutoff θ∗ survives a procedure of iterated deletion of strictly dominated strategies. Let ζ
0

= −∞ and ζ0 = ∞ and

define recursively the sequences ζ
n+1

= min
{
θi : v

(
θi, ζ

n

)
= 0
}

and ζn+1 = max
{
θi : v

(
θi, ζn

)
= 0
}

for n ≥ 1.

First of all, with a slight abuse of notation, let v
(
θi, ζ

0

)
= limθ̃→−∞ v

(
θi, θ̃

)
. Given assumption (A1), θf → θ, as

θ̃ → −∞, so

v
(
θi, θ̃

)
=

ˆ θ

−∞
D (θ)

1

ση
fη

(
θi − θ
ση

)
dθ +

ˆ ∞
θ

U (θ)
1

ση
fη

(
θi − θ
ση

)
dθ

Given that U is bounded, so U (θ) ≥ U , ∀θ, it follows that
´∞
θ
U (θ) 1

ση
fη
(
θi−θ
ση

)
dθ > U

(
1− Fη

(
θi−θ
ση

))
. Since this

latter term vanishes as θi → −∞ and
´ θ
−∞D (θ) 1

ση
fη
(
θi−θ
ση

)
dθ is positive and strictly decreasing in θi, this means

that there is a value of θi > −∞, for which v
(
θi, θ̃

)
= 0. We denote this value of θi by ζ

1
. Therefore, if no other

agents attack for any signal realization it is optimal to attack for any signal realizations below ζ
1
. Next note that

v
(
ζ
n
, ζ
n

)
> 0 for any ζ

n
< θ∗, given the properties of the function ṽ

(
θ̃
)

, described above. Therefore, since v
(
θi, θ̃

)
is strictly decreasing in θi, it follows that the sequence

{
ζ
n

}∞
n=0

is strictly increasing and bounded above by θ∗. By

continuity of v in both arguments, it follows that the sequence converges to ζ
∞

= θ∗. Similarly, one can show that the

sequence
{
ζn
}∞
n=0

is strictly decreasing and bounded below by θ∗, so the sequence converges to ζ∞ = θ∗. Therefore,

the monotone strategy with ai = 1 for θi < θ∗ survives iterated deletion of strictly dominated strategies. Therefore,

it is the (essentially) unique BNE of the game.
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Proof of Proposition 2

Proof. Let y = θ−θf
ση
− F−1

η

(
g
(
θf
))

. Then, θ = σηy + σηF
−1
η

(
g
(
θf
))

+ θf , dθ = σηdy, and θ = θf =⇒ y =

−F−1
η

(
g
(
θf
))

. So, after this change of variables, we can write expression (10) as

ψ
(
θf , ση

)
≡
ˆ +∞

−F−1
η (g(θf ))

U
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)
fη (−y) dy+

ˆ −F−1
η (g(θf ))

−∞
D
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)
fη (−y) dy.

(A.7)

Then,

∂ψ

∂θf
=
[
U
(
θf
)
−D

(
θf
)]
fη
(
−F−1

η

(
g
(
θf
))) gθ

(
θf
)

fη
(
F−1
η (g (θf ))

)+

+

[
1 + ση

gθ
(
θf
)

fη
(
F−1
η (g (θf ))

)] ˆ +∞

−F−1
η (g(θf ))

U
′ (
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)
fη (−y) dy

+

[
1 + ση

gθ
(
θf
)

fη
(
F−1
η (g (θf ))

)] ˆ −F−1
η (g(θf ))

−∞
D
′ (
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)
fη (−y) dy < 0

and
∂ψ

∂ση
=

ˆ +∞

−F−1
η (g(θf ))

U
′ (
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)(

y + F−1
η

(
g
(
θf
)))

fη (−y) dy

+

ˆ −F−1
η (g(θf ))

−∞
D
′ (
σηy + σηF

−1
η

(
g
(
θf
))

+ θf
)(

y + F−1
η

(
g
(
θf
)))

fη (−y) dy

=
1

ση

ˆ +∞

θf
U
′
(θ)
(
θ − θf

) 1

ση
fη

(
θ∗ − θ
ση

)
dθ +

1

ση

ˆ θf

−∞
D′ (θ)

(
θ − θf

) 1

ση
fη

(
θ∗ − θ
ση

)
dθ

(A.8)

As a consequence, using the implicit function theorem, the sign of ∂θ
f

∂σ
|ψ=0 is simply the same as the sign of expression

(A.8). This leads directly to condition (11).

Proof of Corollary 1

Proof. Suppose that U (θ) = U , ∀θ and D (θ) is strictly decreasing. Then, ∂θf

∂ση
> 0 since

Eθ∗
[∣∣∣U ′ (θ)∣∣∣ (θ − θf) | θ > θf

]
Eθ∗ [|U (θ)| | θ > θf ]

= 0 <
Eθ∗

[∣∣∣D′ (θ)∣∣∣ (θf − θ) | θ ≤ θf]
Eθ∗ [D (θ) | θ ≤ θf ]

.

Suppose that D (θ) = D, ∀θ and U (θ) is strictly decreasing, ∀θ. Then from Proposition 2

Eθ∗
[∣∣∣U ′ (θ)∣∣∣ (θ − θf) | θ > θf

]
Eθ∗ [|U (θ)| | θ > θf ]

>
Eθ∗

[∣∣∣D′ (θ)∣∣∣ (θf − θ) | θ ≤ θf]
Eθ∗ [D (θ) | θ ≤ θf ]

= 0

for any ση and θf and so ∂θf

∂ση
< 0 for any ση and θf .

When U
′
(θ) = D

′
(θ) = 0, equation (A.8) and the implicit function theorem jointly imply that ∂θf

∂ση
= 0.
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Proof of Corollary 2

Proof. Consider Proposition 2 and equation (11): Eθ∗
[
S
(
θ, θf

) (
θ − θf

)]
< 0. We use a change of variables y = θ−θf

ση

to rewrite this condition as

ˆ 0

−∞

∣∣∣D′ (θf + σηy
)∣∣∣ yσηfη (F−1

η

(
g
(
θf
))
− y
)
dy+

+

ˆ ∞
0

∣∣∣U ′ (θf + σηy
)∣∣∣ yσηfη (F−1

η

(
g
(
θf
))
− y
)
dy < 0

Since η is symmetric, it follows that F−1
η

(
1− g

(
θf
))

= −F−1
η

(
g
(
θf
))

. Furthermore, since fη is even, we can re-write

the condition as ˆ ∞
0

[∣∣∣U ′ (θf + σηy
)∣∣∣ fη (y + F−1

η

(
1− g

(
θf
)))
−

−
∣∣∣D′ (θf − σηy)∣∣∣ fη (y − F−1

η

(
1− g

(
θf
)))]

yσηdy < 0

Therefore, if

∣∣∣U ′ (θf + σηy
)∣∣∣ fη (y + F−1

η

(
1− g

(
θf
)))

>
∣∣∣D′ (θf − σηy)∣∣∣ fη (y − F−1

η

(
1− g

(
θf
)))

,∀y ≥ 0, (A.9)

then Eθ∗
[
S
(
θ, θf

) (
θ − θf

)]
> 0, and so ∂θf

∂ση
< 0. Conversely, if∣∣∣U ′ (θf + σηy

)∣∣∣ fη (y + F−1
η

(
1− g

(
θf
)))

<
∣∣∣D′ (θf − σηy)∣∣∣ fη (y − F−1

η

(
1− g

(
θf
)))

,∀y ≥ 0, (A.10)

then Eθ∗
[
S
(
θ, θf

) (
θ − θf

)]
< 0, and so ∂θf

∂ση
> 0.

Since fη (y) is decreasing in y for y ≥ 0, it follows that fη
(
y + F−1

η

(
1− g

(
θf
)))
≥ fη

(
y − F−1

(
1− g

(
θf
)))

,

∀y ≥ 0 for F−1
η

(
1− g

(
θf
))
≤ 0, or g

(
θf
)
≥ 1

2
. Therefore, if g

(
θf
)
≥ 1

2
and

∣∣U ′ (θf + y
)∣∣ > ∣∣D′ (θf − y)∣∣, ∀y ≥ 0,

then condition (A.9) holds, and so ∂θf

∂ση
< 0. Thus, if π is dominated by upside risks at θf and g

(
θf
)
≥ 1

2
, then

∂θf

∂ση
< 0.

Similarly, using

fη
(
y + F−1

η

(
1− g

(
θf
)))

≤ fη
(
y − F−1

η

(
1− g

(
θf
)))

,∀y ≥ 0,

for F−1
η

(
1− g

(
θf
))
≥ 0 or g

(
θf
)
≤ 1

2
we arrive at the second result that if

∣∣U ′ (θf + y
)∣∣ < ∣∣D′ (θf − y)∣∣, ∀y ≥ 0,

and g
(
θf
)
≤ 1

2
, then ∂θf

∂ση
> 0.

Proof of Proposition 3

Proof. Assumption (A3) allows the exchange of limits and integrals, by using the dominated convergence theorem.

Then, in the limit where noise disappears, expression (A.8) above can be written as

∂ψ

∂ση
= U

′ (
θf
) ˆ +∞

−F−1
η (g(θf ))

(
y + F−1

η

(
g
(
θf
)))

fη (−y) dy

+D
′ (
θf
) ˆ −F−1

η (g(θf ))

−∞

(
y + F−1

η

(
g
(
θf
)))

fη (−y) dy

(A.11)

For any ση > 0, we have that θ∗−θ
ση
∼ Fη. Let x = θ−θ∗

ση
. We also have that away from the limit θ∗

(
θf , ση

)
=
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θf + σηF
−1
η

(
g
(
θf
))

.19 Then, away from the limit it is always the case that

Eθ∗

[
θ − θf

ση
| θ > θf

]
Pr
θ∗

[
θ > θf

]
=

ˆ +∞

θf

θ − θf

ση

1

ση
fη

(
θ∗ − θ
ση

)
dθ =

ˆ +∞

−F−1
η (g(θf ))

(
y + F−1

η

(
g
(
θf
)))

fη (−y) dy

(A.12)

So, we treat
´ +∞
−F−1

η (g(θf ))

(
y + F−1

η

(
g
(
θf
)))

fη (−y) dy as the limit of Eθ∗
[
θ−θf
ση
| θ > θf

]
Prθ∗

[
θ > θf

]
, as ση → 0.

An analogous result can be found for the other truncated integral.

Since limση→0 Prθ∗
[
θ > θf

]
= g

(
θf
)
, we can write that in the limit

∂ψ

∂ση
|ψ=0 > 0

⇐⇒

U
′ (
θf
)
g
(
θf
)

lim
ση→0

Eθ∗

[
θ − θf

σ
| θ > θf

]
> −D

′ (
θf
)(

1− g
(
θf
))

lim
ση→0

Eθ∗

[
θ − θf

σ
| θ ≤ θf

]
.(A.13)

Also, notice that limσ→0 ψθf exists and is positive, so limση→0
∂θf

∂ση
is well-defined. Additionally,

lim
ση→0

ψ
(
θf , ση

)
=

ˆ +∞

−F−1
η (g(θf ))

U
(
θf
)
fη (−y) dy +

ˆ −F−1
η (g(θf ))

−∞
D
(
θf
)
fη (y) dy (A.14)

= U
(
θf
)
g
(
θf
)

+D
(
θf
)(

1− g
(
θf
))

Finally, we define

h
(
g
(
θf
))

≡ −
g
(
θf
)

1− g (θf )

´ −F−1
η (g(θf ))

−∞
(
y + F−1

η

(
g
(
θf
)))

fη (−y) dy´ +∞
−F−1

η (g(θf ))

(
y + F−1

η (g (θf ))
)
fη (−y) dy

= −
limση→0 Eθ∗

[
θ−θf
σ
| θ ≤ θf

]
limση→0 Eθ∗

[
θ−θf
σ
| θ > θf

] . (A.15)

Combining (A.13), (A.14) and (A.15) we obtain the statement.

To show that h (.) is strictly increasing if η ∼ N (0, 1), we first solve the two integrals and rewrite h (·) as

h (g) =
g

1− g
φ
(
Φ−1 (1− g)

)
+ Φ−1 (1− g) (1− g)

φ (Φ−1 (1− g))− Φ−1 (1− g) g
(A.16)

where φ (·) and Φ (·) are the density and cumulative distributions of a standard normal random variable. We can

simplify this expression further to:

h (g) =

φ(Φ−1(1−g))
Φ−1(1−g)

(1− g)

[
φ(Φ−1(1−g))

Φ−1(1−g) − g
] − 1 (A.17)

The derivative of this function is given by

dh

dg
=

1

φ2 (Φ−1 (1− g))

φ2
(
Φ−1 (1− g)

)
+ (1− 2g) Φ−1 (1− g)φ

(
Φ−1 (1− g)

)
− g (1− g)

(
1 +

(
Φ−1 (1− g)

)2)
(1− g)2

[
φ(Φ−1(1−g))

Φ−1(1−g) − g
]2

(A.18)

The numerator can be written as:(
φ
(
Φ−1 (1− g)

)
+ (1− g) Φ−1 (1− g)

) (
φ
(
Φ−1 (1− g)

)
− gΦ−1 (1− g)

)
− g (1− g)

19Here θf (ση) is implicitly defined as the solution to ψ
(
θf , ση

)
= 0. For brevity, we abuse notation and write

simply θf .
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Using Φ−1 (g) = −Φ−1 (1− g), we get the function:

µ (g) =
(
φ
(
Φ−1 (g)

)
+ gΦ−1 (g)

) (
φ
(
Φ−1 (1− g)

)
+ (1− g) Φ−1 (1− g)

)
− g (1− g) (A.19)

Note that µ(g) = µ(1 − g) and limg→0 µ(g) = 0. Furthermore, one can show that µ (g) is strictly decreasing in g for

g ≤ 1
2
, so µ (g) < 0 for g ∈ (0, 1). This implies that dh

dg
< 0.

Proof of Proposition 4

The unique equilibrium is characterized by two conditions. The first one is an indifference condition for an agent that

observes a signal θ = θ∗ given by

ψ̂
(
θf , µ (θ∗, ρ) , σ

)
≡
ˆ ∞
θf

U (θ)φ

(
θ − µ (θ∗, ρ)

σ

)
1

σ
dθ +

ˆ θf

−∞
D (θ)φ

(
θ − µ (θ∗, ρ)

σ

)
1

σ
dθ = 0.

where µ (θ∗, ρ) = ρ2θ∗+
(
1− ρ2

)
θ0. The second is a condition relating θ∗ and θf via the fraction of agents that attack

the status quo, which is given by

θ∗ = θf − σ

ρ
v
(
θf
)
, (A.20)

where v
(
θf
)
≡ Φ−1

(
1− g

(
θf
))

is a decreasing function. Combining both conditions, we obtain a single condition

given by:

ψ̂

(
θf , ρ2

(
θf − σ

ρ
v
(
θf
))

+
(
1− ρ2) θ0, σ

)
= 0

We use this equilibrium condition and apply the Implicit Function Theorem. Note that

dψ̂

dθf
= ψ̂θf + ψ̂µ

(
ρ2 − σρv

′ (
θf
))

(A.21)

where

ψ̂θf = −
[
U
(
θf
)
−D

(
θf
)]
φ

(
θf − µ
σ

)
1

σ
(A.22)

and

ψ̂µ =
[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)
− Eθ∗

[
S
(
θ, θf

)]
with µ = ρ2

(
θf − σ

ρ
v
(
θf
))

+
(
1− ρ2

)
θ0. Therefore,

dψ̂

dθf
=
[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)(
ρ2 − 1− σρv

′ (
θf
))

−Eθ∗
[
S
(
θ, θf

)](
ρ2 − σρv

′ (
θf
)) (A.23)

Also, we have that

∂ψ̂

∂σ
=

[(
1− ρ2) θf − θ0

σ

]
ψ̂µ −

1

σ
Eθ∗

[
S
(
θ, θf

)(
θ − θf

)]
(A.24)

and
∂ψ̂

∂ρ
=
∂µ∗

∂ρ
ψ̂µ =

[
2ρ

(
θf + θ∗

2
− θ0

)]
ψ̂µ (A.25)

Clearly, in the limit as ρ→ 1, we have:

lim
ρ→1

dψ̂

dθf
=

[[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)
− Eθ∗

[
S
(
θ, θf

)]](
1− σv

′ (
θf
))

< 0 (A.26)
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since v
′ (
θf
)
< 0 given that gθ > 0. Therefore, the sign of ∂θf

∂σ
is the same as the sign of dψ̂

dσ
, which in the limit as

ρ→ 1 equals

− 1

σ
Eθ∗

[
S
(
θ, θf

)(
θ − θf

)]
This gives our first result. Similarly, the sign of ∂θf

∂ρ
is the same as the sign of dψ̂

dρ
, which equals

dψ̂

dρ
=

[
2ρ

(
θf + θ∗

2
− θ0

)]
ψ̂µ (A.27)

and so in the limit, as ρ→ 1,

lim
ρ→1

dψ̂

dρ
=

[
2

(
θf + θ∗

2
− θ0

)]
ψ̂µ (A.28)

Since ψ̂µ < 0, it follows that the sign of limρ→1
dψ̂
dρ

depends on the sign of θ0 − θf+θ∗

2
, which gives our second result.

Proof of Proposition 5

Proof. The proof follows closely the proof of Proposition 2. We define

Ψ
(
θf , ση

)
≡
ˆ +∞

θf
U

(
θ, Fη

(
θ∗ − θ
ση

))
1

ση
fη

(
θ∗ − θ
ση

)
dθ

+

ˆ θf

−∞
D

(
θ, Fη

(
θ∗ − θ
ση

))
1

ση
fη

(
θ∗ − θ
ση

)
dθ

After a change of variables (y = θ−θ∗
ση

), we have that

Ψ
(
θf , ση

)
=

ˆ +∞

−F−1
η (g(θf ))

U
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf , Fη (−y)
)
fη (−y) dy+

ˆ −F−1
η (g(θf ))

−∞
D
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf , Fη (−y)
)
fη (−y) dy

(A.29)

Implicit differentiation delivers: ∂ψ

∂θf
< 0 and

∂ψ

∂ση
=

ˆ +∞

−F−1
η (g(θf ))

Uθ
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf , Fη (−y)
)(

y + F−1
η

(
g
(
θf
)))

fη (−y) dy+

+

ˆ −F−1
η (g(θf ))

−∞
Dθ
(
σηy + σηF

−1
η

(
g
(
θf
))

+ θf , Fη (−y)
)(

y + F−1
η

(
g
(
θf
)))

fη (−y) dy =

=
1

ση

ˆ +∞

θf
Uθ

(
θ, Fη

(
θf − θ
ση

+ F−1
η

(
g
(
θf
))))(

θ − θf
) 1

ση
fη

(
θ∗ − θ
ση

)
dθ+

+
1

ση

ˆ θf

−∞
Dθ

(
θ, Fη

(
θf − θ
ση

+ F−1
η

(
g
(
θf
))))(

θ − θf
) 1

ση
fη

(
θ∗ − θ
ση

)
dθ

Therefore, by the implicit function theorem, the sign of ∂θ
f

∂ση
is the same as the sign of

∂ψ
∂ση

, which gives rise to condition

(19).

Proof of Corollary 3

Proof. In that model, g (θ) = 1
r
, which implies that θf and θ∗ satisfy the conditionFη

(
θ∗−θf
ση

)
= g

(
θf
)

= 1
r

and

that the mass of runners A (θ, θ∗) = Fη
(
θ∗−θ
ση

)
. The payoff differentials are given by U (θ,A) = r −

(
1−Ar
1−A

)
Rp (θ)
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and D (θ,A) = 1
A

. Therefore, Uθ (θ,A (θ, θ∗)) = −
(

1−rA(θ,θ∗)
1−A(θ,θ∗)

)
Rp′ (θ) ≤ 0 for θ ≥ θf with equality for θ = θf and

Dθ
(
θ,Φ

(
θ−θ∗
ση

))
= 0. Then, it immediately follows that Eθ∗

[
S
(
θ, θf

) (
θ − θf

)]
= −

´∞
θf
Uθ (θ,A (θ, θ∗)) dθ > 0.

Proposition 5 then implies that ∂θf

∂ση
< 0.
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Werning, and seminar participants at EPGE/FGV, the Federal Reserve Bank of Richmond, Norges

Bank, and the 2013 Lubrafin and EEA meetings for useful comments and suggestions. All remaining

errors are ours. This paper grew out of a previous version entitled ”Rollover crises and transparency:

the role of asymmetric risk sensitivities.”

References

Acharya, V., D. Gale, and T. Yorulmazer (2011): “Rollover Risk and Market Freezes,”

Journal of Finance, 66, 1175–1207.

Albagli, E., C. Hellwig, and A. Tsyvinski (2011): “A Theory of Asset Pricing Based on

Heterogeneous Information,” NBER Working Paper No. 17548.

Angeletos, G., C. Hellwig, and A. Pavan (2006): “Signaling in a Global Game: Coordination

and Policy Traps,” Journal of Political Economy, 114:3, 452–484.

(2007): “Dynamic Global Games of Regime Change: Learning, Multiplicity and Timing of

Attacks,” Econometrica, 75:3, 711–756.

Angeletos, G., and A. Pavan (2004): “Transparency of Information and Coordination in

Economies with Investment Complementarities,” American Economic Review, 94, 91–98.

Angeletos, G., and A. Pavan (2007): “Efficient Use of Information and Social Value of Infor-

mation,” Econometrica, 75:4, 1103–1142.

Angeletos, G., and A. Pavan (2013): “Selection-Free Predictions in Global Games with Endoge-

nous Information and Multiple Equilibria,” Theoretical Economics, 8:3, 883–938.

Bannier, C., and F. Heinemann (2005): “Optimal Transparency and Risk-Taking to Avoid

Currency Crises,” Journal of Institutional and Theoretical Economics, 161, 374–391.

29



Caballero, R., and A. Simsek (2013): “Fire Sales in a Model of Complexity,” Journal of Finance,

68:6, 2549–2587.

Carlsson, H., and E. van Damme (1993): “Global Games and Equilibrium Selection,” Econo-

metrica, 61, 989–1018.

Chen, Y. (1999): “Banking panics: The role of the First-Come, First-Served Rule and Information

Externalities,” Journal of Political Economy, 107(5), 946–968.

Chen, Y., and I. Hasan (2006): “The Transparency of the Banking System and the Efficiency of

Information-Based Bank Runs,” Journal of Financial Intermediation, 15(3), 307–331.

Colombo, L., G. Femminis, and A. Pavan (2013): “Information Acquisition and Welfare,”

mimeo.

Corsetti, G., A. Dasgupta, S. Morris, and H. Shin (2004): “Does One Soros Make a Differ-

ence? A Theory of Currency Crises with Large and Small Traders,” Review of Economic Studies,

71, 87–114.

Corsetti, G., B. Guimaraes, and N. Roubini (2006): “International lending of last resort

and moral hazard: A model of IMF’s catalytic finance,” Journal of Monetary Economics, 53:3,

441–471.

Dang, T. V., G. Gorton, and B. Holmstrom (2009): “Opacity and the Optimality of Debt for

Liquidity Provision,” mimeo.

Dasgupta, A. (2007): “Coordination and Delay in Global Games,” Journal of Economic Theory,

134, 195–225.

Diamond, D., and P. Dybvig (1983): “Bank Runs, Deposit Insurance, and Liquidity,”The Journal

of Political Economy, pp. 401–419.

Edmond, C. (2013): “Information Manipulation, Coordination, and Regime Change,” Review of

Economic Studies, 80:4, 1422–1458.

Frankel, D., S. Morris, and A. Pauzner (2003): “Equilibrium Selection in Global Games with

Strategic Complementarities,” Journal of Economic Theory, 108:1, 1–44.

Goldstein, I., and A. Pauzner (2005): “Demand-Deposit Contracts and the Probability of Bank

Runs,” the Journal of Finance, 60(3), 1293–1327.

Guimaraes, B., and S. Morris (2007): “Risk and wealth in a model of self-fulfilling currency

attacks,” Journal of Monetary Economics, 54:8, 2205–2230.

He, Z., and W. Xiong (2012a): “Dynamic Debt Runs,” Review of Financial Studies, 25:6, 1799–

1843.

30



(2012b): “Rollover Risk and Credit Risk,” Journal of Finance, 67, 391–429.

Heinemann, F., and G. Illing (2002): “Speculative attacks: unique equilibrium and trans-

parency,” Journal of International Economics, 58(2), 429–450.

Hellwig, C., and L. Veldkamp (2009): “Knowing What Others Know: Coordination Motives in

Information Acquisition,” Review of Economic Studies, 76, 223–251.

Iachan, F. S., and P. T. Nenov (2013): “Rollover crises and transparency: the role of asymmetric

risk sensitivities,” mimeo.

Metz, C. (2002): “Private and Public Information in Self-fulfilling Currency Crises,” Journal of

Economics, 76:1, 65–85.

Moreno, D., and T. Takalo (2011): “Optimal Bank Transparency,” Bank of Finland Research

Discussion Papers 9-2012.

Morris, S., and H. Shin (1998): “Unique Equilibrium in a Model of Self-Fulfilling Currency

Attacks,” American Economic Review, pp. 587–597.

Morris, S., and H. Shin (2003): “Global Games: Theory and Applications,” in Advances in

Economics and Econometrics, the Eighth World Congress, ed. by H. Dewatripont, and Turnovsky.

Morris, S., and H. Shin (2004): “Coordination Risk and the Price of Debt,” European Economic

Review, 48(1), 133–153.

Morris, S., and H. S. Shin (2002): “Social Value of Public Information,” American Economic

Review, 92, 1521–1534.

Myatt, D., and C. Wallace (2012): “Endogenous Information Acquisition in Coordination

Games,” Review of Economic Studies, 79, 340–374.

Rochet, J., and X. Vives (2004): “Coordination Failures and the Lender of Last Resort: Was

Bagehot Right After All?,” Journal of the European Economic Association, 2(6), 1116–1147.

Sims, C. (2003): “Implications of Rational Innatention,” Journal of Monetary Economics, 50, 665–

690.

Szkup, M., and I. Trevino (2013): “Information Acquisition and Transparency in Global Games,”

mimeo.

Yang, M. (2013): “Coordination with Flexible Information Acquisition,” mimeo.

31



B Online Supplementary Material (not for publication)

Supplement to Section 4.1

Information quality effects away from the limit ρ→ 1

We examine the effect of absolute and relative information quality on regime change away from the

limit ρ → 1. We first consider the behavior of an agent who knows that the regime change occurs

for θ ≤ θf and has posterior beliefs centered at some µ. This agent chooses ai = 1, if and only if

ψ̂
(
θf , µ, σ

)
≡
ˆ ∞
θf

U (θ)φ

(
θ − µ
σ

)
1

σ
dθ +

ˆ θf

−∞
D (θ)φ

(
θ − µ
σ

)
1

σ
dθ ≥ 0.

There are two important observations that can be made about ψ̂. First, given our net payoff

assumptions, we have

ψ̂µ =
[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)
− Eθi

[
S
(
θ, θf

)]
< 0

where S
(
θ, θf

)
≡


∣∣∣U ′ (θ)∣∣∣ , if θ ≥ θf∣∣∣D′ (θ)∣∣∣ , if θ < θf

. This is not surprising, since an increase in the posterior

mean, µ, leads to a first-order stochastic dominance shift in the conditional belief distribution.

Given that net payoffs are decreasing in θ, this implies that an agent’s payoff from choosing ai = 1

relative to ai = 0 decreases.

Second, we can write

ψ̂σ =

(
θf − µ

)
σ

ψ̂µ −
1

σ
Eθi

[
S
(
θ, θf

)(
θ − θf

)]
(B.1)

An increase in the posterior variance of an agent’s beliefs, holding the relative precision of public

and private information (ρ) fixed, increases the dispersion of her belief around an unchanged mean.

Expression (B.1) decomposes its consequences in two effects. The first term is exactly equivalent to

a mean shift. As variance is increased, θf and µ become closer: they are fewer standard deviations

apart. This term indicates that we can treat this effect as if the mean had changed, moving towards

θf .20 The second term is exactly the payoff sensitivity effect.

Taking θf as fixed, the root of ψ̂
(
θf , µ (θ∗, ρ) , σ

)
= 0, in which µ (θ∗, ρ) = ρ2θ∗ +

(
1− ρ2

)
θ0

defines implicitly the strategic cutoff θ∗ as a function of θf . Also, given any strategic cutoff, θ∗, the

20Take, for instance, a situation in which θf > µ. An increase in variance makes the status quo a more likely
event for an agent with beliefs centered around µ, as it increases the mass in the right tail of the distribution. As a
consequence, it favors rollover (ai = 0).
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mass of agents that choose ai = 1 when the state is θ is given by:

A (θ) = Φ

(
θ∗ − θ
ση

)
= Φ

(
θ∗ − θ

σ
ρ

)
.

This gives a second equation for the strategic cutoff:

θ∗ = θf − σ

ρ
v
(
θf
)
, (B.2)

where v
(
θf
)
≡ Φ−1

(
1− g

(
θf
))

is a decreasing function. We can then write the mean belief for an

agent at the equilibrium strategic cutoff θ∗ as µ∗
(
θf , σ, ρ

)
≡ ρ2

(
θf − σ

ρ v
(
θf
))

+
(
1− ρ2

)
θ0.

When we combine both equilibrium conditions, we obtain a single-equation equilibrium condition

ψ̂

(
θf , ρ2

(
θf − σ

ρ
v
(
θf
))

+
(
1− ρ2

)
θ0, σ

)
= 0. (B.3)

A change in absolute information quality, σ, induces two effects on it and, implicitly, on the

failure cutoff. There is a direct effect, ψ̂σ, which as we discussed above consists of a“mean equivalent”

response,
(θf−µ)

σ ψ̂µ, and a “payoff sensitivity” response, 1
σEθ∗

[
S
(
θ, θf

) (
θ − θf

)]
.

There is also an indirect effect through a change in the agent at the strategic cutoff, as equation

(B.2) needs to be satisfied. This effect contributes with an additional ∂µ∂σ ψ̂µ. This arises because an

increase in the posterior variance results in more dispersed signal realizations for agents away from

the true value of the fundamentals when θ = θf . This increases the mass of agents with signals

θi < θ∗, whenever θ∗ < θf , and has the opposite effect when θ∗ > θf . Since it takes g
(
θf
)

agents for

regime change to occur at θf , this implies that the marginal agent needs to observe a more extreme

signal, further away from θf .

Combining these effects, we get that

∂ψ̂

∂σ
=

[(
1− ρ2

) θf − θ0
σ

]
ψ̂µ −

1

σ
Eθ∗

[
S
(
θ, θf

)(
θ − θf

)]
(B.4)

Unlike the effect of σ, a change in the relative quality of public versus private information, ρ, has

only an effect through the posterior mean. In particular,

∂ψ̂

∂ρ
=
∂µ∗

∂ρ
ψ̂µ =

[
2ρ

(
θf + θ∗

2
− θ0

)]
ψ̂µ (B.5)

We show the effects of σ and ρ on θf under the following additional condition.

A4 dψ̂
dθf

< 0.

It is well known (see, for example, Morris and Shin (2003)) that a low ρ can recover the multiplicity

of equilibria, even in the presence of some private information. Condition A4 is sufficient for the

2



absence of multiple solutions to equation B.3 and is always satisfied for ρ sufficiently close to 1. One

can also re-write condition A4 as

dψ̂

dθf
=

[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)(
ρ2 − 1− σρv′

(
θf
))

− Eθ∗
[
S
(
θ, θf

)](
ρ2 − σρv′

(
θf
))

The second term is always negative while, the first term is negative for ρ sufficiently close to 1 given

a value of θf (i.e. for any θf there is an ρ < 1 s.t. for ρ > ρ, ρ2 − 1− σρv′
(
θf
)
> 0. Therefore, one

can equivalently state A4 based on model primitives.

Condition A4 also ensures that the comparative statics are well behaved. If condition A4 does not

hold, all comparative statics change signs. This behavior corresponds to that around the “unstable”

equilibrium in multiple equilibrium models.

Given this assumption, we characterize the comparative statics away from the limit ρ → 1 in

the following

Proposition 6. Whenever (A4) is satisfied,

∂θf

∂σ
> 0 ⇐⇒ Eθ∗

[
S
(
θ, θf

)(
θ − θf

)]
<
(
1− ρ2

) (
θf − θ0

)
ψ̂µ (B.6)

and
∂θf

∂ρ
> 0 ⇐⇒ θ0 >

θf + θ∗

2
(B.7)

in which ψ̂µ < 0.

Proof. We follow the steps in the proof of Proposition 4 in the paper. Note that

dψ̂

dθf
=
[
U
(
θf
)
−D

(
θf
)] 1

σ
φ

(
θf − µ
σ

)(
ρ2 − 1− σρv′

(
θf
))

−Eθ∗
[
S
(
θ, θf

)](
ρ2 − σρv′

(
θf
)) (B.8)

Under condition A4, dψ̂
dθf

< 0. Therefore, the signs of ∂θ
f

∂σ and ∂θf

∂ρ follow directly from the derivatives

dψ̂
dσ and dψ̂

dρ , which corresponds to the comparisons given in the proposition.

Therefore, away from the limit ρ→ 1, the sign of ∂θ
f

∂σ depends on a modified version of our main

condition (11). In particular, since a change of σ has an additional effect that is equivalent to a

change in the posterior mean, condition (B.6) compares the magnitude and direction of that effect

against the magnitude and direction of the payoff sensitivity effect.

3



Information quality effects with “flat” payoff differentials

To contrast more clearly the effects arising from payoff sensitivities from effects arising through the

relative position of the prior mean, θ0, away from the limit ρ→ 1, it is instructive to consider a set of

models, where net payoff differentials are not sensitive to changes in the state θ, a case that has been

commonly studied in applied models featuring global games. In that case Eθ∗
[
S
(
θ, θf

) (
θ − θf

)]
=

0, ∀θf and we have the following

Corollary 4. Consider a regime change game with upside and downside payoff differentials that do

not depend on θ. Whenever (A4) is satisfied,

∂θf

∂σ
> 0 ⇐⇒ θ0 > θf (B.9)

and
∂θf

∂ρ
> 0 ⇐⇒ θ0 >

θf + θ∗

2
. (B.10)

Proof. Follows directly from the proof of Proposition 6.

Therefore, in a “flat payoffs” model, the effects of both absolute (σ) and relative (ρ) information

quality depend only on the position of the prior mean relative to the regime change cutoff.

These implications are related to existing results in the global games literature on the interaction

between information quality and the prior mean (Metz (2002), Bannier and Heinemann (2005), and

Angeletos, Hellwig, and Pavan (2007)). In particular, Metz (2002) discusses this interaction in the

context of a currency crisis model with flat payoffs. She finds that if the prior mean is sufficiently

low, discounting it more by either putting more weight on private information (decreasing ση)

or less weight on public information (increasing σε), tends to decrease the regime change cutoff.

Furthermore, Angeletos, Hellwig, and Pavan (2007) show that in the context of a dynamic regime

change game with arrival of new private signals (and hence increasing precision of private information

over time), the regime-change cutoff is decreasing in the precision of private information whenever

the prior mean is sufficiently low and increasing in the precision of private information whenever

the prior mean is sufficiently high.21 Inspection of the effects of changes in ρ on θf summarized in

Corollary 4, for the case when ρ is close to 1, so that any effects through σ are small, recovers these

results.

Supplement to Section 4.3

Consider the problem of an agent prior to the realization of her idiosyncratic signal. Since agents

are identical at this stage, it suffices to look at the expected utility of a representative agent.22

21See Theorem 1 in that paper and the discussion preceding it.
22The ex ante utility of a representative agent is a natural welfare measure used in the global games literature (see,

for example, Angeletos and Pavan (2007) and Colombo, Femminis, and Pavan (2013))
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Agents know σε, ση and have rational expectations about the equilibrium value of θf . Each agent

chooses the strategic cutoff, θ∗, to maximize expected utility.

In our previous positive analysis of equilibrium, it sufficed to describe net payoffs. This, however,

is no longer true for welfare analysis. Therefore, let ξR (θ) denote the payoff from action ai = 1 when

the realized regime is R ∈ {0, 1}. Then, given a realization θ for the fundamental, the probability

that an agent will observe a signal θi > θ∗ and choose ai = 0 is given by 1 − A (θ, θ∗, ση) =

1−Fη
(
θ∗−θ
ση

)
. This is also the mass of agents that choose ai = 0, and as a consequence, the average

payoff in the cross section of agents is

P
(
θ, θ∗, θf , ση

)
≡

ξ1 (θ)− (1−A (θ, θ∗, ση))D (θ) , if θ < θf

ξ0 (θ)− (1−A (θ, θ∗, ση))U (θ) , if θ ≥ θf .
(B.11)

The expected utility of the representative agent or ex ante welfare is then

W
(
θ∗, θf , ση, σε

)
≡
ˆ
P
(
θ, θ∗, θf , ση

) 1

σε
fε

(
θ − θ0
σε

)
dθ. (B.12)

In equilibrium, θf and θ∗ are related through

ζ
(
θ∗, θf , ση

)
≡ Fη

(
θ∗ − θf

ση

)
− g

(
θf
)

= 0. (B.13)

When agents choose θ∗, they treat θf as fixed and do not internalize the effect of θ∗ on θf arising

through the equilibrium relationship (B.13). Therefore, agents choose θ∗ to satisfy

Wθ∗ = 0 (B.14)

Condition (B.14) together with the equilibrium relationship (B.13) give the equilibrium use of

information (Angeletos and Pavan (2007)) in the regime switching game - the strategic cutoff chosen

in the Bayesian Nash Equilibrium of the game.

If a planner could mandate cutoff strategies, she would take into account the equilibrium rela-

tionship between θf and θ∗ in order to evaluate

dW
dθ∗

=
∂W
∂θ∗

+
∂W
∂θf

∂θf

∂θ∗
|ζ=0. (B.15)

The second term in this expression is an equilibrium externality which is not taken into account

by individual agents: whenever they choose a lower θ∗, they exert a downward pressure on the

regime switching cutoff θf and indirectly affect all other agents’ welfare. In a natural constrained

efficiency benchmark such as the one introduced by Angeletos and Pavan (2007), a planner chooses

strategies which are not privately optimal, but does not transmit or aggregate any information. As

5



a consequence, constrained efficiency requires

dW
dθ∗

= 0. (B.16)

Note that (B.16) provides a condition for the efficient use of information in the regime change game.

At the Bayesian Nash Equilibrium, the externality term is given by

∂W
∂θf

∂θf

∂θ∗
|ζ=0 =

∂θf

∂θ∗
|ζ=0

{[
ξ1

(
θf
)
− ξ0

(
θf
)]

+
(

1− g
(
θf
)) [

U
(
θf
)
−D

(
θf
)]} 1

σε
fε

(
θf − θ0
σε

)
,

(B.17)

where ∂θf

∂θ∗ |ζ=0 > 0. Its sign is, therefore, the same as the sign of the direct effect of θf on expected

equilibrium welfare, ∂W
∂θf

. It is worth pointing out two features about this externality. First, gener-

ically, θf is at an inefficient level. From individual optimality of strategies, we have that ∂W
∂θ∗ = 0,

so constrained efficiency requires ∂W
∂θf

∂θf

∂θ∗ |ζ=0 = 0, a condition which is generically false.23 Second,

whenever
[
ξ1
(
θf
)
− ξ0

(
θf
)]
< 0, so that the status quo regime (R = 0) would weakly increase the

utility even of agents that choose ai = 1, as it holds in all our debt run examples, the externality

from the choice of a higher strategic threshold is negative. In those cases, agents are too eager to

run from a social perspective and too many financial institutions fail.

Consider a policy that affects the precision of public information. That policy has both a direct

and an indirect effect on equilibrium welfare. In particular, under the equilibrium use of information,

dW
dση

=
∂W
∂ση

+
∂θf

∂ση

∂W
∂θf

∂θf

∂θ∗
|ζ=0 (B.18)

where by an application of the envelope theorem, the effect of ση through θ∗ is zero. The first

term is the direct welfare effect of a decrease in private information precision, which is always

negative, as the private value of information to agents is always positive. To see this formally, note

that ∂W
∂ση

=
´

∂P
∂ση

1
σε
fε

(
θ−θ0
σε

)
dθ, where ∂P

∂ση
=

−
θ∗−θ
σ2
η
fη

(
θ∗−θ
ση

)
U (θ) , θ ≥ θf

− θ∗−θ
σ2
η
fη

(
θ∗−θ
ση

)
D (θ) , θ < θf

. Using ∂W
∂θ∗ =

´
∂P
∂θ∗

1
σε
fε

(
θ−θ0
σε

)
dθ = 0, where ∂P

∂θ∗ =


1
ση
fη

(
θ∗−θ
ση

)
U (θ) , θ ≥ θf

1
ση
fη

(
θ∗−θ
ση

)
D (θ) , θ < θf

, one can show that ∂W
∂ση

=

∂W
∂ση
− θf−θ∗

ση
∂W
∂θ∗ < 0.

The second term is the indirect effect through the change in the externality. The sign of that

effect depends on the sign of ∂θf

∂ση
, which is the focus of our analysis in the paper.

23Given that the difference
[
ξ1
(
θf
)
− ξ0

(
θf
)]

is strategically irrelevant, for any environment with a given Bayesian
Nash Equilibrium, one can find a strategically equivalent environment with perturbed payoffs which has a non-zero
externality and, therefore, features constrained inefficiency.
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Supplement to Section 4.4

We assume that any change in an information acquisition parameter or a change in equilibrium

beliefs occurs in the following way

ηi ∼ H (ηi, α) ≡ αFη,1 (ηi) + (1− α)Fη,0 (ηi) .

By studying small perturbations away from Fη,0, using the mixture formulation, we describe the

consequences of a change in the distribution of private noise towards any arbitrary Fη,1 (ηi). With

a diffuse prior, conditional posterior beliefs are given by

θ | θi ∼ 1−H (θi − θ, α) .

As in our previous analysis, there are two central loci to describe. Indifference of a marginal

agent that received signal θ∗ imposes

ψ
(
θf , θ∗, α

)
≡
ˆ ∞
θf

U (θ)h (θ∗ − θ, α) dθ +

ˆ θf

−∞
D (θ)h (θ∗ − θ, α) dθ. (B.19)

Additionally, when agents follow a cutoff θ∗, the mass of agents choosing ai = 1 for any realization

θ of the state is H (θ∗ − θ, α). Therefore, the second locus pins down the regime change cutoff as

the root to

χ
(
θf , θ∗, α

)
≡ H

(
θ∗ − θf , α

)
− g

(
θf
)

= 0. (B.20)

We focus on how changes in the information structure towards Fη,1 affect the regime-change

cutoff.

Proposition 7. As the private noise distribution is distorted away from Fη,0 (ηi), in the direction

of Fη,1 (ηi), we have that

∂θf

∂α
> 0 ⇐⇒ EFη,1

[
π̂
(
θ, θf

)
| θ∗
]
− EFη,0

[
π̂
(
θ, θf

)
| θ∗
]
>

>
ψθ∗

h (θ∗ − θf , α)

[
Fη,1

(
θ∗ − θf

)
− Fη,0

(
θ∗ − θf

)]
, (B.21)

in which π̂
(
θ, θf

)
≡

U (θ) , if θ ≥ θf

D (θ) , if θ < θf
and where ψθ∗

h(θ∗−θf ,α)
< 0.

Proof. From equation (B.20), we can describe locally the implicit function θ∗
(
θf , α

)
. Then,

∂θf

∂α
= −

ψα + ψθ∗
∂θ∗

∂α |χ=0

ψθf + ψθ∗
∂θ∗

∂θf
|χ=0

.
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We first show that the denominator is negative. Indeed,

ψθf = −
[
U
(
θf
)
−D

(
θf
)]
h
(
θ∗ − θf , α

)
> 0,

ψθ∗ =
[
U
(
θf
)
−D

(
θf
)]
h
(
θf − θ∗

(
θf , α

)
, α
)
− EH

[
S
(
θ, θf

)]
< 0,

and
∂θ∗

∂θf
|χ=0 =

h
(
θ∗
(
θf , α

)
− θf , α

)
+ g

′ (
θf
)

h (θ∗ (θf , α)− θf , α)
> 1.

Therefore, ψθf + ψθ∗
∂θ∗

∂θf
|χ=0 < 0

Regarding the numerator,

ψα = EFη,1

[
π̂
(
θ, θf

)
| θ∗
]
− EFη,0

[
π̂
(
θ, θf

)
| θ∗
]

and
∂θ∗

∂α
|χ=0 = −

Fη,1
(
θ∗ − θf

)
− Fη,0

(
θ∗ − θf

)
h (θ∗ (θf , α)− θf , α)

The proposition follows from these expressions.

We interpret expression (B.21) in the following way. The terms on the left-hand side describe

whether a change in the distribution from Fη,0 towards Fη,1 makes the marginal agent more inclined

to choose ai = 1. It takes the cutoff θf as given, so it does not take into account any equilibrium

feedback effects. It represents a difference of expected net payoffs under the two distributions

involved in the mixture. In particular, we can re-write it as[
D
(
θf
)
− U

(
θf
)] [

Fη,0

(
θ∗ − θf

)
− Fη,1

(
θ∗ − θf

)]
+

+

ˆ ∞
−∞

S
(
θ, θf

)
[Fη,0 (θ∗ − θ)− Fη,1 (θ∗ − θ)] dθ

(B.22)

with S
(
θ, θf

)
=


∣∣∣U ′ (θ)∣∣∣ , if θ ≥ θf∣∣∣D′ (θ)∣∣∣ , if θ < θf

. The first term reflects the jump in net payoffs at the

regime change threshold (a form of a discrete sensitivity term). The two distributions lead to

different probabilities of regime change from the point of view of an agent that observes a signal θ∗

and the first term corresponds to the difference in expected payoffs as a result of this. The second

term relates payoff sensitivities and the relative probability weights under the two distributions.

Intuitively, a shift towards a belief distribution that puts more mass on sets where D (θ) is higher

or, analogously, less mass where |U (θ)| is lower for a given signal θ∗ induces agents to choose ai = 1.

The right-hand side is related to equilibrium feedback effects between θ∗ and θf . Notice that

(B.20) imposes a positive relationship between the strategic and regime-change cutoffs. If agents are

less likely to run for any θi, the regime-change cutoff θf decreases. When we move infinitesimally
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towards Fη,1, for fixed cutoffs, there is a change in the mass of agents receiving signals θi < θ∗ and

choosing ai = 1. This change is described by
[
Fη,1

(
θ∗ − θf

)
− Fη,0

(
θ∗ − θf

)]
. As a consequence,

the equilibrium θ∗ and, ultimately, θf must adjust in response to this change in α. This is the

source of the second effect in condition (B.21).
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