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Abstract
In this paper, we study length categories using iterated extensions. We fix a field k, and
for any family S of orthogonal k-rational points in an Abelian k-category A, we consider
the category Ext(S) of iterated extensions of S in A, equipped with the natural forgetful
functor Ext(S) → A(S) into the length category A(S). There is a necessary and sufficient
condition for a length category to be uniserial, due to Gabriel, expressed in terms of the
Gabriel quiver (or Ext-quiver) of the length category. Using Gabriel’s criterion, we give a
complete classification of the indecomposable objects in A(S) when it is a uniserial length
category. In particular, we prove that there is an obstruction for a path in the Gabriel quiver to
give rise to an indecomposable object. The obstruction vanishes in the hereditary case, and
can in general be expressed using matric Massey products. We discuss the close connection
between this obstruction, and the noncommutative deformations of the family S in A. As
an application, we classify all graded holonomic D-modules on a monomial curve over the
complex numbers, obtaining the most explicit results over the affine line, when D is the first
Weyl algebra. We also give a non-hereditary example, where we compute the obstructions
and show that they do not vanish.

Keywords Finite length categories · Uniserial categories · Iterated extensions ·
Noncommutative deformations
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1 Introduction

Let S = {Sα : α ∈ I } be a family of non-zero, pairwise non-isomorphic objects in
an Abelian k-category A, where k is a field. We consider the minimal full subcategory
A(S) ⊆ A that contains S and is closed under extensions. The family S is called a family
of orthogonal points if End(Sα) is a division algebra and Hom(Sα, Sβ) = 0 for all α, β ∈ I
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with α �= β. In this case,A(S) ⊆ A is a length category with S as its simple objects. When
End(Sα) = k, we call Sα a k-rational point.

An important special case is when A = ModA is the category of modules over an
associative k-algebra A, and S is a subset of the simple A-modules. If S is the family of
all simple modules, then A(S) is the category of all modules of finite length. There are
also many other interesting applications, for example when A is the category of graded
modules over a graded k-algebra, or the category of coherent sheaves over a k-scheme. Note
that any length category is exact equivalent to an exact subcategory of a module category.
Nevertheless, it is often better to work directly in the Abelian category of interest than to
use an embedding into a module category.

We shall use the category Ext(S) of iterated extensions of S to study the length category
A(S) when S is a family of orthogonal k-rational points. An iterated extension of S is a
couple (X,C), where X is an object inA and C is a cofiltration

X = Cn
fn−→ Cn−1 → · · · → C2

f2−→ C1
f1−→ C0 = 0

where fi : Ci → Ci−1 is surjective and Ki = ker(fi) ∼= Sαi
with αi ∈ I for 1 ≤ i ≤ n.

The assignment (X,C) �→ X defines a forgetful functor Ext(S) → A(S).
The category Ext(S) of iterated extensions has some interesting invariants, in addition

to the length n, the simple factors {K1, . . . , Kr } with r ≤ n, and their multiplicities. The
order vector α = (α1, . . . , αn) ∈ In is an invariant of Ext(S). Moreover, when (X,C) is
an iterated extension with order vector α, there are induced commutative diagram of short
exact sequences

0 �� Ki
�� Ci

fi �� Ci−1 �� 0

0 �� Ki
��

��

Z
fi

��

��

Ki−1 ��

��

0

We call the extensions τi ∈ Ext1A(Ki−1,Ki) for 2 ≤ i ≤ n the simple extensions of (X,C).
These simple extensions are also invariants of Ext(S).

We say thatA(S) is a uniserial length category if any indecomposable object inA(S) has
a unique composition series. When S is a family of k-rational orthogonal points, thenA(S)

is a uniserial length category if and only if S satisfies the following criterion, due to Gabriel:
∑

β∈I

dimk Ext
1
A(Sα, Sβ) ≤ 1 and

∑

β∈I

dimk Ext
1
A(Sβ, Sα) ≤ 1 for all α ∈ S

The Gabriel quiver of A(S) has nodes S = {Sα : α ∈ I }, and dimk Ext1A(Sα, Sβ) edges
from node α to node β. Gabriel’s criterion for A(S) to be uniserial is a condition on the
Gabriel quiver, and we use it to classify and explicitly construct all indecomposable objects
inA(S) when the length category is uniserial.

Let n ≥ 2, and assume that simple objects K1, . . . , Kn in S and extensions τ2, . . . , τn in
A are given, such that τi ∈ Ext1A(Ki−1, Ki) for 2 ≤ i ≤ n. If n = 2, then it is clear that
any extension of K1 by K2 is an iterated extension in Ext(S) with simple factors K1,K2
and simple extension τ2. For n ≥ 3, we give a necessary and sufficient condition for the
existence of an iterated extension in Ext(S) with simple factors K1, . . . , Kn and simple
extensions τ2, . . . , τn. The condition is given in terms of matrix Massey products in the
sense of May, and we show that it can be interpreted as obstructions for lifting infinitesimal
noncommutative deformation. In order to do this, we describe the close link between iterated
extensions and noncommutative deformations, following Laudal [10].
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Theorem Let S = {Sα : α ∈ I } be a family of orthogonal k-rational points in an Abelian
k-category A. If A(S) is a uniserial length category, then the indecomposable objects in
A(S) of length n are given by

{X(α) : α ∈ In is admissible }
up to isomorphism inA(S). Moreover, an order vector α ∈ In is admissible if and only if it
satisfies the following conditions:

1. The order vector α corresponds to a path of length n − 1 in the Gabriel quiver Λ.
2. When n ≥ 3, the matric Massey product 〈τ2, τ3, . . . , τn〉 ⊆ Ext2A(Sα1 , Sαn) is defined

and contains zero for all non-split extensions τi ∈ Ext1A(Sαi−1 , Sαi
).

When A(S) is hereditary, the obstructions vanish, and any path of length n − 1 in the
Gabriel quiver of A(S) gives rise to an indecomposable object of length n in A(S). Conse-
quently, there is a bijective correspondence between indecomposable objects of length n in
A(S) and paths of length n − 1 in the Gabriel quiver of A(S). This result is well-known;
see for instance Chen and Krause [3].

As an application, we show that the category grHolD of graded holonomic D-modules
is uniserial when D = Diff(A) is the ring of differential operators on a monomial curve
A defined over the field k = C of complex numbers. Moreover, we classify all indecom-
posable objects in grHolD . We build upon the results in Eriksen [6], where we studied this
category. We obtain the most explicit result in the case when A = k[t] and D = A1(k)

is the first Weyl algebra. The classification is similar in the other cases, since all rings of
differential operators on monomial curves are Morita equivalent.

Theorem Let D = A1(k) be the first Weyl algebra. Then the category grHolD of graded
holonomic D-modules is uniserial, and the indecomposable D-modules in grHolD are, up
to graded isomorphisms and twists, given by

M(α, n) = D/D (E − α)n, M(β, n) = D/D w(β, n)

where n ≥ 1, α ∈ J ∗ = {α ∈ k : 0 ≤ Re(α) < 1, α �= 0}, β ∈ {0,∞}, and where E = t∂

is the Euler derivation and w(β, n) is the alternating word on n letters in t and ∂ , ending
with ∂ if β = 0, and in t if β = ∞.

This result resembles Boutet de Monvel’s classical result, giving all regular holonomic
D-modules over the ringD of differential operators on the ringO of germs of holomorphic
function on X = C around 0.

We also include an example of a non-hereditary uniserial length category, and compute
the obstructions. The simplest example isA = k[x]/(x2)with the family S = {S} consisting
of the unique simple left A-modules, given by S = A/(x). We show that in this case, the
obstructions do not vanish, and there are no indecomposable modules of length n ≥ 3.

2 Iterated Extensions and Length Categories

Let k be a field, let A be an Abelian k-category, and let S = {Sα : α ∈ I } be a fixed
family of non-zero, pairwise non-isomorphic objects in A. In this section, we define the
category Ext(S) of iterated extensions of the family S, equipped with a forgetful functor
Ext(S) → A(S) into the minimal full subcategoryA(S) ⊆ A that contains S and is closed
under extensions, and study its properties.



E. Eriksen

An object of Ext(S) is a couple (X,C), where X is an object of the categoryA and C is
a cofiltration of X inA of the form

X = Cn
fn−→ Cn−1 → · · · → C2

f2−→ C1
f1−→ C0 = 0

where fi : Ci → Ci−1 is surjective and Ki = ker(fi) ∼= Sαi
with αi ∈ I for 1 ≤ i ≤ n.

The integer n ≥ 0 is called the length, the objects K1, . . . , Kn are called the factors, and
the vector α = (α1, . . . , αn) is called the order vector of the iterated extension (X,C).

Let (X,C) and (X′, C′) be a pair of objects in Ext(S) of lengths n, n′ ≥ 0. A morphism
φ : (X,C) → (X′, C′) in Ext(S) is a collection {φi : 0 ≤ i ≤ N} of morphisms φi : Ci →
C′

i in A such that φi−1fi = f ′
i φi for 1 ≤ i ≤ N , where N = max{n, n′}. By convention,

Ci = X for all i > n and C′
i = X′ for all i > n′.

The category Ext(S) has a dual category defined by filtrations. An object of this category
is a couple (X, F ), where X is an object ofA and F is a filtration of X inA of the form

0 = Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = X

such that Ki = Fi−1/Fi
∼= Sαi

with αi ∈ I for 1 ≤ i ≤ n. Given an object (X, F ) in
the dual category, the corresponding object in Ext(S) is (X,C), where the cofiltration C

is defined by Ci = X/Fi for 0 ≤ i ≤ n, with the natural surjections fi : Ci → Ci−1.
Conversely, if an object (X,C) in Ext(S) is given, then the corresponding filtration of X

is given by Fi = ker(X → Ci) for 0 ≤ i ≤ n, where X → Ci is the composition
fi+1 ◦ · · · ◦ fn : Cn → Ci . It is clear from the construction that the dual objects (X,C) and
(X, F ) have the same length, the same factors, and the same order vector.

As the name suggests, the category Ext(S) can be characterized in terms of extensions.
In fact, for any object (X,C) in Ext(S) of length n and for any integer i with 2 ≤ i ≤ n,
the cofiltration C induces a commutative diagram

0 �� Ki
�� Ci

fi �� Ci−1 �� 0

0 �� Ki
��

��

Z
fi

��

��

Ki−1 ��

��

0

in A, where the rows are exact and Z = f −1
i (Ki−1). We define ξi ∈ Ext1A(Ci−1, Ki) and

τi ∈ Ext1A(Ki−1,Ki) to be the extensions corresponding to the upper and lower row, and
call τ2, τ3, . . . , τn the simple extensions of (X,C). By construction, ξi �→ τi under the map
Ext1A(Ci−1, Ki) → Ext1A(Ki−1, Ki) induced by the inclusion Ki−1 ⊆ Ci−1. In particular,
C2 is an extension of C1 = K1 by K2, C3 is an extension of C2 by K3, and in general, Ci+1
is an extension of Ci by Ki+1 for 1 ≤ i ≤ n − 1. It follows that X = Cn is obtained from
the factors {K1, . . . , Kn} ⊆ S by an iterated use of extensions, and this justifies the name
iterated extensions.

Let us consider the natural forgetful functor Ext(S) → A given by (X,C) �→ X, and
the full subcategory A(S) ⊆ A defined in the following way: An object X in A belongs
to A(S) if there exists a cofiltration C of X such that (X,C) is an object of Ext(S). The
following lemma proves thatA(S) ⊆ A is the minimal full subcategory that contains S and
is closed under extensions:

Lemma 1 Let (X′, C′), (X′′, C′′) be iterated extensions of the family S. If X is an extension
ofX′ byX′′ inA, then there is a cofiltration C ofX such that (X,C) is an iterated extension
of the family S. In particular, the full subcategoryA(S) ⊆ A is closed under extensions.
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Proof Let us assume that (X′, C′) and (X′′, C′′) are iterated extensions of the family S of
lengths n′, n′′. Since X is an extension of X′′ by X′, we can construct a cofiltration of X of
length n = n′ + n′′ in the following way: Let f : X′ → X and g : X → X′′ be the maps
given by the extension 0 → X′ → X → X′′ → 0, let F ′ be the filtration of X′ dual to
the cofiltration C′, and let F ′′ be the filtration of X′′ dual to the cofiltration C′′. We define
Fi = g−1(F ′′

i ) for 0 ≤ i ≤ n′′, and Fi = f (F ′
i−n′′) for n′′ ≤ i ≤ n. Then F is a filtration

of X, and we have that Fi−1/Fi
∼= ker(X → C′′

i−1)/ ker(X → C′′
i ) ∼= K ′′

i for 0 ≤ i ≤ n′′,
and also that Fi−1/Fi

∼= K ′
i−n′′ for n′′ ≤ i ≤ n. Let C be the cofiltration of X dual to

the filtration F . Then it follows by construction that (X,C) is an iterated extension of the
family S of length n.

We recall that A(S) ⊆ A is called an exact Abelian subcategory if the inclusion functor
A(S) → A is an exact functor. It is well-known that this is the case if and only if A(S) is
closed in A under kernels, cokernels and finite direct sums. It is clear that A(S) is closed
under finite direct sums since it closed under extensions. But in general, it is not closed
under kernels and cokernels.

Proposition 2 The full subcategoryA(S) ⊆ A is an exact Abelian subcategory if and only
if the following conditions hold:

1. EndA(Sα) is a division algebra for all α ∈ I

2. MorA(Sα, Sβ) = 0 for all α, β ∈ I with α �= β

If this is the case, then S is the set of simple objects inA(S), up to isomorphism.

Proof This follows from Theorem 1.2 in Ringel [13], and the preceding comments.

We use the notation from Ringel [13], and say that an object X in A is a point if
EndA(X) is a division ring, and that two points X, Y inA are orthogonal if MorA(X, Y ) =
MorA(Y,X) = 0. We call X a k-rational point if EndA(X) = k.

A length category is an Abelian category such that any of its objects has finite length,
and such that the isomorphism classes of objects form a set. If S is a family of orthogonal
points in an Abelian k-category A, then it follows from Proposition 2 that A(S) is a length
category, with S as its simple objects. In fact, any length category which is an Abelian
k-category is of this type.

3 Obstructions for Existence of Iterated Extensions

In this section, we assume thatA is the categoryModA of right modules over an associative
k-algebra A, and let S = {Sα : α ∈ I } be a family of orthogonal points in ModA. Let
n ≥ 2 be an integer, and fix simple A-modules K1, . . . , Kn in S and extensions τi ∈
Ext1A(Ki−1, Ki) for 2 ≤ i ≤ n. If n = 2, then any extension of K1 by K2 is an iterated
extension in Ext(S)withK1,K2 as its simple factors and τ2 as its simple extension. For n ≥
3, there are obstructions, and we give a necessary and sufficient condition for the existence
of an iterated extension in Ext(S) with K1, . . . , Kn as its simple factors and τ2, . . . , τn as
its simple extensions. These obstructions are expressed in terms of matric Massey products;
see May [11].
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We write K = ⊕Ki , and consider the Hochschild complex HC•(A,Endk(K)) of A with
values in Endk(K) as a DGA (differential graded algebra) over kr . It has a decomposition

HCn(A,Endk(K)) = ⊕
i,j

HCn(A,Homk(Ki,Kj ))

A 1-cochain in this DGA is a k-linear map α : A → Endk(K), and it is a 1-cocycle if and
only if it is a derivation. Multiplication of the 1-cochains α, β in the DGA is defined by the
composition α · β = {(a, b) �→ β(b) ◦ α(a)}. It is well-known that its cohomology is given
by

HHn(A,Endk(K)) = ⊕
i,j

HHn(A,Homk(Ki,Kj )) ∼= ⊕
i,j

ExtnA(Ki,Kj )

In particular, Ext1A(Ki,Kj ) ∼= Derk(A,Homk(Ki,Kj ))/ IDerk(A,Homk(Ki,Kj )), where
IDerk(−,−) denotes the inner derivations.

We choose a derivation αi−1,i : A → Homk(Ki−1, Ki) that represents τi in Hochschild
cohomology for 2 ≤ i ≤ n. The cup product τ2 ∪ τ3 = 〈τ2, τ3〉 is the cohomology class
of α12 · α23. It is also called a second order matric Massey product. If the cup-products
〈τ2, τ3〉 = 〈τ3, τ4〉 = 0, then there are 1-cochains α13 and α24 such that

d(α13) = α12 · α23 and d(α24) = α23 · α34

In that case, α = {α12, α23, α34, α13, α24} is called a defining system for the third order
matric Massey product 〈τ2, τ3, τ4〉, and the cohomology class of

α̃14 = α13 · α34 + α12 · α24

is the corresponding value of 〈τ2, τ3, τ4〉. Notice that this cohomology class may depend on
the defining system. Higher order matric Massey products are defined similarly:

Definition A defining system for the matric Massey product 〈τ2, τ3, . . . , τn〉 is a family

α = {αij : 1 ≤ i < j ≤ n, (i, j) �= (1, n)}
of 1-cochains αij : A → Homk(Ki,Kj ) such that αi−1,i is a 1-cocycle that represents τi

for 2 ≤ i ≤ n, and such that

d(αij ) = α̃ij , with α̃ij =
j−1∑

l=i+1

αil · αlj

when j − i > 1. The matric Massey product 〈τ2, τ3, . . . , τn〉 is defined if it has a defining
system. In that case, 〈τ2, τ3, . . . , τn〉 is the collection of cohomology classes represented by

α̃1n =
n−1∑

l=2

α1,l · αl,n

for some defining system α.

Let E2 be a right A-module that is an extension of K1 by K2, such that there is a short
exact sequence 0 → K2 → E2 → K1 → 0. Then it is well-known that E2 ∼= K2 ⊕ K1
considered as a vector space over k, and that the right action of A is given by

(m2, m1) · a = (m2 · a + ψ12
a (m1),m1 · a)

where ψ12 : A → Homk(K1,K2) is a k-linear map. Since the action of A must be associa-
tive, ψ12 must be a derivation. In fact, it is a derivation that represents the extension τ2.
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Let E3 be a right A-module that is an extension of E2 by K3, such that there is a short
exact sequence 0 → K3 → E3 → E2 → 0. Then E3 ∼= K3 ⊕ E2 ∼= K3 ⊕ K2 ⊕ K1
considered as a vector space over k, and the right action of A is given by

(m3,m2,m1) · a = (m3 · a + ψ23
a (m2) + ψ13

a (m1),m2 · a + ψ12
a (m1),m1 · a)

where ψi3 : A → Homk(Ki, K3) is a k-linear map for i = 1, 2. Since the action of A

must be associative, ψ23 must be a derivation (representing the extension τ3), and ψ13 must
satsify

−d(ψ13) = ψ̃13, with ψ̃13 = ψ12 · ψ23

such that the cup product τ2 ∪ τ3 = 0. It follows by an inductive argument that in the
cofiltration

E = En
fn−→ En−1 → · · · → E2

f2−→ E1
f1−→ E0 = 0

we have that E = En
∼= Kn ⊕· · ·⊕K2 ⊕K1 considered as a vector space over k, with right

action of A given by

(mn, . . . , m2,m1) · a = (mn · a +
n−1∑

i=1

ψin
a (mi), . . . , m2 · a + ψ12

a (m1),m1 · a)

where ψij : A → Homk(Ki,Kj ) is a 1-cochain for 1 ≤ i < j ≤ n. The condition that
these cochains must satisfy for the action of A to be associative, is that

−d(ψij ) = ψ̃ij , with ψ̃ij =
j−1∑

l=i+1

ψil · ψlj

In other words, the family α = {αij : 1 ≤ i < j ≤ n, (i, j) �= (1, n)} given by αij =
(−1)j−i+1ψij is a defining system for the matric Massey product

〈τ2, τ3, . . . , τn〉
Moreover, the cohomology class of α̃1n is zero, since α̃1n = d(α1n). This proves the
following result:

Proposition 3 Let n ≥ 3 be an integer, let K1, . . . , Kn be simple A-modules in S, and
let τ2, . . . , τn be extensions of A-modules with τi ∈ Ext1A(Ki−1, Ki). There is an iterated
extension in Ext(S) with K1, . . . , Kn as its simple factors and with τ2, . . . , τn as its simple
extensions if and only if the matric Massey product 〈τ2, . . . , τn〉 is defined and contains zero.

4 Iterated Extensions and Noncommutative Deformations

Let S = {Sα : α ∈ I } be a family of orthogonal points in an Abelian k-category A,
and let A(S) be the corresponding length category in A. In this section, we consider the
noncommutative deformations of finite subfamilies of S, and show that they determine the
iterated extensions in Ext(S).

Let (X,C) be an iterated extension in Ext(S) with order vector α. We define the exten-
sion type of (X,C) to be the ordered quiver 
 with nodes {α1, α2, . . . , αn} and edges
γi−1,i : αi−1 → αi for 2 ≤ i ≤ n. This quiver is ordered in the sense that there is a total
order γ12 < γ23 < · · · < γn−1,n on the edges in 
. The extension type 
 is determined
by the order vector α, and isomorphic iterated extensions have the same extension type. We
denote by E(S, 
) the set of isomorphism classes of iterated extensions of the family S with
extension type 
.
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Let S(
) ⊆ S be the set of simple factors of an iterated extension with extension type 
.
To fix notation, we shall write S(
) = {X1, . . . , Xr }. This means that for 1 ≤ j ≤ r , we
have that Xj = Sαi

for at least one value of i. Hence r ≤ n, with r < n if there are repeated
factors.

We define the path algebra k[
] of the ordered quiver 
 to be the k-algebra with base
consisting of paths γi−1,i · γi,i+1 · · · · · γj−1,j of length j − i + 1 for 2 ≤ i ≤ j ≤ n,
and with the following multiplicative strcuture: The product of two paths γ · γ ′ is given by
juxtaposition when the last arrow γj−1,j in the first path γ is the predecessor of the first
arrow γj,j+1 in the second path γ ′ in the total ordering, and otherwise the product γ ·γ ′ = 0.
We consider ei as a path of length 0.

For example, an iterated extension of length n = 3 with non-isomorphic simple fac-
tors X1 = Sα1 , X2 = Sα2 , and X3 = Sα3 has r = 3, and its extension type 
 has path
algebra

k[
] =
⎛

⎝
k e1 k γ12 k γ12γ23
0 k e2 k γ23
0 0 k e3

⎞

⎠ ∼=
⎛

⎝
k k k

0 k k

0 0 k

⎞

⎠

We remark that the path algebra k[
] of any extension type 
 is an object of the category
ar of Artinian r-pointed algebras. Recall that an Artinian r-pointed algebra is an Artinian
k-algebra R with r simple modules fitting into a diagram kr → R → kr , where the
composition is the identity.

Let us consider the noncommutative deformation functor DefS(
) : ar → Sets of the
family S(
) = {X1, . . . , Xr }, which is defined on the category ar . We refer to Eriksen
et al. [7] for details of noncommutative deformations. We shall study the deformations in
DefS(
)(k[
]). Without loss of generality, we may assume that the Abelian k-category A is
the category of right modules over an associative k-algebra A. We remark that noncommu-
tative deformations can be computed directly in many other Abelian k-categories as well,
see for instance Eriksen [8] and Eriksen et al. [7].

Proposition 4 For any extension type 
, there is a bijective correspondence between the
noncommutative deformations in DefS(
)(k[
]) and the set E(S, 
) of equivalence classes
of iterated extensions of the family S with extension type 
.

Proof Let α be the order vector corresponding to the extension type 
, and let s be the
unique index such that Sα1 = Xs . Any noncommutative deformation X
 ∈ DefS(
)(k[
])
has the form X
 = (k[
]ij ⊗k Xj ) as a left k[
]-module by flatness, with a right multi-
plication of A, and we consider the right A-submodule X
(s) = es · X
 ⊆ X
 . A path in
es · k[
] is called leading if it has the form γ12γ23 · · · γi−1,i and non-leading otherwise. By
convention, we consider the path es as leading, and define

XNL

 (s) = ⊕

γ
γ · X
 ⊆ X
(s)

where the sum is taken over all non-leading paths γ in es · k[
]. Notice that XNL

 (s) ⊆

X
(s) is closed under right multiplication by A. We define X to be the right A-module
X = X
(s)/XNL


 (s). As a k-linear space, we have that

X ∼= ⊕
1≤i≤n

(
γ12 γ23 . . . γi−1,i

) ⊗k Sαi
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with Sαi
= Xl for some l with 1 ≤ l ≤ r , and we claim that there is a cofiltration C of X

such that (X,C) is an iterated extension of S with extension type 
. In fact, we may choose
the cofiltration C dual to the filtration F given by

Fj = ⊕
j+1≤i≤n

(
γ12 γ23 . . . γi−1,i

) ⊗k Sαi

for 0 ≤ j ≤ n, where Fj ⊆ X is closed under right multiplication with A. Conversely,
assume that an iterated extensions (X,C) of S with extension type 
 is given. Then it
follows from Proposition 3 that the matric Massey product 〈τ2, τ3, . . . , τn〉 of its simple
extensions is defined and contains zero. Hence, there is a defining system α = {αij : 1 ≤
i < j ≤ n, (i, j) �= (1, n)} for this matric Massey product such that the cohomology class
of α̃1n is zero. By the construction preceding Proposition 3, X has the following form: As
a k-linear vector space, X ∼= Kn ⊕ Kn−1 ⊕ · · · ⊕ K2 ⊕ K1 with Ki = Sαi

, and the right
multiplication of A is given by

(mn, . . . , m2,m1) · a = (mn · a +
n−1∑

i=1

ψin
a (mi), . . . , m2 · a + ψ12

a (m1),m1 · a)

for mi ∈ Ki, a ∈ A, where ψij = (−1)j−i+1αij . This defines a right multiplication of A

onX
 = (k[
]ij⊗kXj ), and therefore a noncommutative deformationX
 inDefS(
)(k[
]).
In fact, the right multiplication is given by

(el ⊗ ml) · a = el ⊗ (ml · a) +
∑

i∈Il

∑

i+1≤j≤n

(
γi,i+1γi+1,i+2 . . . γj−1,j

) ⊗ ψ
ij
a (m)

for 1 ≤ l ≤ r, a ∈ A, ml ∈ Xl , with Il = {i : αi = l}.

We say that S(
) is a swarm if dimk Ext1A(Xi,Xj ) is finite for 1 ≤ i, j ≤ r . We shall
assume that this is the case in the rest of this section. In this case, the noncommutative defor-
mation functor DefS(
) has a miniversal object (H, XH ), consisting of a pro-representing
hull H of DefS(
) in the pro-category âr , and a versal family XH ∈ DefS(
)(H); see
Eriksen et al. [7] for details. We write X(S, 
) = Mor(H, k[
]) for the set of mor-
phisms φ : H → k[
] in âr . There is a natural map X(S, 
) → DefS(
)(k[
]) given by
φ �→ DefS(
)(φ)(XH ), and it is surjective by the versal property.

Lemma 5 The set X(S, 
) = Mor(H, k[
]) is an affine algebraic variety.

Proof Since k[
] is an algebra in ar , and its radical I (k[
]) satisfy I (k[
])n = 0, any
morphism φ : H → k[
] in âr can be identified with φn : Hn → k[
] since φ(I (H)n) = 0.
To prove that X(S, 
) = Mor(Hn, k[
]) is an affine algebraic variety, it is enough to notice
that Hn is a quotient of T1

n, that Mor(T1
n, k[
]) is isomorphic to affine space AN , where

N =
∑

i,j

dimk Ext
1
A(Xi, Xj ) · dimk

(
I (k[
])/I (k[
])2

)

ij

and that Mor(Hn, k[
]) ⊆ Mor(T1
n, k[
]) is a closed subset in the Zariski topology, with

equations given by the obstructions fij (l)
n ∈ T1

n defining H .

Corollary 6 The set E(S, 
) of equivalence classes of iterated extensions of the family S
with extension type 
 is a quotient of the affine algebraic variety X(S, 
).
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5 Uniserial Length Categories

Let S be a family of orthogonal k-rational points in an Abelian k-category A, and let A(S)

be the corresponding length category. We say that an object X in A(S) is uniserial if its
lattice of subobjects is a chain. If this is the case, then this chain is the unique decomposi-
tion series of X. It follows that X is uniserial if and only if any two cofiltrations of X are
isomorphic. Any uniserial object in A(S) is indecomposable, but the opposite implication
does not hold in general. We say that A(S) is a uniserial category if every indecomposable
object inA(S) is uniserial.

Theorem 7 (Gabriel) Let S = {Sα : α ∈ I } be a family of orthogonal k-rational points
in an Abelian k-category A. Then A(S) is uniserial if and only if the following conditions
hold:

∑

β∈I

dimk Ext
1
A(Sα, Sβ) ≤ 1 and

∑

β∈I

dimk Ext
1
A(Sβ, Sα) ≤ 1 for all α ∈ S

Proof The result is due to Gabriel; see Gabriel [9] and Amdal, Ringdal [1]. A readable
proof, due to Yu Ye, appears in Chen and Krause [3].

We denote by � the Gabriel quiver ofA(S), which has the objects in S as nodes, indexed
by I , and dimk Ext1A(Sα, Sβ) arrows from node α to node β. Note that the condition in
Theorem 7 is a condition on the Gabriel quiver. We shall assume that this condition is
satisfied in the rest of this section, such that A(S) is a uniserial length category. Under this
assumption, we shall classify and explicitly construct all indecomposable objects in A(S).

Let (X,C) be an object of Ext(S) of length n and with order vector α such that X is
uniserial. Then it follows from Lemma 1.7.2 and the proof of Theorem 1.7.1 in Chen and
Krause [3] that each Ci in the cofiltration

X = Cn
fn−→ Cn−1 → · · · → C2

f2−→ C1
f1−→ C0 = 0

is uniserial, and that the natural map Ext1A(Ci−1, Ki) → Ext1A(Ki−1,Ki) is an isomor-
phism for 2 ≤ i ≤ n. This means in particular that τi ∈ Ext1A(Ki−1,Ki) �= 0 for 2 ≤ i ≤ n.
Hence the order vector α corresponds to a path

α1 → α2 → · · · → αn

of length n−1 in the Gabriel quiver �. Furthermore, if (X′, C′) is another object of Ext(S)

with the same order vector α such that X′ is uniserial, then X ∼= X′ inA. This follows from
Lemma 1.7.3 in Chen and Krause [3].

Let α ∈ In be an order vector of length n. We say that α is admissible if there is an
iterated extension (X,C) in Ext(S) with order vector α such that X is uniserial. The com-
ments above shows that if α is admissible, then it corresponds to a path of length n − 1 in
the Gabriel quiver �.

It also follows from the comments above that if α is an admissible order vector, then
there is a unique uniserial object X inA(S) with the property that it admits a cofiltration C

such that (X,C) is an iterated extension in Ext(S) with order vector α. We shall write X(α)

for this uniserial object.
Conversely, let α ∈ In be an order vector corresponding to a path of length n − 1 in the

Gabriel quiver �. If n ≥ 3, then there are obstructions for α to be admissible. In fact, we
have that Ext1A(Sαi−1 , Sαi

) �= 0 for 2 ≤ i ≤ n, and we may choose non-split extensions
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τi ∈ Ext1A(Sαi−1 , Sαi
), which are unique up to scalars in k∗. It follows from Proposition 3

that the order vector α is admissible if and only if the matric Massey product

〈τ2, τ3, . . . , τn〉 ⊆ Ext2A(Sα1 , Sαn)

is defined an contains zero. The vanishing of these matric Massey products is clearly
independent of the choice of non-split extensions τi .

Notice that the condition of Proposition 3 can be interpreted as obstructions for lifting
noncommutative deformations. In fact, let us write 
 for the extension type corresponding
to α, and let I ⊆ k[
] be the Jacobson radical of the path algebra. Then the extensions
τ2, . . . , τn defines an infinitesimal noncommutative deformation in DefS(
)(k[
]/I 2), and
α is admissible if and only if this infinitesimal deformation can be lifted to the path algebra
k[
].

Theorem 8 Let S = {Sα : α ∈ I } be a family of orthogonal k-rational points in an Abelian
k-category A. If A(S) is a uniserial length category, then the indecomposable objects in
A(S) of length n are given by

{X(α) : α ∈ In is admissible }
up to isomorphism inA(S). Moreover, an order vector α ∈ In is admissible if and only if it
satisfies the following conditions:

1. The order vector α corresponds to a path of length n − 1 in the Gabriel quiver �.
2. When n ≥ 3, the matric Massey product 〈τ2, τ3, . . . , τn〉 ⊆ Ext2A(Sα1 , Sαn) is defined

and contains zero for all non-split extensions τi ∈ Ext1A(Sαi−1 , Sαi
).

We note that if α is admissible, then X(α) can be explicitly constructed from its sim-
ple factors and the simple extensions τi ∈ Ext1A(Sαi−1 , Sαi

). The construction is given by
Proposition 3.

We say thatA(S) is a hereditary length category if Ext2A(S, T ) = 0 for any objects S, T

in S. If this is the case, then the obstruction in Proposition 3 vanishes, and it follows that
there is a bijective correspondence between paths of length n − 1 in the Gabriel quiver �

and indecomposable objects inA(S).

6 Graded Holonomic D-Modules onMonomial Curves

Let 
 ⊆ N0 be a numerical semigroup, generated by positive integers a1, . . . , ar without
common factors, and let A = k[
] ∼= k[ta1 , . . . , tar ] be its semigroup algebra over the
field k = C of complex numbers. We call A an affine monomial curve, and have that
X = Spec(A) = {(ta1 , ta2 , . . . , tar ) : t ∈ k} ⊆ A

r
k .

We studied the positively graded algebra D of differential operators on the monomial
curve A = k[
] in Eriksen [5], and the category grHolD of graded holonomic left D-
modules in Eriksen [6]. We recall that any D-module M satisfies the Bernstein inequality
d(M) ≥ 1, that M is holonomic if d(M) = 1, and that this condition holds if and only if
M has finite length; see Proposition 4 and Proposition 5 in Eriksen [6]. This implies that
grHolD is a length category, and its simple objects are given by

{M0[w] : w ∈ Z} ∪ {Mα[w] : α ∈ J ∗, w ∈ Z} ∪ {M∞[w] : w ∈ Z}
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where J ∗ = {α ∈ C : 0 ≤ Re(α) < 1, α �= 0}; see Theorem 10 in Eriksen [6]. Moreover,
the graded extensions of the simple objects are given by

Ext1D(Mα[w], Mβ[w′])0 =
⎧
⎨

⎩

kξ ∼= k, (α, β) = (0,∞), (∞, 0) and w = w′
kξ ∼= k, α = β ∈ J ∗ and w = w′

0, otherwise

for simple graded D-modules Mα[w], Mβ[w′] with α, β ∈ J ∗ ∪ {0,∞} and w,w′ ∈ Z; see
Proposition 12 in Eriksen [6].

Proposition 9 The family S = {Mα[w] : α ∈ J ∗ ∪ {0,∞}, w ∈ Z} is the family of
simple objects in grHolD , and it is a family of orthogonal k-rational points that satisfies the
condition in Theorem 7. In particular, the category grHolD of graded holonomicD-modules
is a uniserial category.

Proof Since k = C is algebraically closed, it follows from the main theorem in Quillen [12]
that EndD(Mα[w]) = k for all α ∈ J ∗ ∪ {0,∞}, w ∈ Z. Moreover, the comments above
show that S is the family of simple objects in grHolD , and therefore a family or orthogonal
k-rational points, which satisfies the condition in Theorem 7.

It is, in principle, possible to construct all indecomposable objects in grHolD using the
constructive proof of Theorem 8. As an illustration, we shall classify the indecomposable
objects in the caseA = k[t], which is the unique smooth monomial curve. The classification
would be similar in the other cases, since all rings of differential operators on monomial
curves are Morita equivalent. However, the indecomposable objects would be defined by
more complicated equations in the singular cases.

Note that when A = k[t], the ring D of differential operators on A is the first Weyl
algebra A1(k) = k[t]〈∂〉, with generators t and ∂ = d/dt , and relation [∂, t] = 1. Let us
write E = t∂ for the Euler derivation in D. The simple objects in grHolD , up to graded
isomorphisms and twists, are given byM0 = D/D∂ ,M∞ = D/Dt andMα = D/D(E−α)

for α ∈ J ∗.

Theorem 10 Let D = A1(k) be the first Weyl algebra. The indecomposable graded
holonomic D-module, up to graded isomorphisms and twists, are given by

M(α, n) = D/D (E − α)n, M(β, n) = D/Dw(β, n)

where n ≥ 1, α ∈ J ∗, β ∈ {0,∞}, and w(β, n) is the alternating word on n letters in t and
∂ , ending with ∂ if β = 0, and in t if β = ∞.

Proof Let us write I = J ∗ ∪ {0,∞}, such that S = {Mα[w] : (α,w) ∈ I ×Z} is the family
of simple objects in grHolD . It follows from the computation of the graded extensios above
that for any length n ≥ 1 and any (α,w) ∈ I × Z, there is a unique path

(α,w) = (α1, w1) → (α2, w2) → · · · → (αn,wn)

in � such that Ext1D(M(αi−1)[wi−1], M(αi)[wi])0 �= 0 for 2 ≤ i ≤ n. The corresponding
vector is admissible since D = A1(k) is a hereditary graded ring; see for instance Coutinho
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[4]. Note that if α ∈ J ∗, then α(i) = α and wi = w for 1 ≤ i ≤ n, and if α ∈ {0,∞}, then
we have

(α(i), w(i)) =
⎧
⎨

⎩

(α,w), i is odd
(0, w − 1), i is even, α = ∞
(∞, w + 1), i is even, α = 0

for 1 ≤ i ≤ n. The rest follows from Theorem 8 and the following comments, and the fact
that graded extensions obtained using factorization in D, such as

0 → D/D(E − α) → D/(E − α)n → D/D(E − α)n−1 → 0

for α ∈ J ∗ and n ≥ 2, are non-split.

Let O be the ring of germs of holomorphic functions around 0 in X = C, and let D
be the ring of differential operators on O. The classification of the indecomposable regular
holonomic D-modules is due to Boutet de Monvel [2], given by

D/(zD − α)n (α �∈ Z), D/(. . . zDzD), D/(. . . DzDz)

We note that this classical result correspond well with our classification of graded
holonomic D-modules in Theorem 10.

7 A Non-Hereditary Example

Let k be an algebraically closed field, and let A = k[x]/(x2). There is a unique simple A-
module S = A/(x), and the family S = {S} is clearly a family of orthogonal k-rational
points in the categoryA of left A-modules. Moreover, a simple computation shows that

Ext1A(S, S) = k · ξ ∼= k, Ext2A(S, S) = k · κ ∼= k

hence A(S), which we identify with the category of left A-modules of finite length, is a
uniserial length category that is not hereditary. There is an indecomposable module of length
n = 2, given by the non-split extension

0 → (x)/(x2) → k[x]/(x2) → k[x]/(x) → 0

This is of course the regular representation M = A. However, another simple computation
shows that the cup product (second order matric Massey product) 〈ξ, ξ 〉 = κ �= 0. This
means that there is no indecomposable module with order vector α when α corresponds
to a path in the Gabriel quiver of length n − 1 ≥ 2. We conclude that the simple module
S = A/(x) and regular module A is a complete list of indecomposable left A-modules in
A(S).
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