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Abstract

Using a daily panel dataset including almost all the stocks in the S&P 500 dating

back to 1985, we document strong similarities in the risk dynamics across stocks.

The similarities in risk dynamics are exploited by implementing volatility fore-

casting models estimated using panel-based methods that aggregate information

across stocks and force the coefficients to be the same for each stock. The mod-

els that exploit these commonalities in risk characteristics across assets produce

highly competitive out-of-sample risk forecasts compared to more conventional

individual asset-specific models that implicitly ignore the similarities in risk dy-

namics. We estimate the models on the daily range of the highest and lowest

log intraday stock price, which has been shown to be a good alternative to the

high-frequency-based realized volatility (RV) estimator of the integrated volatil-

ity. Further, we normalize the RV by the time-varying mean of the RV retrieved

from the Kalman Filter and -Smoother as an intermediate step before model

estimation. Normalizing the RV before using panel-based estimation methods

produces very promising out-of-sample risk forecasts compared to the widely

accepted Heterogeneous Autoregressive (HAR) model. Further, it improves the

out-of-sample predictive power of the unnormalized models. An important fea-

ture of the panel-based models we present is the inclusion of a time-varying

mean of each stock. Including this feature mimics introducing an asset-specific

intercept for each stock and captures the differences in risk dynamics across as-

sets, as well as the temporal variations in the mean levels.
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1 Introduction

Volatility modeling and -forecasting are of the utmost importance for risk man-

agers, asset managers, derivative traders, regulators, and in general, practitioners

affected by outcomes in financial markets. As a result, a large part of the finan-

cial econometrics literature has tried to address the challenging task of mod-

eling volatility precisely. For decades the benchmark models of the volatility

forecasting literature were ARCH/GARCH type models first proposed by Engel

(1982) and Bollerslev (1986). Since then, a long list of competing GARCH- and

stochastic volatility models have been proposed in the literature to estimate and

forecast volatility in financial markets. These models were estimated on close-

to-close squared returns shown to be a poor estimator of daily integrated volatil-

ity. In later years, high-frequency data has become more available for many

financial assets. With high-frequency returns, one could get much more precise

estimates of the integrated volatility than close-to-close returns. However, the

latent nature of volatility complicates the implementation of these models and

generally does not perform well when estimated directly with intraday data of

financial assets. To overcome these shortcomings and effectively exploit the in-

formation inherent in high-frequency data, Andersen, Bollerslev, Diebold, and

Labys (2003), suggested using reduced form time series forecasting models for

the daily volatilities constructed from the intraday sum of squared returns.1 Set

against this background, we present several easy-to-implement volatility fore-

casting models for S&P 500 index members and draw inspiration from the mod-

eling framework presented by Bollerslev, Hood, Huss, Pedersen (2017). Unlike

most of the existing literature, which puts most of its attention on indices, we

focus on volatility dynamics at the individual stock level. As an estimator for re-

1The use of high-frequency intraday data to precisely measure the true latent integrated

volatility was initially presented by Andersen and Bollerslev (1998). This approach has perhaps

become the most popular way to model-, measure- and forecasting volatility. See e.g. references

in the survey by Andersen, Bollerslev, Christoffersen, and Diebold (2013).
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alized volatility (RV), we use the daily range of the intraday highest- and lowest

log stock price. However, we will estimate the models on the logarithm of the

daily range. Clements, Preve (2019) show that the daily range estimator, in many

instances, produces forecasts of similar quality as those of high-frequency-based

RV.

Our results are based on a panel dataset including almost all stocks in the

S&P 500 index dating back to 1985. The study shows substantial out-of-sample

benefits from normalizing the RV by an approximation to the time-varying mean

of the RV retrieved from the Kalman Filter and -Smoother before model estima-

tion. Further, we find that including a time-varying ”global” mean that captures

the strong spillover effects across assets, combined with measures of leverage

effects and (correctly) normalizing the RV, greatly enhances the out-of-sample

performance compared to the simple benchmark Heterogeneous Autoregressive

(HAR) model of Corsi (2009). A large part of the study relates to compar-

ing panel-based regression methods2 to individual asset-specific estimation tech-

niques. We observe that the class of models that utilize panel-based regression

techniques that exploit the strong commonalities in risk dynamics across stocks

perform superior out-of-sample compared to more conventional individual asset-

specific models for longer forecasting horizons. These results, however, are not

as promising for shorter horizons, where the out-of-sample performance of the

panel regressions and the individual asset-specific models are more similar.

Further, we investigate the impact of data transformations of the RV to get

all the stocks on the same scale before model estimation. The idea behind these

data transformations is that we obtain more efficient estimates of the coefficients

if we prevent the most volatile stocks from dominating the estimation procedure

of the coefficients. The importance of this intermediate step is evident from

2The use of panel-based regression techniques to enhance the efficiency of the individual

forecast can be compared to Bayesian estimation procedures more generally, as exemplified by

Karolyi (1993), who rely on Bayesian shrinkage for improving the forecasts of individual stock

return volatilities based on the cross-sectional dispersion.

6
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the out-of-sample performance, which manifests that the (correctly) normalized

models do perform better than the unnormalized models.

We start our analysis by calculating the RV each day for every asset. When

investigating the distributional characteristics of the stocks RV, we observe strong

commonalities in the risk characteristics. For example, ranking stocks by mean

levels of volatility and creating quantiles based on this ranking generate uncondi-

tional distributions with vast differences in modes. However, when we normalize

each asset by its sample mean volatility and look at the same unconditional distri-

butions, very similar patterns emerge, implying that risk dynamics across stocks

behave similarly. The distributional similarities across stocks motivate the set

of panel-based estimation techniques we employ. Further, we document strong

spillover effects across stocks, which are already well-documented in the exist-

ing literature (see, for example, Taylor (2005), Andersen, Bollerslev, Christof-

fersen, and Diebold (2006)). To address the impact of spillovers, we include a

”global” mean that ensures that each stock’s forecast moves towards some com-

mon time-varying risk factor, in our case a smoothed average of the normalized

VIX.

The formulation of our risk models is motivated by the HAR model of Corsi

(2009) and can be estimated by standard OLS procedures. In addition, our mod-

els draw on important insights from the mixed data sampling (MIDAS) approach

of Ghysels, Santa-Clara, and Valkanov (2006) and Ghysels, Sinko, and Valka-

nov (2007). First, we implement the most basic HAR model of Corsi (2009).

Then we implement more sophisticated models that take leverage effects and

spillovers into account. We estimate all models using stock-specific estimation

techniques and panel-based regression methods. An important step in the panel

regressions is to add a time-varying mean of each stock to account for differ-

ent risk dynamics across assets. The asset-specific time-varying mean is simi-

lar to introducing different intercepts for each stock, which is important due to

the differences in mean levels of volatility. Our preferred specification of the

models relies on a mixture of ”smooth” Exponential Weighted Moving Average

7
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(EWMA) factors of past realized volatilities. To account for leverage effects and

spillovers, we augment the model by including measures of leverage effects and

a ”global” risk factor.

In short, our original contributions to the literature are two-folded. First, we

take the methods of Corsi (2009) and Bollerslev, Hood, Huss, Pedersen (2017)

and apply them to a different and bigger dataset, focusing on individual stocks

as opposed to indices and futures. Second, we extend their models by including

a better measure of the time-varying mean of the RV of each stock.

The thesis is organized as follows: first, we provide an overview of the

related literature in section 3. Then we look at the unconditional distributions

and the volatility spillovers in section 4 before moving on to the stylized facts of

RV and the models in sections 5 and 6, respectively. Next, in sections 7 and 8

we present the model estimation and forecasting, and a robustness check. Last,

you will find the conclusion and references in section 9 and 10, correspondingly.

2 Related Literature

A large part of the financial econometrics literature has focused on modeling and

forecasting volatility. An important class of models proposed in the literature is

the GARCH-type models such as GARCH, EGARCH, CJR-GARCH models,

and others, which handle the daily unobservable hidden conditional variance

(Shin, 2018). The growing availability of high-frequency intra-day asset price

data sets has given us a more precise proxy of the latent volatility, called real-

ized volatility (RV). The daily realized variance is the sum of squares of high-

frequency intraday returns and may be regarded as a precise proxy of the un-

derlying variance, daily integrated variance. Therefore, a new branch of models

was developed, focusing on modeling RV directly using more precise proxies of

the unobservable latent variance from high-frequency data. These models were

labeled RV models and have been shown to produce more precise forecasts than

GARCH-type- and Stochastic Volatility Models. Clements, Preve (2019) show

8
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that simple alternatives to the squared intraday RV, such as the logarithmic range

(LR), often reproduce similar forecasting quality. He finds that replacing the

high-frequency RV estimator with daily LR does surprisingly well in an out-of-

sample study. In the remaining part of this section, we will provide an overview

of the most important related literature employing various models and variations

of the integrated volatility proxy to forecast RV.

In the recent literature for RV forecasts, the heterogeneous autoregressive

(HAR) model of Corsi (2009) is a central model for which many modifications

have appeared. The model proposed by Corsi (2009) is perhaps the most com-

monly used benchmark in the RV model literature. In the paper, he presents an

additive cascade model of volatility components defined over different periods.

This volatility cascade leads to a simple AR-type model in the RV, consider-

ing various volatility components realized over different time horizons. Despite

the simplicity of its structure and the absence of long-memory properties, sim-

ulation results show that the HAR-RV model successfully achieves the purpose

of reproducing the main empirical features of RV (long memory, fat tails, and

self-similarity) in a tractable and parsimonious way.

Corsi and Reno (2009) try to address the well-known asymmetric response

to negative returns by a model called L-HAR. The model is an extension of the

model provided in Corsi (2009). It is composed of the same RV components and

several factors aiming to capture the leverage effects. In the model, asymmetric

leverage effects of returns on RV are captured by truncating the daily, weekly,

and monthly returns to be negative, i.e., xtI(xt < 0). McAleer and Medeiros

(2008b) provided similar leverage consideration by introducing a logistic type

transformation, (1 + exp(−γrt))−1. Many studies reported that the LHAR mod-

els improve the HAR model in real-world RV forecasting, see Asai, McAleer,

and Medeiros (2011), Audrino and Knaus (2016), Byun and Kim (2013), Corsi

and Reno (2009), Liu and Maheu (2009), Patton and Sheppard (2015), Scharth

and Medeiros (2009), and others.

Bollerslev, Patton, and Quaedvlieg (2015) propose a new family of easy-to-

9
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implement RV-based forecasting models (labeled HARQ models) and focus on

extending the class of Heterogeneous Autoregressive RV models presented by

Corsi (2009). The models exploit the asymptotic theory of high-frequency RV

estimation over different frequencies to improve the accuracy of the RV fore-

casts. They find that allowing the parameters to vary explicitly with the (esti-

mated) degree of measurement errors significantly improves the volatility fore-

casts compared to some of the most popular existing models, implicitly ignoring

the temporal variations in the RV measurement error. They accomplish this by

weighting each volatility with the variance of the measurement error. Specifi-

cally, the models allow for time-varying parameters, which are high when the

variance of the RV error is low and adjusted downward when the variance is

high and the signal weak. This feature builds on the implication that when the

measurement error variance is small (large), the daily RV is a stronger (weaker)

signal for the next day’s volatility. By explicitly incorporating the time-varying

variance of the measurement errors into the model’s parameterization, the esti-

mated HARQ models exhibit more persistence in ”normal times” and quicker

mean reversion in ”erratic times” compared to the standard HAR model with

constant autoregressive parameters. The models are implemented on the S&P

500 equity index and the individual constituents of the Dow Jones Industrial

Average.

Based on high-frequency intraday data for more than fifty commodities,

currencies, equity indices, and fixed income instruments Bollerslev, Hood, Huss,

Pedersen (2017) document strong volatility dependencies across assets and asset

classes. The models exploit the asymptotic theory of high-frequency RV estima-

tion over different frequencies to improve the accuracy of the RV forecasts. Fur-

ther, they find that normalizing by each asset’s average level of volatility results

in very similar unconditional distributions across assets and asset classes. The

authors also document strong volatility spillover effects across assets and asset

classes which are addressed by including a ”global risk factor” in the preferred

specification of the models presented. These commonalities in risk character-
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istics and strong spillover effects are then exploited by estimating risk models

by aggregating information across assets using panel-based estimation methods.

They find that the new risk models, combined with panel-based techniques, re-

sults in statistically significant out-of-sample performance compared to more

conventional individually estimated asset-specific risk models. The formula-

tion of their risk models is motivated by the heterogeneous autoregressive model

(HAR) proposed by Corsi (2009). In addition, it draws on essential insights from

the mixed data sampling (MIDAS) approach of Ghysels, Santa-Clara, and Valka-

nov (2006) and Ghysels, Sinko, and Valkanov (2007). First, they show how to

simultaneously estimate risk models across many assets using panel regression

that adds power by exploiting the similarities in the cross-asset risk characteris-

tics. Second, they introduce new ”smooth” RV models. These ”smoothed” mod-

els are built such that the forecasted future volatility depends on past volatilities

in a way that is continuous and decreasing in the lag lengths.

Clements, Preve (2019) explored several easily implemented extensions of

the HAR model. They evaluate these extensions in an out-of-sample frame-

work. Notably, he argues that the stylized facts about RV (such as spikes/out-

liers, conditional heteroskedasticity, non-Gaussianity) and well-known proper-

ties of OLS make standard OLS procedures far from ideal. They suggest using

weighted least squares (WLS) and least absolute deviation (LAD) instead of

standard OLS to circumvent these weaknesses. The paper finds that a simple

WLS scheme can improve the forecasting performance compared to standard

OLS in an out-of-sample study covering three major stock markets, especially

over longer time horizons. Further, they show that the log daily range instead

of the high-frequency based RV produces highly competitive forecasts coupled

with quartic root transformation or WLS.

Unfortunately, all of the models presented above suffer from sudden spikes

in RV. Several authors have tried to improve the RV forecast by addressing the

sudden jumps in the RV. Most commonly, this is done by decomposing the real-

ized variance into continuous and jump components. Andersen, Bollerslev, and

11
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Diebold (2007) pointed out improved forecasting performance if the continuous

and jump diffusive parts were separated. Sudden changes in the log price pro-

cess are usually characterized by a jump-diffusion process instead of the usual

geometric Brownian motion with time-varying volatility. Several extensions of

the HAR model have been presented to account for the jump-diffusion part. The

HAR-CJ model tries to capture the jump part by including a measure of realized

jumps in the model (see, for example, Shin (2018) for a more detailed explana-

tion).

3 Data Sources and Cleaning

Our dataset consists of almost all stocks included in the S&P 500 index dating

back to 1985. The data source for price data for these stocks is the CRSP U.S

stock database. In our model fitting and out-of-sample calculations, we only

want to include S&P 500 index membership stocks; that is, we want our dataset

only to include observation of a stock for when it was an S&P 500 index mem-

ber. CRSP provides a unique dataset consisting of historical S&P 500 index con-

stituents and provides us with a unique identifier of each stock, inclusion date,

and exclusion date. We perform several transformations and calculations on this

price data. However, these calculations are based on the dataset containing all

of the data for each stock. Lastly, we remove stocks with less than 5 years of

historical data to have robust estimates of these calculations and transformations.

Further, we include price data on the S&P 500 index itself and a measure of its

volatility. CRSP provides price data for the S&P 500. As a measure of S&P

500 volatility, we use the time series of the VIX index provided by the Chicago

Board Options Exchange. The final panel dataset is 6994489 observations and

consists of 1227 unique stocks.

12
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4 Unconditional Distributions and Spillovers

Before starting with risk modeling, we want to gain a deeper understanding of

the underlying risk dynamics across stocks. A deeper understanding of the dis-

tributional characteristics across assets will subsequently allow us to present ap-

propriate risk models in line with the empirical risk characteristics of the stocks.

For that reason, we will investigate the distributional- and risk characteristics

across assets in the following section.

There are vast differences in the mean levels of volatility across stocks, as

shown in Figure 1. The unconditional distributions of the RV also exhibit ap-

parent dissimilarities. In Figure 1, we plot the unconditional distributions of 5

quantiles ranked by each stock’s mean level of volatility. In other words, the

first quantile is composed of stocks with the lowest mean levels of volatility, and

the fifth quantile is formed by stocks with the highest mean levels of volatility.

Despite the apparent similarities in the general patterns, we see that the mode

varies across quantiles. However, more interesting traits arise when we normal-

ize each stock by its sample mean, that is, RVt/mean(RV ). The distributional

similarities across quantiles are evidenced in Figure 2, which displays the same

unconditional distributions of the quantiles as in Figure 1, only normalized by

each stock’s sample mean. Note that the ”width” of these distributions are not

similar by construction, which would have been the case if we scaled volatility

to unit variance and zero means. These commonalities in unconditional distribu-

tions motivate the set of panel regressions we employ in this thesis. By estimat-

ing the risk models on the whole panel dataset, instead of individual stock-based

estimation, we add power by exploiting the strong commonalities in the risk

characteristics of the stocks.

Volatility spillover effects in international markets are well known and doc-

umented in the related literature (see, for example, Bollerslev, Hood, Huss, Ped-

ersen, (2017)). We also document prominent spillover effects between the indi-

13
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Figure 1: Kernel distributions of realized volatility of quantiles ranked by stocks

mean level of volatility

Figure 2: Kernel distribution of the normalized realized volatility of quantiles

ranked by stocks mean level of volatility

14
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vidual constituents in the S&P 500. The presence of spillovers is, for example,

evident by looking at the improvement of the out-of-sample risk forecasts of the

models that include a ”global” mean, which ensures that the forecasts of each

stock’s RV move toward a common risk factor. In our case, this is captured by

including several smoothed averages of the normalized VIX that has different

decay rates to both capture the long- and short-run volatility spillover effects

across stocks.

5 Stylized Facts of Realized Volatility

In the academic literature on RV, we find some well-documented and known

features of RV.

5.1 Volatility Persistence

RV is highly persistent and displays significant autocorrelations even at very long

lags. This property is often ascribed to a long memory data generating process.

It is well documented that there exists a strong presence of long-memory in the

RV of the S&P 500 (Corsi, 2012). Therefore, a natural question to ask is if the

same holds for individual S&P 500 index members. In figure 3, we have plotted

the average autocorrelation for each lag across all stocks and the 95% empirical

confidence band. It is important to note that we are only interested in the auto-

correlation of a given stock when it is included in the S&P 500 index. Hence, the

autocorrelation function is applied to a dataset containing stock data for when a

given stock is included in the index. Moreover, to protect ourselves against spu-

rious correlations, we exclude stocks with less than ten years of data, i.e., the

stock has to be at least a ten-year member of the S&P 500 to be included in the

autocorrelation calculation. Figure 3 suggests that we, on average, will see the

same strong dependency we see in the S&P 500. Notably, while the confidence

bands could indicate that the dependencies in RV for S&P 500 index members

15
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Autocorrelation function of RVt

Figure 3: Average autocorrelation for S&P 500 members (BLUE) for each lag.

95% empirical confidence band for each lag (RED)

vary significantly, they should be interpreted with care. Empirical confidence

band is simply empirical quantiles, and we cannot say to what extent the true

autocorrelations really differ or differ due to sampling error.

5.2 The Leverage Effect

For equity indices, it is a well-established fact that there is an asymmetry in the

relationship between returns and volatility. This relationship is also referred to

as the leverage effect, which refers to the tendency of an asset’s volatility to be

negatively correlated with the asset’s returns. Typically, rising asset prices are

accompanied by declining volatility and vice versa. The term “leverage” refers

to one possible economic interpretation of this phenomenon and was first coined

by Black (1976): as asset prices decline, companies become mechanically more

leveraged since the relative value of their debt rises relative to that of their equity.

As a result, it is natural to expect that their stock becomes riskier, hence more

volatile (Sahalia, Fang, Li, 2013). In figure 4, 5, 6 we have plotted the func-

tion corr(r−t , RVt+h), corr(r5−
t , RVt+h) and corr(r20−

t , RVt+h). See our Model

16
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Corr(r−t , RVt+h)

Figure 4: Average Corr(r−t , RVt+h) for S&P 500 members (BLUE) for each lag.

95% empirical confidence band for each lag (RED)

section for definitions of r−t , r
5−
t and r20−

t . The three figures show the lever-

age effect. The figures indicate that volatility for index members is correlated

with lagged negative returns on average. However, as with figure 1, we see a

large dispersion in how present the leverage effect is from index member to in-

dex member. Moreover, while there seems to be evidence of the leverage effect

for S&P 500 members, the effect is not as strong as seen in the S&P 500 itself

(Corsi, 2012).

5.3 Jumps in Prices and Spikes in Volatility

An important feature of financial data is the presence of discontinuous jumps.

For the S&P 500, Corsi (2012) argues that jumps are not very frequent and,

for any practicality, unpredictable, but that they have a strong impact on future

volatility. We do not investigate discontinuous jumps and their implication on

future volatility for S&P 500 members in our thesis. However, we acknowledge

that discontinuous jumps occur much more frequently for S&P 500 members

than the S&P 500 index itself. We suspect that understanding the impact of

17

10071311003518GRA 19703



Corr(r5−
t , RVt+h)

Figure 5: Average Corr(r5−
t , RVt+h) for S&P 500 members (BLUE) for each

lag. 95% empirical confidence band for each lag (RED)

Corr(r20−
t , RVt+h)

Figure 6: Average Corr(r20−
t , RVt+h) for S&P 500 members (BLUE) for each

lag. 95% empirical confidence band for each lag (RED)

18
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these discontinuous jumps on future stock volatility would significantly increase

forecasting performance.

5.4 Volatility Cascade and Scaling

Scaling and volatility cascade refers to the stylized fact that volatility over longer

periods strongly influences those at shorter periods than conversely (Muller et

al. 1997, Arneodo et al. 1998, Lynch 2000, Gencay et al. 2002). Corsi (2009)

proposed an economic explanation for the volatility cascade. By noticing that

for short-term traders, the level of long-term volatility could matter because it

might influence the expected future size of positions and risk. Thus, short-term

traders in the financial market react and revise their trading to changes in long-

term volatility. However, short-term volatility does not affect long-term traders

and strategies, as short-term fluctuation is not paid attention to by these market

participants. To capture this, people started modeling volatility using sums of

autoregressive processes. Interestingly, simple additive models defined as the

sums of autoregressive processes display a decaying memory pattern that can

be mistaken for a hyperbolic one. Ganger (1980) shows that the sum of an

infinite number of short-term processes can produce long memory. However, an

approximated long memory process can be obtained by aggregating only a few

heterogeneous time scales. (Corsi, (2012))

6 Models

In this section, we define our assumed data-generating process and our chosen

measure of volatility before we specify features of interest and the models inves-

tigated in the out-of-sample forecast.

We assume the standard continuous time process

dX(t) = µ(t)dt+ σ(t)dW (t)

19
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where X(t) is the log(pricet), µ(t) is the finite variation process, W (t) is a stan-

dard Brownian motion, and σ(t) is a stochastic process independent of W (t).

For this diffusion process, the integrated volatility associated with day t is the

integral of the instantaneous variance over the one-day interval [t− 1d, t], where

a full-trading day is represented by the time interval 1d (Corsi, 2009),

IV
(d)
t =

∫ t

t−id
σ2(w)dw

The integrated volatility is not directly observable and needs to be estimated.

There is a large literature on how we can approximate the integrated volatility,

and state of the art is to approximate it by the RV defined as the sum of intraday

squared returns. The RV over a time interval of one day is defined by

RV
(d)
t =

√√√√N−1∑
j=0

r2
t−j∆

where ∆ = 1d/N is the frequency of our return data. rt−j∆ = log(pricet−j∆)−

log(pricet−j+1∆). Note that t define the day, while j define the time within day

t.

Unfortunately, we do not have access to intraday data for the S&P 500

members, and therefore need to use other estimators for volatility. Range-based

volatility estimators were first suggested by Parkinson (1980) and later popu-

larized by Alizadeh, Brandt, and Diebold (2002) for the purpose of estimating

stochastic volatility models. In the older literature on GARCH and SV models

for volatility forecasting, models were estimated on close-to-close prices. For

example, for a simple GARCH(1,1) model, one usually assumed for the data-

generated process

rt = c+ σtzt

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1

Where r2
t−1 is the squared close-to-close return. Alizadeh, Brandt, and Diebold

showed that log range estimators measure volatility much more efficiently than
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close-to-close squared returns. Models estimated on range-based volatility esti-

mators resulted in better-performing models. For our analysis, we use the daily

range estimator as a proxy for the integrated volatility, one of the simplest range-

based estimators. It is defined as

RV
(d)
t = log(Hight)− log(Lowt)

where Hight and Lowt is the intraday highest and lowest stock price observed,

respectively. We will estimate the models on log(RV (d)
t ).

6.1 HAR

For a long time, the academia of dynamic modeling of volatility paid most atten-

tion to models such as Generalised Autoregressive Conditional Heteroskedas-

ticity models (GARCH) and the Stochastic Volatility models (SV) estimated on

close-to-close absolute returns. Both GARCH and SV models could capture

stylized facts such as fat-tails and fat-tail crossover 3 while also being straight-

forward to estimate and have multivariable extensions. However, both GARCH

and SV had drawbacks by not capturing and reproducing all of the stylized facts

observed in the data. First, they did not reproduce long-term memory. For ex-

ample, in both GARCH and SV models, volatility shocks decay exponentially,

while we see a hyperbolic decay rate in the data. Second, they were not able to

capture scaling and volatility cascade.

Recently, high-frequency data has become more effortlessly available for

many financial assets. With high-frequency returns, one could get much more

precise estimates of volatility than close-to-close returns. Unfortunately, GARCH

and SV models did not perform well on high-frequency data. However, by

moving to a more precise and higher quality estimate of volatility using high-

frequency returns, more complex models could be specified, and sharper results
3Fat-tail and fat-tail cross-over refer to the excess of kurtosis of the daily returns, and the

empirical cross-over from fat tail too thin tail distributions as the aggregation interval increases,

respectively.
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could be obtained. Hence, high-frequency data led to a whole new range of

rich volatility models. Corsi (2009) proposed the heterogeneous autoregressive

(HAR) model that modeled volatility directly by using additive processes with

heterogeneous components. The model has proven to be very successful and is

today perhaps the most popular benchmark model for RV forecasting (Clements,

Preve (2019)). However, it is essential to note that several heterogeneous pro-

cesses for GARCH and SV had been suggested before Corsi (e.g., fractional

GARCH), but the results are clearer when using RV. The HAR model presented

by Corsi (2009) is defined as

RV h
t+h = α + β1RVt + β2RV

5
t + β3RV

20
t + εt

Where RV 5
t and RV 20

t is the daily (1 day), weekly (5 days), and monthly (20

days) RV, respectively, and defined as

RV h
t =

1

h

h∑
i=1

RVt−i+1

Corsi shows that despite the simplicity of the HAR model, it can capture rich

dynamics of both returns and volatility observed in the data, and compared to

SV and GARCH, it can reproduce the long-term memory of volatility, and by

construction, capture the volatility cascade effect.

For all our models in our thesis, we include a stock-specific time-varying

mean µt. We further elaborate on this in our estimation section. Thus, the HAR

model we focus on in our thesis is given by

RV h
t+h = α + β1RVt + β2RV

5
t + β3RV

20
t + ρµt + εt

6.2 LHAR

Given the stylized facts presented earlier, several extensions of the original HAR

model have been presented. A natural extension is to capture the asymmetric

response RV has to positive and negative returns, i.e., the leverage effect. We
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follow the methodology presented by Corsi and Rose (2012) to extend the het-

erogeneous structure to leverage effects. Corsi and Rose assume that RV has

asymmetric responses to previous daily returns, past 5-day, and 20-day returns.

Let rt be the daily log return. We define daily, weekly, and monthly truncated

returns to model the leverage effect at different frequencies.

rh−t = min(0, rht )

where rht is the mean return of h days, i.e rht = 1
h

∑h
i=1 rt−i+1. The proposed

extended model is called the HAR model with leverage effects (HARL) and

given by

RV h
t+h = α + β1RVt + β2RV

5
t + β3RV

20
t + γ1r

−
t + γ2r

5−
t + γ3r

20−
t + ρµt + εt

Note that there are other ways to take into account the leverage effect. The most

straightforward and standard way would be to include the simple return rht . In

this setting, one would most likely see γ1, γ2, and γ3 being negative; that is, nega-

tive returns lead to upward adjustments in the volatility forecast and a downward

adjustment for positive returns. However, by using simple returns, you assume

symmetric responses in volatility from positive and negative returns. It is well

known that volatility tends to increase more after a negative shock than after a

positive shock of the same magnitude (see Campbell and L. Hentschel (1992)

and Christie (1982)). Therefore, using the truncated return rh−t , we assume a

non-linear behavior in the leverage effect, i.e., an asymmetric behavior to posi-

tive and negative returns of the same magnitude.

6.3 Hexp-LG

Motivated by section 6.2, we extend our LHAR model even further by includ-

ing measures to capture spillover effects. Inspired by Bollerslev, Hood, Huss,

Pedersen (2017), we introduce a common global risk factor for S&P 500 index

members. A natural choice for a global risk factor is the VIX, which serves as a

good approximation for the volatility of the S&P 500.
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Moreover, from a statistical perspective, it is good practice to include such

a variable. First, since we have included a time-varying mean for all the stocks,

we should include something in our model with longer memory of the mean

volatility across longer cycles. The idea behind this is that it allows us to remedy

the loss of information coming from using only the last few years of data to

compute the time-varying mean for each stock. By including the VIX and its

global average, we can correct this. If the VIX, and implicitly the volatility of

S&P 500 has been lower on average the past five years, the five-year average

of the S&P 500 index members has also been below the global average, and

the volatility should therefore be adjusted upwards, which the estimates will do.

Second, it is a simple and cheap way to introduce shrinkage of the estimates by

allowing stocks to converge to some global mean. We are doing it in the simplest

way possible by a linear model where we will have a single coefficient for all the

stocks, implying all the stocks converge at the same rate. To capture differences

in convergence speed for stocks, we would need to move to non-linear models,

which is outside the scope of this thesis. We could also take a Bayesian view

on this. A reasonable assumption in our opinion is that the expected volatility

of S&P 500 index members should be regarded as related or connected in some

way by the construction of the index. Bayesian hierarchical models are a way to

capture such dependencies. If we assume that RV of stock j is a function of the

time-varying mean µj ,

RVt,j = µt,j + εt

to force dependency between the expected volatilities of S&P 500 index mem-

bers, we could give µt,j a probabilistic specification in terms of further param-

eters, known as hyperparameters. For example, in the above model, we could

make a further assumption that the time-varying mean of stock j is a function of

the global risk factor (VIX),
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µt,j = V IXt + εt

The following graph illustrates the hierarchical structure and dependence in the

example above.

VIXt

µ1,t . . . µj,t

RV1,t . . . RVj,t

It is a simplified model, but thinking in hierarchical terms provides us with an

understanding of the multiparameter problem and what the inclusion of a global

risk factor is trying to capture.

Following the Hexp model proposed by Bollerslev, Hood, Huss, Pedersen

(2017), we implement a model that relies on a mixture of ”smooth” Exponential

Weighted Moving Averages (EWMA) of the past realized volatilities and the

global risk factor. By introducing these smoothed averages, we avoid the step-

wise changes inherent in the forecast from the HAR models. The reason for

this is that we construct the factors of past realized volatilities in a way that is

continuous and decreasing in the lag lengths. Hence, we avoid abrupt changes

in the RV estimates when large observations drop out of the sum. We explicitly

estimate the relative importance of different EMWA factors constructed from the

past daily RV’s,

ExpRVCoM(λ)
t =

500∑
i=1

e−iλ

e−λ + e−2λ + · · ·+ e−500λ

Where λ is the decay rate of the weights, CoM(λ) is the center-of-mass CoM(λ) =

exp(−λ)
1−exp(−λ)

. The center-of-mass effectively summarizes the effective sample size

of lagged realized volatilities that it uses. To calculate the rate of decay corre-

sponding to the effective sample size we compute the inverse of CoM(λ), and is

expressed as λ = log(1 + 1/CoM). Consequently, λ = log(1 + 1/125) = 0.08
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can be thought of as a decay rate corresponding to a center-of-mass equivalent

to 125 trading days (see for example Bollerslev, Hood, Huss, Pedersen, (2017)).

Similarly to the other models, we focus on spanning the universe of past realized

volatilities. To span the universe of past realized volatilities we choose λ’s that

correspond to a center-of-mass of 1, 5, 25, 125 trading days.

We do a similar transformation of the normalized VIX, where we have nor-

malized by the sample mean. Let ExpVIXh
t be the moving average computed

using the exponential filter above. Bollerslev, Hood, Huss, Pedersen (2017) in-

clude only the exponential smoothed global risk factor with h = 5. We take

it a step further and include the exponential smoothed global risk factor for

h = 25, 125, 500. The new augmented HAR model is then,

RV h
t+h = α+

∑
h=1,5,125

βhExpRVh
t +γ1r

−
t +γ2r

5−
t +γ3r

20−
t +

∑
h=5,125,500

δhExpVIXh
t +ρµt+εt

We will refer to this model as Hexp-LG. 4

7 Model Estimation and Forecasting

7.1 Estimation

In our analysis, RVt is the realized volatility. The models are estimated on the

transformation log(RVt) to avoid negativity issues and get closer to a Normal

distribution. The estimation is straightforward using standard OLS. We present

several different implementations. A large part of our study relates to comparing

panel-based regression techniques to more conventional individual asset-specific

model estimation. The panel-based estimation framework is motivated by the

methodology introduced by Bollerslev, Hood, Huss, Pedersen (2017). However,

4The pedantic reader will wonder why rh−t is not smoothed as well. We did estimate the

model using a smoothed version of rh−t . However, this led to worse out-of-sample performance

compared to the Hexp-LG model.
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we only focus on the individual constituents of the S&P 500, as opposed to

cross-asset class estimation. Further, we investigate the impact of different data

transformations by normalizing the RV5 with two variations of a time-varying

mean of the RV6. We start by estimating the models individually on an asset-

specific basis, with stock-specific coefficients. Then we use panel regressions

where we force the coefficients to be the same across all assets.

Longer-run forecasts, say over weekly or monthly horizons, may be ob-

tained by iteratively substituting the one-day ahead forecastedRVt into the right-

hand side of the model. Subsequently adding up the one, two, three, etc., one-day

ahead forecasts to achieve forecasts for longer horizons. Instead, we use a much

simpler approach. To forecast more than one-day ahead we replace RVt+1 on

the left-hand side of the model with the RV over the forecast horizon h of inter-

est, that is, RV h
t = 1

h

∑h
i=1 RVt−h+i. In the forecasting literature, this is often

labeled the direct approach, contrary to iterated forecasts.

We normalize the RV of each stock with an approximation to the time-

varying mean of the RV to obtain risk measures that are on the same scale across

assets. This will, in turn, prevent the most volatile assets from dominating the

estimation procedure. Additionally, normalizing the RV makes sure that the pa-

rameters are ”scale-free” in the sense that they do not depend on the mean level

of volatility. Further, normalizing with a time-varying retrieved from the Kalman

Filter and -Smoother, contrary to the sample mean or the expanding mean7, will

most likely lead to more efficient estimates of the coefficients (normalize by a

5We say that we normalize the RV with the time-varying mean of the RV. This is just for

notational convenience; we normalize the log(RV) by the time-varying mean of the log(RV).
6We also perform normalization using the constant sample mean. However, this transforma-

tion leads to 25-30% worse performance compared to normalizing with time-varying mean and

no normalizing.
7Even though an expanding mean is somewhat time-varying, it is not optimal. Our thinking:

normalizing by a noisy time-varying expanding mean is similar to introducing measurement

errors in the RV . Hence, the coefficients will be estimated less precisely, resulting in worse

forecasts.
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more precise approximation to the time-varying mean). The underlying assump-

tion for this argument is a suspicion that the mean level of volatility across assets

varies over time. Expanding further on this idea, if the mean evolves over time,

then normalizing with the simple sample mean or the expanding mean is sim-

ilar to introducing measurement errors in the RV (normalize with an incorrect-

and noisy mean), resulting in worse forecasts. This argument seems reasonable,

considering that the out-of-sample performance drops more than 15% when we

normalize by the sample mean, even compared to model estimation on the raw

RV.

Another important reason we employ the Kalman Filter and -Smoother is

the inclusion of a time-varying mean level of stock volatility in our models.

Since we include an intercept in our panel-based models, we need something

that captures the difference in risk dynamics across stocks. Including an asset-

specific time-varying mean will achieve just this. Considering the dispersion in

mean levels of volatility across assets, it seems unreasonable to force the inter-

cept to be the same for each stock. For that reason, it is essential to include a

time-varying mean in the models that accounts for this feature. The inclusion of

a time-varying mean can also be interpreted as introducing a time-varying inter-

cept for each stock that varies in line with the temporal variations of the mean

level of volatility. Note that we do not normalize the longer-run time-varying

mean.

To derive the time-varying means, consider the univariate time series yt

satisfying,

yt = µt + εt, εt ∼ N(0, σ2
e) (1)

µt+1 = µt + ηt, ηt ∼ N(0, σ2
η) (2)

Where {εt} and {ηt} are two independent Gaussian white noise series and t =

1, 2, .., T . In this case, µt is the underlying log volatility of the asset at time

t, yt is log(RVt), and the ratio σ2
e

σ2
η

determines the average sample size/decay8.

8As starting value for the state variable, µt, we use the sample mean, calculated using data
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We want a very persistent or ”slow” moving mean. Consequently, we set the

ratio such that the decay rate is equivalent to the effective sample size equal to

five years of data (1000 trading days). The true volatility can not be directly

observed through time but evolves according to a random walk model. The

standard deviation of εt can be interpreted as the scale used to capture the impact

of shocks to yt. For instance, if σ2
ε = 0, then yt just follows a random walk,

yt+1 = yt + ηt. The model in Equations 1 and 2 is a special linear Gaussian

state-space model. The variable µt is called the state of the system at time t and

is not directly observable over time. Equation 1 provides the link between the

observable data yt and the state µt and is called the observation equation with

measurement error εt. Equation 2 governs the time evolution of the state variable

and is the state equation with innovation ηt. The model is also called a local-level

model in Durbin and Koopman (2001, Chapter 2), which is a simple case of the

structural time series model of Harvey (1993).

The purpose of using the local-level model is to infer the properties of the

state µt from the data {yt|t = 1, ..., T} and the model. Note, however, that this

is an intermediate step. Our main objective is not to infer properties of µt in

itself. Rather we first compute the time-varying mean µt before using it as input

in the model for the RV . Most commonly, three methods are used to infer the

properties of µt. They are filtering, smoothing, and prediction. In our analy-

sis, we only infer the properties of µt by utilizing smoothing and filtering. Let

Ft = {y1, y2, ..., yt} be the available information at time t. In short, filtering

means recovering the state variable µt given Ft. Smoothing is to estimate µt

from FT where T > t. Put differently, smoothing exploits the entire dataset,

thereby called a two-sided filter, while filtering uses data until time t, and hence

called a one-sided filter. To retrieve the time-varying mean given information up

until t and T, for the one-sided and two-sided filter, respectively, we make use

of the Kalman Filter and -Smoother. Let µt|j be E(µt|Fj). Then we want to

until the origin of the forecasting period.
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calculate E(µt|FT ) and E(µt|Ft) for the two-sided- and one-sided filter corre-

spondingly. For a full-fledged derivation, see, for example, Tsay (2010, Chapter

11). Our idea is then to estimate the models on the RV that are normalized by

an approximation to the time-varying mean that is more precise than the sample

mean or the expanding mean. The transformation is an extension of the idea pre-

sented by Bollerslev et al. (2017), who ”center” the models by subtracting the

expanding sample mean of the past realized volatilities. The simple normalized

HAR model then takes the following form:

RV h
t+h−µt|j = α+β1(RVt−µt|j)+β5(RV 5

t −µt|j)+β20(RV 20
t −µt|j)+ρµt|j+εt

Where µt|j is the time-varying mean of the RV at time t, and RV h
t is log-

transformed. For the two-sided filter j = T and j = t for the one-sided filter.

Using the approximation to the time-varying mean retrieved from smoothing

(two-sided filter), contrary to the expanding mean or the sample mean, we hope-

fully normalize by a more efficient measure of the time-varying mean of the RV

at time t and hence obtain a more precise estimate of the coefficients in our mod-

els. The procedure also mimics what a Bayesian model would do in the sense

that we exploit all the data available to us9 and continually update the estimates

as time passes and we get access to more information. Again, by normalizing the

RV, we ensure that the most volatile assets don’t dominate the estimation of the

coefficients because we estimate the model on stocks RV that are on the same

scale. Hence, we obtain more efficient estimates of the coefficients, which is

evident from the out-of-sample forecasting analysis. This manifests that the out-

of-sample risk forecasts of the (correctly) normalized models perform superior

to the unnormalized models.

There are, of course, weaknesses with our model and estimation procedure.

Several shortcomings have been addressed and highlighted in the existing litera-

ture. Common issues that are highlighted relate to the known properties of OLS,

9The two-sided filter is both forward-looking and backward-looking, and conditions on the

entire dataset. In contrast, the one-sided filter only conditions on the data up until time t.
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Figure 7: Kernel distributions of realized volatility (red) and log daily range

(blue) for all stocks.

such as conditional heteroscedasticity, sensitivity to outliers, and suboptimality

in the presence of non-Gaussianity, combined with the stylized facts about RV

(spikes/outliers, conditional heteroscedasticity) (see Clements, Preve (2019)).

We would, however, point out that violations of these assumptions usually affect

the standard errors of the estimated parameters. Hence, these violations only

raise problems if we want to make meaningful inferences about the estimated

parameters by conducting classical hypothesis tests. Considering that our main

objective is to produce precise forecasts of future RV , these problems are not

that severe in our case. On the other hand, we acknowledge that OLS is sensitive

to outliers and can, in fact, overfit in the presence of outliers. However, by esti-

mating the model on log(RV), we circumvent the issue associated with outliers,

as we obtain a distribution with much thinner tails compared to the distribution

of the RV . This is clearly evident in Figure 7.
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7.2 Out-of-Sample Forecast Results

The purpose of this section is to conduct an empirical analysis of the perfor-

mance of the models presented in section 2 by doing an out-of-sample forecast

analysis. We will focus our discussion on a one-month forecast horizon and

perform a 10-year out-of-sample forecast starting from January 2010, with a 1-

year expanding window, i.e., and we reestimate our model each year. For our

models, estimated using both panel and individual regression, we only predict

the volatility of stocks included in the S&P 500 for a given forecasting year.

For the individual regression estimation, we use the full sample of each stock to

fit the model. The out-of-sample forecast results for S&P 500 index members

for a monthly forecast for panel and individual regression are reported in Tables

1 and 2, respectively. The panel regression estimation that restricts the coef-

ficients to be the same across all stocks outperforms the individual regression

approach on the monthly forecast horizon. Focusing on Table 1, looking across

the table’s columns, the results show a clear ranking of the models, with Hexp-

LG being the superior model both for the panel-based- and individual model.

However, as we show in our robustness section, the gain in performance mov-

ing from HAR/HAR-L to Hexp-LG depends on the forecast horizon, with the

monthly horizon showing the most substantial increase in performance. Thus,

showing that improvements in forecasting power compared to the original HAR

model manifest over longer horizons. Looking at the monthly forecast, we obtain

close to a 14.5% reduction in RMSE on average by choosing the best performing

Hexp-LG (normalized by two-sided mean) model, compared to the benchmark

HAR model estimated by individual regression.

When we look across transformations, that is, looking across how we have

normalized our data, we find some interesting results. For example, looking at

the HAR model, we can reduce the RMSE by normalizing the volatility by the

two-sided time-varying mean. As a result, we obtain a reduction of 4.5% for the

HAR model by estimating the model on normalized volatility rather than raw
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volatility. Not presented in the table, there is also significant improvement by in-

cluding a time-varying mean. Compared to a HAR-model without time-varying

mean and estimated on panel data (no normalization), we obtain a reduction in

RMSE of 7%. For the Hexp-LG, the drop is similar, with an improvement of

4.6%. Interestingly, comparing one-sided mean and two-sided mean, we see

that both approaches present an enhanced performance; however, the two-sided

mean shows a slight improvement compared to the one-sided mean.

We want to isolate the effect of including a global mean into the Hexp-LG

model. Hence, we run a Hexp-L model without the global risk factors, i.e.

RV h
t+h = α +

∑
h=1,5,125

βhExpRVh
t + γ1r

−
t + γ2r

5−
t + γ3r

20−
t + ρµt + εt

And compare it to the Hexp-LG. The Hexp-L model produces an RMSE equal

to 0.00439. The model is estimated on two-sided normalized volatility and panel

regression. Interestingly, by removing the smoothed global risk factor, the out-

of-sample performance drops significantly. Thus, showing the importance of

including longer-run volatility factors.

From Tables 1 and 2, we see that the out-of-sample performance of the

pooled regression models is somewhat better than the individual asset-specific

models for the monthly forecasting horizon. The best performing pooled regres-

sion model almost reduces the RMSE by 10% compared to the best individual

asset-specific model. One explanation for the drop in RMSE can be attributed

to two competing properties of statistical learning methods: bias and variance.

For a given value x0, the MSE can always be decomposed into the sum of three

fundamental quantities: the variance of f̂(x0), the squared error bias of f̂(x0)

and the variance of the error term ε. We introduce some bias by forcing the co-

efficients to be the same across all assets. However, by forcing the coefficients

to be the same, the resulting forecasting variance will be lower. This is in line

with the findings of Bollerslev, Hood, Huss, Pedersen (2017), who show that

the average forecast variance is reduced significantly when going from individ-

ual asset-specific estimation to panel-based regression methods that exploit the
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strong commonalities in the risk characteristics across assets.

h HAR HAR-L Hexp-LG

Unnormalized

20 0.004 71 0.004 61 0.004 20

Two-sided mean

20 0.004 52 0.004 46 0.004 03

One-sided mean

20 0.004 59 0.004 51 0.004 09

Table 1: Panel Out-of-Sample Forecast Results

h HAR HAR-L Hexp-LG

Unnormalized

20 0.005 05 0.004 94 0.004 66

Two-sided mean

20 0.004 79 0.004 71 0.004 35

One-sided mean

20 0.004 87 0.004 80 0.004 41

Table 2: Individual Out-of-Sample Forecast Results

8 Robustness

In our thesis, we have decided to focus on future volatility instead of future

variance. There is no specific reason for this other than that most investment

decisions and risk measurements often depend on future volatility and not future

variance. However, we perform a robustness check where we also estimate our

models on realized variance. In doing so, the RV and volatility risk factors on the
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right-hand side in the models are replaced by the variance estimator. The VIX

should be transformed to match realized variance. When estimating on variance,

using VIX, which is a standard deviation, may not work as well. Hence, we

transform the VIX from standard deviation to variance VIX2 = (VIX/100)2.

The results obtained by using realized variance instead of volatility confirm our

general conclusion. First, the models estimated using panel-based methods out-

perform the individually estimated risk models in general. Second, our HEXP-

LG model normalized with a two-sided filter outperforms all other models.

Further, we look at the daily and weekly forecast horizon. The gain in

performance moving from HAR/HAR- L to Hexp-LG depends on the forecast

horizon, with the monthly horizon showing the most substantial increase in per-

formance. The gain in forecast performance moving from individually estimated

risk models to panel-based methods also depends on the forecast horizon. For

the weekly horizon, we obtain less strong but similar results compared to the

monthly forecast horizon. However, the individually estimated risk models seem

to slightly outperform the panel-based risk models on average for the daily hori-

zon.

We also remove the global risk factor and run the HEXP-L model for daily

and weekly horizons. Interestingly we do not see the same drop in performance

when the global risk factor is removed on the shorter horizons. The VIX is a

measure of implied volatility for the next 30 days for the S&P 500 index. Hence,

we think an improvement to our model would be to include implied volatility for

the S&P 500 on shorter horizons; this can be done using shorter-dated (such as

1-day and 5-days) options for the S&P 500 and back out the implied volatility.
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9 Conclusion

In this thesis, we study the risk dynamics of the individual constituents of the

S&P 500 and present several easy-to-implement volatility forecasting models,

including some novel ones. Based on a panel dataset including all the stocks

in the S&P 500 index dating back to 1985, we observe similar patterns in the

risk dynamics across stocks. Furthermore, normalizing the asset’s RV by each

stock’s sample mean generates surprisingly similar unconditional distributions

of the normalized risk measures. These commonalities in risk characteristics

can be exploited by aggregating information across assets using cross-asset panel

regressions that force the coefficients to be the same for each stock. The panel-

based models produce very competitive out-of-sample risk forecasts compared

to more conventional asset-specific models, especially for longer time horizons.

The out-of-sample performance of the panel-based models can be further im-

proved by normalizing each stock’s RV (except for the longer-run mean) with an

approximation to the time-varying mean retrieved from the Kalman Filter and

-Smoother. In addition, we demonstrate the importance of including a stock-

specific time-varying mean in the panel regressions that captures the impact of

differences in the risk dynamics across stocks and show that incorporating this

feature improves the out-of-sample predictive power.

Further, we document strong volatility spillover effects and find that a ”global”

risk factor contains much information about future volatilities that the individ-

ual past realized volatilities fail to capture. Thus, including this common time-

varying risk factor in the models enhances the out-of-sample forecasting perfor-

mance. Lastly, we implement a set of ”smooth” models that are dependent on

past realized volatilities in a way that is continuous and decreasing in the lag

lengths. We show that these ”smooth” models perform even better in out-of-

sample risk forecasting compared to the other models.

In short, our original contributions to the literature are two-folded. First,
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we take the methods of Corsi, Bollerslev, Hood, Huss, and Pedersen and apply

them to a different and bigger dataset, focusing on individual stocks as opposed

to indices and futures. Second, we extend their models by including a better

measure of the time-varying mean of the RV.
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