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Abstract

Allocating fast charging stations for electric vehicles will be an impor-

tant component for ensuring the adoption of electric vehicles. This thesis

proposes a framework for ensuring reachability, meaning that all parts of

the road network should be accessible with a specific battery capacity. Two

methodologies are tested: (1) a k-Dominating Set with half range, and (2)

a Connected k-Dominating Set for ensuring connectivity, both are tested on

a dataset representing the Norwegian road network. Distance metrics are

measured in kWh for an accurate representation of battery consumption.

Tested ranges are 20, 30, and 40 kWh, each tested with k ranging from 1

to 4.

The experiment finds that the connected k-dominating set, computed

using a greedy algorithm, provides more efficient and desirable solutions

than the k-dominating set when applied to this problem. A simple com-

parison of the current system and a connected k-dominating set for 20 kWh

and k = 2 finds that the current charging station allocation in Norway is

not sufficient for ensuring reachability with a 20 kWh electric vehicle, and

that remote, non- urban areas are especially underrepresented in terms of

coverage. Because many parts of the country are already covered, future

allocation of fast charging stations should occur in those that currently have

low or no coverage in order to stimulate the adoption of electric vehicles.
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1 Introduction

This chapter presents the background and motivation of the topic, defines the

research question and the problem statement.

1.1 Background

In 2016, Norway ratified the Paris Climate Accord (PCA), which provides the

country with a binding legislature to reduce carbon emissions by 40% of 1990-

levels, within 2030 (Norwegian Ministry of Climate and Environment, 2016). This

is an ambitious goal that will require a drastic reduction of carbon dioxide emis-

sions in every sector, the transportation sector being one of them.

Figure 1.1: Total carbon emissions by sector, Norway

As illustrated in Figure 1.1 above, road transportation in 2019 accounted for

roughly 16.6% of Norwegian carbon emissions. This is equal to 8 358 000 metric

tonnes of carbon dioxide equivalents (Statistics Norway, 2020b). It is therefore

not surprising that reducing emissions from the road transportation sector could

play a large part in reducing Norwegian emissions overall. Electrification of ve-

hicles could therefore be a viable option for emission reduction. As a result, the

1
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government’s National Transportation Plan has as a goal that every new regis-

tered passenger vehicle will be zero-emission in operation by 2025 (Ministry of

Transport, 2017). However, this comes with certain challenges.

Figure 1.2: Total electric passenger car registered in Norway

Due to favorable tax and toll laws, and cheap electricity, the sale and registration

of electric passenger vehicles has grown rapidly since 2008. However, these regis-

trations are mainly located in urban counties like Oslo, Bergen, Bærum, Trond-

heim, and Stavanger, which represent roughly 42.5% of the total electric vehicles

in the country (Statistics Norway, 2020a). The reason for this can be range issues

and charging station availability. Since 2012, the rate at which regular1 charging

stations are built has been trailing behind the inflow of registered electric vehicles

in the country.

Generally, electric vehicle charging stations are a nonissue for urban and short

distance travels as one is able to charge the vehicle at home, which is what the

1Regular being non- proprietery charging stations, e.g.: Non-tesla, non-chademo 50kw+,

non-ccs 50kw+
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majority of people do (Figenbaum, 2019). However, charging an electric vehicle

can create significant delays in one’s schedule if travelling for longer distances.

This phenomenon was observed during the summer of 2020, when most Norwe-

gians remained in Norway for their vacations (Rangnes, 2020), and many electric

vehicle owners experienced queuing at the charging stations. Figenbaum and

Nordbakke argue that long distance travel is one of the last hurdles for mass

adoption of electric passenger vehicles (Figenbaum, 2019).

Figure 1.3: Geospatial distribution of EV per inhabitant

This skewed distribution is evident from Figure 1.3, where the green shades show

the electric vehicles per inhabitant for each municipality in Norway. It is clear

that urban areas such as Oslo, Bærum, Trondheim, Bergen, Stavanger, and Kris-

3
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tiansand have a much higher concentration than all other areas of the country.

For this reason, increasing the availability of charging stations could increase the

demand for electric vehicles and therefore also help in the electrification of the

road transportation sector. In turn, this could also help curb Norwegian carbon

emissions from the transportation sector.

1.2 Research Questions and Problem statement

Multiple researchers have compared the interaction between charging station avail-

ability and demand for electric vehicle as the chicken-and-the-egg problem (Upchurch

& Kuby, 2010; Chung & Kwon, 2015). This paper assumes that a certain level

of infrastructure is required for a demand of electric vehicles to occur. This the-

sis seeks to address the problem of charging station allocation by using openly

available data and incorporating certain realistic elements into the dataset.

Only fast charging stations are considered for this research. The reason for this is

that fast charging stations directly compete with the swiftness of refueling fossil-

based vehicles, and that short distance travel can arguably be covered by charging

at source and target locations. Hence, for long distance travel, fast charging

stations will be the most feasible option. As a result, any reference to charging

stations refers to fast charging stations unless otherwise specified. Secondly, parts

of the Norwegian landscape are characterized by mountain ranges, meaning that

the range of electric vehicles can be significantly affected by the road gradients.

This should also be accounted for when allocating charging stations.

The minimum battery capacity considered reflects the battery capacities of small

electric vehicles with limited range, such as the Honda Fit, which are often used

in cities. The low end of this spectrum is around 20 kWh. Other battery capacity

considered reflects the capacities of some higher end vehicles, such as the Nissan

Leaf and BMW i3, which have capacities of 30 and 40 kWh, respectively. Gener-

ally, one can assume that short-range electric vehicles are cheaper than long-range

4
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vehicles, which can make short-range vehicles more economically feasible.

Additionally, the thesis compares the current fast charging station locations with

a proposed solution given by the experiments performed. This can put the current

state of the system into perspective and help decision- and policymakers make a

more informed decision on where future fast charging stations should be located.

1.3 Research Contribution of the Thesis

This thesis presents a framework for allocating charging stations on a national

level, such that any vehicle with a minimum specified capacity can reach any

location in the country from any other given location. Additionally, the thesis

presents a greedy algorithm for finding a connected k-dominating set, which is a

method that selects a set of vertices such that all vertices in the graph are k-

dominated, while the induced subgraph of the dominating set is connected.The

value of k signifies the criteria for domination. This means that for a vertex to be

dominated, it needs to be adjacent to k vertices in the solution set. In the case

of this specific problem, k would signify the number of charging stations available

to a driver at each vertex. The connected k-dominating set problem has, at the

time of writing, seemingly not been applied to charging station allocation.

2 Literature Review

This section gives a brief introduction to the field of facility location and location

problems used for charging station locations and presents a review of work relevant

to charging station allocation performed by other researchers.

Pagany et al. (2019) conducted a literature review of the current methodologies

for localization of charging infrastructure. They find that the research within

this subject has increased dramatically in the previous years, from near 0 pub-

lished papers in 2006 to more than 120 publications in 2016 (Pagany, Camargo,

5
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& Dorner, 2019). The authors argue that most studies on the issue are highly

data-driven, but that the lack of data is an obstacle in nearly all cases. Hence,

many researchers are limited to where the data availability is high, such as taxi

data, if they seek to use real observations. An alternative is to upscale or make

assumptions from other data sources, such as Origin-Destination (OD) pairs from

traffic monitoring. One final issue addressed is that of the geographical research

area, which the authors argue is focused around urban areas and lacking in more

rural areas.

2.1 Facility Location Problems

Optimization for facility location purposes has its roots in 1909 when Alfred Weber

developed a model to minimize the total distance between the warehouse and

the customers (Owen & Daskin, 1998; Alfred, 1929). The research field gained

traction during the 1960s following Seifollah L. Hakimi’s publication on minimax

optimization for switching centers in communication networks and police station

location on a highway system (Owen & Daskin, 1998; Hakimi, 1964) using a vertex

k-center problem. The vertex k-center problem assigns vertices to a set C such

that the cardinality of that set, |C|, is at most equal to k, while minimizing the

maximum distance to the closest selected vertex.

The Set Covering Problem (SCP) is also a classic location model with many

applications. The SCP allocates facilities, where each facility is connected to a

set of vertices, so that all vertices are covered by a facility. For instance, the SCP

has been applied for determining the location of Covid-19 swab centers in city of

Bandung, Indonesia. Researchers used an integer linear program, a mathematical

representation of the problem consisting of binary in- and outputs, and some

weighted variables for allocating the swab stations across the city (Muttaqin,

Finata, & Masturo, 2020).

One final classic location problem addressed in this review is the p-median problem

(PMP). Similar to the SCP, the PMP allocates facilities to a network. However,

6
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the PMP allocates p facilities while minimizing the demand weighted average dis-

tance (Daskin & Maass, 2015, p.21). For instance, the PMP problem has been

applied for proposing an allocation of students to facilities that are closest to their

homes at the Federal University of Paraná in Brazil (Correa, Steiner, Freitas, &

Carnieri, 2004).

2.2 Flow-Based Models

In 1990, Hodgons developed the Flow-Capturing Location Model (FCLM) as an al-

ternative to set-covering and maximal-covering location models (Hodgson, 1990).

The FCLM seeks to maximize the captured flow between origin-destination us-

ing mixed integer linear programming (MILP). Hodgons’ model defines a flow fq

between O-D pair q as captured if there is at least one facility k along the flow’s

path. The objective function that maximizes the captured flow is constrained by

a predefined number of facilities. While Hodgons’ model is originally intended for

facilities like chain stores or billboards, it has later been expanded upon for other

purposes.

Kuby and Lim (2005) developed the Flow-Refueling Location Model (FRLM)

based on the FCLM. However, while Hodgons’ FCLM defines a flow as covered

when only one facility is located along its path, the FRLM allows double-counts

to occur to accommodate for the vehicle range (Kuby & Lim, 2005). Kuby and

Lim show that decreasing the model’s vehicle range leads to a lack of convexity

and their exact solution plateaus at around 70% flow coverage, meaning that no

solution satisfying all O-D flows is found. Therefore, they argue that the vehicle

range should be long enough to traverse the longest edge on any shortest path in

the graph. Similar to Hodgons’ FCLM, their objective function is to maximize

the captured flow. However, this is subject to a few more constraints such as

range limitations for a flow and refuel site, and that refuel sites along a flow are

only open if the entire flow is covered.

One drawback of these models is that they are assumed to be uncapacitated;

7
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meaning that one station is sufficient to serve the entire flow. For this reason,

Upchurch, Kuby, and Lim (2009) developed the Capacitated Flow Refuel Location

Model (CFRLM), which accounts for refuel capacity at the facilities. Their for-

mulation of the CFRLM transforms a previously binary variable indicating if a

facility is placed, to an integer variable denoting the number of facilities to place.

They expand on the model to include a capacity constraint which limits the size

of the flow one single refuel station can handle. The CFRLM is applied to a sim-

plified version of the Arizona highway network, in which they estimate the O-D

pairs through a gravity model based on population density. The gravity model,

similar to Isards (1954) gravity model of trade, assigns traffic volume to O-D pairs

based on the population between each origin and destination, so that high popu-

lation vertices attract higher traffic flows. The authors solved this problem using

a simple greedy heuristic (Upchurch, Kuby, & Lim, 2009).

However, as pointed out by Kuby and Lim (2010), the FRLM (and CFRLM)

allows for such numerous combinations to be explored that even graphs with a

few hundreds vertices make the algorithm computationally expensive. Thus, for

larger graphs, they show that greedy-adding, greedy-adding with substitution and

genetic algorithms are effective ways of finding feasible solutions for the FRLM

problem. They found that the genetic algorithm had slightly better solutions at

the cost of longer run times (Lim & Kuby, 2010).

Jochem et al. (2019) apply a FRLM related model to a graph representing the

road network of the European Union. Due to the size of the data representing

the European road network, they limit the optimization algorithm to highways in

Central Europe only. An optimal solution to the problem is found in five hours

(Jochem, Szimba, & Reuter-Oppermann, 2019).

A similar approach is also performed by He et al. (2019) for assigning charging

stations across the United States, where instead of maximizing the covered flows,

the authors rather seek to maximize the share of fulfilled completed O-D trips. To

reduce the dimensionality of the data, the authors performs k-means clustering on

8
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the graph and reduce the number of vertices from 4486 to 200 cluster centroids,

from which the shortest path is subsequently found. Solutions to 30 different

problem variations are found in about six hours (He, Kockelman, & Perrine, 2019).

Kuby and Kim (2012) have also expanded upon the Flow-Refuel Location Model

by accounting for driver deviation from the shortest path for refuel purposes.

This model is referred to as the Deviation-Flow Refuel Location Model (DFRLM)

(Kim & Kuby, 2012). A penalty function is added, so that the objective function

is penalized when the deviation from the shortest path increases, which is shown

to affect the optimal location of the stations. The authors acknowledge that the

application of such a model to a real-life network is limited.

2.3 Demand Weighted Approaches

While the FRLM is a commonly used model for allocating refueling facilities,

other approaches more similar to the set-cover problem have also been performed.

Lam et al. (2014) formulates an MILP model for allocating charging stations

to vertices given a demand present in those vertices. They show their model

to be NP-hard and apply it to a graph representing the Hong Kong area. They

propose four different heuristic algorithms to solve the problem, each with different

performance depending on data availability, data complexity, solution quality, and

algorithmic efficiency (Lam, Leung, & Chu, 2014).

Bougera and Layeb (2019) present different models for minimizing the cost of

deploying charging stations in Tunis, Tunisia. One of their capacitated models

ensures that each vehicle is assigned a charging station within an acceptable driv-

ing range, thus allowing the model to accommodate for charging demand. They

show that higher charging times (e.g., like deploying charging stations that are

not fast chargers) increase the number of charging stations required (Bouguerra

& Bhar Layeb, 2019).

Efthymiou et al. (2017) estimate O-D pairs using traffic counts and simulations,

9

1031539GRA 19703



and develop a genetic algorithm to optimally allocate charging stations across

Thessaloniki, Greece. Their genetic algorithm, similar to a p-median problem,

allocates a given number of charging stations across a set of candidate vertices

while maximizing the covered demand. Under the assumption that 5% of vehicles

will be electric, they found that 15 stations in Thessaloniki are sufficient to cover

80% of the expected demand by 2020 (Efthymiou, Chrysostomou, Morfoulaki, &

Aifantopoulou, 2017).

Upchurch and Kuby (2010) compared the performance of p-median and FRLM.

The p-median problem allocates p facilities and demand vertices to the facilities

and minimized the distance traveled from the demand vertex to facility. They an-

alyze how the solutions of each model perform on the other’s objective function.

The conclusion is that the FRLM’s solutions perform better on the p-median’s ob-

jective function than the p-median’s solutions on the FRLM objective (Upchurch

& Kuby, 2010).

2.4 Ensuring Reachability Across a Network

The approaches above take into account the traffic data or demand present in

different vertices or along specific paths. However, they do not take into account

reachability across the graph; that there is guaranteed to exist a feasible path,

given a range r, from any vertex i to any other vertex j. The following section

describes possible approaches for addressing reachability.

Corcoran and Gagarin (2018) developed a model for optimally allocating charging

stations using a multiple domination model which guarantees reachability across

the entire graph and minimizes charging related detours (Gagarin & Corcoran,

2018). Their model accounts for drivers’ desire to avoid detours for charging pur-

poses and their charging threshold2. They apply their model on high-dimensional

graphs representing the cities of Boston and Dublin, and solve the problem by

specifying it as a k-dominating set problem. Because the minimal k-dominating set

2The battery level at which drivers are likely to charge their car

10
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problem is NP-complete, three different heuristics for ensuring reachability within

a threshold of t are presented; (1) Randomized k-dominating set, (2) Greedy k-

dominating set, and a final algorithm to remove redundant dominating vertices;

(3) Minimal k-dominating set.

Similar methods are applied by Storandt et al. (2015), in which a model for

charging station allocation is modelled as a Hitting Set Problem. The hitting set

problem seeks to minimize the cardinality of a subset L ⊆ V (G) such that, given

a collection of subsets of all graph vertices Σ, L intersects every set in Σ. In this

case, Σ represents the vertex-sets of every shortest path for a specific battery ca-

pacity. Their approach avoids driver detours for reaching charging stations. Their

proposed model is applicable on country-sized graphs using a greedy heuristic al-

gorithm, and a solution for a graph representing the road network of Germany

was found within a few hours. Their approach allows for charging stations to not

be placed directly on the shortest path, but rather near the path, thus reducing

charging related detours (Funke, Nusser, & Storandt, 2015).

2.5 General Challenges and Constraints

Overall, there are multiple constraints and challenges to consider when allocating

charging stations. As argued by Pagany et al. (2019), and previously mentioned

in this section, data availability is one overarching problem for most experiments.

However, as presented in this literature review, the constraints considered heavily

affect the type of optimization to perform. Combining both capacity and reach-

ability, meaning that the model should minimize or eliminate waiting times and

guarantee reachability across a network, requires highly detailed data on traf-

fic flows, the battery State of Charge and distances. Some models, such as the

CFRLM (Lim & Kuby, 2010) previously presented in the section, combines ca-

pacity and traffic flow, thus maximizing, not guaranteeing, reachability and min-

imizing overloads. However, due to the large number of possible combinations,

the CFRLM is very computationally expensive to perform on large networks (Lim

11
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& Kuby, 2010). Additionally, for realistic results, the data can include elevation,

temperature, vehicle weight, road quality, and so forth. This means that combin-

ing models for computing both reachability and elimination of waiting times is

highly challenging.

3 Methodology and Data Collection

This chapter explains the methodology and data collection used for this thesis.

The first part presents the research methodology and strategy used, while the

final part discusses the available data and data used for the analysis.

3.1 Research Design

This thesis primarily employs a quantitative research design. While the data

transformation and modeling part are clearly quantitative processes, a certain

degree of qualitative research needs to be performed to gain an adequate under-

standing of the current needs present for both electric vehicle users and policy-

makers. As such, part of the findings from the qualitative research is translated

into quantitative abstractions such as model constraints.

The purpose of this thesis is to use the existing theory and apply it to the case of

the Norwegian road network. Although the models from the theory are already

often put to use for similar purposes, namely, alternative fuel station allocation,

few of these are applied to country-wide datasets. Moreover, this thesis offers a

prescriptive analysis of how the state of the system should be for charging stations

to guarantee reachability across a road network representing the most important

roads in Norway.

12
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3.2 Data Collection

Data was collected using a collection of open data sources. First and foremost,

the data has been collected from the Norwegian Public Roads Administration

(NPRA) own data set for their vehicle routing services: National Roads Database

— Road Network for Routing (NRDB), found on GeoNorge (GeoNorge, 2021).

This dataset contains details such as road class, latitude and longitude, road

length and road name. Additional elevation data for the road network was re-

trieved from the Google Map API using the OSMnx Python library, which is a

Python framework used for geospatial graph analysis (Boeing, 2021). Data for

existing charging stations are retrieved from OpenChargeMap’s public database

(OpenChargeMap, 2021). From this dataset, all Norwegian fast charging stations

were retrieved. The choice of charging station type is motivated by the constraints

previously described in the problem statement.

3.2.1 Data Preparation

The routable road data retrieved from the NPRA was first processed and filtered in

QGIS, an open source software used for geospatial analysis, before it was exported

in to GeoJson format. The filtering selects the roads up to a certain functional

road class, so that only main3 roads were included in the dataset. By using

NetworkX, a Python library for studying and manipulating graphs, the GeoJson

file was transformed into a graph object consisting of more than 140 000 vertices

and edges.

Because the road’s gradient has a profound impact on the vehicle’s energy con-

sumption (K. Liu, Yamamoto, & Morikawa, 2017), it must be considered in this

experiment. The elevation of each vertex is retrieved through the Google Maps

API. The edge gradient is subsequently calculated using the vertex elevation and

edge direction. To clarify, the edge gradient represents the number of meters,

one moves upwards, per meter moved horizontally. Thus, an edge gradient of 8%

3Functional road class 0 to 3, which signifies highways, trunk roads and primary roads
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signifies that the vehicle will change its elevation by 8% of its traversed horizontal

distance. Similarly, an edge gradient of > 100% means that the number of units

moved vertically will be higher than the units moved horizontally.

Vertex elevations Edge gradients

Figure 3.1: Vertex elevation and edge grades distribution, with binned outliers

Figure 3.1 shows that there are certain outliers present in the distribution of

edge gradients. Most notably, the steepest roads have a gradient of -12.60 and

10.52. These are errors due to inaccuracies in the API or minor deviations in the

coordinates passed to the API query. However, as seen in figure 3.2 below which

plots the absolute gradient value and length of the edges, the edges containing

extreme values are few and are short. Therefore, their impact is very limited.
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Figure 3.2: Absolute gradient and edge length

In the original graph, vertices represent crossroads, dead ends, rest areas, and so

forth, but many vertices also represent curves in the road and are therefore not

very useful. Thus, after the grade and elevation have been computed, a graph

operation referred to as simplification is performed. This process removes any

interstitial vertices, such that only dead ends and crossroads are kept. One issue

that arises as a result of the simplification process is that the edge grade and

edge length will not be as accurate as with a high-resolution graph. The process

of estimating the grade for the simplified edges starts during the simplification

process, where the collection of grades and lengths along a simplified edge are

inserted into the arrays H and L respectively and stored as a separate variable.

Using H and L, the weighted average grade between vertex u and v, gwu,v, is

calculated for each simplified edge:

gwu,v =

∑n
i=1 Li ∗Hi∑n

i=1 Li

Where the array of lengths Li functions as the weight of each observed grade in

H.
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Through the use of GPS tracking and state of Charge (SoC) reporting, Liu et

al. (2017) estimated the effect of road gradient on electric vehicle average energy

consumption. Their research studied 492 electric vehicles across different brands,

weights, and weather conditions. They propose a linear regression model with

fixed effect for estimating the excess energy consumption of each interval of road

gradient. Their findings are presented in Table 3.1 below as kilowatt hours (kWh)

per kilometer:

Ind. variable Coefficient, kWh per kilometer

Constant β0 0.372

< −9% -0.332

[-9% -7%) -0.217

[-7% -5%) -0.148

[-5% -3%) -0.121

[-3% -1%) -0.073

[1% 3%) 0.085

[3% 5%) 0.152

[5% 7%) 0.203

[7% 9%) 0.306

[9% 11%) 0.358

> 11% 0.552

Table 3.1: Gradient impact on kWh consumption (Liu et al., 2017) (excerpt)

Using the values in Table 3.1, the weighted- and regular grade, and edge length,

one can estimate the average kWh consumption for traversing an edge between

vertices u and v. Here, the constant β0 is the baseline kWh consumption per

kilometer, upon which any coefficient is added or subtracted based on the road

grade.

Lastly, to ensure connectivity and feasible solutions, a function is applied such

that no edge has a traversal cost higher than the minimum battery capacity used
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for this thesis’ experiments; 10 kWh. Any edge with a higher cost is divided by

two and an artificial vertex is placed between the two original vertices.

The final graph, consisting of 18 183 vertices and 26 324 edges, is illustrated below

in Figure 3.3, which also includes the vertex elevation. Notice the systematically

placed vertices in between long distances. While not fully representative of the

real road network, these vertices guarantee connectivity of the reachability graphs

constructed in Section 2.4 and thus feasible solutions.

Figure 3.3: Road network for Norway, functional road class 0-3 with elevation
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Due to simplification, the average vertex degree is near 3. This is expected, as most

vertices in the graph are either endpoints, crossroads, or artificial vertices. The

maximum degree is 5, which corresponds to the number of connections in a larger

roundabout. Naturally, the minimum degree is 1, which represents the endpoints.

The density of the graphs, meaning the number of existing edges relative to the

potential edges, is very low. This is consistent with the graph density of other

researchers (Gagarin & Corcoran, 2018; He et al., 2019; Funke et al., 2015).

Statistic Value

Vertices 18 183

Edges 26 324

Network density 0.0002

Maximum degree 5

Average degree 2.8955

Table 3.2: Summary statistic of graph

Figure 3.4: Degree distribution

18

1031539GRA 19703



4 Optimization Model

This section presents the optimization procedure for finding charging station loca-

tions, given a set of different parameters. First, it presents the current system in

the context of the data created in Section 3.2.1. Secondly, it presents the concept

of a reachability graph. Lastly, the criteria and methodologies for determining a

k-dominating set and connected k-dominating set are explained.

The first step is to construct a reachability graph denoting the reachable vertices

from a vertex v ∈ V (G) using Algorithm 4.1 and 4.2. As such, the reachability

graph is derived from the original graph, but all edges are computed based on

a certain reachability threshold between vertices. The details of this process are

explained further in Section 4.2. In short, any vertices that are reachable within

the travel cost t of each other are connected by an edge. If the travel cost is

greater than t, no edges between these vertices exist.

The second step is to find the locations of the charging stations using the reach-

ability graph constructed in Section 4.2. Using a reachability graph and a k-

dominating set, Corcoran and Gagarin (2018) allocated charging stations such

that any non- charging station vertex is within a specific range of at least k charg-

ing stations. However, the structure of the k-dominating set does not guarantee

that the dominating vertices are adjacent to each other. In this case, it does not

guarantee that charging stations will be within the range of each other, which is

a problem when addressing the issue of reachability. These issues are addressed

in Section 4.3.1 and 4.3.2.

4.1 Current System

As of spring 2021, according to OpenChargeMap, the world’s largest registry

for electric vehicle charging stations, there exist 810 fast charging stations in

461 different locations in the graph. Tesla and other proprietary stations are
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not considered in this paper, as it is not possible for non-Teslas to charge their

batteries using these.

Most of these charging stations are concentrated around urban areas like Oslo-

area, Kristiansand, Stavanger, Bergen, and Trondheim. To analyze and compare

the current system and the proposed solutions, the current charging stations have

to be interpolated into the network constructed in Section 3.2.1.

To do so, the coordinate of each existing charging station is retrieved and inserted

into the nearest node on the graph using the Euclidean distance:

d(x, y) =
√

(xv − xj)2 + (yv − yj)2 (4.1)

Where x represents the longitudinal coordinate, and y is the latitudinal coordinate

value, v a vertex in the graph, and j is the currently existing charging station.

Arguably, this method of calculating the nearest nodes and interpolating the

existing charging station may lead to some inaccuracies. However, because most,

if not all, fast charging stations are located near a road, this method is deemed

sufficient for this purpose. The output of this interpolation is represented in

Figure 4.1 below.

Figure 4.1: Current system (left), current system in graph (right)
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At first glance, the interpolations of the current charging stations seem to accu-

rately mimic their real location. This is the case for many of the charging stations,

but there are some exceptions. When examining Table 4.1, which contains the

distance in meters, the mean and median difference in distance are satisfying.

However, the maximum distance is alarming. This large spread in distribution

comes due to two main factors. The first is that certain islands are excluded from

the graph because the ferry data is lacking. Hence, when a charging station is

present on an island, its closest location in the network is often far away. Sec-

ondly, during the simplification process in Section 3.2.1 vertices with degree δv =

2 are deleted. If a charging station is present in [or near] the deleted vertex, its

location in the network would be affected by the simplification. While this is not

a problem for areas with many crossroads, its effect can be significant in remote

areas where the distance between the simplified edge and the next crossroad is

large. Nonetheless, as this is mainly for exploration purposes and because the

large distance differences are outliers, these findings do not affect the outcome of

the research.

Mean dist. Median dist. Min dist. Max dist.

1 493.053 248.628 16.989 37 480.049

Table 4.1: Distance difference (meters) between estimated and real locations

The considered battery capacities for this thesis are 20, 30, and 40 kWh, and a

simple Dijkstra search across the currently existing charging stations shows that

many charging stations are out of range for multiple vertices for all ranges. In the

current system, if one is to have a charging station within range, for all locations,

the required capacity would be 98.81 kWh. This capacity is equivalent to the

battery capacity of a Tesla Model S, which in 2021 costs around 700 000 NOK.

Table 4.2 shows that, on average, a battery capacity of 20 kWh should be suffi-

cient. However, the mean capacity to the nearest charging station is lowered by

the skewed distribution of charging stations. Moreover, because vertices are not
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uniformly distributed across the network, meaning that urban areas have more

vertices than remote areas, this metric is not necessarily representative of the true

state of the system.

Mean cap. Median cap. Min cap. Max cap. Std.dev Unit

4.035 1.308 0.0002 98.811 7.3 kWh

Table 4.2: Battery consumption (kWh) from nearest charging station

Although there are many fast charging locations, the distribution of these are

not adequate to satisfy full reachability across the road network. The current

system requires that one owns an electric vehicle with a battery capacity of 98.81

kWh, given the estimates used in this thesis, to strictly satisfy reachability. This

requirement can contribute to a slower adoption rate of electric vehicles, and thus

a slower electrification of the transportation sector, as the barrier to entry costs

for a feasible electric vehicle increases. Additionally, the battery consumption

travel cost to charging stations is right- skewed, as presented in Figure 4.2. One

reason for this is due to the sparsity of the charging stations in non- urban areas

of Norway, such as the northern or western districts.
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Figure 4.2: distribution of kWh consumption to nearest charging station

The findings from Table 4.2 and Figure 4.2 are illustrated in Figure 4.3 below.

This figure illustrates the battery cost in kWh to the nearest charging station

for all vertices in the graph. Green vertices are close to charging stations, while

the red vertices are further away. Figure 4.3, which shows that urban areas have

better coverage than non-urban areas, reinforces the idea that the remote parts

of the country are less suited for the comfortable use of electric vehicles, and that

a high battery capacity is required to travel without experiencing so-called range

anxiety.
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Figure 4.3: kWh cost to nearest charging station

Hence, an optimal allocation of charging stations should see that all parts of the

country are covered by charging stations. This requirement is not satisfied in

today’s system within a reasonable battery capacity.

4.2 Constructing Reachability Graph

Following the steps performed by Corcoran and Gagarin (2018), a reachability

graph Gr
t is constructed. The reachability graph represents the vertices that are

reachable within a certain range of a specific vertex. Because the reachability
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graph represents the weighted adjacency of each vertex, all information in the

graph can be represented in a matrix:

Grt =



g11 g12 g13 . . . g1n

g21 g22 g23 . . . g2n

g31 g32 g33 . . . g3n
...

...
...

. . .
...

gm1 gm2 gm3 . . . gmn



Where gv,u represents the cost of traveling from v to u if u is reachable from

v within threshold t, and 0 otherwise. A neighborhood of a vertex in Gr
t is

illustrated in Figure 4.4 below, where each edge represents any available vertex

within 20 kWh range.

Figure 4.4: Neighborhood of vertex in reachability graph with cutoff = 20 kWh,

from vertex in center of Oslo

A neighborhood of a vertex in the reachability graph is constructed using Al-

gorithm 4.1, a modified Dijkstra’s algorithm with a cutoff value, where all paths
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originating from the source vertex are explored, and its vertices stored until a spe-

cific threshold is reached. As the graph is undirected, meaning that all edges are

bidirectional, there is no edge traversal cost stored in the graph. The reason for

this is that elevation data is included, the traversal cost must incorporate in which

direction the edge is traversed. To do this, Algorithm 4.1 iteratively calculates

the traversal cost for the neighborhood N(v) of v. The algorithm first evaluates

the elevation difference between u ∈ N(v) and v. Subsequently, the edge gradient

and associated battery consumption were calculated using the values from Table

3.1.

Lines 1-2 define the input and output of the procedure. Line 3 instantiates Q,

which is the set of all vertices in G. Lines 4-6 assigns infinite travel cost to all

vertices, except for the source vertex which is assigned a cost equal to 0. Line

7 instantiates the array visited which contains all visited vertices. Lines 8-25 is

repeated as long as there are vertices in Q. In each iteration, line 9 assigns u as

None and the cost to u as infinite. Line 10-14 iterates through the vertices in Q,

checks if it the new path is less costly than the current path and assigns a new

u. Lines 15-16 return the cost array, where the cost is less or equal to t, so that

vertices where the cost is infinity are discarded. Line 17-18 adds u into visited

and removes u from Q. Lines 19-25 computes the cost between u and its neighbors

n ∈ N(u) based on the elevation differences, and defines c as travel cost between

u and n. If the travel cost is higher or equal than the threshold, disregard the

path, otherwise update cost.
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Algorithm 4.1 Dijkstra with cutoff threshold

1: Input: A Graph Gs, a source ∈ (Gs), a threshold t ∈ R

2: Output: Set of vertices within range t of source

3: Q← V (Gs)

4: for each v ∈ Q do

5: costv :=∞ // costv is the kWh cost of visiting v from source

6: costsource := 0

7: visited = ∅

8: while Q 6= ∅ do

9: u = None

10: costu :=∞

11: for v in Q do

12: if costv < costu then

13: costu := costv

14: u := v

15: if u = None then // When no condition is satisfied

16: return cost : costv < t ∀ v ∈ V (Gs) // Return only vertices within threshold t

17: visited ← u

18: Q := Q \ u

19: for each n ∈ N(u) do

20: cu,n := kWh cost based on vertex elevation difference and length

21: c := cu,n + costu // c is cost to neighbor plus accumulated cost

22: if c > t then // If c surpasses threshold, check next neighbor

23: continue

24: if c ≤ costn then

25: costn := c

The reachability graph is constructed by running Algorithm 4.1 on each vertex,

and constructing edges with the edge weight as the battery cost in each direction.

This process also implies that the graph is converted to a directed graph, meaning

that the graph now considers the direction of the edges and that edges euv and

evu may inflict different traversal costs. This procedure is presented in Algorithm

4.2.

Line 3 creates an empty matrix At. Lines 4-8 iterate through all vertices, compute
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the reachable vertices from the vertex u within threshold t using Algorithm 4.1.

In line 6, a vector Bt
v with dimensions 1 ∗ |V (G)| is constructed, which contains

the travel cost between u and v if they are in the range of each other, otherwise

the value is zero. In line 7, the corresponding vector in At, namely At
v, is updated

and replaced by Bt
v. Line 8 returns the new adjacency matrix At.

Algorithm 4.2 Full reachability graph construction

1: Input: A graph G, a kWh threshold t

2: Output: A full reachability graph adjacency matrix At

3: Let At denote a null matrix with dimensions |V (G)| ∗ |V (G)|

4: for each v ∈ V (G) do

5: coststv = Dijkstra with cutoff threshold(v, t)

6: Create a vector Bt
v denoting the reachable neighborhood of v such that:

Bt
v,u =


coststv[u], if u is reachable from v

0, otherwise

7: At
v := Bt

v // Replace empty values of At
v with Bt

v

8: return At // Return the adjacency matrix for Gr
t

Algorithm 4.2 is repeated five times. One for each range of 10, 15, 20, 30, and 40

kWh, such that one graph for each range is constructed.

One feature of Algorithm 4.2 is that it constructs a directed graph with parallel

edges. This means that the travel cost from v to u can be 1 kWh, but the travel

cost from u to v can be 0.7 kWh because of differences in elevation. This property

implies that certain vertices are connected one way, but not the other. Therefore,

due to constraints of the connected k-dominating set explained in Section 4.3.2,

the graph is converted to an undirected graph in which the highest of the two

edge costs are considered. Additionally, if an edge only exists in one direction,

the undirected graph considers that edge to be non- existent. In other words; only

the worst travel cost is considered.
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For the reachability graphs of 10 and 15 kWh, the minimum vertex degree is 0.

This is because with such a low reachability threshold, certain vertices become

isolated as no other vertex is reachable. In these cases, a connected k-dominating

set cannot be constructed, because it violates the constraints for connectivity.

However, because these graphs are to be applied for range threshold double of

their respective reachability value, e.g. 20 kWh for Gr
10 and 30 kWh for Gr

15, the

vertices can still be available for use in k-dominating sets, even though the vertex

is disconnected in the reachability graph. Metrics for each reachability graph are

presented in Table 4.3.

kWh Edges Mean degree Min degree Max degree Density

10 7 758 978 426.716 0 1 883 0.047

15 12 065 776 663.575 0 2 358 0.073

20 16 927 686 930.962 1 3 074 0.102

30 28 776 480 1 582.604 3 4 801 0.174

40 41 709 348 2 293.865 6 6 020 0.252

Table 4.3: Reachability graphs characteristics

The connectivity of the graphs increases as the kWh reachability threshold in-

creases from 10 to 40 kWh, which is also observable in Figure 4.5 below. The

higher the range, the more vertices are reachable from any given vertex, and the

more edges are added to the graph. Hence, increasing the kWh range strictly

increases the degrees of the vertices and increases the density of the graph. This

effect is illustrated in Figure 4.5, which plots the estimated distribution density of

the degrees for each reachability graph. The figure shows that when the reacha-

bility threshold increases, then the distribution becomes less skewed and flattens;

compare, for instance, the distribution of 10 kWh which is left skewed, while 40

kWh follows a more uniform distribution.
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Figure 4.5: Degree distribution of reachability graph

There are several issues with the size of the reachability graph. Firstly, the size

of the graph represents a challenge when loading the graph into memory. This

problem can be partly solved by loading the graph as a sparse adjacency matrix

rather than a graph object. This is done using the SciPy package in Python. Sec-

ondly, performing computations on graphs of these sizes can be time-consuming.

This issue is addressed in the next chapter.

4.3 Vertex Domination

To satisfy the constraint that every non-charging station vertex is at most t kWh

units away from a charging station, one can construct a dominating set using

the reachability graphs. A dominating set is a set D ⊆ V (G) such that every

vertex v ∈ V (G) \ D is adjacent to at least one vertex in D. However, in the

case of this experiment, a dominating set is susceptible to large shortest path

deviations recuding the adoption of electric vehicles. Therefore, a k-dominating

set can be constructed. A k-dominating set, first coined by Flink and Jacobson
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in 1985 (Fink & Jacobson, 1985; Bakhshesh, Farshi, & Hasheminezhad, 2017),

is similar to a dominating set, except that each vertex v ∈ V (Gt
r) \ D must be

adjacent to at least k vertices in D. This means that a set D is k-dominating if

|{v ∈ V (Gt
r)\D : |N(v)∩D| < k}| = 0 (Gagarin & Corcoran, 2018). Where N(v)

represents the neighbors of vertex v, and k is the number of required neighbors in

D.

One weakness with the k-dominating set (and dominating set), for this applica-

tion, is that it does not guarantee that vertices in the dominating set are adjacent

to each other. Hence, charging stations are not guaranteed to be within the range

of each other. For instance, consider the graph presented in Figure 4.6, which is

dominated (k = 1) by red nodes. If each edge represents one battery capacity,

one can not successfully travel from vertex 2 to vertex 3, 6, 5, and 9.

Figure 4.6: 1-dominating set

This thesis employs two methods for optimally allocating charging stations. The

first is using the discussed k-dominating set, which might include isolated charging

stations. Secondly, a connected k-dominating set (CkDS) can be constructed. This

solves all problems in the k-dominating set, but the cardinality of the solution is

higher, at least for similar range thresholds. This is further elaborated in Sections

4.3.1 and 4.3.2 respectively.
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4.3.1 k-Dominating Set

Given a graph G(V,E), a set D ∈ V (G) is k-dominating if every vertex v ∈

V (G) \D is adjacent to at least k vertices in D. The minimal k-dominating set

γk(G) can be formulated using integer linear programming:

minimize
∑

v∈V (G)

xv (4.2)

subject to: ∑
v∈N(u)

xv ≥ (1− xu)k ∀ u ∈ V (G) (4.3)

xv ∈ {0, 1} ∀ v ∈ V (G) (4.4)

Where:

• xv is the decision variable, xv = 1 if xv is dominating

• V (G) is the set of vertices in G

• N(u) is the set of neighbors of a vertex u

• k is the threshold value for k-domination

The objective function (4.2) minimizes the total number of vertices present in the

dominating set D ⊆ V (G). Constraint (4.3) ensures that the neighborhood of

each vertex, N(v), contains at least k vertices where xv = 1. Constraint (4.5)

confines xv to a binary variable.

Finding γk(G) is known to be NP-hard. Hence, heuristics must be used for finding

solutions within a reasonable time frame. Corcoran and Gagarin (2018) employ an

algorithm named randomized k-dominating set, which is presented in Algorithm

4.3 below.

Line 3 defines δ′ based on the mean vertex degree,δ, and k. Line 4 computes the

probability p of a vertex being part of the dominating set. Line 5 instantiates
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an empty set A. Lines 6-7 iterate through all vertices in the graph and assign

vertices to A with probability p. Line 8 instantiates an empty set B. Lines 9-10

iterate through all vertices not in A and adds them into B if their neighborhood

in A is less than k. Line 11 defines D as the union between A and B. Because

the output of Algorithm 4.3 is not necessarily minimal, line 12 reduces the size of

D by employing Algorithm 4.4.

Algorithm 4.3 Randomized k-dominating set (Gagarin and Corcoran, 2018)

1: Input: A reachability graph Grt , a number k ∈ R

2: Output: A dominating set D

3: let δ′ = δ − k + 1

4: p = 1− 1
δ′√
bk−1(1+δ′)

// Calculate probability

5: A = ∅ // Instantiate empty set A

6: for each v ∈ V (Gtr) do

7: A← v, with probability p // Put v into A with probability p

8: B = ∅ // Instantiate empty set B

9: for each v ∈ V (Gtr) \A do

10: if |N(v) ∩A| < k then B ← v

11: D = A ∪B

12: Perform minimal k-dominating set algorithm to reduce |D|

13: Return D // Return a k-dominating set D

Line 3 of Algorithm 4.4 below sorts the vertices in the k-dominating solution

by their number of nondominating neighbors in nondecreasing order. Lines 4-5

iterate through each vertex v, checks if D is still k-dominating without v. If so,

line 6 removes v from D.
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Algorithm 4.4 Minimal k-dominating set (Gagarin and Corcoran, 2018)

1: Input: A complete reachability graph Gr
t , a dominating set D ⊆ V (G)

2: Output: A minimal k-dominating set D

3: L = (v1, ..., v|D|) : v ∈ D, |N(vi) \D| ≤ |N(vi+1) \D|

4: for each v ∈ L do // For each vertex ordered by neighbors not in D

5: if D \ {vi} is-k-dominating set of Gr
t then

6: D = D \ vi // {vi} is redundant

7: Return D

Line 7 checks if the set is k-dominating in the given graph, with a domination

condition of k. This algorithm iterates through every vertex v ∈ V (G) of the

input graph and counts the number the vertex has in D. If a vertex has less than

k neighbors in D, e.g. |N(v)∩D| < k, the algorithm breaks the loop and returns

False. Hence, when the input solution D is k-dominating, the algorithm must

iterate through all vertices, which is time-consuming.

4.3.2 Connected k-Dominating Set

Given a graph G(V,E), a set D ∈ V (G) is connected k-dominating if every vertex

v ∈ V (G) \ D is adjacent to at least k vertices, and the induced subgraph from

D is connected (Hansberg, 2010). The mathematical formulation of the minimal

CkDS is very similar to the k-dominating set formulation, with one additional

constraint:
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minimize
∑

v∈V (G)

xv (4.5)

subject to: ∑
v∈N(u)

xv ≥ (1− xu)k ∀ u ∈ V (G) (4.6)

∑
v∈N(u)

xv ≥ xu ∀ u ∈ V (G) (4.7)

xv ∈ {0, 1} ∀ v ∈ V (G) (4.8)

Where:

• All variables are the same as in 4.2 to 4.4

Constraint (4.7) ensures that all nodes are connected, and thus ensures connec-

tivity in the dominating set D. Constraint (4.5) confines xv to a binary variable.

Finding a minimum connected k-dominating set is NP-hard (B. Liu et al., 2016).

Therefore, to find a feasible solution, Algorithm 4.5 is to be used. Algorithm 4.5

is a greedy algorithm inspired by Fu et al. (2016), but adjusted to construct a

connected k-dominating set instead of a connected dominating set (Fu, Han, Yang,

& Jhang, 2016).

Algorithm 4.5 categorize the vertices into four different colors. White vertices

are vertices that are uncovered, have no neighbors in the dominating set, and

are not part of the dominating set. Red vertices are those that are part of the

dominating set. Yellow vertices are candidate vertices, which must be adjacent

to red vertices. Green vertices are covered vertices which must be adjacent to at

least k red vertices.

Line 3 instantiates an empty set colors. Lines 4-5 assign all vertices in colors as

white. Line 6-7 selects the vertex in V (G) with the highest degree, and colors

it red. Lines 8-9 assigns all neighbors of v as candidate vertices, and therefore
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the color yellow. Lines 10-24 are repeated until a connected k-dominating set

is found. Lines 11-13 check if any remaining vertices are yellow and adjacent to

only green and red vertices. If so, all remaining vertices are colored red, as they

must be part of the connected k-dominating set. Lines 14-15 select the yellow

vertex with most yellow and white neighbors, and color it red. Lines 16-20 iterate

through the neighbors of the latest red vertex and color them yellow if the vertex

was previously white, or green if it has at least k red neighbors. Lines 21-24 create

an empty set D and inserts it all the red vertices from colors.

Algorithm 4.5 Greedy connected k-dominating set, G-CkDS

1: Input: A graph G, an integer k ≥ 1

2: Output: A connected k-dominating set

3: color = ∅ // Instantiate empty set of colors

4: for each v ∈ V (G) do

5: colorv := white

6: select v ∈ V (G) with the highest degree

7: colorv := red // Color v red (dominating)

8: for each u ∈ N(v) do

9: coloru := yellow // Set each neighbor of v as candidate vertex

10: while any white or yellow vertices exists do

11: if remaining vertices are yellow and adjacent to only green and red vertices then

12: color remaining vertices red

13: break // Break while-loop

14: select yellow vertex v ∈ V (G), with most yellow and white neighbors.

15: colorv := red // Color v red

16: for each u ∈ N(v) do

17: if coloru = white then // If coloru is white

18: coloru := yellow // Set coloru yellow

19: if u has at least k red neighbors then

20: coloru := green // u is k-dominated, color u green

21: D = ∅ // Instantiate empty dominating set D

22: for each v ∈ V (G) do // Put all red vertices in D

23: if colorsv = red then

24: D ← v

25: Return D // Return CkDS
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Figure 4.7: G-CkDS iteration, k = 2

An example of an execution of the G-CkDS is shown in Figure 4.7, with k = 2.

In iteration 0, the graph is instantiated. Then, vertex 3 is colored red because

it has the highest degree and lowest index value. Then, all of 3’s neighbors are

colored yellow. Among the yellow vertices, vertex 4 is now colored red, and its

non- yellow neighbors colored yellow. Because vertices 6 and 9 are both adjacent

to at least two red vertices (3 and 4), they are colored green. This process is

repeated until iteration 5, when vertex 6 is colored red because it is adjacent to

yellow vertex 5. The dominating set is in this case also a minimum cardinality

connected k-dominating set, γ2(G). However, it is worth noting that the G-CkDS

does not guarantee for an optimal solution, but only a [greedy] feasible one.

37

1031539GRA 19703



Algorithm 4.6 Prune greedy connected k-dominating set, PGCkDS

1: Input: A graph G, a set D, an integer k ≥ 1

2: Output: A pruned connected k-dominating set

3: Sort vertices in D in ascending order of degree

4: for each v ∈ D do

5: if D \ v is connected k-dominating set then

6: D = D \ v

7: Return D

To improve the greedy solution by reducing its cardinality, Algorithm 4.6 is ap-

plied. Algorithm 4.6 prunes the solution by iterating through each vertex v ∈ D

and checking if D \ v is still a connected k-dominating set. If so, then the vertex

v is removed from the dominating set D.

5 Results

This section presents the findings from both the k-dominating set and connected

k-dominating set algorithms, and compares a sample of the two variations. For

the sake of this thesis, a dominating set is found for each reachability graph, with

k ranging from 1 to 4, meaning a total of 12 sets for each variation. Algorithms

are executed on a computer with 16 GB of RAM and a Ryzen 5 3600 - 3.6 GHz

CPU.

5.1 k-Dominating Set

Computing 12 k-dominating sets took 10.5 hours in total, with an average com-

putation time of 49 minutes per set. Higher values of k and range would lead to

higher computation time. The reason for the high computation time is due to the

reduction in the cardinality of the sets, performed by Algorithm 4.4.

Table 5.1 below shows the kWh distance metrics for each proposed solution. Not

surprisingly, the sets are strictly decreasing with range and increasing with k.
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(range, k) Mean dist. Median dist. Min dist. |D|

(10, 1) 5.449 5.781 0.0014 531

(10, 2) 5.323 5.588 0.0014 914

(10, 3) 5.348 5.604 0.0009 1293

(10, 4) 5.394 5.722 0.0009 1589

(15, 1) 8.449 9.084 0.0015 340

(15, 2) 8.179 8.637 0.0013 621

(15, 3) 8.215 8.820 0.0013 861

(15, 4) 8.127 8.574 0.0013 1084

(20, 1) 10.922 11.476 0.0020 237

(20, 2) 11.167 11.657 0.0016 443

(20, 3) 11.213 11.904 0.0015 635

(20, 4) 10.786 11.233 0.0011 807

Table 5.1: kDS: kWh distances to charging stations for proposed solutions

Metrics for the number of neighbors for nodes not in the k-dominating sets, |N(v)∩

D|, are presented in Table 5.2 below.
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(range, k) Mean nbrs. Median nbrs. St.dev. Max nbrs.

(10 [20], 1) 5.870 6 2.246 12

(10 [20], 2) 10.358 10 3.565 20

(10 [20], 3) 14.996 14 4.974 30

(10 [20], 4) 19.783 19 6.512 36

(15 [30], 1) 6.977 6 2.656 14

(15 [30], 2) 12.472 12 3.587 21

(15 [30], 3) 18.455 18 5.723 33

(15 [30], 4) 23.819 23 7.333 41

(20 [40], 1) 6.992 7 2.359 12

(20 [40], 2) 13.262 13 3.366 21

(20 [40], 3) 19.332 19 5.250 34

(20 [40], 4) 26.146 26 7.372 42

Table 5.2: kDS: Number of charging stations within range of each vertex

As observable in Figure 5.1 below, the relationship between the range and solu-

tion cardinality is seemingly negatively non- linear. Consider, for instance, k = 2,

whereas the range increases, the solution size decreases logarithmically. Con-

versely, the data suggests a linear relationship within each range as k increases.
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Figure 5.1: kDS: solution size and k by range

5.2 Connected k-Dominating Set

Computing 12 connected k-dominating sets took 12.6 hours in total (without

pruning), with an average computation time of 62 minutes. In this case, the

algorithm is severely slowed down by line 12 of the G-CkDS, where the yellow

vertex with most yellow and white neighbors is selected. Higher values of k and

range would generally lead to higher computation time. However, the computation

time across k for each range was very similar.

The mean, median, minimum, and maximum kWh distances for each v ∈ V (G) \

D are presented in Table 5.3. Naturally, the higher the range, the lower the

required number of charging stations. Conversely, the higher value of k, the

higher the number of required charging stations. Minimum distance is very low

due to vertices in high-density clusters in the graph, which allows for the vertices

being extremely close to charging stations. On the other hand, the maximum

distance is always equal to the range requirement.
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On average, Algorithm 4.6 reduced the cardinality of each set by 7%, with larger

reductions on higher values of k, and smaller reductions on higher ranges. This is

presented in columns |D1| and |D2|.

(range, k) Mean dist. Median dist. Min dist. |D|1 |D|2

(20, 1) 11.691 12.447 0.0030 300 296

(20, 2) 11.526 12.316 0.0022 473 445

(20, 3) 11.538 12.242 0.0019 670 614

(20, 4) 11.558 12.283 0.0016 883 804

(30, 1) 18.270 19.737 0.0024 160 157

(30, 2) 18.272 20.092 0.0024 258 242

(30, 3) 18.427 20.228 0.0024 385 347

(30, 4) 18.344 20.226 0.0022 509 455

(40, 1) 24.563 26.106 0.0026 99 99

(40, 2) 24.637 26.804 0.0024 164 151

(40, 3) 25.067 27.430 0.0010 245 218

(40, 4) 24.842 27.174 0.0010 328 293

Table 5.3: CkDS: kWh distances to charging stations for proposed solutions

Additionally, some metrics for the charging stations within range, |N(v)∩D|, are

computed for each v ∈ V (G)\D. These characteristics are presented in Table 5.4.

As expected, the mean number of available charging stations within the range of

each vertex increases as k increases.
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(range, k) Mean nbrs. Median nbrs. St.dev. Max nbrs.

(20, 1) 2.949 3 0.978 6

(20, 2) 4.354 4 1.321 9

(20, 3) 6.038 6 1.901 13

(20, 4) 8.147 8 2.627 17

(30, 1) 3.079 3 1.058 6

(30, 2) 4.562 4 1.520 9

(30, 3) 6.800 6 2.199 15

(30, 4) 8.726 8 2.678 18

(40, 1) 3.353 3 1.208 7

(40, 2) 4.512 4 1.607 11

(40, 3) 6.391 6 2.317 15

(40, 4) 8.768 8 3.263 20

Table 5.4: CkDS: Number of charging stations within range of each vertex

Figure 5.2 below suggests a non- linear relationship between changes in range and

solution size for the computed values. The cardinality of the CkDS is seemingly

decreasing more rapidly than that of the k-dominating set.
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Figure 5.2: CkDS: solution size and k by range

5.3 Comparison

Due to the reachability graph threshold, the connected k-dominating sets had

much lower cardinality than the k-dominating sets. Both the k-dominating set

and the connected k-dominating set guarantee for reachability across the entire

network. However, while the connected k-dominating set does not guarantee for

round-trip reachability, the k-dominating set with half-range reachability graphs

does guarantee for drivers to be able to drive back and forth between locations.

Yet, this thesis assumes that drivers can charge at the target location and that

reachability is satisfied with one-way trips. For instance, consider the (10, 2) and

(20, 2) kDS and CkDS respectively. Both these sets try to satisfy full reachability

across the road network for EVs with 20 kWh battery capacity. The kDS solution

has 914 vertices, while the CkDS has 445. However, as presented in Table 5.5

below, the k-dominating set with half-range reachability graphs allocates too many

charging stations, as there are on average more than twice the amount of adjacent
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charging stations present for each vertex.

(Range, k) Mean nbrs. Median nbrs. St.dev. Max nbrs.

(10, 2) kDS 10.358 10 3.565 20

(20, 2) CkDS 4.364 4 1.324 9

Table 5.5: Comparison of neighbors in kDS10,2 and CkDS20,2

Both dominating sets are represented in Figure 5.3 below, where the dominat-

ing vertices are represented as red. The difference in cardinality between both

solutions is clearly represented here.

Figure 5.3: kDS10,2 (left) and CkDS20,2 (right)

The findings from these experiments show that for satisfying full reachability in a

road network, given the current assumptions, a connected k-dominating set pro-

vides a more desirable solution as both connectivity and reachability are achieved

while also providing a lower cardinality solution.
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6 Discussion

This section discusses the implications of the findings from Section 5.3, acknowl-

edge certain weaknesses of the research conducted in the thesis, and points to

further research that can be viable for future applications.

When allocating charging stations, using real world data is not necessarily suffi-

cient. The reason for this is that real world travel charging demand might not

be representative for future charging demand as the means of transportation elec-

trifies. Hence, one aspect of the allocation process must take into account the

minimum required infrastructure for facilitating feasible trips and reachability.

The connected k-dominating set satisfies the issue of reachability without taking

into account the capacity and demand present at each suggested location, which

is an aspect that should also be considered in traffic data or simulations. It is

also important to note that there is a degree of uncertainty around the optimality

of the greedy solutions, and more advanced heuristics can- and should be applied

for producing more feasible solutions.

When analyzing the current system, given the reachability thresholds employed

in this thesis, it is clear that the current state of the charging station locations

is subpar with the proposed solution. As was discussed in Section 4.1, the cur-

rent required battery capacity for having at least 1 charging station at any given

vertex is 98 kWh. However, it is worth noting that this range also accounts for

remote locations. Nonetheless, this experiment requires the whole country to be

accessible, which yields the current system unfeasible.

For instance, consider the connected k-dominating set CkDS20,2 which has a car-

dinality of 445 vertices. This number is reasonably close to the extrapolated

461 currently existing charging station locations, which makes this set a fairly

comparable sample. Figure 6.5 illustrates the CkDS20,2 solution and the cur-

rent system. The main observation concerning the current system is that most

charging stations are spatially distributed in clusters around urban areas, while
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charging stations outside the urban areas are distributed seemingly at random

along the roads. Conversely, the CkDS20,2 solution allocates charging stations

systematically along the roads without any obvious clusters. It is also clear that

the current system is exceptionally inadequate in non- urban areas like the north-

ern and western parts of the country. Increasing the range also increases the

spacing between each charging station, thus reducing the size of the solution.

Figure 6.1: CkDS20,2 (left) and current system (right)

By performing a Dijkstra search for each tested range4, the number of neighboring

charging stations in the current system for each vertex can be computed. These

findings are presented in Table 6.1 below, which shows that the minimum number

of adjacent charging stations remains zero across all tested ranges.

Category Mean nbrs. Median nbrs. Min nbrs. Max nbrs. St.dev.

20 kWh baseline 21.219 12 0 86 24.084

30 kWh baseline 36.047 18 0 118 37.538

40 kWh baseline 51.391 26 0 144 48.043

Table 6.1: Baseline neighbors for range 20, 30 and 40 kWh

420, 30 and 40 kWh
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By using the reachability graphs constructed in Section 4.2, one can compute

the coverage of the current system for different battery capacities. Figure 6.2

below maps all vertices in the road network and colors them based on how many

charging stations exist within 20 kWh battery capacity. Green vertices have at

least 4 charging stations within 20 kWh range, while red vertices have 0. It is

evident that the southern parts of the country, especially along the coast, and

other urban areas like Trondheim, are well covered with this battery capacity.

The northern parts of the country and the mountain ranges in the middle of the

country have especially low coverage.

Figure 6.2: Number of charging station within 20 kWh battery capacity

As the battery capacity increases to 30 kWh in Figure 6.3, the coverage increases

across the country. However, the problem of coverage in the north and the moun-

tain range persist.
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Figure 6.3: Number of charging station within 30 kWh battery capacity

Lastly, when the battery capacity is 40 kWh, as illustrated in Figure 6.4, the

mountain ranges in the southern and middle parts of the country are covered.

However, many parts of the north have either low or no coverage. These findings

emphasize the need of efficient and strategical locating of future fast charging

stations, so that more parts of the network can gain coverage.
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Figure 6.4: Number of charging station within 40 kWh battery capacity

Although no specific metric is used to quantify the deviation from the CkDS20,2

solution and the current system, one can get a better overview of the differences in

solutions by visualizing the intersection between both sets. Figure 6.5 illustrates

CkDS20,2 by red vertices, and CkDS20,2 ∩ CS, where CS is the set containing

currently existing charging station locations, by blue vertices. From this figure,

it is evident that the current system is far from adequate as the number of in-

tersecting nodes is 22. It should be noted that because the optimality of the

proposed solution is unknown, this intersection does not necessarily represent the

intersection with a global optimal solution.
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Figure 6.5: CkDS20,2 and current system intersection

Which range and k to use when choosing allocation criteria comes down to the

policy and decision makers. However, changing these variables have different

upsides and downsides associated with them. For instance, a high range will

require less infrastructure development (see Figure 5.2) and therefore lower the

expenses of the government, municipalities, and companies. Albeit, a higher range

moves the transition costs to the consumer because the feasible battery capacity

for long distance travel increases, and thus also the price of a vehicle. This can

arguably slow the electrification of the transportation sector due to economic

barriers to entry. The value for k can also indirectly affect the adoption of electric
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vehicles, as a lower value for k can decrease the feasibility of performing long-

distance travel due to charging-related detours. A higher k reduces the risk of

detours, but increases the required infrastructure.

To exemplify the statements made in the previous paragraph, assume that pol-

icymakers want to have drivers to choose between 2, meaning k = 2 charging

stations within the available range. They are contemplating which range to use

as the minimum range threshold, either 20, 30, or 40 kWh. As is presented in fig-

ure 6.6 and figure 6.5, the spacing between the charging stations increases as the

range threshold increases. Common for all dominating sets is that charging sta-

tions are placed in areas where electricity infrastructure is not necessarily present,

this is especially visible in Finnmarksvidda. Thus, in order to strictly satisfy a

CkDS charging station allocation, infrastructure development would have to hap-

pen in wildlife areas. However, the necessity of strictly satisfying these conditions

in these very remote areas can be questioned depending on the traffic volume.

30 kWh, k = 2 40 kWh, k = 2

Figure 6.6: Comparison of 30 and 40 kWh locations for k = 2

The current Norwegian government has proposed a 2030 climate action plan

which, among other things, will rapidly develop country-wide charging infras-
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tructure using public and market-based solutions (Norwegian Ministry of Climate

and Environment, 2021). This thesis’ framework and methodologies can help de-

cision makers successfully plan for where charging stations should be developed

to satisfy full reachability given a certain minimum battery capacity and value for

k. As argued by Figenbaum and Nordbakke, and mentioned in Section 1, limi-

tations on long distance travel with electric vehicles is one of the last hurdles for

mass adoption (Figenbaum, 2019). Thus, a successful deployment of fast charging

stations for this exact reason must be a requirement of the government’s climate

action plan. Further development of charging infrastructure is required in the

whole country, but especially in the north of Norway.

6.1 Further Research

The assumptions made place certain limits on the feasibility of the proposed

solutions and the methodological framework applied in this thesis.

Firstly, the calculated energy consumption for mobility is based on aggregated

data from a vehicle fleet in Japan. While this data certainly has its strengths,

such as representing the average energy consumption across different vehicle types,

a definite weakness is that it does not account for the Nordic climate and its ef-

fect on battery efficiency. For this reason, weather data has not been included in

the experiments, as it is already indirectly included in the energy consumption

parameters. Hence, a solution which uses battery consumption based off Nordic

climate will most likely be able to construct a more representative solution. Alter-

natively, the temperatures for each vertex location can be retrieved for even more

accurate energy consumption estimates. This will be especially important for the

northernmost and high altitude regions, as low temperatures are more likely to

have a significant impact on the battery capacity.

Secondly, the proposed methodology for allocating charging stations does not

account for the charging demand at each candidate location. Therefore, the pro-

posed solutions are only indicative of where at least one charging station should
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be located. For instance, if origin-destination data is available or charging demand

along paths can somehow be obtained through estimation or simulations, one op-

tion can be to employ the CFRLM from Section 2.2 with the CkDS vertices as

candidate locations.

Lastly, as previously mentioned in this section, there is uncertainty regarding

the optimality of the proposed solutions as this thesis’ experiments employed a

deterministic greedy algorithm, meaning the proposed solution can be located in

a local optima rather than a global one. Hence, one improvement point is to use

more advanced heuristics for constructing more desirable solutions.

7 Conclusion

This thesis has explored how an optimal allocation of charging stations can be

performed in Norway for 20, 30, and 40 kWh battery capacity using data con-

taining estimated battery consumption and elevation. The experiment finds that

for guaranteeing reachability across the entire road network, the use of connected

k-dominating sets is better suited than a k-dominating set. This is because the

connected k-dominating set guarantees that all vertices, even those in the domi-

nating set, are adjacent to at least one charging station. A connected k-dominating

set can be found using the Greedy Connected k-Dominating Set algorithm, which

can find a deterministic solution on large graphs within a reasonable time frame.

The optimality of this solution is unknown, and additional heuristics can and

should be employed or added to improve the solution size.

Furthermore, a comparison of the current charging station, disregarding the pro-

prietary charging infrastructure, and the proposed solution with the minimum

range requirement show that there are large improvements to be made in infras-

tructure development across the entire country. However, the most notable gaps

in coverage are present in non- urban areas, with most coverage lacking in the

northern parts of the country.
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Although moving existing charging stations is not an option, these findings can

help national and regional policymakers determine where to prioritize the future

development of charging infrastructure so that reachability is satisfied or maxi-

mized. In turn, this can increase the feasibility of owning an electric vehicle and

thus push the adoption rate forward.
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Appendices

A Link to source data and GitHub repository

Data used for extracting the road network can be retrieved from GeoNorge through

the following URL:

https://kartkatalog.geonorge.no/metadata/statens-vegvesen/nvdb-ruteplan

-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313

The source code of this thesis is located in the author’s GitHub repository:

https://github.com/samuelberntzen/Optimal-Allocation-of-Electric-Vehicle

-Charging-Stations-A-case-study-of-the-Norwegian-road-network
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