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ABSTRACT 

We study Over-The-Counter (OTC) market frictions in the convertible bond arbitrage strategy. 

using noise and intermediary risk factors, in the US. We analyze two hedge fund indices, the 

convertible arbitrage indices of Credit Suisse (CSFB) and Hedge Fund Research (HFRI), alongside 

a simulated convertible arbitrage portfolio based on historical data. Using multiple regression 

models, we find that the strategy has negative exposure towards noise risk and positive exposure 

towards intermediary risk. Our results are robust to including standard risk factors. We conclude 

that noise and intermediary risk factors explain part of convertible arbitrage returns in the US. 

 

 

This thesis is a part of the MSc programme at BI Norwegian Business 

School. The school takes no responsibility for the methods used, results found, 

or conclusions drawn.
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1.0 Introduction 

Convertible bonds are fixed-income debt securities issued by companies. This type of 

bond yields interest payments, in addition to the opportunity to convert the bond into 

equity. For this reason, convertible bonds are usually referred to as a corporate bond 

with a built-in call option on the issuer company’s equity (N. Calamos, 2003). The 

conversion feature makes these securities more complex and difficult to value 

correctly. They are often issued at prices below their model-implied prices. 

 
Corporate finance theory leans towards a multitude of reasons for firms to issue 

convertible debt. On one hand, issuing convertible bonds may mitigate some financial 

costs that would not be possible with common debt or equity. On the other hand, the 

demand side from investors and hedge funds may drive up the price. This leads to 

cheaper access to capital for the issuer (Dutordoir et al., 2014). As opposed to equities 

and regular bonds, convertible bonds can be issued in a short time. The time of 

issuance can take as little as one day via an underwriting process, which makes them 

beneficial for highly illiquid firms (Pedersen, 2015). 

 

Convertible bonds have existed since the 1800 century and have historically been a 

popular source of financing for growth companies, due to their low yield compared to 

other debt sources. Since then, the convertible bond market has developed vastly and 

created a range of different convertible securities, such as contingent convertible 

bonds and bonds with different built-in warrants (N. Calamos, 2003). As of 

December 2019, the convertible bond market was valued at 336 billion USD. The US 

dominates the market with a 63.2% market share, which constitutes 212 billion USD 

(J. P. Calamos, 2020). The market has historically been dominated by hedge funds. 

Brown et al. (2012), referenced in Dutordoir et al. (2014), find that around 75% of 

newly issued convertible bonds are purchased by convertible arbitrage hedge funds. 

The bonds trade in Over-The-Counter (OTC) markets and bond prices reflect 

financial frictions. Due to the poor liquidity, these bonds might be underpriced for 

long periods before being corrected (Mitchell et al., 2007). 
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1.1 Arbitrage strategy 
The mispricing of convertible bonds has led to the opportunity of the convertible 

bond arbitrage strategy (convertible arbitrage). Arbitrageurs seek to benefit from 

systematic underpricing between a convertible bond and its model-implied value. The 

arbitrageur usually buys underpriced convertible bonds and takes offsetting positions 

in other assets, attempting to offset any risk. This is usually done by combining a long 

position in the convertible bond and a short position in the underlying stock or other 

offsetting assets (Mitchell et al., 2007). The offsetting positions are adjusted over 

time and, theoretically, result in a riskless abnormal return for the arbitrageur. 

Convertible arbitrage has historically been a popular strategy, especially among 

hedge funds being able to apply high leverage to increase the strategy’s return. 

 

When arbitrageurs perform this strategy, an appropriate hedge ratio is needed to 

determine the relative quantity between the two assets. This ratio is determined by the 

sensitivity of the price of a convertible bond to changes in the price of the stock, 

commonly known as delta. The delta will change whenever the stock price changes, 

and therefore the arbitrageurs must continuously adjust their positions in order to be 

delta-hedged (N. Calamos, 2003). 

 

Occasionally, arbitrageurs reverse the strategy by shorting the convertible bond and 

buying the underlying stock. However, this is rarely the case because convertible 

bonds historically have been underpriced. Furthermore, less liquid assets, such as 

convertible bonds, usually have higher short lending fees reducing the return potential 

(Pedersen, 2015). Arbitrageurs would also face lending fees when shorting the stock, 

but these are significantly lower than the lending fees for bonds. Pedersen, (2015) 

states that “for about 90% of the stocks in the United States, the loan fee is small, 

typically around 0.10–0.20% annualized”. 
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1.2 Risk factors 
Previous literature finds systematic exposure to asset-based risk factors. However, 

our thesis will focus on the strategy’s return in light of two more recent market-based 

risk factors, noise measure (noise factor) and intermediary capital risk factor 

(intermediary factor). The noise factor reflects illiquidity by exploiting the connection 

between arbitrage capital in the market and observed pricing error in US Treasury 

bonds (Hu et al., 2013). Hu et al. state that “the shortage of arbitrage capital allows 

yields to deviate more freely from the curve, resulting in more noise in prices”. 

  

Changes in the noise factor have a significant impact on hedge fund returns. Due to 

the strong liquidity and presence of credit in the US Treasury market, the noise factor 

provides a good proxy for the overall market liquidity. Furthermore, the noise factor 

tends to increase sharply during periods of financial distress (Hu et al., 2013). We 

argue that these properties of the noise factor will capture the main risk exposures of 

convertible arbitrage, since the strategy historically has shown bad performance 

during financial crises and is highly sensitive to market liquidity (Mitchell et al., 

2007). 

 

The intermediary risk factor reflects a proxy for intermediaries’ marginal value of 

wealth. The economic intuition is that assets paying off in bad times are preferred, 

while assets paying off in good times must offer higher expected returns. He et al. 

find that an extension of CAPM including the intermediary risk factor successfully 

explains return differences across a variety of asset classes. They use intermediary 

risk to price multiple OTC assets, such as CDS, swaps and derivatives, but they do 

not investigate convertible bonds. This means that financial intermediaries have a 

central role in pricing of OTC-traded securities, especially in illiquid and complex 

markets (He et al., 2017). As both frictions are present in the convertible bond 

market, we investigate whether the intermediary risk has an effect on convertible 

bond prices. 
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1.3 Research question 
To summarize, the noise factor captures illiquidity in a new way for the US Treasury 

bond market. Due to the importance of this market, illiquidity will often spill over to 

other markets (Hu et al., 2013). Furthermore, since convertible bonds are traded over 

the counter, intermediaries play a strong role in the efficiencies of these markets. We 

therefore hypothesize whether the noise- and the intermediary risk factor can capture 

the illiquidity and market inefficiency of the convertible bond market. In this thesis 

we will examine the following research question: 

 

“Do noise and intermediary risk factors explain convertible bond arbitrage returns in the 

US?” 

 

We analyze the performance of two convertible arbitrage hedge fund indices using 

the noise and intermediary risk factors. Since hedge funds report their own 

performance, this can lead to multiple sources of bias (Pedersen, 2015). Therefore, 

our analysis also includes multiple simulated arbitrage portfolios using historical data, 

in order to work around hedge fund reporting bias. Our approach will focus on firms 

in the United States, which have issued about 50% or more of the convertible bonds 

globally in the last two decades (J. P. Calamos, 2020). By this delimitation, our 

research will not be affected by currencies and other international factors. Our sample 

period is from June 2002 to September 2020, due to the availability in TRACE. 

 

The opportunity to contribute to the empirical application of modern factor theory led 

to our motivation for writing this thesis. We want to take a new look at the 

convertible arbitrage and emphasize the pricing implications of frictions in OTC 

markets. Our thesis is important as it provides a better understanding of which risk 

factors drive the convertible arbitrage returns. Academics with research focus within 

fixed income securities, and especially factor theory and hedge fund performance, can 

benefit from our findings by an improved understanding of modern factors’ impact on 

convertible bond prices. Furthermore, hedge fund managers and other investors can 

benefit from our findings in order to more efficiently evaluate funds performing this 
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strategy. Finally, our thesis also helps policy makers better understand the relevant 

risk-factors in the convertible bond market. 

 

2.0 Literature Review 

In this section, we present relevant literature for our research. The section is split into 

four parts: fundamentals of arbitrage theory, risk factor theory, our new proposed risk 

factors, and research within convertible arbitrage. 

2.1 Arbitrage theory 
The foundation of our research topic is the financial concept of arbitrage. The 

common textbook arbitrage requires no capital, involves no risk, and generates 

positive returns. 

  

Ross (1976) pioneered the Arbitrage Pricing Theory (APT), which later has become 

the modern factor theory. APT assumes that markets are efficient, and that all returns 

are compensation for a set of risk factors investors are exposed to by holding the 

asset. These risk factors are systematic and cannot be diversified away. Therefore, in 

efficient markets investors will require compensation for risk exposure. APT further 

assumes that portfolios can be adjusted to eliminate idiosyncratic risk. This leaves the 

portfolio with only a set of systematic risk factors driving the returns (Roll & Ross, 

1980). 

 

In the absence of arbitrage, all excess returns must be compensation for exposure to 

systematic risk factors. Otherwise, there is an opportunity to create a riskless portfolio 

with positive returns and zero net investment (Lehmann & Modest, 1988). Shleifer & 

Vishny (1997) point out the difference between arbitrage in textbooks and reality. 

They highlight the fact that most arbitrages require capital, and typically involve risk. 

Furthermore, they find that there is a possibility of arbitrage becoming ineffective in 

extreme events when prices do not reflect the fundamentals. 
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Chen et al. (1986) develop a framework to analyze different systematic risk factors 

that drive stock returns. They analyze the effect of macroeconomic factors on stock 

returns with multiple significant factors. Sharpe (1992) uses risk factors to analyze 

the performance and risk exposure of funds. Fung & Hsieh (1997) further develop a 

framework to analyze the hedge fund industry using portfolios of hedge funds as a 

linear combination of synthetic hedge fund strategies. All the above-mentioned 

authors find that returns are driven by systematic risk factors. Their findings are 

vitally important for benchmarking and performance evaluation, and our research will 

be of similar importance within convertible bonds. 

2.2 Risk factors 
Duarte et al. (2007) investigate the risk factors of different fixed income arbitrage 

strategies by constructing monthly return indices. This includes swap spread, yield 

curve, mortgage, volatility, and capital structure (or credit) arbitrage. They conclude 

that fixed income arbitrage mostly generates positively skewed excess returns, which 

contradicts the common wisdom that arbitrage mostly generates small positive returns 

and experiences infrequent heavy losses. Furthermore, while most of the strategies 

attempt to remain market neutral, they still exhibit exposure to both equity- and bond 

risk factors. 

 

Ammann et al. (2010) examine the risk factors of US mutual funds that primarily 

invest in convertible bonds. They find evidence that returns are driven by equity 

factors using the Carhart four-factor model, as well as bond factors such as default-, 

high yield- and term structure risk. They disprove that implied volatility from the 

built-in call option is compensated for. 

 

Capocci & Hübner (2004) investigate hedge fund performance using various 

combinations of Carhart, Fama and French, and Agarwal and Naik models, in 

addition to a new factor reflecting hedge funds investing in emerging bond markets. 

Their research is based on hedge fund data from HFR- and MAR database from 1984 

to 2000. They find that convertible arbitrage hedge funds show positive exposure 

towards Fama three-factors and default risk, while negative exposure towards 
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government bond index. The estimated alpha for these funds is statistically significant 

and positive, indicating an arbitrage profit from the strategy. They find low market 

betas for convertible arbitrage funds between 0.05 and 0.08 in their models, when 

using a value-weighted portfolio of NYSE, Amex, and Nasdaq as benchmark. They 

do not take illiquidity into account in their models. In terms of financial crises, the 

authors only consider the Asian crisis in their sample period, where convertible bond 

arbitrage was unaffected. Long-Term Capital Management's large unwinding in 1998 

caused a major loss in the convertible bond market that is not covered by the authors 

(Asness et al., 2009). In our study, we use more recent data. Our analysis covers two 

major crises, the financial crisis in 2008 and the corona crisis in 2020, both having 

strong effects on the corporate- and convertible bond market. We also use more 

recent methodology in our analysis, by including lagged variables to better capture 

total factor exposure (Getmansky et al., 2004). 

2.3 New risk factors 
Hu et al. (2013) construct the noise factor based on the implied yield curve of bonds 

from CRSP Daily Treasury database. The factor is obtained by aggregating deviations 

of market yields to model yields across all bonds. They find that this measure of 

illiquidity spikes up during market crises, which suggests that the measure captures 

market-wide liquidity risk. In addition, they find that the measure can help explain 

cross-sectional variation in hedge fund returns and currency carry trade strategies. We 

consider the former to be highly relevant for our research in order to explain the 

convertible arbitrage returns. 

 

While Hu et al. (2013) construct the noise factor using Treasury bond yields, 

Goldberg & Nozawa (2021) construct a similar noise factor using corporate bond 

yields. Their factor is computed using weekly bond prices gathered from the Merrill 

Lynch U.S. Corporate Master database from 2002 to 2016. The use of noise builds on 

the research of Fontaine and Garcia (2012) and Hu et al. (2013), both studying noise 

in Treasury bonds and assuming it is driven by liquidity supply by dealers. Goldberg 

and Nozawa (2021) investigate the noise factor together with the quantity of liquidity 

provided in order to distinguish between an increase in noise due to reduced liquidity 
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supply or increased liquidity demand among investors. They find complementary 

results as Hu et al. (2013). However, due to the importance of the US Treasury bond 

market and the effect of illiquidity spillover to other markets, we will mainly focus on 

the noise factor from Hu et al. (2013) in our research. 

 

He et al. (2017) construct an intermediary capital ratio as a new risk factor capturing 

the change in wealth and shocks in the financial intermediary sector. They use an 

extended CAPM-model which includes exposure to intermediary capital risk. The 

data consists of historical lists of primary dealers from NY Fed’s website and their 

traded companies from CRSP/Compustat or Datastream. They find that assets’ 

exposure to changes in the capital ratio of primary dealers explain variation in 

expected excess returns across asset classes. All asset classes exhibit a positive risk 

premium from intermediary risk. This is relevant due to the structure of OTC markets 

where convertible bonds are traded. These markets are decentralized without a central 

exchange or broker. Instead, dealers act as market-makers by quoting their bid- and 

ask-prices, and thereby providing liquidity. This means that the liquidity in the 

convertible bond market is partly determined by dealers' capital and ability to act as 

market-makers, which affect convertible bond prices through liquidity premiums. 

Therefore, we will investigate the risk factor of He et al. (2017) in our research. 

2.4 Convertible arbitrage 
Similar to our approach, the paper of Hutchinson & Gallagher (2010) examines the 

simulation of a convertible arbitrage strategy in order to determine any risk factors. 

Their results show significant exposure to a multitude of equity factors, as well as 

default- and term structure risk. Liquidity and volatility factors were found to be non-

significant in any model. The liquidity risk factor is non-significant when using both 

Eckbo and Norli’s (2005) and Pastor and Stambaugh’s (2003) liquidity extensions for 

the Carhart four-factor model. Their replicated portfolio is based on a sample period 

from 1990 to 2002. The paper also examines convertible arbitrage hedge fund indices 

during the financial crisis in 2008, finding evidence of negative abnormal returns. 
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Agarwal et al. (2011) construct an issue-size-weighted buy-and-hedge strategy 

consisting of holding convertible bonds until maturity or the end of the sample 

period, while dynamically hedging equity risk. They run a regression over a 30-day 

rolling window when estimating the hedge ratio, which differs from our approach of 

calculating end-of-month hedge ratios. Their model also includes assumptions on 

transaction costs, as opposed to our model. Further, the article explores how the 

strategy is affected by the supply of convertible bonds. Their data consists of daily 

US-denominated convertible bonds provided by Albourne Partners in London with a 

sample period from 1993 to 2003. They find that both their computed buy-and-hedge- 

and buy-and-hold strategy explain large portions of the variation in return among 

hedge funds performing convertible arbitrage. In addition, they find that supply 

conditions are an essential factor affecting these returns. 

 

Choi et al. (2009) measure the changes in equity short interest activity near 

convertible bond issuance and investigate whether convertible arbitrage activity 

improves market liquidity and the efficiency of equity prices. The article uses a 

variety of proxies for liquidity and efficiency in their empirical analysis. Their initial 

sample includes all convertible bond issues by publicly traded firms in the US from 

July 1993 to May 2006. They find improved liquidity following convertible bond 

issuance, and that the improvement is systematically related to their proxy for 

convertible arbitrage activity. They do not find evidence of a systematic relationship 

between convertible arbitrage activity and stock return volatility and efficiency. 

However, they find evidence of average changes in volatility measures near bond 

issuance. 

 

There is a common consensus among research papers that convertible bond arbitrage 

is compensation for risk factors. However, we find some conflicting results as risk 

factors and their estimated impact vary in previous literature. Which equity factors 

generate the returns seems to be consistent across previous literature, but their relative 

impact varies. There are some variations in bond factors, but default- and term 

structure risk are commonly used. However, Amman et al. (2010) find that high yield 

exposure can replace term structure risk. Some models attempt to capture the 
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volatility exposure of the strategy. Hutchinson and Gallagher (2010) find no 

relationship between convertible arbitrage hedge funds and the Volatility Index. 

Amman et al. (2010) find the same for long-only convertible funds. They expand the 

analysis by including options as factors, but find no significant results. None of the 

above-mentioned research papers use risk factors to investigate the impact of OTC 

market frictions. Some authors use proxies to capture liquidity risk, but find poor 

estimates. The noise factor is a far more advanced estimate for liquidity opposed to 

previously available factors. This is due to the aggregated properties when 

constructing the noise factor on the entire yield curve, rather than parts of it (Hu et al. 

2013). Using this new factor, we will attempt to capture the illiquidity of the 

convertible arbitrage better than the articles mentioned above. 

  

Convertible bonds have been an interesting topic for researchers for a long time. A 

large portion of the literature focuses on pricing models or hedge funds using 

convertible bond-based strategies. Our research will mainly contribute to the second 

portion of the literature, by including noise and intermediary risk factors, and 

investigate whether they can explain the returns of convertible arbitrage in recent 

times. We find no research using the similar approach, but previous research provides 

us with a broad foundation for our analysis. Additionally, there are few research 

papers focusing on the strategy’s market frictions and performance in times of 

financial distress (Agarwal et al., 2011; Capocci & Hübner, 2004; Hutchinson & 

Gallagher, 2010). 

 

3.0 Data 

Now that we have presented the relevant literature, we present the data used in our 

model and how this data is handled. 

3.1 Model data 
We use the TRACE daily bond trades as our main dataset. This dataset covers more 

than 99% of bonds traded in the US that meet the FINRA reporting criterions 
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(FINRA, n.d.). We use the time series period available to us, starting in July 2002, 

and ending in September 2020. The dataset includes bond prices, trading dates, 

volumes, coupon rate, coupon type, maturity date and CUSIP identifiers. The TRACE 

dataset contains multiple biases in their reporting and must be cleaned. We use a 

script written by Qingyi (Freda) Song Drechsler (2017) to clean the dataset for 

cancelations, corrections, reversals and double countings. This gives a dataset with a 

total of 2.5 million trades, across 2550 unique bonds. 

3.2 Cleaning 
We do not have access to the TRACE dataset for linking bonds and stocks. Therefore, 

we use Eikon Refinitiv as a secondary source of data for the remaining bond 

variables, including coupon frequency, bond type, issue date, maturity status, 

conversion ratio, asset status, event date, conversion start and end date, underlying 

asset Eikon ID and parent ID. In addition, Eikon provides us with bond issuer’s daily 

stock prices from January 2000 to December 2020 and market capitalizations from 

January 2002 to December 2020. The stock prices are retrieved from two years before 

our sample period starts in order to estimate volatility. 

The bonds’ CUSIP ID reported in TRACE are used as an identifier for the bonds in 

Eikon. Bonds not found in both datasets are excluded. We remove any bond that has a 

different issuer than the underlying company. These bonds are usually a different type 

of structured debt instruments, issued by large financial institutions, that have 

different properties than standard convertible bonds (Huerga & Rodríguez-Monroy, 

2019). Other adjustments to the main dataset are listed below: 

- Remove bonds where the issuer’s stock or the bond itself is denominated in 

non-USD or unknown currencies to avoid currency hedging. 

- Remove bonds with negative time to maturity. 

- Remove transactions with volume less than 25000, as we consider these 

positions too small for institutional investors. 

- Remove bonds that have maturity status other than matured, issued, called, 

defaulted, or converted. 

- Remove bonds with coupon types other than zero or fixed. 
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- Adjust all data to end-of-month date format. 

- Replace missing dividends with 0, assuming no dividend payout if data is not 

available. 

- Remove bonds with less than three months to maturity. 

After cleaning the dataset, we are left with 602 unique convertible bonds. We find 

some bonds to be traded after their reported event date in Eikon. We set a new event 

date for these bonds to be one month after their last observed trade date. As 

mentioned earlier, TRACE is susceptible to misquoting of bond prices. We remove 

transactions outside the interval of 0.5 to 99.5 percentile of prices in order to decrease 

the impact from these. 

We present summary statistics of our final bond sample. Table 1 gives an overview of 

the mean statistics, including price reported in TRACE, transaction volume, trade 

observations per bond, annual coupon rate and time from issue until maturity. In 

appendix 1, we provide similar tables for median and standard deviation of the 

sample. 

 

Sample period # Bonds # Issued 

bonds 

Price ($) Volume 

($M) 

# Trades 

per bond 

Coupon 

rate (%) 

Time to 

maturity 

(year) 

Mean 

All 602 595 110.44 0.73 2777.38 2.91 8.76 

2002-2005 18 32 107.59 2.20 2469.10 3.01 20.92 

2006-2010 88 48 102.10 1.05 6499.42 3.11 20.75 

2011-2015 225 234 108.99 0.70 3726.79 3.08 7.22 

2016-2020 522 267 112.55 0.66 1548.13 2.74 6.21 

Table 1: Summary statistics of sample. 
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3.3 Risk-free rate 

We use the overnight index swap for the US (OISUS) as a proxy for the risk-free rate. 

Due to the liquidity and safety attributes of Treasury bonds, often referred to as 

Treasury convenience yield, we consider Treasury bonds to be too low as a proxy for 

the risk-free rate. We follow Hull and White and use the OISUS-rate as risk-free rate 

for this purpose (Hull & White, 2012). The data for the OISUS yield curve (1M-30Y) 

is gathered from WRDS, and we fill in with data from Bloomberg wherever WRDS 

have missing data. 

3.4 Risk factors 

We use Fama-French’s website1 to retrieve the equity factors Small Minus Big 

(SMB) and High Minus Low (HML). From AQR’s website2, we retrieve the 

Momentum (MOM) factor and AQR’s version of the High Minus Low (HML_AQR) 

factor. For the rest of this thesis, we only use AQR’s version of the HML factor, as it 

performs better in our statistical models. 

Since the default- and term structure risk factors are not publicly available, we 

reconstruct these factors using Ilmanen’s methodology (Ilmanen, 1996), based on 

Fama-French (1993). For the default (DEF) factor, we use the return difference 

between long-term corporate bonds and long-term Treasuries. The term structure 

(TERM) factor is constructed as long-term Treasuries minus short-term Treasuries. 

We use Bloomberg Barclays US Treasury 10+ year total return index as long-term 

Treasuries, Bloomberg Barclays US Treasury 1-3 year total return index as short-term 

Treasuries and Bloomberg Barclays US Corporate 10+ year total return as long-term 

corporate bonds. All these indices are retrieved from Bloomberg (Bloomberg L.P., 

n.d.). 

 

 
1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
2 https://www.aqr.com/Insights/Datasets 
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We retrieve the noise and the intermediary risk factors from the authors’ webpages3. 

The first dataset includes daily observations of the noise factor from January 1987 to 

December 2020. We construct a monthly noise factor as the first difference of the 

total noise each month (Hu et al., 2013). The second dataset includes monthly 

observations of four intermediary-related factors from January 1970 to December 

2020. We only use the risk factor produced as the monthly change in capital ratio for 

dealers (He et al., 2017). 

The two convertible arbitrage hedge fund indices, CSFB and HFRI, as well as the 

Russell 3000 index are retrieved from Bloomberg. Similar to Hutchinson & Gallagher 

(2010), we use the Russell 3000 index as our market factor. Russell 3000 is an equal-

weighted index consisting of the 3000 largest US traded stocks based on market 

capitalizations (Bloomberg L.P., n.d.). 90.7% of convertible bonds are issued by 

companies that are B-rated, lower or unrated (J. P. Calamos, 2020). Russell 3000 

represents the broad US economy and companies with lower ratings than the 

companies represented in S&P 500 and Dow Jones. 

3.5 Hedge fund data 

Preqin is a data provider for alternative asset classes and covers fund performance 

data on 24000 funds. It collects data on hedge funds, as well as other types of 

alternative funds (Preqin, n.d.). We retrieve data on monthly return for 49 convertible 

arbitrage hedge funds operating in North America. 

3.6 Hedge fund bias 

Hedge funds are not obligated to report their returns to others than their investors. 

They choose freely to report their returns to the public, and usually do so to promote 

their own performance. This leads to multiple sources of bias in hedge fund 

databases. Firstly, when hedge funds start reporting their returns, they can also report 

past returns. This leads to “backfill bias”, as hedge funds with strong historical 

 
3 Noise risk factor: http://en.saif.sjtu.edu.cn/junpan/ 
Intermediary risk factor: https://voices.uchicago.edu/zhiguohe/data-and-empirical-
patterns/intermediary-capital-ratio-and-risk-factor/ 
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performance are more likely to start reporting their returns. Secondly, hedge funds 

can stop reporting their performance for periods of time or entirely. This leads to 

“survivorship bias” if hedge funds stop reporting during times they underperform 

(Pedersen, 2015). 

Lastly, when hedge funds invest in illiquid assets, their reported returns are subject to 

“smoothing bias”. Due to the infrequent trading, prices may be stale for long periods 

of time, and returns may therefore be based on stale prices. Occasionally, hedge funds 

use estimated prices when valuing their positions, resulting in smoother returns. 

These effects result in underestimating the true volatility and correlation for funds 

invested in illiquid assets (Ang, 2014; Getmansky et al., 2004). 

 

4.0 Methodology 

After having presented the data for our research, we will now present the construction 

of the simulated portfolio and the assumptions used in our model. 

4.1 Assumptions 
Volume-weighted prices 

Convertible arbitrageurs usually take large positions in convertible bonds (N. 

Calamos, 2003). The convertible bond market is relatively illiquid, and prices quoted 

for small transactions are not necessarily achievable for large scale investors. 

Therefore, we use volume-weighted prices for all our computations to account for this 

aspect. 

 

Risk-free rate 

Our model includes linear spline interpolation of the risk-free rate using the nearest 

interest rate on both sides of the yield curve. In cases of extrapolation, we assume a 

flat yield curve. 
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Default probability  

We assume a constant default probability of 0.58% for all companies, since a large 

portion of the bonds are non-rated. This is the historical default probability for BB 

rated bonds from S&P Global (2021). 

 

Stock price volatility 

We assume constant volatility for stock returns. The volatility is estimated based on 

the monthly standard deviation estimated over the full sample period. This is done in 

order to reduce the impact of small samples for some stocks, which would result in 

inconsistent volatility estimates. 

4.2 Bond prices 
The reported bond quotes in TRACE are reported on a clean-price basis, which is 

common practice in the US (J. Chen, 2021). We use monthly periodic data for our 

model and linear spline interpolation to find the approximate price for the end of each 

month. Then, we finalize our bond valuation by adding the accrued interest to the 

spline interpolated clean price. If there is a missing bond trade when spline 

interpolating, we use only the nearest observation. All bond quotes used in our 

calculations refer to the actual price at which bonds are traded, and we do not take 

bid-ask spreads into account. 

4.3 Black–Scholes model 
The bond holder receives new shares when converting into equity. This means that 

the convertible bond includes a warrant on the company’s equity, which leads to a 

dilution of the company’s shares when exercised. The conversion into a 

predetermined number of shares is possible at certain times during the lifetime of the 

convertible bond, usually at the bondholder’s discretion (N. Calamos, 2003). 

Research papers often refer to this warrant as a call option for simplification. We will 

also do this in our research. 
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Standard convertible bonds can be converted into equity at any time during the 

lifetime of the bond, functioning as an American call option. In our model, we treat 

the convertible feature as a European call option. We consider the European option to 

best fit our model since our strategy only exercises at maturity or the last available 

date for exercising. This is consistent with the results of Merton (1973) and similar to 

the buy-and-hold strategy used by Ammann et al. (2010). We acknowledge the 

weakness of this assumption, since early option exercise can be optimal when 

investors face frictions (Jensen & Pedersen, 2016). However, this assumption enables 

us to value the convertible feature using the standard Black-Scholes model. The 

convertible bond is priced as a straight corporate bond plus a call option on the firm's 

stock (N. Calamos, 2003). We modify the formula to include dividend yield from the 

equity. 

Call!4 = 𝑆"𝑒#$!%"N(𝑑&) − 𝐼𝑉"𝑒#'"!%"N(𝑑() 
 
Where 𝑆! is the current stock price at time 𝑡. 𝐼𝑉! is the remaining investment value 

computed as the discounted cash flows of the bond floor. This represents the sunk 

cost of the remaining debt claim the bond holder must give up when converting into 

equity. 𝑅"! is the monthly risk-free rate from time 𝑡 to the bond's maturity, 𝑇. 𝜎 is the 

constant forward-looking volatility. Δt is the time to the option’s maturity. N() is the 

CDF of the standard normal distribution and e is Euler's constant. 𝑞! is the continuous 

dividend yield, computed as: 

𝑞! =
ln 11+ 𝐷

𝑆!
	5

12  

Where D is the annual dividend and St is the nearest stock price. 

4.4 Delta hedging 
The delta of convertible bonds is the measure of the change in bond price with respect 

to the change in the underlying stock price. By holding a short position in the 

underlying stock, the arbitrageur can create a delta neutral position where the total 

 

4 𝑑" =
#$% !"#$"

&'%(%"'
&'
' &)*

+√)-	
	 

𝑑/ = 𝑑" − σ√Δt 
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value of the positions is unaffected by changes in the underlying stock price. The 

convertible bond delta can be estimated at any point in time, and changes throughout 

the bond's lifetime. In theory, the delta hedge should be continuously updated to 

perfectly hedge the positions. However, this would result in large transaction costs. 

Convertible arbitrage hedge funds therefore update their short position on a timestep 

basis (N. Calamos, 2003). In our model, we estimate and rebalance the short positions 

on a monthly frequency. 

 

We estimate the convertible bond delta as the derivative with respect to the stock 

price, using the modified Calamos (2003) valuation model. The conversion ratio 

indicates the number of shares received for each converted bond. The appropriate 

number of shares to short is the delta multiplied by the conversion ratio. The hedge 

ratio is calculated as the following:		

Λ! = 𝜆
𝜕Call!
𝜕𝑆"

= 𝜆𝑒#$!%"N(𝑑&) 

Where Λ" is the number of shares to short and λ is the conversion ratio of the bond. 

 

For bonds where the available conversion period ends before maturity, the hedge ratio 

will be set to 0 in the period the bondholder is unable to convert. This means that the 

bond position is unhedged after the conversion period ends, given that the bond is not 

converted at this point in time. However, a bond with available conversion period 

starting after bond issuance, but still lasts until maturity, will have the same value as a 

normal convertible bond and be hedged as usual. This is due to our assumption that 

the arbitrageur will only convert at the last available point in time. Some bonds may 

have more complex conversion rules, such as stock price range- or periodic 

constraints. These restrictions are not taken into account in our model. 

4.5 Maturity 
We create a variable for the final payoff from each bond and use EIKON to identify 

the maturity type. For each type of maturity, we create a final payoff method as listed 

in table 2. 

 

10343961016013GRA 19703



 
 

19 

 

Type Indicator Result  

Matured  MAT Final payment is the face value plus accrued interest. 

Issued ISS The bond is still actively traded, no final payoff yet. 

Called CLD The bond has been called for its redemption value. Final payoff is redemption 

value. 

Defaulted DEF The bond has defaulted, and final payoff is 0. 

Converted EXC The bond has been converted into stocks, and then instantly sold. Final payoff 

equals stock price multiplied by conversion ratio. 

Table 2: Maturity payoff for bonds. 

 

When a bond is about to be called, the issuer can still exercise their conversion claim 

(N. Calamos, 2003). Bonds that are nearing the end of the available conversion period 

or about to be called, will have a payoff equal to the maximum of the redemption 

value and the conversion value of the bond. The bondholder can exercise immediately 

and liquidate their position in the market. For bonds where the convertible feature 

expires before maturity, we calculate the maximum payoff at this date. 

4.6 Portfolio returns 
We compute the monthly return of a position as the following: 

𝑟),"
+ =

𝑃),",- − 𝑃),"#&,- + 𝐶)," − Δ.,!7𝑃),"/ − 𝑃),"#&/ + 𝐷)," + 𝑅"#&/ 𝑃),"#&/ :
𝑃),"#&,- + Δ.,!𝑃),"#&/  

Where 𝑃#,!%&and 𝑃#,!'  is the price of convertible bond and stock for firm 𝑖 at the end of 

month 𝑡. 𝐶#,! is the monthly accrued interest and 𝐷#,! is the monthly dividend for the 

shorted stock. 𝑅!()'  is the short interest rate in the previous month. 

 

Convertible arbitrage portfolios are usually highly leveraged. Khan (2002), 

referenced by Hutchinson & Gallagher, (2010) estimates the average position to have 

a leverage of 2.5 to 3.5 times equity. In our model we add a leverage of 1 times 

equity, indicating an equal split between debt and equity. We assume leverage is 

available at the one-year risk-free rate, with monthly interest payments. The leverage 
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is added in order to obtain estimated returns of our replicated portfolio closer to the 

returns of the HFRI and CSFB indices. 

4.7 Portfolio construction 
We construct a total of five portfolios: three main convertible arbitrage portfolios 

using our simulated positions, and two additional portfolios for a style analysis. The 

main convertible arbitrage portfolio is constructed as an equal-weighted portfolio, 

where the arbitrageur invests in every convertible bond available in the market. The 

other portfolios are weighted by market capitalization. One of them invests in 50 

convertible bonds issued by the largest firms in our sample, while the other one 

invests in 50 convertible bonds issued by the smallest firms. We use an equal 

weighting for all portfolio allocations, as this is less affected by varying market 

capitalizations. Furthermore, we have one portfolio consisting only of the convertible 

bond positions, and another consisting only of the equity positions. For simplicity, we 

change the short equity positions into long positions. 

 

5.0 Empirical Methodology 

We will now present our six main regression models, as well as other statistical 

methodologies applied in our analysis. All statistical models are estimated using 

Ordinary Least Squares (OLS). Since our data is highly heteroscedastic and 

autoregressive, we use Newey-West robust standard errors and coefficient estimates 

for all our models (Newey & West, 1987). Unless otherwise stated, all statistical 

significances are computed using Student's t-distribution with normal degrees of 

freedom. We first estimate the models without noise (NOISE) and intermediary (INT) 

risk factors, then with the factors estimated separately, and finally in a joint model 

including both factors. 
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5.1 Factor regression 
Convertible arbitrage is a market neutral strategy, characterized by low, negatively 

skewed returns with no systematic risk exposure (N. Calamos, 2003). The theoretical 

arbitrage strategy should therefore be presented by the following model: 

𝑅!* − 𝑅"! = 𝛼 + 𝜖! 

Where 𝑅!*is the return on the strategy, 𝑅"!is the risk-free rate represented by OISUS, 

𝛼 is the estimate of the abnormal return generated and 𝜖! is the idiosyncratic risk. We 

first test the theoretical arbitrage regression, with returns only being affected by the 

arbitrage profit and no systematic risk factors. The null hypothesis states there are no 

abnormal returns. 

𝐻0:	𝛼	 = 	0 

The alternative hypothesis states there are abnormal returns: 

𝐻1:	𝛼	 ≠ 	0 

5.2 Factor models 
Factor theory states systematic risk factors determine the asset’s risk premium. Since 

these cannot be diversified away, the excess return on an asset is based on its 

dependence with a set of risk factors (Ang, 2014). We expand the model to include 

systematic risk factors. If the excess return of the strategy is compensated by some 

risk factor, this would be captured by the beta estimate, and further affect the alpha 

estimate. This can be expressed as the following: 

𝑅!* − 𝑅"! = 𝛼 + 𝛽1𝐹1 + 𝛽2𝐹2 + 𝛽3𝐹3+. . . +𝜖! 

Where 𝛽# is the estimated risk exposure towards factor 𝐹#. The null hypothesis states 

there is no exposure from factor i on the strategy’s excess return: 

𝐻0:	𝛽# 	= 	0 

The alternative hypothesis states that factor 𝑖 has an effect on the strategy’s excess 

return: 

𝐻1:	𝛽# 	≠ 	0 

 

The second model we estimate is a CAPM model, with market excess return as the 

only risk factor, represented by excess return of Russell 3000 (MKT) over the risk-

10343961016013GRA 19703



 
 

22 

free rate. In our third model, we extend to a Fama-French three-factor model by 

including size (SMB) and book-to-market (HML_AQR) factors. In our fourth model 

we estimate the common bond factors proposed by Fama (1986) with default (DEF) 

and term structure (TERM) factors. We also run a combined model of Fama-French 

three-factor model, including the bond factors, proposed by Capocci & Hübner 

(2004). Our sixth model is the Carhart (1997) four-factor model, which includes the 

momentum (MOM) factor. 

5.2.1 Breuch-Godfrey test for autocorrelation 
Hedge funds are known to have downward biased exposure towards risk factors and 

contain highly serially correlated data (Hutchinson & Gallagher, 2010). The test is 

done by performing an auxiliary regression on the model’s residuals, with lags and no 

intercept to estimate systematic trends in the residuals (Brooks, 2019). We perform a 

Breuch-Godfrey test on our estimated models with ten lags. The auxiliary model can 

be expressed as the following: 

𝜖! = 𝜌1𝜖!(1 + 𝜌2𝜖!(2+. . . +𝜌10𝜖!(10 + 𝑣!		 

The null hypothesis states there are no autocorrelation in the residuals: 

𝐻0:	𝜌1 = 0, 𝜌2 = 0	. . . 𝜌10 = 0	 

The alternative hypothesis states that at least one of the residuals is autocorrelated: 

𝐻0:	𝜌1 	≠ 	0	𝑜𝑟	𝜌2 	≠ 	0	. . . 𝑜𝑟	𝜌10 	≠ 	0	 

The statistical significance is determined by a Chi-square distribution and has the 

following test statistic: 

(𝑇 − 𝑟)𝑅2 

Where 𝑇 is the number of observations, 𝑟 is the number of lags tested and 𝑅, is the 

R-squared of the related model being tested. 

5.2.2 Jarque-Bera test for normality 
The Jarque-Bera test is a goodness-of-fit test for skewness and kurtosis relative to the 

normal distribution (Brooks, 2019). We use the Jarque-Bera test to examine whether 

the OLS normally distributed residuals assumption holds and whether portfolio 

returns are normally distributed. The test statistic is conducted as the following: 
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𝑊 =
𝑡
6 	H𝑏1

2 +
(𝑏, − 3),

4 	K 

Where 𝑏) and 𝑏, are the skewness and kurtosis of the dataset and 𝑡 is the number of 

observations. The test statistic follows the Chi-square distribution with two degrees of 

freedom. The null hypothesis states that the distribution has no skewness or kurtosis: 

𝐻0:	𝑏1 	= 	0	𝑎𝑛𝑑	𝑏2 	= 	0 

The alternative hypothesis states that the skewness and kurtosis are jointly different 

from zero: 

𝐻1:	𝑏1 	≠ 	0	𝑎𝑛𝑑	𝑏2 	≠ 	0 

5.3 Getmansky 
We use a model proposed by Getmansky et al. (2004) to regress hedge fund excess 

return upon contemporaneous and lagged factors. This model reduces the impact 

from smoothed returns and underestimates correlations that would otherwise be 

present using OLS on illiquid assets. The total exposure to a factor is estimated as the 

sum of all lagged coefficients to this factor. We present the following model: 

𝑅!* − 𝑅"! = 𝛼 + 𝛽1𝐹1,! + 𝛽2𝐹1,!(1 + 𝛽3𝐹1,!(2+. . . +𝜖! 

The null hypothesis states that the strategy has no exposure to both a risk factor and 

its lags: 

𝐻0:	𝛽1 	= 	0	𝑎𝑛𝑑	𝛽2 	= 	0	𝑎𝑛𝑑	𝛽3 	= 	0 

The alternative hypothesis states that the strategy has jointly exposure to the 

contemporaneous risk factor and its lags: 

𝐻1:	𝛽1 	≠ 	0	𝑎𝑛𝑑	𝛽2 	≠ 	0	𝑎𝑛𝑑	𝛽3 	≠ 	0 

The statistical significance is given by a joint F-test using a restricted model which 

excludes the risk factor and the lags being tested. 

5.4 Fama-MacBeth 
We use the Fama-MacBeth two-step regression model to estimate the factor premium 

from our two proposed risk factors. In the first step, we estimate the market exposure 

for each hedge fund using multiple regression models, including market-, noise- and 

intermediary risk factor. Hedge funds are sorted into ten portfolios based on their 
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market risk exposure, where portfolio 10 consists of the five hedge funds with the 

highest market betas. The first step of the Fama-Macbeth model is to estimate the 

factor betas for each portfolio using a 60-months rolling window (Fama & MacBeth, 

1973). 

𝑅#,!* − 𝑅"! = 𝛼 + 𝛽#,1𝐹1 + 𝛽#,2𝐹2 + 𝛽#,3𝐹3+. . . +𝜖! 

The second step is to estimate the market price of risk using the betas for the last 

estimated period. We regress the following model for each period: 

𝑅!* = 𝛾0 + 𝛾1𝛽!(1
-1 + 𝛾2𝛽!(1

-2+. . . +𝜖! 

Where 𝑅!* is a vector of portfolio returns in period 𝑡 and 𝛽!()
-0  is a vector of the 

estimated exposure to risk 𝑖 of all portfolios in period 𝑡 − 1. We test the significance 

of our estimated premiums using a t-test, with the following null hypothesis: 

𝐻0: 𝛾#	 = 0	∀𝑖 

The alternative hypotheses state that the risk-free rate is positive and that risk 𝑖 has a 

premium in the market: 

𝐻1: 𝛾0 	> 	0 

𝐻2: 𝛾# 	≠ 	0	
We use two sets of risk factors. Firstly, we include market risk, and secondly, we 

include default- and term structure risk. We use these factors as these are the most 

impactful variables from our previous models and therefore likely to be compensated. 

 

6.0 Analysis 

Now that we have presented the methodology, we provide the analysis by presenting 

our replicated portfolios and their performance against the hedge fund indices. Then, 

we go into detail on the results from our statistical tests. For our statistical analysis, 

estimates below the 5% significance level are marked with a star (*), while estimates 

below the 1% level are marked with two stars (**). Whenever we reference R-

squared, we use the adjusted R-squared. 
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6.1 Portfolio characteristics 
We present the performance for the two hedge fund indices and our main three 

replicated portfolios (REP, REP High and REP Low). Table 3 contains the mean, 

standard deviation, skewness, and kurtosis of excess returns, in addition to sharpe 

ratio and p-value of the Jarque-Bera test. 

 

Statistic CSFB HFRI REP REP High REP Low 

Mean 0.25% 0.31% 0.05% -0.03% 0.15% 

Std 0.02% 0.02% 0.02% 0.03% 0.03% 

Skewness -2.59 -2.57 -0.75 -1.16 -0.62 

Kurtosis 20.25 24.67 9.40 9.32 10.90 

SR (annual) 0.45 0.51 0.07 -0.04 0.16 

JB p-value <0.01 <0.01 <0.01 <0.01 <0.01 

Table 3: Statistics of portfolios. 

 

The hedge fund indices show the same characteristics as suggested in the theory. The 

negative skewness indicates that most of the distribution is above the mean and the 

high kurtosis indicates more extreme observations than the normal distribution. This 

complements the theoretical background, where convertible arbitrage is supposed to 

generate low, positive returns during normal times and large losses during crises 

(Agarwal & Naik, 2004). Our replicated portfolios show the same characteristics, but 

they have higher skewness and lower kurtosis. Figure 1 shows the return distribution 

of our equal-weighted replicated portfolio. However, both indices and our replicated 

portfolios reject the Jarque-Bera normality test. We also note the higher volatility 

estimate in our portfolios, since the delta hedge is less sophisticated than the hedging 

strategies used by hedge funds. 
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Figure 1: Monthly excess return distribution of our replicated portfolio. 

 
We regress excess return of CSFB and HFRI upon the equal-weighted replicated 

portfolio. The results are provided in table 4. We report the estimated alpha, beta, 

tracking error and R-squared for both indices. The R-squared is 0.5 and 0.6 for the 

models, and both betas are statistically significant at the 1% level. HFRI fits better to 

our replicated portfolio, since they are both equally weighted, while CSFB is value-

weighted (Bloomberg L.P., n.d.). 

 

 Portfolio Alpha Beta TE R-squared 

CSFB 0.15%** 0.58** 0.01 0.51 

HFRI  0.16%** 0.70** 0.01 0.60 

Table 4: Regression results. 

 

We argue that our equal-weighted portfolio provides a good fit as a benchmark and 

shows the same characteristics as the indices. The alphas of the hedge fund indices 

are also statistically significant, meaning hedge funds might add value compared to a 

passive replicated strategy. In figure 2, we present the cumulative return for our 

replicated portfolio and the indices. 
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Figure 2: Monthly cumulative excess return of portfolios. All portfolios are adjusted to start at an 
index level of 100 in July 2002. 

 

Figure 3 shows that our portfolio and the two indices generate less volatile returns 

than Russell 3000. However, the convertible arbitrage returns show a systematic 

exposure to the market, indicating that the strategy is not market neutral. Both our 

portfolio and the two indices crashed during the financial crisis in 2008 and the 

corona crisis in 2020. However, due to the simplified modeling of the short interest 

rate, our portfolio would perform worse in practice. The reason is that short positions 

become unavailable and short interest increases drastically in periods of financial 

distress, which is not accounted for in our model (Asness et al., 2009). 

 
Figure 3: Monthly excess return of Russell 3000 and the portfolios. 
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Doing the same analysis for the value-weighted portfolios provides weaker results. 

These portfolios also show less similar characteristics to the hedge fund indices, 

compared to the equal-weighted portfolio. Furthermore, using a simple market 

capitalization approach results in few large positions, making the portfolio adversely 

concentrated. We use a percentile-based approach to work around this issue, where 

the strategies are equally invested in firms with the 50 largest or smallest market 

capitalizations. However, the value-weighted portfolio still shows more noisy 

characteristics. We therefore refrain from using the value-weighted portfolios further 

in our analysis. 

6.2 Theoretical arbitrage returns 
We estimate the theoretical arbitrage model where excess returns are unaffected by 

any systematic risk factors. In table 5, alpha and its p-value are reported, as well as 

Breuch-Godfrey- and Jarque-Bera p-value for the model. The portfolios generate a 

positive excess abnormal return. However, none of these are statistically significant 

when using robust standard errors and have both systematic and non-normal drift in 

the residuals. Only when using ordinary standard errors, HFRI’s alpha is statistically 

significant at the 5% level, while the alphas of CSFB and the replicated portfolio are 

never significant. We find a significant degree of non-normality and a drift in the 

residuals. This indicates that the model has omitted variables, and that the strategy 

faces risk factors not captured by the simple arbitrage model. 

 

Portfolio Alpha P-value  BG P-value JB P-value 

CSFB 0.25% 0.18 <0.01 <0.01 

HFRI 0.31% 0.14 <0.01 <0.01 

REP 0.18% 0.42 <0.01 <0.01 

Table 5: Regression results, theoretically arbitrage model. 

6.3 Factor models 
We report the estimated regression models in appendix 2 for CSFB, HFRI and our 

equal-weighted portfolio. All portfolios have a positive market exposure with 

estimates in the range of 0.20-0.25. While convertible arbitrage has a low market 
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exposure, we do not find it to be market neutral. Opposed to previous literature 

(Agarwal et al., 2011; Hutchinson & Gallagher, 2010), we find no significant 

exposure towards HML, SMB or MOM factors. Using a lagged version of the 

variables or replacing AQR’s HML factor with Fama-French’s version does not 

change the significance of these estimates. Overall, we find equity factors to provide 

little explanation for convertible arbitrage returns. 

 

We find a strong exposure towards bond factors when including default- and term 

structure risk. The TERM factor is estimated to be between 0.5 and 0.57 for the 

indices, and around 0.6 for our replicated portfolio. All estimates are significant at the 

1% level. Term structure risk captures the interest rate risk for holding bonds with a 

longer time to maturity. Convertible arbitrageurs can hedge the term structure risk by 

selling short bonds to offset the effect of interest rate changes (Fabozzi et al., 2008). 

Despite this fact, they still exhibit a positive exposure towards term structure risk. 

 

The default risk is also significantly estimated for all models at the 5% level. Since 

convertible bonds are debt instruments until converted, the holder is exposed to the 

counterparty’s default risk (Hutchinson & Gallagher, 2008). Most rated convertible 

bond issuers are rated below investment grade and thus tend to carry an overall higher 

default risk than other debt type instruments (J. P. Calamos, 2020). The short position 

in the underlying stock will offset some of the loss in the long bond position. 

Theoretically, the default risk exposure can be hedged by increasing the size of the 

short position beyond the implied delta hedge ratio (N. Calamos, 2003). 

Alternatively, credit default swaps can also be used to hedge the default risk. 

However, when including credit default swaps, Fabozzi et al. (2008) estimate lower 

average return and no significant improvement in a simulated study. While 

convertible arbitrage attempts to offer a riskless profit, it does show a positive loading 

of bond factors. The bond models have an R-squared of 0.5 and 0.57 for CSFB and 

HFRI, in comparison to the equity models, which have an R-squared of 0.28 and 

0.36, respectively. 
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We find the noise exposure to be negative for all our models, with estimates between 

-0.04 and -0.06. The noise factor is statistically significant at the 1% level for all 

portfolios. This is consistent with the findings of Hu et al. (2013). When liquidity 

deteriorates, the noise increases and hedge funds with exposure towards liquidity will 

underperform. Mitchell et al. (2007) also consider the illiquidity of convertible bonds 

a major risk factor, since investors withdraw their capital when convertible hedge 

funds underperform, resulting in large price declines and selloffs. 

 

We find a statistically significant exposure towards intermediary risk for both hedge 

fund indices. The estimated coefficients are 0.05 for CSFB and 0.06 for HFRI. Except 

for two instances, all estimates are significant at the 1% level and have an R-squared 

in the range of 0.3-0.4 for equity models, and 0.5-0.6 for bond models. Since 

convertible bonds are illiquid instruments and perform poorly during crises, they 

offer adverse hedging for intermediaries. They will therefore require a premium for 

holding convertible bonds (He et al., 2017). This is reflected in the positive 

intermediary risk exposure. 

 

We estimate a model with noise and intermediary risk factors jointly. The estimated 

exposure towards noise risk is almost unaffected, however, we estimate lower 

exposure towards intermediary risk compared to previous models. The intermediary 

risk estimates are between 0.03 and 0.035 for both indices, and not statistically 

significant. Each model's R-squared increase by 0.01, compared to models including 

only noise factor, making the model offer little improvement. Both variables are 

proxies for illiquidity, however, they capture different inefficiencies in the market. 

These variables have a low and non-significant correlation with each other, indicating 

that multicollinearity is unlikely to be the cause of these results. 

6.4 Getmansky 
We redo our factor models with one and two lags. The coefficients are reported as the 

sum of the estimated coefficients towards a factor and standard errors are estimated 

with Newey-West robust standard errors (Newey & West, 1987). The estimated 

models are reported in appendix 3. 
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Complementary with the theory, the use of one lag increases the estimated exposure 

towards most factors. For the models including noise factor, we estimate a higher 

market- and noise exposure for HFRI in comparison to the unlagged model. We also 

find a positive, significant exposure towards SMB in the Carhart model and Fama 

equity- and bond model. These models provide a better fit than previously estimated, 

with the highest observed R-squared of 0.66 for CSFB and 0.77 for HFRI. We find 

less prominent results in our analysis of CSFB. The market exposure increases to 

0.17, however we find no significant exposure to equity factors in any of the models. 

The estimated exposure towards default- and term structure risk decreases to 0.15 and 

0.42, respectively. When combined with term structure risk, we obtain weaker 

estimates for market risk, occasionally, with no statistical significance. We find the 

multicollinearity between market risk and term structure risk to be persistent. Lastly, 

we find significant positive alphas for the hedge fund indices. This implies that the 

indices have risk-adjusted abnormal returns. 

6.5 Breusch-Godfrey test 
As discussed in previous sections, hedge fund returns in illiquid assets are subject to 

smoothing, making estimated exposure using OLS downward biased. We use the 

Breusch-Godfrey test to analyze if there are any trends in the residuals for our 

models. We reject the null hypothesis of no systematic trend in the residuals for both 

hedge fund indices at p-value less than 0.01. Our replicated portfolio does not reject 

the null hypothesis, with a minimum p-value of 0.06. Most of the systematic trend 

comes from the first lag. In all the Breusch-Godfrey tests, this parameter is positively 

estimated and significant at the 5% level. The average value is 0.3 and 0.4 for CSFB 

and HFRI, respectively. We therefore consider the Getmansky model a possible 

solution to better estimate the risk exposure. 

 

When redoing the Breuch-Godfrey test on the lagged models, none of the models for 

the convertible arbitrage indices can reject the null hypothesis of no systematic trend 

in the residuals. Therefore, we consider the one-lagged model to best capture the 

smoothing process. Increasing the lag length to two lags offers little to no 
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improvement over the one-lagged model. In the two-lagged model, the new estimated 

standard error also increases substantially, resulting in poor estimates and low 

significance for our models. 

6.6 Fama-MacBeth 
Thus far, we have estimated a significant exposure towards noise- and intermediary 

risk. In this section of the thesis, we estimate if these risk factors are priced in the 

market using the Fama-MacBeth two-step regression model to estimate their market 

premiums. The results are provided in table 6 and 7: 

 

Coefficient Estimate T-stat P-value 

Rf <0.01** 3.52 <0.01 

MKT <0.01 1.31 0.19 

NOISE -0.08* -2.72 0.01 

Table 6: Fama-MacBeth results, including MKT and NOISE. 

 
Coefficient Estimate T-stat P-value 

Rf 0.01** 4.39 <0.01 

MKT 0.01 1.50 0.14 

INT -0.03 -1.74 0.08 

Table 7: Fama-MacBeth results, including MKT and INT. 

 

For the first model, the alpha is significant and positively estimated, indicating that 

the model sufficiently estimates the risk-free rate. The estimated risk premium for the 

noise factor is statistically significant and negatively estimated. As the factor 

exposure towards both noise and the risk premium are negatively estimated, this has a 

positive impact on convertible arbitrage hedge fund returns. The arbitrage therefore 

harvests a positive risk premium from noise risk exposure. These results are 

complimentary of what Hu et al. (2013) find in their paper. We find the estimated 

market price of noise risk to be -0.077. 
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Since convertible arbitrage has high exposure towards bond factors, we include these 

factors in a second Fama-MacBeth framework to reduce the potential impact of 

omitted variables in our model. Appendix 4 shows the correlation matrix for all risk 

factors. We exclude market risk, due to the strong multicollinearity with term 

structure risk. This makes the noise factor higher estimated and more significant. 

However, the risk-free rate is no longer significant, and none of the other variables 

included, TERM and DEF, are significant either. The results are provided in table 8 

and 9. 

 

Coefficient Estimate T-stat P-value 

Rf <0.01 1.73 0.09 

DEF 0.01 0.41 0.68 

TERM 0.01 1.49 0.14 

NOISE -0.01* -2.74 0.01 

Table 8: Fama-MacBeth results, including DEF, TERM and NOISE. 

 

Coefficient Estimate T-stat P-value 

Rf <0.01 0.73 0.47 

DEF 0.01 0.72 0.47 

TERM <0.01 0.05 0.96 

INT 0.03 0.58 0.56 

Table 9: Fama-MacBeth results, including DEF, TERM and INT. 

6.7 Time-varying exposure 
Hutchinson & Gallagher (2008) argue the changing delta is an important driver for 

the convertible arbitrage returns. When market returns are weak, the delta will 

decrease, resulting in a higher exposure towards bond factors. When market returns 

are strong, the delta will increase, resulting in higher exposure towards equity factors. 

The authors consider convertible arbitrage a hybrid strategy with non-linear exposure. 

Correcting for this non-linear exposure removes any abnormal returns. 
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Figure 4: Percentage bonds in portfolio through time. The financial crisis in 2008 and the corona 
crisis in 2020 are shaded in grey. 

 

Since the delta varies over time, the ratio between bond and equity in the portfolio is 

time-varying. A linear regression framework with risk factors does not capture the 

time-varying asset changes since factors have different exposure between assets. We 

perform a stylized analysis by decomposing the replicated portfolio into two separate 

equity- and bond-only portfolios. The results are reported in appendix 5. 

 

The short equity is changed to a long equity portfolio for simplicity. In our equity-

only portfolio, we regress Fama French three-factor model and Carhart four-factor 

model. The three-factor model shows a significant positive exposure towards SMB 

and HML. When including MOM, the HML factor becomes insignificant, and MOM 

is significant with a negative coefficient. Both models have a high R-squared of 0.88 

and 0.89, respectively. The Carhart four-factor model provides the best fit for the 

equity portfolio. In models including bond factors, TERM is significant at the 1% 

level, while DEF, NOISE and INT become insignificant. 

 

We find market risk, size, and momentum to be the main risk factors for the 

decomposed equity part of the strategy. The equity-only portfolio shows a high 

exposure towards the SMB factor, which indicates that the convertible arbitrage holds 

both short equity- and long debt positions in firms with small-firm characteristics. We 
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find this to be consistent with the literature, since convertible bonds have been a 

popular source of financing among smaller firms. 

  

Hutchinson & Gallagher (2010) use an alternative approach to analyze the time-

varying risk exposure. They split their sample period into sub samples based on the 

market performance. They construct three sub samples, where the market returns are 

above, below, or in between one standard deviation from the mean return. When 

doing so, the abnormal return from the strategy disappears. 

 

We use the same approach in a model with one lag, including bond factors, noise, and 

intermediary factors. The results are provided in appendix 6. Consistent with their 

findings, we observe a high exposure towards bond factors during periods of low 

market returns. The default and term structure factors are positively estimated and 

significant at the 1% level. These estimates decrease during normal market conditions 

while the market exposure increases. Similar to Hutchinson & Gallagher, we find 

both indices to have a negative alpha during well performing market conditions. 

During bad and normal conditions, we estimate CSFB to have an alpha of 0, while 

HFRI has a positive estimated alpha during bad market conditions only. 

 

The estimated noise exposure increases both during high and low market conditions, 

compared to normal conditions. However, we do not find it to be statistically 

significant. Using the intermediary risk factor, we find statistically significant results 

for both normal and high market conditions. The estimated exposure seems to be 

higher during well performing market conditions. We find this to be complementary 

with the theory, as financial intermediaries' capital ratio is strongly procyclical (He et 

al., 2017). 

 

7.0 Discussion 

In this section we discuss other market frictions present in the convertible bond 

market and other alternative factors that can explain convertible arbitrage. 
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7.1 OTC frictions 
Since convertible arbitrage returns are related to noise risk, liquidity frictions explain 

part of the underpricing of convertible bonds. Convertible bonds are often traded 

infrequently and sensitive to capital invested. Investors redeem their capital when 

convertible arbitrage is underperforming, causing selling pressure, and declining 

prices (Mitchell et al., 2007). Convertible arbitrage shows a positive exposure 

towards intermediary risk. When financial intermediaries are poorly capitalized, the 

value of liquidity increases. This usually occurs during periods of financial distress, 

resulting in a procyclical exposure (He et al., 2017). 

7.1.1 Inventory risk 
Investors attempting to buy or sell assets do not necessarily have the same timing. 

Intermediaries supply liquidity in OTC markets and solve the order imbalances by 

acting as market makers. However, this exposes the intermediaries to inventory risk, 

as they are subject to price risk on their positions (Bessembinder et al., 2020). 

7.1.2 Search-and-bargaining 
To mitigate the cost of search frictions, dealers use their network to find trade 

partners. Dealers with more valuable networks, also known as central dealers, can 

choose their counterparties more freely, opposed to other dealers. Dealers with more 

connected networks can also offer lower spreads for their bonds, implying lower costs 

from search friction (Bessembinder et al., 2020). In the model of Henderson & 

Tookes (2012), they find evidence that repeated transactions with the same dealers 

have lower fees for the counterparties. Recent literature also analyzes intermediary 

chains, since bonds move within intermediaries’ networks through multiple dealers, 

before reaching the clients’ portfolio. Long chains of intermediaries are associated 

with smaller yield spreads, indicating a larger and more efficient intermediary sector 

(Friewald & Nagler, 2019). 

7.1.3 Asymmetric information 
Since issuer-specific information has an impact on the value of bonds, market 

participants with better access to information have an advantage, resulting in 
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asymmetric information. However, fixed income securities tend to be less sensitive to 

new information than equities. Microstructure theory argues that dealers in the fixed 

income market should charge a lower fee, since they are less exposed to information- 

and inventory risk. However, this is not found in empirical research, and asymmetric 

information is found to be a little impactful fraction in the bond market 

(Bessembinder et al., 2020; Friewald & Nagler, 2019). 

7.2 Size effect on market frictions 
Previous literature finds transaction size to be an important factor of transaction cost 

across bonds. Due to the opaque and decentralized structure of the bond market, less 

sophisticated investors are at a disadvantage. Dealers with more valuable networks 

will prioritize investors with larger transactions, forcing investors with smaller 

transactions to find dealers with less valuable networks. This makes large investors 

able to execute trades faster, with lower average bid-ask spreads and more investment 

opportunities available, opposed to smaller investors (Bessembinder et al., 2020). 

 

On the contrary, Feldhütter (2010) finds large transactions to be more negatively 

affected by selling pressure than small transactions. During periods of low selling 

pressure, investors executing large transactions can sell assets for higher prices 

compared to small investors. However, large investors accept selling at lower prices 

in periods of high pressure. Similar to the noise factor, the selling pressure increases 

in periods of financial distress. Hence, a portfolio of only large transactions should 

have a higher exposure to the noise factor. 

 

We investigate these relationships further by simulating two additional portfolios, 

limited to either small or large transactions only, based on TRACE reported 

transaction sizes. Transactions with volume lower or equal to 100 000 are considered 

small, and transactions with volume above that are considered large. We redo our 

regression models for these two new portfolios. The coefficients are provided in table 

10. Complementary with the theory, we find evidence that the large portfolio has a 

higher and more significant exposure to the noise factor. However, investigating if 
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there are any significant changes in intermediary risk between the portfolios provides 

no evidence, as the estimates are not statistically significant. 

  

Coefficient NOISE INT 

Model Large Small Large Small 

2 -0.08** -0.07** 0.07 0.08 

3 -0.07** -0.06** 0.06 0.08 

4 -0.06** -0.05** 0.04 0.03 

5 -0.05** -0.05** 0.03 0.04 

6 -0.06** -0.06** 0.05 0.07 

Table 10: Regression results, separated by transaction size. 

7.3 Assets under management factor 
Altas (2005) referenced by Fabozzi et al. (2008) notes that 75% of daily convertible 

bond transactions are made by hedge funds. Mitchell et al. (2007) find similar results 

in their estimates. A concern for these hedge funds is the risk of investors 

withdrawing their capital, forcing convertible bonds to be liquidated at low prices. 

This may force other hedge funds to do the same, leading to a downward spiral and 

resulting in huge losses (Mitchell et al., 2007). There is a common consensus in the 

convertible arbitrage literature that hedge fund liquidity affects the convertible bond 

prices and thereby convertible arbitrage returns. It has previously been estimated that 

hedge funds account for most of the demand for new convertible bond issues and 

transactions (Hutchinson & Gallagher, 2008). Hedge funds holding more assets under 

management invest more aggressively, which pushes the price of convertible bonds 

and reduces the returns from the arbitrage strategy (Ding et al., 2009). 

 

Based on this, we include the hedge funds’ assets under management (AUM) as a risk 

factor in our models. We create this factor as the logarithm of the total hedge funds’ 

AUM, using hedge funds with more than 10 million USD in AUM. Regressing this 

provides a statistically significant negative exposure to this factor. When hedge funds 

have more capital to invest, the demand for convertible bonds increases, pushing 
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prices and reducing the return on the strategy. This is complementary with evidence 

of this relationship from previous literature (Agarwal et al., 2011). 

 

8.0 Robustness analysis 

We control for robustness in our model and regression results. For our model 

robustness we analyze the effect of changing some of our main assumptions 

previously taken. We also test the robustness of our regression results by replacing 

some main variables. 

8.1 Model robustness 
In our first robustness test, we change the use of spline interpolated bond prices for 

trades and maturity payoff. Both are constructed non-empirically, which could result 

in modeling bias. Our alternative method uses the nearest observed bond price for 

bond trades and liquidates all bonds at the last observed bond price. Figure 5 shows a 

comparison between the original and alternative method.

 
Figure 5: Excess return of the portfolio for the original and alternative use of bond price calculation 
and maturity payoff. 
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The portfolios track each other closely. Hence, the change in these assumptions have 

little impact on the overall performance of the strategy. The results in our statistical 

tests do not change either. This indicates that our spline interpolated bond prices 

provide fair estimates. 

8.2 Constant volatility estimate 
In this section, we investigate our volatility assumptions. Firstly, our model’s 

volatility estimates are based on the full stock price data, resulting in a look-ahead 

bias. We address this problem by estimating the volatility by only using data 

available at each point in time. Secondly, we have assumed constant volatility for our 

model. There is a common consensus in financial literature that stock price volatility 

is time-varying. We fit a GARCH(1,1) model to estimate the stock return volatility 

for each month, using the full sample of returns available. In figure 6, we plot the 

bond ratio for the different methods.

 
Figure 6: Percentage bond ratio in portfolio using different volatility estimates. 

 

The change in the volatility estimate only affects the hedge ratio for the convertible 

bonds. Since the volatility estimates now are time-varying, the delta changes more 

frequently between periods compared to using constant volatility. This would result 

in overall higher transaction costs for the strategy, as the arbitrageur would need to 

readjust the portfolio more often. However, transaction costs are not present in our 

model, making us unable to observe this relationship. In terms of statistical 

significance, this does not change our results in an impactful way. 
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8.3 Replacement variables 
We use alternative variables for market- and noise risk to test if the relationship found 

will hold with alternative measures. Russell 3000 is replaced with Fama-French 

market risk factor (Mkt_rf). We modify the Fama-French market factor by 

subtracting the same risk-free rate as used for the rest of the thesis. Furthermore, we 

replace the noise factor with Goldberg and Nozama’s (2021) corporate noise factor. 

Since both are estimated using similar methodologies, we consider this to be a good 

replacement variable. Noise in the corporate bond market should also have a close 

connection to the pricing of convertible bonds, despite the spillover effect from the 

noise in the Treasury market. As of writing this thesis, we have data from 2002 until 

2016 for this factor, and therefore perform this analysis on a smaller sample. The 

estimated models with one lag are reported in appendix 7. 

8.4 Multicollinearity 
The inclusion of default- and term structure risk causes the estimated market risk to 

decrease significantly. The new risk exposure is much lower compared to equity 

models, and the estimate is no longer statistically significant. We argue that this could 

be caused by multicollinearity in the model and investigate this by regressing market 

risk upon default- and term structure risk. The results are provided in table 11. We 

find market risk to be strongly multicollinear with term structure risk, resulting in a 

biased estimate for our model. 

 

Coefficient Estimate SE T-stat P-value 

(Intercept) <0.01* <0.01 2.02 0.04 

DEF 0.11 0.09 1.23 0.22 

TERM 1.17** 0.12 9.86 <0.01 

Table 11: Regression results. 

8.5 Extended Fama-MacBeth analysis 
We perform a robust extended version of the Fama-MacBeth model. This is done by 

including a squared term for risk factors and a control variable for omitted risk 
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factors, estimated using the estimated residual variance from the first step’s 

regression. The extended model is provided below: 

𝑅!* = 𝛾0 + 𝛾1𝛽!()
-1 + 𝛾2(𝛽!()

-1 ),+. . . +𝛾3𝑠! + 𝑣!	 

Where 𝑠! is the variance in residuals from the first step’s regression. This is used as a 

proxy for systematic effect from non-beta risk. The framework can test two additional 

conditions of the model: 

Hypothesis 1; the relationship between the factors and the assets are linear: 

𝐻0: 𝛾2	 	= 	0 

𝐻1: 𝛾2	 	≠ 	0 

Hypothesis 2; there is no systematic effect form non-beta risk: 

𝐻0: 𝛾3	 	= 	0 

𝐻1: 𝛾3	 	≠ 	0 

 

We consider our results of the Fama-MacBeth models to be weak. While the noise 

factor is statistically significant, we find it susceptible to changes in the models. We 

also point out that none of the other factors have a significant factor price in the 

market. Therefore, we use a robust model to investigate these findings. We only 

perform this analysis on the noise-based model, as this is the only one providing 

statistically significant results in the first test. The estimates are provided in table 12: 

 

Coefficient Estimate T-stat P-value 

Rf <0.01 0.64 0.52 

MKT 0.01 0.65 0.51 

NOISE -0.03 -0.20 0.84 

MKT# -0.02 -0.63 0.53 

NOISE# 14.73 0.84 0.40 

s -9.40* -2.02 0.05 

Table 12: Fama-MacBeth results, extended analysis. 

We note that the estimate for the risk-free rate is no longer significant, in addition to 

the estimated factor premiums. The only significant variable is the omitted risk 

premium exposure, s. There is a systematic explanatory effect in the residuals of the 
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model, indicating that our factor model fits poorly to the risk exposure. The model for 

TERM and DEF shows similar results. These findings provide evidence of the 

limitations in our analysis. 

8.5.1 Lagged factors 
We have not taken lagged factors into consideration in this model. To control for the 

exclusion of lagged variables, we estimate a model with noise- and lagged noise 

factor as the only factors. The results are provided in table 13. 

 

Coefficient Estimate T-stat P-value 

Rf 0.01* 2.52 0.01 

NOISE$ -0.15* -2.36 0.02 

NOISE$%& -0.01 -0.09 0.93 

Table 13: Fama-MacBeth results, including NOISE and lagged NOISE. 

 

The estimated market premium is only significant for the unlagged noise factor. The 

estimated premium of this factor is -0.15, while the lagged estimate is non-significant 

with a lower value of -0.01. We therefore argue that lagged variables provide little 

explanatory power in the model. The estimate is easily affected by inclusion of other 

variables and has overall weak significance. 
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9.0 Conclusion 

We find that noise and intermediary risk factors explain convertible arbitrage returns 

in the US. Our results show a negative exposure towards noise risk and a positive 

exposure towards intermediary risk. The noise increases as the illiquidity increases, 

resulting in lower strategy performance. The positive intermediary risk exposure 

confirms that the strategy underperforms when intermediaries are poorly capitalized. 

We find that convertible bonds have a positive exposure to the market, and 

intermediaries will therefore require a premium for holding this asset. Our findings 

for both factors show that the value of liquidity increases during periods of financial 

distress, hence, the strategy’s performance has a procyclical exposure towards 

liquidity. Our results provide evidence that frictions in the OTC markets have an 

impact on the convertible arbitrage performance. The noise- and intermediary risk 

factor contribute to capture the illiquidity and market inefficiency of the convertible 

bond market. Finally, we find that the two hedge fund indices have no abnormal risk-

adjusted return in our decomposition analysis. 

 

He et al. (2017) find all asset classes to exhibit a positive risk premium from 

intermediary risk, and Hu et al. (2013) find that the noise factor can contribute to the 

explanation of cross-sectional variation in hedge fund returns. Our findings are in line 

with their empirical evidence and complement the literature by further investigating 

the convertible arbitrage using both hedge fund indices and a simulated portfolio. 

However, we find low to no systematic exposure towards HML, SMB or MOM 

factors, contradicting previous literature (Agarwal et al., 2011; Hutchinson & 

Gallagher, 2010). 

9.1 Further research 
For future research it would be interesting to extend our simulation methodology by 

including bid-ask spreads. The relationship between bid-ask spreads, noise- and 

intermediary risk remain largely unexplored. As mentioned in our discussion, there 

are several frictions present in the convertible bond market, which we have not 
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investigated in our thesis. We urge further research to investigate how this market 

friction affects the convertible arbitrage returns. 

 

Furthermore, there is an interesting dynamic of callable convertible bonds. Since 

these bonds still can be converted after the call notice, issuers can “force” bond 

holders to convert their bonds at certain periods of time. In our dataset, we found 

multiple occasions of issuers sending call notice even if the redemption value was 

higher than the current conversion value. This contradicts the assumption that bond 

issuers only will call bonds when the bond price is higher than the redemption value. 

We urge researchers to investigate this from bond issuers’ perspective. 
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Appendix 

Appendix 1: Additional summary statistics, including median and standard deviation. 

Sample period # Bonds # Issued 

bonds 

Price ($) Volume 

($M) 

# Trades 

per bond 

Coupon 

rate (%) 

Time to 

maturity 

(year) 

Median 

All 602 595 102.61 1.00 1148.00 2.50 5.00 

2002-2005 18 32 104.19 2.00 728.00 2.88 20.00 

2006-2010 88 48 101.00 1.00 2415.50 3.13 20.00 

2011-2015 225 234 103.55 8.95 2362.00 2.75 5.00 

2016-2020 522 267 102.38 1.00 869.00 2.25 5.00 

 

Sample period # Bonds # Issued 

bonds 

Price ($) Volume 

($M) 

# Trades 

per bond 

Coupon 

rate (%) 

Time to 

maturity 

(year) 

Standard deviation 

All 602 595 35.76 0.79 4009.00 1.87 7.40 

2002-2005 18 32 23.97 2.39 4321.61 1.50 4.02 

2006-2010 88 48 29.05 2.37 7784.78 1.35 8.86 

2011-2015 225 234 26.85 2.93 3945.46 1.89 5.47 

2016-2020 522 267 28.17 2.62 2068.89 1.97 4.60 
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Appendix 2: Regression results, including estimated coefficients, R-squared and 

Breusch-Godfrey p-value of the residuals. 

CSFB 

Model 2 3 4 5 6 

Alpha 0.13% 0.14% 0.15% 0.15% 0.15% 

MKT 0.2331** 0.2140** 0.0484 0.0558 0.2085** 

SMB  0.0118  -0.0010 0.0250 

HML_AQR  0.0411  -0.0359 -0.0158 

DEF   0.1471* 0.1486*  

TERM   0.5152** 0.5336**  

MOM     -0.0556 

R-squared 0.2812 0.2805 0.5021 0.5012 0.2830 

BG <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 

HFRI 

Model 2 3 4 5 6 

Alpha 0.17% 0.17% 0.18% 0.17% 0.19% 

MKT 0.2910** 0.2655** 0.0958* 0.1001* 0.2591** 

SMB  0.0203  0.0096 0.0359 

HML_AQR  0.0520  -0.0288 -0.0150 

DEF   0.1715* 0.1737*  

TERM   0.5523** 0.5658**  

MOM     -0.0656 

R-squared 0.3607 0.3630 0.5690 0.5669 0.3670 

BG <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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REP 

Model 2 3 4 5 6 

Alpha -0.18% -0.15% -0.14% -0.13% -0.12% 

MKT 0.2269** 0.2029** 0.0143 0.0293 0.1953** 

SMB  -0.1519*  -0.1692** -0.1250 

HML_AQR  0.1485*  0.0651 0.0125 

DEF   0.1731** 0.1553*  

TERM   0.5871** 0.5731**  

MOM     -0.1309 

R-squared 0.1768 0.2231 0.3779 0.4016 0.2409 

BG 0.0542 0.0205 0.0500 0.0683 0.0372 

 

CSFB - including NOISE 

Model 2 3 4 5 6 

Alpha 0.14% 0.14% 0.14% 0.13% 0.14% 

MKT 0.1788** 0.1713** 0.0428* 0.0507* 0.1711** 

SMB  0.0193  0.0122 0.0200 

HML_AQR  0.0085  -0.0488 0.0057 

DEF   0.1468** 0.1502**  

TERM   0.4202** 0.4426**  

MOM     -0.0028 

NOISE -0.0573** -0.0571** -0.0476** -0.0481** -0.0570** 

R-squared 0.5108 0.5073 0.6518 0.6549 0.5051 

BG <0.0001 <0.0001 0.0056 0.0235 <0.0001 
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HFRI - including NOISE 

Model 2 3 4 5 6 

Alpha 0.18% 0.18% 0.17% 0.16% 0.18% 

MKT 0.2318** 0.2192** 0.0895** 0.0945** 0.2186** 

SMB  0.0285  0.0241 0.0304 

HML_AQR  0.0166  -0.0429 0.0083 

DEF   0.1712** 0.1755**  

TERM   0.4478** 0.4657**  

MOM     -0.0083 

NOISE -0.0624** -0.0620** -0.0523** -0.0528** -0.0618** 

R-squared 0.5845 0.5829 0.7180 0.7196 0.5811 

BG 0.0012 0.0009 0.0133 0.0244 0.0009 

 

REP - including NOISE 

Model 2 3 4 5 6 

Alpha -0.16% -0.14% -0.14% -0.13% -0.12% 

MKT 0.1744** 0.1632** 0.0055 0.0213 0.1607** 

SMB  -0.1471*  -0.1598** -0.1316* 

HML_AQR  0.1205**  0.0543 0.0421 

DEF   0.1735** 0.1568**  

TERM   0.5140** 0.5066**  

MOM     -0.0768 

NOISE -0.0494** -0.0467** -0.0376** -0.0364** -0.0444** 

R-squared 0.2943 0.3275 0.4417 0.4619 0.3315 

BG 0.0731 0.0185 0.1317 0.1504 0.0288 
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CSFB - including INT 

Model 2 3 4 5 6 

Alpha 0.13% 0.13% 0.14% 0.14% 0.15% 

MKT 0.2307** 0.2175** 0.0539 0.0639 0.2117** 

SMB  -0.0100  -0.0169 0.0040 

HML_AQR  0.0383  -0.0361 -0.0234 

DEF   0.1627* 0.1630*  

TERM   0.5040** 0.5241**  

MOM     -0.0603 

INT 0.0552** 0.0546** 0.0481** 0.0492** 0.0551** 

R-squared 0.3159 0.3138 0.5271 0.5273 0.3177 

BG <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 

HFRI - including INT 

Model 2 3 4 5 6 

Alpha 0.16% 0.17% 0.16% 0.16% 0.19% 

MKT 0.2884** 0.2696** 0.1023** 0.1095* 0.2628** 

SMB  -0.0040  -0.0087 0.0125 

HML_AQR  0.0489  -0.0289 -0.0238 

DEF   0.1892** 0.1899**  

TERM   0.5392** 0.5547**  

MOM     -0.0711 

INT 0.0615* 0.0604* 0.0550** 0.0557** 0.0608* 

R-squared 0.3969 0.3972 0.5966 0.5951 0.4024 

BG <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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REP - including INT 

Model 2 3 4 5 6 

Alpha -0.17% -0.15% -0.14% -0.13% -0.12% 

MKT 0.2248** 0.2043** 0.0167 0.0333 0.1966** 

SMB  -0.1619**  -0.1749** -0.1350* 

HML_AQR  0.1454*  0.0641 0.0077 

DEF   0.1804** 0.1633*  

TERM   0.5818** 0.5680**  

MOM     -0.1325 

INT 0.0319 0.0332 0.0213 0.0252 0.0341 

R-squared 0.1812 0.2283 0.3785 0.4038 0.2467 

BG 0.0709 0.0230 0.0679 0.0849 0.0479 

 

CSFB - including NOISE and INT 

Model 2 3 4 5 6 

Alpha 0.14% 0.14% 0.13% 0.13% 0.14% 

MKT 0.1799** 0.1752** 0.0466* 0.0561* 0.1746** 

SMB  0.0068  0.0016 0.0086 

HML_AQR  0.0083  -0.0483 0.0002 

DEF   0.1566** 0.1590**  

TERM   0.4172** 0.4406**  

MOM     -0.0080 

NOISE -0.0549** -0.0548** -0.0455** -0.0459** -0.0545** 

INT 0.0303 0.0298 0.0302* 0.0306* 0.0299 

R-squared 0.5200 0.5160 0.6608 0.6641 0.5139 

BG <0.0001 <0.0001 0.0006 0.0321 <0.0001 
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HFRI - including NOISE and INT 

Model 2 3 4 5 6 

Alpha 0.17% 0.17% 0.16% 0.15% 0.18% 

MKT 0.2331** 0.2237** 0.0942** 0.1009** 0.2226** 

SMB  0.0142  0.0116 0.0175 

HML_AQR  0.0164  -0.0423 0.0017 

DEF   0.1825** 0.1855**  

TERM   0.4439** 0.4632**  

MOM     -0.0146 

NOISE -0.0597** -0.0594** -0.0499** -0.0503** -0.0590** 

INT 0.0344 0.0334 0.0355* 0.0353* 0.0337 

R-squared 0.5951 0.5926 0.7290 0.7303 0.5910 

BG <0.0001 <0.0001 0.0265 0.0546 <0.0001 

 

REP - including NOISE and INT 

Model 2 3 4 5 6 

Alpha -0.15% -0.14% -0.14% -0.13% -0.12% 

MKT 0.1745** 0.1644** 0.0063 0.0231 0.1621** 

SMB  -0.1507**  -0.1624** -0.1354* 

HML_AQR  0.1199**  0.0541 0.0395 

DEF   0.1756** 0.1602**  

TERM   0.5132** 0.5057**  

MOM     -0.0787 

NOISE -0.0487** -0.0458** -0.0371** -0.0357** -0.0433** 

INT 0.0088 0.0119 0.0063 0.0105 0.0137 

R-squared 0.2916 0.3255 0.4394 0.4602 0.3298 

BG 0.0773 0.0186 0.1432 0.1598 0.0299 
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Appendix 3: Lagged models. 

CSFB - including NOISE 

Model 2 3 4 5 6 

Alpha 0.14% 0.21%** 0.20%** 0.21%** 0.21%** 

MKT 0.2499** 0.2008** 0.0569* 0.0466 0.1967** 

SMB  0.0209  0.0178 0.0222 

HML_AQR  0.0982**  0.0361 0.1159* 

DEF   0.1811** 0.1889**  

TERM   0.4970** 0.4974**  

MOM     0.0160 

NOISE -0.0519** -0.0438** -0.0334** -0.0309** -0.0450** 

R-squared 0.5314 0.5576 0.6912 0.6994 0.5532 

BG 0.9218 0.9235 0.6687 0.5932 0.9116 

 

HFRI - including NOISE 

Model 2 3 4 5 6 

Alpha 0.14% 0.22%* 0.19%* 0.21%** 0.23%* 

MKT 0.3106** 0.2463** 0.1316** 0.1092** 0.2448** 

SMB  0.0752  0.0736* 0.0804* 

HML_AQR  0.0911**  0.0329 0.0702 

DEF   0.1696** 0.1797**  

TERM   0.4630** 0.4486**  

MOM     -0.0236 

NOISE -0.0768** -0.0693** -0.0595** -0.0579** -0.0669** 

R-squared 0.6676 0.6862 0.7654 0.7682 0.6845 

BG 0.6820 0.6882 0.3663 0.2870 0.6558 
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REP - including NOISE 

Model 2 3 4 5 6 

Alpha -0.12% -0.04% -0.02% -0.01% -0.03% 

MKT 0.3058** 0.2582** 0.0767 0.068 0.2662** 

SMB  -0.0415  -0.0480 -0.0304 

HML_AQR  0.1581**  0.0829 0.0685 

DEF   0.1743* 0.1871*  

TERM   0.5367** 0.5671**  

MOM     -0.0910 

NOISE -0.0743** -0.0612** -0.0531** -0.0457** -0.0530** 

R-squared 0.3910 0.4387 0.4796 0.5106 0.4348 

BG 0.0409 0.0129 0.0421 0.0438 0.0200 

 

CSFB - including INT 

Model 2 3 4 5 6 

Alpha 0.22%* 0.29%** 0.25%** 0.26%** 0.27%** 

MKT 0.2425** 0.1941** 0.0434 0.0327 0.2095** 

SMB  -0.0087  -0.0053 0.0049 

HML_AQR  0.1468**  0.0652 0.0441 

DEF   0.1977** 0.2007**  

TERM   0.5304** 0.5190**  

MOM     -0.0978* 

INT 0.0744 0.0596* 0.0407 0.0410 0.0556* 

R-squared 0.4478 0.5143 0.6498 0.6724 0.5246 

BG 0.5469 0.7699 0.4092 0.3156 0.6589 
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HFRI - including INT 

Model 2 3 4 5 6 

Alpha 0.30% 0.38%* 0.33%* 0.35%* 0.34%** 

MKT 0.2626** 0.2056** 0.0567 0.0404 0.2348** 

SMB  0.0334  0.0390 0.0584 

HML_AQR  0.1513**  0.0654 -0.0412 

DEF   0.2029** 0.2092**  

TERM   0.5393** 0.5218**  

MOM     -0.1829** 

INT 0.1124* 0.0923** 0.0802** 0.0769** 0.0851** 

R-squared 0.5362 0.5816 0.6825 0.6927 0.6173 

BG 0.3801 0.5114 0.1143 0.1195 0.4583 

 

REP - including INT 

Model 2 3 4 5 6 

Alpha 0.03% 0.13% 0.11% 0.12% 0.09% 

MKT 0.2810* 0.2019 0.0081 -0.0146 0.2349 

SMB  -0.0740  -0.0698 -0.0480 

HML_AQR  0.2108**  0.1023 0.0074 

DEF   0.2238** 0.2363**  

TERM   0.6326** 0.6573**  

MOM     -0.1900* 

INT 0.0601 0.0636 0.0289 0.0383 0.0585 

R-squared 0.2841 0.3830 0.4306 0.4859 0.3991 

BG 0.0943 0.0288 0.1006 0.1376 0.0683 
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CSFB - including NOISE and INT  

Model 2 3 4 5 6 

Alpha 0.13% 0.19%** 0.18%* 0.19%** 0.19%** 

MKT 0.2367** 0.2015** 0.0660* 0.0523 0.2013** 

SMB  0.0222  0.0227 0.0244 

HML_AQR  0.0917**  0.0310 0.0859 

DEF   0.1799** 0.1912**  

TERM   0.4651** 0.4655**  

MOM     -0.0075 

NOISE -0.0496** -0.0427** -0.0338** -0.0313** -0.0420** 

INT 0.0532* 0.0478* 0.0308 0.0371* 0.0468* 

R-squared 0.5601 0.5873 0.6995 0.7102 0.5817 

BG 0.6980 0.8034 0.4866 0.4020 0.8048 

 

HFRI - including NOISE and INT 

Model 2 3 4 5 6 

Alpha 0.16% 0.21%* 0.19%* 0.20%** 0.22%* 

MKT 0.2618** 0.2213** 0.1074** 0.0860* 0.2255** 

SMB  0.0742  0.0810** 0.0799* 

HML_AQR  0.0678  0.0045 0.0298 

DEF   0.1796** 0.1980**  

TERM   0.4045** 0.4074**  

MOM     -0.0416 

NOISE -0.0721** -0.0670** -0.0581** -0.0577** -0.0633** 

INT 0.0790** 0.0740** 0.0672** 0.0746** 0.0724** 

R-squared 0.6989 0.7133 0.7818 0.7868 0.7116 

BG 0.6807 0.6505 0.3343 0.2521 0.6212 
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REP - including NOISE and INT 

Model 2 3 4 5 6 

Alpha -0.09% -0.02% 0.01% 0.01% -0.01% 

MKT 0.2625** 0.2136* 0.0372 0.0158 0.2256* 

SMB  -0.0442  -0.0445 -0.0343 

HML_AQR  0.1293*  0.0493 0.0489 

DEF   0.1896** 0.2154**  

TERM   0.5374** 0.5769**  

MOM     -0.0834 

NOISE -0.0709** -0.0589** -0.0506** -0.0440** -0.0516** 

INT 0.0305 0.0465 0.0118 0.0329 0.0465 

R-squared 0.3871 0.4369 0.4777 0.5129 0.4320 

BG 0.0528 0.0189 0.0456 0.0565 0.0290 

 

 

Appendix 4: Factor correlation matrix. 

Factor MKT SMB HML_
AQR 

DEF TERM MOM NOISE INT Mkt_rf CORP 
NOISE 

MKT 1.00          

SMB 0.40 1.00         

HML_ 
AQR 

0.45 0.29 1.00        

DEF -0.28 -0.25 -0.15 1.00       

TERM 0.63 0.32 0.43 -0.50 1.00      

MOM -0.38 -0.16 -0.84 0.14 -0.38 1.00     

NOISE -0.20 0.00 -0.11 0.16 0.03 -0.22 1.00    

INT 0.10 0.17 0.21 -0.13 -0.19 0.16 -0.12 1.00   

Mkt_rf >0.99 0.38 0.45 -0.29 0.66 -0.38 -0.22 0.08 1.00  

CORP 
NOISE 

-0.16 -0.07 -0.06 -0.01 0.14 -0.06 -0.02 -0.12 -0.15 1.00 

 

 

10343961016013GRA 19703



 
 

58 

Appendix 5: Decomposition analysis, lagged models. 

Bond-only portfolio 

Model 2 3 4 5 6 

Alpha 0.18% 0.32%** 0.25% 0.29%* 0.29%** 

MKT 0.5754** 0.4564** 0.3779** 0.3238** 0.4763** 

SMB  0.1781**  0.1825** 0.2026** 

HML_AQR  0.1296**  0.0523 -0.0799 

DEF   0.1366 0.1714*  

TERM   0.4305** 0.4215**  

MOM     -0.1874** 

R-squared 0.6997 0.7341 0.7568 0.7757 0.7508 

BG 0.1952 0.2515 0.0788 0.1200 0.2874 

 

Equity-only portfolio 

Model 2 3 4 5 6 

Alpha 0.02% 0.34% 0.15% 0.31% 0.28%* 

MKT 1.3854** 1.1147** 1.2749** 1.0981** 1.1595** 

SMB  0.5446**  0.5489** 0.5846** 

HML_AQR  0.2106**  0.1939* -0.1865 

DEF   -0.0464 0.0658  

TERM   0.1210 0.0949  

MOM     -0.3506** 

R-squared 0.8186 0.8757 0.8218 0.8735 0.8887 

BG 0.5894 0.1662 0.5404 0.2183 0.2769 
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Appendix 6: Hutchinson & Gallagher’s alternative approach, lagged models. 

CSFB 

Market 
state 

Alpha MKT DEF TERM NOISE INT 

Low 0.00% -0.1645 0.6280* 1.1381** -0.0471** 0.0584 

Medium 0.00% 0.0870 0.2018** 0.4867** -0.0176* 0.0489** 

High -0.31% -0.0186 0.0454 0.5249** -0.0668** 0.0540 

 
HFRI 

Market 
state 

Alpha MKT DEF TERM NOISE INT 

Low 0.12% -0.0637 0.6478* 1.1482** -0.0153 -0.0953 

Medium 0.00% 0.0482 0.1601** 0.5280** -0.0354** 0.0457* 

High -0.18% 0.0215 0.1240 0.4882** -0.0307** 0.0320 

 
REP 

Market 
state 

Alpha MKT DEF TERM NOISE INT 

Low 1.46% 0.0407 0.3738 0.9083** -0.0155 -0.0005 

Medium -0.21% 0.0337 0.2188** 0.5113** -0.0255* 0.0331 

High 0.95% -0.2419 0.0044 0.2372 -0.1127** -0.1014 
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Appendix 7: Regression results with replacement variables, lagged models. MKT is 

replaced with Mkt_rf and NOISE is replaced with CORP NOISE. 

CSFB 

Model 2 3 4 5 6 

Alpha 0.27%* 0.32%** 0.27%** 0.28%** 0.33%** 

Mkt_rf 0.2867** 0.1759** 0.0367 0.0240 0.1905** 

SMB  -0.0078  -0.0093 0.0103 

HML_AQR  0.1961**  0.0807** 0.0769 

DEF   0.1971** 0.1784**  

TERM   0.6048** 0.5437**  

MOM     -0.0966* 

CORP NOISE -0.0279* -0.0216 -0.0370** -0.0299** -0.0195 

R-squared 0.3772 0.4843 0.6523 0.6543 0.4909 

BG 0.4751 0.8962 0.7312 0.7931 0.7684 

 

HFRI 

Model 2 3 4 5 6 

Alpha 0.27%* 0.34%** 0.29%** 0.32%** 0.36%** 

Mkt_rf 0.3815** 0.2110** 0.0962 0.0639 0.2461** 

SMB  0.0496  0.0381 0.0814 

HML_AQR  0.2635**  0.1473** 0.0259 

DEF   0.1913** 0.1538**  

TERM   0.6671** 0.5146**  

MOM     -0.1915** 

CORP NOISE -0.0385** -0.0348** -0.0488** -0.0450** -0.0303** 

R-squared 0.5015 0.6532 0.7199 0.7524 0.6942 

BG 0.4739 0.5275 0.4160 0.5021 0.2805 
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REP 

Model 2 3 4 5 6 

Alpha 0.31%* 0.38%* 0.28%* 0.31%* 0.4%** 

Mkt_rf 0.2423** 0.1104 0.0177 0.0025 0.1471* 

SMB  -0.0251  -0.0291 0.0127 

HML_AQR  0.2636**  0.1378* -0.0033 

DEF   0.2340** 0.1994*  

TERM   0.5401** 0.4393**  

MOM     -0.2156** 

CORP NOISE -0.0641** -0.0438** -0.0783** -0.0626** -0.0388** 

R-squared 0.3132 0.4227 0.4904 0.5073 0.4596 

BG 0.1548 0.0699 0.0217 0.0101 0.3115 
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