
BI Norwegian Business School - campus Oslo

GRA 19703
Master Thesis

Thesis Master of Science

False positive reduction endeavors with automated feature
engineering

Navn: Fabian Thorsen, Adrian Kopperud

Start: 15.01.2021 09.00

Finish: 01.07.2021 12.00

False positive reduction endeavors
with automated feature engineering

An empirical study to reduce false positives in fraud detection systems

Adrian Kopperud and Fabian Thorsen

Supervisor: Alfonso Irarrazabal

Master thesis, Master of Science in Business Analytics

This thesis is a part of the MSc program at BI Norwegian Business School. The

school takes no responsibility for the methods used, results found, or conclusions
drawn.

09916150989568GRA 19703

i

Acknowledgement

This thesis is a part of BI Norwegian Business School´s Business Analytics Master of

Science degree. Throughout our studies and past year we have gotten great support.

We would first like to thank our supervisor Alfonso Irarrazabal, for his great advice

and guidance in difficult periods. Your valuable advice made us question the

important aspects of this thesis, enhancing our work greatly.

Second, we would like to thank our lecturer John Chandler Johnson for his valuable

knowledge and motivating ways of teaching. You provided us with both tools and

motivation to be best equipped for this thesis.

Lastly, we would like to thank friends and family for their love, support and

discussions. We could not have done it without you.

09916150989568GRA 19703

ii

Abstract
Credit card fraud has been a problem for decades, and with the booming trend of

online shopping fraud losses expected to rise for every year to come. Fraud detection

systems often generate more false positives than true positives in order to attain a

higher detection level of fraudulent transactions. These false positives have plagued

the fraud detection industry for years as they are expensive to investigate and require

extensive manual labor.

An automated feature engineering approach was implemented to address the problem

of high false positives while at the same time conserving most of the true positives.

We generate a high feature space (1750 features) of rich features without manual

intervention other than specifying the primitives. In addition, a feature reduction

method is implemented to retain the features with the highest predictive power to

counteract the dimensionality problem of the method.

To compare our results, there were two additional datasets created for benchmarking

purposes. The first dataset only included the cleaned original features, referred to as

the baseline. In the second dataset, we generated manual features from the original

data to reproduce the situation of a domain expert. The proposed solution was tested

with the XGBoost to quantify the effect of the automated feature engineering on the

reduction of false positives and was compared to the benchmarking datasets.

Our analysis of the results shows that automated feature engineering can improve

false positives by 84% while managing to retain 89% of the true positives compared

to the baseline dataset. In addition, we find no significant difference between

automated and manual feature engineering on the discarding of false positives, and

both methods are equally good. However, the results suggest that an automated

approach can cut down feature engineering time a lot while providing richer features

than manual feature engineering, suggesting a potential for bottom-line savings by

reducing the number of domain experts and improved efficiency in the analytical life

cycle.

09916150989568GRA 19703

iii

Acronyms

TP True Positive

FP False Positive

TPR True Positive Rate

FPR False Positive Rate

TN True Negative

FN False Negative

ROC Receiver operating characteristic curve

AUC Area under the curve

XGBoost Extreme Gradient Boosting Algorithm

RF Random Forest

SVM Source-vector Machine

DFS Deep Feature Synthesis

SMOTE Synthetic Minority Oversampling Technique

ML Machine Learning

PCA Principal Component Analysis

EDA Exploratory Data Analysis

CV Cross-validation

ANN Artificial Neural Network

RQ Research question

AI Artificial Intelligence

MLE Maximum likelihood estimation

09916150989568GRA 19703

iv

List of Figures
1.1 Illustration of a common practice in today's method for reducing false positives 2

3.1 Selection and preprocessing architecture 13

3.2 Distribution of dist1 and dist2 16

3.3 Missing data percentage by features 17

3.4 Boxplot of TransactionAmt 18

3.5 Device Info before and after mapping 19

3.6 Train/test split of the dataset 23

3.7 Most frequent transaction hours of the day 25

3.8 Mean fraud by decimals 26

3.9 Output of entity set 27

3.10 Output from DFS function 31

3.11 Target class (isFraud) distribution 34

3.12 Illustration of SMOTE 35

4.1 Model and evaluation architecture 36

4.2 Random Forest Voting Scheme 40

4.3 K-fold CV with time series split 43

4.4 Illustration of bias-variance tradeoff 48

4.5 ROC curve of two classes 51

5.1 ROC-AUC 10-fold CV with time series split 54

5.2 Confusion matrix of the baseline model 57

5.3 Confusion matrix of the manual model 58

5.4 Confusion matrix of the automated feature engineering model 60

5.5 ROC curve comparison of the models 61

A3.1 Missing data heat map of the transaction table 78

A3.2 Missing data heat map of the identification table 78

A4.1 Optimized hyperparameters for XGBoost 79

A6.1 Cumulative feature importance plot of zero important features 81

A7.1 ID_30 before and after mapping 82

A7.2 ID_31 before and after mapping 83

A7.3 ID_33 before and after mapping 83

09916150989568GRA 19703

v

A7.4 Card6 before and after mapping 84

A7.5 P_emaildomain and R_emaildomain before mapping 84

A7.6 P_emaildomain_suffix and R_emaildomain_suffix after mapping 85

A7.7 P_emaildomain_bin and R_emaildomain_bin after mapping 85

09916150989568GRA 19703

vi

List of Tables

3.1 Primitives applied in Featuretool (DFS) 29

4.1 The confusion matrix scheme 50

5.1 Experimental settings for the XGB model 55

5.2 Result metrics of the baseline model 57

5.3 Result metrics of the manual model 58

5.4 Comparison between baseline and manual model 58

5.5 Result metrics of the automated feature engineering model 60

5.6 Comparison between baseline and automated feature engineering model 60

A1 Description of original raw features in the dataset 77

09916150989568GRA 19703

vii

Contents

1. INTRODUCTION AND MOTIVATION 1

1.1 Fraud 4

1.2 Automated Feature Engineering 6

1.3 Goal and Research Question 7

2. RELATED WORK 9

3. DATA PROCESSING 13

3.1 Data Collection and Selection 14

3.2 Data Cleaning 15

3.2.1 Removing Redundant Information 16

3.2.2 Missing Values 16

3.2.3 Outliers 18

3.2.4 Categorical Features 19

3.2.5 Time Series Train/ Test Split 22

3.3 Feature Engineering 24

3.3.1 Dataset 1 – Baseline 24

3.3.2 Dataset 2 – Manual Feature Engineering 24

3.3.3 Dataset 3 – Automated Feature Engineering 27

3.3.4 Feature Scaling 31

3.4 Reduction Methods 32

3.5 Class Imbalance Problem 34

3.5.1 Handling Class Imbalance Problem 35

4. RESEARCH METHODOLOGY 36

4.1 Machine Learning 36

4.1.1 Logistic Regression 37

4.1.2 Naïve Bayes 38

4.1.3 Random Forest 40

4.1.4 XGBoost 41

4.2 Model Selection 42

4.2.1 Cross-validation 42

4.3 Model Tuning 44

4.3.1 Tuning Gradient Boosting Machine 45

4.3.2 Controlling for Parameters 46

09916150989568GRA 19703

viii

4.4 Model Evaluation 47

4.4.1 Bias-Variance Dilemma 47

4.4.2 Performance Measures 49

5. RESULTS 53

5.1 Model Selection 54

5.2 Experimental Settings for the Benchmark Model 55

5.3 Experimental Setting 1 - Baseline 56

5.3.1 Results 57

5.4 Experimental Setting 2 - Manual Feature Engineering 58

5.4.1 Results 58

5.5 Experimental Settings 3 - Automated Feature Engineering 59

5.5.1 Results 60

5.6 Comparison of the Results 61

6. CONCLUSION 62

6.1 Discussion 62

6.2 Limitations and Further Work 65

6.3 Conclusion 67

REFERENCES 68

APPENDIX 75

A1 Orginal Feature Description 75

A2 Python Code 77

A3 Missing Data Exploration and Interpretation 78

A4 Tuned Hyperparameters for XGBoost 79

A5 Recall, Precision, F1-Score and Accuracy 80

A6 Illustration of Feature Importance Parameters 81

A7 Mapping and Cleaning of Categorical Features 82

A8 The Thresholds between FPR and TPR 86

09916150989568GRA 19703

1

1. INTRODUCTION AND
MOTIVATION

This research investigates how automated feature engineering affects one of the main

problems encountered in anomaly detection, namely the false positive problem. Our

thesis uses sophisticated machine learning methods and feature engineering to rank

three different models on how well they reduce false positives. Our research domain

is within the e-commerce sector and we will apply our methods to transactional data.

Due to the increased development of online solutions and technologies, online fraud

has increased rapidly over the last decade. With the help of the COVID-19 pandemic,

a new digital norm has emerged from the disruption of regular routines. Thus,

businesses are being forced to expedite digital transformation more than ever before,

with consumer patterns booming within online shopping. Such a revolution however,

does come with certain drawbacks. A recent report from 2020 showed that 4 out of 5

banks and financial institutions had a massive increase in fraud losses last year

(FICO, 2020), and it is expected that the worldwide loss of credit card fraud will

increase from $27.85 billion to $40.63 billion within the next five years (The Nilson

Report, 2019).

It is often the case that fraudulent transactions are reported when the customer

contacts the credit card company. However, the banks cannot rely on all their

customers to report fraud. To detect fraudulent transactions and crimes committed by

fraudsters, banks rely on a heavy amount of data to identify and learn customer

patterns in order to predict fraud using detection systems.

Predicting fraud is nothing new and has been around for a long time. There are

multiple defined supervised methods in the literature to help solve fraud (Brause et

al., 1999), (Aleskerov et al., 1997). However, spotting fraudulent transactions is a

challenging task due to multiple reasons. For example, imbalanced data is a big

challenge as a large portion of the data is genuine transactions and only a tiny fraction

fraudulent (Makki et al., 2019). A second major problem is concept drift. The

09916150989568GRA 19703

2

constantly changing consumer pattern can be a challenge for the model, requiring

consistent updates of the expert rules to keep the model relevant (Gama et al., 2014).

However, there has been little research in reducing the false positives, which has

plagued the banking industry for years (Pascual, Marchini, 2018). For example, in

2017, 1 out of 15 consumers were affected by false positives, and adults below the

age of 35 will most likely drop a credit card company when being declined upon

purchase (Pascual, Marchini, 2018). As a result, high numbers of false positives

benefit no one, and analysts have pointed out that it may cost more for the online

merchant and banks than the gain from predicting fraud itself. Furthermore,

merchants reported that 32% of customers stopped shopping with them after the

decline from a false positive (Bannett, 2017)

Figure 1.1: Illustration of a common practice in today's method for reducing false

positives

11.1 Illustration of a common practice in today's method for reducing false positives

09916150989568GRA 19703

3

From Figure 1.1 do we illustrate how e-commerce companies mitigate the problem of

false positives today (Carcillo et al., 2018), (Ingenico Inc, 2020). The process

consists of a multi-step method where the transactions are ranked through the scoring

of different predefined rules.

The merchant can create their own rules through a deny list, containing blocked IP

addresses and blocked regions, to name a few. This process works as a standalone

filter that either declines or approves the purchase directly based on the satisfaction of

the conditions.

The expert rules are feature engineering on historical data performed by domain

experts. These features have the goal of scoring a transaction based on previous

purchase patterns. An algorithm is used to output the predicted score based on the

attributes of the transaction. This filter can work on top of the merchant-specified

rules.

Suppose the transaction score is above a certain threshold. In that case, it is forwarded

to a security center usually located in the company where fraud agents will judge the

transaction to either approve or decline. This method is an incredibly time-consuming

and costly way to reduce the false positives as we need many agents to investigate

“flagged” transactions. Additionally, the expert rules in place need to be constantly

updated by domain experts to reflect the change in customer activity patterns (Milo et

al. 2016). Moreover, this method is error-prone and biased based on the competency

of the domain expert, the data scientist that manually creates the expert features. This

could potentially lead to poor performance and a higher false-positive rate.

Over the last five years, new advancement has been made in supervised learning and

other AI areas, and a weave of new methods has become available. An example of

such advancement is within feature engineering, more precisely the possibility to

automate the feature engineering process, a process previously known to be very

time-consuming. This is an exciting field as machine learning models rely heavily on

the input features, and even slight configuration to the raw features can have a

significant impact (Domingos, 2012).

09916150989568GRA 19703

4

The inefficiency of today’s methods and little research in the field of new tools made

available over the last years motivates us to explore an automated approach to

generate new features in order to test if we can reduce the number of false positives.

Our hypothesis is that manual feature engineering is a much more exhaustive and

error-prone way of creating expert rules due to it being both performed manually and

it is time-consuming. Thus, automating this process could potentially decrease the

false positives and reduce the number of fraud agents, saving the credit card company

and merchant an extensive amount of costs. Furthermore, we think it is beneficial that

expert rules are updated by an automatic method since the pattern of today’s

customers is in a consistent change. Doing so could save a lot of time which goes to

update the rules from false positives and concept drift that can be allocated to

improve the model or other places in the pipeline where resources are needed.

1.1 Fraud

Before diving deeper into our problem we define what “fraud” is. The Oxford

dictionary interprets fraud as a “wrongful or criminal act that is intended to result in

financial personal gain”. In literature, we have multiple forms of fraud, but we will

focus on online fraud in this thesis (Jain et al., 2019). In the domain of online

shopping fraud, fraudsters commit the crime remotely through mail non-receipt card

fraud, false merchant websites (phishing), credit card id theft and account takeover to

mention a few (Jain et al., 2019). These methods contribute to a vast amount of losses

each year, as identified in the introduction.

To mitigate these losses, detector systems are implemented as described in Figure

1.1, which classify fraudulent transactions from genuine transactions. When a

detector system “flags” a transaction, it blocks the purchase of a customer and sets off

an alarm in the security center of the bank. A fraud agent will then decide whether the

transaction was actual fraud or not, based on some investigation. Commonly this

investigation will be conducted through the agent calling the customer or collecting

more information about the transaction to make a judgment.

09916150989568GRA 19703

5

A transaction classified as fraud after an investigation is considered the truth and is

referred to as positives. On the contrary, transactions classified as genuine after

investigation are referred to as negatives. The domain experts change the

classification of the model based on the outcome of the investigation. In this thesis,

do we look at offline data from such a detector system. Thus, the target class is fixed

and cannot be updated by an agent like in a real-world scenario. We will look at the

binary classification problem, and four types of cases are defined.

● True Negative (TN) are transactions that generate no alerts and are legit.

There is a significant share of these observations than positives, thus creating

an imbalance in the data.

● True Positives (TP) are positive transactions classified as fraudulent by the

detector and validated by the agent. In a normal environment there are only a

few of these compared to the number of negatives.

● False Negatives (FN) are positives not detected by the system. The cost of

these undetected transactions can be high for the credit card company.

Customers may notice the fraud by themselves and report it to the credit card

company.

● False Positives (FP) are negatives classified as fraud by the detector and

subsequently, have the agent's investigation concluded that it was a genuine

transaction. Thus, the customer has gotten their purchase declined even if it

was a legit purchase. It is difficult to estimate the cost of one false alert as this

can be company specific. However, many false positives can create huge

losses for both the credit card company and the merchant. Moreover, it will be

beneficial to minimize these types of cases.

09916150989568GRA 19703

6

1.2 Automated Feature Engineering

Automated feature engineering has the aim of generating informative and

discriminative features from the raw data. In general, feature engineering requires

human insight, usually referred to as domain experts, to understand the data at hand.

Thus, it is a complicated process to automate and there are only a handful of

frameworks that support the automation of features today. This thesis will apply the

Featuretool approach, which we will do a short introduction for below.

Featuretool is an open-source Python library that automatically generates a large set

of interpretable features from a single or set of relational tables. The framework can

generate new features through Deep feature synthesis (DFS) that uses dataset

relationships, data types and other underlying factors to enhance and extract more

information from the pre-existing features. DFS mainly uses mathematical operations

called Primitives to generate these features. These primitives are generally nested

mathematical operations such as sum, standard deviation or averages. The type of

feature created is generally a function of the dataset architecture meaning that several

relational datasets may generate different features than a single dataset.

Featuretools bring a significant amount of out-of-the-box functionality such as

variable type inference and default parameters that let you quickly generate features

without much work. Nevertheless, there is some prep work that needs to be done in

order for the library to use DFS to generate features. First, defining the entities and

relationships among the entities is required to know what datasets are mutated.

Entities are simply data tables, either one or more, that contain a set of features and

observations. Relationships among the entities may be predefined such as in RDBMS

systems where tables are connected through ID features or keys.

Second, Featuretools needs information on the data types of each feature that is being

transformed. This may be inferred directly by the algorithm but is suggested to be

done manually as the automatic procedure is not very technical and cannot detect

categorical features. The last operation needed to be done before the features can be

generated is specifying the types of primitives to be used when running DFS. This

depends on the types of relationships and data types present in the problems, as some

09916150989568GRA 19703

7

primitives only function when there are multiple tables with relationships. Lastly, the

DFS algorithm needs to be run in order to generate the new features. This part of the

procedure is similar to running most ML models in python.

DFS is a complicated method that uses the relationships among observations to

calculate new features (Kanter, Veeramachaneni, 2015). This is another reason why

certain primitive operations can only be done when there are multiple entities joined

through relationships. Another complex task DFS performs is known as primitive

stacking where multiple primitives are done in succession, creating one or more

particularly deep features. A feature such as MAX(MEAN(TransactionAmt)) is an

example of this, and the number of primitives used in the creation is known as depth.

Featuretools also thrive when exposed to time series data as the new dimension opens

up the opportunity to create features dependent on time as opposed to static datasets.

1.3 Goal and Research Question

Following our motivation and description of the problem in previous sections, this

thesis explores an automated approach to generate interpretable features to discard as

much of the false positives (FP) as possible in today’s detection systems. Many

companies use domain experts to manually update and engineer features to maintain

the relevancy of the fraud detector. As previously mentioned, we see this method as

limited and biased towards the competency of the domain experts as there may be

features or relationships that are not thought of that could have a higher predictive

power.

This project will develop new features through Deep feature synthesis (DFS). We

will explore many of its functionalities to achieve a rich collection of features that

could help the model generalize better. The function will create random features in a

higher feature space, thus creating more opportunities for the detector to learn.

Unfortunately, discarding FP could result in discarding true positives (TP), which is

not desirable. Therefore, a good trade-off is necessary between reducing FP and

maintaining TP, which is essential for all banks based on their respective thresholds.

09916150989568GRA 19703

8

Based on the goal outlines above will we formulate the following two research

questions:

RQ 1: Do automated feature engineering decrease the FPR rate in fraud detection

systems compared to doing no feature engineering.

RQ 2: Does automated feature engineering better decrease the FPR in the fraud

detection system than a manual feature engineering approach?

This thesis focuses on implementing a new technique to automate the feature

engineering process to reduce the number of false positives. This thesis focus is not to

aid domain experts. However, this approach could be helpful to those creating expert

rules as we will look at differences and benefits with automated compared to manual

engineering of features in RQ 2.

09916150989568GRA 19703

9

2. RELATED WORK

Fraud detection has been around since the 90's. The first systems were very restricted

boundaries in the form of expert conditions and could collect, process, and store data.

These conditions check for specific attributes, such as if the card was used in a

different country or the transaction amount was more significant than some threshold.

The transaction was then blocked based on if these conditions were satisfied.

In 2011, a detailed comparison of methods within fraud prediction was published

(Bhattacharyya et al., 2011). Here the Support Vector Machine (SVM), Random

Forest, and Logistic Regression were compared within the credit card fraud domain.

The study concluded that the Random Forest approach had the best accuracy and

fewer false positives, followed by Logistic Regression and SVM.

In July 2019, the imbalanced class and concept drift problem was addressed (Devika

et al., 2019). The paper's focus was to create a novel learning approach to address the

concept drift and imbalanced class challenge in fraud detection. The paper's outcome

was successful, and they managed to demonstrate the imbalanced class problem and

concept drift in a real-world problem. An interesting resultas it identified and

resolved two of the most common fraud detection problems; adapting to new fraud

methods and the challenge of imbalanced data.

Another research paper published in January 2019 (Jain et al., 2019) introduced the

concept of fraud related to the e-commerce sector. The paper explained all the

different ways fraud could be conducted; stolen credit cards, mail non-receipt card

fraud and account takeover, to mention a few. In addition, there were various

methods listed for how one could detect fraudulent transactions. These methods

include ANNs, Bayesian Network (BNN), K- Nearest Neighbor (KNN), Decision

Trees and SVM. As a result, they found out that ANNs returned both the highest

accuracy and the lowest false-positive rates compared to other methods. The KNN,

Logistic Regression, Decision Trees, and BNN returned a medium false positive rate,

and the SVM on the other had the highest observed false-positive rate. The Drawback

of the ANN method was the high cost of training the model, followed by KNN, SVM

09916150989568GRA 19703

10

and Decision Trees, which all placed somewhere in the middle in terms of training

costs. The Logistic Regression approach was the least expensive model to train.

In 2017 Cornell University published a highly relevant article for our thesis (Wedge

et al., 2017). This research presented an automated feature engineering approach to

cope with the false positive problem in the fraud detection system. The reduction of

false positives demonstrated that a lot of genuine transactions were falsely classified

as fraudulent. The paper used the Featuretools approach to derive the features based

on the historical transaction data automatically. In total, 237 features were generated

for each transaction, and a tree-based classifier was used in the study. The model was

tested on a massive dataset from a banking corporation and was compared to their

existing detector solution in the bank. The model was tested on an unseen dataset of

1.852 million card transactions. The result of the automated feature engineered model

was a stunning 54% cut down in false positives. Such a drop in false positives

provided estimated savings of 190.000 Euros. They also investigated the possibility

of deploying the model under streaming computation in a real-world situation. We

think it is vital for further research and validation based on the promising results from

this study on automated feature engineering.

Baader & Krcmar (2018) proposed a red flag approach combined with process

mining to reduce the false positives in the domain of internal fraud detection. The red

flag approach gives hints or indications of fraudulent activity by scanning the dataset

for a "fraud pattern". On top of this method, they apply process mining to recreate the

as-is business process to visualize the information across the organization in the form

of a user interface. Their framework was applied to a purchase-to-pay business

process (P2P). P2P handles the purchase of goods to the payment of the vendor of an

organization. Their method aimed to detect internal financial fraud and supplier

procurement fraud, while maintaining a low false-positive rate. Their method was

prosperous compared to other studies, and they achieved an FPR of 0.37% and a TPR

of 48.38%.

So far, we have found that neural network methods outperform other machine

learning approaches in terms of reducing false positives. This could be because deep

learning models automatically operate directly on the raw data at a higher

09916150989568GRA 19703

11

representation level. However, such a performance comes with certain drawbacks.

The construction and choices of these deep learning models are almost impossible to

interpret for humans, and the models are very costly to train (Jain et al., 2019). On the

contrary, machine learning algorithms understand operations that are native to

humans, such as and, if, or operations. Furthermore, algorithms such as XGBoost,

Random Rorest, Gaussian Naïve Bayes and Logistic Regression have shown

promising results in terms of performance and implementation cost which have been

shown in the literature (Jain et al., 2019), (Bhattacharyya et al., 2011), (Wedge et al.,

2017), (Goyal et al., 2020). Thus, these algorithms are good model candidates to help

us answer our research questions.

It was hard to find previous research that discussed reduction methods of false

positives, which we see as crucial for a well-working detection system. Instead, many

articles discuss how accuracy could be improved, selecting the best models and

optimizing the hyperparameters for best results (Dornadula, Geetha, 2019), (Xuan et

al., 2018), (Lakshmi, Deepthi, 2018). Additionally, several articles look at the benefit

of how domain experts could decrease the false positive based on their experience

and competency (Whitrow et al., 2009). However, over the recent years, techniques

such as automated feature engineering have become available, and multiple studies

have been conducted on the application within different domains (Kanter,

Veeramachaneni, 2015), (Wedge et al., 2017), (Lucas et al., 2019). These studies

have shown that the automation of feature engineering both increased performance

and reduced development time, and some suggested that it outperformed the domain

experts.

Based on our analysis of various articles in the literature, we observe that little

research has been done in the field of false-positive reduction. We identified only two

articles within this field (Wedge et al., 2018), (Baader, Krcmr, 2018). Because

automated feature engineering has shown promising results in many domains, we find

it interesting to implement this technique to extract useful features that could

potentially reduce false positives. Furthermore, will we extend and validate work

already done (Wedge et al., 2017) and supplement this narrow field with a

comparison between manual and automated feature engineering effect on false

positives, which has not previously been attempted to the best of our knowledge.

09916150989568GRA 19703

12

Trivedi et al. (2020) recently introduced a comparison study of machine learning

methods within credit card fraud detection. Here the goal was to analyze the different

algorithms and their performance in credit card fraud detection. Model's tested

include Random Forest, BNN, Logistic Regression, SVM, KNN, GBM, to mention a

few. The study was conducted on a dataset of European cardholders. On average, the

algorithms return an FPR of 4.3% (Trivedi et al., 2020). For our paper, is this finding

interesting before going into the experiment as it can be viewed as a benchmark.

09916150989568GRA 19703

13

3. DATA PROCESSING

This chapter is divided into two parts. The first section presents how we collected our

data and selected the relevant features for our experiment. The second chapter is the

most detailed and includes preprocessing and transformation. Here we describe how

we created the three different datasets for our experiment described in the

transformation section. This section is the most essential aspect of this chapter to

answer our research question.

Figure 3.1 illustrates our data collection and preprocessing architecture. These are the

first two stages of our methodology that will be continued in chapter 4.

23.1 Selection and preprocessing architecture

Figure 3.1: Selection and preprocessing architecture

09916150989568GRA 19703

14

3.1 Data Collection and Selection

Our dataset was collected from Kaggle on the 01 of December 2020. Kaggle is a

website where companies with various problems publish datasets through

competitions where data scientists compete in creating the best performing models.

The data collected was from a fraud detection competition held in 2019 by VESTA

Corporation. VESTA is an e-commerce and credit card company that provides a

labeled dataset and an unlabeled dataset from their detection system. We choose only

to use the labeled dataset in our research, containing approximately 590.000 rows and

two tables.

The transaction table contains 394 features while the identity table consists of 41

features, amounting to 435 features. The transaction table provides information on the

product bought and the type of card used in the transaction. Furthermore, we are

provided with a timed delta in the format of seconds between each transaction, along

with the address and associated email address. In addition to these features there are

many masked features included with no explanation due to privacy reasons. They

provided extensive amount rich features to compensate for features that could not be

included in the dataset. The identity table includes digital signatures, IP and proxy-

related information, and other features related to the customer's identity. VESTA

provided the start date of the data which started on 2017-12-01.

We chose this dataset because it was the only available dataset we could find from a

banking domain with raw features and not pre-engineered features, often being PCA

computations of original features. The decision of using the dataset was based on the

amount of features and its large number of observations. Although the dataset

contains a mix of pre-engineered and natural features, we find it sufficient to use the

most naturally occurring features to best ensure reproducibility, thus discarding most

of the pre-engineered features. Based on our research questions it was important to

include a lot of raw features in our baseline model. We merged both the identity and

the transaction table based on the unique “TransactionID” key.

We filtered out the VESTA rich features (denoted V_xx) because they were pre-

engineered features combined from provided and not provided features. Based on our

09916150989568GRA 19703

15

research question, we only include the raw and masked features. The engineered

features could potentially leak information from other features already included

which could potentially invalidate our research. Appendix 1 includes a description of

all the raw features from our baseline dataset.

3.2 Data Cleaning

“Pre-processing is an important step in the machine learning process. The pre-

processing step is necessary to resolve several types of problems including noisy

data, redundancy data, and missing data values” (Kotsiantis et al., 2006)

This section will follow general changes to the data table as it is where the

information converges to become the data we will train our model on, finally. The

aim is to remove all redundant information and clean up the data through the

imputation of missing values, remove outliers, categorical encoding and correct

structural errors, to mention a few. The primary purpose is to detect inaccurate,

inconsistent, and irrelevant data and modify or delete this useless information to form

a dataset that provides quality to the other modeling steps down the value chain

(Agarwal, 2015).

First, we overview the data structure and patterns through an exploratory data

analysis (EDA). Second, we cleaned the raw features by removing irrelevant and

redundant information present in the data. The python code for all our work is

included in Appendix 2.

09916150989568GRA 19703

16

3.2.1 Removing Redundant Information
3 3.2 Distribution of dist1 and dist2

Dist1 and dist 2

Figure 3.2: Distribution of dist1 and dist2

The dist features describe the distance between different objects such as zip-code, IP

address and phone area. As shown in Figure 3.2 the dist1 feature contains more

information than dist2, which could be explained by the fact that dist2 has 45% more

missing values than dist1. As a result of the amount of missing data in dist2, it was

deleted from the table. One argument for the removal is that we get more accurate

data and results (Kotsiantis et al., 2006). In Appendix 3, we included an extensive

analysis of the missing data we base this judgment on.

TransactionID

The identification variable (TransactionID) we used to merge the two tables is

removed from the dataset as this variable is no longer needed for our modeling part.

3.2.2 Missing Values
The missing data is one of the common problems found in data today. Imputing the

missing values makes the analysis more manageable by making the dataset complete

as it eliminates the problem of handling complex patterns of missingness (Chhabra et

al., 2019).

09916150989568GRA 19703

17

There are several ways to eliminate missing values in the data. A data science article

proposed the following methods (Badr, 2019)

● Mean imputation. Calculate the mean of the non-missing values and use this

to impute the missing value observations. This method only works for

numerical data.

● Zero/ constant approach. Impute missing values with a new value different

from all other values. This method can be used for both categorical and

numerical features. A drawback is that it can introduce bias to the data.

● Imputation using deep learning. This method can impute missing values

using the other features in the dataset to predict the missing feature. This

method works well for both categorical and numerical features. A drawback is

that this solution is prolonged and time-consuming.

4 3.3 Missing data percentage by features

Figure 3.3: Missing data percentage by features

As shown in Figure 3.3, our data have a substantial number of missing values,

especially in the identification features that have on average 80% missing values in

each feature. Due to our lack of domain expertise, we find it hard to conclude if these

values are missing at random or if there is a reason for the data to be missing.

Therefore, we impute the missing numerical features with a zero/constant approach,

filling the missing numerical values with a number significantly different from any

other value in the dataset (Bhaya, 2017). This imputation was done because of the

09916150989568GRA 19703

18

average high percentage rate of missing data. On the contrary, dropping them could

potentially lead to loss of fundamental observations and feature-specific information,

something we did not want.

The choice of method to impute missing values varies and depends on what kind of

data you have, and there is no defined rule for this process. We are aware that using a

constant-value approach to fill the missing values has its limitations and may not be

ideal. In this specific case, it does not make sense to fill the missing values with the

feature mean or use deep learning to predict the input value based on other similar

features because the missing value percentage is too high on average.

The categorical features are imputed the same way. If the number of missing values is

vast, it can be replaced with a new category (Kumar, 2020). We therefore impute all

categorical features with a new category, “None” for each feature.

3.2.3 Outliers
5 3.4 Boxplot of TransactionAmt

Outliers are defined as values that excessively deviate from the feature mean

(Kotsiantis et al., 2006). The transaction amount (TransactionAmt) is such a feature

in our dataset, most likely due to special-case transactions or fat finger errors. There

were in total three observations, none of them fraudulent that were above the

threshold of 10000. We remove the outlying values from the dataset.

Figure 3.4: Boxplot of TransactionAmt

09916150989568GRA 19703

19

3.2.4 Categorical Features
6 3.5 Device Info before and after mapping

“Unlike quantitative attributes, categorical attributes typically have no natural

ordering or distance between values that fit quantitative definitions of outliers. One

key data cleaning problem with categorical data is the mapping of different category

names to a uniform namespace. E.g., a “razor” in one data set may be called a

“shaver” in another.” (Hellerstein, 2008).

We used EDA to identify structural errors and inefficient categorical variables with

many categories where only a few are essential. We apply feature mapping and

regrouping on those premises to make the feature more susceptible to provide

information a machine learning algorithm can learn from.

The method applied was to merge all the few observations into one category called

“others”, thus making the feature less complex. We have illustrated below how we

did the feature mapping of the categorical features.

Device Infoafter mapping

Figure 3.5: Device Info before and after mapping

The device_info feature had multiple categories of the same name. For example, the

iPhone (IOS) had multiple categories with different software versions. We grouped

all software systems with the same name into one group for each provider.

09916150989568GRA 19703

20

The same mapping and reorganization were done to the following features;

 ID_30, ID_31, ID_33, card6, P_emaildomain and R_emaildomain.

We have attached the preprocessing of these categorical features and illustration in

Appendix 7.

3.2.4.1 Categorical Encoding

Most machine learning models cannot handle categorical features directly as text, and

thus we need to transform them into numerical values. The different model’s

performance varies based on what kind of algorithm we use. (Cerda et al., 2018)

In addition, it is crucial to understand what kind of categorical variables you are

working with. As nominal categories have no order and label encoding could be

inefficient, the model could misunderstand and treat the nominal values as a hierarchy

or ordering (Shaikh, R. 2018).

From the data science article on categorical encoding (Yadav, 2019), was the

following methods presented to encode text into numeric values.

● Label encoding is a simple approach to convert each value in a column to a

number. This method uses number sequencing, meaning that different values

will have a number assigned in a sequential order starting on 0. Thus, this

approach is best for ordinal categorical features as an algorithm may

misinterpret the data by hierarchy or order (0 < 1 < 2). Therefore, is this

method not optimal for nominal values with no specific categorical order.

● One-Hot Encoding solves the misinterpretation that the numeric values have

some kind of order to them. This method converts each category into its

unique column with a 1/0 value. The row with the first column value will

have the value 1, and the rest will be assigned 0. The drawback of this feature

is that it can create a vast feature space for highly cardinal categorical

features. This can lead to “the curse of dimensionality” and increase the model

calculation time.

09916150989568GRA 19703

21

We faced multiple challenges when implementing a suitable method to encode our

categorical features. The first major problem was detecting if the feature was either

nominal or ordinal as most of the meaning of the categorical features was masked and

not appropriately explained. The second problem was high cardinality for several of

the categorical features. For example, the categorical feature card1 had 12 000

different categories, making it impossible to encode with a one-hot encoding method.

The feature space would destroy the model performance and potentially introduce the

“curse of dimensionality”.

Based on theory, the most beneficial solution would be one-hot encoding. However,

the high cardinality present in multiple categorical features made it difficult for us to

use this approach. This is because it gives rise to several other problems, such as the

risk of blowing up the feature space and fighting the curse of dimensionality, leading

to potential overfitting or worse performance for the model (Cerda et al., 2018).

As a result of the problems we faced, we implemented a trial-and-error approach,

testing both methods. First, we implemented a count encoding strategy to reduce the

cardinality for the highly cardinal features, which was transformed into numeric

variables. Then we applied one-hot encoding to the remaining categorical features.

After the one-hot encoding, we ran a PCA to reduce the dimensionality of the sparse

matrix produced. Finally, we tested the method with an algorithm to get the AUC

score and compared the results to a model that used the label encoding approach.

The outcome was that the label encoding method outperformed the one-hot encoding

method significantly. Thus, we decided to go with the label encoding method even

though the method has its limitations. We base our choice on the increased

performance with label encoding and on the premise that we used a trial-and-error

approach to see what works the best for our data.

09916150989568GRA 19703

22

3.2.5 Time Series Train/ Test Split

A general step in machine learning is to split the data into train and test sets. It is a

crucial process as it is the only way to validate how the model will perform on unseen

data. After separating the training dataset, we use this chunk to train, validate and

tune the model. Furthermore, it is essential to know what data you have and choose a

split method accordingly (Grootendorst, 2019).

Most commonly, we want an even distribution of fraudulent patterns in both the

training and test dataset. We do not want patterns present in the test data which are

not present in the training data, as it is hard for a machine learning model to predict a

pattern it has never been exposed to or trained on. Thus, patterns present in test data

should also be present in the training dataset. In python, do we achieve this by using a

stratified split.

Since we have time-series data in our thesis, we most likely have a fraudulent pattern

that have developed over time as new fraud methods have emerged, also referred to

as concept drift in literature (Devika et al., 2019). If we deployed a stratified split, we

would most likely get good results that reflect our model's predictive power.

However, we would indirectly leak information concerning the target through the

training process as it spreads information from all periods across all the datasets.

Since we want the experiment to be as realistic as possible, we do not have

transactions from the same period in both the training and test dataset. This is because

a model that knows the former will naturally predict the latter well, returning too

optimistic test scores and not generalize well to real-world applications (Miyaki,

2019).

We split based on periods since we are working with time series. The test data will be

the last 20% of the period, and the train will include 80% of the data before. There are

limitations to our approach as our model will predict on blind test data, potentially

leading to lower accuracy and performance than doing the split more traditional with

a stratified split. Nevertheless, this does not mean that our results would be invalid,

but it could make our results less accurate.

09916150989568GRA 19703

23

In Figure 3.6 we illustrate how we split our data and we can see how the fraudulent

activity drops in the testing period. This can indicate that we have a change in activity

or fraud pattern, making it harder to model, and we may expect the model to have less

accurate results than what is expected. In our case, we continue with this approach

while being familiar with its limitations.

7 3.6 Train/test split of the dataset

Figure 3.6: Train/test split of the dataset

09916150989568GRA 19703

24

3.3 Feature Engineering

“The function of mathematical modification to the value of a feature which extracts

more value than in its original state summarizes the goal of transformation”

(Osborne, 2002). From this paper, two forms of transformations are identified.

1. Change in the original feature

2. New features created from existing features.

In this section, we define all three datasets used in this experiment and all datasets

have the cleaned raw data in common. For our two baselines, no feature engineering

and manual feature engineering will be applied. Finally, automated feature

engineering in the form of DFS will be applied to a clean dataset which later will be

evaluated against the two baseline datasets in the result chapter where we will

quantify the overall performance of automated feature engineering.

3.3.1 Dataset 1 – Baseline

Our baseline dataset will only contain a clean copy of the natural raw features

available directly from customer interaction when making a purchase. This dataset

will be used as a benchmark against the automated engineering method to answer our

research questions.

3.3.2 Dataset 2 – Manual Feature Engineering

For this dataset we use the baseline as the foundation for further feature engineering.

We craft new features based on the features present in the cleaned baseline. The goal

is to build new features based on our knowledge, attempting to recreate how a domain

expert would craft new features by hand.

09916150989568GRA 19703

25

Change in original features

TransactionDT

TransactionDT was initially given as the number of seconds, and we transformed this

feature into a DateTime feature based on the starting date of 2017-12-01. The credit

card company that provided the original dataset also provided this date.

New features created from existing features

Date Features

From the DateTime feature, do we create additional time-based features. We generate

the following features; weekdays, hour of the day, day of the month and month of the

year.

High risk and low risk feature

From the EDA, we find that most fraudulent transactions happened from 05:00 at

night to 10:00 in the morning. In Figure 3.7, we illustrated that time of day strongly

depends on whether the transaction is fraudulent. The grey trendline represents the

amount of fraud while the bars represent transaction activity.

8 3.7 Most frequent transaction hours of the day

Figure 3.7: Most frequent transaction hours of the day

A binary feature was created which is 1 if the time of day is between 05:00 and

10:00, and 0 otherwise.

09916150989568GRA 19703

26

 TransactionAmt

From the transaction amount we generate two additional features. First, the

transaction amount is highly skewed. Thus, we transform the TransactionAmt into a

new feature taking the log of the transaction amount.

Second, we create an additional

feature which only extracts the

decimal number from the

TransactionAmt. This could be

useful as the EDA showed that the

mean fraud is higher for transactions

with three decimal points, as

illustrated in Figure 3.8.

 Figure 3.8: Mean fraud by decimals

9 3.8 Mean fraud by decimals

Random aggregation of some essential features

We implemented a random aggregate method on the different card types with the

transaction amount (TransactionAmt), including various max, min, skew, var, and std

operations.

Count encoding

Count encoding is sometimes used for replacing highly cardinal categorical features.

It is performed by replacing the categorical value with its count of instances. In our

case we had multiple card features with high cardinality. For example, Card1 has

over 12 000 categories as previously mentioned. Hence, this method transforms the

categorical features to a numerical format and can have helpful information for the

model to learn. We apply count encoding for the features card1 to card6.

09916150989568GRA 19703

27

3.3.3 Dataset 3 – Automated Feature Engineering

This section provides a detailed description of how we implemented automated

feature engineering through a python library called Featuretools on the baseline

dataset to create new features. This approach can be used for both a set of related

tables and single tables. In our research, we focus on how Featuretools perform on a

single table.

Entity set and entities

We start by creating an entity set for the transaction table. The entity set can be

interpreted as the contained table(s) data structure and allow us to group multiple

tables if we have more than one table. We specify each entity for the entity set where

an entity being one data table. In our case, we have one table but want to split the

transaction amount (TransactionAmt) into a single table to use aggregation over the

entire transaction table. Thus, we create two entities in the fraud entity set, the

transaction_table and the amount_table.

Figure 3.9: Output of entity set

From Figure 3.9, we can see that we manage to create the entity set Fraud which

holds the entity transaction_table and amount_table. The corresponding dimensions

of the dataset are listed. Since we split out the transaction amount to form a new table

for the purpose of aggregation, we have to specify the relationship between the two

tables as seen in the output.

103.9 Output of entity set

09916150989568GRA 19703

28

Specification of variable type

We had to specify what kind of features were categorical, time-based and numerical

in each entity set. The default setting of Featuretools is to specify all features as

numeric unless we input otherwise. Since we had many categorical features, did we

update the entity information with the correct specification. The time delta

(TransactionDT) was specified as the time index to create new features based on the

time.

Feature Primitives

Featuretools operate using primitives. Primitives are operations that are applied to our

dataset in order to generate new features. There are two forms of primitives.

Aggregation primitives’ groups features from all related data tables to form

one main table. Operations such as max, min, st.deviation and skew are a few

examples of operators to choose from.

Transformation primitives are applied to multiple features in a single data

table. Operations such as the difference between two features or absolute

value are some examples of transformative operations.

Our primary focus is on the transformative primitives in our experiment, but we also

include aggregation primitives for the TransactionAmt feature. Commonly are

transformation primitives applied for single tables. Multiple tables are usually

aggregation primitives applied to aggregate the information from all tables into one

entity before transformation primitives are applied to the entire table.

Furthermore, we specify what type of transformation and aggregation primitives we

want to apply from a list of available primitives. Based on our data and the

information present in the table(s), we choose to use the following set of primitives to

be applied to our entity set.

09916150989568GRA 19703

29

1 3.1 Primitives applied in Featuretool (DFS)

Primitive Type Description

Divide numeric Transformation Divided numeric features

Multiply numeric Transformation Multiply numeric features

Diff Transformation Compute the difference

between the value in

feature and the previous

item in that feature

Hour Transformation Determine the hour value

from the timedelta

Day Transformation Determine the day value

from the timedelta

Month Transformation Determine the month of

the year from the

timedelta

Week Transformation Determine the week of the

year from the timedelta

Time since Transformation Calculate the time from

one transaction to another

using the timedelta

Is weekend Transformation Return boolean value of

true/false if the timedelta

falls on a weekend

09916150989568GRA 19703

30

Time since previous Transformation

Compute the time since

the previous transaction

using the timedelta

Max Aggregation Calculate the highest

value

Min Aggregation Calculate smallest value

Median Aggregation Determine the

middlemost number in the

feature

Mean Aggregation Compute the average for

the feature

Table 3.1: Primitives applied in Featuretools (DFS)

As a result of limited domain knowledge of the raw features, we let Featuretools run

primitives on all our features without specifying any limits. An attribute of

Featuretools is that we can specify which feature we want to perform the operations

on, but by default will a primitive that is selected be applied to all features in the

entity set.

However, we specify what features we want to apply the multiplication primitive on

since we do not have enough computing power to create all the interactions.

We implement multiplication to the following randomly selected raw features;

TransactionAmt, dist1, D2, D4, D10, C1, C5, C6, C11 and C13.

09916150989568GRA 19703

31

Deep Feature Synthesis

After specifying all details required to use Featuretools we run the DFS, binding

everything we have specified up to this point. DFS uses primitive stacking in order to

generate the deep features. The depth is defined as the number of primitives that are

used to make a new feature. An example of this is that if we took the absolute value

of one feature and multiplied it with another feature, the newly generated feature

would have a depth of two because two primitives are used. An example of such a

feature is; TransactionDT*(ABSOLUTE(TransactionAmt)). In our experiment we use

a depth of two.

Simple preprocessing was applied after the DFS. Single value features were removed

as they had low variance and no predictive power. Additionally, we impute new

missing values that have arisen, and label encodes newly generated boolean

categorical features to a numeric format.

Figure 3.10: Output from the DFS function

From Figure 3.10 have we illustrated the output after running DFS on our dataset. It

took us only two and a half minutes to generate 1750 features, fast and efficient.

3.3.4 Feature Scaling
11 3.10 Output from DFS function

A common practice within supervised learning is to scale and normalize the different

features to the same range. For example, transaction amount would have a higher

interval of values than age. Normalization will help ensure that all the features are in

the same range. Some learning algorithms are sensitive to scaling, whereas others are

not.

In our case we do not normalize the dataset for Naïve Bayes, Logistic Regression or

the tree-based ensemble methods which are not sensitive to variance in the data

(Thenraj, 2020). Furthermore, it is proven in research that the accuracy of the

09916150989568GRA 19703

32

XGBoost becomes worse when normalizing rather than using the raw data (Borkin et

al., 2019).

3.4 Reduction Methods
Feature selection is an essential topic in classification as it may have a considerable

effect on the accuracy of the classifier (Karabulut et al., 2012). We add another layer

of complexity to our supervised methods when doing feature engineering because of

the dimensionality problem. It is vital to realize the trade-off between model

complexity (number of features) and accuracy. A reduction in features increases

accuracy and performance because the excess features can be noise (Belkin et al.,

2019). Automated feature engineering generated an exhaustive amount of new

features as previously shown. To reduce dimensionality, we attempt to implement

various reduction methods described below (Koehrsen, 2018).

● Collinear feature selection is a deterministic method that finds collinear

features in the dataset. For each pair of collinear features, the method

identifies and deletes one of them. We specify a threshold for collinearity for

where we want the model to delete features.

● Zero important feature selection is a non-deterministic method that uses

gradient boosting to assess the feature importance of each feature in the data.

In a tree-based model, these features are not used to split any nodes, and thus

we can remove them without losing model performance.

● Low importance removal builds on the zero-importance feature selection

method. It finds the lowest important features which do not contribute to the

total importance based on a predefined threshold. For example, we set a

threshold to find how many features we need to achieve a certain amount of

variance in the data. This is a trade-off between complexity and variance, an

important topic within supervised learning.

• PCA is a dimensionality reduction method that aims to enhance strong

patterns in data. Through the use of a technique called eigenvalue

decomposition, PCA aims to create features that maximize the information

captured, while also keeping the dimensions to a minimum.

09916150989568GRA 19703

33

We first attempted to implement PCA to the data, but it was impossible to fit in

memory due to the large size of the dataset. Secondly, we tried to implement different

batch sizes to the PCA to control memory usage. We see a significant dip in model

performance from this method and a significant increase in the false positives, thus

resulting in the discarding of this method.

Going further, we tried to implement another reduction technique called zero

importance feature selection. This method uses an implemented algorithm for feature

selection, typically a decision tree algorithm and in our case it was based on

XGBoost. Implementing this algorithm we managed to cut down from 1750 variables

to 400. However, at the cost of a significantly lower area under the curve (AUC),

potentially due to the high correlation that can misguide the feature ranking for these

algorithms (Tolosi, Lengauer, 2011).

Going further, we implement a cut-off to remove highly correlated features. Through

this method, we drop the highly correlated features above our pre-set threshold of 0.9

(90% correlation). From the literature, it can be shown that algorithms such as

Random Forest or gradient boosting models can generate misleading feature ranking

when the training dataset contains large groups of correlated features (Tolosi,

Lengauer, 2011). This method was also addressed in other research (Haixiang et al.,

2017), where collinearity was reduced through removing highly correlated features.

On the contrary, it can be argued as a naïve method to drop all highly correlated

features above a certain threshold as there may be good relationships or features we

lose among all the noise. In our case, this method was the only way to reduce the

features to go ahead with other selection methods, but we are aware of the limitation

this method could possess.

After cutting down the feature space with the correlation method, we were left with

around 700 features. At this point we implemented the zero important feature selector

again. Additionally, we implemented low importance removal to keep the variables

that explain 98% of the total variation in the data, leaving us with 306 features.

Appendix 6 illustrates the cut-off graph for the number of features to keep.

09916150989568GRA 19703

34

Our selection methods were performed on a trial-and-error approach to see which

method worked the best for our automated feature engineering dataset as there is no

“silver bullet” method for feature selection (Jović et al., 2015). We select our method

based on the AUC score and number of false positives by trying different approaches,

making us choose the most beneficial method based on performance gain. An

important notion is that we only perform reduction techniques to the automated

engineered data for our experiment because the manual and baseline dataset has a

much lower feature space.

3.5 Class Imbalance Problem
12 3.11 Target class (isFraud) distribution

Imbalanced target class

“A dataset is imbalanced if the classes are not approximately equally represented.”

(Chawla et al., 2002)

 Figure 3.11: Target class (isFraud) distribution

As for most fraud datasets, we encountered the problem of class imbalance illustrated

in Figure 3.11. After the preprocessing, fraudulent transactions accounted for no more

than 3.67% of the observations in the data. Most supervised algorithms learn best

when the target class is equally distributed. When there is a high imbalance, the

algorithms tend to be biased towards the majority class and predict almost none of the

observations from the minority group. If none of the fraudulent transactions were

09916150989568GRA 19703

35

predicted would the model still return an accuracy of 96%, falsely suggesting that the

model is performing exceptionally well.

3.5.1 Handling Class Imbalance Problem
13 3.12 Illustration of SMOTE

Figure 3.12: Illustration of SMOTE (Walimbe, 2017).

SMOTE is an oversampling technique that uses information about the already known

anomalies and attempts to generate new observations of the minority class up to a

given percentage (often a 50/50 distribution). This way, the model fits the data to

reflect the underlying information better and more accurately detect actual anomalies.

A typical outcome for highly imbalanced data when not using a sampling technique is

that the model may believe that the minority class is an outlier.

The feature that makes SMOTE different from other over-sampling techniques that

use replacement is that new observations are generated using nearest neighbor

techniques to the minority class (Chawla et al., 2002). This way, the new

observations are related to the central sample and no outliers are generated, thus

lowering the risk of inducing any overfit from adding new observations (Liang et al.,

2020).

We apply SMOTE after preprocessing to combat the problem of class imbalance, as

shown in research. By not implementing any sampling strategy, the result will be

inaccurate and not reflect the actual patterns in the data (Caldeira et al., 2014).

Research has shown that datasets with many observations have better accuracy

(Elreedy, Atiya, 2019). SMOTE is performed as the last step before modeling and is

only applied to the training data. The complete Python code can be found in

Appendix 2

09916150989568GRA 19703

36

4. RESEARCH METHODOLOGY

This chapter is divided into two parts. The first section presents the theoretical

framework for the supervised algorithm and how we selected the model to use in our

evaluation. The second section includes what kind of metrics we used to evaluate the

performance of the different models.

In Figure 4.1, we have illustrated the architecture for this chapter. This chapter will

introduce the last part of our methodology, which makes us quantify and interpret the

results from automated feature engineering.

14 4.1 Model and evaluation architecture

Figure 4.1: Model and evaluation architecture

4.1 Machine Learning

Machine learning can be grouped into four categories; Supervised Learning, Semi-

Supervised Learning, Unsupervised Learning and Reinforcement Learning

(Pedregosa et al., 2019). For this thesis, we only consider supervised learning.

For this experiment, our goal is to identify a supervised model that can be used to

evaluate if additional features generated by automated feature engineering would

make a difference in discarding false positives. The target feature can either be

09916150989568GRA 19703

37

classified as "0", a genuine transaction, or "1", a fraudulent transaction. It is essential

to choose a supervised method that adapts well to our data's characteristics and can

generalize to perform well for new, unseen data.

Different machine learning models serve different purposes and make different

assumptions about data. Based on the previous application within related literature,

we choose to include four different models in our test (Jain et al., 2019) (Wedge et

al., 2017). The following section introduces each of the algorithms evaluated.

4.1.1 Logistic Regression

The Logistic Regression model was evaluated for our experiment as it performed on a

moderate level concerning the reduction of false positives and had the lowest training

costs of all the tested models (Jain et al., 2019).

The Logistic Regression method is standard within classical statistics and is

considered one of the best methods for a binary classification problem (Geron, 2019).

The Logistic Regression is based upon the logistical probability function described by

Equation 4.1.

In detail, the model assumes that for each potential outcome of the dependent variable

(y), the probability of y = 1, is P and y = 0 is equal to (1 – P).

𝑃𝑃(𝑋𝑋) = 𝑒𝑒(𝑏𝑏0+ 𝑏𝑏1𝑋𝑋1)
1+ 𝑒𝑒(𝑏𝑏0+ 𝑏𝑏1𝑋𝑋1) (4.1)

𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃(𝑋𝑋)
1−𝑃𝑃(𝑋𝑋)

� = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋1 (4.2)

Consider an example; if we attempt to predict if there will be rain tomorrow, the

outcome is limited to the number of potential outcomes (the number of classes). In

this case, the outcome is either rain (y = 1) or there will not rain (y = 0), namely a

binary classification problem. When the logistical regression model estimates the

probability of an event, it transforms the problem into a categorical form based on a

threshold value being 0.5 as default (For example, "1" if the probability > 0.5, and "0"

if the probability is < 0.5) (Hosmer, Lemeshow, 2000).

09916150989568GRA 19703

38

The logistical regression coefficient must be estimated using maximum likelihood

estimation (MLE) (Brownlee, 2016), which is illustrated in Equation 4.2. The idea

behind MLE is to find the coefficient of β0 and β1, such that the probability predicted

𝑝̂𝑝(𝑥𝑥𝑖𝑖), using Equation 4.1 corresponds to the observed probability in our data (James

et al., 2019).

Logistic Regression is one of the simplest and fastest algorithms to implement and

train in machine learning and can be viewed as a baseline for many classification

problems. The low variance makes it less prone to overfit where the classes are

clearly separated. Moreover, the model can generalize to multiple classification

problems instead of binary, and it does not consider the distribution of the classes

within the feature space. The main drawback of the model is the risk of overfitting

when many of the features in the training data are highly correlated. (Howbert, 2012).

4.1.2 Naïve Bayes

Bayes theorem

The Naïve Bayes method is based on Bayes Theorem, a formula illustrated in

Equation 4.3 that determines the probability by estimating the frequency of values

and a mix of values in the previously collected data. Moreover, it provides the

probability of an event happening, given the probability of another event that already

occurred (Tan et al., 2013).

 𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑋𝑋|𝑌𝑌) 𝑃𝑃(𝑌𝑌)
𝑃𝑃(𝑋𝑋)

 (4.3)

Bayes theorem is commonly used to solve classification problems and thus we

evaluate its performance on our dataset in this thesis. We let X denote a set of

attributes, and Y denote the class. P(Y) is the prior probability calculated from the

training dataset by the fraction of data associated with each class. We then define the

class conditional probability denoted P(X|Y). Finally, we need to learn P(Y|X),

which is the posterior probabilities for all X and Y combinations based on

information drawn from the training data. However, it is not a straightforward task

estimating P(X|Y). Thus, we introduce the Naïve Bayes to solve this issue.

09916150989568GRA 19703

39

Naïve Bayes Classifier

The Naïve Bayes classifier uses prior knowledge of the classes combined with new

information gathered from the data. The approach can be considered a relatively

simple method but may still outperform the more advanced classification methods.

Another key attribute is the speed and accuracy when applied to a large dataset (Han

et al., 2011).

Naïve Bayes classifier has conditional independent assumptions, meaning it assumes

conditional independence between the attribute values P(Xi|Y). Based on this

assumption, we calculate P(X|Y) using Equation 4.4 with much less effort than

Equation 4.3.

𝑃𝑃(𝑋𝑋) = 𝑃𝑃(𝑌𝑌)𝜋𝜋𝑖𝑖=1
𝑓𝑓 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑌𝑌)
𝑃𝑃(𝑋𝑋)

 (4.4)

f superscript - the number of features.

Because the machine learning classifier is supervised, both probabilities P(Y) the

prior, and P(Xi|Y) the attribute probabilities can easily be calculated by counting the

occurrences from the training data.

𝑃𝑃(𝑌𝑌) = 1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
 𝑒𝑒𝑒𝑒𝑒𝑒

−
(𝑋𝑋𝑖𝑖− 𝜇𝜇𝑦𝑦)2

2𝜋𝜋𝜎𝜎𝑦𝑦2 (4.5)

There exist many forms of Naïve Bayes, and among these, the Gaussian Naïve Bayes

is one of the most popular methods. Compared to the Naïve Bayes, Gaussian Naïve

Bayes assume that each feature's likelihood obeys the normal distribution rule (Tan et

al., 2013). Equation 4.5 illustrates how this is calculated.

The Gaussian Naïve Bayes makes classification easier as it only uses the mean and

standard deviation from the training data. Furthermore, the advantage of the classifier

is that it works better with less data than other methods, and it provides faster

computational time. Additionally, Gaussian Naïve Bayes is limited when dealing with

highly correlated features as it assumes independence (Vadapalli, 2020)

09916150989568GRA 19703

40

4.1.3 Random Forest
15 4.2 Random Forest Voting Scheme

Bagging

Bagging is an ensemble technique also referred to as Bootstrap Aggregation. This

technique reduces the predictions' variance by combining multiple model predictions

on different sub-samples of the same dataset. One item is chosen as part of the

sampling volume and the item is then introduced back to the original dataset so it

may be chosen in the next pass. After repeating this process multiple times, we get

many different models on different volumes. We combine all these learners through a

deterministic averaging process in the end.

Random Forest

Random Forest is a classifier consisting of many single decision trees. It uses bagging

(Bootstrap Aggregation) and randomness when constructing individual trees to build

an uncorrelated forest of trees. The combination of all the tree's single predictions is

aggregated into one result which is more accurate than the individual decision of the

predictions from a single tree. All the individual trees in the Random Forest return a

class prediction and can be trained in parallel. The class with the most votes from all

the trees combined becomes the model prediction. Figure 4.2 illustrates this case, here

class 0 has six votes, and class 1 has three, and thus will the final prediction become 0

for the model (Yiu, 2019).

Figure 4.2: Random Forest Voting Scheme

In general, performance increases with RF since the variance is reduced through

combining low-correlation decision trees. Additionally, the data is partitioned at

09916150989568GRA 19703

41

random in each split and not by any measure of information gain contributing to

further randomness.

Furthermore, Random Forest requires very few parameters. There are only two

parameters that need consideration; the number of trees to grow and the number of

variables to consider at each node. It is worth mentioning that the default settings

tend to perform so well that it hardly needs any parameter tuning (Bentéjac et al.,

2019).

4.1.4 XGBoost

Boosting

Boosting involves using multiple weak learners (i.e. decision trees and similar) to

create one strong learner that can return a better result than each individual learner.

The main difference compared to the bagging method mentioned above is how the

elements are weighted and chosen. Bagging operates with equal-weighted elements,

meaning they have the same probability of appearing again, while boosting increases

the weight for misclassified data, encouraging the model to learn complex patterns

better. The boosting method trains the weak learner sequentially. Thus, each learner

tries to do a better job than their predecessor by adding more weight so the next

hypothesis is more likely to classify the sample correctly. Lastly, the final prediction

is the weighted average of all sequential predictors (James et al., 2013).

XGBoost

XGBoost is short for eXtreme Gradient Boosting. The method is an advanced form of

gradient boosting published by Chen and Guestrin (Tianqi, Guestrin, 2016). XGBoost

tries to combine weak learners to create a strong learner, much like the boosting

method above. During the learning process, weak learners are generated. At each

stage the weak learner calculates the value or class label and returns a loss (difference

between the actual value and the predicted value). The magnitude of the loss creates a

new weak learner, which again trains on the remaining errors. This process continues

until a threshold is met. Moreover, this process is referred to as gradient descent

optimization, where the gradient boosting name comes from.

09916150989568GRA 19703

42

The benefit of the XGBoost is that it has better regularization than normal gradient

boosting, reducing overfitting. Since XGBoost allows for parallel processing through

GPU, it is much faster than the normal gradient boosting (Brownlee, 2016).

Moreover, a normal gradient boosting is a greedy algorithm since it stops splitting the

node when encountering a negative loss. XGBoost on the other hand stops splitting

when it reaches the predefined limit of max depth. A helpful attribute built into the

XGBoost is cross-validation, making it better at determining the number boosting

rounds. It is important to note that when using XGBoost, a range of hyperparameters

needs to be tuned to achieve the desired results, a potential downside compared

alongside algorithms such as Random Forest and Logistic Regression.

4.2 Model Selection

4.2.1 Cross-validation

Cross-Validation (CV) is a statistical method used to estimate the performance and

skill of the ML model (Brownlee, 2018). It is a commonly used tool to assess and

select different ML models for a given classification problem.

Since we deal with time-series data in our thesis, we implement a time series split

with the k-fold method. For example, if the dataset contains [1, 2, 3, 4, 5] and we do a

k-fold CV with a time series split, we would follow these rules (Shrivastava, 2020).

● Every test set contains unique observations.

● Observations from the training set occur before their corresponding test set. In

other words, the test data must be ahead of time compared to the training data.

For example, we get the following if a dataset contains five observations.

- Training: [1] test [2],

- Training [1, 2] test [3]

- Training [1, 2, 3] test [4]

- Training [1, 2, 3, 4] test [5]

By averaging the k-fold’s, we get the average of the performance metric used,

for example, AUC.

09916150989568GRA 19703

43

Figure 4.3: K-fold CV with time series split

16 4.3 K-fold CV with time series split

In Figure 4.3, we illustrate how cross-validation could be performed.

Keeping our research question in mind, the mission is to find a model that could work

as a tool to quantify the results from using automated feature engineering, to see how

this approach affects the FPR. Therefore, k-fold cross-validation was implemented to

select the model which best fitted our raw data.

Our CV makes different Receiver Operating Characteristics (ROC) curves based on

different folds from the training data. Next, we average all the folds to get the mean

AUC, an excellent metric for validating and comparing different models (Forman,

Scholz, 2010).

The reason for performing the ROC validation was the massive imbalance in the

dataset. Other more standard and straightforward metrics such as accuracy, recall, and

precision could potentially be misleading, which will be explained more extensively

in the section of model evaluation.

None of the models applied in the CV will be tuned. That way, we ensure the

performance is out of the box performance for all models. A notation, the cross-

validation was only performed on the baseline dataset. This way, we could select the

model for use in the rest of the evaluation.

09916150989568GRA 19703

44

4.3 Model Tuning

For machine learning models one can generally say that discovering the optimal

tuned parameters is both time-consuming and computationally exhaustive. Applying

gradient boosting methods requires a lot of parameters tuning as the default

parameters of XGBoost are not optimal. In gradient boosting, the number of boosted

trees, learning rate, and the maximum depth of the trees make the model more robust.

Not paying attention to the parameters can make wrongful conclusions from the

model training as it may be overfitted and unable to learn. The parameters can be

divided into two groups; hyperparameters and consistent parameters.

Consistent parameters

Some parameters stay constant through the whole training process and are usually

training specific and chosen based on your objective goal and what we want to

predict. In particular, we need to specify a binary loss function. In addition,

specifying what type of hardware we want to run the model on is essential. Some

models run on GPU and others on processors. Through the use of GPU parallel

processing, the runtime is drastically reduced.

Hyperparameters

Hyperparameters are parameters that control the model and may have a substantial

impact on performance. As machine learning models get more sophisticated, the

number of hyperparameters to tune increases. Ideally, a hyperparameter optimization

method like grid-search would be applied to find the best parameter configuration

since this method finds the global optima. Due to grid-search being a brute force

algorithm, employing it requires extensive computational powers. Only people with

supercomputers could perform such a task (Chollet, Allaire, 2018), and thus sub-

optimal for our purpose. As a result, suitable tuning methods have increased as there

are many methods to choose from when tuning a model rather than using grid-search.

Essentially, the tuning algorithm can be seen as an optimization tool trying to

decrease the loss as much as possible. The decrease happens when an optimizer loops

09916150989568GRA 19703

45

over multiple values of different hyperparameters and reports the lowest loss of all

the combinations it tried at the end of the search (Bissuel, 2019).

4.3.1 Tuning Gradient Boosting Machine

Consistent Parameters

We use the XGBoost library in python to build a well-performing model. For the

constant parameters, there is only “boosting” we need to specify. This parameter is

set to gbtree, which is the gradient descent of tree types that penalize complexity.

Hyperparameters

We utilize Bayesian Optimization to tune the XGBoost model. The reason for

choosing this method is the ability to include more features to tune and its low

computation time. We were limited by using standard computers for this experiment

and could not use other methods such as Grid-Search or Randomized-Search.

Bayesian Optimization considers past evaluation when choosing which

hyperparameter set to evaluate in the next iteration. It then chooses the combination

in an informed way which makes it able to focus on the parameter space which is

believed to bring the most promising validation score. In other words, the Bayesian

optimizer makes “bets” on which mix of hyperparameters are more likely to achieve

the best objective function until it has reached the pre-specified limit of iterations

(Kapil, 2019). Consequently, this method requires fewer iterations than other

methods because it disregards areas of the parameters space it believes will not bring

any extra performance to the evaluation. It also provides faster results than similar

methods and surpasses human experts at selecting hyperparameters (Snoek et al.,

2012).

Methods such as Grid-Search and Randomized-Search use much time to evaluate

different hyperparameters completely uninformed of previous iterations it has made.

This forces the methods to spend a lot more time and a considerable amount of

computing power evaluating inferior hyperparameters (Koehrsen, 2018).

09916150989568GRA 19703

46

The hyperparameters tuned for the XGBoost models are:

1. Number of estimators (N_estimators)

2. Max tree depth (max_depth)

3. Learning rate (learning_rate)

4. Minimum child weight (min_child_weight)

5. Colsample by tree (colsample_bytree)

4.3.2 Controlling for Parameters

In our experiment, model settings are controlled for both constant parameters and

hyperparameters. We only tune the model for the baseline dataset, and the best

parameters will then be applied to all models. We find this beneficial because we get

a more accurate image of the isolated effect automated feature engineering has on the

FPR. If we had different hyperparameters for each model, it could potentially return

too optimistic results regarding automated feature engineering, naturally something

we do not want.

09916150989568GRA 19703

47

4.4 Model Evaluation

4.4.1 Bias-Variance Dilemma

One key decision to make when working with machine learning is how to validate

your models. Validation gives you insight into the model but can also return

reasonable indications for how unbiased and generalized the performance is.

Bias is the case where the model makes assumptions that are far from reality. This

could happen using the wrong learning algorithm, which is different from the

relationship between the dependent and independent features. A high bias model will

not learn the underlying pattern of the training data and therefore return a high loss

during training and validation. For example, a linear model is less flexible to more

complicated problems and thus often results in poor performance for more complex

problems. Bias is popularly referred to as the state of underfitting.

Variance is the case where the error is caused by fluctuation in the training data.

Ideally, do we want the model to perform the same regardless of the data the model

has trained on. However, this may not be the case if the model is too sensitive and

captures random patterns that only appear in the training data. Thus, variance occurs

when the learning function varies significantly with the data used for training. This

state is referred to as overfitting.

Mean squared error/ Total error represents the general noise in the data resulting

from zero important features or randomness. This error can be reduced during the

preprocessing stage.

The bias-variance tradeoff is the level of bias and variance in the underlying model.

A complex model usually has high variance and low bias and can for example be a

tree model. On the contrary, a low complex model has low variance but high bias and

can be a regression for example. A model cannot be both high and low on

complexity, therefore is called a trade-off between bias and variance.

Figure 4.4 can we see how bias and variance change based on the complexity of the

model. There is usually an optimal model complexity that minimizes the square error

09916150989568GRA 19703

48

by balancing bias and variance (Doroundi, 2020). Finding the equilibrium is often a

difficult task due to the underlying target function being unknown, and it would not

be possible to estimate the exact bias and variance errors (Singh, 2018).

Figure 4.4: Illustration of bias-variance tradeoff (Hulgol, 2020).

17 4.4 Illustration of bias-variance tradeoff

How can we deal with over- and underfitting, and how to detect it?

K-fold cross-validation is an excellent way to investigate the bias-variance tradeoff

and also ensure that the model has a low error. It is vital to choose the proper value of

K so the testing procedure returns the best possible estimation of K.

To assess the bias-variance characteristics with the k-fold cross-validation, we check

the error output with each calculated fold being one error. We find the bias from the

mean of all the k-fold errors. To check for variance do we compute the standard

deviation of the errors. A resulting high number indicates that the performance

overfits the data greatly, something we do not want.

To deal with the overfitting we employ techniques such as feature reduction.

Manually removing irrelevant features by removing collinear features and applying

regularization methods can help the model generalize better. Another approach would

be adding more trees to the Random Forest or the gradient boosting model, which

could potentially help.

09916150989568GRA 19703

49

In our case, we include a gradient boosting model that is robust against bias and

variance. The prediction from the gradient boosting model is the weighted average

predictions yielded from multiple weak learners where the best model iteration with

the lowest variance is chosen of all the weak models (Bühlmann, 2012), thus

contributing to tackling high variance. Additionally, the error prediction is reduced by

focusing on the bad predictions and then modeling them better in the next iteration,

thus reducing the bias.

Another important consideration is the presence of imbalanced data. The reduction of

bias requires equal representation of all group outcomes. As discussed in the data

processing chapter this was solved by implementing an up-sampling technique

(SMOTE) to balance the target class for the train data.

4.4.2 Performance Measures

In our research, AUC is implemented to evaluate the classifiers. We look at the

change in FPs (ΔFP) and the change in TPs (ΔTP) as performance measures for

evaluating how the different datasets impact the model in the domain of false

positives. In supervised learning literature, standard metrics are accuracy, precision,

recall and F1. However, in our case these performance metrics are not a good fit as

we are dealing with highly unbalanced data. In this domain there are a few positive

targets per million transactions. Consider a situation with 10 positives and 1 million

transactions. If the algorithm classified every transaction as “normal” the accuracy

metric would be above 99%. This is not a helpful detector as it detects none of the

fraudulent transactions. On the contrary, if the classifier detects all the 10 positives

but has 200 FPs, then the precision of that model would be 0.024, which may be seen

as a bad result at first sight but the model can still be good. Recent research also

supports this claim that precision, accuracy, recall, and F1 score should be avoided as

they could be biased when classes are highly unbalanced (Luque et al., 2019).

The Confusion matrix returns the output of a machine learning classifier for binary

or multi-class problems. It is helpful to get an overview of model performance by

looking at the difference between predicted and actual values. In most cases it is used

09916150989568GRA 19703

50

for further calculations of the FPR, TPR, accuracy, precision, recall and F1 score.

Appendix 5 includes a brief description of the measures not applied but have context.

Confusion Matrix 0 (Predicted Negative) 1 (Predicted Positive)

0 (Actual Negative) True Negative (TN)

Classified as not fraud

and was not fraud.

False Positive (FP)

Classified as fraud but

was not fraud

1 (Actual Positive) False Negative (FN)

Classified as not fraud but

was fraud

True Positive (TP)

Classified as fraud and

was fraud

Table 4.1: The confusion matrix scheme

2 4.1 The confusion matrix scheme

The difference in FPs and TPs

It is beneficial to know the difference between the FPs and TPs after implementing

the new feature compared to the initial baseline. The differences are estimated as

described in Equations 4.6 and 4.7. The subscripts F and B denote the FPs and TPs

from the manual and automated engineering (F), and the FP’s and TPs from the

baseline (B). Note that the difference can be either negative or zero.

 ∆𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝐵𝐵 (4.6) ∆𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝐹𝐹 − 𝑇𝑇𝑇𝑇𝐵𝐵 (4.7)

False Positive rate (FPR) and True positive rate (TPR)

After computing the confusion matrix from both the manual and automated feature

engineered models we compare the FPR and the TPR rate. This metric comparison

works as if the different models formed a single model. The metrics are described in

Equations 4.8 and 4.9.

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4.8) 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4.9)

09916150989568GRA 19703

51

ROC and the TPR/ FPR tradeoff

The ROC curve can be used to illustrate the classifier performance in the domain with

unbalanced data (Fawcett, 2006) and (Phua et al., 2004). The x-axis represents the

FPR and the y-axis the TPR. Since each dimension of the graph has a strict ratio, it

does not depend on the class distribution. Thus, the plot does not change as the class

distribution changes (Fawcett, 2006). In addition, it can be said that ROC curves

examine a single classifier for multiple classification thresholds.

Figure 4.5 is an example of an AUC with two classifiers (Fawcett, 2006). We see that

the curved line represents the

different thresholds between TPR and

FPR. The shaded area under the line

is represented as the AUC. The

diagonal line represents the random

chance and has an AUC of 0.5. In

other words, a model which follows

the diagonal is no better in detecting

something than a random flip of a

coin. Thus, a working model will

have a higher AUC than 0.5.

 Figure 4.5: ROC curve of two classes

18 4.5 ROC curve of two classes4

AUC

AUC is a single scalar value that is transformed from the ROC performance (Fawcett,

2006). The measure is a portion of the unit square and always has a range between 0

to 1. The better the AUC, the better is the model performance and ability to

distinguish between negative and positive classes. As a reference for future results, an

AUC between 0.90 and 1 is usually considered an excellent result, while between

0.50 and 0.60 are considered failures (Hanley, McNeil, 1982).

09916150989568GRA 19703

52

Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) considers all four values in the confusion

matrix. The measure takes values ranging from -1 to 1, where 0 means that the

classifier is no better than a random flip of a coin. A value of -1 means a negative

correlation, thus misclassification, and 1 means a perfect classifier. The Matthew

measure is applied because it is perfectly symmetric and no class is more important

than others. Hence, it can be seen as a more reliable statistical measure which only

produces a higher score if the prediction obtained performs well in all four categories

of the confusion matrix (Chicco, Jurman, 2020).

We choose to use MCC as recent studies have shown that this method was the best

metric for highly imbalanced classes (Luque et al., 2019). As a reference for future

result comparison, we find that 0.30 - 0.39 is a moderate positive relationship, 0.40 -

0.60 strong positive relationship and 0.70 or higher is a solid positive relationship

(Powers, 2011). This metric is described in Equation 4.10.

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇 𝑥𝑥 𝑇𝑇𝑇𝑇−𝐹𝐹𝑃𝑃 𝑥𝑥 𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 (4.10)

09916150989568GRA 19703

53

5. RESULTS

We have created three datasets to be compared against each other to conclude the

viability of the automated feature engineering framework and its effect on the false

positives compared to the baseline and manual engineered features.

This chapter will first choose which algorithm to use in our evaluation part, and this

is done through a model selection process using CV. This way we can evaluate

different models to make sure generalization and performance is equally good for

out-of-sample use, and to be sure that the selected model is optimized. The test

partition remained untouched through the whole model selection, tuning and training

phase. Secondly, we go through the experimental setup for the chosen model. Finally,

we will go through the result for each dataset and make a comparison between the

results.

09916150989568GRA 19703

54

5.1 Model Selection
19 5.1 ROC-AUC 10-fold CV with time series split

The first stage of the evaluation was to find which ML model that best fit our data.

We calculate the ROC-AUC of all the four candidate models from out-of-box

performance (no tuning). Using 10-fold cross-validation on the clean baseline data we

receive the following results:

Figure 5.1: ROC-AUC 10-fold CV with time series split

From Figure 5.1 Random Forest and XGBoost demonstrate to be two worthy

contenders as they have the highest AUC score on average compared to the four

models. We can see that the different thresholds between FPR and TPR are better for

these two, indicating that they have an overall lower FPR, which is what we want to

see. Based on the results from the CV alone we choose XGBoost as the model to use

in our experiment due to it having the highest AUC of 0.88, indicating that in 88% of

cases it can distinguish between the two classes.

09916150989568GRA 19703

55

5.2 Experimental Settings for the Benchmark Model

To evaluate the performance, we implement the model selected from the cross-

validation stage. This model will be used as a reference to evaluate how the additional

features generated by the automated approach influence false positives compared to

the two other methods.

XGBoost was tuned according to the features in the baseline data, and we keep these

hyperparameters constant for all models. We control for the hyperparameters to keep

consistency and comparability throughout the research. Additionally, we only utilize

one algorithm in the evaluation phase as our goal was to explore additional features'

effects on FPR, rather than different algorithm effects on performance. Our

benchmark model has the following setup.

3 5.1 Experimental settings for the XGB model

Machine learning model:

XGBoost

Input features:

Baseline – 81 features

Manual engineering – 124 features

Automated engineering – 306 features

Total amount of observations:

(455 832) Original

(911 664) Upsampled using SMOTE

Hyperparameter Tuning:

Bayesian optimization for XGBoost (Appendix 4 contains the optimized values)

Objective:

Binary

09916150989568GRA 19703

56

Loss:

AUC

Early stopping:

200 rounds

Regularization:

L1

Table 5.1: Experimental settings for the XGB model

Summarizing Table 5.1; the model was first fed the preprocessed training data before

adding the engineered features from each manual and automated method separately.

SMOTE was applied to the datasets in order to reduce the majority class bias. Using

Bayesian optimization the model was trained and validated with the best combination

of parameters to optimize the tree structure.

Furthermore, regularization measures to control for overfitting as previously

discussed are implemented. Early stopping avoids overfitting by monitoring the

performance of the test data. When the model does not improve after a fixed number

of iterations the training is stopped. The L1 regularization is controlled through the

alpha constant. We tried multiple values through a trial-error approach for the best

results.

5.3 Experimental Setting 1 - Baseline
The baseline dataset was created using only the raw features. The dataset was only

cleaned and pre-processed without adding any feature-engineered variables. In total,

the baseline dataset contains 81 features.

09916150989568GRA 19703

57

5.3.1 Results
20 5.2 Confusion matrix of the baseline model

 Figure 5.2: Confusion matrix of the baseline model

4 5.2 Result metrics of the baseline model

TPR FPR AUC MCC
45.46% 2.09% 0.87 0.43

Table 5.2: Result metrics of the baseline model

Our baseline yielded a surprisingly good AUC score of 0.87, indicating that our

baseline can distinguish between the two classes in 87% of the cases. Additionally,

we got a strong correlation score of 0.43 with the MCC metric. These scores

combined suggest that our classifier as an entity is considered to do a good job. From

Table 5.2 we achieve an FPR of 2.09%, which may seem small as a percentage but

with 2387 FP values we expect it to be reduced through further feature engineering.

Furthermore, we got a TPR of 45.46%, which is not a high value, but it may be

affected by the threshold between FPR and TPR, set to the default of 0.5. Appendix 8

includes a description of the details of thresholds.

It was interesting to get such a good result without any feature engineering, and the

results exceeded our expectations. Reflecting on these results, it may suggest that the

model has managed to pick up on some trend in the data despite the high sparsity of

many of the original raw features, especially with the identification features

containing on average above 80% missing values.

09916150989568GRA 19703

58

5.4 Experimental Setting 2 - Manual Feature
Engineering
21 5.3 Confusion matrix of the manual model

For our second dataset, we utilized the preprocessed baseline data and manually

engineered new features to potentially improve the machine learning algorithm

performance, thus decreasing the FPs. From the best of our knowledge, we leverage

the raw features through our own insight, coupled with research done in the credit

card domain. After the engineering process the dataset consisted of 124 features, an

increase of 43 new features compared to the baseline.

The process of exploring and creating the additional features by hand was an

exhaustive task, and we used the equivalent of 30 hours in total to explore and create

these domain-engineered features.

5.4.1 Results

Figure 5.3: Confusion matrix of the manual model

5 5.3 Result metrics of the manual model

TPR FPR AUC MCC
41.28% 0.32% 0.92 0.57

Table 5.3: Result metrics of the manual model

6 5.4 Comparison between baseline and manual model

09916150989568GRA 19703

59

Baseline Manual Feature Engineering
FP TP FP (Δ FP) TP (Δ TP)

2387 1842 364 (-2023) 1677 (-165)
Table 5.4: Comparison between baseline and manual model

With respect to the results, the manual engineered model yielded an AUC of 0.92

(which is considered excellent), a moderate increase by 5.8% compared to the

baseline results. Furthermore, the model performed better as a whole compared to the

baseline as the MCC increased to a correlation score of 0.58, an increase of 0.15 from

the baseline. As shown in Table 5.3 the manual feature engineering can discard a

huge amount of the FP (-2023), but it has a penalty of discarding TP as well (-165).

Thus, we manage to decrease the FP compared to the baseline by 84% with the

manual engineered approach. Looking at the results, the manual engineered model

outperformed the baseline, suggesting that the new features give more information to

the model, indicating that it managed to generalize better to the holdout data.

5.5 Experimental Settings 3 - Automated Feature
Engineering

For our third dataset, we applied automated feature engineering to the baseline data.

Our objective was to let the DFS algorithm create new features based on the raw data

from the baseline, using the pre-selected primitives. The DFS algorithm yielded in

total 1750 new features. Furthermore, we resolved the problem of the huge feature

space by applying reduction techniques previously discussed in the model framework

chapter. This left us with 306 features, an increase of 225 features compared to the

baseline.

The creation process of the new features was done in approximately 2.5 minutes,

although we used the equivalent of 5 hours to learn the basics and default settings of

Featuretools, can it be said to be highly effective especially compared to the time we

used on manual features engineering. Note that the five hours used is a one-time

investment and further application of the Featuretool method in the future will be

much more efficient.

09916150989568GRA 19703

60

5.5.1 Results
22 5.4 Confusion matrix of the automated feature engineering model

Figure 5.4: Confusion matrix of the automated feature engineering model

7 5.5 Result metrics of the automated feature engineering model

TPR FPR AUC MCC
40.54% 0.33% 0.92 0.57

Table 5.5: Result metrics of the automated feature engineering model

8 5.6 Comparison between baseline and automated feature engineering model

Baseline Automated Feature Engineering
FP TP FP (Δ FP) TP (Δ TP)

2387 1842 374 (-2013) 1689 (-195)
Table 5.6: Comparison between baseline and automated feature engineering model

As shown in the above tables the automated engineered method outperforms the

baseline on all levels. The model yields an AUC of 0.92, a moderate increase over the

baseline by 5.8%, although an equal score compared to the manual engineering

approach. The MCC yields a correlation score of 0.57 which is a good improvement

over the baseline and equal compared to the manual engineered approach. These

results indicate that the automated model performs better for all groups in the

confusion matrix than the baseline, but similar to the performance of the manual

engineered model. From Table 5.6, we have discarded a lot of FPs from the initial

baseline (-2013), but we have also lost some of the TPs (-195). In total, we reduced

09916150989568GRA 19703

61

the false positives by 84% compared to the baseline results. However, this reduction

is equal to the manual engineered approach.

5.6 Comparison of the Results
235.5 ROC curve comparison of the models

 Figure 5.5: ROC curve comparison of the models

There is a clear distinction between performance of the baseline and the two other

engineered approaches in respect to the trade-off between FPR and TPR, which can

be seen in Tables 5.6 and 5.4. However, it is difficult to separate the two curves of the

manual and automated engineered methods as seen in Figure 5.5 due to their almost

perfect overlap.

It is interesting to observe that both approaches using feature engineering, in different

ways and scales have almost equal performance on all levels in our comparison. The

key takeaway from the results is that both the manual and automated approach is

superior to the baseline regarding discarding false positives. However, both methods

have similar performance when compared. In the light of this one might say that both

methods help the model to learn and generalize better to the holdout data. However, it

is impossible to divide between automated and manual approaches to say that one is

better than the other just based on the quantitative results.

09916150989568GRA 19703

62

6. CONCLUSION

6.1 Discussion

Before discussing our results, we reintroduce our research question from the

introduction chapter.

RQ 1: Do automated feature engineering decrease the FPR rate in fraud detection

systems compared to doing no feature engineering?

RQ2: Does automated feature engineering better decrease the FPR in the fraud

detection system than a manual feature engineering approach?

The results indicate that automated feature engineering reduced the FPs with 84%

compared to the baseline going from an FPR of 2.09% to 0.33%. Additionally, we

managed to preserve most of the TPs as we only discarded 11%, going from a TPR

of 45.46% to 40.54% with the automated approach. The AUC and the MCC

increased from 0.87 and 0.43 to 0.92 and 0.57, indicating that the automated feature

engineering model is an overall better classifier than the baseline. When starting this

project our hypothesis expected that the automated engineering method would

outperform the baseline. As seen from our results, this theory holds for our

quantitative interpretation, aligning with a positive outcome for our RQ 1, that

automated feature engineering decreases the FPR from the baseline of not doing any

feature engineering.

Second, the results from automatic engineering compared to manual engineering were

quite similar. Both methods reduced the FPs by 84%. However, the manual method

had the edge on preserving the TPs with a drop of 9% (TPR of 41.28%) compared to

the automated approach at 11% (TPR of 40.54%). This minimal difference could be

caused by random variation in the data. The AUC and the MCC scores are equal for

both methods indicating that they have an equivalent classification performance.

Based on the results, we do not find a significant difference between the two

approaches in terms of reducing false positives or classification performance in

general. This was surprising as our hypothesis expected that the automated feature

09916150989568GRA 19703

63

engineering approach would have an edge on the manual engineered method. Based

on the result from our experiment, and with RQ 2 in mind, there is no difference

between manual and automated feature engineering in terms of decreasing the FPR.

Our results build on existing evidence from the study presented by Cornell

University, (Wedge et al., 2017). Their method achieved a reduction in FPs of 54%

compared to their baseline of the study. From our results we have achieved a

reduction of 84% in FPs. Although not all factors are equal in terms of experimental

framework and trade-off between FPR and TPR, we argue that both results

significantly reduced the FPs from their respective baseline using DFS.

Furthermore, those our FPR results outperform those of Trivedi et al. (2020)

comparison study on ML models within the fraud detection domain. Their study

achieved on average an FPR of 4.3% from all models tested with no feature

engineering. Our results show a FPR of 0.33% after automated feature engineering

was applied. These results can be argued to be somewhat comparable as both

methods are within the domain of credit card fraud detection, and show the benefit

automated feature engineering can have when applied.

While previous research has focused on reducing false positives from the current

solution of a banking corporation, our thesis has tried to explore the difference

between manual and automated feature engineering within the reduction of false

positives. As previously discussed, our results state that the difference between the

manual and automated methods in relation to the FPR is insignificant. However, there

is a significant difference in the number of hours used and the number of features

created, influencing cost and labor, making one approach more reasonable than

another for a banking corporation.

09916150989568GRA 19703

64

24 6.1 Summary of the result from the manual and automated approach

Figure 6.1: Summary of the result from the manual and automated approach

From Figure 6.1, we can see a summary of the results of both the automated and the

manual approaches. An important observation is the difference in development time

and the number of features created from the two approaches.

Engineering the manual features took a significant amount of time. We had to

perform EDA to analyze the feature pattern of the raw data to figure out what kind of

features would make sense to engineer. Thus, resulting in a very time-consuming

approach to creating additional features. On the contrary, the DFS approach required

that we specified the data source and the respective categories of the features. After

the first pass of the data, the DFS algorithm generated a huge feature space within 2.5

minutes, a lot less than the approximately 30 hours we used to engineer a few features

by hand manually. About 5 hours were used to learn the Featuretool basics, but this is

considered a one-time investment.

Analyzing the results supports the theory that automated feature engineering is a

better approach to reduce the false positives when taking the time it takes to perform

manual compared to automated engineering into account. From a cost-saving

09916150989568GRA 19703

65

standpoint, the use of automated feature engineering is a significant opportunity for

larger cost savings. At the same time, are we able to get features a domain export may

never have thought of creating or had time to implement. Although not all the

features generated from the DFS are helpful, as our results suggest using feature

space reduction methods seems very effective in dealing with this. Moreover, it is

usually better to have more features than a few as it provides the option of using

various selection methods to retain the most relevant features to the respective

domain.

All of the above results should be considered when building a detection system for

fraud prediction. As the results have shown, the DFS method is superior to the

baseline but yields the same result as the exhaustive and time-consuming manual

feature engineering approach. Most banking corporations utilize manual engineering

today when updating expert rules, which are inefficient, humanly biased, and costly.

Creating an automated pipeline may lower FPR and cut down on manual labor costs

for companies within the financial industry as well as other sectors.

6.2 Limitations and Further Work

Although the results have shown that automated feature engineering could be helpful

when discarding FP, there are some limitations to the solution presented, along with

some exciting areas for further research.

The generalizability of our results is limited to the single-table approach, as we did

not collect data from other sources with multiple related tables. From the discussion

earlier, the Featuretool technique works both on single and multi-table situations and

desirably both methods should have been covered to get the complete picture of the

potential and how it may differ working with other dataset compositions. The

performance and results may vary based on whether we have multiple tables or just

one single table because we apply more aggregation primitives when dealing with

multiple tables.

Nonetheless, from the results presented the findings validate our hypothesis for both

of our research questions. Additionally, we touch upon the aggregation primitives by

09916150989568GRA 19703

66

splitting out the transaction amount into a separate table. Further research is needed to

establish if there is a difference in using automated feature engineering on multiple

related tables and single tables.

Our knowledge and competency do have an impact on the reliability of the manually

engineered features. Since neither of us are domain experts, there may be additional

features that we have not thought of. We have done extensive research and created

manual features that best fit our domain to the best of our knowledge. For further

research, it could be interesting to include actual domain expertise to get a more

honest picture of how the difference will unfold between automated and manual

approaches.

Additionally, it may be interesting pairing domain experts and machine intelligence,

where domain experts would craft features along with automated feature engineering

as a tool. We expect that their superior knowledge would reduce feature space as they

know which features to apply different primitives on. In contrast, we apply primitives

at random as we had limited competency within the domain, resulting in a high

number of features.

Due to the lack of computing power, we could not produce more than a certain

amount of features with the DFS function. As Featuretools have many primitives, we

have to choose wisely as we could not store all these features in memory.

Additionally, we could not create a feature beyond the depth of 2, as it would not

have fit in our available memory. Even though there were limitations on

computational power we expect that the average person or company does not have

supercomputers, making these results somewhat generalizable for most people.

In terms of XGBoost we would like to emphasize the limitations of tuning iterations

for the hyperparameters. Due to the memory bottleneck as previously stated, we ran

into computational- and time constraints. The number of iterations we ran could have

affected the performance of the XGBoost. This indicates that there may be potential

for further tuning of the hyperparameters. Furthermore, since XGBoost is so sensitive

to changes in hyperparameters, results may change drastically with the optimal

parameters, and further research with suitable supercomputers could investigate this.

09916150989568GRA 19703

67

For further research, it could be interesting to apply multiple datasets from various

domains to see if automated feature engineering performs better in some business

domains than others. This thesis was limited to exploring the domain of fraudulent

transactions within e-commerce.

It was beyond the scope of this study to compare different supervised algorithms with

the effect of automated feature engineering on false positives. However, it could be

interesting for further research to try multiple models and see if the result changes

based on algorithms applied.

6.3 Conclusion

In this thesis have we considered a framework of automated feature engineering for

ML model within e-commerce fraud detection, with the aim of reducing the number

of false positives. What distinguishes our approach from previous studies is that we

consider the comparison between manual and automated feature engineering. In

addition, we implement selection methods that are compatible with many types of

ML models. Thus, our framework is generalizable to many types of financial fraud

detection problems and could aid domain experts and other people within the

industry. Using a dataset consisting of e-commerce transactions, we have shown that

our automated feature engineering framework improves the AUC by 5.8% and

reduces the FPR by 84% from the baseline solution with no feature engineering.

Furthermore, our comparison between the manual and automated feature engineering

methods did not find any significant differences of the effect on FPR. However, our

results suggested that the automated feature engineering is significantly more time

efficient and by implementing an automated strategy the deployment time may be

heavily reduced.

09916150989568GRA 19703

68

REFERENCES
Zhou, Z.-H. (2012). Ensemble methods : foundations and algorithms. Taylor &
Francis.R. Brause, T. Langsdorf, M. Hepp.: Neural Data Mining for Credit Card
Fraud Detection, Proc. 11th Int'l Conf. Tools with Artificial Intelligence (1999) 103-
106.

Aleskerov, E., Freisleben, B., and Rao, B. (1997). "CARDWATCH: a neural
network based database mining system for credit card fraud detection," Proceedings
of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering

Pascual, A. Marchini, K. (2018). Overcoming false positive declines in e-
commerce.In Javelin strategy and research reports.

Bahnsen, A., Aouada, D., Stojanovic, A., Ottersten, B. (2016). Feature engineering
strategies for credit card fraud detection. Expert Systems with Applications Volume
51, 1 June 2016. Pages 134-142

Yu, W. F., and Wang, N. (2009). Research on credit card fraud detection model based
on distance sum. IJCAI.

Kovach, S., and Ruggiero, W. (2011). Online banking fraud detection based on local
and global behavior. The Fifth International Conference on Digital Society. Page
166–171.

Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J. C. (2011). Data mining for
credit card fraud: A comparative study. Decision Support Systems, 50(3), 602–613.

Huang, J., and Liu, J. (2012). Intrusion detection system based on improved BP
neural network and decision tree. 2012 IEEE 5th International Conference on
Advanced Computational Intelligence, ICACI 2012. Page 188–190.

Devika, S. P., Nisarga, K. S., Rao, G. P., Chandini, S. B., Rajkumar, N. (2019). A
research on credit card fraudulent detection system. International Journal of Recent
Technology and Engineering. Page 5029– 5032.

Jain, Y., Tiwari, N., Dubey, S., Jain, S. (2019). A comparative analysis of various
credit card fraud detection techniques. International Journal of Recent Technology
and Engineering. Page 402–407.

Wedge, R., Kanter, J. M., Veeramachaneni, K., Rubio, S. M., Perez, S. I. (2017).
Solving the false positives problem in fraud prediction using automated feature
engineering. Machine Learning and Knowledge Discovery in Databases. Page 372-
388

Davis, J., Foo, E. (2016). Automated feature engineering for HTTP tunnel detection.
Computers & Security Volume 59, June 2016. Pages 166-185.

Bannett, C. (2017). Overcoming False Positives: Saving the Sale and the Customer
Relationship. JAVELIN corporation.

09916150989568GRA 19703

https://www.sciencedirect.com/science/journal/09574174
https://www.sciencedirect.com/science/journal/09574174/51/supp/C
https://www.sciencedirect.com/science/journal/09574174/51/supp/C
https://www.sciencedirect.com/science/journal/01674048
https://www.sciencedirect.com/science/journal/01674048
https://www.sciencedirect.com/science/journal/01674048/59/supp/C

69

Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M., Zeineddine, H. (2019). An
Experimental Study With Imbalanced Classification Approaches for Credit Card
Fraud Detection. IEEE Access Volume 7. Pages 93010 – 93022.

Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM Computing Surveys vol 46.

Kotsiantis, Sotiris & Kanellopoulos, Dimitris & Pintelas, P. (2006). Data
Preprocessing for Supervised Learning. International Journal of Computer Science. 1.
111-117.

Hellerstein, J. (2008). Quantitative Data Cleaning for Large Databases. UC Berkeley

Osborne, J. W. (2002). Notes on the Use of Data Transformation. - Practical
Assessment, Research & Evaluation, 8(6).

Chhabra, G., Vashisht, V., Ranjan, J. (2019). A Review on Missing Data Value
Estimation Using Imputation Algorithm. Journal of Advanced Research in Dynamical
and Control Systems. 11. 312-318.

Cerda, P., Varoquaux, G., Kegl, B. (2018). Similarity encoding for learning with dirty
categorical variables. Machine Learning.

Kanter, J., and Veeramachaneni K. (2015). Deep feature synthesis: Towards
automating data science endeavors. IEEE International Conference on Data Science
and Advanced Analytics 2015, pages 1–10.

Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W. (2002). SMOTE: Synthetic
Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR). 16. 321-357.
10.1613/jair.953.

Belkin, M., Hsu, D., Ma, S., Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. PNAS August 6, 2019 116
(32) 15849-15854

Elreedy, D., Atiya, A. (2019). A Comprehensive Analysis of Synthetic Minority
Oversampling Technique (SMOTE) for handling class imbalance,

Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters,
27(8):861{874, 17

Phua, Clifton & Alahakoon, Damminda & Lee, Vincent. (2004). Minority Report in
Fraud Detection: Classification of Skewed Data. SIGKDD Explorations. 6. 50-59.

Walter, SD. (2005). The partial area under the summary ROC curve. Stat Med. 2005
Jul 15;24(13):2025-40. doi: 10.1002/sim.2103. PMID: 15900606.

Bentéjac, C., Csörgő, A., Martínez-Muñoz, G. (2019). A Comparative Analysis of
XGBoost.

Chollet, F. (2018). Deep learning with Python. Manning Publications Co.

09916150989568GRA 19703

https://dl.acm.org/journal/csur

70

Borkin, D., Nemethova, A., Michalconok, G., Maiorov, K. (2019). Impact of Data
Normalization on Classification Model Accuracy. Research Papers Faculty of
Materials Science and Technology Slovak University of Technology. 27. 79-84.
10.2478/rput-2019-0029.

Snoek, J. Larochelle, H. Adams, R. (2012). Practical Bayesian Optimization of
Machine Learning Algorithms

Doroundi, S. (2020). The Bias-Variance Tradeoff: How Data Science Can Inform
Educational Debates. AERA Open

Bühlmann, P. (2012). Bagging, Boosting and Ensemble Methods. Handbook of
Computational Statistics. 10.1007/978-3-642-21551-3_33.

Bhaya, W. (2017). Review of Data Preprocessing Techniques in Data Mining.
Journal of Engineering and Applied Sciences. 12. 4102-4107.
10.3923/jeasci.2017.4102.4107.

Whitrow, C., Hand, D.J., Juszczak, P., Weston, D., Adams, N.M. (2009). Transaction
aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge
Discovery 18(1), 30–55

Breiman, L. Friedman, J. Stone, C. Olshen, R.A. (1984). Classification and
Regression Trees

Toloşi, L., Lengauer, T. (2011). Classification with correlated features: unreliability
of feature ranking and solutions, Bioinformatics, Volume 27, Issue 14, Pages 1986–
1994,

Jović, A., Brkić, K., Bogunović, N. (2015). "A review of feature selection methods
with applications," 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp.
1200-1205, doi: 10.1109/MIPRO.2015.7160458.

Karabulut, E., Özel, S., İbrikçi, T. (2012). A comparative study on the effect of
feature selection on classification accuracy ,Procedia Technology, Volume 1, Pages
323-327,

Haixiang, G., Yijing, L., Shang, J. (2017). ‘Learning from class-imbalanced data:
review of methods and applications’, Expert Syst. Appl., 73, pp. 220–239

Agarwal, V. (2015). Research on Data Preprocessing and Categorization Technique
for Smartphone Review Analysis. International Journal of Computer Applications.
131. 30-36. 10.5120/ijca2015907309.

Forman, G., Scholz, M. (2010). Apples-to-Apples in Cross-Validation Studies:
Pitfalls in Classifier Performance Measurement ABSTRACT. SIGKDD Explorations.
12. 49-57.

09916150989568GRA 19703

71

Luque, A., Carrasco, A., Martín, A., Heras, A. (2019). The impact of class imbalance
in classification performance metrics based on the binary confusion matrix, Pattern
Recognition, Volume 91, Pages 216-231,ISSN 0031-3203,

Hanley, J.A., Mcneil, B. (1982). The Meaning and Use of the Area Under a Receiver
Operating Characteristic (ROC) Curve. Radiology. 143. 29-36.
10.1148/radiology.143.1.7063747.

Powers, D. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation.

Chicco, D., Jurman, G. (2020). The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
BMC Genomics 21, 6

Carcillo, F., Pozzolo, A., Borgne, Y., Caelen, O., Mazzer, Y., SCARFF, G. (2018). A
scalable framework for streaming credit card fraud detection with spark,Information
Fusion, Volume 41, Pages 182-194, ISSN 1566-2535

Milo, T., Novgorodov, S., Tan, W. (2016). Rudolf: interactive rule refinement system
for fraud detection. Proceedings of the VLDB Endowment. 9. 1465-1468.
10.14778/3007263.3007285

Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. 785-794.
10.1145/2939672.2939785.

Cutler, A., Cutler, D., Stevens, J. (2008). Tree-Based Methods. 10.1007/978-0-387-
69765-9_5.

James, G., Witten, D., & Hastie, T., Tibshirani, R. (2013). An Introduction to
Statistical Learning.

Baader, G., Krcmar, H. (2018). Reducing false positives in fraud detection:
Combining the red flag approach with process mining, International Journal of
Accounting Information Systems, Volume 31,Pages 1-16, ISSN 1467-0895,

Hosmer, D. Lemeshow, S. (2000). Summary The prelims comprise: Half Title Wiley
Series Page Title Copyright Contents Preface. pp. 1-30, Introduction to the Logistic
Regression Model

Tan, P., Steinbach, M., Kumar, V. (2013). Introduction to Data Mining-Pearson

Han, J., Pei, J., Kamber, M. (2011). Data mining: concepts and techniques. Elsevier

Liang, X., Jiang, A., Li, A., Xue, Y.Y., Wang, G.T. (2020). LR-SMOTE — An
improved unbalanced data set oversampling based on K-means and SVM,
Knowledge-Based Systems, Volume 196, ISSN 0950-7051,

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., Stolcke, A. (2017). The
Microsoft 2017 Conversational Speech Recognition System.

09916150989568GRA 19703

72

Domingos, P. (2012). A Few Useful Things to Know About Machine Learning.
Commun. ACM. 55. 78–87. 10.1145/2347736.2347755.

Ikeda, C., Ouazzane, K., Yu. (2020). A New Framework of Feature Engineering for
Machine Learning in Financial Fraud Detection, London Metropolitan University,
UK

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media.

Dornadula, V., Geetha, S. (2019). Credit Card Fraud Detection using Machine
Learning Algorithms, Procedia Computer Science, Volume 165, Pages 631-641,
ISSN 1877-0509,

Xuan, S., Liu, G., Li, Z., Zheng, L., Wang, S., Jiang, C. (2018). "Random Forest for
credit card fraud detection," 2018 IEEE 15th International Conference on
Networking, Sensing and Control (ICNSC), 2018, pp. 1-6, doi:
10.1109/ICNSC.2018.8361343.

Caldeira, E., Brandao, G., Pereira, A. (2014). Fraud Analysis and Prevention in e-
Commerce Transactions. Proceedings - 9th Latin American Web Congress, LA-WEB
2014. 42-49. 10.1109/LAWeb.2014.23.

Lakshmi, K., Deepthi, S. (2018). Machine learning for credit card fraud detection
system. Online Journal. Adaptive Machine Learning for Credit

Maes, S., Tuyls, K., Vanschoenwinkel, B. (2002). Credit Card Fraud Detection Using
Bayesian and Neural Networks. University of Brussel – Department of Computer
Science

Trivedi, N., Simaiya, S., Lilhore, U., Sharma, S. (2020). An efficient Credit Card
Fraud Detection Model Based on Machine Learning Methods. International Journal
of Advanced Science and Technology, Vol 29, No. 5, pp 3414 – 3424

Vestas Corporation. (2019). IEEE-CIS Fraud Detection (Version 1.0) [Data Folder].
Retrieved 01 November 2020, from https://www.kaggle.com/c/ieee-fraud-
detection/data

Walimbe, R. (2017). Handling imbalanced dataset in supervised learning using
family of SMOTE algorithm. Picture retrieved 10 April, 2021, from
https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-
supervised-learning-using-family

The Nilson Report. (2019). Annual fraud statistics. Retrieved 01 December 2020,
from https://www.prnewswire.com/news-releases/payment-card-fraud-losses-reach-
27-85-billion-300963232.html

09916150989568GRA 19703

https://www.kaggle.com/c/ieee-fraud-detection/data
https://www.kaggle.com/c/ieee-fraud-detection/data
https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family
https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family
https://www.prnewswire.com/news-releases/payment-card-fraud-losses-reach-27-85-billion-300963232.html
https://www.prnewswire.com/news-releases/payment-card-fraud-losses-reach-27-85-billion-300963232.html

73

Ingenico, Inc. (2021) Fraud Expert Checklist. Retrieved 01 Mars 2021, from
https://support-uat.direct.ingenico.com/en/security/fraud-prevention/fraud-expert-
checklist

Kumar, S. (2020). 7 Ways to Handle Missing Values in Machine Learning.
Retrieved 07 May 2021, from https://towardsdatascience.com/7-ways-to-handle-
missing-values-in-machine-learning-1a6326adf79e

Shaikh, R. (2018). Choosing the right Encoding method-Label vs OneHot Encoder.
Retrieved 15 May 2021, from https://towardsdatascience.com/choosing-the-right-
encoding-method-label-vs-onehot-encoder-a4434493149b

Miyaki, K. (2019). Time Series Split with Scikit-learn. Retrieved 11 April 2021, from
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-
74f5be38489e

Grootendorst, M. (2019). Validating your machine learning model. Retrieved 19 May
2021, from https://towardsdatascience.com/validating-your-machine-learningmodel-
25b4c8643fb7.

Featuretools, Inc. (2021). Retrieved 04 February 2021, from
https://featuretools.alteryx.com/en/stable/

Koehrsen, W. (2018). A conceptual explanation of bayesian hyperparameter
optimization for machine learning. Retrieved 07 April 2021, from
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-
basedhyperparameter-optimization-for-machine-learning-b8172278050f.

Bissuel, A. (2019). Hyper-parameter optimization algorithms: a short review.
Retrieved 09 May 2021, from https://medium.com/criteo-labs/hyper-parameter-
optimizationalgorithms-2fe447525903.

FICO Report (2020). Real-time Payment fraud. Retrieved 03 January 2021, from
https://www.prnewswire.com/news-releases/fico-survey-real-time-payments-
platforms-have-increased-fraud-losses-for-4-out-of-5-apac-banks-300991019.html

Badr, W. (2019). 6 Different Ways to Compensate for Missing Values In a Dataset
(Data Imputation with examples). Retrieved 07 April 2021, from
https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-
data-imputation-with-examples-6022d9ca0779

Yadav, D. (2019). Categorical encoding using Label-Encoding and One-Hot-
Encoder. Retrieved 17 April 2021, from https://towardsdatascience.com/categorical-
encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd

Vadapalli, P. (2020). Naive Bayes Classifier: Pros & Cons, Applications & Types
Explained. Retrieved 18 May 2021, from https://www.upgrad.com/blog/naive-bayes-
classifier/

09916150989568GRA 19703

https://support-uat.direct.ingenico.com/en/security/fraud-prevention/fraud-expert-checklist
https://support-uat.direct.ingenico.com/en/security/fraud-prevention/fraud-expert-checklist
https://towardsdatascience.com/7-ways-to-handle-missing-values-in-machine-learning-1a6326adf79e
https://towardsdatascience.com/7-ways-to-handle-missing-values-in-machine-learning-1a6326adf79e
https://towardsdatascience.com/choosing-the-right-encoding-method-label-vs-onehot-encoder-a4434493149b
https://towardsdatascience.com/choosing-the-right-encoding-method-label-vs-onehot-encoder-a4434493149b
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-74f5be38489e
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-74f5be38489e
https://towardsdatascience.com/validating-your-machine-learningmodel-25b4c8643fb7
https://towardsdatascience.com/validating-your-machine-learningmodel-25b4c8643fb7
https://featuretools.alteryx.com/en/stable/
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-basedhyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-basedhyperparameter-optimization-for-machine-learning-b8172278050f
https://medium.com/criteo-labs/hyper-parameter-optimizationalgorithms-2fe447525903
https://medium.com/criteo-labs/hyper-parameter-optimizationalgorithms-2fe447525903
https://www.prnewswire.com/news-releases/fico-survey-real-time-payments-platforms-have-increased-fraud-losses-for-4-out-of-5-apac-banks-300991019.html
https://www.prnewswire.com/news-releases/fico-survey-real-time-payments-platforms-have-increased-fraud-losses-for-4-out-of-5-apac-banks-300991019.html
https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779
https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-data-imputation-with-examples-6022d9ca0779
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://www.upgrad.com/blog/naive-bayes-classifier/
https://www.upgrad.com/blog/naive-bayes-classifier/

74

Breiman, L. (2001). RANDOM FORESTS. Retrieved 22 May 2021, from
http://www.math.univtoulouse.fr/~agarivie/Telecom/apprentissage/articles/randomfor
est2001.pdf

Yiu, T. (2019). Understanding Random Forest. Retrieved 16 April 2021, from
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Thenraj, P. (2020). Do Decision Trees need Feature Scaling? Retrieved 01 June 2021,
from https://towardsdatascience.com/do-decision-trees-need-feature-scaling-
97809eaa60c6

Brownlee, J. (2018). A gentle introduction to k-fold cross validation. Retrieved 05
May 2021, from https://machinelearningmastery.com/k-fold-cross-validation/

Brownlee, J. (2016). A Gentle Introduction to XGBoost for Applied Machine
Learning. Retrieved 11 April 2021, from https://machinelearningmastery.com/gentle-
introduction-xgboost-applied-machine-learning/

Hulgol, P. (2020). Bias and Variance in Machine Learning – A Fantastic Guide for
Beginners!. Image retrieved 07 June 2021, from
https://www.analyticsvidhya.com/blog/2020/08/bias-and-variance-tradeoff-machine-
learning/

Pedregosa. F, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. (2019). An introduction to
machine learning with scikit-learn. Retrieved 03 June 2021, from https://scikit-
learn.org/stable/tutorial/basic/tutorial.html#an-introduction-to-machine-learning-
with-scikit-learn

Kapil, D. (2019). Hyperparameter search: Bayesian optimization. Retrieved 03 June
2021, from https://medium.com/analytics-vidhya/hyperparameter-searchbayesian-
optimization-14be6fbb0e09

Singh, S. (2018). Understanding the bias-variance tradeoff. Retrieved 07 June 2021,
from https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-
165e6942b229

Kanter, M. (2018). Deep Feature Synthesis: How Automated Feature Engineering
Works. Alteryx Innovation Labs. Retrieved 12 January 2021, from
https://innovation.alteryx.com/deep-feature-synthesis/

MLMath.io. (2019). Math behind Decision Tree Algorithm - Retrieved 19 January
2021, from https://medium.com/@ankitnitjsr13/math-behind-decision-tree-algorithm-
2aa398561d6d

09916150989568GRA 19703

http://www.math.univtoulouse.fr/%7Eagarivie/Telecom/apprentissage/articles/randomforest2001.pdf
http://www.math.univtoulouse.fr/%7Eagarivie/Telecom/apprentissage/articles/randomforest2001.pdf
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/do-decision-trees-need-feature-scaling-97809eaa60c6
https://towardsdatascience.com/do-decision-trees-need-feature-scaling-97809eaa60c6
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://www.analyticsvidhya.com/blog/2020/08/bias-and-variance-tradeoff-machine-learning/
https://www.analyticsvidhya.com/blog/2020/08/bias-and-variance-tradeoff-machine-learning/
https://scikit-learn.org/stable/tutorial/basic/tutorial.html#an-introduction-to-machine-learning-with-scikit-learn
https://scikit-learn.org/stable/tutorial/basic/tutorial.html#an-introduction-to-machine-learning-with-scikit-learn
https://scikit-learn.org/stable/tutorial/basic/tutorial.html#an-introduction-to-machine-learning-with-scikit-learn
https://medium.com/analytics-vidhya/hyperparameter-searchbayesian-optimization-14be6fbb0e09
https://medium.com/analytics-vidhya/hyperparameter-searchbayesian-optimization-14be6fbb0e09
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://innovation.alteryx.com/deep-feature-synthesis/
https://medium.com/@ankitnitjsr13/math-behind-decision-tree-algorithm-2aa398561d6d
https://medium.com/@ankitnitjsr13/math-behind-decision-tree-algorithm-2aa398561d6d

75

APPENDIX

A1 Orginal Feature Description
9A1 Description of orginal raw features in the dataset

Raw feature Type Description

TransactionDT Timeindex Time delta for a given
reference data represented
in seconds.

TransactionAmt Numeric Transaction payment
amount in USD

ProductCD Categorical Product code for the product
in each transaction.

Card1 – card6 Categorical Payment card information
such as car type, card
category, issue bank and
country etc

Addr1 – addr2 Categorical Address. Could for example
be billing region

Dist1 – dist2 Numeric Distance between zipcode,
billing address, IP address,
phone areas etc

P_emaildomain and
R_emaildomain

Categorical Purchaser (P) and recipient
(R) email domain

09916150989568GRA 19703

76

M1 – M9 Categorcial The actual meaning is
masked. But it provide
information regarding
match between card and
address for example

C1 – C14 Numeric The actual meaning is
masked. But it provide a
count of how many
payments that are associated
with the card for example.

D1 – D15 Numeric The actual meaning is
masked. But it can be
thought of as time delta
features on a numeric
format.

DeviceType Categorical The actual meaning is
masked but information is
provided from multiple
sources of the company’s
security partners.

DeviceInfo Categorical The actual meaning is
masked but information is
provided from multiple
sources of the company’s
security partners.

Id_01 – id_11 Numeric The actual meaning is
masked. But we can think of
these numeric features as
proxy rating, IP address
domain, digital signature,
number of failed login
attempts etc

09916150989568GRA 19703

77

Id_12 – id_38 Categorical The actual meaning is
masked but information is
provided from multiple
sources of the company’s
security partners.

V1 – V339 Numerical VESTA engineered features
by feature engineering. Not
all features the V variables
are created from are
included as raw features in
this dataset.

Table A1: Description of original raw features in the dataset

9A1 Description of original raw features in the dataset

A2 Python Code
All python code used in this project is included in the GitHub repository.

https://github.com/AdrianKopperud/automatedfeatureengineering

Backup

We have attached the links to the original python files in google colab as a backup if
something happens to the GitHub repository.

Dataset 1 - Baseline:

https://colab.research.google.com/drive/1W-
17PHNOsA1_RW4rM0ZQC3YATme9Z_Fg?usp=sharing

Dataset 2 - Manual feature engineering:
https://colab.research.google.com/drive/1lasDGYLYlmxWwmQp6wnIw5pxUHi0oZJ
g?usp=sharing

Dataset 3 - Automated Feature Engineering:

https://colab.research.google.com/drive/1iP9U5-
y9vWdoMESEaSgboNxCKUBdanTY?usp=sharing

Exploratory data analysis:

https://colab.research.google.com/drive/1jAg0S-
RMBv1uYP4_2rDJJffBlmk18pdi?usp=sharing

09916150989568GRA 19703

https://github.com/AdrianKopperud/automatedfeatureengineering
https://colab.research.google.com/drive/1W-17PHNOsA1_RW4rM0ZQC3YATme9Z_Fg?usp=sharing
https://colab.research.google.com/drive/1W-17PHNOsA1_RW4rM0ZQC3YATme9Z_Fg?usp=sharing
https://colab.research.google.com/drive/1lasDGYLYlmxWwmQp6wnIw5pxUHi0oZJg?usp=sharing
https://colab.research.google.com/drive/1lasDGYLYlmxWwmQp6wnIw5pxUHi0oZJg?usp=sharing
https://colab.research.google.com/drive/1iP9U5-y9vWdoMESEaSgboNxCKUBdanTY?usp=sharing
https://colab.research.google.com/drive/1iP9U5-y9vWdoMESEaSgboNxCKUBdanTY?usp=sharing
https://colab.research.google.com/drive/1jAg0S-RMBv1uYP4_2rDJJffBlmk18pdi?usp=sharing
https://colab.research.google.com/drive/1jAg0S-RMBv1uYP4_2rDJJffBlmk18pdi?usp=sharing

78

A3 Missing Data Exploration and
Interpretation
24A3.1 Missing data heat map of the transaction table

Figure A3.1: Missing data heat map of the transaction table

25A3.2 Missing data heat map of the identification table

Figure A3.2: Missing data heat map of the identification table

The above plot A3.1 and A3.2 can be interpreted as a heatmap where the dark fields
describe where there is data and the light field describe where we have missing
values. Thus, we can get a quick overview of missing patterns and which features are
complete and who is missing.

09916150989568GRA 19703

79

Following observations were made;

1. The observations we are making are that all the ID columns have the most
missing values, but most of them have the same pattern of missingness.

2. Standard information about transaction amount, ID and transaction time is
complete.

3. The M columns are missing almost all the data.
4. Dist1 and dist2 are both sparse, but it seems like dist2 contains more

information than dist1. Maybe we can drop one of them?
5. All the C columns are complete.
6. The D columns are sparse except for D1.

A4 Tuned Hyperparameters for XGBoost
26A4.1 Optimized hyperparameters for XGBoost

Table A4.1: Optimized hyperparameters for XGBoost

From Table A4.1 we can see that iteration seven yielded the best result out of the ten

iterations that were performed. It was a very exhaustive and time-consuming task and

therefore was not more than ten iterations done.

09916150989568GRA 19703

80

A5 Recall, Precision, F1-Score and Accuracy

Accuracy

Accuracy is simply defined as the number of correct predictions over the number of

total predictions made. Using the terminology from the confusion matrix, accuracy is

defined as the true values divided by n. A major concern using accuracy when dealing

with imbalanced datasets is that due to the potential low number of minority targets,

the metric may yield extremely high numbers close to 1. However, the explanation to

this may simply be that the model only predicted 0 for each prediction. Due to this

accuracy is generally not used when dealing with imbalance as other metrics adjust

for this class imbalance.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

Recall

Recall is defined as the ratio of predicted positives over the total amount of actual

positives. Recall is adjusted through adjustments made to the threshold value,

discussed in the previous section on the Logistic Regression model. Although a better

measure for use on imbalanced data, recall usually has to be measured alongside

precision as it only measures the ratio concerning true values without taking the other

predictions into account. The F1-score that will be discussed below is a metric that

functions as a combination between recall and precision.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

Precision

As mentioned above precision is quite similar to recall but instead of measuring the

ratio in relation to actual values, it measures the ratio of positive predictions to the

total number of predicted positives, the sum of TP and FP.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

09916150989568GRA 19703

81

F1-Score

The F1-score is a metric that uses the harmonic mean of both precision and recall.

The metric is widely popular, especially for problems with large class imbalance as it

both takes the sensitivity to misclassifications into account and the fraction of

positive predictions into account. Although somewhat criticized regarding the equal

weighting scheme of precision and recall, the metric helps alleviate some of the

problems that may be present in imbalanced datasets.

𝐹𝐹1 =
2 ∗ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

A6 Illustration of Feature Importance
Parameters
27A6.1 Cumulative feature importance plot of zero important features

Figure A6.1: Cumulative feature importance plot of zero important features

Figure A6.1 shows the graph which illustrates where to cut off based on non-

important features. When the line starts to flat out there is no more gain from those

09916150989568GRA 19703

82

additional features that can improve the performance. Rather it can be smart to

remove those as they only cause our model to be more complex than it must be.

A7 Mapping and Cleaning of Categorical
Features
28A7.1 ID_30 before and after mapping

ID 30

Figure A7.1: ID_30 before and after mapping

The ID_31 feature included the different kind of operating system the customer used

when making the transaction. There were multiple different categories for various

editions of the same operating systems. We reduced the cardinality of id_30 through

grouping all operating systems to their respective provider, thus creating one category

for each provider. D_30 before and after mapping

09916150989568GRA 19703

83

ID 3129A7.2 ID_31 before and after mapping

Figure A7.2: ID_31 before and after mapping

The ID_31 feature included what type of browser the customer used for the

transaction. As the categories only differ on version number we chose to discard this

information and to create categories only containing the browser name as this reduces

the cardinality significantly

ID 33 30A7.3 ID_33 before and after mapping

Figure A7.3: ID_33 before and after mapping

The ID_33 feature included ìnformation on the screen size of either the phone or

computer that the transaction was made from. We map these different screen sizes

into 5 categories which include medium/small (mxs), large/medium (lxm),

medium/medium (mxm), small/small (sxs) and large/large (lxl).

09916150989568GRA 19703

84

Card6

Figure A7.4: Card6 before and after mapping

The card6 feature originally contained four categories, but the two categories “charge

card” and “debit or credit” were removed. We found that it does not make sense to

have an own category which could be either credit or debit when those categories

were already present. The inconsistency was removed and put into the new category

“none” as they in total only account for 45 observations out of the complete 590.000

observations.

31A7.4 Card6 before and after mapping

P_emaildomain and R_emaildomain

Figure A7.5: P_emaildomain and R_emaildomain before mapping

32A7.5 P_emaildomain and R_emaildomain before mapping

The P_emaildomain and R_emaildomain features included the purchase and

recipient’s email domains. From Figure A7.5, we see over 60 different domains used

while only a few accounts for most customers. From the plot, we can see that

09916150989568GRA 19703

85

gmail.com and hotmail.com are the most used domains. To account for all the

redundant domain categories, we transform the original P_emaildomain and

R_emaildomain into two new features that can be described as “the application of

mathematical modification to the value of a variable'' to extract more information

than in its original state (Osborne, 2002). We transformed the features into two new

categories containing the web domain and the bin, which is the email provider name.

Redundant domain names with low observations were mapped into a common

category named “other”. The mapping had the aim of creating representative and

heterogeneous categories through a simple method. Below in Figures A7.6 and A7.7,

can we see the results.

33A7.6 P_emaildomain_suffix and R_emaildomain_suffix after mapping

34A7.7 P_emaildomain_bin and R_emaildomain_bin after mapping

Figure A7.6: P_emaildomain_suffix and R_emaildomain_suffix after mapping

Figure A7.7: P_emaildomain_bin and R_emaildomain_bin after mapping

09916150989568GRA 19703

86

A8 The Thresholds between FPR and TPR

Threshold moving is another method to select the desired level between FPR and

TPR. From the ROC curve, is it possible to optimize this relationship. By default, the

threshold always is 0.5, meaning that a predicted probability greater than 0.5 will be

classified as fraudulent, and a probability lower than 0.5 will be classified as genuine

in our experiment.

For example, a credit card company may adjust the FPR and TPR levels to achieve

their desired strategy of minimizing FPR or maximizing TPR. By lowering the rate

from the standard default of 0.5 will both the FPR and TPR increase. This will benefit

in predicting more fraudulent transactions but at the same time increase FPs. On the

contrary, moving the threshold above 0.5 will, in most cases decrease the FPR and

decrease TPR, which will benefit lower FPs but also lower the rate of TPs.

Threshold moving is highly relevant for a company with a cost-saving strategy where

either FRP or TPR is more important. In our problem, we are not working with a

specified threshold from a company and we will therefore not pay attention to moving

this threshold and keep the default of 0.5 for our experiment.

09916150989568GRA 19703

	1. INTRODUCTION AND MOTIVATION
	1.1 Fraud
	1.2 Automated Feature Engineering
	1.3 Goal and Research Question

	2. RELATED WORK
	3. DATA PROCESSING
	3.1 Data Collection and Selection
	3.2 Data Cleaning
	3.2.1 Removing Redundant Information
	3.2.2 Missing Values
	3.2.3 Outliers
	3.2.4 Categorical Features
	3.2.4.1 Categorical Encoding

	3.2.5 Time Series Train/ Test Split

	3.3 Feature Engineering
	3.3.1 Dataset 1 – Baseline
	3.3.2 Dataset 2 – Manual Feature Engineering
	3.3.3 Dataset 3 – Automated Feature Engineering
	3.3.4 Feature Scaling

	3.4 Reduction Methods
	3.5 Class Imbalance Problem
	3.5.1 Handling Class Imbalance Problem

	4. RESEARCH METHODOLOGY
	4.1 Machine Learning
	4.1.1 Logistic Regression
	4.1.2 Naïve Bayes
	4.1.3 Random Forest
	4.1.4 XGBoost

	4.2 Model Selection
	4.2.1 Cross-validation

	4.3 Model Tuning
	4.3.1 Tuning Gradient Boosting Machine
	4.3.2 Controlling for Parameters

	4.4 Model Evaluation
	4.4.1 Bias-Variance Dilemma
	4.4.2 Performance Measures

	5. RESULTS
	5.1 Model Selection
	5.2 Experimental Settings for the Benchmark Model
	5.3 Experimental Setting 1 - Baseline
	5.3.1 Results

	5.4 Experimental Setting 2 - Manual Feature Engineering
	5.4.1 Results

	5.5 Experimental Settings 3 - Automated Feature Engineering
	5.5.1 Results

	5.6 Comparison of the Results

	6. CONCLUSION
	6.1 Discussion
	6.2 Limitations and Further Work
	6.3 Conclusion

	REFERENCES
	APPENDIX
	A1 Orginal Feature Description
	A2 Python Code
	A3 Missing Data Exploration and Interpretation
	A4 Tuned Hyperparameters for XGBoost
	A5 Recall, Precision, F1-Score and Accuracy
	A6 Illustration of Feature Importance Parameters
	A7 Mapping and Cleaning of Categorical Features
	A8 The Thresholds between FPR and TPR

