
BI Norwegian Business School - campus Oslo

GRA 19703
Master Thesis

Thesis Master of Science

Statistical Arbitrage Trading using an unsupervised machine
learning approach: is liquidity a predictor of profitability?

Navn: Anders Høeg, Even Kristoffer Aares

Start: 15.01.2021 09.00

Finish: 01.07.2021 12.00

Statistical Arbitrage using an unsupervised machine learning approach: is liquidity a
predictor of profitability?

Master Thesis

By

Anders Høeg & Even Aares

MSc in Business

ABSTRACT

Supervisor:

Costas Xiouros

This thesis is a part of the MSc programme at BI Norwegian Business School. The school takes no responsibility for the
methods used, results found, or conclusions drawn.

We test a statistical arbitrage trading strategy, pairs trading, using daily closing
prices covering the period 2000 – 2019. Stocks are clustered using an

unsupervised machine learning approach and cointegrated stocks from each
cluster are then paired. The strategy does not prove to be profitable on S&P500
stocks once adjusted for transaction costs. Conversely, the strategy appears to

be profitable on the OSE obtaining annualized excess returns of 22% and a
Sharpe Ratio of 0.84 after adjusting for both explicit and implicit transaction

costs. We investigate whether a difference in the liquidity can explain why the
strategy is more profitable on OSE, and provide evidence suggesting that pairs

trading profits are closely related to the liquidity of the stocks traded.

10182321005176GRA 19703

Acknowledgements

We would like to thank our supervisor, Costas Xiouros, for being a steady sparring partner

throughout this project and for offering useful insights. We also thank Eirik Kielland for being

a valuable resource for programming related issues.

10182321005176GRA 19703

 I

Table of Contents

1. Introduction and Motivation 1
1.1 Background 1
1.2 Hypothesis 2
1.3 Contribution 2

2. Theoretical Framework 3
2.1 Market Efficiency 3
2.2 Arbitrage Pricing Theory 6

3. Existing Literature on Statistical Arbitrage 9
3.1 Statistical arbitrage 9
3.2 Pairs trading 11
3.3 Literature on pairs trading 11
3.4 Impact of liquidity on pairs trading profits 14

4. Methodology 16
4.1 Research design 16
4.2 Data 17
4.4 Principal Component Analysis 17
4.5 Unsupervised Machine Learning 20

4.5.1 Density Based Spatial Clustering Applications with Noise 20
4.5.2 t-Distributed Stochastic Neighbor Embedding 22

4.8 Discovering mean-reverting relationships 23
4.8.1 The Distance Approach 23
4.8.2 Cointegration Approach 24

4.9 Trading execution 25
4.9.1 Signal generation 25
4.9.2 Formation and trading period 27
4.9.3 Computing returns 27
4.9.4 Transaction costs 28

4.10 Assessing performance of the strategy 29
4.11 Liquidity 30

5. Results and Analysis 31
5. 1 Number of Principal Components 31
5.2 Cluster discovery 33
5.3 Strategy performance 35

5.3.1 Pairs trading on the S&P500 35
5.3.2 Pairs trading on the OSE 38

5.4 Market liquidity 41
5.4.1 Liquidity on the S&P500 and OSE 41
5.4.2 Trading on the most liquid and the least liquid stocks 42

5.5 Trading costs 44
5.5.1 Robustness to explicit transaction costs 44
5.5.2 Adjusting for bid-ask spreads 45

5.6 Summary of results and theoretical implications 48

10182321005176GRA 19703

 II

5.7 Caveats 50

6. Conclusion 51

7. Further Research 51

Bibliography 52

Appendix 56
Figure A1: Top 20 pairs S&P500 56
Figure A2: Top 20 pairs OSE 56
Table A1: S&P500 results with explicit TC 57
Table A2: OSE results with explicit TC 58
Table A3: Performance on Bottom and Top spread portfolios 59
Table A4: Performance on Bottom and Top spread portfolios with 1 day lag and including
explicit TC 60
Table A5: S&P500 Performance with explicit TC and relative BA-spread 61
Table A6: OSE Performance with explicit TC and relative BA-spread 62
C1: Python code for the strategy 62
C2: Python code for constructing spread portfolios 83

10182321005176GRA 19703

 III

List of Figures

Figure 4.1: Research design overview 16

Figure 4.2: DBSCAN process 21

Figure 4.3: Pairs trading example 26

Figure 4.4: Formation and trading setup 27

Figure 5.1: PCA output 31

Figure 5.2: t-SNE plots of clusters 33

Figure 5.3: Example of clusters with validated pairs 34

Figure 5.4: Number of clusters identified 35

Figure 5.5: Strategy performance on the S&P500 36

Figure 5.6: Strategy performance on the OSE 39

Figure 5.7: Relative bid-ask spread on the S&P500 and OSE 41

Figure 5.8: Turnover on the S&P500 and OSE 42

Figure 5.9: Performance of the least liquid and most liquid
stocks

43

Figure 5.10: Strategy performance after TC 47

List of Tables

Table 5.1: Cluster characteristics 32

Table 5.2: Summary of descriptive statistics and systematic risk of pairs trading in
US equities 37

Table 5.3: Summary of descriptive statistics and systematic risk of pairs trading in
Norwegian equities 40

Table 5.4: Summary of descriptive statistics and risk characteristics of pairs trading
with 1-day lag and explicit TC 46

10182321005176GRA 19703

 1

1. Introduction and Motivation
1.1 Background
Modern quantitative finance and trading are often said to be dominated by

mathematicians, statisticians, physicists, and computer engineers. In the US equity

markets, traditional fundamental investors are believed to account for only ten

percent of the trading volume (JP Morgan, 2019). With rapid advancements within

data analysis and computing power in the last decades, we have seen a similar

growth within quantitative trading, leading to new strategies and improvements to

existing strategies.

The concept of pairs trading dates back to the 1950s when Alfred Winslow Jones

employed the idea of relative value arbitrage in the world’s first hedge fund. The

strategy was later developed by a team of mathematicians, physicists, and data

scientists at Morgan Stanley in the mid-1980s. The initial proprietary nature of the

strategy, which falls under the category of statistical arbitrage strategies, made it a

popular research topic. Several papers have been published since the early 2000s.

The notion of pairs trading is fairly simple. It entails the buying and selling of two

highly correlated securities, exploiting short-term deviations in the relative price

between them. As the financial markets are subject to disruptive technological

changes, we observe researchers applying more sophisticated versions of these

trading strategies. While machine learning itself is not a new concept, literature on

its application in statistical arbitrage trading is limited and needs to be further

explored. We build on existing literature and employ an unsupervised clustering

algorithm to identify stocks with similar risk characteristics suitable for pairs

trading.

While the current literature is mainly centered around the question of whether pairs

trading is still a profitable trading strategy, we are particularly interested in how the

strategy performs in markets with different characteristics regarding liquidity and

size. We specifically study and compare our findings in the US and the Norwegian

equity market, with focus on how the market liquidity affects the profitability of the

strategy.

10182321005176GRA 19703

 2

1.2 Hypothesis
In this paper, we study the profitability of a statistical arbitrage trading strategy with

the implementation of machine learning through empirical research. We start by

formulating the following hypothesis:

𝐻!:	𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠

𝐻": 𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	
𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠

We are particularly interested in how liquidity affects the returns of this strategy

and study the performance in both the US and the Norwegian stock market as the

two markets are quite different in terms of liquidity. Based on this, we can formulate

the following hypothesis:

𝐻!:	𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦

𝐻": 𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦

1.3 Contribution
We explore the use of unsupervised machine learning in pairs trading, a field that

is not widely researched. Further, this paper study the performance of the same pairs

trading strategy in two markets with different characteristics. This type of analysis

does not appear to exist within the most common literature in this field, and is usful

to shed some light on how the strategy performs under varuous conditions, such as

market liquidity. Finally, the use of machine learning techniques on statistical

arbitrage in the Norwegian equity market is not something that is heavily covered

in existing literature. This paper paper therefore helps to fill this gap of missing

research.

10182321005176GRA 19703

 3

2. Theoretical Framework
This chapter introduces the theoretical framework that the paper builds on. We start

by briefly covering the concept of market efficiency before introducing the

Arbitrage Pricing Theory. Both serve an important role when discussing the concept

of statistical arbitrage and its theoretical implications.

2.1 Market Efficiency
Financial time series are notoriously difficult to model and predict due to its

inherent characteristics and nature. Kendall and Hill (1953) discovered, to their

surprise, that they were unable to identify any predictable patterns in stock prices,

leading to the conclusion that prices were as likely to go up as there were to go

down. Researchers soon realized that these findings are evidence of a well-

functioning and efficient market (Bodie et al., 2018). If prices are determined

rationally by investors, only new information will lead to price changes. By

definition, new information must be impossible to predict. Stock prices are thus

expected to follow a random walk, meaning that price changes should be random

and unpredictable1.

An efficient market is one in which prices always fully reflect all available

information (Fama, 1970). Eugene Fama (1970) specifies three forms of efficiency:

weak, semi-strong, and strong form efficiency. In the weak form efficiency, the

market prices reflect all historical price information. In such environments,

predictive tools based on the analysis of historical data would fail. Semi-strong

form efficiency assumes that prices reflect all publicly available information,

implying that no abnormal returns can be earned by analyzing public financial data

and relevant news. In a strong form efficient market, prices reflect all public and

private information, such that no entity with monopolistic information of the

respective asset profits from that information (Fama, 1970). The inability to predict

stock prices assumed in the Efficient Market Hypothesis (EMH) implies that active

trading does not result in greater returns than a passive market portfolio. Statistical

arbitrage traders who seek to profit from relative mispricings by doing a frequent

number of trades in many securities simultaneously would only generate significant

1 In reality, stock prices may actually follow a submartingale with positive expected price changes
as compensation for time value of money and systematic risk.

10182321005176GRA 19703

 4

transaction costs (TC) while failing to outperform the market. Assuming that EMH

holds, the Capital Asset Pricing Model (CAPM) states that one should not be

compensated for idiosyncratic risk, only systematic risk. Looking at the CAPM

formula:

𝔼[𝑅#] = 𝑅$ + 𝛽# ∗ (𝔼[𝑅%] − 𝑅$) (2.1)

𝛽# represents the systematic risk that cannot be reduced through diversification. The

expected returns of a security rely on the risk-free rate and the riskiness of the

investment. Most statistical arbitrage trading strategies are market neutral,

implying no systematic risk related to the investment and 𝛽# = 0. Thus, the CAPM

suggests that:

𝔼[𝑅#] = 𝑅$ (2.2)

Statistical arbitrage should not be able to generate abnormal returns, i.e., returns in

excess of what the CAPM predicts as it states that there should be no compensation

for idiosyncratic risk.

Grossman & Stiglitz (1980) introduce a framework aimed at redefining the notion

of efficient markets, arguing that in the case where EMH holds and information is

costly, there is no equilibrium and competitive markets break down. They

distinguish between informed (arbitrageurs) and uninformed market participants.

The uninformed can expend resources to become informed, but since gaining

information is costly, they should receive some compensation. As informed

individuals trade based on their insights, information is conveyed to the uninformed

through the price of the traded security.

Their model consists of two assets: a safe asset yielding the return 𝑅 and a risky

asset yielding a return of 𝑢. The return 𝑢 is defined by:

𝑢 = 𝜃 + 𝜖 (2.3)

where both 𝜃 and 𝜖 are random variables, but 𝜃 is observable at cost 𝑐 while 𝜖 is

not observable. The informed will be able to observe 𝜃, which is the true value of

the risky asset, while the uninformed will only be able to observe the price of the

asset. The informed traders will adjust their demand for the asset based on 𝜃 and

the risky asset’s price 𝑃 while the demand of the uninformed is only subject to P.

An equilibrium can be described by the price function:

10182321005176GRA 19703

 5

𝑃&(𝜃, 𝑥) (2.4)

where 𝑥 is the supply of the risky asset and 𝜆 is a given percentage of informed

traders. They further argue that the price system reveals information to the

uninformed but in an imperfect fashion. More specifically, the price system reveals

the signal:

𝑤& 	≡ 𝜃 −
𝛼𝜎'(

𝜆 (𝑥 − 𝔼(𝑥∗)) (2.5)

where 𝛼 is the coefficient of absolute risk aversion. For any given 𝜃 it follows that

the price system reveals a noisy version of the asset’s true value. An important

implication of their theory is that if we assume the EMH holds, competitive markets

will break down. Once 𝜎'(= 0, 𝑤& and the price of the risky asset reflects all

existing information. As all information is observable through the price P, the

informed traders no longer have the need to pay 𝑐 to observe 𝜃 as he will do just as

well as the uninformed who does not pay for the information. Because all informed

traders will share this opinion, this cannot be an equilibrium. Opposite, if the entire

fraction is uninformed, there will be an incentive to become informed as this will

be profitable, which does not represent an equilibrium. It follows that there will

have to be a fraction of informed traders between 0 and 1 depending on the cost of

information, how informative the price system is (noise), and how informative the

information obtained by the informed is.

The observation that statistical arbitrage is a widely used trading strategy where

traders expense a significant amount to gain access to information suggests that this

framework bears a close resemblance to the dynamics of the real world. The theory

predicts that the market prices might not reflect all relevant information,

specifically the type of information that is costly to obtain and privately possessed.

This implies that for stocks whose price does not reflect all available information,

the risk-adjusted return will be higher than that of other assets. This paper explores

the use of machine learning in the process of identifying pairs to trade, a technique

that may be able to extract such costly information that is not reflected in the prices.

Given that these methods have become more prevalent in recent years, we should

expect their ability to obtain this information to decline as time passes.

10182321005176GRA 19703

 6

2.2 Arbitrage Pricing Theory
Arbitrage occurs when an investor can earn a risk-free profit without making a net

investment (Bodie et al., 2018). More specifically, the investor is simultaneously

buying and selling a security, exploiting a mispricing in the market. According to

the Law of One Price (LOP), two assets with identical cash flows should have the

same price in the market. Arbitrageurs enforce the LOP by exploiting deviations

from the implied market price, buying the “undervalued” security, and selling the

“overpriced” security. The selling- and buying pressure will force the price of the

two securities to converge until the arbitrage opportunity is eliminated.

In order to exploit mispricing in traded securities, we need a framework that lets us

identify deviations from their fair market price, thus leading to arbitrage

opportunities. The Arbitrage Pricing Theory (APT) was developed by Ross (1976)

as an alternative to the CAPM. The theory introduces the idea that an asset’s

expected return can be modeled as a linear function of several systematic risk

factors. These factors can be economic indicators such as GDP growth and changes

in inflation which will impact the risk of the asset, depending on the level of

exposure to the factor and thus the expected return. An important implication is that

any deviation from the expected price as determined by APT represents a temporary

mispricing that will be arbitraged away by market participants such that its price is

corrected, and the arbitrage opportunity ceases to exist. More specifically, the

excess return of risky assets can be expressed as:

𝑟# = 𝛽*,# +Q𝛽#,,𝐹, + 𝜖#

-

,."

	 (2.6)

where:

𝛽!,# is a constant for asset 𝑖	

𝐹, is a systematic risk factor	

𝛽#,, is the sensitivity of asset 𝑖 to factor 𝑗, called factor loading 	

𝜖# is the risky assets idiosyncratic shock with mean zero.

If investors require compensation for taking certain types of risk (𝐹,), it follows that

their expected return should be a compensation for their exposure to these risks.

This also means that we can interpret the alpha obtained by regressing returns on

these factors as risk-adjusted returns. Common systematic risk factors are for

10182321005176GRA 19703

 7

example those proposed in the three-factor model (Fama & French, 1993), such as

𝑟% − 𝑟$, 𝑆𝑀𝐵, and 𝐻𝑀𝐿.	𝐻𝑀𝐿 refers to the return of stocks with high book-to-

market ratios in excess of the return of stocks with low book-to-market ratios.

Similarly, the SMB factor refers to the return of stocks with low market

capitalization in excess of the return of stocks with high market capitalization. In

the general case, 𝔼X𝐹,Y = 0, and we can express excess returns as:

𝔼(𝑟#) = 𝛽!,# =Q𝛽#,, × 𝜆,

-

,."

 (2.7)

where 𝜆, is an expression for prices of risk, i.e., the expected returns of risk factors.

Suppose we have a factor 𝑋 such that 𝐹" = 𝑅/ − 𝔼(𝑅/) where 𝔼(𝑅/) = 𝜆/ such

that:

𝔼(𝑟#) = 𝛽!,# = 𝛽#,/ × 𝜆/ (2.8)

When pursuing a statistical arbitrage trading strategy, stocks that tend to move

together are traded. Therefore, it is not unreasonable to argue that these stocks have

similar exposure to the risk factors - that is, they have the same betas. According to

the APT, it follows from equation (2.8) that they should also have the same 𝛽! and

hence the same expected excess return. As a pairs trading strategy entails buying

one of the stocks and shorting the other, the expected excess returns are actually

zero in the case that APT holds true.

𝑟% − 𝑟$ is a factor representing the market risk premium and is similar to what we

have in the traditional CAPM, which can be considered a special case of the APT

where the only risk factor is the systematic market risk. In simple terms, we can

express 𝐹" as:

𝐹" = X𝑅% − 𝑅$Y − 𝔼XR0 − 𝑅$Y (2.9)

Excess return can followingly be defined as:

𝑟# = 𝑅# − 𝑅$ = 𝛽!,# + 𝛽# × 𝐹" + 𝜖# (2.10)

Assuming that markets are efficient, 𝔼(𝐹") = 0:

𝔼(𝑟#) = 𝛽!,# = 𝛽# × 𝔼X𝑅% − 𝑅$Y (2.11)

10182321005176GRA 19703

 8

Again, in the event that the APT and the CAPM hold true, a statistical arbitrage

strategy would produce zero excess returns. Another important implication of the

APT is the assumption that idiosyncratic risk is diversifiable. This means that when

trading a single pair, while the returns are neutral to the priced risks (𝐹,), the trader

will be exposed to the idiosyncratic risk of the securities. If the trader instead holds

a well-diversified portfolio of pairs, the idiosyncratic risk will be negligible

considering the portfolio as a whole.

10182321005176GRA 19703

 9

3. Existing Literature on Statistical Arbitrage
This chapter reviews existing literature on statistical arbitrage and pairs trading. We

briefly cover the origins of statistical arbitrage trading and its development, before

introducing some of the main results found by researchers. Finally, the chapter

covers research specifically concerning liquidity and how it relates to pairs trading

profits.

3.1 Statistical arbitrage
Statistical arbitrage is believed to have been formalized as a concept at Morgan

Stanley in the 1980s and has become a widely used strategy among banks, hedge

funds, and proprietary trading desks. Today, Statistical Arbitrage is an umbrella

term covering various quantitative trading strategies based on statistical and

mathematical models, and where the trades are automatically executed by

algorithms.

In contrast to the original concept of arbitrage, statistical arbitrage does not offer

entirely risk-free profits. As discussed in chapter 2.2, the returns from statistical

arbitrage are directly linked to the idiosyncratic risk that remains. This means that

it can only be thought of as an arbitrage if the pair traded is part of a well-diversified

portfolio where the idiosyncratic risk is diversified away. A pair trade in isolation

can, however, be very risky as one is exposed to events such as M&A activity,

defaults, or macroeconomic events, often referred to as fundamental risk (Do &

Faff, 2010). The most notable example in this regard is the former hedge fund Long

Term Capital Management (LTCM) which utilized statistical arbitrage trading

strategies and significantly leveraged a few correlated bets. Following Russia’s

default on foreign debt in 1998, the fund nearly collapsed and stood to set off a

global financial crisis. LTCM was eventually bailed out by some of the largest Wall

Street banks and shut down in 2000.

The concept of statistical arbitrage opportunities was first introduced by

Bondarenko (2003) and defined as “a zero-cost trading strategy for which (i) the

expected payoff is positive, and (ii) the conditional expected payoff in each final

state of the economy is nonnegative”. In other words, a statistical arbitrage

opportunity can result in a negative payoff; however, the average expected payoff

10182321005176GRA 19703

 10

in each final state must be nonnegative. According to Becker (2012), the concept

often refers to “highly technical short-term mean reversion strategies involving a

large number of securities, very short holding periods and substantial

computational, trading, and IT infrastructure”. The strategies are usually market

neutral with a zero beta to the market and often involve some trading signal based

on a mean-reverting relationship between securities. More formally, statistical

arbitrage strategies attempt to exploit some mispricing where price relationships are

true in expectations in the long run (Becker, 2012):

𝔼(𝑋 × 𝑁) > 0 (3.1)

where 𝑋 denotes the payoff matrix, and 𝑁 denotes the quantities involved. The

average payoff will also have to be nonnegative in the final state:

Q(𝑋# × 𝑁#) ≥ 0
1

#.!

	 (3.2)

The is the time-dimension of statistical arbitrage trading. The idiosyncratic risk can

also be diversified away by doing countless trades, meaning that equation (3.2)

should always hold as the number of trades (𝑁#) tends to infinity.

After nearly two decades of high profits, returns have almost diminished for

standard statistical arbitrage strategies (Pole, 2007). This does not come as a

surprise considering the rapid technological development and increased computing

power seen during the same period. This does, however, not imply that no statistical

arbitrage strategy is unprofitable today, but rather that the strategies and underlying

algorithms have become more complex as the technology needed has become

available to a broader audience. This observed development can be interpreted in

light of the framework of Grossman and Stiglitz (1980), where they distinguish

between informed and uninformed market participants. The informed has spent

money to gather information, which is costly, and profits from trading with the

uninformed. As technology develops, statistical arbitrage strategies become

available to a larger population (i.e., information is cheaper, and more people can

access it). Thus, statistical arbitrage opportunities should have been diminishing

over time.

10182321005176GRA 19703

 11

3.2 Pairs trading
Pairs Trading is likely the most widely used statistical arbitrage trading strategy and

is said to be the predecessor of statistical arbitrage trading strategies. The concept

of pairs trading itself is relatively simple: find two securities that historically have

been highly correlated and monitor the price difference (spread) between them. If

the spread widens, you short the “winner” and buy the “loser” in anticipation that

the spread converges and thus make a profit. An attractive feature of the strategy is

the market neutrality, meaning that profits can be made regardless of how the

market moves. While this concept has been around for a long time, it was Nunzio

Tartaglia, a quant at Morgan Stanley, that put together a team of highly skilled

mathematicians, physicists, and computer scientists in the search for profitable

quantitative trading strategies based purely on algorithms with minimal human

intervention (Gatev et al., 2006). Among these was a version of the pairs trading

strategy, which proved to be highly profitable for the group.

While the strategy itself is relatively simple, extensive research has been done on

how these pairs should be selected and how the trading signals should be

constructed. While Gatev et al. (2006) introduced a distance approach based on

their interaction with traders, the cointegration approach has also become popular

among researchers. A large portion of the research on the subject concerns pairs

trading with single stocks, but the concept is also applied to other asset classes such

as commodities, fixed income securities, ETFs, cryptocurrencies, and derivatives.

Similarly, the strategy can also be used to trade on temporary mispricings between

indices and a basket of index constituents.

3.3 Literature on pairs trading
The widely cited study from Gatev et al. (1999;2006) use daily closing prices in the

period 1962 – 2002 and find that pairs trading in liquid US stocks has delivered

annualized excess returns of 11% for the top 5-20 pairs portfolios when accounting

for trading costs and fees. The authors apply a distance approach to identify pairs

that tend to be highly correlated. They use a 12-month formation period where pairs

are matched followed by 6 months of trading - a setup that appears to be the norm

in much of the research on this topic. Their trading rule builds on a relatively simple

rule specifying that a position is opened if the spread between a pair of securities

10182321005176GRA 19703

 12

diverges by more than two standard deviations from its historical mean. Gatev et

al. (2006) also implement a one-day waiting period form receiving theiur trading

signal to actually trading to account for the implied bid-ask spread . By opening and

closing a position the day after they are signaled to trade, the average monthly

excess returns drop by roughly 36%, but are still positive and significant. Although

providing robust results, they also find the strategy to be less profitable in recent

years. One explanation could be an increased activity from hedge funds and other

traders pursuing the strategy, however, the paper argues that the abnormal returns

are a compensation for risk given to arbitrageurs for enforcing the “Law of One

Price” (LOP). Findings support this statement as the raw returns have fallen but the

risk-adjusted returns are consistent throughout the period.

B. Do & Faff (2010) replicate the study of Gatev et al. (1999;2006) and find similar

results. They extend the original sample and find that the trend of decline in

profitability has continued in recent years. However, the authors find that higher

hedge fund activity and increased efficiency are only partly responsible for the

declining profits, arguing that worsening arbitrage risk accounts for as much as 70

percent of the decline in profits. Arbitrage risks refer to fundamental risk, noise-

trader risk, and synchronization risk. Fundamental risk involves unexpected events

affecting the individual securities and thus the spread. In contrast, noise-trader risk

refers to traders’ behaviour that may seem irrational to other market participants,

but in reality can be exaplined by several factors. An example would be a trader

that requires liquidity and is forced to liquidate some positions. This might widen

the spread between a pair and deter arbitrage activity. Synchronization risks address

the issue of the timing of arbitrageurs and how fast a mispricing is corrected.

Interestingly, they also report that pairs trading profits are particularly strong in

periods of market turmoil, such as the financial crisis in 2007-2009.

In their analysis, Engle and Granger (1987) observe that some variables tend to

exhibit a long-term relationship. Followingly, they went on to formalize a test to

identify whether variables are cointegrated, i.e., whether there exists a long-term

relationship between variables. Based on Engle and Granger’s work, Vidyamurthy

(2004) constructed the cointegration framework for pairs trading. Vidyamurthy did

not present any empirical results in his book, but other researchers widely use his

approach. Caldeira & Moura (2013) obtain annual excess returns before TC of

10182321005176GRA 19703

 13

16.38% and an SR of 1.34 when performing a cointegration-based pairs trading

strategy in the timespan 2005-2012 on the Sao Paulo stock exchange. Similarly,

Rad et al. (2016) apply the cointegration method on the US equity market in the

timespan 1962-2014. They obtain annual excess returns of 10.69% and an SR of

0.77 before TC. The alphas were both positive and statistically significant at a 1%

levelin the two studies. Even though the strategy shows robustness given the long

trading horizon, they both observe a slight decline in trading opportunities in more

recent years. However, when comparing the cointegration method to the distance

method, they find that cointegration is superior during turbulent market conditions.

Clegg & Krauss (2018) obtain annual excess returns of 12% after TC in the US

stock market. Findings suggest that a Partial Cointegration (PCI) method, which is

a weakening cointegration where one allows the residuals to contain a mean-

reverting and a random-walk component (Clegg & Krauss, 2018), outperforms

distance-based pairs trading used by Gatev et al. (2006). Similar to the previous

studies, the authors also found that performance has declined over the years, which

they argue is due to advancements in pairs trading research.

Following technological developments and increased application of data science in

finance, trading models and pairs trading strategies have become more complex.

Machine Learning is becoming increasingly popular as the method is well suited

for handling large quantities of data and may discover patterns not evident to the

naked eye. Avellaneda & Lee (2008) use a Principal Component Analysis (PCA)

to extract common risk factors from their universe of securities, allowing for an

efficient way to identify potential pairs. The authors find that a PCA strategy on

sector ETFs in the US equities market produces an average annual Sharpe ratio (SR)

of 1.44 after TC over the period 1997 to 2007, although with a lower level of

profitability in later years. Building on the PCA approach used by Avellaneda and

Lee (2008), Sarmento and Horta (2020) use a PCA to extract common risk factors

from their universe of securities, which they further feed into a clustering algorithm,

making it easier to find potentially profitable pairs. This has proven to be

advantageous as the authors obtain an annual SR of 3.79 and 86% profitable pairs

when clustering, and an annual SR of 3.58 and 79% profitable pairs when

performing no clustering (all results before TC), reflecting the robustness of

machine learning tools in pairs trading.

10182321005176GRA 19703

 14

3.4 Impact of liquidity on pairs trading profits
Understanding the market dynamics is crucial for any investor or trader. Naturally,

there are differences between stock markets in different countries concerning size,

liquidity, regulations, laws, etc. A typical feature of a pairs trading strategy is a

relatively high frequency of opening and closing positions, relying on many but

small returns each time. Thus, it is particularly important to have the ability to trade

at observed prices without heavily impacting the market. Næs et al. (2008)

expressed that “A market is said to be liquid if traders can quickly buy or sell large

numbers of shares at low transaction costs with little price impact”. This means that

there exist four dimensions to liquidity. 1) The pace at which one can open/close a

position, 2) the volume that can be traded, 3) the size of the spreads and fees, and

4) to which degree the respective stock prices are impacted by a trade. When

researching the development of the Oslo Stock Exchange (OSE) liquidity in the

timespan 1980-2007, Næs et al. (2008) find significant improvements over the

years when testing for all four dimensions. There were considerable differences in

firms depending on their market capitalization, where small-cap firms had the

biggest improvements in liquidity. In the OSE, the relative bid-ask spreads have

declined slightly in the last decades before stabilizing at roughly 4% in the 2000s

(Naes et al., 2011). Even though this implies that the Norwegian stock market is

becoming more liquid, the spreads are still large compared to the US stock market.

The average NYSE relative bid-ask spreads in the early 2000s was 1.6% (Naes et

al., 2011) indicating a clear difference in market liquidity.

It is reasonable to assume that the market liquidity could influence the actual

performance of a pairs trading strategy. A theoretical study might assume that

orders can be executed at the observed closing prices. In reality, both the depth of

the order book and the bid-ask spread could significantly impact your trading

profits. Another aspect is that temporary mispricing in the market is likely to be

corrected slower in an illiquid market than in highly liquid markets. As less liquid

markets tend to have larger spreads between bid and ask quotes, it could also be the

case that what appears to be mispricing, in reality, reflects higher trading costs.

Broussard and Vaihekoski (2012) study the profitability in the Finnish stock

market, which is assumed to be less liquid than the US market. They found that the

strategy delivered annual excess returns of 49.6% before TC using a fully invested

portfolio and no lag. Even when adding a one-day lag, due to implications that may

10182321005176GRA 19703

 15

arise in low liquidity markets, they found annual excess returns of 11.9%, which is

higher than what Gatev found (8.9%). Comparing that to what Gatev found in the

US with no lag (15.7%), they see major benefits of the larger bid-ask spreads “that

can cause a spread bounce resulting in jumps in the closing price which may be

reversed the following day”.

The empirical results support our hypothesis that the implementation of pairs

trading in low-liquidity markets could be more profitable due to a higher frequency

of relative mispricings and slower price convergence. If the Norwegian stock

market is much less liquid than the S&P500, as we anticipate, we should expect

some of these effects found in previous studies to present also in the Norwegian

market.

10182321005176GRA 19703

 16

4. Methodology
This chapter discusses the data used in our analysis and the methods used to

implement a pairs trading strategy using an unsupervised machine learning

approach. Chapter 4.1 provides an overview of the research design and each stage

in the process. All computations are done using Python, and a copy of the code can

be found in appendix C1 and C2.

4.1 Research design
Figure 4.1 provides an overview of our research design comprised of five stages.

The process begins with stage 1, where we use a principal component analysis to

reduce the dimensions of our dataset. The principal components (PCs) are used as

input in the clustering algorithm applied in stage 2. The goal of the clustering

algorithm is to group the stocks in our dataset in such a way that stocks with similar

systematic risk are grouped together and form what we call a “cluster”. Once stage

2 is completed and clusters are formed, we move to stage 3 where we try to identify

pairs of stocks that exhibit a mean-reverting relationship. This is done by testing all

pairs in each cluster for cointegration. Once we have identified the cointegrated

pairs in our clusters, we continue to stage 4 where we implement the pairs trading

strategy on the cointegrated pairs from each cluster on in-sample data and measure

the performance. Finally, we test the strategy using the identified pairs on out-of-

sample data to simulate the performance of the strategy. The returns are then

analyzed and adjusted for both explicit and implicit transaction costs.

Figure 4.1: Research design overview

Illustration of research design with all stages noted. Stage 1 to 5 is performed
for all 37 periods from 2001 to 2019.

10182321005176GRA 19703

 17

4.2 Data
The first step in our study is to import and process the data. We use daily closing

prices adjusted for corporate events such as dividends and stock splits as these

events may distort price history and produce false trading signals. Our universe is

limited to stocks that have been listed on the S&P500 and the Oslo Stock Exchange

(OSE) in the sample period. The sample period runs from 2000 to 2019 and covers

a period where there have been significant developments within statistical arbitrage

trading. The data on US securities is gathered from CRSP, while the OSE data is

provided by Oslo Børs Informasjon (OBI). Once imported, we clean the data for

missing values to facilitate further computations. The number of securities in the

data varies over time, and the OSE goes from having 216 stocks in 2000 to 237 in

2019 while the S&P500 has approximately 500, meaning that potential pairs to

trade will vary. We will use Python as our primary tool for processing data and

performing computations. Python is particularly well suited for machine learning

techniques because of the broad access to various libraries and frameworks suitable

for machine learning and other statistical techniques.

4.4 Principal Component Analysis
According to the Arbitrage Pricing Theory, securities containing the same

systematic risk should offer the same return. This provides us with a trading

framework where deviations from the expected return can be exploited before being

corrected by the market. To find the underlying risk factors for each security, we

implement a PCA where the PCs will serve as a proxy for systematic risk factors.

These principal components will later be used as input in the clustering algorithm

(Stage 2), meaning that stocks that appear to share the same systematic risk factors

will be put in the same cluster.

PCA is a common statistical technique that reduces the dimensionality of the dataset

while preserving as much variability as possible. In practice, we want to obtain the

important information from the dataset, create new orthogonal variables referred to

as principal components, and then observe similarities between the variables. Our

PCA framework builds upon the work of Marco Avellaneda and Jeong-Hyun Lee	

(2010).	To utilize a PCA, we use historical stock price data on a cross section of 𝑁

10182321005176GRA 19703

 18

stocks going back 𝑀 days. In line with Avellaneda and Lee (2010), we assume that

the cross section is identical to the investment universe. We define the stocks return

data 𝑅#2 on a given date 𝑡! going back 𝑀 + 1 days, from the daily stock price 𝑃#

for a stock 𝑖 at time 𝑡 as a matrix:

𝑅#2 =
𝑃#(4!5(25")74) − 𝑃#(4!5274)

𝑃#(4!5274)
,			𝑘 = 1,…𝑀, 𝑖 = 1,…𝑁, Δ𝑡 = 1/252 (4.3)

We assure that the variables are measured on the same scale. As some stocks vary

more than others, it is helpful to standardize the returns in the following matrix:

𝑌#2 =
𝑅#2 − 𝑅h#

𝜎h#
	 (4.4)

where

𝑅h# =
1
𝑀Q𝑅#2

8

2."

 (4.5)

and

𝜎h#(=
1

𝑀 − 1Q(𝑅#2 −
8

2."

𝑅h#)((4.6)

In the evaluation of price co-movements, the application of PCA on the return

series is favorable since the return correlation matrix 𝜌#, is more informative. Price

series might expose spurious correlations due to underlying time trends. The

correlation matrix is computed as:

𝜌#, =
1

𝑀 − 1Q𝑌#2𝑌,2 ,
8

2."

 (4.7)

To obtain the PCs, we must find the eigenvectors and eigenvalues. The eigenvectors

represent the maximum variance directions, while the eigenvalues assess the

respective directions variance. There are two main ways to determine these, either

by a Singular Value Decomposition (SVD) or by an eigen-decomposition. In our

methodology, we will use the SVD due to its mathematical properties, such as

giving the best approximation (least square sense) of any rectangular matrix by

another rectangular matrix having the same dimensions but smaller rank (Abdi &

Williams, 2010). We embed the normalized return series for all the stocks in the

respective market in the matrix 𝐴, which is through SVD computed as:

𝐴 = 𝑈𝑆𝑉9 (4.8)

10182321005176GRA 19703

 19

𝑈 is an orthogonal matrix comprised of the left singular vectors, 𝑉 is a transposed

orthogonal matrix comprised of the right singular vectors, and 𝑆 is a nonnegative

diagonal matrix and consists of singular values (eigenvalues) sorted in a descending

manner from the highest variance values to the lowest (𝜎" ≥ 𝜎(≥ ⋯	≥ 𝜎- ≥ 0).

By multiplying the matrix 𝐴 with its transposed matrix 𝐴9, we attain 𝐴9𝐴 =

𝑉𝑆(𝑉9. The former computed correlation matrix 𝜌#, (4.7) has the property of being

symmetrical to 𝐴9𝐴, making it possible to discover the eigenvectors and

eigenvalues. The next step is to create a new subspace corresponding to the PCs:

𝐹, =Q𝜙#
,𝑅#2

:

#."

 (4.9)

The principal components, 𝐹,, can be seen as the systematic risk factors for the

securities in our dataset, outlined in the APT chapter, equation (2.6). These will

serve as inputs in our clustering algorithm.

By reducing the dimensionality of the dataset, some information gets lost in the

process. There are different ways to select the number of PCs that explain a

satisfactory level of variability. Avellaneda & Lee (2010) selected the number of

components that explained 55% of the total variance, which naturally varies over

time with different datasets. By deciding on a lower explanation level, you sacrifice

some information for a simpler data description. Sarmento & Horta (2019) argue

that it actually is favorable to give up some information as the likelihood of finding

irrelevant features increases with the number of principal component dimensions.

Contrary to Avellaneda and Lee’s method of predefining the explanation level and

then choosing the corresponding number of components, James et al. (2013)

describe an ad hoc method of eyeballing a scree plot (with cumulative variance

explained on the y-axis and number of principle components on the x-axis) and

choose the number of components where the marginal proportion of variance

explained is small. Some researchers argue that selecting the point of the “elbow”

of the scree plot is sufficient even though it often leads to few components and thus

a somewhat low explanation level. Since an unsupervised learning algorithm will

be applied to the PCA output, we should also consider the challenges posed by

dimensionality (Sarmento & Horta, 2020). Using a higher number of PCs increases

10182321005176GRA 19703

 20

the chances of identifying features in the data that are not relevant. Further, the

volume caused by adding more dimensions increases exponentially, causing points

in the data to appear very distant from each other, and the clustering algorithm will

not prove as efficient (Bellman, 1966). In this paper, we will base our decision on

the ad hoc method implied by James et al. (2013), making sure that we choose a

number that explains a fair amount of the variance while still avoiding having too

many dimensions.

4.5 Unsupervised Machine Learning
Supervised learning is a common form of machine learning where an algorithm is

used to learn a mapping function so that it is able to predict the output when being

fed with input data. We call this supervised learning as we know the answers from

the training data and then teach the algorithm what is correct. Unsupervised

Learning is a different machine learning technique where one looks for patterns in

the data with no pre-existing labels. As we cannot teach the algorithm what the

correct answers should be, it will have to model the underlying structure of the data

on its own. Unsupervised learning is often grouped into two methods: clustering

and association. Clustering is used for problems where one would like to discover

groups within the data, which can be helpful for discovering stocks that have similar

systematic risk. Our goal is to classify the stocks into clusters, based on the PCs

obtained in Stage 1, before looking for pairs displaying a strong mean-reverting

relationship within these clusters. We believe that unsupervised learning will prove

valuable in grouping stocks as it removes as much human interference as possible,

reducing the risk of human error or bias that might affect our results.

4.5.1 Density Based Spatial Clustering Applications with Noise

Once we have extracted the principal components, 𝐹,, for all our securities, we seek

to cluster them such that securities with similar risk factors are grouped together,

making it easier to discover highly correlated pairs. The DBSCAN is a clustering

algorithm proposed by Ester et al. in 1996, which is designed to discover clusters

of arbitrary shapes. The most widely used clustering algorithm is the K-Means;

however, the DBSCAN offers a few advantages such as its ability to handle outliers

(noise) efficiently, and the number of clusters need not be specified in advance.

10182321005176GRA 19703

 21

DBSCAN requires two input parameters. 1) Eps: Specifies the distance required

between two points for them to be considered in the same cluster, i.e., the radius

around a given point. If the distance between two points is equal to or lower than

the Eps, they are considered neighbors. 2) MinPts: The minimum number of data

points needed to form a cluster (dense region).

The DBCAN starts with an arbitrary point and will classify nearby points as a core

point, border point, or outlier. Core point: A point is considered a core point if there

are at least MinPts within its area with radius Epsilon. Border point: A point is

considered a border point if it is within Epsilon radius of a Core Point, but there are

less than MinPts within its own area. Outlier: A point is considered an outlier if it

is not classified as a core point nor reachable from any other core points by Epsilon.

If there are enough neighboring points wrt. MinPts, a cluster is formed, and the

algorithm iterates the process for all other points. Figure 4.2 illustrates the process

of the DBSCAN algorithm.

When using DBSCAN, it is essential to correctly specify the input parameters to

obtain useful output. This requires knowledge of the dataset as the parameters

should be specified according to the user’s needs, although some methods can guide

the user in the right direction. For 2-dimensional data, the default value for MinPts

is set to 4 (Ester et al., 1996). For lower-dimensional data, MinPts is usually set to

Figure 4.2: DBSCAN process

Illustration of the DBSCAN process with MinPts = 4. Panel A: The algorithm
identifies a core point c, a border point p1, an outlier p2. Panel B: point p1 is
identified as a new core point and p3 is identified as a new border point. Panel
C: As p3 does not have enough neighboring points within the radius 𝜖 it is not
classified as a core point.

10182321005176GRA 19703

 22

be greater than or equal to the number of dimensions in the data. For higher

dimension data, a general rule of thumb is to set MinPts equal to two times the

number of dimensions in your dataset and subtract one (Sander et al., 1998). As a

small MinPts will produce more clusters from noise, it should not be set too small,

but neither too high as it might fail to detect any clusters. The Eps is chosen in an

ad hoc fashion that creates meaningful clusters throughout the years in the study.

4.5.2 t-Distributed Stochastic Neighbor Embedding

To better understand the clusters discovered by the DBSCAN algorithm, we can

visualize the output. t-Distributed Stochastic Neighbor Embedding (t-SNE) is an

unsupervised non-linear technique often used to visualize data of higher dimensions

as it lets us plot the data on a two-dimensional map. The method differs from

traditional linear methods like PCA as it seeks to keep the low-dimensional

representation of close data points instead of preserving the representation of

dissimilar data points (van der Maaten & Hinton, 2008).

The t-SNE algorithm measures the similarity between data points using the

Euclidian distances of each point to all other points, assigning a higher value to

similar pairs. The distances are then converted to conditional probabilities

representing the similarity of two points. We use this to determine the probability

of two points being neighbors and the conditional probability 𝑝;𝑗<𝑖= is given by:

𝑝;𝑗<𝑖= =
exp	(−‖𝑥# − 𝑥,r

(
/2𝜎#()

∑ exp	(−‖𝑥# − 𝑥,r
(/2𝜎#()	2>#

 (4.10)

where 𝑥#and 𝑥, represents datapoints, in our case the principal components serving

as risk factors, and 𝜎# is the variance of the Gaussian distribution. This is then used

to calculate the joint probability function:

𝑝#, =
𝑝;𝑗<𝑖=	+	𝑝;𝑖<𝑗=

2𝑛 (4.11)

The next step is to project our dataset onto a lower-dimensional space with 𝑘

dimensions, setting 𝑘 = 2	in our case. This is done by taking the low-dimensional

counterparts of the high dimensional data points, 𝑦# and 𝑦,, and computing a similar

conditional probability using a t-distribution instead of a Gaussian distribution

given by:

10182321005176GRA 19703

 23

𝑞;𝑗<𝑖= =
exp	(−r𝑦# − 𝑦,r

(
)

∑ exp	(−‖𝑦# − 𝑦2‖2>#
()

 (4.12)

We want the new data points to yield similar map points in the lower dimensional

map; therefore, we seek to minimize the distance between 𝑝;𝑗<𝑖= and 𝑞;𝑗<𝑖= using

the Kullback-Leibler divergence given by:

𝐾𝐿(𝑃#‖𝑄#) =Q𝑝;𝑗<𝑖=𝑙𝑜𝑔
𝑝;𝑗<𝑖=
𝑞_(𝑗|𝑖)

#,,

	 (4.13)

Where P and Q represent conditional probability distributions over the given data

points 𝑥# and 𝑦#. Finally, the algorithm requires us to choose the standard deviation,

𝜎#, of the Gaussian distribution by specifying a fixed perplexity. According to van

der Maaten and Hinton (2008), perplexity can be thought of as a “smooth measure

of the effective number of neighbors”. The value will typically vary between 5 and

50.

4.8 Discovering mean-reverting relationships
Once clusters are identified, we will look for pairs exhibiting a mean-reverting

relationship within each cluster. This chapter discusses the most common

techniques and how they can help us identify potentially profitable pairs to trade.

4.8.1 The Distance Approach

Following the study of Gatev et al. (2006), the distance approach gained recognition

among researchers. The approach was developed after discussions with traders

about how they implemented this trading strategy, where the sum of squared diff-

erences between normalized price series is minimized. More specifically, the

authors construct a cumulative total return index for each stock over their formation

period. Each stock is then matched with another security that minimizes the sum of

Euclidean Squared Distances (SSD) between the two normalized time series. The

average SSD can be expressed as:

𝑆𝑆𝐷hhhhh@",@# =
1
𝑇QX𝑃#,4 − 𝑃,,4Y

(
9

4."

 (4.14)

An optimal pair is found by minimizing equation (4.12), which implies that a pair

with a spread of zero would be optimal. However, Sarmento & Horta (2019) argues

10182321005176GRA 19703

 24

that this method is counterintuitive as an ideal pair would actually exhibit high

spread variance and strong mean-reverting properties.

4.8.2 Cointegration Approach

The cointegration approach may offer a more robust approach to identify mean-

reverting relationships as it allows us to discover long-term relationships between

securities. We will therefore be using cointegration in our framework to identify

pairs within each of the clusters formed.

In order to describe cointegration, it is necessary to introduce the concept of

stationarity. Stationarity describes a time series whose probability distributions do

not change over time and can be described formally as a stochastic process

{𝑥4: 𝑡 = 1,2, … } which is stationary if for every instance of 𝑡, the joint distribution

of (𝑥4$, 𝑥4% , … , 𝑥4&) is equal to the joint distribution of (𝑥4$AB , 𝑥4%AB , … , 𝑥4&AB) for

integers ℎ ≥ 1 (Wooldridge, 2015). In contrast, a non-stationary time series

violates the above requirement with means and variances varying over time

(Hendry & Juselius, 2000). We usually say that a time series is weak stationary if

the two first moments are constant over time, i.e., the series has a constant mean

and variance for all periods.

Cointegration was formally introduced by Engle & Granger (1987) and is widely

used by practitioners in finance and economics to identify long-term relationships

between a set of variables. Generally, time series are said to be cointegrated when

they are integrated of order 1, 𝐼(1), while a linear combination of the series is 𝐼(0)

(Wooldridge, 2015). Saramento & Horta (2020) offer the following formal

definition: Two time series, 𝑦4, and 𝑥4, which are 𝐼(1), are cointegrated if there

exist coefficients 𝜇 and 𝛽 such that:

𝑦4 − 𝛽𝑥4 = 𝑢4 + 𝜇, (4.15)

where 𝑢4 is a stationary time series. This approach lets us create stationary time

series from our stock prices by calculating the spread between two stocks that are

𝐼(1). As stationary time series tend to fluctuate around its mean with a constant

variance, we can exploit short-term deviations in the spread and bet that the spread

will converge back to its mean.

10182321005176GRA 19703

 25

There are several ways to test for cointegration. In this paper, we follow the widely

used Engle-Granger two-step test to identify pairs that are cointegrated. First, by

applying an Augmented Dickey-Fuller (ADF) test, we observe whether 𝑦4 and 𝑥4

are non-stationary (has a unit root). If this holds true, we run an Ordinary Least

Squares (OLS) regression on equation (4.15). Lastly, with an ADF test, we observe

a potential unit root in the residuals. To conclude on the existence of a cointegrating

relationship, we formulate the following hypothesis test:

𝐻!: 𝑇ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎	𝑢𝑛𝑖𝑡	𝑟𝑜𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝐻": 𝑇ℎ𝑒𝑟𝑒	𝑖𝑠	𝑛𝑜	𝑢𝑛𝑖𝑡	𝑟𝑜𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

If the P-value is < 0.05, we reject the null hypothesis. Thus, the residual series are

stationary, and the respective securities are cointegrated.

4.9 Trading execution
After filtering the stocks in our universe and identifying pairs exhibiting a mean-

reverting relationship, i.e., cointegrated pairs, we must define when and how trades

should be placed. This usually involves setting a threshold level that will trigger a

trade.

4.9.1 Signal generation

Gatev et al. (2006) propose a simple threshold-based trading model based on the

divergence of the observed spread between two securities. More specifically, if the

spread diverges by more than two standard deviations from the mean measured in

the formation period, a trade is placed. The trade is closed once the spread

converges and the prices cross. We apply a similar trading rule where we define the

spread between the two stocks forming a pair:

𝑆4 =
𝑌4 − 𝑋4
𝑌4

 (4.16)

𝑌4 and 𝑋4 are the two different securities. We further compute a 𝑧-score, measuring

the distance to the mean in units of standard deviation Caldeira (2013):

𝑧4 =
𝑆4 − 𝜇4
𝜎4

 (4.17)

10182321005176GRA 19703

 26

Instead of using the observed mean from the formation period, we apply a 20-day

moving average. We will use the 𝑧-score to determine when positions should be

opened, using a threshold of two standard deviations as an upper and lower bound.

If the observed spread exceeds the threshold, one of the securities in the pair is said

to be “significantly” overpriced relative to the other security, and a bet is taken that

the relative value will converge towards the long-term equilibrium.

z-score > 2: Enter a short spread trade

z-score < -2: Enter a long spread trade

Once a trade is opened, we will keep the position open until the sign of the 𝑧-score

is reversed, similar to the approach employed by Gatev et al. (2006). Figure 4.3

illustrates the trading setup and execution using a randomly chosen pair from our

universe in the first formation period (January 2000 to January 2001).

Figure 4.3: Pairs trading example

Example of a pair that is found to be cointegrated in the formation period running from
January 2000 to January 2001. The top chart shows the stock prices of the two securities
and the blue line plots the cumulative return that the strategy would obtain. The middle
chart plots the z-score based on the 20 day moving average spread and the thresholds
of +/- two standard deviations. The bottom chart shows the positions that would be
held by this strategy. +1 indicates a long spread position, -1 indicates a short spread
position, while 0 indicates that no position is open.

10182321005176GRA 19703

 27

4.9.2 Formation and trading period

Testing a trading strategy on historical data requires a formation period where the

algorithm is trained and a testing period where we observe the performance of the

strategy out-of-sample. There is no single answer as to how long the formation and

the testing periods should be. Still, since we are using the cointegration approach,

we should ensure that the formation period contains enough data for a cointegrating

relationship to be identified. Gatev et al. (1999;2006) use a 12-month formation

period followed by 6 months of trading in their original study, and we will be using

a similar setup in this study (figure 4.4). Our data runs from 2000 to 2019, resulting

in 37 formation- and trading periods for both markets.

Figure 4.4: Formation and trading setup

4.9.3 Computing returns

As the strategy involves taking both a long and a short position, where the long leg

of the trade is financed by the short leg, calculating the returns may not be entirely

intuitive. The payoffs can be thought of as a string of randomly distributed cash

flows incurred at different points in time. A positive cash flow will occur once a

successful trade is closed, which may happen multiple times for each pair. Open

positions that are not closed by the end of the trading period will only incur a cash

flow at the last trading day based on the closing prices. Because the return is

computed on long and short positions on one dollar invested, Gatev et al. (2006)

argue that the payoffs have the interpretation of excess returns. They further suggest

two measures of excess return: return on committed capital and return on actual

employed capital. Return on committed capital takes the sum of all payoffs and

divides it by the total number of identified pairs in the portfolio. As this approach

is fairly conservative and may not represent the capital sourcing of a hedge fund,

Illustration of the rolling formation and trading setup. In the formation period, the stocks
are clustered and tested for cointegration. In the trading period, the identified pairs from
the formation period are traded according to our prespecified thresholds.

10182321005176GRA 19703

 28

they argue that the return on actual capital employed seems like a more appropriate

measure as this divides the sum of the payoffs by the number of pairs opened during

the trading period:

𝑟C =
∑ 𝐶𝐹#-
#."

𝐿 + 𝜏𝑆 (4.16)

𝐿 and 𝑆 are the amounts placed in the long and short leg, respectively. 𝜏 refers to

the fraction of capital required (margin) required by the broker for the short

position. This requirement will vary based on the volatility and liquidity of the

individual security, but we will, similar to Hoel (2013), set 𝜏 = 1, giving us a more

conservative return estimate.

4.9.4 Transaction costs

Bearing in mind the liquidity sensitiveness of our study, we pay particular attention

to transaction costs and attempt to obtain a realistic estimate of the costs that a trader

would incur when applying this strategy. In their research on trading costs, Do &

Faff (2011) find that most earlier studies fail to adequately adjust strategy

performance for costs, thus leading to a “material upward bias”. We follow Do &

Faff’s approach with three main components of costs: commissions, short selling

fees, and market impact.

The nature of pairs trading implies that commissions accrue two times when

opening a position and two times when closing the position, hence two roundtrips

of costs. Fees charged for short selling accrue only for the security that is, in relative

terms, overpriced. Commissions and short selling fees are explicit trading costs and

are generally easy to observe. Based on an analysis of historical data, we set the

commission per trade to 5 bps and the annual short-selling fee to 450 bps. To

compute the short-selling expenses per trade, we convert the annual fee into a daily

fee of 1.79 bps. To get the total cost, the average number of days we hold a position

open is multiplied by the daily short-selling fee and added to the fixed commission.

The implicit trading costs are slightly harder to estimate, and we apply two methods

to increase the reliability of the estimates:

1) Apply a one-day lag both when opening and closing the positions to estimate the

implied bid-ask spread in the market.

2) Adjust for relative bid-ask spreads to simulate a “worst-case” scenario of trading

costs.

10182321005176GRA 19703

 29

The first approach is related to the bid-ask bounce as described by Jegadeesh &

Titman (1993). Any movements in the stock prices observed are potentially due to

movements in the bid-ask quotes. Once the spread between a pair converges, we

are more likely to trade on an ask quote for the “winner” and the bid quote for the

“loser”. Since we are implicitly buying at bid-quotes and selling at ask-quotes, with

the opposite case for the unwinding of the position, there is a chance that our returns

are biased upwards. The second approach serves as a conservative measure of

profitability that stresses the robustness to transaction costs. While this estimate

might be a bit too conservative, we argue that it is interesting to observe whether

the strategy would survive this worst-case estimate of costs.

4.10 Assessing performance of the strategy
To assess the performance, we study the excess returns generated by the strategy

and the risk profile of these returns. We can measure the Sharpe Ratio (SR) as

defined by William F. Sharpe (1966):

𝑆𝑅 = 	

𝑟C	 − 𝑟$
𝜎C

(4.17)

where 𝑟C is the return of the portfolio, 𝑟$ is the risk-free rate and 𝜎C is the observed

standard deviation of the portfolio. Because the pairs trading strategy being tested

is dollar neutral, we do not subtract the risk-free rate when computing the SR. The

SR measures the return obtained per unit of risk, as defined by the standard

deviation. A higher SR generally means higher risk-adjusted returns. Similar to

Gatev et al. (2006), we control for traditional risk factors to explore the strategy’s

systematic risk exposure. This will give us an estimate of the strategy’s ability to

generate returns not captured by the most common factors, in other words, the risk-

adjusted returns. More specifically, we will be using the three-factor model of Fama

& French (1993) and Carhart’s (1997) momentum factor:

𝛼 = 𝛽"(𝑚𝑘𝑡 − 𝑟𝑓) + 𝛽((𝑆𝑀𝐵) + 𝛽D(𝐻𝑀𝐿) + 𝛽E(𝑈𝑀𝐷) (4.18)

where 𝛼 represents the risk-adjusted returns obtained by the strategy.

10182321005176GRA 19703

 30

4.11 Liquidity
To comment on the liquidity of the two markets, we apply measuring tools building

on the works of Næs et al. (2008). As a proxy for liquidity, we apply one order-

based measure using current available (ex-ante) liquidity and one trade-based

measure using realized (ex-post) liquidity. For the order-based measure, we observe

the relative spreads (in percent) at closing as:

𝑆 =
𝑃FG2 − 𝑃H#I

1
2 (𝑃FG2 + 𝑃H#I)

 (4.1)

where 𝑃FG2 	𝑎𝑛𝑑	𝑃H#I represents the “best” quoted prices in the order book.

To assess liquidity via trade-measures, we will compute the turnover as:

𝑇 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑠	𝑡𝑟𝑎𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑠	𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 (4.2)

As we are interested in the effect of liquidity on the strategy’s profits, we will use

these measures to determine the overall liquidity in the two markets studied.

Additionally, we use the observed relative bid-ask spread to construct separate

portfolios containing stocks with the highest and lowest liquidity. This analysis is

covered in chapter 5.4.

10182321005176GRA 19703

 31

5. Results and Analysis
This section discusses the results obtained when studying the strategy in both the

US and Norwegian stock market. We start by discussing the output of the

dimensionality reduction technique, PCA, and the unsupervised clustering

algorithm before describing the results obtained by the model. The section proceeds

to assess the liquidity of the two markets, followed by an in-depth analysis of how

market liquidity affects the profitability of the strategy. Finally, we discuss the

robostness of the strategy to both explicit and implicit transaction costs.

5. 1 Number of Principal Components
After running the PCA algorithm for every formation period on our data, we begin

by studying the proportion of variance explained by each of the principal

components as well as the cumulative explained variance. Panel A in figure 5.1

takes the number of principal components on the x-axis and the corresponding

proportion of variance explained on the y-axis. We see that the first component

explains the greatest proportion of the variance in both the S&P500 and the OSE

data and that the additional proportion of explained variance for the following

components quickly becomes marginal.

Figure 5.1: PCA output

The figure contains a graphical representation of the proportion of variance explained per
number of principal component as well as the cumulative explained variance for the
S&P500 and OSE respectively. The figure is chosen to best portray the average results of
each formation period.The figure is constructed for illustration purposes only, and is chosen
to best portray the average results of each formation period in our results.

10182321005176GRA 19703

 32

Panel B in figure 5.1 presents the number of principal components on the x-axis,

and the corresponding cumulative variance explained on the y-axis. Using the ad

hoc approach described in chapter 4.4, we decide to use 20 PCs for the S&P500

data and 7 for the OSE data, ensuring that we have enough components to capture

a sufficient amount of variance in the data while limiting the number of dimensions.

The chosen number of components capture on average roughly 45% - 55% of the

variance, similar to what Avellaneda (2008) used as predefined variance when

selecting the number of PCs. To be consistent in our research, we hold the number

of principal components constant throughout all formation periods.

To optimize the output of the clustering tool, we want to choose the number of

components that produce the most meaningful clusters. We are interested in

knowing how the number of PCs used affects the output of the DBSCAN and run

a sensitivity analysis stressing the number of PCs on cluster characteristics. Table

5.1 summarizes the cluster statistics as we vary the number of principal

components. Throughout the sensitivity analysis, the 𝜖 is held constant at 0.6 for

the OSE and at 1.0 for the S&P500. We observe clear variation in clusters formed,

and thus the number of stocks in each cluster, as PC change. The trend is similar

for both markets: too many or too few components produce fewer clusters. As we

aim to let the algorithm form meaningful clusters, we seek a balance between

clusters formed and the number of stocks in each cluster.

Table 5.1: Cluster characteristics

A: S&P500
Principal Components 10 15 18 20 22 25 30 45
Number of clusters 3 3.75 3.80 3.81 3.54 2.30 1.14 0
Unique stocks in each cluster 172 73 34 20 15 10 7 0
Cointegrated pairs in each cluster 3681 614 188 66 32 17 10 0
 Of which are unique stocks 125 49 23 14 9 7 5 0
B: OSE
Principal Components 4 6 7 8 10 12 15 25

Number of clusters 1.24 1.32 1.35 1.31 1.19 0.97 0.59 0
Unique stocks in each cluster 105 86 75 68 79 23 9 0
Cointegrated pairs in each cluster 971 720 588 464 150 86 34 0
 Of which are unique stocks 86 69 57 47 37 27 16 0

The table contains cluster characteristics stressed by number of principal components.
The values are gathered from the formation periods in the timespan 2000-2019 and then
averaged. The colored columns represent the characteristics related to our chosen number
of components.

10182321005176GRA 19703

 33

We find that 7 components in the OSE and 20 components in the S&P500 on

average produce the most clusters while maintaining a similar number of potential

stocks to trade per period.

5.2 Cluster discovery
Looking at the US data, we observe that we on average identify between three and

four clusters each period, with one period having as many as ten unique clusters.

This clearly differs from the OSE data where we on average identify between one

and two clusters in every formation period, with the highest number of clusters in

a period being three. The size of each cluster varies, but on average, there are 2895

pairs in each cluster for the US data and 8479 for the OSE data (before checking

for cointegration). In figure 5.2, we plot a few of the clusters using t-SNE on the

DBSCAN results to visualize the output of the clustering algorithm, and we clearly

see that clusters form in areas of higher density. This also works as a sanity check

for the DBSCAN uoutput, as we want to see that both the t-SNE and the DBSCAN

are able to find our clusters.

Figure 5.2: t-SNE plots of clusters

t-SNE plots of some of the clusters formed by the stocks in the US market and the
Norwegian market. Each color represents different clusters while the gray dots are
unclustered stocks.

10182321005176GRA 19703

 34

To further investigate the output of the DBSCAN algorithm, we examine one

arbitrary cluster from each of the two datasets in detail. The two clusters shown in

figure 5.3 are both formed in the formation period running from January 2001

through December 2001. The cluster formed by the S&P500 data is entirely made

up of stocks related to the energy industry and contains 22 unique stocks. When

paired, several of these stocks are cointegrated at the 5% level, implying that a long-

term relationship between them may exist (indicated by grey connecting lines

between points in figure 5.3). The cluster formed by the OSE data is roughly the

same size but are less concentrated, meaning that it is formed by stocks from several

different industries. It is worth noting that a cointegrating relationship is found

between several pairs, also pairs made up of stocks belonging to various industries.

This is in line with our hypothesis that an unsupervised machine learning technique

might be able to uncover patterns not necessarily obvious at first glance. We

observe that the OSE cluster contains quite a few stocks from both the financial

industry and the shipping industry. This might reflect the fact that many Norwegian

banks historically have had significant exposure to the shipping industry, although

this is not something we can conclude.

Figure 5.3: Example of clusters with validated pairs

It is worth noting that after formation period 18 (2009), the algorithm struggles to

form more than one cluster in the OSE dataset (figure 5.4). Instead of forming

several clusters with fewer stocks in each cluster, it forms one big cluster

comprising several stocks and only removes outliers. Generally, it is not a problem;

Financials: 9 Shipping: 8 Industrials: 12 Energy: 25

t-SNE plots of some cluster from each of the two markets for illustrational purposes. Each
point represents a stock while a grey line between two points mean that they are
cointegrated. The cluster from the S&P500 stocks contains only stocks related to the energy
industry. The cluster from the OSE data is less concentrated and contains stocks related to
several industries.

10182321005176GRA 19703

 35

Number of clusters formed in each formation period in the two markets. The algorithm
seems to be working well in the beginning and in the end if the sample period for the
S&P500 data. The trend is different on the OSE data and we see that the algorithm is
struggling to make more than one cluster after formation period 17 (2008).

Figure 5.4: Number of clusters identified

however, the effect of the DBSCAN declines when the inputs are no longer the best

fit for the respective period. We observe that this is a minor pitfall of the “one size

fits all” idea of applying the same inputs over the entireness of the sample period.

For the purpose of this study, comparing the same strategy on two different markets,

we are not necessarily exploring new ways to optimize the strategy. Nevertheless,

if we were to optimize the model, we observe that applying a time-varying EPS that

tests each period separately could improve the potential of the DBSCAN.

5.3 Strategy performance
We begin by looking at how the strategy performs on the S&P500 and OSE

separately, and comment on the distribution of excess returns and its risk

characteristics.

5.3.1 Pairs trading on the S&P500
Panel A in Table 5.2 summarizes the descriptive statistics of the excess returns

before TC and the systematic risk of the strategy in the US. Statistics are computed

for different portfolios containing the 𝑛 number of pairs with the highest Sharpe

Ratio from the formation period, as well as a portfolio containing all cointegrated

pairs in each cluster. The first rows show that the top 5 pairs on average deliver

10182321005176GRA 19703

 36

excess returns of 8.32% per year (t-statistic of 2.84) while the top 20 pairs on

average generate annualized excess returns of 10.58% (t-statistic of 4.61),

suggesting that pairs trading in the US stock market is profitable (Figure 5.5). This

is almost identical to what Gatev et al. (2006) found on average in 1962-2002.

Looking at the distribution of the excess returns, we see diversification benefits

from trading on several pairs as the standard deviation decreases when adding more

pairs to the portfolio. This is consistent with the idea that pairs trading is only

considered a form of arbitrage when trading on many pairs simultaneously.

Comparing the greatest daily loss and gain for the top 5 portfolio and the portfolio

including all pairs, we observe that the maximum daily loss is lower, and the

maximum daily gain is larger for the portfolio containing more pairs. This trend is

also evidenced by the increased positive skewness for the portfolios containing

more pairs.

Figure 5.5: Strategy performance on the S&P500

Cumulative excess return for portfolios containing the top 5, 10, 20 and all pairs
from 2001 to 2019.

10182321005176GRA 19703

 37

Table 5.2: Summary of descriptive statistics and systematic risk of pairs
trading in US equities

Pairs portfolio Top 5 Top 10 Top 20 All
A: Daily excess return
distribution

Average excess return 0.00033 0.00033 0.00042 0.00036

Annualized excess return 0.08316 0.08316 0.10584 0.09072

t-Statistic 2.84731 3.29851 4.61972 4.90302

P-value 0.00443 0.00097 0.00000 0.00000

Excess return distribution

 Median 0.00000 0.00000 0.00000 0.00000

 Standard deviation 0.00791 0.00687 0.00617 0.00501

 Skewness 0.64727 0.47832 1.37969 1.38413

 Kurtosis 11.41694 21.28843 24.95730 27.50951

 Minimum -0.05467 -0.09028 -0.06072 -0.04615

 Maximum 0.07452 0.07452 0.07938 0.06258

B: Systematic risk of pairs
trading

Annualized Sharpe Ratio 0.66 0.77 1.07 1.14

Intercept 0.00030 0.00030 0.00040 0.00040
 (2.89800)*** (3.32600)*** (4.64800)*** (4.89900)***

Market -0.02020 -0.01040 -0.00650 0.00180
 (-1.89500)* (-1.12100) (-0.78300) (0.27300)

SMB 0.04380 0.04840 0.05790 0.04870
 (2.12600)** (2.70600)*** (3.60700)*** (3.74200)***

HML -0.04370 -0.04360 -0.04640 -0.04120
 (-2.25300)** (-2.58600)*** (-3.07000)*** (-3.35900)***

Momentum -0.02330 -0.02400 -0.03540 -0.02440
 (-1.71600)* (-2.03800)** (-3.34700)*** (-2.84100)***

R2 0.00300 0.00400 0.00700 0.00700

Summary statistics of the daily excess returns on the portfolios of pairs between January
2001 and July 2019 containing 4662 observations. Trades are made according to the
prespecified rule where trades are opened once the spread between two cointegrated stocks
in the same cluster deviate by more than two standard deviations, measured over a 20-
day rolling window (Panel A). Top “n” portfolios consists of the “n” number of pairs with
the highest reported Sharpe Ratio in the formation period. Panel B presents a summary
of the strategy’s risk characteristics with daily returns regressed on the Fama & French
(1993) three factor model and Carharts (1997) Momentum factor.

10182321005176GRA 19703

 38

Panel B summarizes the risk characteristics associated with the pairs trading

strategy. With a declining standard deviation and relatively stable excess returns as

we add more pairs to the portfolio, the Sharpe Ratio is positively correlated to the

number of pairs in the portfolio. The portfolio containing all pairs delivered an

annualized SR of 1.14. In the same period, the S&P500 index obtained an

annualized SR of 0.26, suggesting that the strategy has a more attractive risk profile

than the overall stock market (Figure A1 in appendix). To assess the systematic risk

of the strategy, we regress the daily excess returns on the three factors of Fama &

French (1993) and the momentum factor as constructed by Carhart (1997). Overall,

the four risk factors appear to explain a relatively small portion of the excess returns

with a very low R squared. The risk-adjusted returns are all significant and lower

than the excess returns, except for the portfolio containing all pairs which has a

slightly higher risk-adjusted return than raw excess returns.

As expected, being a market-neutral strategy, the exposure to the market premium

is small, and the estimates’ sign is shifting. Although small, the exposure to both

the SMB and HML factors appears to be positive and significant for all portfolios.

The exposure to the momentum factor is negative and statistically significant. This

does not come as a surprise as pairs trading is a contrarian trading strategy where

one in many cases will short stocks that have performed well recently and buy

stocks that have underperformed, opposite of what a momentum strategy would do.

5.3.2 Pairs trading on the OSE

Panel A in Table 5.3 summarizes the descriptive statistics of the excess returns and

the systematic risk of the strategy on securities traded on OSE. Statistics are

computed in the same manner as for the US equities above, presenting trading

results for the 𝑛 pairs with the highest Sharpe Ratio in the formation period. The

top 5, 10, and 20 portfolios generate on average 46.87%, 48.34%, and 46.12%

excess returns per year before TC, and the observed returns are all significantly

different from zero at a 1% level. In addition, the portfolio where all cointegrated

stocks in each cluster are traded delivers annualized excess returns of 24.19% (t-

stat of 6.15), which is clearly lower than the concentrated portfolios (Figure 5.6).

Still, the results suggest that Pairs Trading on the OSE is profitable and even more

profitable than on the S&P500 exchange.

10182321005176GRA 19703

 39

Figure 5.6: Strategy performance on the OSE

Panel B summarizes the risk characteristics associated with the pairs trading

strategy on OSE. Similar to the US results, we observe diversification benefits as

the standard deviation decreases, also reflected by the decline in maximum gain or

loss in a day by adding more potential trading pairs in the portfolio. Not

surprisingly, as the average excess returns remain stable, the Sharpe Ratios

experience an almost linear upward trend from an annualized SR before TC of 1.28

in the top 5 to an SR of 1.90 in the top 20. Even though the standard deviation is

lowest for the portfolio containing all possible pairs, the average excess returns are

lower, resulting in an annualized SR of 1.43. Again, we regress the daily excess

returns on the three factors of Fama & French (1993) and Carharts (1997)

momentum factor to assess the systematic risk of the strategy. The risk factors’

coefficients are in general similar to those in the US, both in terms of size and signs;

however, the regression produces much fewer significant results implying that these

factors cannot properly explain the return we obtain at OSE. The risk-adjusted

returns are all positive and significant at a 1% level, and the portfolio containing all

cointegrated pairs obtain higher risk-adjusted returns than raw excess returns also

in this case. The R2 is very low, ranging from 0.002-0.005, implying that the risk

factors generally fail to explain the returns obtained by the strategy.

Cumulative excess return for portfolios containing the top 5, 10, 20 and all pairs
from 2001 to 2019.

10182321005176GRA 19703

 40

Table 5.3: Summary of descriptive statistics and systematic risk of pairs
trading in Norwegian equities

Pairs portfolio Top 5 Top 10 Top 20 All
A: Excess return distribution

Average daily excess
return 0.00186 0.00192 0.00183 0.00096

Annualized excess return 0.46872 0.48384 0.46116 0.24192

t-Statistic 5.48480 6.78365 8.18620 6.15468

P-value 0.00000 0.00000 0.00000 0.00000

Excess return distribution

 Median 0.00000 0.00000 0.00000 0.00000

 Standard deviation 0.02312 0.01927 0.01526 0.01066

 Skewness 0.62709 0.37796 0.74100 0.12691

 Kurtosis 15.39224 9.05495 11.31566 16.28963

 Minimum -0.18488 -0.12301 -0.11293 -0.11293

 Maximum 0.27059 0.21724 0.18203 0.09332

B: Risk Characteristics

Annualized Sharpe Ratio 1.28 1.58 1.90 1.43

Intercept 0.00180 0.00180 0.00170 0.00100
 (5.24400)*** (6.33800)*** (7.73100)*** (6.18900)***

Market -0.04250 -0.08970 -0.07480 -0.00170
 (-1.03600) (-2.62000)*** (-2.75800)*** (-0.08800)

SMB 0.09720 0.04840 0.05790 0.04870
 (2.11800)** (-0.18500) (-0.50200) (0.29500)

HML -0.01910 -0.05730 -0.02120 0.00660
 (-0.54500) (-1.96300)** (-0.91600) (0.40900)

Momentum -0.05010 -0.03070 -0.03660 -0.04120

 (-1.63000) (-1.19800) (-1.80700)* (-
2.90700)***

R2 0.00500 0.00400 0.00300 0.00200

Summary statistics of the daily excess returns on OSE for various portfolios of pairs
between January 2001 and July 2019 containing 4662 observations. Trades are made
according to the prespecified rule where trades are opened once the spread between
two cointegrated stocks in the same cluster deviate by more than two standard
deviations, measured over a 20-day rolling window (Panel A). Top “n” portfolios
consists of the “n” number of pairs with the highest reported Sharpe Ratio in the
formation period. Panel B presents a summary of the strategy’s risk characteristics
with daily returns regressed on the Fama & French (1993) three factor model and
Carharts (1997) Momentum factor.

10182321005176GRA 19703

 41

Chart displaying the relative bid-ask spread measured at closing for both the S&P500
and OSE from 2000 through 2020.

5.4 Market liquidity
This chapters looks at the liquidity in the two markets covered in this study. We

begin by studying the overall historical liquidity in the markets using the two

measures covered in chapter 4.11. We proceed to sort stocks based on their

measured liquidity, and measure the performance of the strategy when trading at

the most liquid and the least liquid stocks separately. We do this to analyse how the

liquidity of the stocks traded impact the strategy performance.

5.4.1 Liquidity on the S&P500 and OSE

To help us understand the difference in profitability in the two markets using the

strategy, we examine the overall market liquidity looking at both an order-based

measure (relative spread) and a trade-based measure (turnover). Given that the

S&P500 index consists of large US companies while the OSE data includes all

companies listed on OSE, we should expect to see a difference in liquidity in the

two datasets.

The average relative bid-ask spread for the S&P500 stocks in the period 2000 –

2019 is 0.30%, while for the OSE stocks, the average relative spread in the same

period is 2.78%. Looking at figure 5.7, we observe a downwards sloping trend for

OSE, while the average spread at S&P500 appears to have been relatively stable

since 2004. In both markets, there were large spikes around periods of market

turmoil, such as the global financial crisis in 2008.

Figure 5.7: Relative bid-ask spread on the S&P500 and OSE

10182321005176GRA 19703

 42

Additionally, we examine the average turnover in the two markets. Panel A and B

in figure 5.8 display the average turnover in the two markets calculated as the daily

number of shares traded divided by the number of shares outstanding. Again, we

observe considerable differences between the two markets with a much higher

turnover on the S&P500 than on the OSE, averaging at 1035% and 0.3%,

respectively. In the period considered, the turnover appears to have declined on the

OSE, while on the S&P500 it has increased.

Figure 5.8: Turnover on the S&P500 and OSE

Based on these measures, stocks listed at OSE appear to be less liquid in terms of

both orders-based and trade-based measures. This increases our suspicion that the

difference in market liquidity could help us explain why pairs trading appears to be

much more profitable at OSE than on the S&P500.

5.4.2 Trading on the most liquid and the least liquid stocks

To further investigate the effect of liquidity on pairs trading profits, we want to

observe the performance of the strategy when trading only on the least liquid stocks

and the most liquid stocks, separately. As a measure of liquidity we use the

observed relative bid-ask spread. At the end of very formation period, the average

daily relative spread is computed and we use this information to construct separate

portfolios containing stocks with the highest and lowest spread which will be traded

in the following six months. Specifically, we select the 30th percentile of stocks that

had the highest relative spread and the 30th percentile of stocks that had lowest

relative spread in the formation period. We measure the spread and construct new

portfolios after each formation period and for each of the two markets. We do not

Panel A and B shows the average turnover (equal weighted) on the S&P500 and OSE
respectively in the period 2000 – 2020, calculated as the number of shares traded divided
by the number of shares outstanding.

10182321005176GRA 19703

 43

Cumulative excess returns from the portfolios trading on the most liquid stocks and the
portfolios trading on the least liquid stocks on the S&P500 and OSE. Stocks are sorted
by the relative spread. The top and bottom 30th percentile are used to construct portfolios.

run the clustering algorithm but test for cointegration and trade according to the

same rule as before. Table A3 in the appendix summarizes the excess return

distribution for the constructed portfolios. The excess returns obtained by trading

on stocks with the highest spread evidently outperform those obtained by trading

on the stocks with lowest spread (figure 5.9). The difference is more prominent on

the OSE, where the difference in average daily excess return between the two

portfolios is 26 bps compared to 8 bps for the S&P500 portfolios. The portfolio

trading on the least liquid stocks on OSE obtains statistically significant annualized

excess returns of 67.36% over the 20-year long period (before TC) with an

annualized SR of 1.82. Contrary, when trading on the most liquid stocks on OSE,

the annualized excess returns are close to zero and not statistically significant. The

excess returns on the portfolios trading stocks on the S&P500 are all statistically

significant at the 1% level. The “top spread” portfolio returns 29.36% annually

compared to 8.54% for the “bottom spread” portfolio. These results indicate that

the profitability of pairs trading might be linked to the liquidity of the traded stocks,

which potentially explains why pairs trading seems to be more profitable on OSE

than on the S&P500. It may also be the case that the larger bid-ask spread increases

the upward bias of returns because of a bid-ask bounce, and that the extra profits

are, in reality, eaten up by the costs of trading illiquid stocks.

Figure 5.9: Performance of the least liquid and most liquid stocks

10182321005176GRA 19703

 44

5.5 Trading costs
As mentioned previously, we make the distinction between explicit and implicit

transaction costs. In this chapter, we adjust for both explicit and implicit TC that a

trader would incur when pursuing the strategy. The implicit costs are difficult to

measure precisely, and we therefore apply one standard estimate as well as one

“worst-case scenario” estimate to stress the results. First, we add a 1-day lag from

we receive our trading signal until we trade to obtain an estimate of the implied bid-

ask spread in the respective markets. Second, to simulate a worst-case scenario, we

directly impose a TC equal to the average relative bid-ask spread in each respective

market. This approach assumes that we must cross the order book and pay the bid-

ask spread on every transaction. Other implementation costs, such as slippage, are

not considered in this study.

5.5.1 Robustness to explicit transaction costs

We begin by testing whether the results obtained in chapters 5.3.1 and 5.3.2 are

robust to explicit TC, including commission and short selling fees. For both the

S&P500 and OSE portfolios, the average number of days a portfolio is held open is

roughly nine days. Combined with the fixed commission of 5 bps gives us a total

TC of 36.11 bps per trade (two roundtrips with short-selling fees). Table A1 in the

appendix section shows that the average daily excess returns are close to zero and

not statistically significant for any of the S&P500 portfolios once adjusted for

explicit TC. It is worth noting that pairs trading is a strategy with a relatively high

frequency of trades, meaning that the returns will be highly susceptible to the

estimate of TC. We observe that while the results before TC are similar to what

previous studies find, we obtain much poorer results after TC. A potential

explanation could be the frequency of trades made, which is considerably higher

than for example Gatev et al. (2006). On OSE, we observe slightly reduced excess

returns for all portfolios. The average annualized excess returns decrease by 7.71

percentage points (pp) for the top 5 portfolio, and 8.44 pp for the portfolio

containing all pairs (Table A2). We argue that the reason why loss from TC

increases with the size of the portfolio is that more trades are executed, leading to

additional roundtrips of costs. Nevertheless, the excess returns are still positive with

the average annualized excess return for the “top” portfolios being 41.08%. The

returns are statistically significant at the 1% level for all OSE portfolios.

10182321005176GRA 19703

 45

5.5.2 Adjusting for bid-ask spreads

As discussed in chapter 4.11, the returns obtained may be biased upwards because

of the bid-ask bounce. To adjust for this effect, we test the strategy’s performance

with one day delay from the time we receive the trading signal to a position is taken,

both when opening and closing a position. The average daily excess returns on the

top 20 portfolio drop by 0.72 bps and 6.89 bps for the S&P500 and OSE,

respectively, compared to the results obtained when only including explicit TC

(Table 5.4). The daily excess returns from the S&P500 are still close to zero and

not statistically significant. These results corresponds to a drop in the annual excess

return from 2.34% to 0.53% on the S&P500, and from 39.39% to 22.02% on the

OSE, which provides us with an estimate of the average bid-ask spread and hence

the implicit TC. Thus, the results suggest that a substantial part of the excess returns

on OSE may be driven by the bid-ask bounce, although it is difficult to measure

how much of the decline is due to actual price convergence. We observe that the

decline is greater on the OSE, which may be due to the higher bid-ask spread,

causing bid-ask bounces of greater magnitude. The annualized sharpe ratio is still

relatively high at 0.84 for the top 20 portfolio. Although the excess returns on OSE

are lower than before applying the 1 day lag, they are all still positive and

statistically significant at the 1% level, indicating that the trading strategy survives

this estimate of explicit and implicit TC.

We also apply the 1-day lag and the explicit TC estimate to the “top spread”

portfolios constructed in chapter 5.4.2 and observe that even the most illiquid stocks

on OSE survives the transaction costs (Table A4). The average annualized excess

returns decline by 14.87 percentage points from 67.36% to 52.49%. While the drop

in excess returns are quite large, the excess returns are still very high and

statistically significant at the 1% level. For the S&P500 top spread portfolio, the

annualized excess returns drop from 29.48% to 2.09%. It is interesting to see that

the returns obtained on the OSE survives the estimated explicit and implicit costs

while the returns obtained on the S&P500 disappear using these estimates. A

possible explanation could be that even the least liquid stocks in the S&P500 are

still more liquid than most of the OSE stocks, although we cannot conclude that this

is causing the difference.

10182321005176GRA 19703

 46

We recall from the definition of liquid markets that an important factor is being able

to trade large numbers of shares with little price impact. After observing the

evidenced inferior liquidity at the OSE, measured in turnover and spreads relative

to the S&P500, we expect that the possibility to trade at observed prices heavily

depends on the size of the trades. Given the difficult task of adequately accounting

for this, we argue that applying the 1-day delay also provides a fitting estimate of

the execution price because the trader might not be able to fill an order at the exact

market close. It should also be noted that while the portfolio trading on the least

liquid stocks on OSE perfoms very well, the volume that can be traded is likely to

be very limited.

Table 5.4: Summary of descriptive statistics and risk characteristics of
pairs trading with 1-day lag and explicit TC

Pairs portfolio Top 5 Top 10 Top 20 All
A: S&P500 Daily excess return distribution
with 1 day lag and explicit TC
Average excess return 0.00023 0.00007 0.00002 0.00001
Annualized excess return 0.05796 0.01764 0.00504 0.00252
t-Statistic 2.13060 0.77774 0.25933 0.22251
pvalue 0.03317 0.43676 0.79539 0.82393
Excess return distribution
 Median 0.00000 0.00000 0.00000 0.00000
 Standard deviation 0.00722 0.00618 0.00541 0.00419
 Skewness 1.70128 2.19739 3.01913 1.19975
 Kurtosis 26.03100 40.47192 63.01301 23.25694
 Minimum -0.04826 -0.04351 -0.04351 -0.04351
 Maximum 0.11149 0.11944 0.11944 0.05289
Annualized Sharpe ratio 0.51 0.18 0.06 0.04

B: OSE Daily excess return distribution
with 1 day lag and explicit TC
Average excess return 0.00123 0.00109 0.00087 0.00075
Annualized excess return 0.30895 0.27367 0.22025 0.18900
t-Statistic 3.33290 3.75884 3.62494 4.81246
p-value 0.00087 0.00017 0.00029 0.00000
Excess return distribution
 Median 0.00000 0.00000 0.00000 0.00000
 Standard deviation 0.02512 0.01972 0.01647 0.01064
 Skewness 2.21012 0.01662 -0.21437 0.08400
 Kurtosis 53.03421 22.03774 14.43742 16.75985
 Minimum -0.36398 -0.25299 -0.17157 -0.11654
 Maximum 0.42244 0.27067 0.14072 0.09300
Annualized Sharpe ratio 0.77 0.87 0.84 1.12

Summary statistics of the daily excess returns applying the same strategy as before but
with 1 day lag on the opening and closing of positions.

10182321005176GRA 19703

 47

While applying a 1-day lag might give us a decent estimate of trading costs in the

sample, we also run the strategy without the 1-day lag but instead adding the

observed average relative bid-ask spread as a transaction cost on each trade

executed. This gives us an idea of how robust the returns are to a “worst-case”

scenario where the bid-ask spread is paid on every transaction. We see from table

A4 in the appendix section that this adjustment leads to negative excess returns for

most of the S&P500 portfolios, which were barely positive when we adjusted for

explicit TC earlier. None of the excess returns are statistically significant, and we

argue that when considering all transaction costs, the strategy is not profitable on

the S&P500. Similarly, adding the relative spread on the OSE stocks eliminates

most of the profits that were left after adjusting for the explicit TC only. The top 5

and top 10 portfolios obtain positive excess returns, but neither are statistically

significant. The portfolio trading on all pairs actually generates significant negative

excess returns. Interestingly, the method applied does not seem to make much of a

difference on the S&P500 portfolios, while the returns on the OSE are highly

sensitive to the method used to estimate implicit TC (Figure 5.10). This is likely a

result of higher trading activity than the other portfolio combined with a much

higher observed relative spread on the OSE than for the S&P500 portfolios.

Figure 5.10: Strategy performance after TC

Plot showing the cumulative excess returns when applying the estimated transaction
costs and two different measures of bid-ask spreads.

10182321005176GRA 19703

 48

The estimates obtained by using the 1-day lag approach may be more realistic, but

it is interesting to observe how robust the returns are to the “worst-case” estimate.

While the excess returns are close to zero for the S&P500 portfolios irrespective of

which method is applied, the OSE portfolios obtain positive and statistically

significant returns when adjusting for explicit TC and applying a 1-day lag to

simulate the implied bid-ask spread. On the other hand, applying the observed bid-

ask spread as an additional transaction cost suggest that the cost of trading at OSE

eats up the excess returns generated by the strategy. Most previous studies appear

to use the 1-day lag as an estimate of the bid-ask spreads, and we emphasize these

results as we believe they gives us the most realistic representation of trading costs

as well as it facilitates comparison of results with previous studies.

5.6 Summary of results and theoretical implications
In chapter 1.2, we outlined the following hypotheses which are tested separately for

the two markets in our study:

𝐻!:	𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠

𝐻": 𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	
𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠

We find that a pairs trading strategy using machine learning is not able to generate

positive excess returns on the S&P500 once adjusted for TCs, and we therefore fail

to reject the null hypothesis for the US market. When trading at OSE however, we

are able to generate positive and statistically significant excess returns after

adjusting for TCs; thus, we reject the null hypothesis and claim that pairs trading

using a machine learning approach produce positive excess returns on the OSE.

Further, we outlined two additional hypotheses:

𝐻!:	𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦

𝐻": 𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦

In our analysis, we prove that the OSE is far less liquid than the S&P500. As we

find the strategy to be more profitable on the OSE than the S&P500, we reject the

null hypothesis and claim that pairs trading is more profitable in markets with lower

10182321005176GRA 19703

 49

liquidity. To back up this hypothesis, we go on to show that applying the pairs

trading strategy on the least liquid stocks yields significantly higher excess returns

than when applied to the most liquid stocks before adjusting for TC. This is the case

for both the S&P500 and OSE, which again suggest that market liquidity is an

essential driver of profitability. To address the concern that what looks like larger

profits may represent higher trading costs, we adjust for the implied bid-ask spread

and still obtain positive and significant results when trading on the OSE. Using a

more aggressive worst-case estimate of the impact of the bid-ask spread, our returns

are however eliminated. Still, we argue that the probability of this worst-case

estimate to occur is low, and base our conclusion on the less aggressive estimate

using a 1-day lag.

We also adjust for the implied bid-ask spread using a 1 da lag on the portfolios

trading on the least liquid stocks in each of the two markets. The returns from the

S&P500 stocks with the highest spread are eliminated, while the OSE portfolio still

obtain significantly positive excess returns.

Analyzing the results in light of our theoretical point of departure, we are able to

comment on a few interesting observations. While we are able to produce positive

excess returns on the S&P500 before TC, most of these returns are eliminated once

adjusted for TC using a conservative estimate. This indicates that the US markets

exhibit a weak form efficiency and that we are not able to exploit any inefficiencies

or mispricings. Even when trading on the least liquid stocks, the market seems to

be relatively efficient and the strategy does not produce positive results. The

strategy proves to be more profitable on the OSE, suggesting that there might be

some inefficiencies that we are able to exploit in this market that is much less traded

than the S&P500. Going back to the framework by Grossman & Stiglitz (1980), it

appears that the unsupervised learning model is able to extract information of value

on OSE but not on the S&P500. A possible explanation could be that there are a

much larger fraction of informed traders on the S&P500 than on OSE, resulting in

lower returns in the former market. Another interesting observation is that the

profitability does not appear to be time dependant in the sample period, contrary to

most literature that reports declining profits in recent years. This is not in line with

our expectations that a machine learning approach would be able to produce higher

returns in the past where such techniques were not widely available.

10182321005176GRA 19703

 50

5.7 Caveats
This analysis is exposed to a few pitfalls that are worth mentioning. We assume that

we can trade on closing prices when implementing the trading strategy, presenting

us with a “look-ahead bias”. While it is not entirely unreasonable to assume that we

can execute our order on the exact closing price, we should note that this may not

always be the case in the “real world”, and the slippage costs could potentially be

significant. Further, some of the stocks included on OSE are relatively illiquid and

rarely traded, meaning that we have a few missing values in the dataset on days that

no trades were made. As we chose to backfill these empty data points with the

previous day’s close (unless there are more than ten days without data, in which

case we remove the stock from the dataset), we assume that we could trade on the

previous price, which might not always be the case. Gatev et al. (2006) addressed

this concern and did not find it to be a major issue in the obtained results. Another

problem with illiquid stocks is that it can be difficult to find shares available to

borrow so that the stock can be shorted. While this is not a concern for stocks

included in the S&P500, it is likely an issue for many of the illiquid stocks at OSE.

10182321005176GRA 19703

 51

6. Conclusion
We prove that an unsupervised machine learning algorithm is able to identify stocks

that are similar in terms of risk and often linked to the same industry, making them

good candidates for pairs trading. Additionally, the algorithm form clusters with

stocks from different industries which still prove to be cointegrated. This suggests

that unsupervised machine learning does help us discover patterns that are not

entirely intuitive. Our results have shown that a simple pairs trading strategy

building on an unsupervised machine learning approach does not generate sufficient

excess returns to cover a conservative estimate of explicit transaction costs on the

S&P500. Conversely, the same trading strategy appears to be profitable on OSE

even when adjusting for both explicit and implicit transaction costs. We have shown

that the profitability of pairs trading appears to be closely related to the market

liquidity of the stocks that are traded, which might explain why the trading strategy

appears to be more profitable at OSE.

7. Further Research
The output of the clustering algorithm indicates that keeping the parameters fixed

throughout all periods might not be optimal. Further research should investigate

whether non-constant parameters impact the clustering and thus the profitability of

the strategy. Additionally, the application of other clustering techniques such as

OPTICS in the context of pairs trading requires additional research. While this

study makes an effort to determine the profitability of a pairs trading strategy in two

markets with different liquidity, further analysis on the actual costs of applying the

strategy on illiquid stocks is required. Further, we only compare two different

markets, and expanding the data to cover additional markets could potentially

increase the validity of the results.

10182321005176GRA 19703

 52

Bibliography

Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs

Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101

Avellaneda, M., & Lee, J.-H. (2008). Statistical Arbitrage in the U.S. Equities

Market. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1153505

Avellaneda, M., & Lee, J.-H. (2010). Statistical arbitrage in the US equities

market. Quantitative Finance, 10(7), 761–782.

https://doi.org/10.1080/14697680903124632

Becker, J. (2012). Making Money with statistical Arbitrage: Generating Alpha in

sideway Markets with this Option Strategy: Generating Alpha in sideway

Markets with this Option Strategy. Diplomica Verlag.

http://ebookcentral.proquest.com/lib/bilibrary/detail.action?docID=303328

0

Bellman, R. (1966). Dynamic Programming. Science, 153(3731), 34.

https://doi.org/10.1126/science.153.3731.34

Bodie, Z., Kane, A., & Marcus, A. J. (2018). Investments (Eleventh edition).

McGraw-Hill Education.

Bondarenko, O. (2003). Statistical Arbitrage and Securities Prices. The Review of

Financial Studies, 16(3), 875–919.

Broussard, J. P., & Vaihekoski, M. (2012). Profitability of pairs trading strategy in

an illiquid market with multiple share classes. Journal of International

Financial Markets, Institutions and Money, 22(5), 1188–1201.

https://doi.org/10.1016/j.intfin.2012.06.002

Caldeira, J., & Moura, G. V. (2013). Selection of a Portfolio of Pairs Based on

Cointegration: A Statistical Arbitrage Strategy. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.2196391

10182321005176GRA 19703

 53

Clegg, M., & Krauss, C. (2018). Pairs trading with partial cointegration.

Quantitative Finance, 18(1), 121–138.

https://doi.org/10.1080/14697688.2017.1370122

Do, B., & Faff, R. (2010). Does Simple Pairs Trading Still Work? Financial

Analysts Journal, 66(4), 83–95. https://doi.org/10.2469/faj.v66.n4.1

Do, B. H., & Faff, R. W. (2011). Are Pairs Trading Profits Robust to Trading

Costs? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1707125

Elliott, R. J., Van Der Hoek *, J., & Malcolm, W. P. (2005). Pairs trading.

Quantitative Finance, 5(3), 271–276.

https://doi.org/10.1080/14697680500149370

Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction:

Representation, Estimation, and Testing. Econometrica, 55(2), 251.

https://doi.org/10.2307/1913236

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical

Work. The Journal of Finance, 25(2), 383.

https://doi.org/10.2307/2325486

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks

and bonds. Journal of Financial Economics, 33(1), 3–56.

https://doi.org/10.1016/0304-405X(93)90023-5

Gatev, E., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs Trading:

Performance of a Relative-Value Arbitrage Rule. The Review of Financial

Studies, 19(3), 797–827. https://doi.org/10.1093/rfs/hhj020

Gatev, E., Goetzmann, W., & Rouwenhorst, K. G. (1999). Pairs Trading:

Performance of a Relative Value Arbitrage Rule (No. w7032; p. w7032).

National Bureau of Economic Research. https://doi.org/10.3386/w7032

10182321005176GRA 19703

 54

Grossman, S. J., & Stiglitz, J. (1980). On the Impossibility of Informationally

Efficient Markets. The American Economic Review, 70(3), 393–408.

Hendry, D. F., & Juselius, K. (2000). Explaining Cointegration Analysis: Part 1.

The Energy Journal, 21(1), 1–42. JSTOR.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (Eds.). (2013). An introduction

to statistical learning: With applications in R. Springer.

Jegadeesh, N., & Titman, S. (1993). Returns to Buying Winners and Selling

Losers: Implications for Stock Market Efficiency. The Journal of Finance,

48(1), 65–91. https://doi.org/10.1111/j.1540-6261.1993.tb04702.x

Kendall, M. G., & Hill, A. B. (1953). The Analysis of Economic Time-Series-Part

I: Prices. Journal of the Royal Statistical Society. Series A (General),

116(1), 11. https://doi.org/10.2307/2980947

Næs, R., Skjeltorp, J. A., & Ødegaard, B. A. (2008). Liquidity at the Oslo Stock

Exchange.

Naes, R., Skjeltorp, J. A., & Ødegaard, B. A. (2011). Stock Market Liquidity and

the Business Cycle. The Journal of Finance, 66(1), 139–176.

https://doi.org/10.1111/j.1540-6261.2010.01628.x

Pole, A. (2007). Statistical arbitrage: Algorithmic trading insights and

techniques. J. Wiley & Sons.

Rad, H., Low, R. K. Y., & Faff, R. (2016). The profitability of pairs trading

strategies: Distance, cointegration and copula methods. Quantitative

Finance, 16(10), 1541–1558.

https://doi.org/10.1080/14697688.2016.1164337

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of

Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-

0531(76)90046-6

10182321005176GRA 19703

 55

Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-Based Clustering

in Spatial Databases: The Algorithm GDBSCAN and Its Applications.

Data Mining and Knowledge Discovery, 2(2), 169–194.

https://doi.org/10.1023/A:1009745219419

Sarmento, S. M., & Horta, N. (2020). Enhancing a Pairs Trading strategy with the

application of Machine Learning. Expert Systems with Applications, 158,

113490. https://doi.org/10.1016/j.eswa.2020.113490

van der Maaten, L., & Hinton, G. (2008). Visualizing Data using t-SNE. Journal

of Machine Learning Research, 9, 2579–2605.

Wooldridge. (2015). Introductory Econometrics.

10182321005176GRA 19703

 56

Appendix

Figure A1: Top 20 pairs S&P500

Figure A2: Top 20 pairs OSE

Summary of strategy performance for the top 20 portfolio on S&P500. The cumulative
strategy return is compared with the return of the S&P500 index in the top left chart.

Summary of strategy performance for the top 20 portfolio on the OSE. The cumulative
strategy return is compared with the return of the OSEBX index in the top left chart.

10182321005176GRA 19703

 57

Table A1: S&P500 results with explicit TC

Pairs portfolio Top 5 Top 10 Top 20 All
A: Excess return
distribution
Average excess return 0.00002 0.00003 0.00009 0.00003

Annualized excess return 0.00605 0.00630 0.02344 0.00630

t-Statistic 0.21580 0.26925 1.14699 0.38215

pvalue 0.82915 0.78775 0.25144 0.70237

Excess return distribution
Median 0.00000 0.00000 0.00000 0.00000

Standard deviation 0.00745 0.00633 0.00551 0.00450

Skewness 0.15589 0.44111 0.78204 0.79083

Kurtosis 9.73473 12.42605 16.84887 19.09057

Minimum -0.05467 -0.04748 -0.04351 -0.04351

Maximum 0.07091 0.07091 0.07091 0.05289

B: Systematic risk of
pairs trading
Sharpe Ratio 0.00322 0.00395 0.01688 0.00556

Intercept 0.00007 0.00003 0.00009 0.00002

 (0.64500) (0.29200) (1.13600) (0.34300)

Market -0.01890 -0.00340 0.00580 0.01310

 (-1.87000)* (-0.39600) (0.78400) (2.17000)**

SMB 0.01340 0.03790 0.04400 0.03140

 (0.68300) (2.30100)** (3.07000)*** (2.69100)***

HML -0.02710 -0.02830 -0.02060 -0.02580

 (-1.47200) (-1.82400)* (-1.52500) (-2.34600)**

Momentum -0.03170 -0.03700 -0.04020 -0.03200

 (-2.46600)** (-3.40900)*** (-4.25900)*** (-4.15800)***

R2 0.00200 0.00400 0.00700 0.00900

Panel A: Summary statistics of the daily excess returns applying the strategy on the
S&P500 but adjusted for standard transaction cost such as commissions and short selling
fees. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed
against Fama-French three factor model and Carhart’s momentum factor.

10182321005176GRA 19703

 58

Table A2: OSE results with explicit TC

Pairs portfolio Top 5 Top 10 Top 20 All
A: Excess return
distribution

Average excess return 0.00163 0.00169 0.00156 0.00072

Annualized excess return 0.41177 0.42664 0.39388 0.18043

t-Statistic 4.98742 6.07211 7.01941 4.60163

p-value 0.00000 0.00000 0.00000 0.00000

Excess return distribution

 Median 0.00000 0.00000 0.00000 0.00000

 Standard deviation 0.02237 0.01904 0.01520 0.01062

 Skewness 0.67228 0.38684 0.64957 0.08351

 Kurtosis 16.40217 9.20571 11.51896 16.56312

 Minimum -0.18488 -0.12482 -0.11293 -0.11293

 Maximum 0.27059 0.21724 0.18203 0.09326

B: Systematic risk of pairs
trading

Sharpe ratio 0.07305 0.08894 0.10281 0.06741

Intercept 0.00160 0.00160 0.00140 0.00070

 (4.85600)*** (5.70600)*** (6.44900)*** (4.69200)***

Market -0.01360 -0.07420 -0.06840 0.00170

 (-0.34100) (-2.19300)** (-2.56800)*** (0.09100)

SMB 0.10080 -0.01030 -0.01260 0.00490

 (2.26800)** (-0.27300) (-0.42300) (0.23400)

HML 0.00370 -0.03900 -0.01030 0.01590

 (0.10800) (-1.35300) (-0.45200) (0.98600)

Momentum -0.04790 -0.03280 -0.03440 -0.04460

 (-1.61100) (-1.29600) (-1.72600)** (-3.15500)***

R2 0.00400 0.00200 0.00300 0.00200
Panel A: Summary statistics of the daily excess returns applying the strategy on the OSE
but adjusted for standard transaction cost such as commissions and short selling fees. Panel
B: Summary of risk profile of the obtained returns. Daily returns regressed against Fama-
French three factor model and Carhart’s momentum factor.

10182321005176GRA 19703

 59

Table A3: Performance on Bottom and Top spread portfolios

 S&P500 OSE

A: Bottom spread portfolio
Average excess return 0.00034 0.00004

Annualized excess return 0.08568 0.01008

t-Statistic 3.62283 0.16730

p-value 0.00029 0.86714

Excess return distribution
 Median 0.00000 0.00000

 Standard deviation 0.00638 0.01532

 Skewness 1.69139 -0.23631

 Kurtosis 21.02821 14.98725

 Minimum -0.04615 -0.18605

 Maximum 0.08895 0.12610

Annualized Sharpe Ratio 0.85 0.04

B: Top spread portfolio
Average excess return 0.00117 0.00267

Annualized excess return 0.29484 0.67284

t-Statistic 5.82546 7.83020

p-value 0.00000 0.00000

Excess return distribution
 Median 0.00000 0.00000

 Standard deviation 0.01366 0.02331

 Skewness 0.51067 0.85283

 Kurtosis 9.35137 10.35755

 Minimum -0.11031 -0.16418

 Maximum 0.11193 0.27856

Annualized Sharpe Ratio 1.36 1.82

The table summarize the excess returns and its distribution for the portfolios containing
the 30% most liquid stocks and the portfolios containing the 30% least liquid stocks for
both the S&P500 and OSE, measured by the relative bid-ask spread.

10182321005176GRA 19703

 60

Table A4: Performance on Bottom and Top spread portfolios with 1 day
lag and including explicit TC

 S&P500 OSE
A: Bottom spread portfolio inc. 1 day
lag and explicit TC
Average excess return 0.00005 0.00003
Annualized excess return 0.01310 0.00781
t-Statistic 0.59829 0.09267
pvalue 0.54967 0.92617
Excess return distribution:
 Median 0.00000 0.00000
 Standard deviation 0.00594 0.02272
 Skewness 1.71382 3.06829
 Kurtosis 23.29081 158.90822
 Minimum -0.04544 -0.39856
 Maximum 0.08193 0.58065
Annualized Sharpe Ratio 0.13362 0.02166

B: Top spread portfolio inc. 1 day
lag and explicit TC
Average excess return 0.00008 0.00208
Annualized excess return 0.02092 0.52492
t-Statistic 0.70225 4.49086
pvalue 0.48256 0.00001
Excess return distribution:
 Median 0.00000 0.00000
 Standard deviation 0.00807 0.03168
 Skewness 1.05147 0.82808
 Kurtosis 10.93792 12.94110
 Minimum -0.04891 -0.24811
 Maximum 0.07218 0.38182
Annualized Sharpe Ratio 0.16319 1.04393

The table summarize the excess returns and its distribution for the portfolios containing
the top and bottom 30th percentile of stocks sorted by their liquidity. The relative bid-
ask spread is used as a measure of liquidity.

10182321005176GRA 19703

 61

Table A5: S&P500 Performance with explicit TC and relative BA-spread

Pairs portfolio Top 5 Top 10 Top 20 All
A: Excess return
distribution
Average excess return -0.00005 -0.00005 0.00001 -0.00006

Annualized excess return -0.01210 -0.01361 0.00227 -0.01512

t-Statistic -0.43665 -0.58213 0.11314 -0.90302

p-value 0.66238 0.56051 0.90993 0.36656
Excess return
distribution:
 Median 0.00000 0.00000 0.00000 0.00000

 Standard deviation 0.00751 0.00634 0.00552 0.00451

 Skewness 0.30682 0.40876 0.73320 0.75858

 Kurtosis 9.26784 12.16502 16.47296 18.99981

 Minimum -0.05467 -0.04748 -0.04351 -0.04351

 Maximum 0.06978 0.06978 0.06978 0.05289

B: Risk characteristics of
pairs trading
Sharpe Ratio -0.00639 -0.00851 0.00163 -0.01329

Intercept -0.00004 -0.00005 0.00001 -0.00006

 (-0.39100) (-0.55800) (0.64500) (-0.94500)

Market -0.01070 -0.00380 -0.01890 0.01300

 (-1.06300) (-0.44100) (-1.87000)* (2.14500)**

SMB 0.03260 0.03750 0.01340 0.03110

 (1.66400)* (2.27000)** (0.68300) (2.65500)***

HML -0.03440 -0.02830 -0.02710 -0.02610

 (-1.86800)* (-1.81700)* (-1.47200) (-2.36300)**

Momentum -0.03760 -0.03700 -0.03170 -0.03200

 (-2.91800)*** (-3.40300)*** (-2.46600)** (-4.14400)***

R2 0.00300 0.00400 0.00200 0.00900

Panel A: Summary statistics of the daily excess returns applying the same pairs trading
strategy as before but adjusted for standard transaction and average relative bid ask
spreads. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed
against Fama-French three factor model and Carhart’s momentum factor.

10182321005176GRA 19703

 62

Table A6: OSE Performance with explicit TC and relative BA-spread

Pairs portfolio Top 5 Top 10 Top 20 All

A: Excess return distribution
Average excess return 0.00015 0.00003 -0.00022 -0.00094

Annualized excess return 0.03755 0.00731 -0.05645 -0.23587

t-Statistic 0.44500 0.10192 0.99915 5.86567

pvalue 0.65634 0.91883 0.31777 0.00000

Excess return distribution
Median 0.00000 0.00000 0.00000 0.00000

Standard deviation 0.02279 0.01946 0.01533 0.01090

Skewness 0.53614 0.21687 0.41488 -0.31438

Kurtosis 15.76179 9.07968 11.74605 16.18632

Minimum -0.18488 -0.13571 -0.11293 -0.11293

Maximum 0.27059 0.21724 0.18203 0.09288

B: Systematic risk of pairs
trading 0.10377 0.02365 -0.23197 -1.36317

Sharpe ratio 0.00654 0.00149 -0.01461 -0.08587

Intercept 0.00010 -0.00005 -0.00030 -0.00090

 (0.40000) (-0.16000) (-1.28100) (-5.58600)

Market 0.00120 -0.06160 -0.05420 0.01540

 (0.03000) (-1.77900) (-1.98900)* (0.79200)

SMB 0.11840 0.00440 0.00240 0.02130

 (2.61400)*** (0.11300) (0.08000) (0.98200)

HML 0.00830 -0.03380 0.00140 0.02190

 (0.24000) (-1.14600) (0.06200) (1.32400)

Momentum -0.04310 -0.02550 -0.02840 -0.04260

 (-1.42400) (-0.98600) (-1.39300) (-2.93900)

R2 0.00400 0.00200 0.00300 0.00200

C1: Python code for the strategy
C2: Python code for constructing spread portfolios

Panel A: Summary statistics of the daily excess returns applying the same pairs trading
strategy as before but adjusted for standard transaction and average relative bid ask
spreads. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed
against Fama-French three factor model and Carhart’s momentum factor.

10182321005176GRA 19703

#importing modules
import pandas as pd
import numpy as np
import pandas_datareader as web
import matplotlib.pyplot as plt
import datetime as datetime
import seaborn as sns
import matplotlib.cm as cm
import statsmodels.api as sm
from sklearn import linear_model
from sklearn.cluster import KMeans, DBSCAN
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn import preprocessing
from statsmodels.tsa.stattools import coint
from statsmodels.tsa.stattools import adfuller
import statsmodels.regression.linear_model as rg
from scipy import stats
import statsmodels.api as sm
import statsmodels.tsa.stattools as ts
from statsmodels.api import add_constant
import os

#Import data
crsp_data = pd.read_csv('CRSP_data_FIXED.csv', index_col=0, sep=',')

Import benchmarks
oslo_bors_benchmark_index = pd.read_csv(\
 'Oslo_bors_benchmark_index.csv', index_col=0,\
 sep=',', encoding='latin-1')
oslo_bors_benchmark_index.index = \
 pd.to_datetime(oslo_bors_benchmark_index.index, format='%Y%m%d')

SP500_index = pd.read_csv('SP500_benchmark_index.csv', index_col=0, sep=','\
 , encoding='latin-1')
SP500_index.index = pd.to_datetime(SP500_index.index, format='%Y%m%d')

Calculate cumulative return on benchmarks
oslo_bors_benchmark_index['return'] = \
 oslo_bors_benchmark_index['Oslo BĂ¸rs Benchmark Index_GI'].pct_change()
oslo_bors_benchmark_index['cumulative return'] = \
 np.cumprod(1+oslo_bors_benchmark_index['return'])-1
oslo_bors_benchmark_index.fillna(0)

SP500_index.index = pd.to_datetime(SP500_index.index, format='%Y%m%d')
SP500_index['cum_ret'] = np.cumprod(1+SP500_index['sprtrn'])-1

#%%
#---
Create FORMATION period datasets with daily stock prices
#---

list_of_formation_datasets_prices = []
y = 0
while y < (5040-126):
 temp = crsp_data.iloc[y:y+252]
 list_of_formation_datasets_prices.append(temp)
 y += 126

list_of_formation_datasets_prices.pop()
list_of_formation_datasets_prices.pop()

C1 Python code for the strategy

10182321005176GRA 19703

#---
Create TRADING period datasets with daily stock prices
#---

list_of_trading_datasets_prices = []
y = 0
while y < (5040-126):
 temp = crsp_data.iloc[y:y+126]
 list_of_trading_datasets_prices.append(temp)
 y += 126

list_of_trading_datasets_prices.pop(0)
list_of_trading_datasets_prices.pop(0)

#---
Clean data for missing values
#---

for formation datasets
for dataset in list_of_formation_datasets_prices:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_formation_datasets_prices:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_formation_datasets_prices:
 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

for trading datasets:
for dataset in list_of_trading_datasets_prices:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_datasets_prices:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_trading_datasets_prices:
 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

Make sure we have the same securities in the formation and trading period.
Remove securities that are not present in both periods

common_tickers = []
for i in range(len(list_of_formation_datasets_prices)):
 common_cols = list_of_formation_datasets_prices[i].drop([col for col in\
 list_of_formation_datasets_prices[i].columns if col in\
 list_of_formation_datasets_prices[i].columns and col not in\
 list_of_trading_datasets_prices[i].columns], axis = 1)

 common_tickers.append(common_cols)

for i in range(len(list_of_formation_datasets_prices)):
 list_of_formation_datasets_prices[i] = list_of_formation_datasets_prices[i]\
 [common_tickers[i].columns]
 list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i]\
 [common_tickers[i].columns]

Calculating returns from closing prices
list_of_training_returns = []
for dataset in list_of_formation_datasets_prices:
 stock_returns = dataset.pct_change()
 list_of_training_returns.append(stock_returns)

C1 Python code for the strategy

10182321005176GRA 19703

for dataset in list_of_training_returns:
 dataset.iloc[0:1] = 0

list_of_trading_returns = []
for dataset in list_of_trading_datasets_prices:
 stock_returns = dataset.pct_change()
 list_of_trading_returns.append(stock_returns)

for dataset in list_of_trading_returns:
 dataset.iloc[0:1] = 0

#%%

#---
PCA
#---
extracted_pca_data = []
for dataset in list_of_training_returns:
 pca = PCA(n_components = 20) # nr. of components is set to 12
 pca.fit(dataset)
 pca.explained_variance_ratio_.cumsum() # determine nr . of components
 print('The shape of the array after PCA is : ', pca.components_.T.shape)
 extracted_data = preprocessing.StandardScaler().\
 fit_transform(pca.components_.T)
 print ('The shape of the array is now:', extracted_data.shape)
 extracted_pca_data.append(extracted_data)

 PC_values = np.arange(pca.n_components_) + 1
 plt.plot(PC_values, pca.explained_variance_ratio_, 'ro-', linewidth=2)
 plt.title('Scree Plot')
 plt.xlabel('Principal Component')
 plt.ylabel('Proportion of Variance Explained')
 plt.title('Scree Plot for US data')
 plt.show()
 plt.close()

 plt.plot(np.cumsum(pca.explained_variance_ratio_), color = 'blue')
 plt.xlabel('number of components')
 plt.ylabel('cumulative explained variance');
 plt.title('Cumulative Scree Plot for US data')
 plt.show()

#---
DBSCAN
#---
extracted_DBSCAN_data = []
extracted_labels = []
extracted_clustered_series = []
extracted_clustered_series_all = []
extracted_labels = []
extracted_ticker_count_reduced = []
extracted_n_clusters = []

for i in range(len(extracted_pca_data)):
 clustering = DBSCAN(eps=1, min_samples=4)
 # eps = 1 for SP500, eps = 0.6 for OSE
 print(clustering)
 clustering.fit(extracted_pca_data[i])
 labels =clustering.labels_
 extracted_labels.append(labels)
 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
 print ('\nClusters discovered : %d' % n_clusters_)
 extracted_n_clusters.append(n_clusters_)
 clustered = clustering.labels_
 extracted_DBSCAN_data.append(clustered)

C1 Python code for the strategy

10182321005176GRA 19703

#Add ticker name to clustered stocks
for i in range(len(list_of_training_returns)):
 clustered_series = pd.Series(index = list_of_training_returns[i].columns,\
 data=extracted_DBSCAN_data[i])
 extracted_clustered_series_all.append(clustered_series)
 clustered_series = clustered_series[clustered_series != -1]
 extracted_clustered_series.append(clustered_series)

 CLUSTER_SIZE_LIMIT = 200
 counts = clustered_series.value_counts()
 ticker_count_reduced = counts[(counts>1) & counts<=CLUSTER_SIZE_LIMIT]
 extracted_ticker_count_reduced.append(ticker_count_reduced)
 print('Clusters formed: %d' % len(ticker_count_reduced))
 print('Pairs to evaluate: %d' % (ticker_count_reduced*\
 (ticker_count_reduced-1)).sum())

#%%

#Plot multidimension dataset of returns into 2D
#This creates a t-SNE plot of all stocks with clusters noted
for i in range(36):
 extracted_data_tsne = TSNE(learning_rate=500, perplexity=18, \
 random_state=1337).fit_transform(extracted_pca_data[i])

 #PLOT
 plt.figure(1, facecolor='white', figsize=(10,6))
 plt.clf()
 #plt.axis('off')

 #unclustered in the background
 plt.scatter(
 extracted_data_tsne[(extracted_clustered_series_all[i]==-1).values, 0],
 extracted_data_tsne[(extracted_clustered_series_all[i]==-1).values, 1],
 s=120,
 alpha=0.2,
 c='grey'
)

 #clustered
 plt.scatter(
 extracted_data_tsne[(extracted_labels[i]!=-1), 0],
 extracted_data_tsne[(extracted_labels[i]!=-1), 1],
 s=120,
 alpha=0.85,
 c=extracted_labels[i][extracted_labels[i]!=-1],
 cmap=cm.cool,
 edgecolors = 'grey'
)

 plt.title('T-SNE of DBSCAN clusters for US data', fontsize = 20)
 plt.xlabel('Dimension 1', fontsize = 12)
 plt.ylabel('Dimension 2', fontsize = 12)
 plt.show()

#%%
#---
This part prepares the data for performing a cointegration test on all pairs
in each cluster
#---
Get the number of stocks in each cluster
extracted_counts = []
for i in range(len(extracted_clustered_series)):
 counts = extracted_clustered_series[i].value_counts()
 extracted_counts.append(counts)

C1 Python code for the strategy

10182321005176GRA 19703

extracted_clusters_vis_list = []
for i in range(len(extracted_counts)):
 clusters_vis_list = list(extracted_counts[i][(extracted_counts[i]<500) & \
 (extracted_counts[i]>1)].index[::-1])
 extracted_clusters_vis_list.append(clusters_vis_list)

extracted_training_new = []
for dataset in list_of_training_returns:
 training_new_draft = ((dataset + 1).cumprod()-1)
 training_new = training_new_draft[0:252]
 extracted_training_new.append(training_new)

Create a list to use as x-axis in plot:
x=list(range(1,253))

Plot the stock time series for all clusters
extracted_tickers_list = []
for i in range(len(extracted_clusters_vis_list)):
 temp = extracted_clustered_series[i]
 tickers2 = temp[temp==0]
 tickers1 = temp[temp==1]
 tickers3 = temp[temp==2]
 tickers4 = temp[temp==3]
 tickers5 = temp[temp==4]
 tickers6 = temp[temp==5]
 tickers7 = temp[temp==6]
 tickers8 = temp[temp==7]
 tickers9 = temp[temp==8]
 tickers10 = temp[temp==9]
 tickers11 = temp[temp==10]
 tickers12 = temp[temp==11]
 tickers13 = temp[temp==12]
 tickers14 = temp[temp==13]
 tickers15 = temp[temp==14]

 # tickers4 = temp[temp ==[]]
 if list(tickers1)!=[]:
 extracted_tickers_list.append(tickers1)
 if list(tickers2)!=[]:
 extracted_tickers_list.append(tickers2)
 if list(tickers3)!=[]:
 extracted_tickers_list.append(tickers3)
 if list(tickers4)!=[]:
 extracted_tickers_list.append(tickers4)
 if list(tickers5)!=[]:
 extracted_tickers_list.append(tickers5)
 if list(tickers6)!=[]:
 extracted_tickers_list.append(tickers6)
 if list(tickers7)!=[]:
 extracted_tickers_list.append(tickers7)
 if list(tickers8)!=[]:
 extracted_tickers_list.append(tickers8)
 if list(tickers9)!=[]:
 extracted_tickers_list.append(tickers9)
 if list(tickers10)!=[]:
 extracted_tickers_list.append(tickers10)
 if list(tickers11)!=[]:
 extracted_tickers_list.append(tickers11)
 if list(tickers12)!=[]:
 extracted_tickers_list.append(tickers12)
 if list(tickers13)!=[]:
 extracted_tickers_list.append(tickers13)
 if list(tickers14)!=[]:
 extracted_tickers_list.append(tickers14)

C1 Python code for the strategy

10182321005176GRA 19703

 if list(tickers15)!=[]:
 extracted_tickers_list.append(tickers15)

 if list(tickers1) == [] and list(tickers2) == [] and list(tickers3) == []\
 and list(tickers4) == [] and list(tickers5) == [] and \
 list(tickers6) == [] and list(tickers7) == [] and list(tickers8) == []\
 and list(tickers9) == [] and list(tickers10) == [] and \
 list(tickers11) == [] and list(tickers12) == [] and \
 list(tickers13) == [] and list(tickers14) == [] and \
 list(tickers15) == []:
 extracted_tickers_list.append([])

#%%
#---
Setting up cointegration test
#---
COINTEGRATION TEST (From Larkin (2017))
def cointegrated_stocks(data, significance=0.05):
 n = data.shape[1] # gives us the number of stocks in cluster
 score_matrix = np.zeros((n, n)) # creates an n*n array of zeros
 pvalue_matrix = np.ones((n, n))
 # ^ this array will be updated with cointegration p-values
 keys = data.keys() # store the ticker symbol of stocks
 pairs = [] # create an empty list

 for i in range(n):
 for j in range(i+1, n):
 S1 = data[keys[i]]
 S2 = data[keys[j]]

 result = coint(S1, S2) # no intercept needed
 score = result[0] # store result index[0]
 pvalue = result[1]
 score_matrix[i, j] = score
 pvalue_matrix[i, j] = pvalue

 if pvalue < significance:
 pairs.append((keys[i], keys[j]))
 return score_matrix, pvalue_matrix, pairs

Create a new index to allow for several clusters in each formaiton period
new_index = []
for i in range(len(extracted_counts)):
 x = i
 if len(extracted_counts[i]) == 2:
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 3:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 4:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 5:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 6:
 new_index.append(x)
 new_index.append(x)

C1 Python code for the strategy

10182321005176GRA 19703

 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 7:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 8:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 9:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 10:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 11:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 12:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)

C1 Python code for the strategy

10182321005176GRA 19703

 new_index.append(x)
 elif len(extracted_counts[i]) == 13:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 14:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 elif len(extracted_counts[i]) == 15:
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 new_index.append(x)
 else:
 new_index.append(x)

#---
Loop through formation periods to find cointegrated pairs in each cluster
#---
cluster_dictionary = {}
score_matrix_list = []
pvalue_matrix_list = []
pairs_list = []

count = 0

for i in range(0, len(new_index)):

 if len(extracted_tickers_list[i]) == 0:
 count += 1
 print(i)
 continue

C1 Python code for the strategy

10182321005176GRA 19703

 period = new_index[i]
 print(period)

 stock_ticks = extracted_tickers_list[count]
 print(stock_ticks)# An index list of all stocks in cluster
 print(list_of_formation_datasets_prices[period].columns)
 score_matrix, pvalue_matrix, pairs = cointegrated_stocks\
 (list_of_formation_datasets_prices[period][stock_ticks.index]
)
 score_matrix_list.append(score_matrix)
 pvalue_matrix_list.append(pvalue_matrix)
 pairs_list.append(pairs)

 cluster_dictionary[i] = {}
 cluster_dictionary[i]['period'] = period
 cluster_dictionary[i]['score_matrix'] = score_matrix
 cluster_dictionary[i]['pvalue_matrix'] = pvalue_matrix
 cluster_dictionary[i]['pairs'] = pairs

 count += 1

potential_pairs = []
for clust in cluster_dictionary.keys():
 potential_pairs = cluster_dictionary[clust]['pairs']

 print('The following pairs will be traded in this period:')
 print(set(cluster_dictionary[clust]['pairs']))

 print('We found %d pairs.' % len(potential_pairs))
 print('In those pairs, there are %d unique tickers.' % \
 len(np.unique(potential_pairs)))

 potential_pairs.extend(cluster_dictionary[clust]['pairs'])

#---
Plot a cluster with cointegrated pairs noted
#---
Cluster = extracted_clustered_series[1][extracted_clustered_series[1]==0]
our_pairs = cluster_dictionary[3]['pairs']

stocks = list(np.unique(our_pairs))
X_df = pd.DataFrame(index=list_of_training_returns[1].T.index, \
 data=extracted_pca_data[1])

stocks = list(np.unique(our_pairs))
X_pairs = X_df.loc[Cluster.index]

X_tsne = TSNE(learning_rate=50, perplexity=3, random_state=1337).\
 fit_transform(X_pairs)

plt.figure(1, facecolor='white')
plt.clf()
plt.axis('off')
for pair in our_pairs:
 ticker1 = pair[0]
 loc1 = X_pairs.index.get_loc(pair[0])
 x1, y1 = X_tsne[loc1, :]

 ticker2 = pair[0]
 loc2 = X_pairs.index.get_loc(pair[1])
 x2, y2 = X_tsne[loc2, :]

 plt.plot([x1, x2], [y1, y2], 'k-', alpha=0.2, c='gray');

plt.scatter(X_tsne[:, 0], X_tsne[:, 1], s=220, alpha=1, c=[Cluster.values], \

C1 Python code for the strategy

10182321005176GRA 19703

 cmap=cm.Wistia, edgecolor = 'grey')
plt.title('T-SNE Visualization of validated pairs')
plt.show()

#%%
#---
Trading setup and execution in FORMATION periods
#---
creating datasets for all potential pairs in the formation period containing
#returns, spread, trading signals, positions and spread returns

pairs_datasets = []
for clust in cluster_dictionary:
 for i in range(len(set(cluster_dictionary[clust]['pairs']))):
 pair_tickers = list(cluster_dictionary[clust]['pairs'][i])
 period = cluster_dictionary[clust]['period']
 trading_pair = list_of_formation_datasets_prices[period][pair_tickers]
 #trading_pair.columns = ['S1', 'S2']

 trading_pair['S1_ret'] = trading_pair[pair_tickers[0]].pct_change(1)
 trading_pair.iloc[0,2] = 0
 trading_pair['S2_ret'] = trading_pair[pair_tickers[1]].pct_change(1)
 trading_pair.iloc[0,3] = 0

 # CALCULATE ROLLING Z-SCORE
 rolling_window = 20

 # OLS Regression (can be used to decide long/short position size)
 lm_pair = rg.OLS(trading_pair[pair_tickers[0]],\
 trading_pair[pair_tickers[1]]).fit()
 trading_pair_b1 = lm_pair.params[0]

 # Create new column called pairs spread
 trading_pair['pairs_spread'] = \
 (trading_pair[pair_tickers[0]] - trading_pair[pair_tickers[1]])\
 / trading_pair[pair_tickers[1]]

 # Rolling 10-day covariance
 rolling_pair_cov = trading_pair.loc[:, [pair_tickers[0],\
 pair_tickers[1]]].rolling(window=rolling_window)\
 .cov(trading_pair.loc[:, [pair_tickers[0], pair_tickers[1]]],\
 pairwise=True)

 # Slice multi index df to single index df if pairs covariance
 idx = pd.IndexSlice
 rolling_pair_cov = rolling_pair_cov.loc[idx[:, pair_tickers[0]], \
 pair_tickers[1]]

 # Convert Date and Stock index into date index by making stock at
 # index level 1 intp a new column
 rolling_pair_cov = rolling_pair_cov.reset_index(level=1)

 # Calculate the 10-day rolling variance
 rolling_pair_var = trading_pair[pair_tickers[0]].\
 rolling(window=rolling_window).var()

 # Rolling Beta
 trading_pair['rolling_pair_b1'] = rolling_pair_cov[pair_tickers[1]] \
 / rolling_pair_var

 # Calculation of 10-day rolling spread
 trading_pair['rolling_pair_spread'] = trading_pair['pairs_spread'].\
 rolling(window=rolling_window).mean()

 trading_pair['spread_std'] = trading_pair['pairs_spread'].\
 rolling(window = rolling_window).std()

C1 Python code for the strategy

10182321005176GRA 19703

 trading_pair['rolling_Z_score'] = (trading_pair['pairs_spread'] - \
 trading_pair['rolling_pair_spread']) / trading_pair['spread_std']

 # TRADING SIGNAL ALGORITHM
 # z-score the day before
 trading_pair['rolling_Z_score(-1)'] = \
 trading_pair['rolling_Z_score'].shift(1)
 # z-score two days before

 trading_pair['pair_signal'] = 0
 pair_signal = 0

 # Signal generation
 for i, r in enumerate(trading_pair.iterrows()):
 if r[1]['rolling_Z_score(-1)'] > -2 and \
 r[1]['rolling_Z_score'] < -2:
 pair_signal = -2
 elif r[1]['rolling_Z_score(-1)'] < -0 and \
 r[1]['rolling_Z_score'] > -0:
 pair_signal = -1
 elif r[1]['rolling_Z_score(-1)'] < 2 and \
 r[1]['rolling_Z_score'] > 2:
 pair_signal = 2
 elif r[1]['rolling_Z_score(-1)'] > 0 and \
 r[1]['rolling_Z_score'] < 0:
 pair_signal = 1
 else:
 pair_signal = 0
 trading_pair.iloc[i, 10] = pair_signal

 # Positions: 1 = Long Spread Trade, -1 = Short Spread Trade
 trading_pair['position'] = 0
 for i, r in enumerate(trading_pair.iterrows()):
 if r[1]['pair_signal'] == -2:
 position = 1
 elif r[1]['pair_signal'] == -1:
 position = 0
 elif r[1]['pair_signal'] == 2:
 position = -1
 elif r[1]['pair_signal'] == 1:
 position = 0
 else:
 position = trading_pair['position'].iloc[i-1]
 trading_pair.iloc[i,11] = position

 # Computing returns without beta
 trading_pair['spread_returns'] = trading_pair['S1_ret'] - \
 trading_pair['S2_ret']
 trading_pair['return'] = trading_pair['spread_returns'] * \
 trading_pair['position'].shift(1)
 #set this to .shift(2) to impose
 #a 1 day lag

 # checking which period the pair is from and adding it to the datasets
 trading_pair['period'] = cluster_dictionary[clust]['period']

 # append trading_pair to the list containing all datasets
 pairs_datasets.append(trading_pair)

#%%
#---
Calculate the sharpe ratios for all pairs in the training periods
#---

sharpe_ratios = []

C1 Python code for the strategy

10182321005176GRA 19703

for i in range(len(pairs_datasets)):
 pairs_datasets[i]['avg_ret'] = pairs_datasets[i]['return'].mean()
 pairs_datasets[i]['std_dev_ret'] = pairs_datasets[i]['return'].std()
 pairs_datasets[i]['SR'] = pairs_datasets[i]['avg_ret'] / \
 pairs_datasets[i]['std_dev_ret']

Put all sharpe ratios in a list together with their period number
list_of_all_sharpe_ratios = []
list_of_all_periods = []
for i in range(len(pairs_datasets)):
 sharpe_ratio = pairs_datasets[i]['SR'].mean()
 period = pairs_datasets[i]['period'].mean()
 list_of_all_sharpe_ratios.append(sharpe_ratio)
 list_of_all_periods.append(period)

SR_p_merged = pd.DataFrame()
SR_p_merged['SR'] = list_of_all_sharpe_ratios
SR_p_merged['period'] = list_of_all_periods

Group by highest sharpe and period
We pick the 10 pairs with highest sharpe from each training period
groups = SR_p_merged.sort_values(['period', 'SR']).groupby('period').tail(5)
adjust the .tail() to the number of stocks you want to trade on
groups.reset_index(inplace=True)

Match the highest sharpe ratios with the tickers that belongs to these
tickers_with_highest_sharpe = []

for i in range(len(groups)):
 for j in range(len(pairs_datasets)):
 if groups['SR'][i] == pairs_datasets[j]['SR'].mean() and \
 groups['period'][i] == pairs_datasets[j]['period'].mean():
 tickers_with_highest_sharpe.append(pairs_datasets[j].iloc[:,0:21])

optimal_trading_pairs = []
for i in range(len(tickers_with_highest_sharpe)):
 print(i)
 new_trading_pair = list_of_trading_datasets_prices\
 [int(tickers_with_highest_sharpe[i]['period'].mean())]\
 [tickers_with_highest_sharpe[i].iloc[:,:2].columns]
 optimal_trading_pairs.append(new_trading_pair)

#%%
#---
Calculate daily return when trading at every cointegrated pair in each
cluster every training period
#---

dataframe = pd.DataFrame()
dataframe_index = pd.DataFrame()
for i in range(len(pairs_datasets)):
 temp = pairs_datasets[i]
 temp2 = temp['return']
 temp = temp.shift(-1)[temp['position']!=0]['return']
 dataframe = pd.concat([dataframe, temp])
 dataframe_index = pd.concat([dataframe_index, temp2])
 #trading_dataframe.drop_duplicates(inplace=True)
dataframe.columns = ['return']

dataframe.reset_index(inplace=True)
grouped_dataframe = dataframe.groupby('index').agg('mean')

dataframe_index.reset_index(inplace=True)
grouped_dataframe_index = dataframe_index.groupby('index').agg('mean')

C1 Python code for the strategy

10182321005176GRA 19703

training_results = pd.DataFrame(index = grouped_dataframe_index.index, data =\
 grouped_dataframe['return'])
training_results = training_results.fillna(0)

training_results['cumulative return'] = np.cumsum(training_results['return'])
training_results.reset_index(inplace=True)

plt.figure(figsize=(10,7))
plt.plot(training_results['cumulative return'], linewidth=1, color='blue')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Cumulative return for all pairs in the training periods ')
plt.show()

training_std_of_returns = training_results['return'].std()
training_average_return = training_results['return'].mean()
print('The annualized return in the training period is:', \
 (training_average_return * 252))
print('The annualized SR in the training period is:', \
 ((training_average_return/training_std_of_returns) * np.sqrt(252)))

#---
Calculate the daily return on the x number of pairs with the highest sharpe
ratio. The x is decided by the .tail()
#---

highest_SR_dataframe = pd.DataFrame()
highest_SR_dataframe_index = pd.DataFrame()
for i in range(len(tickers_with_highest_sharpe)):
 temp = tickers_with_highest_sharpe[i]
 temp2 = temp['return']
 temp = temp.shift(-1)[temp['position']!=0]['return']
 highest_SR_dataframe = pd.concat([highest_SR_dataframe, temp])
 highest_SR_dataframe_index = pd.concat([highest_SR_dataframe_index,temp2])
 #trading_dataframe.drop_duplicates(inplace=True)
highest_SR_dataframe.columns = ['return']

highest_SR_dataframe.reset_index(inplace=True)
grouped_highest_SR_dataframe=highest_SR_dataframe.groupby('index').agg('mean')

highest_SR_dataframe_index.reset_index(inplace=True)
grouped_highest_SR_dataframe_index = \
 highest_SR_dataframe_index.groupby('index').agg('mean')

training_results_high_SR = pd.DataFrame(index = \
 grouped_highest_SR_dataframe_index.index, data = \
 grouped_highest_SR_dataframe['return'])
training_results_high_SR = training_results_high_SR.fillna(0)

training_results_high_SR['cumulative return'] = \
 np.cumsum(training_results_high_SR['return'])
training_results_high_SR.reset_index(inplace=True)

plt.figure(figsize=(10,7))
plt.plot(training_results_high_SR['cumulative return'], linewidth=1, \
 color='blue')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Cumulative return for the pairs with highest sharpe ratio in the \
 formation periods ')
plt.show()

training_std_of_returns_high_SR = training_results_high_SR['return'].std()
training_average_return_high_SR = training_results_high_SR['return'].mean()
print('The annualized return in the training period is:', \
 (training_average_return_high_SR * 252))
print('The annualized SR in the training period is:', \

C1 Python code for the strategy

10182321005176GRA 19703

 ((training_average_return_high_SR/training_std_of_returns_high_SR) * \
 np.sqrt(252)))

#%%
#---
Trading setup and execution in FORMATION periods
#---

semi_annual_spread = \
 pd.read_csv('semi_annual_liquidity.csv', index_col=0, sep=',')

commission = 0.0005
short_fee = 0.000179

optimal_pairs_datasets = []
create new datasets for pairs that will be traded
these are the pairs chosen in the .tail() above
for i in range(len(optimal_trading_pairs)):
 trading_pair = optimal_trading_pairs[i]
 #trading_pair.columns = ['S1', 'S2']
 trading_pair['S1_ret'] = trading_pair.iloc[:,0].pct_change(1)
 trading_pair.iloc[0,2] = 0
 trading_pair['S2_ret'] = trading_pair.iloc[:,1].pct_change(1)
 trading_pair.iloc[0,3] = 0
 pair_tickers = [trading_pair.iloc[:,0].name, \
 trading_pair.iloc[:,1].name]

 # CALCULATE ROLLING Z-SCORE
 rolling_window = 20

 # OLS Regression
 lm_pair = rg.OLS(trading_pair[pair_tickers[0]], \
 trading_pair[pair_tickers[1]]).fit()
 trading_pair_b1 = lm_pair.params[0]

 # Create new column called pairs spread
 trading_pair['pairs_spread'] = \
 (trading_pair[pair_tickers[0]] - trading_pair[pair_tickers[1]]) / \
 trading_pair[pair_tickers[1]]

 # Rolling 10-day covariance
 rolling_pair_cov = trading_pair.loc[:, [pair_tickers[0], \
 pair_tickers[1]]].rolling(window=rolling_window)\
 .cov(trading_pair.loc[:, [pair_tickers[0], pair_tickers[1]]], \
 pairwise=True)

 # Slice multi index df to single index df if pairs covariance
 idx = pd.IndexSlice
 rolling_pair_cov = rolling_pair_cov.loc[idx[:, pair_tickers[0]],\
 pair_tickers[1]]

 # Convert Date and Stock index into date index by making stock at index
 #level 1 intp a new column
 rolling_pair_cov = rolling_pair_cov.reset_index(level=1)

 # Calculate the 10-day rolling variance
 rolling_pair_var = trading_pair[pair_tickers[0]].\
 rolling(window=rolling_window).var()

 # Rolling Beta
 trading_pair['rolling_pair_b1'] = rolling_pair_cov[pair_tickers[1]] \
 / rolling_pair_var

 # Calculation of 10-day rolling spread
 trading_pair['rolling_pair_spread'] = trading_pair['pairs_spread'].\
 rolling(window=rolling_window).mean()

C1 Python code for the strategy

10182321005176GRA 19703

 trading_pair['spread_std'] = trading_pair['pairs_spread'].\
 rolling(window = rolling_window).std()

 # 10-day rolling z-score
 trading_pair['rolling_Z_score'] = (trading_pair['pairs_spread'] - \
 trading_pair['rolling_pair_spread']) / trading_pair['spread_std']

 # TRADING SIGNAL ALGORITHM
 # z-score the day before
 trading_pair['rolling_Z_score(-1)'] = trading_pair['rolling_Z_score']\
 .shift(1)
 # z-score two days before
 trading_pair['pair_signal'] = 0
 pair_signal = 0

 # Signal generation
 for i, r in enumerate(trading_pair.iterrows()):
 if r[1]['rolling_Z_score(-1)'] > -2 and \
 r[1]['rolling_Z_score'] < -2:
 pair_signal = -2
 elif r[1]['rolling_Z_score(-1)'] < -0 and \
 r[1]['rolling_Z_score'] > -0:
 pair_signal = -1
 elif r[1]['rolling_Z_score(-1)'] < 2 and \
 r[1]['rolling_Z_score'] > 2:
 pair_signal = 2
 elif r[1]['rolling_Z_score(-1)'] > 0 and \
 r[1]['rolling_Z_score'] < 0:
 pair_signal = 1
 else:
 pair_signal = 0
 trading_pair.iloc[i, 10] = pair_signal

 # Positions: 1 = Long Spread Trade, -1 = Short Spread Trade
 trading_pair['position'] = 0
 for i, r in enumerate(trading_pair.iterrows()):
 if r[1]['pair_signal'] == -2:
 position = 1
 elif r[1]['pair_signal'] == -1:
 position = 0
 elif r[1]['pair_signal'] == 2:
 position = -1
 elif r[1]['pair_signal'] == 1:
 position = 0
 else:
 position = trading_pair['position'].iloc[i-1]
 trading_pair.iloc[i,11] = position

 # Computing returns without beta
 trading_pair['spread_returns'] = trading_pair['S1_ret'] - \
 trading_pair['S2_ret']
 trading_pair['return'] = trading_pair['spread_returns'] * \
 trading_pair['position'].shift(1)
 #set this to .shift(2) to impose
 #a 1 day lag

 # checking period
 count = 0
 for j in list_of_trading_datasets_prices:
 if sum(trading_pair.index == j.index) == len(j.index):
 trading_pair['period'] = count
 j['period'] = count
 break

C1 Python code for the strategy

10182321005176GRA 19703

 else:
 count += 1

 count = 1
 prev = 0
 TC_Op = 0
 trading_pair['TC_Op'] = 0
 for i, row in enumerate(trading_pair.iterrows()):
 if (row[1]['pair_signal'] == -2 or row[1]['pair_signal'] == 2) \
 and prev == 0:
 TC_Op = 4*commission + 9 * short_fee
 else:
 TC_Op = 0
 trading_pair.iloc[i,15] = TC_Op
 prev = row[1]['position']
 count += 1

 TC_Cl = 0
 trading_pair['TC_Cl'] = 0
 for i, row in enumerate(trading_pair.iterrows()):
 if ((row[1]['pair_signal'] == 1 or row[1]['pair_signal'] == -1) \
 and (row[1]['return'] != 0)):
 TC_Cl = 0
 else:
 TC_Cl = 0
 trading_pair.iloc[i,16] = TC_Cl

 optimal_pairs_datasets.append(trading_pair)

for i in range(len(optimal_pairs_datasets)):
 optimal_pairs_datasets[i]['new_TC'] = \
 optimal_pairs_datasets[i]['TC_Op'].shift(1)
 #set this to .shift(2) to impose
 #a 1 day lag
 optimal_pairs_datasets[i]['return_inc_TC'] = optimal_pairs_datasets[i]\
 ['return'] - optimal_pairs_datasets[i]['new_TC']

#%%
#---
Visualizing return of some of the optimal pairs
#---

for i in range(len(optimal_pairs_datasets)):
 # Create x-axis to use in plot
 x_axis=list(range(len(optimal_pairs_datasets[i])))
 optimal_pairs_datasets[i][np.isnan(optimal_pairs_datasets[i])] = 0

for i in range(10):
 plt.figure(figsize=(10,7))
 optimal_pairs_datasets[i]['Cumulative return'] = \
 np.cumprod(optimal_pairs_datasets[i]['return']+1) - 1
 optimal_pairs_datasets[i]['Cumulative return with TC'] = \
 np.cumprod(optimal_pairs_datasets[i]['return_inc_TC']+1) - 1
 optimal_pairs_datasets[i]['Security 1 return'] = \
 np.cumprod(optimal_pairs_datasets[i]['S1_ret']+1) - 1
 optimal_pairs_datasets[i]['Security 2 return'] = \
 np.cumprod(optimal_pairs_datasets[i]['S2_ret']+1) - 1

 plt.plot(x_axis, optimal_pairs_datasets[i]['Cumulative return'], \
 c='blue', label = 'Strategy return')
 plt.plot(x_axis, optimal_pairs_datasets[i]['Cumulative return with TC'],\
 c='orange', label = 'Strategy return')
 plt.plot(x_axis, optimal_pairs_datasets[i]['Security 1 return'], \
 c='grey', label = 'Security 1')
 plt.plot(x_axis, optimal_pairs_datasets[i]['Security 2 return'], \
 c='black', label = 'Security 2')

C1 Python code for the strategy

10182321005176GRA 19703

 plt.legend(loc='upper left')
 plt.show()

#---
Visualizing trading signal and positions of a few pairs
#---

for i in range(10):
 x_axis=list(range(len(optimal_pairs_datasets[i])))
 plt.figure(figsize=(10,7))
 plt.axhline(y =2, color='green', linestyle='--', linewidth=.7, \
 label='Upper threshold')
 plt.axhline(y =-2, color='red', linestyle='--', linewidth=.7, \
 label='Lower threshold')
 plt.plot(x_axis, optimal_pairs_datasets[i]['rolling_Z_score'], \
 color='blue', alpha=.5, label='Z-score')
 plt.legend(loc='upper left')
 plt.show()

 plt.figure(figsize=(10,2))
 plt.plot(x_axis, optimal_pairs_datasets[i]['position'], color='black', \
 label='Position')
 plt.show()

#%%
#---
Compute sharpe ratio for every pair traded
#---
for i in range(len(optimal_pairs_datasets)):
 optimal_pairs_datasets[i]['avg_ret'] = \
 optimal_pairs_datasets[i]['return'].mean()
 optimal_pairs_datasets[i]['std_dev_ret'] = \
 optimal_pairs_datasets[i]['return'].std()
 optimal_pairs_datasets[i]['SR'] = optimal_pairs_datasets[i]['avg_ret'] \
 / optimal_pairs_datasets[i]['std_dev_ret']

for i in range(len(optimal_pairs_datasets)):
 optimal_pairs_datasets[i][np.isnan(optimal_pairs_datasets[i])] = 0

#%%
#---
Compute the daily excess return in the trading periods
#---

trading_dataframe = pd.DataFrame()
trading_dataframe_index = pd.DataFrame()
for i in range(len(optimal_pairs_datasets)):
 temp = optimal_pairs_datasets[i]
 temp2 = temp['return']
 temp = temp.shift(-1)[temp['position']!=0]['return']
 trading_dataframe = pd.concat([trading_dataframe, temp])
 trading_dataframe_index = pd.concat([trading_dataframe_index, temp2])
 #trading_dataframe.drop_duplicates(inplace=True)
trading_dataframe.columns = ['return']

temp_index = pd.read_csv('temp_index.csv', index_col=0, sep=',')

trading_dataframe.reset_index(inplace=True)
grouped_trading_dataframe = trading_dataframe.groupby('index').agg('mean')
trading_dataframe_index.reset_index(inplace=True)
grouped_trading_dataframe_index = trading_dataframe_index.groupby('index').\
 agg('mean')

trading_results = pd.DataFrame(index = grouped_trading_dataframe_index.index,\
 data = grouped_trading_dataframe['return'])

C1 Python code for the strategy

10182321005176GRA 19703

trading_results = trading_results.fillna(0)

Calculate cumulative return of the strategy
trading_results['cumulative return'] = np.cumsum(trading_results['return'])
trading_results.reset_index(inplace=True)

Calculate the strategy drawdown over the trading period
trading_results['HWM'] = trading_results['cumulative return'].cummax()
trading_results['Drawdown'] = ((1+trading_results['HWM'])-\
 (1+trading_results['cumulative return']))/(1+trading_results['HWM'])

#%%
Fill in days or were no trades are made with zero return
test_trading_dataframe = pd.DataFrame()
for i in range(len(list_of_trading_datasets_prices)):
 temp = list_of_trading_datasets_prices[i]
 test_trading_dataframe = pd.concat([test_trading_dataframe, temp])

trading_results.set_index('index', inplace=True)

test_trading_results = pd.DataFrame(index = temp_index.index, \
 data = grouped_trading_dataframe['return'])
test_trading_results = test_trading_results.fillna(0)

test_trading_results['cumulative return'] = \
 np.cumsum(test_trading_results['return'])
test_trading_results.reset_index(inplace=True)

Calculate the strategy drawdown over the trading period
test_trading_results['HWM'] = \
 test_trading_results['cumulative return'].cummax()
test_trading_results['Drawdown'] = ((1+test_trading_results['HWM'])-\
(1+test_trading_results['cumulative return']))/(1+test_trading_results['HWM'])

#%%
#---
Plot cumulatice return and some performance measures
#---
Plot cumulative return of strategy and benchmark
plt.figure(figsize=(10,7))
plt.plot(x_axis, SP500_index['cumulative return'], linewidth=1, color='red', label='S&P500 Index')
plt.plot(test_trading_results['cumulative return'], linewidth=1, color='blue', label='Strategy')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.legend(loc='upper left')
plt.title('Cumulative strategy return 2000 - 2019 vs. benchmark')
plt.show()

Plot drawdown
plt.figure(figsize=(10,7))
plt.plot(test_trading_results['Drawdown'], linewidth=1, color = 'red')
plt.title('Strategy drawdown 2000 - 2019')
plt.show()

Plot daily return
plt.figure(figsize=(10,7))
plt.plot(test_trading_results['return'], linewidth=1, color = 'blue')
plt.title('Strategy daily return 2000 - 2019')
plt.show()

Plot distribution of daily returns
plt.figure(figsize=(10,7))
plt.hist(grouped_trading_dataframe['return'], color = 'blue', bins = 150)
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Distribution of daily returns')
plt.show()

C1 Python code for the strategy

10182321005176GRA 19703

#---
Descriptive statistics
#---
trading_std_of_returns = test_trading_results['return'].std()
trading_average_return = test_trading_results['return'].mean()
print('The annualized return in the trading period is:', \
 (trading_average_return * 252))
print('The annualized SR in the trading period is:', \
 ((trading_average_return/trading_std_of_returns) * np.sqrt(252)))

Additional summary statistics
test_trading_results.agg(
 {
 'return': ['mean', 'median', 'std', 'skew', 'kurtosis', 'min', 'max'],
 }
)
T-test to check significance of daily excess returns
stats.ttest_1samp(test_trading_results['return'], popmean=0)

#%%
#---
Calculate the daily return and cumulative return after transaction costs
#---

grouped_trading_dataframe_index = pd.DataFrame()
grouped_trading_dataframe_index = pd.DataFrame()
trading_results_inc_TC = pd.DataFrame()
new_trading_dataframe = pd.DataFrame()
new_trading_dataframe_index = pd.DataFrame()
for i in range(len(optimal_pairs_datasets)):
 new_temp = optimal_pairs_datasets[i]
 new_temp2 = new_temp['return']
 new_temp = new_temp.shift(-1)[new_temp['position']!=0]['return_inc_TC']
 new_trading_dataframe = pd.concat([new_trading_dataframe, new_temp])
 new_trading_dataframe_index = pd.concat([new_trading_dataframe_index, \
 new_temp2])
 #trading_dataframe.drop_duplicates(inplace=True)
new_trading_dataframe.columns = ['return_inc_TC']
new_trading_dataframe.reset_index(inplace=True)
new_grouped_trading_dataframe = new_trading_dataframe.groupby('index')\
 .agg('mean')
new_trading_dataframe_index.reset_index(inplace=True)
new_grouped_trading_dataframe_index = \
 new_trading_dataframe_index.groupby('index').agg('mean')

trading_results_inc_TC = pd.DataFrame(index = \
 new_grouped_trading_dataframe_index.index,\
 data = new_grouped_trading_dataframe['return_inc_TC'])
trading_results_inc_TC = trading_results_inc_TC.fillna(0)

Calculate cumulative return of the strategy
trading_results_inc_TC['cumulative return'] = \
 np.cumsum(trading_results_inc_TC['return_inc_TC'])
trading_results_inc_TC.reset_index(inplace=True)

Calculate the strategy drawdown over the trading period
trading_results_inc_TC['HWM'] = \
 trading_results_inc_TC['cumulative return'].cummax()
trading_results_inc_TC['Drawdown'] = ((1+trading_results_inc_TC['HWM'])-\
 (1+trading_results_inc_TC['cumulative return']))/\
 (1+trading_results_inc_TC['HWM'])

#---
Descriptive statistics
#---
trading_std_of_returns = trading_results_inc_TC['return_inc_TC'].std()

C1 Python code for the strategy

10182321005176GRA 19703

trading_average_return = trading_results_inc_TC['return_inc_TC'].mean()
trading_SR_10 = (trading_average_return/trading_std_of_returns)
print('The annualized return in the trading period is:',\
 (trading_average_return * 252))
print('The annualized SR in the trading period is:',\
 ((trading_average_return/trading_std_of_returns) * np.sqrt(252)))

Additional Summary statistics
trading_results_inc_TC.agg(
 {
 'return_inc_TC': ['mean', 'median', 'std', 'skew', 'kurtosis', 'min', 'max'],
 }
)

#T-test to check significance of daily excess returns
stats.ttest_1samp(trading_results_inc_TC['return_inc_TC'], popmean=0)

#%%
#---
Analyzing systemtic risk of strategy by regressing returns on known pricing
factors
#---

FF_factors_daily = pd.read_csv('FF_factors.csv', index_col=0, sep=',')
Reset index of trading restuls dattaset
trading_results_inc_TC.set_index('index', inplace=True)
Make sure that only the same dates are included in the pricing factor dataset
FF_factors_daily = pd.DataFrame(index = temp_index.index ,data = \
FF_factors_daily[FF_factors_daily.index.isin(trading_results_inc_TC.index)])
FF_factors_daily = FF_factors_daily.fillna(0)

factors = FF_factors_daily[['mktrf', 'smb', 'hml', 'umd']]
returns = trading_results_inc_TC['return_inc_TC']
factors = add_constant(factors)
model = sm.OLS(returns, factors)
results = model.fit()
results.summary()

C1 Python code for the strategy

10182321005176GRA 19703

#!/usr/bin/env python3
-*- coding: utf-8 -*-

#importing modules
import pandas as pd
import numpy as np
import pandas_datareader as web
import matplotlib.pyplot as plt
import datetime as datetime
import seaborn as sns
import matplotlib .cm as cm
from sklearn import linear_model
from sklearn . cluster import KMeans, DBSCAN
from sklearn . decomposition import PCA
from sklearn . manifold import TSNE
from sklearn import preprocessing
from statsmodels . tsa . stattools import coint
from statsmodels . tsa . stattools import adfuller
import statsmodels . regression . linear_model as rg
from scipy import stats
import statsmodels.api as sm
import statsmodels.tsa.stattools as ts

#Import data

ose_dataset_close_2000_2019 = pd.read_csv('CRSP_data_FIXED.csv', index_col=0, sep=',')

Import benchmark
oslo_bors_benchmark_index = pd.read_csv('Oslo_bors_benchmark_index.csv', index_col=0, sep=',', encoding='latin-1')

Datasets containing the daily relative spread for all stocks at OSE
ose_rel_spread_close_2000_2019 = pd.read_csv('CRSP_rel_spread.csv', index_col=0, sep=',')

Calculate cumulative return on benchmark
oslo_bors_benchmark_index['return'] = oslo_bors_benchmark_index['Oslo BĂ¸rs Benchmark Index_GI'].pct_change()
oslo_bors_benchmark_index['cumulative return'] = np.cumprod(1+oslo_bors_benchmark_index['return'])-1
oslo_bors_benchmark_index.fillna(0)

#%%
#--
##################### Creating TRAINING period datasets : ###
#--

list_of_training_datasets_prices = []

y = 0
while y < (5040-126):

 temp = ose_dataset_close_2000_2019.iloc[y:y+252]
 list_of_training_datasets_prices.append(temp)

 y += 126

list_of_training_datasets_prices.pop()
list_of_training_datasets_prices.pop()

#---

##################### Creating TRADING period datasets : ###

list_of_trading_datasets_prices = []

y = 0

C2 Python code for constructing spread ptfs

10182321005176GRA 19703

while y < (5040-126):

 temp = ose_dataset_close_2000_2019.iloc[y:y+126]
 list_of_trading_datasets_prices.append(temp)

 y += 126

list_of_trading_datasets_prices.pop(0)
list_of_trading_datasets_prices.pop(0)

#--
##################### Creating spread portfolios TRAINING period :
###
#--
list_of_training_spread_datasets = []
y = 0
while y < (5040-126):

 temp = ose_rel_spread_close_2000_2019.iloc[y:y+252]
 list_of_training_spread_datasets.append(temp)

 y += 126

list_of_training_spread_datasets.pop()
list_of_training_spread_datasets.pop()

#--
##################### Creating spread portfolios TRAINING period :
###
#--
list_of_trading_spread_datasets = []
y = 0
while y < (5040-126):

 temp = ose_rel_spread_close_2000_2019.iloc[y:y+126]
 list_of_trading_spread_datasets.append(temp)

 y += 126

list_of_trading_spread_datasets.pop(0)
list_of_trading_spread_datasets.pop(0)

#Removing missing values:
for training datasets
for dataset in list_of_training_datasets_prices:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_training_datasets_prices:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_training_datasets_prices:
 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

for trading datasets:
for dataset in list_of_trading_datasets_prices:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_datasets_prices:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_trading_datasets_prices:

C2 Python code for constructing spread ptfs

10182321005176GRA 19703

 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

for spread portfolios
#Training:
for dataset in list_of_training_spread_datasets:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_training_spread_datasets:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_training_spread_datasets:
 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
Trading
for dataset in list_of_trading_spread_datasets:
 dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_spread_datasets:
 dataset.fillna(method = 'bfill', inplace=True, limit=10)

for dataset in list_of_trading_spread_datasets:
 dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

Make sure that we have the same securities in both the training and trading period. Remove securities that are not
present in both periods

--------For daily close data -------
common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_training_datasets_prices)):
 common_cols = list_of_training_datasets_prices[i].drop([col for col in list_of_training_datasets_prices[i].columns if col in
list_of_training_datasets_prices[i].columns and col not in list_of_trading_datasets_prices[i].columns], axis = 1)

 common_tickers.append(common_cols)

for i in range(len(list_of_training_datasets_prices)):
 list_of_training_datasets_prices[i] = list_of_training_datasets_prices[i][common_tickers[i].columns]
 list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i][common_tickers[i].columns]

-------- For spread portfolios ---------
common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_training_spread_datasets)):
 common_cols = list_of_training_spread_datasets[i].drop([col for col in list_of_training_spread_datasets[i].columns if col in
list_of_training_spread_datasets[i].columns and col not in list_of_trading_spread_datasets[i].columns], axis = 1)

 common_tickers.append(common_cols)

for i in range(len(list_of_training_spread_datasets)):
 list_of_training_spread_datasets[i] = list_of_training_spread_datasets[i][common_tickers[i].columns]
 list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]

common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_trading_spread_datasets)):
 common_cols = list_of_trading_spread_datasets[i].drop([col for col in list_of_trading_spread_datasets[i].columns if col in
list_of_trading_spread_datasets[i].columns and col not in list_of_trading_datasets_prices[i].columns], axis = 1)

 common_tickers.append(common_cols)

C2 Python code for constructing spread ptfs

10182321005176GRA 19703

for i in range(len(list_of_trading_spread_datasets)):
 list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]
 list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i][common_tickers[i].columns]

common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_trading_spread_datasets)):
 common_cols = list_of_trading_spread_datasets[i].drop([col for col in list_of_trading_spread_datasets[i].columns if col in
list_of_trading_spread_datasets[i].columns and col not in list_of_training_spread_datasets[i].columns], axis = 1)

 common_tickers.append(common_cols)

for i in range(len(list_of_trading_spread_datasets)):
 list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]
 list_of_training_spread_datasets[i] = list_of_training_spread_datasets[i][common_tickers[i].columns]

Calculating returns from closing prices

list_of_training_returns = []
for dataset in list_of_training_datasets_prices:
 stock_returns = dataset.pct_change()
 list_of_training_returns.append(stock_returns)

for dataset in list_of_training_returns:
 dataset.iloc[0:2] = 0

list_of_trading_returns = []
for dataset in list_of_trading_datasets_prices:
 stock_returns = dataset.pct_change()
 list_of_trading_returns.append(stock_returns)

for dataset in list_of_trading_returns:
 dataset.iloc[0:2] = 0

#%%

Create portfolios based on the size of the relative bid-ask spread in the training period

list_of_top_spreads = []
list_of_bottom_spreads = []
for i in range(len(list_of_training_spread_datasets)):
 avg_rel_spread = pd.DataFrame(list_of_training_spread_datasets[i].mean())
 avg_rel_spread.columns= ['rel_spread']

 top_rel_spread = avg_rel_spread.nlargest(178, 'rel_spread', keep='first')
 list_of_top_spreads.append(top_rel_spread)

 bottom_rel_spread = avg_rel_spread. nsmallest(178, 'rel_spread', keep='first')
 list_of_bottom_spreads.append(bottom_rel_spread)

list_of_training_bottom_spreads = []
list_of_training_top_spreads = []
for i in range(len(list_of_training_spread_datasets)):
 tickers = list(list_of_bottom_spreads[i].index.values)
 training_pairs = list_of_training_spread_datasets[i][tickers]
 list_of_training_bottom_spreads.append(training_pairs)

 tickers2 = list(list_of_top_spreads[i].index.values)
 training_pairs2 = list_of_training_spread_datasets[i][tickers2]

C2 Python code for constructing spread ptfs

10182321005176GRA 19703

 list_of_training_top_spreads.append(training_pairs2)

top_spreads_prices = []
bottom_spreads_prices = []
for i in range(len(list_of_training_datasets_prices)):
 pairs = list_of_training_datasets_prices[i][list_of_training_bottom_spreads[i].columns]
 bottom_spreads_prices.append(pairs)

 pairs2 = list_of_training_datasets_prices[i][list_of_training_top_spreads[i].columns]
 top_spreads_prices.append(pairs2)

top_spreads_trading_prices = []
bottom_spreads_trading_prices = []
for i in range(len(list_of_trading_datasets_prices)):
 pairs = list_of_trading_datasets_prices[i][list_of_training_bottom_spreads[i].columns]
 bottom_spreads_trading_prices.append(pairs)

 pairs2 = list_of_trading_datasets_prices[i][list_of_training_top_spreads[i].columns]
 top_spreads_trading_prices.append(pairs2)

top_spreads_returns = []
bottom_spreads_returns = []
for dataset in top_spreads_prices:
 returns = dataset.pct_change()
 top_spreads_returns.append(returns)

for dataset in top_spreads_returns:
 dataset.iloc[0:1] = 0

for dataset in bottom_spreads_returns:
 returns = dataset.pct_change()
 bottom_spreads_returns.append(returns)

for dataset in bottom_spreads_returns:
 dataset.iloc[0:1] = 0

C2 Python code for constructing spread ptfs

10182321005176GRA 19703

