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ABSTRACT

This thesis investigates machine learning’s potential to forecast the
Norwegian GDP, unemployment rate, and inflation on monthly or
quarterly, and annual terms. We compare machine learning tech-
niques such as penalised regressions and random forest to tradi-
tional statistical methods such as the näıve model, autoregressive
and vector autoregressive models. This motivates the following
thesis question, Is value added by machine learning compared to
traditional statistical models in time–series forecasting of macroe-
conomic variables? The results show that the machine learning
models are relatively better than the traditional statistical mod-
els when forecasting except for inflation. Using many exogenous
variables to explain inflation is more confusing than value–adding,
therefore, the models depending only on inflation itself provide the
best forecasts.

This thesis is a part of the MSc programme at BI Norwegian Business
School. The school takes no responsibility for the methods used, results found,

or conclusions drawn.
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1 Introduction and Motivation

Changes in macroeconomic factors provide an overall view of society’s econ-

omy and are of interest both for individuals and larger corporations. Having a

model that provides an accurate forecast is very valuable for financial institu-

tions. Inflation, Gross Domestic Product (GDP), and unemployment rate are

all giving strong indications about how the economy in a country is develop-

ing, which can affect strategies and the institutions’ economic outlook. During

recessions, people lose their jobs, and companies do not start employing until

the economy expands again. Therefore, we look at the unemployment rate as a

lagged variable (Amadeo (2020)). Establishing a layoff plan is time–consuming,

so often it instead says something about the effect of events and indicates when

the economy has recovered after a crisis. An expanding economy in terms of

GDP combined with a declining unemployment rate is a clear sign that the

economy is performing well. Regarding inflation, most central banks tend to

adjust the interest rates to keep the inflation at a stable level, to prevent the

economy from growing or dropping too fast (Picardo (2020)). Understanding

the country’s current and future economic situation helps maintain stability

and enables the country to be better prepared and equipped during recessions.

Norwegian GDP, unemployment rate, and inflation are our endogenous vari-

ables in the models as we believe prediction with high accuracy of these three

factors in the short and long term is of great advantage. Understanding these

concepts and how essential it is to keep up with the times motivates us to

create machine learning models to see the value–added compared to simpler

models like näıve forecasts and traditional autoregressive models (AR). We use

random forest, elastic net, lasso and ridge regressions, in addition to a model

that averages the results of those four models.

The world is constantly becoming more data–oriented, which has resulted in

an extended interest in developing models and methods for specific purposes.

1
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There are no longer just scientists who have their eyes on complex models.

Financial policymakers also see great value in stepping away from leaning

solely on behavioural finance and traditional econometrics tools, and many

institutes find themselves moving into the realm of big data. Machine learning

opens a world of valuable models that take all available data into account,

finding connections and trends that are not obvious for economists.

During our studies we have focused on quantitative methods in finance and are

familiar with processing financial data in conjunction with machine learning.

This thesis addresses macroeconomic variables that handle two dimensions of

data, cross–sectional and time–series data. The latter we are least familiar with

and wish to study further the use of machine learning with panel data. We find

this to be an exciting topic where we could apply previous and develop new

knowledge. Even though several studies are done on time–series in machine

learning, it is not as common for macroeconomic purposes. Few studies look at

Norway’s economy, extending the studies made on GDP as the master thesis

by Bankson and Holm (2019) did, to now including several macroeconomic

factors.

Time and knowledge are natural limitations. There are several machine learn-

ing models with different modifications, and to explore every single variant

would be too extensive for our thesis. Therefore, it is important to note that

the results can be improved by using other methods within machine learning

and even more complex statistical methods. Data leak is a common phe-

nomenon in time–series forecasting. It addresses the possibilities that models

can be trained on observations that are not available or known in real–time.

There is room for data leak and missing values due to large data sets, and this

is in focus. However, the occurrence of data leakage cannot be ruled out.

Machine Learning can also be sensitive to how we part our data into training

and test sets. With time–series data, we cannot mix the observations randomly

2
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into two sets as we must keep in mind the chronological order of observations.

We apply a “rolling forward method” that extends the train set in each run to

validate our model. Another limitation is the trade–off between the number of

observations, n versus predictors, p. Some significant variable predictors have

shorter time samples, and we create different data sets to run our model to see

which composition gives the best forecasts.

3
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2 Literature Review

Machine Learning is a part of artificial intelligence that through experience

learn and improve the models without being explicitly programmed. As a

technique it has several strengths and limitations. A machine learning model

can quickly, with an extensive data set, identify hidden patterns and trends

that the human eye cannot catch (DataFlair (2018)). Machine learning can

learn, thus the name, meaning it does not require human intervention every

step of the way. Through gaining experience, the algorithms develop contin-

uous improvement as it improves accuracy. Additionally, machine learning is

excellent at handling large data sets with many observations, and it has broad

applications for both time–series forecasting and classification problems.

Even though machine learning has several strengths, there are some limitations

as well. The models often require big data, and at times, data collection can be

problematic. The most severe limitation of machine learning is interpretability.

Most old–fashioned firms use only traditional statistical methods because they

value interpretability. Making customers trust outcomes from a model where

it is difficult to understand the underlying concepts or how the explanatory

variables are put together can be challenging, making machine learning less

attractive to use in practice (Stewart (2020)). Despite the limitations, we are

interested in figuring out the additional value of machine learning compared

to traditional tools and see if the value–added exceeds the disadvantages.

Many see great value in using machine learning for forecasting purposes. Stud-

ies show the importance of applying non–linear models to financial and macroe-

conomic data and how a program can process more information than eco-

nomic and financial agents. Financial data is rarely normally distributed nor

has a linear relation; hence we expect non–linear models to outperform lin-

ear ones. Traditional forecasting models often search for a fitted function to

a pre–specified relationship between the response and explanatory variables.

4
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Recently, researchers have wished to step away from any pre–specifications

by using more data–driven methods to find the true relationship between the

variables.

Financial institutes often apply surveys to help predict different outcomes of

macroeconomic factors. Bianchi et al. (2020) use machine learning to estimate

expectational errors embedded in survey responses. They discuss how the

forecast of macroeconomic factors oscillates between optimism and pessimism

according to changes in the total economic activity. Moreover, they study

the impact of economists’ beliefs on expectational errors and how they can

be discovered using machine learning. Macroeconomic factors, e.g., the un-

employment rate, can be vulnerable when a unique situation occurs, such as

the financial crisis in 2008 and the global pandemic Covid–19. Expectational

errors made by economic agents could be over– or underreacting to incoming

news, holding onto outdated conservative models, motivating the implemen-

tation of machine learning. However, since it is rational that thoughts on

macroeconomic variables can be emphasised on surveys, Bianchi et al. also

discuss the possibility that some of the information may have been unavailable

to survey respondents. Further, they emphasise the importance of avoiding

data leakage in the machine learning models, making sure that no predictions

at time t are based on information from time t+ 1.

Chakraborty and Joseph (2017) published a working paper for the Bank of

London on how machine learning can contribute to value creation for central

banks. Machine learning is often considered to have a “black–box nature”

as the application of machine learning leads to a loss of interpretation of the

variables’ relationships. That is problematic for central banks as they rely

on making informed decisions. However, their paper shows that there are

ways to interpret the models, for instance, by limiting the model’s complexity

or work on smaller models. In fear of lack of interpretation, the elastic net

5
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model can be considered the most consistent since it originates from Ordinary

Least Squares (OLS) and interprets the contribution of each variable when

building the model (Jung et al. (2018)). As opposed to central banks, financial

institutions have more freedom to rely “blindly” on outputs from a machine

learning model if it yields good predictions, thus interpretation is less critical.

This thesis weights the improvement of predictions rather than understanding

each exogenous variable’s effect on the outcome.

Jung et al. (2018) look at the benefits of using machine learning on traditional

data and how this can be a further development of standard econometrics tools

for economic forecasting. Their paper addresses the potential of significant

errors involved when making predictions and how pre–specified thoughts on

relation can lead to biases. Systematic over–prediction or agents’ forecasts

tend to be “consistently over–optimistic in times of country–specific, regional,

and global recessions” (Jung et al. (2018), p. 4) are examples of such errors.

Their studies set aside any interpretation of variables and employ the elastic

net, Recurrent Neural Network (RNN), and Super Learner. According to

their results, Super Learner outperforms the other models with quarterly data,

while RNN has some advantage for specific circumstances when forecasting the

annual horizon.

The number of studies on machine learning has increased exponentially in the

later years. Montgomery et al. (1998) look at the US unemployment rate and

touch upon several important features concerning forecasting. They find im-

provement in using both univariate and multivariate linear models to forecast

the US unemployment rate. Moreover, they have a common finding that the

mean or median of several models is often more accurate than most individual

forecasts – this is in line with the concept of the recent popular model: The

Super Learner. The origin of random forest is built on a similar idea according

to James et al. saying that “. . . averaging a set of observations reduces variance

6
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and hence increase prediction accuracy. . . ” (James et al. (2013b), p. 316). Var-

ian (2014) finds it strange how rarely the conceptional methods of the Super

Learner is exploited in traditional econometrics. It has been recognised for a

long time that this method outperforms individual models for macroeconomic

model forecasts.

Numerous sources state that inflation is a difficult variable to forecast, one

reason being that even central banks have imperfect control over inflation

(Svensson (1997)). The article “Forecasting inflation” written by Stock and

Watson (1999) studies forecasts of the US inflation over the 1960–1996 period

looking primarily at the Phillips curve. Their findings are that going from

binary to multivariate models is not necessarily an improvement for inflation

forecasting, as adding several variables expected to have good explanatory

power on inflation results in overfitting and poor forecast estimates. Stock

and Watson’s findings are of interest as we implement machine learning on

big data where predictions of inflation are dependent on many variables. We

compare these findings with predictions using näıve and AR models where the

forecasts are only dependent on past values of inflation.

Makridakis et al. (2018) researched the accuracy of machine learning models

compared to traditional statistical methods across multiple forecasting hori-

zons. Their article criticises papers that propose new machine learning algo-

rithms for not comparing the accuracy versus the traditional methods. They

are motivated by an article using neural network to forecast stock prices, which

got highly accurate results. When Makridakis et al. contacted the authors to

get the required information to replicate their results, they were met with ra-

dio silence, increasing the suspicion that the results were exaggerated or plain

wrong. This indicates that one needs to be critical when trusting papers, and

Makridakis et al. concluded that traditional statistical methods are more ac-

7
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curate after reproducing several papers’ results. This conclusion is unusual,

motivating us to see if machine learning adds value to forecasting purposes.

In response to the article by Makridakis et al., Cerqueira et al. (2019) published

a paper criticising their findings. They counter to the results made in the

article and question the small size of time–samples used in their research.

Cerqueira et al. claim that the traditional statistical methods performing the

best are only valid when the sample size is small, otherwise machine learning

models outperform. This is an important finding for this thesis as we look at

macroeconomic variables published either monthly or quarterly, making our

time samples quite short. Therefore, it is interesting to see if the machine

learning models manage to perform well even on short time samples.

Another factor in finance and macroeconomics is the low signal–to–noise ra-

tio. With high predictability, the ratio is higher, but the predictability is

usually low, especially in finance. Positive news about a company are quicky

incorporated into the stock price, thus making the predictability of the low

(AQR). Machine learning thrives in high signal–to–noise environments and

struggles more in low signal–to–noise environments, making it understandable

that machine learning is less trusted in the world of finance. In macroeco-

nomics, the predictability is slightly higher than in finance, as our predicted

variables are published on a monthly or quarterly basis, and through using

information about events from that month or quartal, machine learning can

find conjunctions in the variables.

Artificial neural networks, elastic net, random forest, and Super Learner are

recurring machine learning models in almost all relevant literature across dif-

ferent forecast purposes. It is common to emphasise the importance of out–of–

sample testing as this is one of the key principles of machine learning models

making sure to train the models correctly. This thesis addresses random forest,

elastic net, lasso and ridge and a model that averages the result of the men-

8
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tioned models. We make comparisons of these with the following traditional

statistical methods; the näıve, autoregressive, and vector autoregressive mod-

els. The studies are applied to a new research area – the Norwegian economy.

9
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3 Methodology and Theory

Machine Learning with large data sets requires knowledge about how to oper-

ate and handle data. In classical statistics methods, there often lie assumptions

about the underlying distributions of variables. The necessity of complying

with these assumptions is not as present in machine learning; however, trans-

forming the data does not harm the model, often it happens to be rather the

contrary (Flovik (2018)).

3.1 The Data’s Nature

To accommodate the models’ underlying assumptions, one must first under-

stand the variables being used in the models. Plotting the variables is helpful

to better understand behaviour, patterns and identify outliers in the data set

before transforming each variable making sure they are all stationary. We want

stationarity because non–stationary variables usually have a clear trend, lead-

ing a model to use the previously known variable t as the prediction for t+ 1.

Due to the trend in variables, the model’s results might not reflect significant

modelling errors, and therefore one might overvalue the precision of the model

(Flovik (2018)).

In addition, the different models we use have different assumptions of variables,

stationarity being of most importance. To make sure the variables have the de-

sired property of all methods, we test different transformations of the variables.

We use the Augmented Dickey–Fuller (ADF), Kwiatkowski–Phillips–Schmidt–

Shin (KPSS), and Phillips–Perron (PP) tests to check if the time–series are

stationary, trend–stationary and integrated of order 1. Only when the variable

has the desired property to satisfy the tests the transformation is accepted.

The tests have the following hypothesis,

10
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ADF:

H0 = The variable has a unit root

H1 = The variable is stationary

KPSS:

H0 = The variable is trend-stationary

H1 = The variable has a unit root

PP:

H0 = The variable has a unit root

H1 = The variable is integrated of order 1

One needs to be aware of some pitfalls when handling data. First, looking at

macroeconomic time–series data, we must know when the data is published

to avoid look–ahead bias and data leak. Given the purpose of forecasting

when employing our model, we naturally do not have access to future data.

There is a delay of when the quarterly and monthly variables are published.

Quarterly data is often published one to two months after the end of the

relevant quarter. Therefore, we use only information up to quarter t − 1 to

enter the model by lagging the time–series data for one period to make sure

we only make predictions based on available data.

We want to forecast macroeconomic variables published either monthly or

quarterly and use the corresponding data sets when training the model. We

convert monthly data to quarterly by using the beginning–of–quarter values.

When calculating monthly change for quarterly variables, we take their quar-

terly difference and divide by three. Some variables have observations as early

as 1994, while others only from 2008. When modelling time–series, longer

11
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samples of observations often provide more accurate models. We collect 89

variables in our data sets. Given the large number of independent variables,

the possibility of the “curse of dimensionality” is present, which can lead to

overfitting. This term has roots based on many variables in the input sets often

pollutes the models’ forecasts rather than help explain the endogenous vari-

able. To avoid this, we look at the trade–off between different combinations of

the independent variables in the input data. Another approach to make sure

we avoid “curse–of–dimensionality” is to perform Principal Component Anal-

ysis (PCA). PCA helps reduce the number of exogenous variables and avoid

multicollinearity among the independent variables. A downside of PCA is the

loss of interpretation.

Many models do not allow for missing values in the data set. If a variable has

missing values, we have a “parted” time–series. To avoid this, we replicated the

previous observed value where there is a missing value. By filling in the missing

values, we make sure to have time–series with observations in chronological

order with equal spread, i.e., one month or quartal between each observation.

Another aspect we need to take into consideration is the bias–variance trade–

off. Bias is the difference between the average prediction and the actual value

in that period. (Singh (2018)). The variance shows the variability of the

estimate when different training data is used. With high bias, the model does

not pay much attention to the training set and oversimplifies the model. High

variance shows that the model pays too much attention to the training set,

leading to poor performance out of sample. The functions below show the

relationship between the bias and variance and the total error.

Error(x) = (E[f̂(x)]− f(x))2 + E[(f̂(x)–E[f̂ ])2] + σ2
ε (1)

Error(x) = Bias2 + V ariance+ IrreducibleError (2)

12
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Where f̂(x) is the model used to predict f(x). We disregard the irreducible

error since it cannot be avoided. Algorithms such as linear regression tend to

have low variance and high bias, while decision trees tend to be high variance,

but low bias models (Brownlee (2016)). To find the optimal trade–off between

variance and bias errors is important because we do not want a model that

overfits or underfits. A model that combines several models could be advan-

tageous in order to lower the bias and variance and find a better trade–off.

3.2 Train and Test Sets

To know whether our model contributes to good forecasts and to avoid over-

fitting, we need to split the data into three sets. One train set (Ttrain), one

test set (Ttest) and when making predictions we have a third validation set

(Tvalidation).

T ≥ Ttrain + Ttest + Tvalidation (3)

The train and test sets contain all the data we need to build our model. When

the model is trained, we introduce the validation set to see how well the models

work on unseen data. A popular method to train and validate the model is

to use a Cross–Validation method that randomly chooses observations for the

train and test sets numerous times. However, this method does not work

for time–series data as this results in data leak. Also, recent information is

often more relevant for future forecasts than information from many years

ago. Moreover, we wish to have a time–series sample of previous values in our

training and test sets. A solution is to apply a rolling window when deciding

on train, test, and validation sets. Starting with a small set, we increase

the training sample for each run rolling forward until the entire data set is

taken into use, having the test and validations sets of equal and constant size.

We introduce the validation set to avoid using out–of–sample to optimize the

models. We validate the model by taking the average of precision in predictions

13
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of each run. Using this form of Cross–Validation that takes time–series into

account helps against the problem of overfitting. When forecasting a quarterly

variable one year ahead, we let the test and validation sets consist of four

observations (n = 4). For monthly data, the test set consists of 12 observations

(n = 12). To divide the data into train, test, and validation sets, we first split

the entire data set into k parts, where k = N/n. N is the total number

of observations in the data set, and n equals the number of observations in

the validation set. In the first run, the train set consists of the first T1:2n

observations, the test set consists of T(2n+1):3n and the validation set consists

of T(3n+1):4n . The train set increases in observations going forward until the

last training sample consists of T1:(N−2n), the test set T(N−2n+1):N−n and the

validation set T(N−n+1):N . This is called an expanding window method and is

demonstrated in Figure C.0.1. After finding the models’ optimizing measures

based on the Ttest in the models, we merge Ttrain and Ttest into one train set

and train the models again with this sample before introducing the validation

set. When forecasting one period we have n = 1. We train the model a total of

12 times (k = 12), starting with a training set, T1:N−2k, test set, TN−2k+1, and

a validation set equal to TN−2(k+1), expanding over 12 runs until train equals

T1:N−2, test equals TN−1 and the validation set equals TN .

3.3 Machine Learning Models

This section presents the different models we implement to research whether

machine learning outperforms traditional statistical models in terms of time–

series forecasting. First, we employ three different extensions of the ordinary

least square regression model (OLS); ridge–, lasso– and elastic net regression.

These models are known as penalised regressions, which differ in selecting and

shrinking explanatory variables to adjust for complexity in the data. Assump-

tions for the predictive variable in regression models are linearity, constant

14
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variance (no outliers) and independence. The regression models are in the

form

ŷt = Xtβ̂ + εt (4)

Where ŷt is a (n × 1) vector of predictions made for the endogenous variable

y for time period t with n observations. Xt is a (n × p) matrix consisting of

p exogenous variables and n observations. β̂ is a (p × 1) matrix which are

the coefficients made from the regression models, and εt is the error term that

represents the deviations within the regression line. Next, we test random

forest that uses regressions to estimate coefficients in each tree. Finally, we

have an Averaging model which takes the average of each machine learning

models’ forecasts.

3.3.1 Ridge Regression

Ridge regression uses a shrinkage estimator, λ, to shrink the coefficients β

towards zero. For λ = 0, the model equals OLS. The ridge solves

β̂ = min
β̂

 N∑
i=1

(
yi − β0 −

p∑
j=1

βjXi,j

)2

+ λ
(1,1)

p∑
j=1

β2
j

 (5)

Where yi is the endogenous variable at time i, β0 is the intercept and βj is

the regression coefficient for the exogenous variable j. xi,j is the exogenous

variable j’s value at time i, these observations are standardised. OLS does

not differentiate between the exogenous variables, if multicollinearity and high

variance are present it can lead to overfitting. Ridge regression manages to

avoid these problems by penalising some of the exogenous variables. The

bias–variance trade–off is a motivating factor of ridge regression as a higher λ

increases the bias, but at the same time, reduces the variance. Ridge regression

is great at handling data set where the number of variables is large compared

to the number of observations (p > n). For situations with low signal to noise,

ridge can perform well even if the number of observations is large compared
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to the number of variables (James et al. (2013b) p. 215). When running the

ridge and lasso regression models, we apply a sequence of λ varying from 1010

to 10−10, over a set of 1,000 values. Usually, the optimal lambda, λ∗, can

be found by cross–validation. However, as we are looking at time–series, we

choose λ∗ to be the one minimizing RMSE based on the test set. After finding

λ∗, we combine the train and test set, and train the model with a longer train

set using λ∗ and then introduce the validation set to compare our predictions.

3.3.2 Lasso Regression

Lasso is very similar to the ridge regression. Instead of using a quadratic

penalty, it uses an absolute measure penalty on the form

β̂ = min
β̂

 N∑
i=1

(
yi − β0 −

p∑
j=1

βjXi,j

)2

+ λ
(1,1)

p∑
j=1

|βj|

 (6)

Description of notation is like the one given in Section 3.3.1. The penalisation

term, λ, handles the bias–variance trade–off in the same way it does for ridge,

and is computed the same way. Lasso has the property to set some values

to zero and therefore eliminate them from the model, which helps the inter-

pretability of the method when resulting in fewer exogenous parameters in the

model. (James et al. (2013b) p. 219). Lasso often outperforms ridge when

there are many observations (n > p).

3.3.3 Elastic Net

Elastic net is a compromise between ridge and lasso regression, with one ad-

ditional parameter to calibrate, α. Joining the two methods, elastic net has

the advantage to take both their strong sides into use. By adjusting α, one

can weigh the most appropriate model more than the other. The combina-
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tion makes elastic net resistant to multicollinearity among the explanatory

variables.

β̂ = min
β̂

 N∑
i=1

(
yi − β0 −

p∑
j=1

βjXi,j

)2

+ λ
(1,1)

p∑
j=1

(
α |βj|+ (1− α) β2

j

) (7)

This is a similar notation to the one given in Section 3.3.1. When working with

elastic net, we are first interested in estimating α to decide whether the model

should be weighted more towards ridge or lasso, or if an equal mix (α = 0.5)

of the two is optimal. We choose the minimum value of λ using the default set

in R Studio when searching for the best estimate of α. α is set as a sequence

from 1e-06 to 9.999e-01 over a length of 100 points. Next, after finding the

optimal weight that minimizes RMSE given the test set, α∗, we run the model

once more, now with α = α∗ over a set of λ equal to those used on ridge and

lasso. Again, we decide λ∗ as the one that minimizes the RMSE measure

given the test set. These estimates of λ∗ and α∗ are made in each validation

run and used when training the model combining the train and test set before

introducing the validation set.

3.3.4 Random Forest

Another approach to forecasting is the classification model random forest. This

model has the advantage of no formal assumptions about linearity in the data;

hence it can easily be applied without any premodifications. This means that

it works well for non–linear data as it is robust to outliers. It runs effectively

on large data sets; therefore, we believe random forest works well with our

large non–linear macroeconomic data set. The downside is that random forest

consists of many steps in its calculations, making it a model with slow com-

putations compared to the other models. However, it does not require many

modifications which compensates for its slow computations.
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Random forest is a model that origins from the method bootstrap. Bootstrap

takes independent draws from the train set and estimates the standard errors

of coefficients of a model. The method can be applied to a wide range of

statistical estimators as it requires no assumptions. An extension to bootstrap

is called bagging, which applies the theory that averaging a set of observations

reduces variance. After training a model on the bootstrapped training sets,

one takes the average of all the predictions and obtains

ŷbag(x) =
1

P

P∑
p=1

ŷ∗p(x) (8)

P is the number of regression trees, and ŷ∗p are separate prediction models

made by the ordinary regression model of the endogenous variable y given x

exogenous variables. Hence the model constructs P regression trees using P

bootstrapped training sets before taking the average. Finally, random forest

is very similar to the idea of bagging; however, each time a split in a tree is

considered, it takes a random sample of m out of p predictors to be considered

as a candidate before the model uses only one final predictor in the split. By

using only one predictor in each split, the models reduce the correlation in

each split. Regression trees often have a default of m = p/3. If m = p the

random forest is identical to bagging (James et al. (2013b) 8.2.2). To decide

the optimal number of trees in the model, we apply 100 different tree sizes in

each run, from a minimum of one tree to a maximum of 500 trees. We choose

the number of trees, P = M∗, that minimizes RMSE with respect to the test

set. Similar to what we do in the previous models mentioned, we combined

the train and test sets running the model on a larger train set on M∗ trees

with m splits before introducing the validation set.
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3.3.5 Averaging Model

In addition to the machine learning techniques, we also create a model that

averages the results of the machine learning models (ridge, lasso, elastic net,

random forest, and an average of the value y), a technique familiar as “ensemble

learning”. It is not as sophisticated as the Super Learner that sets different

calculated weights to each model, but averaging models is generally a good

idea to accommodate model uncertainty. Weighting several models reduces

the chance of overfitting and error variance. The ensemble learning works for

every machine learning technique. Therefore, we cannot rule out that different

combinations can perform better.

3.4 Statistical Models

To see the value added of machine learning we compare the results with simple

traditional statistical models. This thesis makes comparisons with the näıve

forecasting model, an autoregressive model, and a vector autoregressive model.

3.4.1 Näıve Model

Näıve forecasting uses the previously observed value as the future forecast.

yt = yt−1 (9)

The advantage of implementing a näıve model is that it is simple, takes no

time to create and requires no assumption of the time–series. However, data

in economics are rarely constant; therefore, a significant disadvantage with

the näıve model is that no one is likely to trust these predictions unless when

looking at highly stable variables. Therefore, this model is mostly added for

comparison purposes.
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3.4.2 Autoregressive Models

Autoregressive models make predictions using only past values of the endoge-

nous variables and have the assumption that the variables are stationary

(Brooks (2014), p. 259). Our models use the Akaike Information Criterion

(AIC) to estimate the optimal number of lags, k, which helps deal with the

risk of overfitting.

AIC = ln(σ̂2) +
2k

T
(10)

Where T = number of observations, k = number of lags and σ̂2 =
∑
û2
t

T−k .

3.4.2.1 AR(k) The simplest version of autoregressive models is to use only

one endogenous variable, yt, known as AR(k) which is in the form

yt = β0 + β1yt−1 + ...+ βkyt−k + εt (11)

It estimates the β coefficients using Yule–Walker equations.

3.4.2.2 Vector Autoregressive Models A V AR model is an extension

of the AR model fitting for data sets with more than one dependent variable,

where all variables are considered endogenous ((Brooks (2014), p. 335). For g

variables, we have a V AR(k) model in the form

yt
(g×1)

= β0
(g×1)

+ β1
(g×g)

yt−1
(g×1)

+ ...+ βk
(g×g)

yt−k
(g×1)

+ ut
(g×1)

(12)

With V AR, we allow our predictions of y to depend on more than just its

previous values. A downside with this is that it tries to measure everything,

and we must therefore make sure that all variables have the same order of

integration. OLS and AIC estimate each equation in a V AR to find the

optimal number of lags (k). The main issue with V AR is that it requires

the number of observations (n) to be larger than the number of variables (p).

Therefore, V AR does not work well when training the model over a rolling

20

10396490992006GRA 19703



window as the first training sets consist of few variables. By applying PCA,

we try to avoid this problem by reducing the number of exogenous variables.

For V AR to work correctly, the solution to the equation above needs to satisfy

the PP–test. Cointegration between the variables may exist if yt has a unit

root, meaning that either some or all variables are integrated into order 1.

3.5 Model Comparisons

To evaluate the precision of these models, we use the error measurements

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2.

RMSE and MAE to evaluate the models’ forecasts against the actual data.

R2 reflects the linear relationship, and the closer R2 is to 1, the better the

model’s explanatory power. Often in economics, R2 = 0.5 does not qualify

as low signal–to–noise, making a lower R2 measurement more acceptable than

“usual” for our models. Impartially, for model comparison, the values them-

selves are unimportant as we look at their values compared to each other.

RMSE =

√∑T
t=1(ŷt − yt)2

T
(13)

MAE =

∑T
t=1 |ŷt − yt|

T
(14)

R2 =
SSM

SST
= 1− SSE

SSM
(15)

RMSE represents the standard deviation of the residuals. In contrast, MAE

represents the absolute average size of the residuals, and the R2 represents the

model sum of squares (SSM) divided by the Total Sum of Squares (SST ). The

values of RMSE and MAE are scaled and the same unit as the dependent

variable that we forecast. RMSE punishes large deviations from actual value

more by taking the quadratic error which MAE does not. Due to this fact

and that RMSE lacks some direct interpretation, it is helpful to look at both

measures. In cases where two models have similar MAE but different RMSE,

one model will have more significant deviations, although the errors are similar
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on average. In forecasting macroeconomic variables, precision is essential, and

we wish to avoid large deviations, making RMSE a good measure. Kathuria

(2019) argues that the Mean Square Error (MSE) is the best error measure

and that RMSE is an even better measure as it takes the root, which makes

the measure similar in unit and size to our predictive variable. Especially for

error measures, it is critical to have fixed the problem of non–stationarity to

avoid misleading and incorrect measurements (Flovik (2018)). Also, we look

at the average of error measurements in each validation set.

Final validation of the models’ performances is done by testing for robustness.

This can be done by testing the models on different periods, especially with

and without a crisis in the data set. We look at predictions including and

excluding Covid–19 and test the models’ long– and short–term predictions.

Since we look at different data sets, we can decide whether a consistent model

outperforms the other; however, we do not compare model performance across

different data sets.
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4 Data

The data must cover all aspects of the economy to ensure that our model

can observe and register information of some explanatory powers. The data

must also be sufficiently long to include the different economic cycles and the

different variables. The longer the sample of observations in the data set – the

greater possibilities for a better model. It is a common problem in economics

that many variables lack series that are sufficiently long, and we face the issue

of accessibility of long data samples. An alternative is to remove variables with

too short time–series from the data set. However, we risk losing variables with

explanatory power of our dependent variable—this thesis explores where the

ideal trade–off between length and number of variables lies.

Through help from Nordea Markets’ Macroeconomics team, we collect 89 vari-

ables through the database Macrobond, a database that helps collect, analyse,

and visualise data. The database has all the variables we find relevant for our

thesis, and therefore we only used this tool as our data collector. The variables

are collected in either monthly or quarterly frequency. These data include our

three endogenous variables, GDP, unemployment rate and inflation, and other

variables such as import and export from different countries, Indexes, FX rates,

Swap rates, Government and Corporate Bond Rates, and Economic Surveys.

All variables are disclosed in F.1.1 with their transformations, descriptions,

and frequency. We take the logarithm of all variables with values > 0 and,

for all variables, difference them until they reject (for KPSS – not reject) the

unit–root tests at a 99% confidence level. We lag monthly and quarterly vari-

ables to avoid look–ahead bias. It is not necessarily the sample length of each

series that is most valued. Having many features with little correlation is often

sufficient to find the true pattern in the data when applying machine learning.

After handling the raw data as disclosed in Section 4 we look at different

combinations of data sets. When removing missing values from the entire data
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set, we are left with observations from 2008 to 2021. Removing the three

variables with the most missing values, we have a data set that goes back to

2005, and by setting a threshold of missing values less than 25 for the quarterly

data set and less than 50 for the monthly data set, we have data back to 2000

and 1998 respectively. Even though removing several variables helps avoiding

the “curse–of–dimensionality”, we might remove a vital exogen variable. On

the other hand, there might be several variables with little explanatory power;

hence by performing PCA on all data sets, we can test whether additional

columns are removed or not. We run the PCA using three different tolerance

thresholds of a minimum level of variance: 0.1, 0.05 and 0.01. Any subsequent

component with standard deviation, σ, less than tol×σPC1 are not included in

the analysis of principal components. The combination of removing variables

with large numbers of missing values and performing PCA, we are left with

nine data sets to test our models.
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5 Results and Analysis

5.1 Results

To validate the assumptions for the penalised regression models, we check that

the data is linear, normally distributed, and independent. Figure I.0.1 shows

the distribution of the endogenous variables before and after being standard-

ised, and we see a clear improvement in behaviour of the variables after. This is

valid for the exogenous variables as well, being linear or almost linear, which is

appropriate for our models as they are extended versions of OLS. Even though

linear regressions assume linearity, our models use a penalisation term to op-

erate around this and therefore work well with non–linear data. The variables

have constant variance as we have made sure the variables are stationary and

trend–stationary at a 99% confidence interval. Figure G.0.1 shows all the en-

dogenous variables’ autocorrelation function plots first on their raw form to

the left and after their transformations to the right. We see a clear improve-

ment in the time–series autocorrelation among the lagged variables after the

transformation, indicating that their observations are now independent. This

property is checked for all variables. Moreover, due to the PCA, we are con-

fident that all the principal components used in the models are independent

as it removes multicollinearity. Either way, we also see little correlation in

the data sets by Figure H.1.1 and Figure H.2.1, meaning most variables are

independent in their raw forms.

Figure D.0.1 shows the regression coefficients in dependence of λ. We see that

several coefficients are set to zero in the lasso regression model (to the right)

for an increasing λ, while the ridge coefficients (to the left) assume small but

non–zero values for large λ, both observations are characteristics for general

solutions of the two regression models. For the lasso regression model, we have

that the coefficients for log(λ) > 0 are penalised, in this plot the optimal λ,

λ∗, (minimizing RMSE) equals 0.0032 (log(0.0032) = −2.4949) and one out
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of 37 coefficients is penalised. In the ridge regression λ∗ is a bit larger and

equals 0.0177, (log(0.0177) = −1.7520).

To verify that the number of candidates at each split, m, in the random forest

model is optimal when m = p/3 we tested for m = p, m = p/3 and m =
√
p.

Figure E.0.1 plots of the three different models with the corresponding different

number of candidates over a grid of many trees and the corresponding RMSE.

We verify that m = p/3 is reaching a value below the two others as the number

of trees increases. From Figure E.0.1, we also see that the RMSE decreases

as the number of trees increases.

The predictions made of the näıve model are only the last known value of y

in the last training set replicated n times where n equals the length of the

validation set. The predictions made from the näıve models are constant, thus

no variance, and we can therefore not measure R2. However, there are some

similar occurrences in some of the training sets for the other regression models.

For these incidences, we sat R2 = 0, which gives the models an overall lower

estimate of R2 when taking the average of the runs.

For the autoregressive model we make sure not only the endogenous variables,

but all variables are stationary and trend–stationary for model validation pur-

pose. Before running the AR model, we find an optimal number of lags using

AIC, resulting in optimal number of lags equal, k = 1. Therefore, we have

AR(1) model in the form

yt = β0 + β1yt−1 + εt (16)

The V AR model is not functional on data sets with fewer observations than

variables, resulting in no computations of V AR in these cases. To avoid this

problem, we first tried to increase the number of endogenous variables as the

number of observations increased in the training sample, letting the number

of principal components used in VAR equal p = x − 1 for x observations.
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Unfortunately, this led to large error measurements. Instead, we skipped the

V AR model until the length of the training set T1:x is longer than the number

of variables (x > p). Therefore, V AR has been trained fewer times than the

others, and as a result, its error measurements are likely to be relatively large.

To analyse the models, we look at each model’s average one–year predictions

from 2010 to 2019. In addition, we wish to see how the models perform in the

short term, therefore we also included the results on the models’ performance

on a one–period prediction taking the average of 12 runs, including and exclud-

ing Covid–19. To check robustness, we look at their one–year performance of

2019 and 2020 to validate whether the models’ results before and after Covid–

19 are consistent with the average results. It is worth noticing that the error

estimates of the quarterly variables (GDP and unemployment rate) in the an-

nual predictions are based on four predictions points. As inflation is a monthly

variable, the error estimates are based on 12 prediction points; hence, more

extensive error measurements when forecasting inflation are expected.

5.1.1 Norwegian GDP, Quarterly Predictions

The best combination of data is to apply all variables in our data set, creating a

trade–off with a shorter time sample with data from 2008 and tolerance equal

to 0.1 in the PCA, meaning that any principal components with standard

deviation less than 0.1 × σPC1 are removed from the analysis. This results in

our model running with 37 principal components on 52 quarterly observations

(n > p).

The error estimates of the predictions are listed in Table A.1.1. There is some

variation in what models perform the best when forecasting different periods

based on different data sets. Running the models ten times, forecasting one

year excluding Covid–19, the lasso model has on average the lowest RMSE

and MAE estimates, closely followed by the Average ML model and elastic
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net. The ridge regression has the highest R2 measurement, while the lasso has

relatively low R2 given that it outperforms on the other two measures. AR(1)

performs the best of the traditional statistical methods and even outperforms

random forest for all three measurements.

The error measurements for one year of forecasting in 2019 the näıve model

has the lowest RMSE, closely followed by the penalised regressions. AR(1)

has the lowest MAE measurement. Again, the penalised regression models’

MAE are close. The machine learning models have high R2 (except lasso),

with elastic net having the highest score. Forecasting the year of Covid–19,

the penalised regressions showed some muscle having the lowest RMSE and

MAE and the highest R2. In general, the forecasting results of this turbulent

year are comparatively similar to the average one–year forecasts.

On the one–period forecast excluding Covid–19, the AR(1) outperform the

other models, followed by random forest. Forecasting one quartal including

Covid–19, the Average ML model perform the best.

5.1.2 Norwegian Unemployment Rate, Quarterly Predictions

The best combination of data is the data set including all variables and with

tolerance equal to 0.01 in the PCA, thus components with standard deviation

less than 0.01 × σPC1 are removed from the analysis, leaving the data set to

consist of 51 principal components and 52 quarterly observations (including

date and NOUR, n < p). Since we have fewer observations than variables,

V AR(1) could not run.

The results for the Norwegian unemployment rate forecasting error measure-

ment are given in Table A.2.1. When excluding Covid–19 from the data set,

AR(1) is on average the model with closest predictions compared to the true

data having lowest RMSE (= 0.8876) and MAE (= 0.7592). We have seen

that the machine learning models (excluding ridge) have the highest R2 esti-
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mates. Average ML model is the second–best model, with RMSE = 0.9254

and MAE = 0.7828. Random forest has the highest RMSE and MAE mea-

surements and the highest R2 of all models.

lasso outperforms all other models on all metrics when forecasting only 2019.

Overall, the other machine learning models do quite well, outperforming näıve

and AR(1). When forecasting the year of Covid–19, the models’ performance

is more divided. The AR(1) has the lowest RMSE (= 2.0660), ridge has lowest

MAE (= 1.8313) and random forest has the highest R2 (= 0.9032). Ridge has

the second–lowest RMSE (= 2.1238), however a very low R2 (= 0.0988), while

AR(1) has the second–lowest MAE (= 1.8943) and a higher R2 (= 0.6499).

On the one–period forecasts excluding Covid–19, AR(1) is most accurate, fol-

lowed by Average ML. The forecasts over the year of Covid–19, ridge outper-

forms the others followed by elastic net. Random forest has the highest MAE

when forecasting unemployment rate on short term.

5.1.3 Norwegian Inflation, Monthly Predictions

Forecasting inflation the data set with all variables included is the best com-

bination, with observations from 2008. The optimal tolerance in the PCA is

0.01, resulting in zero components being removed. Thus, the data set consists

of 87 principal components and 159 monthly observations (n > p).

The inflation prediction results are shown in Table A.3.1. AR(1) outperforms

the other models in every single prediction period, with all three error measures

giving consistent results. The second–best model varies among the machine

learning models, where lasso and random forest are often closest to AR(1).

Average ML is the second–best when forecasting one year on average.
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5.2 Analysis

To analyse the results, we look at consistency in the models. We are interested

in whether the same models do well across the endogenous variables, time

horizons and during recessions.

As inflation is a monthly variable, the one–year forecast is based on 12

prediction–points. The greater the prediction steps, the greater uncertainty,

so we are expecting large error measures. AR(1) clearly outperforms the

others when forecasting inflation, as the results are very consistent. Given

that AR(1) and näıve depend only on inflation in their predictions, while

machine learning uses other macroeconomic factors as exogenous variables,

our results are in agreement with the findings of Stock and Watson (1999).

In addition, the standard deviation of inflation reported in Table B.0.1 are

very stable and quite low. We can not show that machine learning adds value

when forecasting this variable and believe that using many variables to

explain inflation is more confusing than value–adding.

On average, the results for GDP show that the machine learning models with

lasso and the penalised regressions perform the best. The best statistical

method, AR(1), perform 12.06% worse according to the RMSE than the best

machine learning model, and 10.8% worse according to MAE. For the un-

employment rate, the AR(1) model perform the best, however, in relation to

the penalised regressions it is only 4.25% better according to RMSE and 3.1%

better according to MAE. It is clear that AR(1) only slightly outperforms the

other models.

Forecasting a specific period helps test for robustness in the models. On the

one–year forecast of 2019, there are some variations in the models where the

traditional statistical models have lower error measures for GDP and lasso the

lowest for unemployment rate, not truly consistent with the one–year results

on average. In Table B.0.1 we see that GDP is very stable during 2019 with a
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standard deviation equal to 0.51%. From Figure A.1.1 we see that the period

before 2019 is also very stable compared to the standard deviation of 2010–2020

(0.90%). Therefore, it makes sense that the traditional models are doing well

for this period. We suddenly have opposite results for the unemployment rate,

machine learning now clearly outperforming the traditional models. Figure

A.2.1 shows a quite stable period of unemployment rate right before 2019 and

a relatively volatile period during 2019. We see from Table B.0.1 that this is

a more volatile period having a standard deviation equal to 14.41% compared

to the average of 9.46%, this could be a natural reason why machine learning

performs better.

Introducing a volatile period such as Covid–19 is of interest to validate what

models manage to maintain their level of performance during recessions. When

looking at GDP, the results are consistent with the one–year forecasts on av-

erage, lasso having the lowest RMSE and MAE, and the machine learning

models have high R2. The model performances for unemployment rate are also

very similar, except that ridge has now the lowest measure of MAE. Looking

at the periods’ volatility in Table B.0.1 we see high volatility in 2020 for both

variables. In 2020 the unemployment rate an extremely high standard devia-

tion of 29.60%, and GDP of 6.19%. Therefore, it makes sense that machine

learning continues to do well for GDP and that there is an improvement when

looking at MAE for the unemployment rate.

Looking at the models’ performance for one–period forecast excluding Covid–

19, AR(1) perform the best for both unemployment rate and GDP, Average

ML and random forest did respectively perform second best. The error measure

differences are 22.6% and 14.24%. A noticeable result is that the elastic net and

lasso are outperform by the näıve model when forecasting GDP. The machine

learning models are more precise when including Covid–19. Average ML and

ridge perform best for GDP and unemployment rate, respectively. The AR(1)
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model perform 5th and 4th, with 32.7% and 56.6% worse error measures than

the best machine learning model. The machine learning models better manage

to follow the oscillation of the Covid–19 period 2020, and therefore, the results

changed drastically.

Interestingly, when AR(1) outperforms the machine learning models, the dif-

ference in error measures is relatively low. The machine learning models do not

perform poorly even though the AR(1) performs the best. Further, when the

machine learning models outperform the statistical methods, the differences

in error measures are relatively higher. In conclusion, we find the machine

learning models to have more sound forecasts in general.

Random Forest, elastic net and ridge are good at handling data sets with

many variables compared to observations. Random forest should be able to

sort a wide spectre of exogenous variables to extract non–linear relationships.

Elastic Net through combining the dimension reduction and variable selection

and produce results that are robust to handle multicollinearity Tiffin (2016).

The fact that random forest performs poorly, and the penalised regressions

well for one–year forecasting could be due to the somewhat linear relationship

between the endogenous and exogenous variables.

The Average ML model’s performance naturally depends on the input mod-

els. Significant outliers in models are not ignored but included with the same

weight as models that perform superior. In this case, the random forest model

performs relatively poorly, negatively affecting the Average model’s result.

More advanced algorithms decide the weighting of the input models in a more

complex way than taking the average of predictions. Thus, the results could

be even better by including an advanced model, such as the Super Learner.

Comparing our results with the ones of Makridakis et al. (2018) and Cerqueira

et al. (2019) is quite interesting. As Cerqueira et al. stated, having a short

time–sample, the statistical methods are expected to perform better than ma-
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chine learning. We consider our longest data set with monthly observations

of inflation to be quite short, and the results from this data set are that the

statistical models outperform the other. Our result is consistent with the find-

ings of Cerqueira et al. however, as previously addressed, we believe this to be

due to the behaviour of inflation and not a validation for statistical models,

in general, doing well with short time samples. For the shorter quarterly data

sets, there is no consensus on what model is performing the best, and often

machine learning models are the ones with the elite forecasts. This result is

neither in agreement with the paper from Cerqueira et al. nor Makridakis et

al. With a short–time sample, we should, according to Cerqueira et al, get the

same results as Makridakis et al., which is not the case.
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6 Conclusion

This thesis provides new measures of comparing machine learning to tradi-

tional statistical methods in time–series forecasting of Norwegian Macroeco-

nomic variables over one–year and one–period horizons. The results are based

on standardised, stationary macroeconomic and financial data. To evaluate

the models out–of–sample avoids overfitting, and we find the optimal trade–

off between exogenous variables and observations by performing PCA. The

primary conclusion of this study is that machine learning does add value when

forecasting macroeconomic variables, excluding inflation. Similar to Stock and

Watson (1999), our study finds inflation to be a complex variable to predict,

and the models depending solely on inflation itself are consistently outper-

forming the others. Machine learning models perform best when predicting

GDP and their performances are validated when testing for robustness. When

forecasting the unemployment rate, the outperforming results vary between

the machine learning and statistical models. However, the traditional meth-

ods are never better to a great extent. Again, the results are similar to when

forecasting the unemployment rate during the period of Covid–19, hence val-

idating the robustness of the models. In situations where machine learning

outperforms, there is truly a significant improvement compared to traditional

statistical methods. In situations where the statistical methods outperform,

the difference is limited compared to the results from the machine learning

models. This gives us reason to conclude that using machine learning instead

of traditional statistical methods adds value for forecasting purposes. When

looking at volatile periods we find machine learning to have a great advantage

as it captures abnormalities and rapid fluctuations.

Further research can create more complex traditional statistical methods and

use even more advanced machine learning models, such as Super Learner or

dive more into the Deep Learning sphere and use Recurrent Neural Network.

34

10396490992006GRA 19703



Also, testing the models on other macroeconomic or financial factors could

be interesting. Unfortunately, we cannot state that the result will not change

if using other methods, adding, or excluding variables or tuning the models

differently.
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Appendices

Appendix A Model Validation

A.1 Norwegian Gross Domestic Product Mainland

Figure A.1.1: Out of Sample Forecast: Norwegian GDP

Note. The top plot is out of sample forecast of Norwegian GDP (NOGDPNOK) one year

ahead (four quarters) and the lower plot is one period forecast (one quarter) for 12 periods

plotted together. The purple line is the true values and the other are the different models’

forecasts.
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Table A.1.1: Model Performance Metrics, Norway GDP

NORWEGIAN GROSS DOMESTIC PRODUCT MAINLAND

ONE YEAR FORECAST ON AVERAGE: Jan 2010–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 0.7023 0.6376 0.6576 0.7632 0.6560 0.7955 0.7145 0.8925

R2 0.4659 0.2733 0.2691 0.1986 0.2912 0.3392 0.1605

MAE 0.5736 0.5284 0.5462 0.62 0.5330 0.7046 0.5856 0.8321

ONE YEAR FORECAST: Jan 2019–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 1.1492 1.0723 1.1492 1.1993 1.137 0.967 1.1149 1.1703

R2 0.5103 0.0537 0 0.4595 0.2504 . 0.1617 0.0894

MAE 0.8054 0.7612 0.8054 0.8414 0.8038 0.8477 0.7597 1.0683

ONE YEAR FORECAST COVID–19: Jan 2020–Jan 2021

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 2.8066 2.352 2.8154 3.291 2.8681 3.3947 3.2699 3.5523

R2 0.8238 0.6676 0.8205 0.0143 0.6522 0.0466 0.0136

MAE 2.3856 1.9718 2.3929 2.905 2.4651 2.1551 2.7813 2.9108

ONE PERIOD FORECAST: Jan 2017–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

MAE 0.4967 1.0386 1.1214 0.3813 0.6167 0.6336 0.3109 1.0023

ONE PERIOD FORECAST COVID-19: Jan 2018–Jan 2021

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

MAE 0.8216 0.8202 0.8143 1.262 0.6948 1.8987 1.0882 1.4441

Note. This table reports the model performance metrics RMSE, R2 and MAE we have

applied to evaluate the different models. The One year ahead forecast: Jan 2020–Jan 2021

data set’s metrics corresponds to the top plot in A.1.1, while One period forecast: Jan 2018–

Jan 2021 to the lower plot. We also tested the model performances on average with full

data sample without Covid–19 and the one year forecast of 2020.
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A.2 Norwegian Unemployment Rate

Figure A.2.1: Out of Sample Forecast: Norwegian Unemployment Rate

Note. The top plot is out of sample forecast of Norwegian Unemployment Rate (NOUR)

one year ahead (four quarters) and the lower plot is one period forecast (one quarter) for 12

periods plotted together. The purple line is the true values and the other are the different

models’ forecasts. Note that VAR does not work on this data set, hence true data is now

demonstrated by the pink line.
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Table A.2.1: Model Performance Metrics. Norway Unemployment Rate

NORWEGIAN UNEMPLOYMENT RATE

ONE YEAR FORECAST ON AVERAGE: Jan 2010–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1)

RMSE 0.9491 0.9273 0.9482 0.9642 0.9254 1.3723 0.8876

R2 0.2320 0.2086 0.1942 0.5453 0.3421 0.5177

MAE 0.8037 0.7910 0.8127 0.8186 0.7828 1.2299 0.7592

ONE YEAR FORECAST: Jan 2019–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1)

RMSE 1.2825 1.0378 1.2766 1.6549 1.3509 2.1522 1.4645

R2 0.5163 0.7038 0.5217 0.0182 0.5625 0.3637

MAE 1.1065 0.9403 1.1094 1.5790 1.1910 1.9333 1.2314

ONE YEAR FORECAST COVID–19: Oct 2019–Oct 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1)

RMSE 2.1238 2.1834 2.1836 2.3655 2.1946 2.2199 2.0660

R2 0.0988 0.7289 0.7294 0.9032 0.4011 0.6499

MAE 1.8313 2.1491 2.1493 2.1941 2.0751 2.0162 1.8943

ONE PERIOD FORECAST: Jan 2017–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1)

MAE 0.8182 0.8309 0.8514 0.9647 0.7998 1.6731 0.7001

ONE PERIOD FORECAST COVID–19: Jan 2018–Oct 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1)

MAE 0.7106 0.9520 0.7436 1.0171 0.8871 2.1548 0.9431

Note. This table reports the model performance metrics RMSE, R2 and MAE we have

applied to evaluate the different models. The One year ahead forecast: Jan 2020–Jan 2021

data set’s metrics corresponds to the top plot in A.2.1, while One period forecast: Jan 2018–

Oct 2020 to the below plot. We also tested the model performances on average with full

data sample and without the time period of Covid–19.
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A.3 Norwegian Inflation

Figure A.3.1: Out of Sample Forecast: Norwegian Inflation

Note. The top plot is out of sample forecast of Norwegian Consumer Price Index (NOCPI)

one year ahead (12 months) and the lower plot is one period forecast (one month) for 12

periods plotted together. The purple line is the true values and the other are the different

models’ forecasts.
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Table A.3.1: Model Performance Metrics, Norway Inflation

METRICS NORWEGIAN INFLATION (CPI)

ONE YEAR FORECAST ON AVERAGE: Mar 2010–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 0.8408 0.8642 0.8309 0.8973 0.8053 1.4416 0.7856 1.8662

R2 0.2439 0.2138 0.2415 0.1160 0.2596 0.3021 0.1234

MAE 0.6857 0.7098 0.6905 0.7273 0.6695 1.2702 0.6448 1.5492

ONE YEAR FORECAST: Jan 2019–Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 0.8134 0.7839 0.8128 1.3937 0.8656 1.7452 0.6329 1.3272

R2 0.3294 0.3833 0.3301 0.0008 0.2467 0.6294 0.1453

MAE 0.6784 0.6536 0.6774 1.0738 0.7297 1.5459 0.5300 0.0799

ONE YEAR FORECAST COVID-19: Mar 2020–Mar 2021

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

RMSE 1.3577 1.8728 1.3537 1.1643 1.2681 1.2664 1.1209 2.6273

R2 0.0046 0.0016 0.0048 0 0.0031 0.0644 0.0385

MAE 1.2021 1.5813 1.2004 0.9527 1.1067 1.1118 0.8083 2.1319

ONE PERIOD FORECAST: Jan 2019 - Jan 2020

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

MAE 0.8530 0.7663 0.8565 1.044 0.8265 1.4131 0.5181 1.2535

ONE PERIOD FORECAST COVID-19: Mar 2020 - Mar 2021

Ridge Lasso Elastic Net Random Forest Average ML Näıve AR(1) VAR(1)

MAE 1.2134 1.2208 1.3021 0.9044 1.0171 1.3588 0.8709 2.5079

Note. This table reports the model performance metrics RMSE, R2 and MAE we have

applied to evaluate the different models. The One year ahead forecast: Mar 2020–Mar 2021

data set’s metrics corresponds to the top plot in A.2.1, while One period forecast: Mar

2020–Mar 2021 to the below plot. We also tested the model performances on average with

full data sample and without the time period of Covid–19.
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Appendix B Volatility

Table B.0.1: Volatility of GDP, Unemployment Rate and Inflation
STANDARD DEVIATION

GDP UR CPI

Average 0.90 % 9.46 % 0.42 %
2019 0.51 % 14.41 % 0.47 %
2020 6.19 % 29.60 % 0.44 %

Note. The standard deviation of the endogenous variables on over the long sample with

average predictions and for the robustness test periods 2019 and 2020.

Appendix C Train, Test and Validation Sets

Figure C.0.1: Train, Test and Validation Sets

Note. An illustration of the train, test and validation sets over an expanding window. The

blue part is the train set, the red is the test set and the orange points are the validation set.

We see that the train set expands while the test and validation sets are of constant size.
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Appendix D Ridge and Lasso Coefficients

Figure D.0.1: Ridge and Lasso Coefficients

Note. This figure shows coefficient paths for the Ridge (to the left) and the Lasso (to the

right) regression models on the L1-norm, log(λ), and the fraction of deviance explained.

The numbers on top of each figure are the non-zero regression coefficients.
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Appendix E Random Forest Coefficients Can-

didates

Figure E.0.1: Random Forest: Number of candidates in each split

Note. Results from Random Forests with p exogenous variables. The error (RMSE) is

displayed as a function of number of trees. We see from this plot that m = p/3 gives the

lowest RMSE estimate as number of trees increases. Our model chooses the number of

trees that minimizes RMSE.
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Appendix F Macroeconomic Variables

F.1 Transformation

Xit is the transformed series

XA
it is the untransformed series

1. Code ∆lv : Xi,t = XA
i,t −XA

i,t−1

2. Code ∆2lv : Xi,t = ∆2(XA
i,t)

3. Code ∆ln : Xi,t = ln(XA
i,t)− ln(XA

i,t−1)

4. Code ∆2ln : Xi,t = ∆2ln(XA
i,t)

5. Code ∆3ln : Xi,t = ∆3ln(XA
i,t)

Table F.1.1 discloses all data series used in the data sets and lists the trans-

formation (Tran) applied to each variable to make them stationary. We have

taken the logarithm of all variables with values > 0 and for all variables dif-

ference them until they reject (for KPSS – not reject) the stationary tests at

a 99% confidence level. The Table also provides a short description of each

variable with their corresponding short names. We have also listed their raw

frequencies (freq.) to see whether they are daily (D), monthly (M) or quarterly

(Q) published. All data series are gathered from Macrobond.
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Table F.1.1: Transformation of Raw Data

No. Short Name Tran Description Freq.

1 NOGDPNOK ∆2ln Norway, Gross Domestic Product (Mainland), Total, Constant Prices,

SA, Market Prices, NOK

Q

2 NOOBXTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, OBX Index (OBX),

Total Return, Close, NOK

D

3 NOCSTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Communication Ser-

vices, Index, Total Return, Close, NOK

D

4 NOBITR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Benchmark Index, To-

tal Return, Close, NOK

D

5 NOCDTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Consumer Discre-

tionary, Index, Total Return, Close, NOK

D

6 NOUTR ∆2ln Norway, Equity Indices, Oslo Stock Exchange, Utilities, Index, Total

Return, Close, NOK

D

7 NOETR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Energy, Index, Total

Return, Close, NOK

D

8 NOFTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Financials, Index, Total

Return, Close, NOK

D

9 NOHCTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Health Care, Index,

Total Return, Close, NOK

D

10 NOITR ∆2ln Norway, Equity Indices, Oslo Stock Exchange, Industrials, Index, To-

tal Return, Close, NOK

D

11 NOITTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Information Technol-

ogy, Index, Total Return, Close, NOK

D

12 NOCSEB ∆ Norway, Consumer Surveys, Finance Norway, Expectations Barome-

ter, Total, Trend Adjusted, SA, Index

Q

13 NODDASP ∆2ln Norway, Credit Indicators, Domestic Debt (C2), All Sectors, Total,

Transactions, 12-Month Growth, Percent

M

14 NODDHP ∆ Norway, Credit Indicators, Domestic Debt (C2), Households, Total,

Transactions, 12-Month Growth, Percent

M

15 NOKGBP ∆ln Norway, FX Spot Rates, Central Bank of Norway, NOK per GBP,

Fixing

D

16 NOKEUR ∆ln Norway, FX Spot Rates, Central Bank of Norway, NOK per EUR,

Fixing

D

17 NOKUSD ∆ln Norway, FX Spot Rates, Central Bank of Norway, NOK per USD,

Fixing

D

18 NOEXCP ∆ln Norway, Expenditure Approach, Export, Total, Constant Prices, SA,

NOK

Q

19 NOIMCP ∆ln Norway, Expenditure Approach, Import, Total, Constant Prices, SA,

NOK

Q

20 NOGFCFCP ∆2ln Norway, Expenditure Approach, Gross Fixed Capital Formation, To-

tal, Constant Prices, SA, NOK

Q

21 NOSR10Y ∆2ln Norway, Swap Rates, Macrobond, NOK, 10 Year, Mid D

22 NOSR5Y ∆ln Norway, Swap Rates, Macrobond, NOK, 5 Year, Mid D

23 NOSR2Y ∆ln Norway, Swap Rates, Macrobond, NOK, 2 Year, Mid D

24 NOSR10Y2Y ∆ Norway, Swap Rates, Macrobond, NOK, 10 Year, Mid minus Norway,

Swap Rates, Macrobond, NOK, 2 Year, Mid

D

25 NIBOR3M ∆ln Norway, Interbank Rates, NIBOR, 3 Month, Fixing D

26 NOMT ∆2ln Norway, Manufacturing, Total, SA, Index M

27 NOIPT ∆ln Norway, Industrial Production, Total, SA, Index M

28 NOCUMWA ∆ln Norway, Capacity Utilization, Manufacturing, Weighted Average, SA Q

29 NOCPI ∆ln Norway, Consumer Price Index, Total, Index M

30 NOREPT ∆2ln Norway, Real Estate Prices, All Residential Buildings, Total, SA, In-

dex, Statistics Norway, Residential, Price Index

Q

31 NOCPIATE ∆3ln Norway, Consumer Price Index, CPI-ATE, Index (CPI adjusted for

tax changes and excluding energy products)

M

32 NOFCEHNPISHCP ∆ln Norway, Expenditure Approach, Final Consumption Expenditure,

Households & NPISH, Total, Constant Prices, SA, NOK

Q

33 NOGFCFETPCP ∆ln Norway, Expenditure Approach, Gross Fixed Capital Formation, Ex-

traction & Transport via Pipelines, Total, Constant Prices, SA, NOK

Q

34 NOGFCFMCP ∆2ln Norway, Expenditure Approach, Gross Fixed Capital Formation,

Mainland, Total, Constant Prices, SA, NOK

Q

35 NOFDMCP ∆2ln Norway, Expenditure Approach, Final Demand from Mainland, Total

Excluding Changes in Stocks, Constant Prices, SA, NOK

Q

36 NOCSTR ∆ln Norway, Equity Indices, Oslo Stock Exchange, Consumer Staples, In-

dex, Total Return, Close, NOK

D

37 CDAXEUR ∆2ln Germany, Equity Indices, Deutsche Boerse, DAX, CDAX Index, Price

Return, Close, EUR

D

38 USBSM ∆ln United States, Business Surveys, ISM, Report on Business, Manufac-

turing, Purchasing Managers’, SA, Index

M

39 USBSCEO ∆ln United States, Business Surveys, Conference Board, CEO Confidence

Survey, Overall, Total, Measure of CEO Confidence, Index

Q

40 STOXXEUR ∆2ln EU, Equity Indices, STOXX, Enlarged 15 TMI, Index, Net Total Re-

turn, Close, EUR

D

41 EUESESI ∆ln EU, Economic Surveys, DG ECFIN, Economic Sentiment Indicator,

Balance, SA, Index

M

42 FTSEGBP ∆ln United Kingdom, Equity Indices, FTSE, All Cap, Index, Price Return,

Close, GBP

D

43 OMXS50SEK ∆2ln Sweden, Equity Indices, Nasdaq OMX, Benchmark, OMXS50 Equal

Weighted Index, Total Return, Close, SEK

D

44 SEGDPSEK ∆ln Sweden, Gross Domestic Product, Total, Constant Prices, SA, Market

Prices, SEK

Q

Continue. . .

46

10396490992006GRA 19703



. . . Continued
No. Short Name Tran Description Freq.

45 USGDPUSD ∆ln United States, Gross Domestic Product, Total, Constant Prices, SA,

Chained, AR, USD

Q

46 DEGDPEUR ∆ln Germany, Gross Domestic Product, Total, Calendar Adjusted (X-13

ARIMA), Constant Prices, SA (X-13 ARIMA), Chained, EUR

Q

47 UKGDPGBP ∆2ln United Kingdom, Gross Domestic Product, At Market Prices, Con-

stant Prices, SA, GBP

Q

48 CNGDPCNY ∆2ln China, Gross Domestic Product, National, Total (Official), Current

Prices, CNY

Q

49 WRLDMP ∆ln World, Metal Production, Primary Aluminium, Total M

50 NOUR ∆2ln Norway, Unemployment, Rate, Males & Females, Total 15-74 Years,

SA

Q

51 NOEP ∆ln Norway, Energy Production, Transmission & Distribution, Electricity

Production, Total

M

52 UKPR ∆ln United Kingdom, Policy Rates, Bank Rate D

53 EUHICP ∆2ln EU, Consumer Price Index, All-Items HICP, Index D

54 USGB2Y ∆ln United States, Government Benchmarks, Macrobond, 2 Year, Yield D

55 USGB10Y ∆ln United States, Government Benchmarks, Macrobond, 10 Year, Yield D

56 USGB10Y2Y ∆2 United States, Government Benchmarks, Macrobond, 10 Year- 2 Year,

Yield

D

57 USPR ∆2ln United States, Policy Rates, Effective Rates, Federal Funds Effective

Rate

D

58 NOBAI ∆2ln Norway, Bankruptcies, Total, All Industries M

59 NOCI ∆2ln Norway, Construction Indicators, Construction Production Index, To-

tal, SA, Index, Statistics Norway, Index

Q

60 NOCSC ∆2ln Norway, Construction Status, Number, Dwellings, National, Total,

Statistics Norway, Completed, Overall

Q

61 NOCSP ∆ln Norway, Construction Status, Number, Dwellings, National, Total,

Statistics Norway, Permits, Overall

Q

62 NOCSS ∆2ln Norway, Construction Status, Number, Dwellings, National, Total,

Statistics Norway, Starts, Overall

Q

63 NOBirths ∆2ln Norway, Births, Total Q

64 NODeaths ∆ln Norway, Deaths, Total Q

65 NOEmigration ∆ln Norway, Emigration, Total Q

66 NOImmigration ∆2ln Norway, Immigration, Total Q

67 NOProductivity ∆ln Norway, Productivity, Costs & Hours Worked, Actual Working Hours

per Week, Males & Females, Total

Q

68 NOCCI ∆ln Norway, Construction Cost Index, Residential Buildings, Total, Index M

69 NOExportTotal ∆ln Norway, Export Prices, Total, Index Q

70 NOExportSalmonW ∆ln Norway, Export Prices, Salmon, Frozen, Weight D

71 NOImportTotal ∆ln Norway, Import Prices, Total, Index Q

72 NOCUWA ∆ln Norway, Capacity Utilization, Consumer Goods, Weighted Average,

SA

Q

73 NOESLS ∆2ln Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Labour Supply, Aggregated

Q

74 NOESCC ∆2ln Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Capacity Constraints, Aggregated

Q

75 NOEAGFCF ∆ln Norway, Expenditure Approach, Gross Fixed Capital Formation,

Mainland, General Government, Total, Constant Prices, SA, NOK

Q

76 EUManufPMI ∆ln Euro Area, Euro Area, Markit, Manufacturing PMI, SA M

77 EUSPMI ∆ln Euro Area, Euro Area, Markit, Services PMI Business Activity Index,

SA

M

78 EMPMI ∆ln Emerging Markets, Emerging Markets, Markit, Services PMI Future

Activity Index, SA

M

79 EMManufPMI ∆ln Emerging Markets, Emerging Markets, Markit, Manufacturing PMI,

SA

M

80 USBSM ∆ln United States, Business Surveys, ISM, Report on Business, Manufac-

turing, Purchasing Managers’, SA, Index

M

81 USBSNonManuf ∆2ln United States, Business Surveys, ISM, Report on Business, Non -

Manufacturing, NMI/PMI, Purchasing Managers’ Index, SA, Index

M

82 CNBAPMI ∆ln China, China, Markit, Services PMI Business Activity Index, SA M

83 CNManufPMI ∆ln China, China, Markit, Manufacturing PMI, SA M

84 NOESOGP3M ∆2 Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Output Growth, Aggregated, Past 3 Months, Na-

tional, Change Y/Y

M

85 NOESOGN6M ∆ Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Output Growth, Aggregated, Next 6 Months - Fig-

ures from Previous Rounds, National, Change Y/Y

M

86 NOESEGN3M ∆2 Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Employment Growth, Aggregated, Next 3 Months -

Figures from Previous Rounds

M

87 NOESAWG ∆2 Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Annual Wage Growth, Aggregated, Index

M

88 NOESProfitability ∆2 Norway, Economic Surveys, Bank of Norway (Norges Bank), Regional

Network Report, Profitability, Aggregated, Change Y/Y

M

89 NOAICOG ∆2ln Norway, Investments, Oil & Gas Activity, Accrued Investment Costs,

Extraction of Crude Oil & Natural Gas, Total, NOK

Q
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Appendix G Auto Correlation Function

Figure G.0.1: Autocorrelation Function Plot

Note. This figure shows the properties of the three time-series Norwegian GDP, Unemploy-

ment Rate and Inflation. To the left we have the time-series autocorrelation plots before

being transformed. To the right all three variables are transformed to be stationary. Along

the x–axis we have the lagged values from 1–20 and their corresponding correlation with

Lag 0. We consider values that rises above or falls below the dashed lines to be statistically

significant.
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Appendix H Correlation Matrix

H.1 Quarterly Data Set

Figure H.1.1: Correlation Matrix: Quarterly Data Set
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A clear blue indicates correlation equal 1 hence the two variables are very correlated. A

clear red indicates the opposite; two negatively correlated variables with correlation equal

-1. White/weak color indicates little to no correlation.
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H.2 Monthly Data Set

Figure H.2.1: Correlation Matrix: Monthly Data Set
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Note. This Figure shows the correlation between the time–series in the monthly data set.

A clear blue indicates correlation equal 1 hence the two variables are very correlated. A

clear red indicates the opposite; two negatively correlated variables with correlation equal

-1. White/weak color indicates little to no correlation.
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Appendix I Time–Series Distribution

Figure I.0.1: Histogram and QQ–Plot

Note. This Figure plots the histogram and quantile–quantile plots of the Norwegian GDP,

Unemployment Rate and Inflation both before and after being standardized. The thin line

is to visualize the normal distribution with slope 1. Values deviation from this line is said

to not fit with the normal distribution.
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