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Abstract 

This study aims to examine what value Machine Learning algorithms give when 

trading from a long-term perspective. Historically, it has been hard to consistently 

gain an excess return from investing in the stock market. The high complexity and 

number of factors affecting the markets are complicating this task. In our research, 

the performance of Machine Learning algorithms such as Random Forest and 

Support Vector Machine were analyzed both with and without feature selection 

methods. The models’ predictions and our constructed portfolios were compared 

to two benchmarks (Dummy Classifier and OSEBX/OMX30 index).  

 

From our analyses, the Random Forest model with SVM-RFE feature selection 

was found to give the most promising prediction results, and the performance was 

analyzed both during the whole backtesting period and through times of crisis. 

When implementing a simple trading strategy utilizing the predictions, we found 

the same model with a portfolio construction of 30 companies to outperform both 

the benchmarks and other algorithms from late 2006 until the first quarter of 

2021. During times of crisis, our reference Machine Learning model did not 

significantly outperform the benchmarks. However, it showed uplifting results in 

economic rebounds. Thus, the highest potential for the Machine Learning model 

might be its ability to identify the best-performing stocks in periods after financial 

recessions. 
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1.0 INTRODUCTION 

The stock market we know today has existed for several centuries, where the 

Amsterdam Stock Exchange, which was established in 1602, is considered to be 

the oldest (Braudel, 1982). Throughout time, the trading mechanisms in the stock 

markets have changed, in line with a growing industry. In 2018, the world stock 

exchanges reached a record-high market capitalization of $68.65 trillion (World 

Bank, n.d.), highlighting its strong impact on the global economy. To profit from 

the stock market, traders need to predict trends in stock market behavior. With the 

vast amount of capital being traded, stock market prediction has been of great 

interest for investors, and there have been several approaches to maximize returns 

(Khan et al., 2020). The most popular methods involve fundamental analysis, 

technical analysis, or a combination of these.  

 

In the recent century, the quant revolution’s upspring has forced a shift in trading 

behavior among investors. Access to data and increased computer power have 

been the most important factors leading to this revolution, which has also 

introduced a new approach to stock trading, technological analysis. Machine 

Learning, a branch of Artificial Intelligence (AI), is the most popular outbreak 

from the new quant revolution in predicting the stock markets (Rasekhschaffe & 

Jones, 2019). 

 

Because of the great interest and potentially huge profits involved in making 

accurate stock market predictions, there have been several contributions to find 

the "perfect" model. Early research has relied heavily on purely traditional 

econometric techniques, such as regression, without successful results. It may be 

difficult to forecast any dynamic relationships between potential predictors and 

expected returns due to several reasons. For instance, financial data are considered 

noisy; factors may be subject to multicollinearity, and relationships between 

predictors and expected returns may be nonlinear, variable and/or contextual. 

Since the 2008 Financial Crisis, investors using quantitative factor models have 

struggled. As a result, many traders have focused their attention on developing 

models that use past data to dynamically "learn" from (Rasekhschaffe & Jones, 

2019).  
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A study from Nti et al. (2019) undertakes a systematic and critical review of 122 

past research works posted in academic journals within the period 2008-2018 in 

the area of stock market prediction using Machine Learning. Their findings 

revealed that approximately 66% of the studies reviewed were based on a 

technical analysis approach, 23% relied on fundamental analysis, and the 

remaining 11% used a combination of the two. In addition, Nti et al. (2019) argue 

that Support Vector Machine and Artificial Neural Networks were the most used 

Machine Learning algorithms for predicting the stock market. 

However, with the increasing attention and importance of Machine Learning in 

quantitative finance, there have also been valid criticisms against such dynamic 

models. The debates are surrounding whether Machine Learning techniques can 

be considered as practical investment tools. Although there is no doubt that such 

algorithms can help detect contextual and nonlinear relationships within large 

datasets, the risk of overfitting poses a significant challenge when trying to extract 

signals from noisy historical data (Rasekhschaffe & Jones, 2019). 

 

Our study is a contribution to a fast-growing literature in the use of Machine 

Learning for stock prediction. We have narrowed our research to companies listed 

on Oslo Børs and Nasdaq Stockholm for the period 2001-2021. Easy access to 

complete datasets has driven previous work to focus on large financial markets 

such as the US and the Asia Pacific. Additionally, it is challenging and time-

consuming to collect complete financial data sets from Nordic companies given 

their relatively small size in the global economy. Thus, to the best of our 

knowledge, there does not exist any published research on the Scandinavian 

financial markets within the area of Machine Learning for long-term stock 

prediction.  

 

This motivates us to expand existing knowledge of the underlying mechanisms for 

this local market. The main focus of our paper is to present an indication of what 

value Machine Learning can provide when making long-term stock predictions 

and trading based on fundamental and momentum analysis, as well as hand-

picked macro variables, both in terms of average performance and during times of 

crisis. First, we present relevant theory and data collection before moving to our 

methodology, results, and conclusion. Lastly, we continue the research by 

presenting a variable importance table to identify the features that best predict the 
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company's stock returns. Our analysis is based primarily on historical 

fundamentals and momentum in the stock prices for companies listed on Oslo 

Børs and Nasdaq Stockholm, in addition to macro variables for both the 

Scandinavian and the US markets. Thus, the main research question for our study 

is: To what extent can machine learning algorithms predict long-term stock price 

directions on Oslo Børs and Nasdaq Stockholm? 

 

Methodologically, we have found supervised Machine Learning models such as 

Support Vector Machine (SVM) and ensemble learning models (Random Forest 

(RF)) to be best suitable for our research. The time series is divided into training 

samples and test samples to evaluate the models. We use the training samples of 

the data to fit the models with SVM and RF algorithms, whereas the test samples 

are applied as a baseline to evaluate the out-of-sample performance. Two feature 

selection algorithms will be used to remove factors considered low in importance, 

attempting to improve the model by reducing complexity and overfitting (Tatsat et 

al., 2020). The rolling window approach is utilized for estimation. In addition to 

comparing the models to each other, we also evaluate the performance against a 

standard benchmark model, Dummy Classifier, as well as a weighted average and 

a 50/50 split between the Oslo Børs Benchmark Index (OSEBX) and OMX 

Stockholm 30 Index (OMXS30). 

 

There are several ways our work contributes to the existing literature within the 

field of stock prediction with Machine Learning.  

First, the research paper by Ballings, Van den Poel, Hespeels & Gryp (2015) 

called "Evaluating multiple classifiers for stock price direction prediction" was 

the first of its kind to evaluate several Machine Learning models in stock 

prediction. Previous research has tended to narrow their attention to one single 

model. The study presents an excellent overview of the current standings of both 

theoretical and empirical aspects of Machine Learning models for stock 

prediction. Ballings et al. (2015) gathered yearly data from 5767 listed European 

companies and utilized 81 specific fundamentals and general economic features to 

predict stock returns. The study used ensemble methods such as Random Forest 

(RF), AdaBoost (AB) and Kernel Factory (KF), and benchmarked against single 

classifier models limited to Neural Networks (NN), Logistic Regression (LR), 

Support Vector Machines (SVM) and K-Nearest Neighbours (KNN) in predicting 
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the direction of stock prices one year ahead. Their main findings were that RF was 

the best performer, followed by SVM, KF and AB, emphasizing the importance of 

including ensembles in the sets of algorithms for stock prediction.  

 

Further, the study by Yuan et al. (2020) showed that models such as Random 

Forest (RF), Support Vector Machine (SVM) and Artificial Neural Networks 

(ANN) have predictable power in the Shanghai Stock Exchange (SSE). The paper 

utilizes company fundamentals, momentum elements, along with volatility and 

other technical factors from nearly 3000 listed companies over an 8-year period. 

In the study, Yuan et al. (2020) found the RF model with feature selection through 

the same RF algorithm to be the best performer, outperforming the SHCI and 

HS300 benchmark indexes.  

 

Our study utilizes company fundamentals, momentum factors, and macro 

variables in stock prediction by several Machine Learning models, similar to the 

work by Ballings et al. (2015) and Yuan et al. (2020). However, we focus on 

predicting quarterly stock price directions and narrow our geographical area to the 

Norwegian and Swedish financial markets. Further, to test our models through 

different economic periods (including structural breaks), we backtest our 

performance for over 14 years. Ballings et al. (2015) and Yuan et al. (2020) have 

chosen a smaller backtesting period equal to six years and eight years, 

respectively. Unlike the study by Ballings et al. (2015), which only emphasizes on 

evaluating the models against each other, we also present a more practical view on 

the performance of Machine Learning algorithms by benchmarking against both 

the indexes and constructed Dummy Classifier models.  

 

Second, we refer to the research paper by Rasekhschaffe & Jones (2019): 

"Machine Learning for Stock Selection" as a great example of using Machine 

Learning techniques to predict stock returns while limiting the risk of overfitting. 

The study presents two primary ways to reduce the problem, namely feature 

engineering (which can increase the signal-to-noise ratio by transforming the data) 

and forecast combinations (reducing noise by focusing on robust relationships 

regardless of what forecasting technique and training window are being used). 

Rasekschaffe & Jones (2019) also suggest using company fundamentals in 

predicting the stock returns. However, the study does not focus on adding 
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macroeconomic variables to enhance the stock predictions, which is also 

illustrated in other research papers such as Alberg & Lipton (2018). The close 

relationship between the financial markets and the global economy motivates us 

to narrow the absence of literature within this topic by investigating the influence 

of macroeconomic data on stock predictions. Besides, we refer to the study by S.-

S. Chen (2009) on the influence of macroeconomic factors in predicting bear 

markets. Empirical evidence from the paper implies that macroeconomic 

variables, especially yield curve spreads and inflation rate, are valuable predictors 

of recessions in the US market. Hence, we want to examine the performance of 

our models, particularly during financial recessions, and test the same hypothesis 

of macroeconomic variables towards the Scandinavian market.  

 

As illustrated by the systematic review from Nti et al. (2019), previous academic 

papers on the subject are primarily driven towards short-term stock prediction and 

portfolio construction. From the articles on technical analysis, the predictive 

timeframe of most papers was 1-day ahead, with the maximum being 1-month. 

Although some papers have been narrowed to 1-year ahead stock predictions, 

such as Ballings et al. (2015) and Scholz et al. (2015), we have not come across 

previous work on quarterly predictions and trading. Thus, we are motivated to fill 

the existing gap in the literature by focusing on the quarterly perspective both in 

terms of stock prediction and portfolio construction.   

 

From our analyzes, we found both of our models to provide valuable insights in 

predicting stock price directions and earning excess returns. The study implied 

that the most effective forecasting algorithm was the Random Forest model with a 

Support Vector Machine Recursive Feature Elimination (SVM-RFE) feature 

selection, which gained a 15.17 percentage points higher annualized return than 

the weighted average benchmark index. Even though the model performed 

significantly better over the whole backtesting period, its performance during 

crisis periods was not better than the same benchmark in terms of returns. This 

contradicts the hypothesis by S.-S. Chen (2009) that the inclusion of 

macroeconomic variables makes it easier to predict bear markets. However, an 

interesting observation was found during the first periods after a financial 

recession, as our model produced significantly higher returns than the 

benchmarks. Hence, overall, our research suggests that Machine Learning models 
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can produce excess value in long-term stock trading in the Scandinavian financial 

markets.  

 

2.0 TRADING IN THE STOCK MARKET     

There are several approaches to stock prediction and trading, whereas the most 

popular methods can be categorized into either fundamental analysis or technical 

analysis. Furthermore, with the recent development of data availability, social 

media and increased computer power, several other terms within the stock market 

have been introduced and gained more importance. For the subsequent sections, 

we present an overview of common characteristics involved in stock market 

prediction and trading, which we find relevant to our study. 

 

Fundamental analysis 

Fundamental analysis combines a company's financial statement along with 

information on its peers and the operating market to determine the intrinsic value 

of a stock (often denoted as the stock price). If the stock is believed to be 

incorrectly priced, the investor would either short or long the stock with an 

expectation that the mispricing will correct itself. The emergence of Machine 

Learning has enabled a more automatized procedure for stock market prediction 

when using unstructured data. Previous research argues that in some cases, a 

higher prediction accuracy for the long-term stock-price movement was achieved 

using fundamental analysis. Hence, it is not suitable for short-term stock-price 

changes (Nti et al., 2019). 

 

Technical analysis 

Technical analysis, also known as charting, involves using different charts of 

historical market prices and other technical indicators to predict mostly short-term 

changes in the stock market (Nti et al., 2019). It has proliferated for several 

decades, and traders have increasingly turned to the fundamentals of technical 

analysis in predicting stock market behavior (J. Chen, 2010). However, previous 

research presents different conclusions on whether a technical analysis approach 

adds value to stock selection, mainly because it is considered to be strongly 

related to the "random walk" (Roscoe & Howorth, 2009). 
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Technology methods 

Technology methods involve a fundamental or technical approach combined with 

Machine Learning and computational techniques for analyzing stock market 

behavior. The most popular models used are the Hidden Markov Model, Neuro-

Fuzzy Inference System, Time Series Analysis, Genetic Algorithm, Regression, 

Support Vector Machine, Mining Association Rules, and Principal Component 

Analysis. (Nti et al., 2019). 

 

2.1 Why is the stock market hard to predict?      

Producing accurate forecasts is subject to many obstacles. The following section 

presents theories on why predicting stock markets may be exceptionally hard. 

According to several finance theories, financial markets are in equilibrium, asset 

prices are efficient (implying that prices are in line with the theoretical and 

rational market price), and bubbles do not exist (potential large market swings 

result from exogenous events that are unpredictable). Further, the finance industry 

is affected by a large number of factors. Company-specific factors (e.g., liquidity, 

financial quality, and company news) and macroeconomic factors (e.g., interest 

rates, economic stability, political stability, and inflation) are of great importance. 

Hence, finding an optimal subsample of data variables to produce accurate 

forecasts may be challenging. Additionally, macroeconomic variables are subject 

to high uncertainty. Given that such factors are expected to be updated frequently, 

an inevitable trade-off among timeliness and reliability occurs when the raw data 

are only published in pieces and gradually through time (Bier & Ahnert, 2001). 

One of the most highlighted arguments against the stock markets' predictability is 

delivered by Fama and Malkiel, which argue that the markets follow a stochastic 

process and hence are not predictable. They present two famous hypotheses: the 

Efficient Market Hypothesis and the Random Walk Hypothesis (Nti et al., 2019).  

   

2.1.1 The Efficient Market Hypothesis      

The Efficient Market Hypothesis (EMH) is a theory by Fama (1970), which 

argues that the market is efficient and stock prices reflect all available 

information. Consequently, this theory makes it impossible to consistently 

outperform the market on a risk-adjusted basis since new information is the only 

factor that moves asset prices. The Efficient Market Hypothesis is often 

considered in three forms: weak, semi-strong, and strong. The weak-form 
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hypothesis claims that all information derived from past prices is reflected in the 

current stock price. In the semi-strong form, the hypothesis states that the current 

stock price reflects all publicly available information. Lastly, the strong-form of 

the EMH argues that the stock price reflects all information, including insider 

information (Bodie et al., 2018). However, Grossman and Stiglitz (1980) argue 

that such an efficient market is impossible due to costly information. In later 

years, the hypothesis has been challenged by the upbringing of behavioral finance, 

which is the study of financial markets with the perspective of cognitive 

psychology and the limits to arbitrage. Unlike the Efficient Market Hypothesis, 

behavioral finance uses models that are not fully rational, either due to 

preferences or misbeliefs (Ritter, 2003).   

 

2.1.2 The Random Walk Hypothesis      

According to the Random Walk Hypothesis, changes in stock prices are random 

and cannot be predicted. Thus, price patterns and trends are not usable in 

predicting the future values of financial assets. In its simplest form, the random 

walk model is defined as:  

𝑋𝑡 = 𝑋𝑡−1 + 𝜖𝑡         

 

where 𝑋𝑡 is the process and 𝜖𝑡 is independently and identically distributed with 

zero mean and variance 𝜎𝑡
2 (Nkemnole, 2016). The Random Walk Hypothesis 

casts doubt and presents challenges on both the technical and fundamental 

approaches for stock prediction. To this date, empirical evidence is in great 

support of the random walk model. For a technical analyst, there would be no real 

value in stock prediction if the Random Walk Hypothesis holds. Regarding the 

fundamental analyst, more challenges are related to showing that a simple random 

selection would be as good as a complicated fundamental procedure (Fama, 

1995). 

 

2.2 Simulated trading environment 

There are several methods to test the performance of different trading models, 

with the best being the actual performance through real-life trading. However, this 

is a potentially expensive method, and most developers would like to have a clear 

Equation 1 
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assessment of their model before employing it in real trading. Therefore, it is 

essential to create other reliable tests to examine the performance. In our paper, 

we have chosen to design a simulated trading environment through portfolio 

backtesting. 

 

2.2.1 Backtesting 

Backtesting is a method used to evaluate the viability and performance of a 

trading strategy using historical data. According to Piard (2013), several potential 

pitfalls are involved in designing a reliable backtesting environment. First, one 

needs to consider the time factors involved and avoid look-ahead bias by not 

including information that is not available when decisions are made. Second, 

another factor to consider is the survivorship bias, meaning an investment 

universe where only the current stocks are included. Third, transaction costs are 

difficult to correctly introduce to the backtesting, as you would need to actually 

perform the trade to know them exactly. Fourth, including shorting can be 

challenging as it typically involves identifying a potential lender. Additionally, 

the cost of lending and the amount available is generally unknown. Lastly, one 

should include a long time period in the backtesting to avoid basing the trading 

strategy solely on outliers. Even though one manages to avoid such errors, many 

still argue that the flawless backtest is non-existing. The fact that backtesting is 

performed ex-post makes selection bias a dominant issue. That is, by testing 

several strategies on past data, some of them will likely yield satisfying results 

due to overfitting (Lopez de Prado, 2018). Thus, there is no guarantee that good 

performing backtests will yield similar results in the future.  

 

2.2.2 Transaction costs 

One of the most prominent issues in backtesting is the simulation of transaction 

costs. Total transaction costs can be split into direct and indirect costs. Direct 

transaction costs involve the commissions paid for each trade, whereas indirect 

transaction costs refer to both implementation shortfall and price impact. 

Implementation shortfall is the opportunity cost occurring from placing an order 

that is not immediately executed due to the market drifting. Thus, it is challenging 

to ensure whether a specific trade would have been possible to perform at a given 

price. Price impact is linked to the opportunity cost, as it is defined as the 

difference between the last traded price when the trade is executed and the actual 
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price paid (Ødegaard, 2009). It is near impossible to calculate the exact 

transaction cost that would have occurred without actually performing the trades. 

Most academic papers on stock trading with Machine Learning models are trading 

more frequently, increasing the influence of transaction costs on the overall 

results. However, by rebalancing the portfolio quarterly, the transaction cost will 

not have the same effect on the performance. 

  

3.0 DATA 

In the subsequent sections, we will present the data used for our analysis and 

predictions; including sources, choice of features, and challenges related to our 

dataset. For the experiment, it is vital to have a sufficient number of observations 

and a complete dataset that covers the fields' important aspects. Thus, the 

databases from Refinitiv and Bloomberg were considered our best options for 

collecting company-specific data and macroeconomic variables. 

   

3.1 Data collection 

Our final dataset contains 15 011 quarterly observations with 109 different 

features collected from 115 companies listed on Oslo Børs and 129 listed on 

Nasdaq Stockholm. The data ranges from March 2000 (31/03-2000) to December 

2020 (31/12-2020) and differs between the companies. The company 

fundamentals are obtained from the Refinitiv database, whereas macroeconomic 

variables have been collected from both Refinitiv and Bloomberg. The different 

input features are categorized into the three main groups; Fundamental Factors, 

Momentum Factors, and Macroeconomic Factors, with several connecting sub-

categories. A complete overview of the input features is displayed in Table 3.1 

below.  
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Category Features 
 

Fundamental Factors 

Liquidity factors Current Ratio 

  Quick Ratio 

  Cash Ratio 

  Cash Coverage Ratio 

  Interest Coverage Ratio 

Valuation factors Price-to-Earnings Ratio 

  Price/Book Ratio 

  Price/Sales Ratio 

  EV/EBITDA 

  Market Cap / Free Cash Flow 

  Market Cap / Tangible Book Value 

  Market to Book Ratio 

 EV/Operating Income 

Leverage factors Debt Ratio 

  Debt-Equity Ratio 

  Long-term Debt Ratio 

Financial quality factors Return on Equity (QTD) 

  Return on Assets (QTD) 

  Return on Assets (TTM) 

  Profit Margin 

  EBITDA-margin 

  Operating Margin 

  Gross Margin 

  Cash from operating (TTM) / Net Profit (TTM)  

  Cash from operating / Net Profit 

  Revenue (TTM) / Market Capitalization 

  Net Profit (TTM) / Market Capitalization 

  Net Profit / Market Capitalization 

  PEG Ratio 

  Earnings yield 

  Asset Turnover 

  Inventory Turnover 

  Receivables Turnover 

  Payable Turnover  

1-Year change in fundamentals Change in Revenue (YoY) 

  Change in EBIT (YoY) 

  Change in EBITDA (YoY) 

  Change in Net Income (YoY) 

  Change in Cash from Operations (YoY) 

  Change in Current Assets (YoY) 

  Change in Current Liabilities (YoY) 

  Change in Total Equity (YoY) 

  Change in Total Liabilities (YoY) 

  Change in Total Assets (YoY) 

Quarterly change in fundamentals Change in Revenue (QoQ) 

  Change in Operating Expenses (QoQ) 

  Change in Current Liabilities (QoQ) 

  Change in Current Assets (QoQ) 

  Change in Total Assets (QoQ) 

  Change in Net Income (QoQ) 

  Change in Total Liabilities (QoQ) 

  Change in Long-Term Debt (QoQ) 

 Change in Earnings per Share (QoQ) 

  Change in Intangible Assets (QoQ) 

  Change in Total Equity (QoQ) 

  Change in Enterprise Value (QoQ) 

  Change in Profit Margin (QoQ) 

Momentum Factors 1-Month Return  

  2-Month Return  

  3-Month Return (Open Price) 
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  3-Month Return (Close Price) 

  6-Month Return  

  12-Month Return  

  Last Quarter's Open Price 

  Open Price 2-M 

  Open Price 1-M 

 Open Price 

Macroeconomic Factors Consumer Price Index (YoY) 

  Price of Brent Oil 

  3-Month Interbank Rate 

  3-Month Government Bond 

  10-Year Government Bond 

  Unemployment Rate 

  Gold Price 

  Quarterly Change in GDP 

  12-Month Change in US Interest Rate 

  6-Month Change in US Interest Rate 

  3-Month Change in US Interest Rate 

  2-Month Change in US Interest Rate 

  1-Month Change in US Interest Rate 

 US Bid Rate 

 12-Month Change in NOR/SWE Interest Rate 

  6-Month Change in NOR/SWE Interest Rate 

  3-Month Change in NOR/SWE Interest Rate 

  2-Month Change in NOR/SWE Interest Rate 

  1-Month Change in NOR/SWE Interest Rate 

  NOR/SWE Bid Rate 

  12-Month Change in Brent Price 

  6-Month Change in Brent Price 

  3-Month Change in Brent Price 

  2-Month Change in Brent Price 

  1-Month Change in Brent Price 

  Last Quarter Brent Price 

  12-Month Change in USD Exchange Rate 

  6-Month Change in USD Exchange Rate 

  3-Month Change in USD Exchange Rate 

  2-Month Change in USD Exchange Rate 

  1-Month Change in USD Exchange Rate 

  12-Month Change in EUR Exchange Rate 

  6-Month Change in EUR Exchange Rate 

  3-Month Change in EUR Exchange Rate 

  2-Month Change in EUR Exchange Rate 

  1-Month Change in EUR Exchange Rate 

  Last Quarter Index Return 

  Change in Index Return 

  Change in Price of Brent (QoQ) 

  Change in Gold Price (QoQ) 

  Change in 3-Month Government Bond Yield (QoQ) 

  Change in 10-Year Government Bond Yield (QoQ) 

 

Table 3.1: Complete overview of input features1. 

 

In the group Fundamental Factors, we have chosen to collect variables 

representing the different companies’ valuation, growth, equity factor, size, 

financial quality, profitability, investment, and leverage. The sub-categories are 

 
1 The variable names are not necessarily the same as used in our programming, but rather a 

description to have a better understanding of each feature utilized.  
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carefully selected based on previous studies highlighting their importance in 

determining cross-sectional asset returns (Fama & French, 2018). 

 

While the performance of individual companies on the stock market is strongly 

related to performance news (e.g., quarterly reports and other announcements), 

external factors are also influencing individual stocks and the market. There is 

contradicting evidence on the long-term relationship between different 

macroeconomic variables and the stock market, illustrated by the studies from 

Misra (2018) and Gopinathan & S Raja (2019) on the Indian stock market. The 

research from Misra (2018) shows that there exists a long-run causality between 

the macroeconomic variables of the Index of Industrial Production (IIP), inflation, 

interest rates, gold prices, exchange rate, foreign institutional investment, money 

supply, and BSE Sensex. A short-term relationship was also discovered between 

Inflation and BSE Sensex, as well as Money Supply and BSE Sensex.  

On the contrary, the research from Gopinathan & S Raja (2019) argues that the 

conventional Engle and Granger (1987) and Phillips and Ouliaris (1990) tests 

show no relationship between stock prices and other macroeconomic variables. 

Despite the contradicting evidence, macroeconomic variables have proven to be 

leading indicators of predicting the bear stock market (S.-S. Chen, 2009). Thus, 

we have chosen to include unemployment rates, interest rates, and different 

exchange rates for Norway and Sweden to better understand the overall economic 

situation in the respective countries.  

Brent Crude prices are also collected, given that it has a significant impact on 

many aspects of the world economy. Norway is the third-largest exporter of 

natural gas globally, and many companies listed on Oslo Børs are directly 

exposed to crude oil prices (Norsk Petroleum, 2021). The development of Brent 

Crude prices is therefore considered to have some predictable power in the 

Norwegian stock market.  

 

Gold Price and the US 10-year Treasury Yield represent the development in the 

world economy. A study by El Hedi Arouri et al. (2015) on world gold prices and 

stock returns in China, supports the traditional view that the gold asset is 

considered a safe haven for investors. During recessions or periods with higher 

volatility, investors tend to move their capital towards gold and thereby push the 

asset's prices upwards. The US 10-year Treasury Yield is considered to be the 
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world's most important interest rate, especially during the last decade. A shift 

upwards in the 10-year treasury yield can deteriorate stock returns, as investors 

may have less to profit from higher risk-taking. It also negatively affects the 

discounted values of company cash flows, especially for growth stocks, given that 

much of their value is calculated based on future expected income. We therefore 

often discern a shift from growth stocks towards value stocks when the 10-year 

yield appreciates (McCormick & Regan, 2021). On the opposite, a plummeting 

10-year yield is often correlated with a bear stock market and global economic 

recession (e.g., Financial Crisis in 2008 and COVID-19 in 2020).  

 

In the category Momentum Factors, we have gathered data related to long-term 

and shorter-term momentum in individual stock returns. According to behavioral 

finance, the best prediction of future market movements is that the trend will 

continue. It conflicts with the belief that all investors are rational, and highlights 

the role of psychology in the stock market (Chaffai & Medhioub, 2014). A study 

by Jegadeesh and Titman (1993) supports the view that individual stocks have 

momentum. The research showed that high-performing stocks over 3 to 12 

months are more likely to pursue their positive momentum, whereas 

underperforming stocks have a higher probability of continuing their bad 

performances. Another theory within stock price prediction is that market prices 

follow a martingale, meaning that the best prediction for the next stock price is the 

current stock price. There is contradicting evidence on this matter, illustrated by a 

study from Kumar & Maheswaran (2012) on the Indian stock market, which 

found support for martingale in three out of six indexes.  

Based on the previous research, we have chosen to include momentum features 

ranging from 12-month return until the most recent stock price. 

 

3.2 Dependent variable 

The dependent variable of our dataset is the Stock excess return, which forms the 

basis of our Decision variable. It represents the individual stock's return in excess 

of its respective index (OSEBX or OMXS30) from Quarter T to T+1. Since many 

stocks are upward sloping in a bull market and downward sloping in a bear 

market, we use the excess return to remove the market trend in the respective 

quarter. Stocks with a return above the median excess return for a specific quarter 

are categorized as buy, while the observations with a return below the median for 
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the respective quarter are considered a sell. Thus, we are shifting the Decision 

variable by T-1 to know if the prices will increase/decrease in the next quarter 

(see Figure 3.1). Stock returns are usually highly volatile, which could complicate 

the process of detecting clear patterns in the dependent variable, thus affecting the 

overall accuracy of our final predictions.   

 

 

 
Figure 3.1: The stock excess return in time T is the basis for the decision of our models in T-1. 

 

3.3 Challenges with the data 

Ideally, we would have collected a larger time span for our data, as we initially 

looked at gathering financial reports from 1990 to 2021. An essential factor in 

building successful Machine Learning models involves having a sufficient 

number of high-quality data. However, the lack of availability for financial reports 

before the year 2000 made it difficult.  

The final dataset was therefore selected based on whether the financial reports for 

the respective companies were complete without a significant number of missing 

values. Thus, even though a more extensive period of financial reports was 

available for some companies, we chose not to include those if there were 

insufficient data quality. 

 

All companies were selected based on stock market listings per 30/09-20, which 

does not lead to a completely realistic backtesting scenario. Ideally, we would 

have collected data from all companies that have been listed on the stock 

exchanges for the chosen period, given that all other criteria were met. In this 

way, firms that have potentially gone bankrupt and/or been delisted throughout 

our backtesting period would have been included, thus removing survivorship 

bias. However, we found a large number of delisted companies to be the result of 

mergers or acquisitions. Additionally, lack of data and time dimensions made it 

difficult to distinguish whether a delisting resulted from bankruptcy or other 

factors. Since the difference between the two would have greatly affected the 

portfolio performance, it is crucial to have the correct data. 
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Companies on our initial ticker list that, for some reason, proved to lack available 

data during our backtesting period were included if all other requirements were 

met. Such data are still valuable when training our algorithms, regardless of 

whether they have available data until the end of the backtesting period. In section 

5.2, we will further elaborate on how we solved this issue for our backtesting 

trading environment.  

 

As our selected models only accepted complete time series, we also had to 

exclude variables without an adequate number of observations. Various factors 

that may have had a predictable power on the stock market returns, such as 

dividends and R&D, had to be removed to cope with these issues. Lastly, the 

desired number of variables versus the number of quality observations available 

had to be weighted. Choosing a data set with financial reports starting at the 

earliest available time for every company would produce more observations at the 

expense of a limited number of variables. Conversely, a data set starting at a later 

date where financial reports are of sufficient quality provides more variables but a 

reduced number of observations. 

 

4.0 METHODOLOGY 

This chapter centers around our selected Machine Learning models and 

forecasting techniques. The data preparations are first presented, followed by an 

introduction of the selected Machine Learning models. The main focus of this 

study is to identify to which degree Machine Learning algorithms can be utilized 

to predict stock returns, and not in making discoveries in the Machine Learning 

area. Thus, we limit this paper to only include a brief introduction to the elements 

of the Machine Learning methods. The preprocessing of the data was performed 

in Python2, whereas Scikit-learn was used to conduct the analysis and deploy the 

Machine Learning algorithms. Scikit-learn is an open-source Machine Learning 

library that provides tools for preprocessing, model selection, built-in Machine 

Learning algorithms, models, and evaluation of the models (Pedregosa et al., 

2011).  

 

 
2 Python is a general-purpose programming language widely used in Data Science and Machine 

Learning. 
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4.1 Data preprocessing    

After acquiring quarterly fundamental data, macro variables, and stock prices, the 

data had to be preprocessed before it was employed in the models. The 

preprocessing consisted of several steps, where the first was to screen our entire 

dataset and remove insufficient data. The second step was to create new input 

features and concatenate the data files into one dataframe on a quarterly basis. 

Third, we applied the sliding window method to split our data into training sets 

and test sets. The fourth step was to standardize and scale all our features. Lastly, 

we performed feature selection on the entire feature set to select the most 

significant variables.  

 

Step 1: Data Screening 

After collecting financial reports from all available companies on the Oslo Stock 

Exchange and Nasdaq Stockholm for our selected period, we made some 

adjustments due to different challenges. The financial industry, with the sub-

industries banking and insurance, are complicated and significantly affected by 

macro factors, making their stock prices far more uncertain and volatile compared 

to general industries (Y. Chen et al., 2020). In addition, we found the financial 

statements to be insufficient. Thus, difficulties in making accurate predictions and 

the lack of financial information led us to discard all firms connected to the 

finance industry. 

 

Further, the requirements of having sufficient data to make accurate predictions 

created a trade-off between the desired number of companies and maintaining 

adequate observations for each company. After testing several options, we 

considered a minimum requirement of six years of available financial reports to be 

sufficient. Hence, all companies with less than six years of financial statements 

were removed from our original dataset.  

 

Step 2: Feature Engineering and Concatenating 

Our second step involved feature engineering, which is defined as using domain 

knowledge to create new features from the original dataset to increase the 

effectiveness of the Machine Learning model (Kuhn & Johnson, 2019). The 

features are created from raw data and then transformed into formats compatible 

with the Machine Learning process. Having correct features is crucial and often 
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mentioned as the most important aspect of making successful predictions with 

Machine Learning algorithms. Following the creation of features, we additionally 

transformed most of the variables into stationary form. A stationary time series is 

defined as data without seasonal effects and trends, i.e., the properties are not 

dependent on time (see Figure 4.1). Hence, the features should have a constant 

mean, variance, and autocovariance in both their first and second momentum. It is 

vital to remove the trend and seasonality as it may affect the value of the time 

series at different periods of time (Hyndman & Athanasopoulos, 2018). 

 

 

Figure 4.1: Non-stationary and stationary time series. 

 

Although stationarity is not required for many Machine Learning algorithms, it 

provides a significantly stronger indication of the model's performance. The 

models are usually more capable of detecting underlying mechanisms rather than 

just identifying seasonality and trends in the presence of stationarity. The method 

we used to transform the variables into stationary form was differencing (i.e., 

calculating the differences between each period of observations) and the 

construction of ratios.  

 

To create our final dataset, we merged all features into one dataframe on a 

quarterly basis. Further, missing data from our dataset had to be handled. The 

frequent occurrence of missing values in data, and the fact that most predictive 

models are unable to handle them, highlights the importance of addressing this 

prior to running the models (Kuhn & Johnson, 2019). Therefore, variables or 

financial reports without a sufficient number of observations were excluded from 
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the final dataset. The remaining missing values were filled with the last available 

observation for that particular variable. 

 

Step 3: Training and test set  

The third step of our data preprocessing included splitting the data into training 

sets and test sets. Traditionally, this usually involves a 75-25 percent data split 

performed on the entire data sample, where 75% of the dataset is allocated to 

training and the remaining 25% to testing. However, when dealing with time-

series data, the sliding window method is preferred, which corresponds to 

dividing the data into training and test sets for each period. We will further 

elaborate on this method in section 4.2. 

 

Step 4: Feature scaling 

After splitting the data into training and test sets, we performed feature scaling. 

The different variables vary largely in range and scale, which can be complicated 

since most classifiers calculate the difference between two variables by the 

distance. In addition, some features have broad ranges of values, which can be 

challenging because the distance governs those particular variables. Hence, by 

normalizing the range of all features, they will each contribute proportionately to 

the final distance.  

 

The test set should be subject to new, unseen data, meaning that it should not be 

accessible at the training stage. We therefore transformed the data using a 

StandardScaler3 after the sliding window split to avoid any bias during the 

evaluation of the models. For the same reason, scaling was performed on the 

training data, and then the testing data were normalized according to the training 

set. The StandardScaler function standardizes the variables such that the 

distribution is centered around zero (0) with a standard deviation of one (1) (Keen, 

2017). Each feature is scaled based on the following formula:  

 

𝑧 =
(𝑧 − 𝜎)

𝜎2
 

 

 
3 A function from the Scikit-learn library  

Equation 2 
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where 𝜎 refers to the mean of the training samples and 𝜎2 is subject to the 

standard deviation of the training samples. 

 

Step 5: Feature selection  

Our final step of the data preprocessing involved reducing the number of input 

variables. Feature selection is a process that has proven to be effective and 

efficient in data preprocessing. It leads to simpler and more understandable 

models, data mining performance increases, and it improves the model's 

performance (Li et al., 2017). We used both the Support Vector Machine 

Recursive Feature Elimination (SVM-RFE) approach and the Random Forest 

Feature Importance method to perform our feature selection. Further details are 

provided in section 4.4. 

 

4.2 Prediction with Machine Learning 

There are mainly two elements involved in Machine Learning: a learning process 

to determine the most accurate fit for the independent variable and an algorithm 

that (based on the learning) models the relationship among independent and 

dependent variables (Jung et al., 2018). We will further elaborate on these two 

components in the subsequent section. 

 

4.2.1 Splitting into training and test set  

A clear distinction between the data used for training and data used to test the 

model's predictability is essential to ensure a trustworthy outcome. The training 

set is defined as the part of the original data that provides the baseline for further 

application and utilization. Hence, the model produces a result based on the 

features within the training set and compares it to the target variable. Depending 

on the comparison, the parameters of the model are subsequently adjusted. The 

test set corresponds to the holdout part of the original data, which predictions are 

evaluated against.  

 

Without a clear distinction between the training set and test set, several issues 

may arise. First, the bias-variance trade-off needs to be considered when 

allocating data to training and test sets. In literature, this is referred to as a trade-

off between a model's ability to minimize bias and variance. On the one hand, we 

have the concept of overfitting (high variance), which implies a model with very 
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complex hypotheses and a large number of features. Consequently, the model 

produces great prediction accuracy during training but makes frequent errors 

when used on data not seen before (Burkov, 2019). 

On the other hand, underfitting (high bias) may be a potential issue when the 

model uses simple assumptions and few features, causing inflexible learning from 

the dataset (Briscoe & Feldman, 2011). Implementing complexity control can be 

helpful in the trade-off between minimizing bias and variance in the training and 

test data. That is, selecting subsets of the variables to be used. 

Second, dissimilar characteristics between the training and test set may encounter 

another problem. Modeling patterns can be discovered in the training set that is 

not present in the test set, making even highly complex models unsuccessful in 

producing reliable predictions. 

  

4.2.2 Sliding window 

The sliding window approach is used extensively when working with time series 

data and stock price trends. In this approach, observations in time T-1, T, and T+1 

are closely related to each other. Thus, it better reflects real-life scenarios where 

new information becomes available when moving to the next period. By using this 

method, we are continuously updating the information available when making 

predictions.  

A sliding window approach involves splitting the data into a training set and test 

set containing n years of data, where the size of all training and test sets is kept 

constant over time. Thus, the first prediction period will only be based on the 

initial window, while the oldest observation will be excluded, and the newest will 

be added to the training set when moving to the next period. We will further 

elaborate on this subject in section 5.1. 

 

4.3 Machine Learning 

Unlike a standard linear regression, Machine Learning algorithms enable 

computers to discover patterns in cases where the task is not evident (Alpaydin, 

2014). Supervised learning is used when the goal is task-driven, meaning that we 

already know the desired output (Tatsat et al., 2020). It can further be split into 

either classification or regression models. A classification model tries to predict a 

categorical output based on the training data, whereas a regression model predicts 

continuous outcomes (Tatsat et al., 2020). For stock prediction, a regression 
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model attempts to estimate the stock price, whereas a classification model tries to 

predict whether the price will increase or decrease for a given period. 

 

4.3.1 Classification models 

In our thesis, classification methods involving Support Vector Machine (SVM) 

and Random Forest (RF) will be applied to the sliding window technique. The 

decision on which classification model to use was determined by several factors. 

First, the model's simplicity needs to be considered. A simpler model often has a 

shorter training time, is easier to understand, and is also more scalable. For stock 

selection, the model's ability to handle non-linearity between the different 

variables is especially important. Moreover, it is crucial to examine how the 

models handle larger datasets and a significant number of features without 

causing overfitting. Lastly, the interpretability of the model is of significance. 

Considering all these factors, we found SVM and RF to be the most suitable 

algorithms. 

 

4.3.2 Support Vector Machine 

The basic idea behind the SVM classifier, which is a generalization of a 

maximum-margin classifier, is to construct a line or a hyperplane of p-1 

dimensions separating the observations into classes. A hyperplane divides the p-

dimensional space into two halves and can be defined as: 

 

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0 

 

where the 𝛽𝑖’s are the coefficients, and Xi’s are the points on the hyperplane. The 

maximum-margin classifier works by finding the hyperplane with the largest 

margin separating the observations in the training data (James et al., 2013). An 

example of a separating hyperplane is shown in figure 4.2. 

 

Equation 3 
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Figure 4.2: Example of the separating hyperplane in the Support Vector Machine. 

 

However, a separating hyperplane does not always exist, causing the maximum-

margin classifier to fail occasionally. To solve this problem, the Support Vector 

Classifier (SVC) introduces a soft margin that works similarly to the maximum-

margin classifier. However, the SVC allows observations to be on the wrong side 

of the hyperplane as long as the majority of the observations are on the right side 

(James et al., 2013). It can thus be thought of as an optimization problem which is 

defined as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝛽0,𝛽1,…,𝛽𝑝,𝜖1,…,𝜖𝑛
𝑀, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑗

2 = 1

𝑝

𝑗=1

, 

 𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀(1 − 𝜖𝑖), 𝜖 ≥ 0, ∑ 𝜖 ≤ 𝐶𝑛
𝑖=1     

  

where M is the width of the margin and 1,…,n are slack variables informing about 

the location of the observation relative to the hyperplane. The parameter C refers 

to a budget of how much the margin can be violated. If C = 0, the model does not 

tolerate any margin violation, and the optimization problem will thus be equal to 

the maximal-margin classifier. Furthermore, as C increases, the model tolerates 

more violations to the margin (James et al., 2013). The solution to the 

optimization problem requires calculating the inner product of the observations. 

For two observations 𝑥𝑖 , 𝑥𝑖′ , the inner product can be computed as:  

 

Equation 4 
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〈𝑥𝑖 , 𝑥𝑖′〉 = ∑ 𝑥𝑖𝑗𝑥𝑖′𝑗
𝑝
𝑗=1     

 

where p is the number of features (James et al., 2013). The SVM is an extension 

of the SVC and utilizes a kernel trick. This technique works by transforming 

classes that are not linearly separable into a higher dimensional feature space 

where linear separability is obtained. Several possible kernels can be applied with 

the SVM, where one example is the radial kernel, defined as:  

 

𝐾(𝑥𝑖 , 𝑥𝑖′) = 𝑒
−𝛾(∑ (𝑥𝑖𝑗−𝑥

𝑖′𝑗
)

2𝑝
𝑗=𝑖     

 

The radial kernel uses the Euclidean distance4 between the test observation and 

the training observation. From the Support Vector Machine classifier:  

 

𝑓(𝑥) = 𝛽0 + ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖)

𝑖∈𝑆

 

 

we note that if the kernel (𝐾(𝑥𝑖 , 𝑥𝑖′)) is small, it will have little to no influence on 

the nonlinear function. More explicitly, training observations with a large 

Euclidean distance from the test observations will not influence the predictions. 

Thus, the radial kernel has a local behavior, where only the training observations 

close to the test observations affect the predictions (James et al., 2013). 

 

4.3.3 Random Forest 

A Random Forest (RF) is similar to a meta-algorithm that creates a large number 

of decision trees where each split in the tree considers a random sample. The 

random sample often includes only the square root of the total number of features 

in the feature set, implying that most of the variables are not even considered 

when splitting the tree. The reason for not considering all the features is to ensure 

that strong predictors are not used in the top split for all the trees and that the 

correlation between the trees created is low (James et al., 2013).  

 

 
4 The Euclidean distance between two points in Euclidean space is equal to the length of a line 

segment between the two points 

Equation 5 

Equation 6 

Equation 7 
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The RF method utilizes bootstrapping and bagging. Bootstrapping is a technique 

to randomize the training data and create many sub-samples by randomly 

selecting observations from the training data. Further, it makes a prediction for 

each of the sub-samples allowing some of the observations to be repeated in 

several groups. After the sub-sample predictions are made, the technique called 

bagging is applied. The idea behind bagging is to average all of the predictions 

from the sub-samples (Suthaharan, 2016). Since the model utilizes several trees 

when making predictions, it tends to be more flexible and have less variance, 

reducing the probability of overfitting (Tatsat et al., 2020). 

 

The process of the RF algorithm works by creating multiple sub-samples from the 

original dataset where the dimension r (number of features) of the sub-sample is 

𝑟 ≤  √𝑝 , and p denotes the total number of features in the original dataset 

(Suthaharan, 2016). The sub-sample is then randomly altered using bootstrapping. 

Further, the decision-tree model is applied by randomly selecting m variables 

from the complete set of p variables and picking the best split-point among the m 

variables (Hastie et al., 2009). In our thesis, we are using the Gini index to 

evaluate the quality of the split-point. The Gini index is defined as:  

 

𝐺 = ∑ 𝑝̂𝑚𝑘
𝐾
𝑘=1 (1 − 𝑝̂𝑚𝑘)     

 

and measures the impurity of the node. A small G implies that a node contains 

mainly observations from one class (James et al., 2013). The node is then further 

split into two daughter nodes, and this process is repeated recursively for each 

terminal node until the minimum node size 𝑛𝑚𝑖𝑛 is achieved (Hastie et al., 2009). 

A simple example of a Random Forest tree with a depth of three is shown in 

figure 4.3 below.  

Because the Random Forest algorithm utilizes what is known as recursive binary 

splitting, it is often thought of as a top-down, greedy approach. Recursive binary 

splitting refers to the process of starting from the top of the decision tree and 

recursively searching for the best split at each step (James et al., 2013). 

 

Equation 8 
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Figure 4.3: Example of a tree in a Random Forest model with a depth of three. 

 

4.5 Feature selection 

After the feature engineering, it is desirable to decrease the number of features in 

the model to only include informative variables. This is especially important if the 

variables added to the model are not tested for statistical significance. Removing 

non-informative features from the data set is called feature selection and is 

defined as the process of creating a subset of features from the original feature set. 

By removing redundant features, we may increase the model's accuracy and 

reduce learning time (Cai et al., 2018). Feature selection is also an important 

measure to deal with the dimensionality of the data. Essentially, we would want 

the number of observations to be as large as possible in order to reduce the effects 

of noise and outliers (Koutroumbas & Theodoridis, 2008). However, this is not 

always possible, making feature selection a vital tool to deal with high 

dimensionality. 

 

There exist three classes of feature selection. Intrinsic methods refer to situations 

where the feature selection is performed within the model itself, whereas filter and 

wrapper methods use an external algorithm to select the features.  
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4.5.1 Support Vector Machine Recursive Feature Elimination 

The Support Vector Machine Recursive Feature Elimination (SVM-RFE) is a 

wrapper method that works by backward selection. It first runs the SVM model 

with the entire feature set and then ranks the most important predictors by a 

measure of importance. After the first selection process, the SVM-RFE removes 

the least important variable and re-runs the SVM model with the smaller features 

set. This process is performed until the desired number of features is reached. The 

advantage of wrapper methods is their potential to search a wide range of feature 

subsets, providing a higher chance of finding the best subset of features. However, 

there are limitations related to this approach; the SVM-RFE does not consider 

different subsets, and it overlooks any potential meaningful interactions between 

features that are only significant in the presence of other features (Kuhn & 

Johnson, 2019). 

 

4.5.2 Random Forest Feature Importance 

A Random Forest Feature Importance is an intrinsic method of feature selection. 

In Scikit-learn, the RF model has a built-in function called feature_importances_ , 

which presents the importance of each variable in the model. The function enables 

us to visualize the most influential features on the dependent variable. It utilizes 

Gini importance, which is a method that measures the impurity reduction 

introduced by each split in the tree. The features included in a split that leads to a 

significant decrease in impurity are considered important. For a given feature, the 

impurity importance is calculated as the sum of all impurity decrease measures 

where a split including the given feature is conducted. The total sum of decreases 

in impurity is then normalized by the number of trees in the forest (Nembrini et 

al., 2018).  
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5.0 EXPERIMENTAL DESIGN AND EVALUATION 

In the subsequent sections, the experimental setup will be described, followed by 

a presentation of the selected performance measures and benchmark models used 

to evaluate our Machine Learning algorithms. The prediction results will be 

compared against two different benchmarks, whereas our constructed portfolios 

will additionally be measured against the indexes to better visualize potential 

excess returns. We will further explore the model’s performance during periods of 

crisis. A Variable Importance Plot will also be created to visualize each feature's 

influence on the stock market prediction.  

 

5.1 Experimental design  

The initial step of our experiment was to avoid look-ahead bias. Thus, all the 

financial reports and Quarterly Change in GDP were accordingly lagged by one 

quarter. Look-ahead bias is a phenomenon that occurs when using data or 

information that is not available at the time of prediction because of differences in 

publication date. Most of the companies financial reports and information 

regarding GDP are published around two months after the end of the quarter they 

represent. Thus, when we are at, e.g., the end of the 1st quarter (Q1) 2020 and 

predicting for 2nd quarter (Q2) 2020, it is crucial to not use financial reports that 

represent Q1 2020 as they have not been published yet. Instead, financial reports 

from Q4 2019 are used to make predictions for Q2 2020. If we consider look-

ahead bias in our predictions, the results can be unrealistically good and 

misleading as we are using information no other investor has available (Walimbe, 

2017).  

 

Data regarding stock prices and macroeconomic variables besides GDP were 

collected until the end of each quarter before we made our predictions. Since these 

are publicly available information accessible on the day they occur, we did not 

have to lag those variables. Figure 5.1 illustrates the time factor of our data used 

in predictions. 
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Figure 5.1: Illustration of how we use independent variables (Fundamental Factors and data regarding 

GDP) from time T-1 to predict the direction of the dependent variable in time T. 

 

The consecutive step of our analysis involved selecting the number of features to 

include in the model before splitting the data into training and testing. From the 

original feature set, we had a total of 109 features. The number of features to 

include in a Machine Learning model is largely dependent on the problem. To 

find the reasonable number of variables, we tested several portions of the original 

data set and found the top 50% of the features to be the best performer. Hence, we 

ran the feature selection and picked the top 54 features from both the SVM-RFE 

and RF approaches.  

 

Our third step of the experiment was to allocate data for training and testing 

through the sliding window approach and define our window size and prediction 

horizon. The initial training set consisted of quarterly data from Q2 2001 to Q2 

2006, equivalent to 20 observations. Predictions were made for the subsequent 

quarter, meaning that the first testing period was set to Q3 2006 (see figure 5.2). 

In total, there were 10 111 training sets with corresponding test sets. To have the 

latest financial data available, we did not consider larger prediction horizons, as 

we might potentially miss important information. The window size was chosen 

based on a trade-off between having sufficient data for each prediction and the 

number of companies we could include. The size of the training window should 

be large enough to train complex models, yet not to the extent that we are unable 

to capture structural breaks and other changes in relations between variables. To 

illustrate, a window size of 20 observations requires a minimum of six years of 

financial reports for each company included in the model5. Thus, a larger window 

size would force us to exclude a great number of companies and further reduce 

 
5 To create our YoY variables, we need one additional year of data besides the window size. 
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our data set. Smaller training periods were also tested without improving the 

results compared to our selected window size. 

 

 
 

Figure 5.2: Quarterly sliding window, where each row represents a separate training- and test pair. 

 

After the sliding window allocation and feature scaling, we calculated out-of-

sample accuracy based on the comparison of predictions generated from the 

Support Vector Machine and the Random Forest model. The algorithms were run 

both with and without feature selection, resulting in a total of six models. Since 

Random Forest is a model based on randomization, we utilized a random state 

parameter6 to ensure that our results are reproducible. The predictions obtained by 

the two models lay the basis for our portfolio construction. 

 

5.2 Portfolio construction    

To assess the performance of our models, we constructed several portfolios which 

differ in the maximum number of companies allowed in the portfolio. Each model 

is evaluated on its economic performance on the trading module, which refers to 

our simulated backtesting stock trading environment for a period of 14.5 years 

(Q3 2006 – Q1 2021). The time interval is divided into 58 trading sessions, and 

the portfolio is rebalanced at the end of every quarter.  

 

At the beginning of each trading session, we use the model's predictions from the 

input data to allocate available money to the different assets. The predictions are 

associated with each stock's desired positions and can be either buy or sell. When 

 
6 A parameter in the Random Forest classifier from Scikit-learn which ensures that the random 

numbers are generated in the same order. 
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a buy recommendation is given, the model predicts that particular stock to 

outperform the next quarter’s median return. On the contrary, a sell 

recommendation means that the model predicts a return below the next quarter’s 

median return. For each prediction, the model presents a probability score 

illustrating its confidence level subject to the recommendation.  

Further, companies that lack data during the backtesting period will not receive a 

recommendation from the model and are unavailable for trading from that 

particular quarter and onwards. If a recommendation is not available, the 

concerned stocks are sold off prior to the trading session to release potential funds 

for other available investment opportunities.     

 

As illustrated by figure 5.3, input data for each trading session is the model's 

buy/sell recommendations, probability score, our selected trading strategy, the 

previous holdings in the portfolio, and the available money. The last rebalancing 

of the portfolio is performed at Q4 2020, and Q1 2021 is only utilized for 

generating portfolio returns.  

 

 

Figure 5.3: Example of the process for the first trading session. 

 

5.3 Trading strategy 

An initial cash holding of NOK 100 000 is similar to all the models, and the 

maximum limit of companies allowed in the portfolio range from 10 to 30 stocks. 

If a stock already in our portfolio is among the top n companies with the highest 

probability of being a buy, we increase our holding in that particular stock. To 

better compare the models, we also use the same weighted proportion of available 

cash to spend initially on each stock (more explanation in section 5.3.2). Further, 

any stocks in our portfolio receiving a sell recommendation from the model is 

always sold. This procedure is performed at the start of each trading session to 

update available money before buying stocks. If available money is not enough to 

10054970992576GRA 19703



37 

 

open a new position on a specific stock, that recommendation is dropped. 

Throughout the whole backtesting period, we assume that all stocks included in 

the portfolio can be traded at their respective Open Price for the last available 

trading day of that particular quarter. 

 

5.3.1 Highest probability 

In our strategy, all stocks are ranked in a descending order based on their 

probability of beating the median quarterly return prior to each trading session. 

Depending on the maximum number of companies allowed in the portfolio, the 

top n stocks are selected to buy. If the models recommend less than n buy 

predictions, the remainder of the available money is saved for the next trading 

session. Additionally, if the maximum limit of companies allowed in the portfolio 

is reached, we only include a new stock if the buy probability is higher than one 

already in the portfolio. In this way, we always hold the n stocks with the highest 

probability of being a buy, and recommendations subject to a low probability are 

discarded.  

 

5.3.2 Available money and weighted proportion of cash used 

The portion of cash used on each stock (p_cash) dynamically changes with the 

probability the model provides on a given buy prediction. Thus, if a specific stock 

is subject to a high probability of being a buy in the following period, we increase 

our betting size. This procedure is chosen to utilize high conviction trades and 

avoid holding too much cash at later stages. Initially, we spend 20% of our 

available cash on each trade with a maximum of NOK 10 000 per trade. If the 

probability of a given buy prediction is higher than the 70% quantile in that 

trading period, we increase our p_cash to 50% with a maximum of NOK 50 000. 

Similarly, if the probability of a buy prediction is higher than the 90% quantile, 

p_cash is expanded to 80% with a maximum of NOK 100 000.  

 

5.3.3 Transaction fees 

The transaction fees included in this backtesting trading environment is similar to 

those provided by Nordnet, one of the most popular trading platforms in the 

Nordics. For each trade, the fees are 0.49%, with a minimum fee of NOK 79. 

Additionally, we only buy whole shares since Nordnet does not allow trading 
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fractional shares. For simplicity and to illustrate the model’s potential usage with 

today’s trading costs, we have used the same equation throughout the backtesting 

period. The transaction fee for each trade is calculated as 

  

𝑚𝑎𝑥(79, 0.49% ∗ 𝑂𝑟𝑑𝑒𝑟 𝑆𝑖𝑧𝑒)  

 

where the order size is the price of the stock multiplied by the number of shares. 

 

5.4 Performance measures 

To evaluate the performance of our Machine Learning algorithms, we have used 

several metrics derived from the confusion matrix, in addition to the AUC score. 

For the constructed portfolios, performance measures such as return, Sharpe ratio, 

standard deviation, max drawdown, and win rate are utilized to identify the best-

performing model.   

 

5.4.1 Classifiers 

There are four possible outcomes for the confusion matrix (see figure 5.4). True 

positive (TP) refers to cases where the model predicts a positive value correctly, 

true negative (TN) is when the algorithm predicts a negative value that is actually 

negative, false positive (FP) is subject to predictions of a negative value that is 

actually positive, and false negative (FN) is the number of times the model 

incorrectly predicts the positive class as negative.   

 

 
Figure 5.4: Illustration of a Confusion Matrix. 

 

In terms of evaluation metrics, we have included accuracy, misclassification rate, 

precision, recall, and F1-score. Accuracy refers to the overall accuracy, i.e., the 

correctly classified predictions, whereas misclassification rate is the percentage of 

predictions incorrectly classified. Precision is the number of times a prediction of 

a positive value was actually positive, whereas recall is defined as the fraction of 

all positive samples which were correctly predicted as positive by the model. 

  Negative (Predicted) Positive (Predicted) 

Negative (Actual) TN FP 

Positive (Actual) FN TP 

Equation 9 
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Lastly, F1-score is the harmonic mean between precision and recall. The formulas 

for each of the evaluation metrics are shown in table 5.1 below. 

 

  Formula 

Accuracy 
 

Misclassification Rate 
 

Precision 
 

Recall 
 

F1-Score 
 

 

Table 5.1: Evaluation metrics for our prediction results. 

 

Classifiers are often measured based on their correct rate and accuracy. In stock 

classification, such performance measures are greatly affected by the chosen 

probability-threshold to separate the assets into the predetermined classes. Thus, 

to better visualize each model's accuracy, we also use the AUC score, which is the 

area under the ROC curve.  

 

The ROC curve is defined as the receiving operating characteristic and is a 

common evaluation metric for classification algorithms. It is calculated from a 

combination of recall (true positive rate) and the false positive rate (FPR), 

whereas the recall is on the y-axis, and FPR constitutes the x-axis. The AUC score 

ranges from 0 to 1 and is calculated as the area under the drawn ROC curve. A 

score of 1 implies a perfect classifier, whereas a score above 0.5 suggests a model 

better than a random classifier. This evaluation metric can only be used on 

classifiers that provide some form of confidence or probability score, such as the 

SVM and RF (Burkov, 2019). However, this paper does not focus on achieving 

the highest possible accuracy, but rather on earning excess value from investing in 

the stock market based on the given predictions. 

 

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝐹𝑁 + 𝐹𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
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5.4.2 Portfolio  

Since the goal is to earn an excess return above the OSEBX and OMXS30, the 

performance of our constructed portfolios is most important. We have evaluated 

each portfolio based on the following metrics: 

 

 Formulas 

Annualized Return 
 
 

 

Standard Deviation  

Sharpe Ratio  

Win Rate  

Max Drawdown 
 

  
Total Return 

 

 

Table 5.2: Formulas for portfolio evaluation. 

 

In table 5.2, the annualized return corresponds to the return each year over the 

period of our backtesting trading environment. The Sharpe ratio measures the 

return for each unit of risk of the portfolio and is a critical measure since we want 

to ensure that the potential excess return is not a result of excessive risk-taking. 

Furthermore, we evaluate the portfolio performance using win rate, which is 

defined as the portion of profitable transactions to the total number of 

transactions. To assess the risk characteristics, we utilize standard deviation and 

maximum drawdown. Maximum drawdown is the maximum decline after an 

observed peak in the portfolio. Thus, it measures the downside risk of the model 

over the specified period. The standard deviation informs us about the volatility of 

the portfolios. Lastly, the total return is measured in percentage for the whole 

trading period.   

 

5.5 Benchmarks 

In this paper, we also compare our constructed portfolios against two benchmarks 

– a Dummy Classifier (DC) and combinations of the OSEBX and OMXS30. Our 

models are compared against the DC in terms of classification accuracy and 

𝑟𝑝 = ((
𝐸𝑛𝑑 𝑐𝑎𝑠ℎ

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑠ℎ
)

1

n
− 1) ∗ 100%  

𝑆𝑅 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝

 

𝑊𝑅 =
𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

𝑀𝐷𝐷 = 𝑀𝑎𝑥 (
(𝑃𝑝𝑒𝑎𝑘 − 𝑃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑒𝑎𝑘))

𝑃𝑝𝑒𝑎𝑘

) 

𝑇𝑅 =
𝐸𝑛𝑑 𝑐𝑎𝑠ℎ

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑠ℎ
− 1 

𝑆𝐷 = √
∑|𝑥 − 𝑥̅|2

𝑛
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portfolio performance, while the benchmark indexes are only relevant for the 

portfolio evaluation. 

 

5.5.1 Dummy Classifier 

A Dummy Classifier is a benchmark model that utilizes simple rules rather than 

employing the training data to predict future directions. For the DC benchmark, 

we have used the function DummyClassifier from Scikit-learn and included both a 

uniform and most frequent strategy. The uniform strategy is similar to a Random 

Walk and involves making a random guess (uniformly) for the dependent variable 

in each prediction. In the financial world, this is often illustrated as a blindfolded 

monkey throwing darts at the financial pages in the newspaper (Malkiel, 2003). 

For the most frequent strategy, the predicted value is equal to the most common 

among the labels. Hence, the most frequent value within the training set will be 

selected for the corresponding test set.  

 

In terms of portfolio construction for the two Dummy Classifier benchmark 

models, the initial available money is NOK 100 000, similar to our trading 

strategy. However, p_cash is always 20% with a maximum of NOK 20 000 since 

we cannot distinguish between the probabilities of each stock. Additionally, a new 

stock is only included in the portfolios if the maximum number of companies is 

not reached, and all sell predictions are performed at the start of each trading 

session. For the uniform strategy, we ran 1000 simulations and took the average of 

all outcomes to cope with potential outliers. 

 

5.5.2 OSEBX and OMXS30 

Since our portfolios are constructed with stocks listed on either Oslo Børs or 

Nasdaq Stockholm, we have benchmarked against both a weighted average 

between their respective indexes and a 50/50 split. The weighted average is 

calculated based on the number of companies in our portfolio coming from either 

Oslo Børs or Nasdaq Stockholm, and it is dynamically changing as we reconstruct 

our portfolio. Hence, this metric varies depending on the portfolio we benchmark 

against. It is calculated as:  

 

𝑁𝑂𝐵,𝑡 ∗ 𝐼𝑂𝐵,𝑡 + 𝑁𝑁𝑆,𝑡 ∗ 𝐼𝑁𝑆,𝑡 = 𝑊𝐵𝐼𝑡 
 

Equation 10 

10054970992576GRA 19703



42 

 

where 𝑁𝑂𝐵,𝑡 is the portion of companies in our portfolio listed on Oslo Børs, with 

their corresponding OSEBX index 𝐼𝑂𝐵,𝑡, and 𝑁𝑁𝑆,𝑡 refers to the portion of 

companies listed on Nasdaq Stockholm with 𝐼𝑁𝑆,𝑡 as the OMXS30 values. This 

gives us the Weighted Benchmark Index, 𝑊𝐵𝐼𝑡, where all variables are dependent 

on time. The 50/50 split refers to a 50% weight for the two indexes throughout the 

whole backtesting period. 

 

5.6 Evaluating performance during financial recessions 

Historically, there have been several financial recessions affecting the stock 

market, such as Black Monday (1987), the dot-com bubble of 2001-2002, and the 

Financial Crisis in 2008-2009. In statistics, this is usually referred to as a 

structural break, meaning a time series that abruptly changes at a point in time 

(Stata, n.d.). Structural breaks can potentially lead to high forecasting errors and 

general unreliability of the model, especially if the break materializes in the 

middle of a time series sample. A usual method of managing this issue is to split 

the dataset into several pieces and only consider the periods before and after the 

break. However, the stock market is particularly vulnerable to structural breaks. 

To illustrate, the US stock market has experienced eight bear markets7 from 1926-

2019 (How Long Do Downturns Last?, 2020). Thus, how investors manage their 

portfolios during downturns greatly influences their overall performance. For our 

thesis, we will examine the performance of our models during both the Financial 

Crisis of 2008 and the still ongoing COVID-19 Pandemic. 

 

5.7 Variable importance 

The same method used for our Random Forest feature selection process, 

feature_importances_, is also selected to visualize the degree of importance our 

most influential features carry on the dependent variable.  

The SVM-RFE feature selection method does not assign individual importance 

scores in the same matter as the RF method but rather ranks the variables 

according to their relevance. Within each rank, one cannot distinguish between 

the degree of feature importance. Hence, we refrain from displaying a variable 

importance plot for this method. A complete overview of the 54 features selected 

from both methods is given in table 10.2 in the appendix. 

 
7 Corresponding to a drop of more than 20 percent of major indexes. 
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6.0 RESULTS 

In the next part, we present the empirical results of our Machine Learning models 

and portfolios against the selected benchmarks. In table 6.1, the evaluation metrics 

are summarized for the respective models and benchmarks. Tables 6.2 and 6.3 

presents the results and performance of our constructed portfolios and the 

benchmark indexes, respectively. Lastly, we present a variable importance plot 

and analyze the most influential features from our best-performing model.  

The results may differ depending on the performance metrics. Since accuracy in 

classification models is usually determined by the selected threshold, we mainly 

focus on the AUC score in our analysis. Further, because portfolio performance 

has a higher importance in our paper, it is given more attention.  

 

6.1 Prediction results 

In our analysis, both the Support Vector Machine and Random Forest 

outperformed the Dummy Classifier benchmark models in an overall assessment. 

However, in terms of accuracy, precision, and misclassification rate, the 

benchmark model with the most frequent strategy was similar to our Machine 

Learning algorithms.  

  

  SVM (None) SVM (SVM-RFE) SVM (RF) RF (None) RF (SVM-RFE)  RF (RF)  

Accuracy 53.605% 54.050% 53.921% 52.656% 52.863% 53.150% 

Misclassification Rate 46.395% 45.950% 46.079% 47.344% 47.137% 46.850% 

Precision 54.121% 54.535% 54.466% 53.319% 53.494% 53.835% 

Recall  55.020% 55.664% 54.902% 52.246% 52.930% 52.500% 

F1-Score 54.567% 55.094% 54.683% 52.777% 53.210% 53.159% 

              

AUC score 53.518% 52.759% 53.996% 53.718% 54.181% 54.004% 

 

  
Dummy Classifier  

(Most Frequent) 

Dummy Classifier 

(Uniform) 

Accuracy 53.506% 49.968% 

Misclassification Rate 46.494% 50.032% 

Precision 54.591% 50.606% 

Recall 48.652% 49.958% 

F1-Score 51.451% 50.280% 

 
Table 6.1: Performance of our prediction models and benchmarks. 

 

Table 6.1 illustrates that all our models achieved above 50% accuracy and 

outperformed the Dummy Classifier (DC) benchmark model utilizing a uniform 
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strategy, indicating that the predictive performance is better than a random guess. 

However, the DC with the most frequent strategy showed better results than our 

RF models regarding the accuracy, misclassification rate, and precision.   

 

With SVM-RFE feature selection, the SVM model delivered the highest accuracy, 

precision, recall, and F1-score among our Machine Learning algorithms. In terms 

of AUC score, the RF model with SVM-RFE feature selection proved to be the 

best performer. A higher AUC score indicates that the model has a greater chance 

of separating the predetermined class labels as the given probability increases. 

That is, if a model provides a high probability for a prediction, it has a greater 

chance of correctly separating the classes when the AUC score is higher. The 

logic behind our trading strategy is to only include the stocks with the largest 

probability of being a buy. Thus, the implicit threshold for probability will be 

high, suggesting that a model with a greater AUC score will be better at selecting 

the correct stocks. The RF model with SVM-RFE feature selection is therefore 

considered to have the best potential for gaining excess profits in our trading 

strategy. 

 

To further examine the robustness of our two best prediction models and to ensure 

that they are statistically better than a random guess, we performed a binomial 

test. Since our dependent variable is calculated based on the median quarterly 

return, it follows a uniform distribution. There is approximately a 50% probability 

for each outcome (buy/sell), and they are all independent of one another. Hence, 

we can use the binomial distribution model to statistically test our models, which 

is given by:  

 

𝑋~𝐵(𝑛 = 10111, 𝑝 = 0.5, 𝑞 = 0.5) 

 

where n is the number of trials, p is the probability of success for each outcome, 

and q is the probability of failure. 

For the SVM model with SVM-RFE feature selection, there is a probability of 

3.02e-17 that the accuracy is actually 50%. For the second model with the highest 

AUC score, RF with SVM-RFE feature selection, the same probability is 4.97e-

10. Thus, in both instances, we can conclude that the models' accuracy is 

statistically better than a random guess. 

Equation 11 
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6.2 Portfolio results 

In the next section of our paper, we first evaluate our constructed portfolios 

against each other to identify the best performer. We further assess our selected 

reference model against the weighted average and the 50/50 split between 

OSEBX and OMXS30, in addition to similar portfolios based on predictions from 

the Dummy Classifier.  

 

    
SVM 

(None) 
SVM 

(SVM-RFE) 
SVM 
 (RF) 

RF  
(None) 

RF  
(SVM-RFE) 

RF  
(RF) 

  Win Rate 65.789% 58.284% 58.644% 54.615% 53.518% 51.958% 

  Max Drawdown -57.281% -58.487% -58.061% -56.268% -55.499% -68.637% 

N = 30 
Standard Deviation 12.094% 11.904% 11.781% 13.556% 12.165% 13.550% 

Sharpe Ratio 1.148 0.931 1.095 1.154 1.606 0.861 

  Annualized Return 15.840% 13.045% 14.845% 17.663% 21.555% 13.685% 

  Total Return 743.263% 491.721% 644.120% 957.458% 1594.879% 542.208% 

  Win Rate 60.479% 58.289% 60.952% 56.944% 56.264% 55.281% 

  Max Drawdown -53.979% -58.647% -52.391% -52.645% -60.114% -67.425% 

N = 20 
Standard Deviation 12.346% 12.725% 12.598% 12.763% 13.783% 12.629% 

Sharpe Ratio 1.428 1.094 1.361 1.260 1.038 0.676 

  Annualized Return 19.579% 15.904% 19.106% 18.066% 16.305% 10.511% 

  Total Return 1236.512% 749.985% 1161.967% 1011.260% 793.705% 325.945% 

  Win Rate 58.407% 58.750% 65.137% 60.079% 61.111% 59.608% 

  Max Drawdown -55.620% -56.661% -60.159% -53.099% -55.341% -60.521% 

N = 10 
Standard Deviation 12.381% 13.395% 13.912% 13.018% 12.553% 12.860% 

Sharpe Ratio 1.089 1.128 1.109 1.283 1.277 1.101 

  Annualized Return 15.406% 17.095% 17.380% 18.668% 18.007% 16.135% 

  Total Return 698.610% 885.803% 921.202% 1096.241% 1003.201% 774.881% 
 

1) The risk-free rate is calculated as the average weighted Norwegian and Swedish 10-year government bond 

yields, where the weights depend on the origin of the companies included in the models. 

2) Where N is the maximum number of stocks in the portfolio 

 

Table 6.2: Portfolio performance by prediction model and portfolio size. 

 

From table 6.2, we observe that the RF model with SVM-RFE feature selection 

and portfolio size of 30 (N = 30) has the highest annualized return with 21.555%. 

It has a maximum drawdown of -55.499% and the highest overall Sharpe ratio of 

1.606. Further examination of the risk characteristics reveals that the SVM model 

with RF feature selection has the lowest standard deviation (11.781%). In terms of 

win rate, the SVM model without feature selection significantly outperforms the 

other models.  

While we find the highest annualized return among the models with a portfolio 

size of 30, it is on average higher when reducing the number of companies. This is 

in line with our trading strategy since the implicit probability-threshold for 
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including stocks in our portfolio will be higher with a lower N. However, the 

enhanced return comes at the expense of higher risk as the average standard 

deviation increases. With fewer companies in the portfolio, we get a lower 

diversification, and losing trades have a higher impact on the overall result. The 

same logic does not apply for the maximum drawdown, as one would expect. On 

the contrary, we observe that the maximum drawdown on average decreases with 

a reduced portfolio size. 

 

 

Figure 6.1: Comparison of the different portfolios and the 50/50 benchmark index. 

 

As illustrated by figure 6.1, all of our models outperformed the 50/50 benchmark 

index for the backtesting period. Additionally, we can observe that all models and 

the benchmark index follow the same trends and are highly correlated. Since they 

are trading with the same selection of stocks, this is expected. From 2012-2018 

the RF model with no feature selection and 30 companies outperformed the 

others, whereas from 2018 until the end, the RF model with SVM-RFE feature 

selection overtook as the best performer. An interesting finding is that the model 

showing the best predictive performance, but the lowest AUC score, was not 

among the top performers in our trading strategy. On the contrary, the RF model 

with SVM-RFE feature selection and portfolio size 30 is the best model in terms 

of annualized and total returns. This is in line with our theory suggesting that the 

highest AUC score has the best potential in our trading strategy. Consequently, 

we use the RF (SVM-RFE) model as the representative of Machine Learning in 

the following analyses. The portfolio size is also set to 30 for the Dummy 

Classifier benchmarks to have a better comparison.  
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6.2.1 RF model with SVM-RFE feature selection  

Table 6.3 compares our reference Machine Learning model against two 

benchmark indexes and two portfolios constructed from Dummy Classifier 

predictions. The weighted average benchmark index is calculated based on the 

companies included in our RF (SVM-RFE) portfolio. To calculate the Sharpe 

ratio in table 6.3, 6.4, and figure 6.3, we have used the average between the 

Norwegian and Swedish 10-year government bond yields for each quarter. 

 

  
RF  

(SVM-RFE) 

DC  

(Most frequent) 

DC 

(Uniform) 

Index  

(Weighted) 

Index  

(50/50) 

Annualized Return 21.555% 14.715% 13.425% 6.380% 6.701% 

Standard Deviation 12.165% 12.251% 11.081% 9.150% 9.484% 

Max Drawdown -55.499% -59.229% -53.352% -53.884% -51.623% 

Sharpe Ratio 1.591 1.021 1.013 0.457 0.474 

 
Table 6.3: Summary statistics for our best-performing model and the respective benchmarks in the 

backtesting trading environment. 

 

We observe that our RF model delivered approximately 6.84 percentage points 

higher annualized return than the best-performing benchmark. Despite the excess 

return, it does not seem to come at the expense of higher risk, as the standard 

deviation is slightly lower. Additionally, the Sharpe ratio is significantly higher 

compared to the same benchmark.  

 

 

 
Table 6.4: Performance of our reference Machine Learning models and the respective benchmarks. 

 

Exploring this further, we note from table 6.4 that the first few years do not reveal 

any outperformance. However, in 2010 and between 2013-2015, our RF model 
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delivered significantly higher returns than the comparable benchmarks, which laid 

the basis for its superior result for the overall period. Thus, in the absence of bull 

markets and when the indexes experienced modest returns, the model still 

produced satisfying results. Another interesting observation is that even though 

our model yielded the overall highest annualized return, it is not close to the 

largest return for a given year. This is held by the Dummy Classifier models, 

which gained around 69% return in 2009. On the other hand, when examining the 

risk characteristics, we observe that our reference model delivered five years with 

no drawdown, whereas the closest benchmarks had at best three years.  

 

Random Forest (SVM-RF) statistics:   

Average position value NOK 14 627.56 

Number of unique stocks in the 

portfolio 
173 

Total number of trades 1244 

Longest held position in a stock SAGAa.ST for 45 quarters (30/09/09 - 30/09/20) 

The largest position in a single stock NOK 646 704 (SAGAa.ST) 

Origin of the stocks in the portfolio 7 Norwegian and 20 Swedish stocks in the portfolio on average 
 

1) Further portfolio statistics are found in appendix A.  

 
Table 6.5: Summary statistics for our selected portfolio in the backtesting trading environment. 

 

Further examination of our reference model (see table 6.5) reveals that it held 173 

out of 245 unique stocks available over the 14.5-year period. The model 

performed on average 21.4 trades per quarter, where the maximum would have 

been 30 trades (selling 15 stocks and buying 15 stocks at every trading session). 

Moreover, the average position value equaled NOK 14 627.56, whereas the 

largest position was in SAGAa.ST, which at one point resembled 44.83% of the 

portfolio and a market value of NOK 646 704. SAGAa.ST is also subject to the 

longest-held position and was included in the portfolio for 11 years and one 

quarter. On average, the portfolio held 7 Norwegian stocks and 20 Swedish 

stocks.  
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RF (SVM-RFE) after transaction costs: 

Win Rate 50.909% 

Maximum Drawdown -60.159% 

Standard Deviation 12.396% 

Sharpe Ratio 1.2563 

Annualized Return 17.563% 

Total Return 944.518% 

  

Total number of transactions 980 

 
Table 6.6: Trading performance for our reference model after including transaction costs in the backtesting 

trading environment. 

 

After including transaction costs in our backtesting trading environment, we 

observe from table 6.6 that our reference model still outperformed the other 

benchmarks. The fees do not significantly affect the results, as our quarterly 

rebalancing of the portfolio limits the number of transactions. Annualized return 

is reduced by approximately 4 percentage points compared to the backtesting 

environment before fees. Further, the reduced win rate indicates that we miss out 

on potential buy opportunities due to the added transaction cost, which is also 

illustrated by fewer trades. On average, the model performed 16.9 trades per 

quarter. Thus, transaction costs can be viewed as a constraint to our portfolio as 

the model is unable to take all of its preferred positions, compared to the scenario 

without fees.  

 

 

6.3 Portfolio performance during crisis periods 

The following section of our analysis investigates the portfolio return during 

periods of crisis, and evaluates whether the models can predict structural breaks 

more accurately than the benchmarks. We decided to center around both the 

Financial Crisis of 2008 and the COVID-19 Pandemic. The official date of the 

Financial Crisis is between mid 2007 and early 2009. Hence, we evaluated our 

portfolios from Q2 2007 to Q3 2009. For the COVID-19 Pandemic, we assessed 

the portfolio performance from Q4 2019 to Q1 2021. Since macroeconomic 

factors are leading predictors of bear markets, a natural hypothesis would be that 

the Machine Learning model delivers better than the benchmark indexes during 

structural breaks.  
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6.3.1 Financial Crisis of 2008 

 

 

  
RF  

(SVM-RFE) 
DC  

(Most Frequent) 
DC  

(Uniform) 
Index  

(Weighted) 
Index 

(50/50) 

Annualized Return -14.704% -16.246% -12.223% -12.205% -13.770% 

Standard Deviation 16.114% 17.153% 14.967% 13.739% 14.985% 

Maximum Drawdown -55.499% -58.409% -51.033% -49.517% -51.623% 

 

Figure 6.2: Trading performance in the period Q2 2007 to Q3 2009 (Financial Crisis) 8. 

 

However, from figure 6.2, we see that all the models follow the same bear trend 

during the Financial Crisis, with only minor differences. Our reference Machine 

Learning model delivered 2.49 percentage points worse in annualized return than 

the top-performing benchmark. The volatility is also higher than all comparable 

benchmarks except the most frequent Dummy Classifier model. Furthermore, the 

maximum drawdown of 55.5% for the RF (SVM-RFE) model over the whole 

period occurs during the Financial Crisis. Compared to the benchmark models, the 

Financial Crisis is subject to the worst-performing period for our reference model 

when considering the entire backtesting session. Hence, indicating that our long-

term view and quarterly data provide some limitations, as the model lacks the 

ability to capture short-term indicators prior to a structural break.  

 
8 We have not included Sharpe ratio for the Financial Crisis sample since a negative Sharpe ratio is 

unuseful. 
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6.3.2 COVID-19 

For the still ongoing COVID-19 pandemic, figure 6.3 shows that our model and 

the benchmarks followed the same trend initially. We observe that our reference 

model had a maximum drawdown of 18.86% in the worst quarter, whereas the 

weighted average and 50/50 split benchmark indexes experienced a drawdown of 

20.29% and 21.09%, respectively. Considering the entire period, our model 

delivered 21.37 and 22.34 percentage points higher annualized return compared to 

the same benchmark indexes. The Dummy Classifier (DC) benchmark models 

yielded significantly high returns in the same period, modulating the performance 

from our model. However, we observe a significantly lower Sharpe ratio 

compared to our reference model. Thus, the high return comes at the cost of 

increased risk. 

 

 
 

  
RF  

(SVM-RFE) 

DC 

 (Most Frequent) 

DC  

(Uniform) 

Index 

(Weighted) 

Index  

(50/50) 

Annualized Return 36.943% 33.910% 34.711% 15.578% 14.606% 

Standard Deviation 16.199% 18.391% 19.366% 12.978% 12.938% 

Maximum Drawdown -18.856% -22.100% -27.129% -20.294% -21.092% 

Sharpe Ratio 2.252 1.819 1.768 1.165 1.093 

 
Figure 6.3: Trading performance in the period Q4 2019 to Q1 2021 (COVID-19 pandemic). 

 

A more interesting observation was found when examining the periods after a 

financial shock. Our model yielded almost 48 percentage points higher return than 
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the weighted benchmark index for the first two years following the Financial 

Crisis. The same trend is observed for the one-year period after March 2020, 

where the reference Machine Learning model gained approximately 32.36 

percentage points higher return than the same benchmark. Hence, it might be that 

the highest potential for our Machine Learning model lies in the ability to identify 

the best buy possibilities following a financial recession or structural break. 

 

6.4 Variable importance plot  

In this section, we present the most influential variables from the Random Forest 

Feature Importance approach based on all test periods. As soon to be observed, 

variables concerning macro factors are considered most important according to 

this method. An illustration of the 20 most influential features is provided in 

descending order of importance for the Random Forest in figure 6.4. 

 

 

Figure 6.4: Feature importance for the Random Forest method. 

 

From the variable importance plot, we observe that among the top 5 variables, 

only macroeconomic- and momentum factors are selected. Last Q Brent seems 

like a valid choice as the most influential feature, given the great impact the oil 

industry is considered to have on the Norwegian stock market. 3-M US represents 

the development of the US 10-year Treasury Yield, by many referred to as the 

world’s most important interest rate, whereas the 1-M USD constitutes the 

development of the world’s reserve currency. Hence, they are believed to have a 

significant influence on the global financial markets. The 3-M Return Close is 

also a valid choice given that stocks frequently follows a momentum. Lastly, the 
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1-M NOR/SWE is essential as it represents the development of the respective 

countries’ economic conditions. 

From the original dataset, the three categories, Macroeconomic Factors, 

Momentum Factors, and Fundamental Factors, each holds 37%, 11%, and 52% of 

all variables, respectively. From table 10.2 in the appendix, we observe that 

macroeconomic variables stand for 50% of the features selected, whereas 39% are 

fundamental factors. Hence, implying that macroeconomic features are most 

important in determining the stocks’ future directions and that we could have 

included a higher number of such factors.  

 

7.0 DISCUSSION 

During our work with the dissertation, we have encountered several challenges 

regarding the data and backtesting, which may have impacted our results. In this 

section, some of those challenges and weaknesses will be addressed. Further, we 

will elaborate on the robustness of our model and potential practical usage, as well 

as discuss our findings and their implications to the Efficient Market Hypothesis. 

Lastly, we will identify relevant areas of further research within the utilization of 

Machine Learning in stock selection. 

 

7.1 Weaknesses with our data 

For the final dataframe, many variables had to be registered with 0, especially for 

the early years 2000-2005. Adding zeros and filling variables with the latest 

available value may have affected the overall structure of our data and made it 

more linear than it otherwise would have been. Consequently, to avoid excessive 

data manipulation, we had to discard many years of company fundamentals. A 

number of the features we set out to use before retrieving the data were also 

useless due to low quality. Generally, more data are assumed to provide better 

quality since it allows for a stronger foundation to train the algorithms. Overall, 

this can partially explain why our constructed fundamental features were not as 

informative to the prediction as the macroeconomic- and momentum factors, 

which had higher data quality.  
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7.2 Challenges with backtesting 

Backtesting is a challenging process, given that a strong performance in the 

trading simulation does not guarantee future returns. Further, by collecting 

companies based on stock listings as per 30/09-20 due to data challenges, we did 

not encounter potential bankruptcy and/or delisting of firms in our backtesting 

environment. Survivorship bias is therefore present in our analyses since the 

model will only trade stocks that are still present today. Thus, we have to be 

careful when evaluating our strategies and models. Additionally, by testing 

several approaches and trading strategies, you can most likely find one that yields 

good results. This makes it difficult to determine whether backtesting results are 

actually promising or a product of pure luck. The challenges related to backtesting 

are considered one of the main fundamental questions in quantitative finance. A 

foolproof solution to this problem would most likely provide investors with solid 

and risk-free returns (Lopez de Prado, 2018).  

 

7.2.1 Challenges with transaction costs 

For our backtesting trading environment, a simplistic measure of transaction costs 

has been used. First, we assume that the direct transaction costs are calculated 

based on the same factor throughout the whole period. However, this factor was 

higher in earlier time periods than today due to the new electronic platforms. 

Thus, a slight overestimation of returns in the early years is inevitable with this 

solution. Second, we do not account for the bid-ask spreads and liquidity issues, 

and rather assume that each stock can be bought at its respective open price for 

every trading session. Lastly, our data set does not provide the volume available at 

different bid-ask prices, making us unable to examine how the price impact 

related to portfolio size could potentially affect returns.   

 

7.3 Robustness of our models  

To cope with the challenges related to backtesting and provide more reliable 

results, we decided to test our designed trading strategy on several models and 

different company allocations. Interestingly, all our models outperformed the 

benchmark indexes in terms of annualized and risk-adjusted returns. Our 

constructed portfolios gained on average an excess annualized return above our 

50/50 split and weighted average benchmark indexes with 9.90 and 10.22 

percentage points, respectively. We also observe an average Sharpe ratio of 1.147 
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for our models. In comparison, the 50/50 split and weighted benchmarks had a 

Sharpe ratio of 0.494 and 0.477 for the same period. Additionally, our models 

produced significant prediction properties with an average AUC score of 53.696% 

and accuracy of 53.374%. This is considered quite respectable within the finance 

industry since, in theory, you would only need to get over half of your trades 

correct to make money. Thus, our findings both before and after transaction costs 

challenge the semi-strong form Efficient Market Hypothesis, which claims that 

our models should not be able to produce excess risk-adjusted returns. A possible 

explanation for our portfolios’ outperformance may be due to the long-term 

perspective and quarterly rebalancing, which reduces the risk, transaction costs 

and minimizes the opportunities for losing trades. Further, we do not consider 

potential liquidity issues surrounding the stocks traded. Our assumption that all 

stocks can be traded at their respective open prices and not accounting for 

potential price impact may have affected the overall results. The survivorship bias 

also prevents the model from potentially investing in companies that go bankrupt.  

 

However, given that all our constructed portfolios were able to significantly 

outperform the benchmark indexes, there is a high probability that it can yield 

excess returns also in the future. Hence, taking all the limitations into account, it 

still seems profitable to trade on the predictions presented by the model. More 

sophisticated strategies can also be implemented to potentially increase 

profitability. Alternatively, the complex nature of the finance industry and the 

lack of future guarantees from backtesting can facilitate another use of our model. 

Portfolio managers and other professionals often have a large group of stocks to 

analyze and include in their strategies. An alternative use case for our prediction 

model could therefore be as a stock screener to identify potential companies 

before implementing further analyzes and their trading strategies. 

 

7.4 Fundamental analysis with Machine Learning  

One of the fundamental ideas in finance is that all agents are rational. However, 

this idea has been challenged repeatedly, with the latest being the surge in 

behavioral finance which focuses on investors' behavior and its implications on 

the market. Returns are often affected by the irrationality of the investor, which 

can be overconfidence, limited attention, or other cognitive biases. In large, we 

find the challenge of removing the irrationality of the investors from the equation 
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interesting. Thus, Machine Learning is a compelling subject, and while it is not 

entirely without bias, it is a significant step in the right direction. 

 

7.5 Further research within the field 

We have identified several areas where the research of Machine Learning in 

finance could expand. First, more complex algorithms and models, especially 

Deep Learning techniques, which have gained more attention in recent years, 

could be implemented. Ideally, applying more sophisticated models, e.g., ANN, 

would be preferable in terms of accuracy. However, such techniques usually 

require more computing power and a massive amount of high-quality data and are  

more time-consuming. Additionally, even the most straightforward neural net 

could be challenging to interpret since ANN is characterized as a “Black Box”-

algorithm9. Further research within the field could also perform more thorough 

hyperparameter optimization to enhance the model’s predictability, which had to 

be left out for our experiment due to computer limitations.  

Second, it is still essential to explore new features that may have higher 

predictability, such as volatility and technical factors. Additionally, the feature 

selection process needs to be optimized, i.e., by creating a more sophisticated 

procedure to determine the accurate number of features.  

Third, the backtesting trading environment could be more realistically constructed 

in terms of including accurate transaction costs. For smaller stock exchanges (i.e., 

Oslo Børs and Nasdaq Stockholm), liquidity issues are also more severe. Hence, 

there is a need to continually improve how to account for such factors.  

 

8.0 CONCLUSION 

Throughout history, investors have been searching for better methods to predict 

future stock price directions. The most popular involve fundamental analysis, 

technical analysis, or a combination. However, with the increased availability of 

data and computational power, more sophisticated methods such as Machine 

Learning have been developed. The main objective of our dissertation was to 

 

9 Common definition of complex algorithms where it is challenging to interpret how the system 

reaches its conclusion.  

 

10054970992576GRA 19703



57 

 

examine whether Machine Learning algorithms can add value when constructing 

portfolios based on predictions from long-term stock price directions. 

As presented in this study, the finance industry is highly complex, making it 

challenging to predict stock prices with high accuracy. Additionally, weaknesses 

in our dataset, such as low-quality input and lack of data, further complicated the 

analysis. After reviewing different models, we found the Support Vector Machine 

(SVM) and the Random Forest (RF) classifier to best fit our needs in terms of 

simplicity, as well as its ability to handle non-linear relationships and a large 

number of features. For each classifier, we ran three different configurations in 

terms of feature selection; “None”, where no selection was performed, and 

Support Vector Machine Recursive Feature Elimination (SVM-RFE) and Random 

Forest (RF) feature selection, where the top 50% variables were selected. 

 

From our research, the Random Forest model with SVM-RFE feature selection 

was found to yield the highest AUC score, annualized- and risk-adjusted return. 

Considering our entire backtesting period, the model significantly outperformed 

both the benchmark indexes and the two Dummy Classifier models. Overall, it 

gained 6.84 percentage points higher annualized return than the best-performing 

benchmark model. Compared to the 50/50 split and weighted average benchmark 

indexes, our model yielded 14.85 and 15.17 percentage points in excess 

annualized return, respectively. However, when examining crisis periods, the 

performance was not equally impressive. For both structural breaks considered, 

our reference Machine Learning model did not outperform the benchmarks. On 

the other hand, further examination revealed that the highest outperformance from 

our model was found in periods following a financial recession. 

 

We believe the results show the value Machine Learning can bring to investors in 

the stock market. It may not completely substitute existing models and human 

interaction due to the highly complex nature of the industry. Nevertheless, it can 

serve as a supporting and supplementary tool in making objective and rational 

decisions. The new digital era and increased data availability highlight the 

importance of continuously seeking growth opportunities and innovations using 

big data analysis in the finance industry to enhance competitive advantage.  
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10.0 APPENDIX 

 

10.1 Appendix A: Portfolio results and analysis for our reference Machine 

Learning model 

 

We have analyzed the top 10 traded stocks from our RF model with SVM-RFE 

feature selection to better understand the dynamics behind the stocks chosen by 

the model. Median market capitalization for the stocks included in our backtesting 

trading environment is NOK 5093 (millions) per 31.03.2021, whereas, for the top 

10 most traded stocks, it is NOK 20 605 (millions). All of the top 10 most traded 

stocks are still listed as of 31.03.2021.  

 

 

  
Ticker 

Number 

of trades 

Market Capitalization 

(millions) 

Annualized 

return10 

Sagax AB SAGAa.ST 54 58754 32.99% 

AF Poyry AB AFb.ST 42 27314 17.48% 

Fastighets AB Balder BALDb.ST 42 75174 27.06% 

Atlas Copco AB ATCOb.ST 38 497187 16.14% 

Biotage AB BIOT.ST 33 9066 20.47% 

XANO Industri AB XANOb.ST 33 2706 18.17% 

Betsson AB BETSb.ST 31 9029 25.08% 

Vitrolife AB VITR.ST 31 23433 34.20% 

DNO ASA DNO.OL 30 7846 0.50% 

FastPartner AB FPARa.ST 30 17774 15.83% 
 

1) Market Capitalization as of 31.03.2021 (Refinitiv)     
 

Table 10.1: Portfolio summary statistics. 

 

 

 

 

  

 
10 Annualized return as per our backtesting period (Q4 2006 – Q1 2021) 
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10.2 Appendix B: Feature selection 

 

A complete overview of the 54 features selected by the SVM-RFE feature 

selection and the RF feature selection. The variable names are the actual shorter 

versions that we used in our programming for simplicity. 

 

 

SVM - RFE  Random Forest 

Quick Ratio Current Ratio 

Return on Assets Quick Ratio 

Debt Ratio Return on Equity 

Long-Term Debt Ratio P/B Ratio 

Asset Turnover P/S Ratio 

EBITDA-margin Debt Ratio 

Inventory turnover Asset Turnover 

Operating margin Interest Coverage Ratio 

ROA TTM EV / EBITDA 

YoY growth Current Liabilities MCAP / FCF 

1-M Return Receivables Turnover 

2-M Return Revenue TTM / Market Cap 

3-M Return Close Net Profit TTM / Market Cap 

3-M Return Open Net Profit / Market Cap 

12-M Return PEG Q 

NIBOR/STIBOR 3M M/B 

GNGT3M YoY growth EBIT 

Unemployment Rate YoY growth Cash from Operation 

GDP Q Change YoY growth Current Liabilities 

12-M US YoY growth Total Equity 

6-M US 1-M Return 

3-M US 2-M Return 

2-M US 3-M Return Close 

1-M US Open Price 1-M 

US Bid Open Price 

12-M NOR/SWE CPI YoY 

6-M NOR/SWE Brent 

3-M NOR/SWE Gold Price 

2-M NOR/SWE GDP Q Change 

1-M NOR/SWE 6-M US 

Bid NOR/SWE 3-M US 

12-M Brent 2-M US 

6-M Brent 1-M US 

2-M Brent US Bid 

1-M Brent 6-M NOR/SWE 
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12-M USD 2-M NOR/SWE 

6-M USD 1-M NOR/SWE 

3-M USD 3-M Brent 

2-M USD 2-M Brent 

12-M EUR Last Q Brent 

6-M EUR 12-M USD 

3-M EUR 1-M USD 

2-M EUR 12-M EUR 

1-M EUR 3-M EUR 

Return Index 1-M EUR 

Change in Index Change in Revenue 

Change in Current Liabilities Change in Operating Expenses 

Change in Current Assets Change in Current Liabilities 

Change in Total Assets Change in Total Assets 

Change in Total Liabilities Change in Net Income 

Change in EV Change in EV 

Change in Brent Change in Profit Margin 

Change in 3-Month Government Yield Change in Gold Price 

Change in 10-Year Government Yield Change in 3-Month Government Yield 

 
Table 10.2: Overview of all 54 features selected by the SVM-RFE and Random Forest method.  
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10.3 Appendix C: Feature computation 

 

Illustration of how we calculate each input feature used in our models. A total of 

109 features were used in our analyses. 

 

 

Category Feature Computation 

Fundamental Factors  

Liquidity factors 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

 

 𝑄𝑢𝑖𝑐𝑘 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡 − 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

 

 𝐶𝑎𝑠ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑎𝑠ℎ𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

 

 𝐶𝑎𝑠ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐸𝐵𝐼𝑇𝑡 + 𝐷&𝐴𝑡

𝑁𝑒𝑡 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡

 

 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐸𝐵𝐼𝑇𝑡

𝑁𝑒𝑡 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡

 

Valuation factors 𝑃𝑟𝑖𝑐𝑒 − 𝑡𝑜 − 𝐸𝑎𝑟𝑛𝑖𝑛𝑔 =
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡

𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒𝑡

  

 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑏𝑜𝑜𝑘 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒𝑡

 

 𝑃𝑟𝑖𝑐𝑒 𝑡𝑜 𝑠𝑎𝑙𝑒𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

 

 
𝐸𝑉𝑡

𝐸𝐵𝐼𝑇𝐷𝐴𝑡

  

 
𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐹𝑟𝑒𝑒 𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤
=

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡

𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡 − 𝐶𝑎𝑝𝑒𝑥𝑡

  

 
𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑇𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝐵𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒
=

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑥𝑒𝑑 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

 

 
𝑀

𝐵
=

𝑀𝑎𝑟𝑘𝑒𝑡 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑡

(𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡)
 

 
𝐸𝑉

𝑂𝐼
=

𝐸𝑉𝑡

𝐸𝐵𝐼𝑇𝑡

 

Leverage factors 𝐷𝑒𝑏𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

 

 𝐷𝑒𝑏𝑡 − 𝐸𝑞𝑢𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡

 

 𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐿𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝐷𝑒𝑏𝑡𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

 

Financial quality factors 
 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝐸𝑞𝑢𝑖𝑡𝑦 (𝑄𝑇𝐷) =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡

 

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑄𝑇𝐷) =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

 

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑛 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑇𝑇𝑀) =
𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 (𝑇𝑇𝑀)𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑇𝑇𝑀)𝑡

 

 𝑃𝑟𝑜𝑓𝑖𝑡 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

 

 𝐸𝐵𝐼𝑇𝐷𝐴 − 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝐸𝐵𝐼𝑇𝐷𝐴𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

 

 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝐸𝐵𝐼𝑇𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

 

 𝐺𝑟𝑜𝑠𝑠 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

 

 Cash from operating (TTM) / Net Profit (TTM)  =
𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑇𝑇𝑀)𝑡

𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡 (𝑇𝑇𝑀)𝑡

 

 Cash from operating / Net Profit =
𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡

𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡𝑡
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 Revenue (TTM) / Market Capitalization =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑇𝑇𝑀)𝑡

Market Capitalizationt

 

 Net Profit (TTM) / Market Capitalization =
𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡 (𝑇𝑇𝑀)𝑡

Market Capitalizationt

 

 Net Profit / Market Capitalization =
𝑁𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑡𝑡

Market Capitalizationt

 

 𝑃𝐸𝐺 𝑄 =
 𝑃/𝐸 𝑅𝑎𝑡𝑖𝑜𝑡   

𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑃𝑆𝑡

 

 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑦𝑖𝑒𝑙𝑑 =
𝐸𝐵𝐼𝑇𝑡

𝐸𝑉𝑡

 

 𝐴𝑠𝑠𝑒𝑡 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

 

 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡

 

 𝑅𝑒𝑐𝑖𝑣𝑎𝑏𝑙𝑒𝑠 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝑅𝑒𝑐𝑖𝑒𝑣𝑎𝑏𝑙𝑒𝑠𝑡

 

 𝑃𝑎𝑦𝑎𝑏𝑙𝑒 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝐴𝑐𝑐𝑜𝑢𝑛𝑡 𝑃𝑎𝑦𝑎𝑏𝑙𝑒𝑡

 

1-year growth in 

fundamental 
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑅𝑒𝑣𝑒𝑛𝑢𝑒(𝑌𝑜𝑌) =

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝐸𝐵𝐼𝑇 (𝑌𝑜𝑌) =
𝐸𝐵𝐼𝑇𝑡

𝐸𝐵𝐼𝑇𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝐸𝐵𝐼𝑇𝐷𝐴 (𝑌𝑜𝑌) =
𝐸𝐵𝐼𝑇𝐷𝐴𝑡

𝐸𝐵𝐼𝑇𝐷𝐴𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 (𝑌𝑜𝑌) =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑌𝑜𝑌) =
𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡

𝐶𝑎𝑠ℎ 𝑓𝑟𝑜𝑚 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑌𝑜𝑌) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑌𝑜𝑌) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦 (𝑌𝑜𝑌) =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑌𝑜𝑌) =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡−4𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑌𝑜𝑌) =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−4𝑄

 

Quarterly change in 
fundamentals 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑄𝑜𝑄) =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 (𝑄𝑜𝑄) =
𝑂𝑃𝐸𝑋𝑡

𝑂𝑃𝐸𝑋𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑄𝑜𝑄) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑄𝑜𝑄) =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑄𝑜𝑄) =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 (𝑄𝑜𝑄) =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑄𝑜𝑄) =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐿𝑜𝑛𝑔 − 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 (𝑄𝑜𝑄) =
𝐿𝑜𝑛𝑔 − 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡𝑡

𝐿𝑜𝑛𝑔 − 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒 (𝑄𝑜𝑄) =
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒𝑡

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐼𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑄𝑜𝑄) =
𝐼𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝐴𝑠𝑠𝑒𝑡𝑠𝑡

𝐼𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒 𝐴𝑠𝑠𝑒𝑡𝑠𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦 (𝑄𝑜𝑄) =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑞𝑢𝑖𝑡𝑦𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑄𝑜𝑄) =
𝐸𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑡

𝐸𝑛𝑡𝑒𝑟𝑝𝑟𝑖𝑠𝑒 𝑣𝑎𝑙𝑢𝑒𝑡−1𝑄
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70 

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑃𝑟𝑜𝑓𝑖𝑡 𝑀𝑎𝑟𝑔𝑖𝑛 (𝑄𝑜𝑄) =
𝑃𝑟𝑜𝑓𝑡𝑖 𝑀𝑎𝑟𝑔𝑖𝑛𝑡

𝑃𝑟𝑜𝑓𝑖𝑡 𝑀𝑎𝑟𝑔𝑖𝑛𝑡−1𝑄

 

Momentum Factors 1 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑟𝑖𝑐𝑒𝑡

𝑃𝑟𝑖𝑐𝑒𝑡−1𝑀

 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑟𝑖𝑐𝑒𝑡

𝑃𝑟𝑖𝑐𝑒𝑡−2𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 𝐶𝑙𝑜𝑠𝑒 =
𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒𝑡

𝐶𝑙𝑜𝑠𝑒 𝑃𝑟𝑖𝑐𝑒𝑡−3𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑂𝑝𝑒𝑛 =
𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡

𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡−3𝑀

 

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑟𝑖𝑐𝑒𝑡

𝑃𝑟𝑖𝑐𝑒𝑡−6𝑀

 

 12 − 𝑀𝑜𝑛𝑡ℎ 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑟𝑖𝑐𝑒𝑡

𝑃𝑟𝑖𝑐𝑒𝑡−12𝑀

 

 𝐿𝑎𝑠𝑡 𝑄𝑢𝑎𝑟𝑡𝑒𝑟′𝑠 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡−1𝑄 

 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒 2 − 𝑀 = 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡−2𝑀   

 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒 1 − 𝑀 = 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡−1𝑀 

 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝑂𝑝𝑒𝑛 𝑃𝑟𝑖𝑐𝑒𝑡 

Macroeconomic Factors 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥𝑡 (𝑌𝑜𝑌) 

 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡 𝑂𝑖𝑙 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡 𝑂𝑖𝑙𝑡 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝐼𝑛𝑡𝑒𝑟𝑏𝑎𝑛𝑘 𝑅𝑎𝑡𝑒 = 3 − 𝑀𝑜𝑛𝑡ℎ 𝐼𝑛𝑡𝑒𝑟𝑏𝑎𝑛𝑘 𝑅𝑎𝑡𝑒𝑡 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 =  3 − 𝑀𝑜𝑛𝑡ℎ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑𝑡 

 10 − 𝑌𝑒𝑎𝑟 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 =  10 − 𝑌𝑒𝑎𝑟 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑𝑡 

 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 = 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑡 

 𝐺𝑜𝑙𝑑 𝑃𝑟𝑖𝑐𝑒 =  𝐺𝑜𝑙𝑑 𝑃𝑟𝑖𝑐𝑒𝑡 

 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐺𝐷𝑃 =
𝐺𝐷𝑃𝑡

𝐺𝐷𝑃𝑡−1𝑄

 

 12 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−12𝑀

 

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−6𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−3𝑀

 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−2𝑀

 

 1 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑈𝑆 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−1𝑀

 

 𝑈𝑆 𝐵𝑖𝑑 𝑅𝑎𝑡𝑒 =  𝑈𝑆 𝐵𝑖𝑑 𝑅𝑎𝑡𝑒𝑡 

 

12 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒

=
𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−12𝑀 
 

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−6𝑀 
 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−3𝑀 
 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−2𝑀 
 

 1 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒 =
𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡

𝑁𝑂𝑅/𝑆𝑊𝐸 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑅𝑎𝑡𝑒𝑡−1𝑀 
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 𝑁𝑂𝑅/𝑆𝑊𝐸 𝐵𝑖𝑑 𝑅𝑎𝑡𝑒 =  𝑁𝑂𝑅/𝑆𝑊𝐸 𝐵𝑖𝑑 𝑅𝑎𝑡𝑒𝑡 

 12 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 =
𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡

𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡−12𝑀

 

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 =
𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡

𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡−6𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 =
𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡

𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡−3𝑀

 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 =
𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡

𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡−2𝑀

 

 1 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 =
𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡

𝐵𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒𝑡−1𝑀

 

 𝐿𝑎𝑠𝑡 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝐵𝑟𝑒𝑛𝑡 𝑃𝑟𝑖𝑐𝑒 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡𝑡−1 

 12 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆𝐷 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−12𝑀

  

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆𝐷 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−6𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆𝐷 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−3𝑀

 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆𝐷 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−2𝑀

 

 1 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑈𝑆𝐷 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝑈𝑆𝐷 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−1𝑀

 

 12 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑈𝑅 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−12𝑀

 

 6 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑈𝑅 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−6𝑀

 

 3 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑈𝑅 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−3𝑀

 

 2 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑈𝑅 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−2𝑀

 

 1 − 𝑀𝑜𝑛𝑡ℎ 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐸𝑈𝑅 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒 =
𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡

𝐸𝑈𝑅 𝑡𝑜 𝑁𝑂𝑅/𝑆𝑊𝐸𝑡−1𝑀

 

 𝐿𝑎𝑠𝑡 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐼𝑛𝑑𝑒𝑥 𝑅𝑒𝑡𝑢𝑟𝑛𝑡−1𝑄 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐼𝑛𝑑𝑒𝑥 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝐼𝑛𝑑𝑒𝑥 𝑅𝑒𝑡𝑢𝑟𝑛𝑡−1𝑄

𝐼𝑛𝑑𝑒𝑥 𝑅𝑒𝑡𝑢𝑟𝑛𝑡−2𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡 (𝑄𝑜𝑄)  =
𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡𝑡

𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐵𝑟𝑒𝑛𝑡𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐺𝑜𝑙𝑑 𝑃𝑟𝑖𝑐𝑒 (𝑄𝑜𝑄)  =
𝐺𝑜𝑙𝑑 𝑃𝑟𝑖𝑐𝑒𝑡

𝐺𝑜𝑙𝑑 𝑃𝑟𝑖𝑐𝑒𝑡−1𝑄

 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 3 − 𝑀𝑜𝑛𝑡ℎ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑   =
3 − 𝑀𝑜𝑛𝑡ℎ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑𝑡

3 − 𝑀𝑜𝑛𝑡ℎ 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑𝑡−1𝑄
 

 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 10 − 𝑌𝑒𝑎𝑟 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑 =
10 − 𝑌𝑒𝑎𝑟 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑𝑡

10 − 𝑌𝑒𝑎𝑟 𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑𝑡−1𝑄
 

 

Table 10.3: Feature computation for all variables included in the final dataset 
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10.4 Appendix D: Hyper-parameters 

 

Below we outline the hyper-parameter values utilized for all the predictive models 

presented in the thesis. All Machine Learning models have the same hyper-

parameters regardless of portfolio construction and/or feature selection. Hence, 

the only differences are the input features and type of algorithms. The hyper-

parameters are set to the default values provided by sklearn, for simplicity.  

 

  Random Forest Support Vector Machine 

C - 1 

Kernel - RBF 

Number of estimators 100 - 

Max features 
 

- 

Criterion Gini - 

Max depth None - 

Gamma - 

 

1) n is the number of features   

2) X is the array of independent variables   

 

Table 10.4: Hyperparameters for the Random Forest model and Support Vector Machine model. 

√𝑛 

1

𝑛 ∗ 𝑣𝑎𝑟(𝑋)
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