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Abstract 

We study the performance of implementation methods for multifactor strategies in the 

Norwegian equity market. We compare the risk-adjusted performance of three different 

strategies implemented with equal weights, mean-variance optimized weights and factor-timed 

weights. During the financial crisis, the mean-variance optimization strategy performed 

exceptionally well with a Sharpe ratio if 0.402. The factor timing strategy underperformed 

during the financial crisis, but outperforms in normal times, generating a Sharpe ratio of 0.705 

between March 2009 and December 2019. Moreover, the factor timing strategy is superior in 

the long run, although differences in risk-adjusted returns are minor. Our findings indicate that 

implementing factor-timed weights estimated on macroeconomic variables and moving to 

mean-variance optimized weights during crises may enhance the risk-adjusted returns of a 

multifactor strategy.  
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 1 

1.0 Introduction and motivation 

Becker & Reinganum (2018) attribute the effective era of factor investing to the 

infamous Fama & French (1993) three-factor model, which they refer to as the next 

evolutionary step in “the triumph of indexing.” Following the publication of the 

three-factor model, the interest in factor investing has been present in both academic 

research and sophisticated investment strategies. In this thesis, we investigate the 

performance of different implementation methods for factor investing strategies, 

focusing on the Norwegian equity market. 

 

To begin with, we study the presence and persistence of the well-known factors 

value, size, and momentum. As the Capital Asset Pricing Model (CAPM) often fails 

in practice (Ang, 2014), we also examine “betting against beta,” a factor 

contradicting CAPM’s intuition that the risk premium of an asset only depends on 

its beta. We find evidence for the size and betting against beta premiums in the 

Norwegian equity market but observe that the value and momentum effects are non-

existent between 2006 and 2019. During this period, the four factors achieve Sharpe 

ratios1 of 0.424, 1.043, -0.060, and -0.114, respectively. Our findings regarding 

size, value, and momentum essentially contradict international evidence (see for 

example Fama & French 2012; Lakonishok et al., 1994), but conforms with 

previous research on the Norwegian market conducted by Næs et al. (2009). The 

positive Sharpe ratio for betting against beta is in line with Frazzini & Pedersen’s 

(2014) findings in the Norwegian equity market. 

 

We further study the performance of three different strategies, where weights are 

determined using three different approaches. Firstly, we test the performance of a 

static, equal-weighted strategy relative to the single equity factors. Secondly, we 

investigate whether the equal-weighted portfolio can benefit from implementing 

mean-variance optimized weights. Lastly, we examine whether tactical 

implementation based on macroeconomic variables can enhance a mean-variance 

multifactor strategy.  

 

The static equal-weighted portfolio achieves a Sharpe ratio of 0.398, meaning that 

it only outperforms half of the individual factors. This indicates that an investor 

 
1 See section 3.6 for an explanation of the Sharpe ratio 
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 2 

might be better off if invested in a pure size or betting against beta portfolio in terms 

of risk-adjusted returns. We do, however, observe a great reduction in volatility, 

from around 30% for three of the factors, to 15.87% for the equal-weighted strategy. 

Our findings of low correlations between factors and the diversification benefits 

arising from them conform with prior literature (e.g., Ghayur et al., 2018). 

However, the outperformance of size and betting against beta is somewhat more 

contradictory.  

 

As a second approach, we test whether implementing dynamic mean-variance 

optimized weights can improve the risk-adjusted returns of the equal-weighted 

strategy. Mean-variance optimization represents one of the most practiced methods 

of choosing optimal portfolio weights and is constructed to provide the best tradeoff 

between risk and return (Ang, 2014). In contrast to the equal-weighted portfolio, 

the mean-variance strategy is dynamic in the sense that the weights may fluctuate 

across periods. We find that mean-variance weights yield annualized returns of 16% 

during the global financial crises, in line with the post-crisis critique that investors 

should diversify across factors rather than asset classes (Becker & Reinganum, 

2018). Despite the impressive performance during the “great recession,” the mean-

variance strategy produces a Sharpe ratio of 0.382 between 2006-2019, thus 

underperforming the naïve equal-weighted strategy in the long run on a risk-

adjusted basis.  

 

Finally, we study whether the mean-variance optimization can benefit from tactical 

implementation based on macroeconomic variables. We use vector autoregressive 

models combined with Granger Causality tests to uncover relationships between 

five macroeconomic indicators and four equity factors. We find a positive 

relationship between liquidity and the size and betting against beta factors and a 

negative relationship between value and market volatility. We further find that the 

composite leading indicator, an indicator designed to predict turning points in 

business cycles (OECD, n.d.), is useful in predicting both momentum and betting 

against beta.  

 

Due to strong cyclicality in factor returns (Zhang et al., 2009), tactically moving 

between different factors dependent on expected market conditions may increase 

risk-adjusted returns. The benefits of so-called factor timing are, however, strongly 
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debated. For example, Asness (2016) argues that factor timing strategies have 

historically performed weakly. On the other hand, Arnott et al. (2016) argue that 

factor timing approaches can enhance performance as long as it does not 

compromise diversification benefits. We find that factor timing enhances risk-

adjusted returns in normal times2, generating a Sharpe ratio of 0.705 between March 

2009 and December 2019. The factor timing strategy does, however, underperform 

the other strategies during crises, suggesting that it is challenging to predict factor 

returns during market turmoil. Nevertheless, the factor timing strategy outperforms 

all other multifactor strategies in the long run, generating a Sharpe ratio of 0.431 

over the period 2006-2019. 

 

The remainder of this paper is structured as follows: Part 2 reviews relevant 

literature on factor investing and implementation methods of multifactor models. 

Part 3 presents the theory and methodology applied in our research. Part 4 describes 

the data used to construct the investment strategies. In part 5, we present and discuss 

our findings. Part 6 concludes. 

 

  

 
2 We define normal times as periods where market movements are not associated with crises or 

market returns are abnormally high. 
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2.0 Literature Review 

2.1 Factor Investing 

Based on Markowitz’s (1952) diversification and mean-variance utility principle, 

the Capital Asset Pricing Model was formulated as a model to explain the 

relationship between asset returns and systematic risk. According to the CAPM, the 

return of an asset 𝑖 is given by 

 

𝐸(𝑟𝑖) = 𝑟𝑓 + 𝛽𝑖(𝐸(𝑟𝑚) − 𝑟𝑓) (1) 

 

where 𝐸(𝑟𝑖) is the expected return of asset 𝑖, 𝑟𝑓 is the risk-free rate, 𝛽𝑖 is the beta of 

asset 𝑖 and 𝐸(𝑟𝑚) is the expected return of the market. Due to its prediction that the 

market portfolio is the only factor that matters and that asset risk premiums only 

depend on the asset’s beta, the CAPM does not hold in practice (Pedersen, 2015). 

Nevertheless, the CAPM continues to be considered the “workhorse model of 

finance” (Ang, 2014), and the basic intuition of the model still holds; the underlying 

factors of an asset incur risk premiums as compensation for investors’ losses during 

bad times.  

 

Individual equity factors perform well in good times. However, they may suffer 

major losses during bad times, which is the reason factors accrue risk premiums 

(Ang, 2014). In fact, factor investing is sometimes referred to as “risk-premia 

investing.” Although there is no broadly accepted categorization of factor risk 

premiums, Ang (2014) suggests separating between macroeconomic and style 

factors. Whereas the former captures risks across asset classes, the latter captures 

risk within asset classes and can consequently explain asset returns. An important 

distinction between the two types of factors is that, while macroeconomic factors 

may be difficult to trade directly, an investor can easily implement style factors. 

 

As previously mentioned, the CAPM states that there exists only one factor; the 

market factor. The CAPM market risk premium is given by 𝐸(𝑟𝑚  ) – 𝑟𝑓, i.e., the 

expected returns of the market in excess of the risk-free rate. However, in the past 

decades, several other factors have been uncovered. These factors, which cannot be 

explained by the CAPM, can be referred to as anomalies. Style factors, such as 

value, size, and momentum, and macroeconomic factors, such as economic growth 
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and volatility, are all examples of anomalies investors could attempt to exploit. In 

this thesis, we will focus on the three style factors mentioned above, in addition to 

the betting against beta factor.  

 

2.2 The Value Factor 

The fundamental principle of value investing is to purchase undervalued stocks 

while selling overvalued stocks, based on a comparison between the fundamental 

value of a stock and its current market value. A common measure used to determine 

whether a stock is over- or undervalued is the book-to-market (BM) ratio, i.e., a 

company’s book value of equity relative to its market value of equity. Using this 

ratio, a value investor will purchase the high BM stocks (value stocks) and sell the 

low BM stocks (growth stocks), expecting that value stocks will outperform growth 

stocks. Thus, the value factor is regularly termed high-minus-low, or HML. The 

ratio between an asset’s return and its BM ratio is often referred to as the “value 

effect” (Asness et al., 2013). 

 

The zero-net value strategy captures the potential outperformance of value stocks 

over growth stocks, where the difference in returns is referred to as the value 

premium. Historically, the value premium has proven to be robust (Ang, 2014). 

Fama & French (1992) argue that the premium arises because high BM companies 

are less profitable and relatively distressed, and the premium is thus compensation 

for a higher fundamental risk. Behavioral theories, on the other hand, explain the 

value premium through overreaction of past growth. For example, Lakonishok et 

al. (1994) argued that the premium stems from strategies exploiting suboptimal 

investor choices of overpaying for growth stocks.          

 

Value investing represents an active contrarian strategy that allows an investor to 

buy low and sell high and has been highly successful both across assets and regions 

(Pedersen, 2015). For example, the HML factor in the Fama & French (1993) model 

delivered an average annual excess return of 4.6% and a standard deviation of 

12.3% between 1926 and 2012, resulting in a Sharpe ratio (SR) of 0.4. Næs et al. 

(2009) do not, however, find a significant value premium in the Norwegian market 

in the period 1980-2006.  
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2.3 The Size Factor 

The size factor was first discovered in 1981 when researchers found that returns 

were negatively related to size. In other words, stocks of small-cap companies tend 

to have higher returns than large-cap stocks (Ang, 2014). Thus, investors attempting 

to exploit the size effect will purchase small stocks and simultaneously sell big 

stocks. Consequently, the long-short size factor is referred to as small minus big 

(SMB).  

 

Rational theories argue that small firms often have lower earnings and are less 

profitable than larger firms (Fama & French, 1996). In addition, small stocks tend 

to be traded less frequently than large stocks and may therefore offer a liquidity 

premium. On the other hand, behavioral theories suggest that small stocks are 

evaluated over-optimistically (Koedijk et al., 2016).  

 

Despite size being a well-known factor used in several impactful models and 

theories, there has not been any significant size effect since the mid-1980s, 

according to Ang (2014). Some have argued that the initial discovery was a result 

of data mining and that the size effect is non-existent. Others argue that the size 

effect was indeed real, but the actions of rational investors have caused it to 

disappear (Ang, 2014). The latter indicates that size should be removed as a factor, 

as it is not considered an anomaly. Nonetheless, evidence shows that the factor can 

amplify the effects of other factors such as value and momentum. For example, 

Fama & French (1993) found that the value premium for US stocks was larger for 

small stocks than big. Further, researchers have found evidence for the size 

premium being present in the Norwegian equity market (Næs et al., 2009). 

 

2.4 The Momentum Factor 

The momentum effect refers to “the relation between an asset’s return and its recent 

relative performance history” (Asness et al., 2013). Research conducted by 

Jegadeesh and Titman (1993) could reveal significant abnormal returns over a 3- to 

12-month horizon for an investor selling stocks that had performed poorly and 

purchasing stocks that had performed well in the past. Hence, the momentum 

strategy is based on the phenomenon that past “winners” continue to win, and past 

“losers” continue to lose. The long-short strategy of purchasing recent winners and 
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selling recent losers (winner-minus-loser, or WML) will thus capture the 

outperformance arising from this phenomenon.                               

            

Momentum tends to follow monetary policies and government risk during market 

crashes and has a high correlation with the macroeconomic environment. In fact, 

momentum is positively related to liquidity risk, and thus momentum strategies will 

drive liquidity premia (Asness et al., 2013). Furthermore, behavioral theories 

explain the momentum effect through reaction models. According to Pedersen 

(2015), stocks exhibit initial underreaction and delayed overreaction, making it 

possible to earn high returns from investing in the momentum factor. Despite that 

delayed overreaction may persistently drive stock prices upwards, the reaction 

models recognize that prices will revert back to fundamentals after some time (Ang, 

2014). 

 

Historically, momentum has performed better than both the value and size factors 

(Ang, 2014). Furthermore, it is argued that a dynamic momentum strategy can 

double the alpha and Sharpe ratio of a static momentum strategy (Becker & 

Reinganum, 2018). Nevertheless, as with other factors, momentum strategies do 

not always perform well and have experienced large drawdowns in certain time 

periods, such as in 2009.  

 

Griffin et al. (2003) found that during the period 1982-2000, a momentum strategy 

in the Norwegian market generated significant monthly returns of 1.11%, driven by 

both a positive average return in their winner portfolio and a negative average return 

in their loser portfolio. Næs et al. (2009), on the other hand, found no significant 

momentum effect in the Norwegian equity market during their sample period 1980-

2006. The authors note that although the monthly differential return between their 

top and bottom portfolio was 0.44% on average, the WML factor incurred large 

losses during 1990-1999. 

 

2.5 The Betting Against Beta Factor 

Historically, low beta stocks have been found to generate higher risk-adjusted 

returns compared to high beta stocks. These findings represent a risk anomaly 

contradicting the CAPM theory, which states that asset returns should be 

proportional to the asset betas (Pedersen, 2015). A consequence of the anomaly 
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observed in the market is that the empirical security market line3 (SML) is steeper 

than the true SML.  

                                   

Frazzini & Pedersen (2014) attempt to exploit the anomaly by constructing a betting 

against beta (BAB) factor, which is long low-beta assets and short high-beta assets. 

The authors construct a market-neutral strategy by leveraging and deleveraging the 

low-beta and high-beta assets in order to obtain a beta of zero for the overall 

strategy. They further report a SR of 0.78 for US stocks and conclude that the BAB 

factor generates positive returns in most global stock markets. Using the MSCI 

Norway, they obtained a SR of 0.25. The BAB factor is similar to a low volatility 

factor, as low-beta stocks tend to be less risky than high-beta stocks. However, an 

asset’s beta only represents its co-movement with the market, and a BAB strategy 

is therefore not equivalent to a low-volatility strategy.      

 

Behavioral theories explain the risk anomaly by investors being too focused on 

tracking error rather than actual risk (Koedijk et al., 2016). Another explanation 

may be the “lottery ticket” effect; investors purchase volatile assets hoping to 

achieve extraordinary returns fast. In addition, many investors avoid taking on 

leverage or are restricted by leverage and short-selling constraints. These investors 

may buy riskier stocks to achieve higher returns, pushing the prices of high-risk 

stocks up, while the price on low-risk stocks is reduced as a result of low demand 

(Pedersen, 2015). 

 

2.6 Multifactor models  

The first multifactor model, Ross’ (1976) arbitrage pricing theory (APT), was 

proposed as an alternative to the mean-variance CAPM. The APT relies on two key 

underlying assumptions. Firstly, it assumes that no arbitrage opportunity will last 

because asset prices will revert back to equilibrium. Secondly, there is a linear 

relationship between the expected return of an asset and various macroeconomic 

factors. Thus, the price of an asset results from these macroeconomic factors and 

the risk premiums they yield. However, the APT is purely theoretical and does not 

specify which and how many factors are appropriate (Becker & Reinganum, 2018). 

 
3 The security market line is a graphical representation of the return-to-beta relationship, showing 

the required rate of return to compensate investors for risk and the time value of money (Bodie et 

al., 2021).  
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Later, several other multifactor models have been developed, which specifies 

several empirically based factors to explain asset returns.  

 

The aforementioned Fama & French (1993) three-factor model represents a major 

contribution to factor investing and asset pricing, as it proved that asset prices 

cannot be explained by market betas alone. Fama & French (2015) further 

developed the model by adding two additional factors, profitability and investment, 

resulting in a multifactor model performing even better than its predecessor.  

 

Applying multifactor models as strategies can be powerful in understanding and 

managing a portfolio’s risk profile, as multifactor models recognize that bad times 

are not restricted to only include low or negative market returns (Ang, 2014). By 

combining individual factors, a multifactor strategy will provide an investor with 

exposure to several factors simultaneously. Thus, as each individual factor defines 

a different set of bad times, multifactor strategies can deliver great diversification 

benefits. Diversification can further be enhanced by the low and sometimes 

negative correlation between factors. E.g., Asness et al. (2013) found that the 

negative correlation between value and momentum generated higher risk-adjusted 

returns than either did alone. Moreover, when comparing combinations of 

multifactor models with single factors, Vincent et al. (2018) found that the 

multifactor SRs were superior in almost all cases. 

 

2.7 Mean-Variance Portfolio Optimization 

In the Markowitz (1952) mean-variance (MV) portfolio theory, the optimal 

portfolio weights are determined as those providing the optimal trade-off between 

volatility (risk) and returns. The volatility is highly dependent on the correlation 

between the assets within a portfolio, and an investor should choose a diversified 

portfolio to reduce risk and increase returns (Ang, 2014). Several constrained 

subcategories of MV include risk-parity and minimum variance, but we restrict this 

section to only discuss the general framework of MV optimization. The theory 

assumes that investors will favor a portfolio with lower risk for the same expected 

return, resulting in the mean-variance efficient portfolio being the one that 

maximizes the Sharpe ratio.  
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In the MV framework, the best set of portfolios an investor can obtain, by only 

considering means and volatilities, is located along the mean-variance frontier, 

illustrated in figure 1. The top half of the frontier (bold line) is efficient, meaning 

that one can obtain a higher return for the same risk by moving from the bottom 

half to the top half of the frontier. As shown in figure 1, the portfolio located farthest 

to the left on the MV frontier is called the minimum variance portfolio. 

 

Figure 1: Illustration of Mean-Variance Frontier and Capital Allocation Line  

The blue line represents the mean-variance frontier, where the bold part of the line is the efficient part of the 

frontier. The linear, red line illustrates the Captial Allocation Line. The figure shows that the tangency 

portfolio is located where the Capital Allocation Line and mean-variance frontier intersects, and the 

minimum variance portfolio is located at the leftmost point of the frontier.  

 

The mean-variance efficient portfolio, or tangency portfolio, is the one that 

maximizes the Sharpe ratio. This portfolio is located at the tangency point where 

the mean-variance frontier intersects with the Capital Allocation Line (CAL). The 

CAL represents all risk-return combinations an investor can obtain, where its slope 

is equal to the Sharpe ratio. 

 

Although the MV framework is the most practiced method used to choose optimal 

portfolio weights, it has been widely criticized due to its high sensitivity to small 

changes in inputs (Ang, 2014). Correlations and standard deviations are estimated 

with standard errors and expected returns estimates have even larger standard 

errors, representing the most problematic of the three inputs. In addition, MV 

optimization uses historical returns as an indicator for future returns, but there is no 

guarantee that past performance predicts future results. The problems associated 
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with MV optimization can result in troublesome weights; for example, MV tends 

to create concentrated asset allocations, which may be risky. Jagannathan and Ma 

(2003) showed that using upper and lower bounds on portfolio weights can mitigate 

extreme positions and keeps the weights at an economically reasonable level. 

 

2.8 Market Timing 

Tactical asset allocation, or market timing, refers to a short to medium-term asset 

allocation strategy in which an investor reallocates portfolio weights according to 

current market views (Pedersen, 2015). Investors thus attempt to time the market 

by adjusting weights across major asset classes, such as equities and bonds, based 

on predictions of future returns.  

 

Market timing can be extremely difficult to implement successfully. For example, 

Samuelson (1994) argues that a simple buy-and-hold portfolio outperforms market 

timing strategies, pointing out that only a small fraction of investors succeed in 

going in and out of the market. Chong & Philips (2014), on the other hand, found 

that a market timing strategy based on macroeconomic factors and mean-variance 

optimization outperformed the S&P500 with a return-to-risk ratio of 0.97 (MV) 

compared to 0.19 (S&P500) in the period 2006-2013. However, Zakamulin (2014) 

argues that market timing strategies’ performance is highly overstated.  

 

When attempting to time the market, one can choose between several approaches, 

but we will in this thesis focus on timing factor returns (“factor timing”) based on 

predictions from macroeconomic variables. There exist countless variables that one 

might use as indicators, but we limit this thesis to emphasize variables closely 

linked to the state of the economy. Studying the relationships between 

macroeconomic variables and factors, Zhang et al. (2009) found that both value and 

small stocks performed well during economic expansions and when interest rates 

were low. Further, literature suggests that momentum profits are related to liquidity 

and macroeconomic risk and vary with business cycles (Ang, 2014). Frazzini & 

Pedersen (2015) find that the BAB factor performs poorly when funding constraints 

tighten, i.e., when liquidity is low. 
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3.0 Theory and Methodology 
3.1 Theory and Hypothesis 

3.1.1 Assumptions  

Prior to presenting our theory and hypothesis, we find it helpful to disclose our 

assumptions. We assume a large investor with long horizon, as these characteristics 

are favorable for factor investing. Since all factors are long-short by construction, 

a necessary assumption is also that short-selling and leverage is allowed. We further 

assume that all securities can be purchased or sold at the closing price for the given 

day. Taxes and transaction costs are ignored. 

 

3.1.2 Theory and Hypotheses 

In this paper, we investigate whether our expectations of different multifactor 

implementations hold or not. Our expectation is that diversification across factors 

will reduce portfolio volatility and thereby yield higher risk-adjusted returns than 

single-factor portfolios. Further, we believe that implementation based on 

optimized weights will outperform a static equal-weighted portfolio. Finally, we 

expect that such an optimization may benefit from the use of forecasted returns 

rather than historical. Consequently, we construct three multifactor strategies: 

(1) A static, naïve equal-weighted multifactor portfolio consisting of the four 

factors HML, WML, SMB, and BAB, rebalanced monthly. We refer to this 

strategy as “EWS.” 

(2) A dynamic multifactor strategy where the weights are determined using 

recursive4 and rolling windows to find the mean-variance optimal portfolio. 

Optimal weights are determined ahead of each month based on historical 

data. The selection criterion for the best portfolio is the Sharpe ratio. We 

will refer to this strategy as “MVS.” 

(3) A dynamic multifactor strategy where the weights are determined in the 

same manner as MV but using forecasted returns based on macroeconomic 

variables as inputs in the mean-variance optimization. The strategy will be 

referred to as “FTS.” 

 
4 Brooks (2014) defines a recursive window as one where “a set of time series regressions are 

estimated using sub-samples of increasing length. After the first model is estimated, an additional 

observation is added to the end of the sample so that the sample size increases by one 

observation.” (Brooks, 2014, p. 692). 
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We focus on risk-adjusted returns measured by the Sharpe ratio to evaluate the 

performance of each factor. We formulate three hypotheses corresponding to each 

of the multifactor models. 

 

Hypothesis 1: A multifactor strategy is superior to different single factor portfolios, 

represented by value, size, momentum and BAB, in terms of risk-adjusted returns. 

 
                  𝐻0: 𝑆𝑅 𝐸𝑊𝑆 ≤ 𝑆𝑅𝑆𝐹𝑖

,    𝑓𝑜𝑟 𝑖 𝐻𝑀𝐿, 𝑆𝑀𝐵, 𝑊𝑀𝐿, 𝐵𝐴𝐵 

𝐻𝐴: 𝑆𝑅𝐸𝑊𝑆 > 𝑆𝑅𝑆𝐹𝑖                                           

 

When combing four factors with low correlations in one strategy, it is reasonable 

to expect the standard deviation of the multifactor strategy to be lower than that of 

the individual factors. By exploiting low correlations, we expect to achieve high 

diversification benefits, which will result in higher risk-adjusted returns for an 

equal-weighted multifactor strategy than each single factor portfolio. Therefore, we 

expect to reject the null hypothesis. 

 

Hypothesis 2: A dynamic mean-variance optimization will improve the risk-

adjusted returns of an equal-weighted multifactor model.  

 

𝐻0: 𝑆𝑅𝑀𝑉𝑆 ≤ 𝑆𝑅 𝐸𝑊𝑆   

𝐻𝐴: 𝑆𝑅𝑀𝑉𝑆 > 𝑆𝑅 𝐸𝑊𝑆   

 

We expect that two differences between the EW and MV strategies will affect 

performance. Firstly, the mean-variance optimization is constructed to find the 

optimal trade-off between risk and return for each period. Secondly, the weights in 

the MV strategy may change as a result of the time period where inputs are 

estimated. Since the MV takes into account historical returns and correlations, we 

expect the mean-variance optimized weights to yield higher risk-adjusted returns, 

mainly driven by a reduction in portfolio risk. Thus, we expect to reject the null 

hypothesis. 

 

Hypothesis 3: A dynamic mean-variance strategy will benefit from tactical 

implementation with regard to risk-adjusted returns.   

 

𝐻0: 𝑆𝑅𝐹𝑇𝑆 ≤ 𝑆𝑅𝑀𝑉𝑆 

𝐻𝐴: 𝑆𝑅𝐹𝑇𝑆 > 𝑆𝑅𝑀𝑉𝑆  
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Based on empirical evidence that factors exhibit cyclicality (Zhang et al., 2009), we 

construct a factor timing strategy that attempts to predict factor returns. A 

successful factor timing strategy will allocate less to factors performing poorly, 

compensated by increased weights in better-performing factors. The 

macroeconomic variables tested for their predictive power include market liquidity 

and volatility, oil prices, interest rate levels, and the Composite Leading Indicator. 

All macroeconomic risk factors are chosen based on their close relationships to the 

state of the market, while the oil price is chosen due to the common assumption of 

its relation to the Norwegian economy (Ødegaard, 2021). As the mean-variance 

optimization uses past returns as a proxy for future returns, we expect the strategy 

to benefit from implementing tactical allocations based on forecasted returns. We 

thereby expect to reject the null hypothesis.  

 

In the sections to follow, we first explain how the four individual factors are 

constructed. Second, we establish how the multifactor strategies are constructed, 

including the methods we use to predict factor returns. Lastly, we provide detailed 

descriptions of the performance measurements used to evaluate the multifactor 

strategies. 

 

3.2 Individual Factor Construction 

3.2.1 The Value factor – HML  

HML is constructed on the basis of BM ratios of each individual company in the 

sample. Ødegaard (2021) gathers book values from the companies’ balance sheets, 

and market values are calculated by multiplying the total number of stocks 

outstanding by the stock price at year-end. The BM ratio for company 𝑖 is calculated 

by dividing its book value of equity for the fiscal year 𝑡 − 1 by the market value of 

equity at the end of December at 𝑡 − 1: 

 

𝐵𝑀𝑖 =
𝐵𝑉𝐸

𝑀𝑉𝐸
=

𝐵𝑉(𝑒𝑞𝑢𝑖𝑡𝑦) 

𝑆𝑡𝑜𝑐𝑘𝑠 𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 ∙ 𝑆𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒
 (2) 

 

Companies are ranked according to their BM ratios at the end of June and sorted 

into quintile portfolios. The 1st quintile consists of the firms with the lowest BM 

ratios, and the 5th consists of the firms with the highest BM ratios. The HML factor 

is then constructed as a long-short portfolio where we purchase stocks in the top 

quintile and sell stocks in the bottom quintile. The return from the HML portfolio 
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at time 𝑡 can thus be calculated as the difference in returns between the top and 

bottom quintile: 

𝑟𝑡
𝐻𝑀𝐿 = 𝑟𝑡

𝐻𝑖𝑔ℎ 𝐵𝑀 − 𝑟𝑡
𝐿𝑜𝑤 𝐵𝑀 (3) 

 

3.2.2 The Size factor – SMB  

To construct the SMB factor, companies are first ranked according to equity size of 

individual firms. Ødegaard (2021) computes equity size as the stock price 𝑝 of a 

company multiplied with the number of outstanding shares as of year 𝑡 − 1, or: 

 

𝐸𝑞𝑢𝑖𝑡𝑦 𝑆𝑖𝑧𝑒𝑡 = 𝑝𝑖,𝑡−1 ∙ 𝑁𝑜 𝑆ℎ𝑎𝑟𝑒𝑠𝑖,𝑡−1 (4) 

 

Equally distributing stocks into five parts, we obtain five quintile portfolios, where 

the top quintile consists of the largest companies, and the bottom quintile consists 

of the smallest companies.  Contrary to HML, the size factor is constructed by 

taking a long position in the bottom quintile and a short position in the top quintile. 

Thus, the return from the SMB factor portfolio is the return from the smallest 

companies, less the returns from the largest companies: 

 

𝑟𝑡
𝑆𝑀𝐵  =  𝑟𝑡

𝑆𝑚𝑎𝑙𝑙 𝑆𝑖𝑧𝑒  −  𝑟𝑡
𝐵𝑖𝑔 𝑆𝑖𝑧𝑒 (5) 

 

3.2.3 The Momentum Factor – WML  

Momentum is calculated using a 1-year rolling window, omitting the last month to 

avoid short-term reversals (Ødegaard, 2021). All stocks are divided into quintiles, 

where the top quintile consists of the stocks with the 20% highest returns during the 

last year, i.e., the winners, and the bottom quintile consists of stocks with the lowest 

20% returns during the last year, i.e., the losers. 

WML is constructed by taking a long position in the winner portfolio and a short 

position in the loser portfolio. The momentum returns capture the outperformance 

(or underperformance) of the winner portfolio relative to the loser portfolio: 

𝑟𝑡
𝑊𝑀𝐿 = 𝑟𝑡

𝑊𝑖𝑛𝑛𝑒𝑟𝑠 − 𝑟𝑡
𝐿𝑜𝑠𝑒𝑟𝑠 (6) 
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3.2.4 The Betting Against Beta factor – BAB   

Our approach to construct the BAB factor follows the same methodology as 

Frazzini and Pedersen (2014). To improve the accuracy of covariance, we use daily 

returns. We estimate ex-ante betas as  

𝛽̂𝑖
𝑡𝑠 =

𝜎̂𝑖

𝜎̂𝑚
𝜌̂𝑖,𝑚 (7) 

 

where 𝜎̂𝑖 is the estimated volatility of stock 𝑖, 𝜎̂𝑚 is the estimated volatility of the 

market, and 𝜌̂𝑖,𝑚 is the estimated correlation between stock 𝑖 and the market. 

Volatilities are estimated using one-year rolling standard deviations from one-day 

log returns, whereas correlations are estimated on the last 5 years using overlapping 

three-day log returns, calculated as 𝑟𝑖,𝑡
3𝑑 = ∑ ln (1 + 𝑟𝑡−𝑘

𝑖 )2
𝑘=0 . Three-day log 

returns are used because correlations tend to move slower than volatilities, and are 

affected by nonsynchronous trading (Frazzini & Pedersen, 2014). At least 120 and 

750 days of non-missing data is required to estimate the volatilities and correlations, 

respectively.  

 

Betas are shrinked towards the cross-sectional mean to limit the influence of 

outliers by applying a shrinkage factor, 𝑤𝑖  = 0.6, as follows: 

 

𝛽̂𝑖 = 𝑤𝑖𝛽̂𝑖
𝑡𝑠 + (1 − 𝑤𝑖)𝛽̂𝑋𝑆 (8) 

 

For simplicity, the cross-sectional mean, 𝛽𝑋𝑆 , is set to 1 as this is equal to the 

expected cross-sectional mean beta across all securities in the market. We use the 

same value as Frazzini & Pedersen (2014) of 0.6 for the shrinkage factor. This does 

not affect the ranking when the companies are sorted into portfolios.  

 

Each stock is ranked in ascending order according to their corresponding beta at 

time 𝑡 and sorted into two portfolios, low-beta and high-beta. In each portfolio, 

securities are weighted based on their beta value, where the smallest (largest) betas 

get the highest weight in the low-beta (high-beta) portfolio. The weight of stock 𝑖 

in the different portfolios is calculated as  

 

𝑤𝐻,𝑖 = 𝑘(𝑧𝑖 − 𝑧)+ (9) 

𝑤𝐿,𝑖 = 𝑘(𝑧𝑖 − 𝑧)− (10) 
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where 𝑧𝑖 is the rank of security 𝑖, 𝑧 is the mean of all ranks in both portfolios, and 

𝑘 is a normalizing constant 𝑘 = 2/1𝑛
′ |𝑧 − 𝑧̅|. 𝑥+ and 𝑥− express the positive and 

negative values of a vector 𝑥, used to obtain absolute values. The portfolios are 

rebalanced monthly, and by construction the weights within each portfolio sum to 

1. 

 

For illustrative purposes, consider 94 betas at time 𝑡. The stocks with the lowest 

and highest betas will be assigned a rank of 94 and 1 respectively. 𝑧 will become 

𝑛(𝑛+1)

2𝑛
=

94(94+1)

2×94
= 47.5, and 𝑘 will be approximately 0.000905. The weight of the 

stock with the smallest beta in the low-beta portfolio will then be |(0.000905 ∗

(94 − 47.5))| = 4.21%, and the weight of the stock with the largest beta in the high-

beta portfolio will be |(0.000905 ∗ (1 − 47.5))| = 4.21%.  

 

The betting against beta factor is the self-financing zero-beta portfolio, where both 

portfolios are adjusted to have a beta of 1, going long the low-beta portfolio and 

short the high-beta portfolio. E.g., suppose the low-beta (high-beta) portfolio has 

an average beta of 0.8 (1.3). In that case, the strategy is long (short) 1.25 (0.77) in 

the low-beta (high-beta) portfolio. This will capture the potential outperformance 

of the low beta stocks relative to the high beta stocks. The return from the long-

short BAB strategy is calculated as: 

 

𝑟𝑡+1
𝐵𝐴𝐵 =  

1

𝛽𝑡
𝐿 (𝑟𝑡+1

𝐿 − 𝑟𝑓,𝑡) −
1

𝛽𝑡
𝐻 (𝑟𝑡+1

𝐻 − 𝑟𝑓,𝑡) (11) 

 

where 𝑟𝑡+1
𝐿 = 𝑟𝑡+1

′ 𝑤𝐿, 𝑟𝑡+1
𝐻 = 𝑟𝑡+1

′ 𝑤𝐻, 𝛽𝑡
𝐿 = 𝛽𝑡

′𝑤𝐿, and 𝛽𝑡
𝐻 = 𝛽𝑡

′𝑤𝐻. 

 

3.3 Mean-variance optimization 

For a given target mean, 𝝁, the dynamic mean-variance optimization problem can 

be stated as  

min
𝒘𝑡

1

2
𝒘𝑡

′ 𝚺𝑡𝒘𝑡 (12) 

 

where 𝒘𝑡 is a vector of portfolio weights at time 𝑡 and 𝚺𝑡 is a covariance matrix. 

The optimization problem is subject to the following constraints 
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𝒘𝑡
′ 𝝁𝑡 = 𝜇∗ (13) 

𝒘𝑡
′ 𝟏 = 1 (14) 

𝐿𝐵 ≤ 𝑤𝑡 ≤ 𝑈𝐵 (15) 

 

(13) states that the expected return of the portfolio should equal the target mean, 

and (14) states that the portfolio weights must sum to 1. The mean vector 𝝁𝑡 is a 

4x1 vector consisting of the historical means of the four factors. We impose upper 

and lower bounds to avoid extreme positions and short-selling, restricted by (15). 

This will also help keep diversification benefits and avoid corner portfolios. 

 

The mean-variance optimization is performed using three different UBs of 0.35, 

0.40, and 0.45, and LB = 0, where 𝝁𝑡 and 𝚺𝑡 is calculated on 1-, 3- and 5-year 

rolling windows along with a recursive window. The optimal weights obtained from 

the mean-variance optimization at time 𝑡 are implemented the following month.  

 

3.4 Multivariate time series analysis 

We build a 6-dimensional Vector Autoregressive (VAR) model for each of the four 

factors to capture the relationship between the investment factors and 

macroeconomic variables over time. Brooks (2014) highlights that VAR models 

are a-theoretical, meaning that they are not concerned with theory, and they can 

involve extremely many parameters. Nevertheless, VAR models have the 

advantage of allowing a variable to depend on more than only its own lags, and one 

does not need to specify which variables are endogenous or exogenous. 

 

The optimal lag length of the macroeconomic variable within each VAR model is 

chosen based on the Hannan-Quinn Information Criterion (HQIC) given by 

 

𝑀𝐻𝑄𝐼𝐶 = ln|Σ̂| +
2𝑘′

𝑇
ln(ln(𝑇)) (16) 

 

where Σ̂ is the variance-covariance matrix of the residuals and 𝑇 is the sample size. 

The choice of information criterion is based on a comparison between the three 

most common information criteria, AIC, SBIC, and HQIC5. As the SBIC is 

 
5 See Brooks (2014) for an explanation of the AIC, SBIC and HQIC.  
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inefficient and the AIC is not consistent, we choose the HQIC, although no criterion 

is unquestionably superior to the others (Brooks, 2014).  

The VAR models further undergo Granger Causality (GC) tests to determine 

whether the time series of the macroeconomic variables are useful for predicting 

the investment factors. Defining 𝑦1,𝑡 and 𝑦2,𝑡 as two different time series, GC tests 

the null hypothesis that lags of 𝑦1,𝑡 do not explain current 𝑦2,𝑡. For illustration, 

consider the VAR model  

 

𝑦𝐻𝑀𝐿,𝑡 = 𝛼𝐻𝑀𝐿,0 + 𝛽1,1𝑦𝐻𝑀𝐿,𝑡−1 + 𝛽1,2𝑦𝑙𝑖𝑞,𝑡−1 + 𝛾1,1𝑦𝐻𝑀𝐿,𝑡−2 + 𝛾1,2𝑦𝑙𝑖𝑞,𝑡−2

+ 𝛿1,1𝑦𝐻𝑀𝐿,𝑡−3 + 𝛿1,2𝑦𝑙𝑖𝑞,𝑡−3 

  

To test for Granger causality, we formulate the following null hypothesis:  

 

𝐻0: Lags of 𝑦𝑙𝑖𝑞,𝑡 do not explain current 𝑦𝐻𝑀𝐿,𝑡 

 

where the implied restrictions are 𝛽1,2 = 0 and 𝛾1,2 = 0 and 𝛿1,2 = 0. If the null 

hypothesis is rejected, one can say that liquidity “Granger-causes” HML. We 

perform Granger causality tests using the F-test framework for all macroeconomic 

variables and investment factors. Individual variables must also pass a t-test before 

we deem the macro factors significant and include them as predictors for future 

factor returns.  

 

3.5 Tactical Implementation  

With the above in place, the implementation of the factor timing strategy is as 

follows. Macroeconomic variables passing the significance tests are included as 

predictors for factor returns. We run multivariate OLS regressions with the 

investment factor 𝑖 as dependent variable and the significant, lagged 

macroeconomic variables as independent variables. As an example, if liquidity is 

found to Granger-cause the HML factor, and the optimal lag is 3, then the OLS 

regression is 

 

𝑟𝐻𝑀𝐿,𝑡 = 𝛼 + 𝛽1𝑙𝑖𝑞𝑡−1 + 𝛽2𝑙𝑖𝑞𝑡−2 + 𝛽𝑡𝑙𝑖𝑞𝑡−3 + 𝑢𝑡  

 

The resulting alpha and beta coefficients are further used to estimate the HML 

factor’s return for the next period, given the lagged values of the liquidity measure. 
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The procedure is repeated for each factor and corresponding macroeconomic 

variables. For each period 𝑡, the return is estimated by multiplying the beta 

coefficient with the relevant macroeconomic variables, resulting in a 4x1 mean 

vector of estimated returns. The mean vector is then used in the mean-variance 

optimization, where the difference from the MVS is that the mean vector represents 

predicted returns, and not historical. We keep the historical covariance matrix, 

under the simplified assumption that 𝐸[𝑐𝑜𝑣(𝑥𝑡 , 𝑦𝑡)] = 𝑐𝑜𝑣(𝑥𝑡−1, 𝑦𝑡−1). 

 

3.6 Performance measures 

To evaluate the individual factors and the multifactor strategies, we use a battery of 

measurements to ensure robust results and a comprehensive view of their 

performance. Although the Sharpe ratio is the decisive measurement in our 

hypotheses, we also consider 𝑀2, Information ratio, skewness, and kurtosis to make 

the overall assessment.  

 

Sharpe Ratio 

One of the most widely used measures of risk-adjusted return, the Sharpe ratio, is a 

measure of the reward per unit of risk, being the reason why it is often referred to 

as the risk-reward ratio. The SR is given by 

 

𝑆𝑅 =
𝐸(𝑟𝑃  −  𝑟𝑓)

𝜎(𝑟𝑃 − 𝑟𝑓)
(18) 

 

where 𝑟𝑃 is the return of the portfolio, 𝑟𝑓 is the risk-free rate, so that (𝑟𝑃  −  𝑟𝑓) is 

the strategy’s return in excess of the risk-free rate and 𝜎(𝑟𝑃 − 𝑟𝑓) is the volatility of 

the excess return.  

 

Naturally, the higher the SR, the better, as investors prefer high returns and low 

risk. Although rare, a SR above 1 is highly favorable, as this indicates that a strategy 

generates excess returns relative to its volatility. A SR between 0 and 1, on the other 

hand, indicates that a strategy’s return is less than the risk taken. Negative SRs 

occur when a strategy yields negative excess returns.  

 

The SR suffers from several limitations, many of which are related to the use of 

volatility as a measure of risk. A notable drawback of the risk-reward ratio is that it 
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does not consider the direction of volatility. Further, the SR assumes normally 

distributed returns, which may not be the case. Despite these drawbacks, we find 

the SR to be a useful tool which can give valuable insight about the risk and return 

characteristics of a strategy. 

 

𝑀2  

Modigliani-squared ( 𝑀2) focuses on total volatility as a measure of risk, and is 

given by 

𝑀𝑃
2 = (

𝜎𝐵𝑀

𝜎𝑃
) ∙ 𝑒𝑃 + 𝑟𝑓 (19)  

 

where 𝑒𝑃 is the average excess return of a portfolio (𝑒𝑃 = 𝑟𝑃 − 𝑟𝑓). 𝑀2 measures 

the risk-adjusted return of a portfolio 𝑃 relative to a benchmark by scaling 𝑃 to have 

the same volatility as the benchmark (Modigliani & Modigliani, 1997). One could 

argue that the 𝑀2 measure is an improved version of the SR, as it is easier to 

interpret the differential returns between two portfolios rather than a dimensionless 

number, which the SR could be described as.  

  

Information Ratio 

In contrast to the SR, which uses the risk-free rate to measure excess returns, the 

Information ratio (IR) measures performance against a specific benchmark, e.g., the 

market portfolio. Consequently, the ratio focuses on the abnormal return an 

investment strategy generates (Pedersen, 2015). The IR is given by 

 

𝐼𝑅 =
𝑟𝑃 − 𝑟𝐵𝑀

𝜎(𝑟𝑃 − 𝑟𝐵𝑀)
(20) 

 

where 𝑟𝐵𝑀 and 𝜎𝐵𝑀 are the returns and standard deviation of the benchmark, 

denoted 𝐵𝑀, respectively. Since the IR uses tracking error as denominator, 𝜎(𝑟𝑃 −

𝑟𝐵𝑀), one can interpret the IR as a measure of the excess returns of a strategy per 

unit of tracking error (Pedersen, 2015). 

 

A great advantage associated with the IR is that one can measure a strategy’s 

performance relative to any benchmark. This makes it possible to evaluate a 

strategy more accurately by measuring against strategies with similar levels of risk, 

active management, et cetera. It is essential to choose a benchmark that is 
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appropriate in order to obtain accurate results. Hence, one could argue that one of 

the greatest advantages of the IR in fact represents a weakness as well, as choosing 

the wrong benchmark may generate inaccurate or unreliable results.  

 

Skewness and Kurtosis 

As standard deviations assume normal distributions, skewness can be a beneficial 

supplement as it considers the asymmetry of a distribution (Brooks, 2014). If a 

return distribution is positively skewed, most of the returns are located at the left-

hand side of the distribution, while the right-hand tail is long. A negatively skewed 

distribution will have the opposite characteristics. A skewness of zero indicates that 

the distribution is symmetric, equal to the skewness of the normal distribution. 

Defining 𝑦𝑖 as the observations of a series, the skewness can be measured as   

 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁 − 1 ∑(𝑦𝑖 − 𝑦)3

(𝜎2)
3
2

(21) 

 

Kurtosis is a measure of the heaviness of the tails of a distribution and the peak of 

the mean of the series (Brooks, 2014). As the kurtosis of the normal distribution is 

3, excess kurtosis can be calculated as the kurtosis minus 3: 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁 − 1 ∑(𝑦𝑖 − 𝑦)4

(𝜎2)2 − 3 (22) 

 

A return distribution with excess kurtosis indicates outliers, i.e., that one may 

occasionally experience extreme returns. The two measures are often used together 

when evaluating a return series. Negative skewness and excess kurtosis represent 

an undesirable combination of an investment strategy, as it indicates that one 

sometimes may experience extreme returns, especially on the downside (Pedersen, 

2015).  

 

3.6.1 Benchmark 

The Oslo Stock Exchange Allshare Index (OSEAX) will be used as a common 

benchmark when computing the IR and 𝑀2, to measure all strategies on an equal 

basis. In addition, we compare each strategy to the relevant benchmark according 

to each of the hypotheses stated in section 3.1.2. Firstly, the static equal-weighted 
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portfolio will be compared to the four individual factors, HML, WML, SMB, and 

BAB. Secondly, we measure the performance of the mean-variance optimized 

strategy against the equal-weighted portfolio. Lastly, the dynamic factor timing 

strategy will be measured using the mean-variance strategy as a benchmark.  

 

4.0 Data 

4.1 Data collection 

To obtain the information needed to construct portfolios and strategies, we have 

collected data from various sources. The majority of the data is gathered from Oslo 

Børs Informasjon (OBI) through Bernt Arne Ødegaard, and some indicators are 

collected from OECD and Bloomberg. We provide a complete list of the variables, 

data frequency, and sources in Appendix 1. The in-sample period reaches from Jan 

1985-Dec 2005, and the out-of-sample period reaches from Jan 2006-Dec 2019. To 

increase robustness in results, the VAR models in the in-sample tests are built using 

different lengths of periods, determined by data availability.  

 

4.1.1 Return Data and Risk-Free Rate 

Historical return data for individual stocks consists of daily, discrete returns for 897 

individual companies listed on the Oslo Stock Exchange (OSE) during our sample 

period. The sample covers the period between January 31st, 1980, and December 

31st, 2019, resulting in a time frame of 40 years. To avoid survivorship bias, all 

companies listed at any time during this period are included in the data set. The 

average number of listed securities during the period is 187, varying between 46 

and 272 stocks over the whole sample.  

 

Monthly risk-free rates are estimated using the monthly Norwegian Interbank 

Offered Rate (NIBOR) as an approximation. Since NIBOR is only available after 

1986, the overnight NIBOR is used between 1982 and 1986, and the two-year bond 

yield is used from 1980 to 1982. Daily risk-free rates are forward-looking 1-day 

interest rates based on overnight estimates. Missing observations are calculated 

using spline interpolation, as portrayed in figure 2.  
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Figure 2: Daily Risk-Free Rates 1990-2019 

This figure illustrates the development of daily risk-free rates over the whole sample. Risk-free rates are not 

annualized and not in percent (y-axis). We use spline interpolation to fill missing observations. The blue line 

represents non-missing data of daily risk-free rates, while red circles represent the interpolation points.  

 

4.1.2 Cross-sectional portfolios 

We collect return data consisting of three sets of cross-sectional portfolios, where 

each set contains ten portfolios sorted by a factor parameter. Cross-sectional 

portfolios corresponding to the HML factor are sorted by BM ratios, whereas SMB 

and WML portfolios are sorted by firm equity size and past returns, respectively. 

All sets of cross-sectional portfolios consist of equal-weighted, monthly returns of 

stocks listed on OSE between 1980-2019, except HML, which starts in January 

1981. We note that we merge decile portfolios pairwise to obtain quintile portfolios 

before constructing the size, value, and momentum factors. Cross-sectional 

portfolios for HML, WML, and SMB are constructed by Bernt Arne Ødegaard, and 

we construct the BAB factor ourselves.  

 

4.1.3 Macroeconomic Indicators 

We collect data for five macroeconomic indicators from various sources (Appendix 

1). The oil price indicator is represented by the logarithmic change in monthly Brent 

CO1 closing prices collected from Bloomberg, spanning from June 1988 to 

December 2019: 

 

Δ𝑜𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡 = ln (
𝑜𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡

𝑜𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡−1
) (23) 
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Monthly market volatility is calculated using value-weighted daily market returns 

from January 1980 to December 2019. Volatility is measured as the annualized 

standard deviation of market returns over the past 30 days. The market volatility 

indicator is further calculated as the natural logarithmic change in volatility from 

month 𝑡 − 1 to month 𝑡: 

Δ𝑣𝑜𝑙𝑡 = ln (
𝜎𝑀,𝑡

𝜎𝑀,𝑡−1
) (24) 

 

Market liquidity is measured as the natural logarithmic change in monthly turnover 

on OSE from January 1980 to December 2019: 

 

Δ𝑙𝑖𝑞𝑡 = ln (
𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡−1
) (25) 

 

With the risk-free rate indicator, we attempt to capture whether there is a rising or 

declining interest rate environment. The indicator is calculated as the natural 

logarithm of the change in monthly risk-free rates: 

 

Δ𝑟𝑓,𝑡 = ln (
𝑟𝑓,𝑡

𝑟𝑓,𝑡−1
) (26) 

 

The Composite Leading Indicator (CLI) is an indicator constructed by OECD to 

provide early signals of turning points in business cycles (OECD, n.d.). The CLI is 

composed of several components which may differ across countries. OECD’s 

composite leading indicator for Norway is based on exports to the UK, share prices, 

CPI All Items, and three measures related to manufacturing (OECD, 2021). CLI 

data is published monthly, but there is a two-month lag between the reference data 

and publication date (OECD, n.d.). A drawback associated with the CLI is that the 

measure is amplitude-adjusted to have a long-term mean of 100, which has an effect 

backward.  
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5.0 Analysis and Discussion 

5.1 In-Sample Analysis 

In the sections to follow, we present and analyze the results from the in-sample 

tests. All results cover the period 1990-2005 to compare the results accurately, as 

the rolling windows require up to 5 years of historical returns. We note that the 

interest rate levels are exceptionally high during the first years of the in-sample 

period, resulting in large differences in returns and excess returns. We refer to figure 

2 in section 4.1.1 for an illustration of risk-free rates over the full sample.  

 

5.1.1 Individual Factor Performance 

From the in-sample tests, it is clear that the SMB and BAB factors outperform HML 

and WML in terms of risk-adjusted returns, as shown in table 1. Moreover, three 

out of the four factors outperform the OSEAX. 

 
Table 1: In-Sample Performance of Equal-Weighted Strategy and Individual Factors 

The numbers presented are calculated as annualized averages based on monthly data. Skewness and excess 

kurtosis are not annualized. Returns are calculated using arithmetic means. The measures are computed for 

the period 1990-2005 in order to compare the performance of all factors and strategies over the same time 

period. M2 and Information ratios (IR) is calculated using the OSEAX as benchmark. 

 Ret ExRet StDev SR M2 IR Skew ExKurt 

OSEAX 12.97% 6.49% 21.28% 0.305 12.97% N/A -0.574 0.644 

HML 15.83% 9.35% 52.31% 0.179 10.28% 0.049 0.020 3.547 

WML -10.61% -17.09% 39.44% -0.433 -2.74% -0.502 -0.403 0.803 

SMB 33.91% 27.43% 43.02% 0.638 20.05% 0.367 0.036 0.521 

BAB 18.07% 11.59% 21.13% 0.549 18.15% 0.171 0.770 4.321 

EWS 14.30% 7.82% 21.60% 0.362 14.19% 0.037 0.001 1.287 

 

Despite its high standard deviation, table 1 shows that the SMB factor achieves the 

highest SR, IR, and 𝑀2 of all individual factors, driven by its remarkable returns. 

The significant positive returns contradict Ang’s (2014) claims that the size effect 

has been insignificant since the mid-1980s. However, they are in accordance with 

the findings of Næs et al. (2009), which also could report a significant size premium 

in the Norwegian market. The size factor further has the shape which most closely 

resembles a normal distribution but with heavier tails skewed towards positive 

returns. 

 

The BAB factor achieves a SR of 0.549, driven by both high returns and low risk. 

This is exceptionally higher than that of Frazzini & Pedersen (2014), which could 

report a SR of 0.25 in the Norwegian market. The difference can, however, have 
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several explanations; (1) we construct the BAB factor using all stocks listed on the 

OSE rather than only the MSCI Norway; (2) we denominate returns in NOK rather 

than USD; (3) we use a different sample period. The low standard deviation of the 

BAB factor could be explained through its similarity to a low volatility strategy, as 

it is long low-risk stocks and short high-risk stocks in terms of market beta.    

 

HML represents the most volatile of the four factors, generating an extreme 

standard deviation of 52.31%. Although one could argue that the returns are 

satisfying, the SR becomes disappointingly low. The high variations in returns 

associated with the HML are also visible in figure 3. This could confirm the 

argument of Fama & French (1992), namely that high BM companies are distressed, 

which may cause volatile stock returns. However, the results do not dismiss the 

behavioral explanations as they could indicate possible extreme returns in growth 

stocks due to overreactions. 

 

 
Figure 3: Cumulative Returns of Individual Factors (1990-2005) 

We report monthly returns for the value, momentum, size, and betting against beta factors during the in-

sample period. The vertical axis shows cumulative returns and is not in percent. 

 

The momentum factor is inferior in all performance measurements, except for 

standard deviation. This is also the only factor achieving a negative average return 

over the sample period. Consequently, WML achieves a negative SR, 𝑀2, and IR. 

These findings challenge Ang’s (2014) statement that momentum globally has 

outperformed both value and size historically but conform with the results of Næs 
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et al. (2009). When examining the factor further, we find that when expanding the 

sample period to start in 1980, the return for the whole period is 6.6% (Appendix 

2), but the momentum effect seems to disappear. The results indicate that 

Norwegian stock prices revert back to fundamental values during or directly after 

the 12 –  1 month estimation period, rather than continuing the past trend.  

 

We find it essential to discuss the low correlations in our investment universe. As 

can be observed in table 2, the correlations are fairly low between all factors. The 

highest correlation can be found between value and size, indicating that, more often 

than not, small companies have higher BM ratios. We observe negative correlations 

between WML and the other factors, in line with prior literature. The negative 

correlation between value and momentum is clearly observed in figure 3, as the 

returns of the factors tend to go in opposite directions. These findings are further in 

accordance with those of Asness et al. (2013).  

 

Table 2: In-Sample Correlation Matrix 

The table shows correlations between the four individual factors during the period 1985-2005. Correlations 

are calculated using monthly returns.  

 HML WML SMB BAB 

HML 1    
WML -0.258 1   
SMB 0.348 -0.214 1  
BAB 0.243 -0.061 0.358 1 

 

 

5.1.2 Static Equal-Weighted Multifactor Strategy Performance 

When comparing the EWS to the individual factors, the general trend is that the 

multifactor strategy outperforms HML and WML but underperforms SMB and 

BAB. We observe from table 1 that the standard deviation has been drastically 

reduced compared to three of the factors, suggesting that combining the factors 

creates diversification benefits. Considering the low and negative correlations 

between factors, the reduction in portfolio risk is not surprising, confirming our 

initial expectations and in line with the findings of Ilmanen & Kizer (2012).  

 

The risk-adjusted performance measures, on the other hand, suggest that an investor 

will benefit more from holding a pure SMB or BAB portfolio rather than combining 

all four factors. This can be explained by our findings that the momentum effect 

seems to disappear after some time, in addition to the factor’s negative returns, 

especially in the first few years.  
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5.1.3 Dynamic Mean-Variance Strategy 

Table 3: In-Sample Mean-Variance Optimization Results  

The table shows performance measurements for 12 in-sample mean-variance strategies optimized on different 

lengths of rolling windows and with different upper bounds. All strategies are restricted by a lower bound of 

0. The first column defines the length of the rolling windows and the value of the upper bound, where “rec” 

denotes a recursive window. M2 and Information ratios (IR) is calculated using the OSEAX as benchmark.  
Ret ExRet Stdev SR M2 IR Skew ExKurt 

1yr, 35% 18.02% 7.34% 21.87% 0.336 13.62% 0.024 -0.013 3.742 

1yr, 40% 13.68% 7.20% 22.12% 0.326 13.40% 0.020 0.010 1.063 

1yr, 45% 14.36% 7.88% 23.33% 0.338 13.67% 0.039 -0.021 1.757 

3yr, 35% 18.02% 11.55% 24.51% 0.471 16.50% 0.143 0.992 3.742 

3yr, 40% 19.99% 13.51% 26.45% 0.511 17.35% 0.192 1.026 3.939 

3yr, 45% 19.32% 12.84% 27.25% 0.471 16.50% 0.171 1.176 4.983 

5yr, 35% 16.29% 9.81% 20.56% 0.477 16.63% 0.098 0.168 1.174 

5yr, 40% 15.65% 9.17% 21.20% 0.433 15.69% 0.079 0.151 1.394 

5yr, 45% 16.97% 10.49% 22.24% 0.471 16.51% 0.116 0.252 2.019 

Rec, 35% 15.38% 8.90% 20.89% 0.426 15.55% 0.070 0.136 1.452 

Rec, 40% 13.79% 7.31% 20.59% 0.355 14.04% 0.025 0.168 1.449 

Rec, 45% 10.65% 4.17% 20.58% 0.202 10.79% -0.069 -0.009 1.351 

 

The first takeaway from the mean-variance strategies displayed in table 3 is the 

risk-adjusted returns. Most outperform the EWS, and all but one outperforms the 

OSEAX, primarily due to higher returns. A possible explanation for their 

outperformance relative to the EWS may be that the factors themselves exhibit 

momentum. Given that a mean-variance optimization relies on past performance, 

the mean-variance strategies will benefit from momentum in factor returns, as the 

strategy typically will allocate more to factors that have performed well in the past.  

 

We observe from table 3 that the MV optimization is quite sensitive to the window 

lengths of inputs, i.e., covariances and returns, are based on. The three recursive 

windows all achieve low standard deviations compared to the rolling windows. An 

explanation could be that since the estimation period keeps increasing, the inputs 

will become less affected by outliers, resulting in more stable weighing schemes. 

The reduction of risk is further reflected in lower returns.  

 

Across all upper bounds, the 3-year rolling windows outperform their competitors 

regarding the risk-adjusted measures SR, 𝑀2, and IR. Further, it can be observed 

that imposing a 40% UB generates the best overall performance. This strategy has 

the highest returns but also the highest standard deviation. Still, the strategy is 

superior to all others in terms of risk-adjusted returns, achieving a SR of 0.511. 

Contrary to the other window lengths, the 3-year rolling windows have positive 

skewness around 1, in addition to high kurtosis, suggesting that these strategies tend 
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to experience extreme returns, often positive. Based on these findings, the 3-year 

rolling window with UB = 40% will be used in our out-of-sample analysis.  

 

We note that the MVS can only allocate weights across four factors, and by using 

relatively conservative upper bounds, the difference in returns relative to the EWS 

is limited. However, as shown in figure 4, the MVS sometimes allocates zero 

weight to one factor. In fact, between 1997-2003, HML is almost completely 

excluded. The strategy assigns large weights to SMB and BAB over the whole 

period and less to HML and WML. Still, the MVS has surprisingly large weights 

in the momentum factor, which may be a consequence of the negative correlations 

between WML and the other factors. 

 

 

 
 

 
Figure 4: In-Sample Factor Weights for the MVS 

Figure 4 illustrates weights assigned to the individual factors for the in-sample mean-variance strategy each 

month along with the respective factor returns. Panel A corresponds to HML, panel B to WML, panel C to 

SMB, and panel D to BAB. The axes on the left-hand sides refer to factor weights, and the axes on the right-

hand sides correspond to cumulative returns. Notice that the limits on the right-hand side axes differ and that 

cumulative returns for WML are negative.   

 

5.1.4 Indicator Predictions 

The optimal lag length for each indicator based on the Hannan-Quinn Information 

Criterion is summarized in table 4. We observe that the optimal lag length for oil 

price is zero, ruling this indicator out as a predictor since including it will cause the 
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VAR model to collapse. This indicates that the change in oil price is not useful in 

predicting factor returns in the Norwegian equity market.  

 

Table 4: Optimal Lag Lengths Based on HQIC 

The table displays the optimal lag length (months) of each macroeconomic indicator related to the individual 

factors. Note that since the Composite Leading Indicator is published with a two-month lag, we exclude the 

first lag in the VAR models.   

 HML WML SMB BAB 

Composite Leading Indicator 4 5 4 4 

Liquidity 1 1 1 4 

Oil Price 0 0 0 0 

Risk-Free Rate 2 2 4 3 

Volatility 2 2 2 2 

 

Testing the significance of indicators using both t-tests and f-tests indicates that 

only CLI, volatility, and liquidity are useful for predicting factor returns. In contrast 

to Zhang et al. (2009), we do not find a significant relationship between the change 

in risk-free rates and any of the factors. On a 10% significance level, we obtain four 

regression models from the Granger causality tests used to forecast returns. We 

report the t-statistics in parentheses, where variables are significant when |𝑡 𝑠𝑡𝑎𝑡| >

𝑡 𝑐𝑟𝑖𝑡 𝑣𝑎𝑙 1.645. For an illustration of the presumed causal relationships between 

significant indicators and factor returns, we refer to Appendix 3.  

 

We find significant evidence that the HML factor is negatively related to lags of 

market volatility (f-stat 3.44 ≥ 1.62 f critical value). These findings may again 

support the rational explanations of the value premium, namely that high BM 

companies are unprofitable and distressed (Fama & French, 1992). If market 

volatility increases, returns are expected to decrease, reflecting the fundamental risk 

associated with these companies. We do, however, find an insignificant 𝛼 but keep 

the intersect to avoid affecting the slope of the regression line. We conclude that 

when market volatility increases, we will reduce our position in the HML factor.    

 

𝐸(𝑟𝐻𝑀𝐿,𝑡) = 𝛼⏟
(0.36)

+ 𝛽1⏟
(−1.85)

𝑣𝑜𝑙𝑡−1 (27)
 

 

  

A notable result from regressing WML on previous lags of the CLI is that the beta 

coefficients change signs between each lag, as can be observed in the t-statistics in 

(28). The Granger-causal relationship between the momentum factor and CLI may 

be more easily observed in Appendix 3B. We further observe a significant negative 

alpha and a significant model (f-stat 1.82 ≥ 1.62 f critical value). In contrast to prior 
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literature (Ang, 2014), we do not find a significant relationship between momentum 

and liquidity.  

 

𝐸(𝑟𝑊𝑀𝐿,𝑡) = 𝛼⏟
(−1.91)

+ 𝛽1⏟
(−1.56)

𝐶𝐿𝐼𝑡−2 + 𝛽2⏟
(1.67)

𝐶𝐿𝐼𝑡−3 + 𝛽3⏟
 (−1.72)

𝐶𝐿𝐼𝑡−4 + 𝛽4⏟
(1.70)

𝐶𝐿𝐼𝑡−5 (28) 

 

Our findings suggest that the size premium is higher in the period following an 

increase in market liquidity (f-stat 5.01 ≥ 1.55 f critical value). This is not 

unexpected, as the SMB factor is long small companies, which may be less 

profitable (Fama & French, 1996), but also since small stocks tend to be traded less 

frequently. This strengthens the argument that the size factor offers a liquidity 

premium. We further observe a significant monthly alpha of 0.025, suggesting that, 

all else equal, the return of the factor is positive if the change in market liquidity is 

zero.  

 

𝐸(𝑟𝑆𝑀𝐵,𝑡) = 𝛼⏟
( 3.57)

+ 𝛽1⏟
(2.24)

𝑙𝑖𝑞𝑡−1 (29) 

 

BAB represents the only factor that is significantly related to two of the 

macroeconomic indicators (f-stat 4.66 ≥ 1.60 f critical value). We observe the same 

trend in changing signs for the CLI as we did for the momentum. However, the 

signs are positive for lags 2 and 4, whereas these signs were negative in the WML 

regression. We further find that BAB is positively related to liquidity, which may 

indicate that the factor returns are compensation for liquidity risk. 

  

𝐸(𝑟𝐵𝐴𝐵,𝑡) = 𝛼⏟
(−1.08)

+ 𝛽1⏟
(2.85)

𝐶𝐿𝐼𝑡−2 + 𝛽2⏟
(−2.52)

𝐶𝐿𝐼𝑡−3 + 𝛽3⏟
(2.18)

𝐶𝐿𝐼𝑡−4 + 𝛽4⏟
(1.72)

𝑙𝑖𝑞𝑡−2 + 𝛽5⏟
(2.13)

𝑙𝑖𝑞𝑡−3 (30) 

 

The resulting regressions from the VAR models and Granger causality tests are 

further used to estimate returns in the factor timing strategies. For each factor at 

time 𝑡, the significant beta coefficients are multiplied with the corresponding 

variables, resulting in a 4x1 mean vector of expected return each month. For 

illustrative purposes, consider the following coefficients for 𝐻𝑀𝐿𝑡: 𝛼 = 0.0005 and 

𝛽1 = - 0.03. The expected return of 𝐻𝑀𝐿𝑡+1 given a logarithmic change in volatility 

of -0.3317 will be 

𝐸(𝑟𝐻𝑀𝐿,𝑡+1) = 0.0005 − 0.03(−0.3317) = 1.05% 
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5.1.5 Dynamic Factor Timing Strategy 

The mean vectors are constructed on the same window lengths as in the mean-

variance optimizations. To better capture the effect of factor timing vs. mean-

variance, we retain the upper bound of 40% from the best performing MVS. The 

results from the factor timing (FT) strategies are summarized in table 5. 

 
Table 5: In-Sample Factor Timing Strategies Results 

This table shows the in-sample results from four different factor timing strategies. Column 1 describes the 

length of the rolling windows, and “rec” denotes a recursive window. All strategies are restricted by UB = 

40% and LB = 0. All numbers are calculated as annualized averages based on monthly data, except skewness 

and excess kurtosis. M2 and Information ratios (IR) is calculated using the OSEAX as benchmark. 

 Ret ExRet Stdev SR M2 IR Skew ExKurt 

1yr 19.68% 13.20% 24.58% 0.537 17.90% 0.184 0.473 3.449 

3yr 15.83% 9.35% 25.08% 0.373 14.41% 0.078 0.484 2.943 

5yr 14.05% 7.57% 22.31% 0.340 13.70% 0.030 -0.392 2.170 

Rec 16.19% 9.71% 26.63% 0.365 14.24% 0.084 0.123 1.614 

 

Comparing the results from the tactical implementation with the MV strategies, we 

observe that the FT performance is also quite reliant on window lengths. Prior to 

the tactical implementations, our expectations were that all window lengths would 

outperform their MV counterparts, but we observe that this is only true in half of 

the cases. With regard to risk-adjusted returns, the shortest and longest window 

lengths result in the best performing factor timing strategies, and both outperform 

their MV equivalents. We observe the same trend in returns. The volatilities are 

generally higher for the FT strategies, which may be due to more drastic changes in 

weights compared to the MVS. The best performing factor timing strategy is the 1-

year rolling window, as it generates the highest risk-reward ratio of 0.537, along 

with the highest returns, 𝑀2, and IR. When studying the best performing FT and 

MV strategies, the FTS generates lower returns and standard deviation, ultimately 

resulting in higher risk-adjusted returns. 

 

We observe from figure 5 that the FTS manages to time the factor returns fairly 

well. From Panel A and B, we see that the strategy accomplishes to avoid the most 

drastic downturns and are often fully invested (40%) in the factors when they 

perform exceptionally well. As SMB and BAB returns are less volatile, the timing 

ability is more difficult to spot. We point out that if the strategy decides to exclude 

one factor at time 𝑡, e.g., due to predictions of extremely negative returns, the 

strategy is forced to take a position in all other factors as a result of (14). This may 

lead to the FTS taking positions in factors yielding negative returns, still, not as 

negative as the worst-performing factor. The same logic concerns the MVS. 
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Figure 5: In-Sample Factor Weights for the FTS 

Figure 5 illustrates weights assigned to the individual factors for the in-sample factor timing strategy each 

month along with the respective factor returns. Panel A corresponds to HML, panel B to WML, panel C to 

SMB, and panel D to BAB. The axes on the left-hand sides refer to factor weights, and the axes on the right-

hand sides correspond to cumulative returns. Notice that the limits on the right-hand side axes differ and that 

cumulative returns for WML are negative.   

 

5.1.6 Subsample Comparison  

Table 6: In-Sample Subsamples Sharpe Ratios  

This table shows the annualized Sharpe ratios for three multifactor strategies and the OSEAX during four 

subsamples during the in-sample period 1990-2005. 

 OSEAX EWS MVS FTS 

1990-1993 -0.154 0.714 0.713 1.191 

1994-1997 0.991 0.837 0.976 1.039 

1998-2001 -0.201 -0.482 -0.270 -0.583 

2002-2005 0.941 0.620 0.769 0.553 

 

Table 6 demonstrates great variations in SRs over different subsamples for all 

strategies and the OSEAX. All have negative SRs during 1998-2001, and returns 

are also highly volatile during this subsample, as illustrated in figure 6(C). We 

further observe that the FTS outperforms during the first two subsamples, 

generating SRs above 1, but underperforms in the two last. A possible explanation 

could be that the strategy predicts returns quite well in normal market conditions 

but becomes more inaccurate in volatile markets. The OSEAX outperforms the 

multifactor strategies during the last two subsamples, in line with the rationale that 

factors incur risk premiums as compensation for losses during bad times (Ang, 

2014).  
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Figure 6: Cumulative Returns for Subsamples in the In-Sample Period 

We report cumulative returns for the OSEAX, EWS, MVS, and FTS for four subsamples of the in-sample 

period. Notice that the limits on the y-axes differ across subplots. Returns are not in percent.  

   

 

5.2 Out-of-Sample Analysis 

Table 7: Out-of-Sample Performance 

This table shows the out-of-sample results of the individual factors, the three optimal strategies based on the 

in-sample results, and the benchmark. All numbers are calculated as annualized averages based on monthly 

data, except skewness and excess kurtosis. M2 and Information ratios (IR) is calculated using the OSEAX as 

benchmark. 
 Ret ExRet Stdev SR M2 IR Skew ExKurt 

OSEAX 8.93% 6.68% 18.23% 0.367 8.93% N/A -1.275 2.855 

HML 0.61% -1.64% 27.19% -0.060 1.15% -0.217 -0.316 1.138 

WML -1.35% -3.60% 31.57% -0.114 0.17% -0.284 -0.574 1.080 

SMB 16.79% 14.55% 34.32% 0.424 9.98% 0.161 0.187 1.244 

BAB 18.21% 15.96% 15.31% 1.043 21.26% 0.349 -0.664 1.965 

EWS 8.57% 6.32% 15.87% 0.398 9.51% -0.012 -0.196 0.568 

MVS 8.89% 6.64% 17.40% 0.382 9.21% -0.001 -0.147 0.546 

FTS 9.63% 7.38% 17.13% 0.431 10.11% 0.023 0.238 1.638 

 

From the out-of-sample results displayed in table 7, we observe several differences 

compared to our in-sample tests. HML and SMB returns are much lower during our 

out-of-sample period, whereas the momentum returns are not as negative as 

previously. The differences in returns and excess returns are not as great as they 

were in-sample, as the risk-free rate is much lower after 2005. We further observe 

a reduction in standard deviations across all factors, especially HML. The presence 
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of negative skewness for three of the four factors may be a result of the global 

financial crisis in 2008. 

 

On a risk-adjusted basis, it is evident that the BAB factor is superior, generating a 

SR of 1.043 in addition to an 𝑀2 of 21.26%. We believe that these findings could 

result from leverage requirements or that BAB is a relatively new factor and is 

therefore not priced in. HML and WML both achieve negative SRs caused by 

negative excess returns. Although lower than in-sample, the SR of SMB is 

satisfying. We find evidence of the size and BAB premiums in the Norwegian 

market, as both anomalies persist through time. Although the HML factor’s in-

sample returns were satisfactory, the out-of-sample results suggest that the value 

premium has disappeared. Lastly, we have not found evidence for the momentum 

effect out-of-sample, which could be explained by the same reasoning as in-sample.  

 

Our out-of-sample findings regarding the equal-weighted portfolio are relatively 

similar to the in-sample results. The EWS still outperforms HML and WML but 

underperforms SMB and BAB in terms of risk-adjusted returns. We still observe a 

great reduction in portfolio volatility, again due to the low and negative correlations 

between factors observed in table 8.  

 
Table 8: Out-of-Sample Correlation Matrix 

The table shows correlations between the four individual factors during the period 2006-2019. Correlations 

are calculated using monthly returns.  

 HML WML SMB BAB 

HML 1    
WML -0.309 1   
SMB 0.567 -0.179 1  
BAB 0.077 0.198 0.452 1 

 

Implementing MV optimized weights seems to increase both returns and volatility 

relative to the EW portfolio, ultimately resulting in a lower SR of 0.382. This 

indicates that an investor is better off by holding a naïve equal-weighted portfolio 

instead of attempting to optimize portfolio weights from a risk-return perspective. 

Still, the differences in returns and standard deviations are minor, making it difficult 

to conclude whether one strategy is better than the other. 

 

Out-of-sample, the dynamic factor timing strategy continues to outperform the 

other strategies in addition to the OSEAX benchmark, as it generates both the 

highest returns and risk-adjusted returns. We achieve a slightly positive IR of 0.023 
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and an 𝑀2 of 10.11%. Although the differences are not too great, we observe that 

the MV optimization indeed benefits from tactical implementation. Given that the 

only difference between MVS and FTS is the method of how we measure returns, 

our results indicate that forecasting returns on macroeconomic indicators represent 

a better proxy for future returns than historical data.  

 

Figures 7 and 8 illustrate the mean-variance and factor timing strategies’ weights 

for each month in the individual factors, compared to the factor returns. It is evident 

that the MVS tends to hold a position in an individual factor for longer periods than 

the FTS does. Unsurprisingly, the weights in the MVS are more affected by 

previous drops and boosts in returns. Consequently, the MVS sometimes miss out 

on the rapid recoveries, such as the HML in 2017 (figure 7(A)). The weights in the 

factor timing strategy, on the other hand, fluctuate more between months. However, 

we observe that the FTS often manages to reduce positions in factors before they 

experience major declines. Generally, the FTS seems to time factor returns fairly 

accurate. We also note that the MVS maximizes the allocation to BAB for almost 

the entire period, most likely due to the favorable risk-return profile throughout the 

whole period.   

 

 
 

 
Figure 7: Out-of-Sample Factor Weights for the MVS 

The figure illustrates weights assigned to the individual factors for the out-of-sample mean-variance strategy 

each month along with the respective factor returns. The axes on the left-hand sides refer to factor weights, 

and the axes on the right-hand sides correspond to cumulative returns. Notice that the limits on the right-hand 

side axes differ. 
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Figure 8: Out-of-Sample Factor Weights for the FTS 

The figure illustrates weights assigned to the individual factors for the out-of-sample factor timing strategy 

each month along with the respective factor returns. Panel A corresponds to HML, panel B to WML, panel C 

to SMB, and panel D to BAB. The axes on the left-hand sides refer to factor weights, and the axes on the right-

hand sides correspond to cumulative returns. Notice that the limits on the right-hand side axes differ. 

 

5.2.1 Subsample Comparison 

Table 9: Subsample Comparison of Multifactor Strategies and the OSEAX 

Table 9 displays the returns and Sharpe ratios of the three strategies in addition the OSEAX. The Financial 

Crisis period displayed in the table covers the period between January 2008 and March 2009. The post-crisis 

period starts in March 2009 and continues throughout 2019. All returns and ratios are annualized. Notice that 

we report returns, and Sharpe ratios are computed using excess returns. 

 OSEAX EWS MVS FTS 

 Return SR Return SR Return SR Return SR 

01.2006 - 06.2009 0.79% -0.123 -2.98% -0.406 0.01% -0.227 -1.01% -0.253 

07.2009 - 12.2012 12.44% 0.618 1.16% -0.070 0.43% -0.093 2.81% 0.038 

01.2013 - 06.2016 9.39% 0.702 22.58% 1.259 22.98% 1.301 21.57% 1.200 

07.2016 - 12.2019 13.10% 1.191 13.51% 1.044 12.12% 0.815 15.15% 1.058 

Financial crisis -58.28% -1.660 9.83% 0.167 16.00% 0.402 5.46% -0.005 

Post-crisis 13.76% 0.885 10.29% 0.567 10.48% 0.521 12.51% 0.705 

 

A notable result from table 9 is that the multifactor strategies outperform the 

OSEAX during the global financial crisis (GFC). The multifactor strategies yield 

positive returns throughout the crisis, where the MVS generates extraordinarily 

high returns of 16%. The FTS generates positive returns, but due to high interest 

rate levels throughout 2008, the strategy obtains a negative SR. Our findings 

support Ilmanen & Kizer’s (2012) argument that investors should shift their focus 

to diversification across factors rather than asset classes, but conflicts with our in-

sample results. Studying the performance after the crisis in figure 9(A) and (B), 
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however, we observe that the OSEAX quickly recovers after a sharp drop in 2008, 

resulting in a high, positive SR. In contrast, the EWS and MVS achieve negative 

SRs. The underperformance of the FTS during the GFC is in accordance with our 

in-sample findings, strengthening the argument that it is difficult to predict factor 

returns in market turmoil.  

 

Another interesting observation can be observed in figure 9(B), which shows that 

when the OSEAX drops significantly, multifactor strategies are peaking. We 

assume the volatile returns during the second subsample period are related to the 

European debt crisis. Less distinct examples of the multifactor strategies’ lagged 

returns relative to the OSEAX can be observed mid-2008 (Figure 9(A)) and late 

2019 (Figure 9(D)). The results may indicate that the OSEAX can be a useful 

indicator for future factor returns.  

 

Our conclusion from the out-of-sample analysis is that the FTS underperforms the 

other multifactor strategies during crises but outperforms during normal times. 

Moreover, the risk-adjusted returns during normal times more than offsets the 

negative SR in bad times, resulting in overall higher risk-adjusted returns. During 

crisis times, multifactor strategies perform better than the OSEAX, but worse right 

after, possibly due to delayed responses in factor returns. 

 

 

 
Figure 9: Cumulative Returns for Subsamples in the Out-of-Sample Period 

We report cumulative returns for the OSEAX, EWS, MVS, and FTS for four subsamples during the out-of-

sample period. Notice that the limits on the y-axes differ across subplots. Returns are not in percent. 
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5.3 Robustness Tests 

We test whether there is a statistically significant difference in performance, 

measured by the SR, by running heteroskedasticity and autocorrelation consistent 

inference tests. Strategies are measured against their relevant benchmarks. Results 

are summarized in table 10.  

 
Table 10: HAC Inference Results  

Table 10 shows the results obtained in the HAC inference tests. We report standard errors (SE) and p-values 

for the differences between Sharpe ratios. P-values below 0.10 indicate that there is a statistically significant 

difference between the SRs of two portfolios. The relevant strategies/factors compared in each test are 

described as column names.  

 EWS, HML EWS, WML EWS, SMB EWS, BAB MVS, EWS FTS, MVS 

HAC SE 0.0757 0.0898 0.0498 0.0767 0.0382 0.0462 

HAC p-value 0.0803 0.0997 0.8820 0.0153 0.8999 0.7577 

 

We find a statistically significant difference between the EWS and three individual 

factors. The differences in SRs are in favor of the EWS when measured against the 

value and momentum factors. BAB has a significantly higher SR than the EWS. 

Thus, our null hypothesis that 𝑆𝑅𝐸𝑊𝑆 ≤ 𝑆𝑅𝑆𝐹𝑖
 is rejected for 𝐻𝑀𝐿 and 𝑊𝑀𝐿 but 

is not rejected for 𝑆𝑀𝐵 and 𝐵𝐴𝐵.  

 

We do not find a significant difference between the different multifactor models, 

and hence do not reject the null hypotheses 𝑆𝑅𝑀𝑉𝑆 ≤ 𝑆𝑅𝐸𝑊𝑆 and 𝑆𝑅𝐹𝑇𝑆 ≤ 𝑆𝑅𝑀𝑉𝑆. 

We recognize three main aspects which may explain why the results are statistically 

insignificant. Firstly, we use only four factors with a maximum weight restriction 

of 40%. This limits the extent to which the strategies can differ. Secondly, we only 

examine five macroeconomic indicators, of which three are significant on a 10% 

level. Third, the indicator predictions are only estimated in-sample, and the 

indicators may lose (or gain) their predictive powers out-of-sample or across 

subsamples. Hence, expanding the investment universe, including additional 

indicators, increasing the significance level, and continually testing the forecasting 

ability of indicators, could have a positive effect on the differences between 

strategies. 

 

 

 

  

10047101004530GRA 19703



 41 

6.0 Conclusion 

We study the performance of multifactor models in Norway by comparing three 

different implementation approaches. We find evidence for the betting against beta 

and size premiums in the Norwegian equity market, as the two factors generate 

Sharpe ratios of 0.424 and 1.043 from 2006-2019, respectively. The value effect 

seems to disappear after 2005, and the momentum effect is absent during our whole 

sample period, both generating slightly negative Sharpe ratios of -0.060 and -0.114 

out-of-sample.    

 

Implementing an equal-weighted, multifactor strategy shows that combining single 

factors generates diversification benefits. We find a substantial reduction in 

volatility when combining the different factors. The equal-weighted strategy 

achieves a standard deviation of 15.87%, compared to three of the four single factor 

volatilities of around 30%. The strategy underperforms the 15.31% standard 

deviation of betting against beta. Still, the equal-weighted strategy only 

outperforms value and momentum regarding risk-adjusted returns, generating a SR 

of 0.398.  

 

Implementing mean-variance optimized weights does not seem to have any 

significant effect out-of-sample, despite the mean-variance strategy’s great 

outperformance in-sample. The mean-variance strategy achieves higher returns 

than the equal-weighted strategy, but due to higher risk, the Sharpe ratio of 0.382 

is lower. However, we do find that the mean-variance strategy performs better than 

all other strategies during crises, yielding a 16% return during the global financial 

crisis. 

 

We find that three macroeconomic indicators are useful in explaining factor returns. 

The results suggest a negative relation between value and lagged values of change 

in market volatility. Further, size and betting against beta perform better when 

market liquidity is increasing. Lastly, we find that the composite leading indicator 

helps predict future returns of both betting against beta and momentum.  

 

Our analysis has shown that factor timing with a restricted number of factors and 

variables results in higher risk-adjusted returns, however not statistically 

significant. The factor timing strategy achieves a Sharpe ratio of 0.431 and a 
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differential return of 0.90% annually relative to the mean-variance strategy. Factor 

timing is revealed to perform poorly in volatile markets. However, the factor timing 

strategy outperforms the equal-weighted and mean-variance strategies slightly over 

the whole time period, especially in normal market conditions. Our findings thus 

indicate that implementing factor-timed weights estimated by macroeconomic 

variables and moving to mean-variance optimized weights during crises may 

enhance the risk-adjusted returns of a multifactor strategy.  

 

We believe that the strategy can be enhanced by including additional factors to 

avoid enforced allocations to specific factors and still achieve diversification 

benefits. Further, an increased number of significant indicators may lead to more 

accurate predictions of factor returns. Recommended further research would thus 

be to include additional factors in the multifactor strategies. This could better 

capture the effects of the implementation methods by allowing the mean-variance 

optimizations to choose in a larger investment universe and possibly deviate more 

from an equal-weighted portfolio. It may also be beneficial to consider the OSEAX 

as a predictor of factor returns, given that the multifactor strategies tend to 

successively follow the index. Lastly, including transaction costs may help evaluate 

the true performance of the strategies.   
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8.0 Appendix 

Appendix 1  

Table 11: Data, Frequencies, Start Dates, and Sources 

This table describes the data we have collected, along with the dates of the first observation, frequencies and 

sources. All data ends December 31st 2019. 

Data Start Date Frequency Source 

Individual Stock Returns Jan 1980 Daily OBI 

Market Returns (VW) Jan 1980 Daily OBI 

Benchmark (OSEAX) Jan 1983 Monthly OBI 

Risk-free rate Jan 1980 Daily OBI 

Risk-free rate Jan 1980 Monthly OBI 

BM returns Jan 1981 Monthly OBI 

Size returns Jan 1980 Monthly OBI 

Momentum returns Jan 1980 Monthly OBI 

CLI indicator Jan 1980 Monthly OECD 

Turnover  Jan 1980 Monthly OBI data 

Oil Price  Jan 1988 Monthly Bloomberg 

 

 

 

Appendix 2  

In-sample factor returns (1980-2005). Due to data availability and requirements 

of non-missing data for construction, the start date of the factors and the OSEAX 

may deviate.  

 
Table 12: Extended In-Sample Factor Returns (1980-2005) 

This table shows the in-sample returns of each individual factor HML, WML, SMB and BAB, along with the 

OSEAX. We also report the date of the first observation for each factor 

 Start Date Ret Ex.Ret Std SR 

OSEAX 01.1983 17.24% 8.72% 22.22% 0.392 

HML 01.1981 15.34% 6.49% 52.33% 0.124 

WML 01.1980 6.65% -2.24% 44.37% -0.051 

SMB 01.1980 42.74% 33.85% 45.17% 0.749 

BAB 01.1985 19.29% 11.18% 22.08% 0.506 
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Appendix 3  

This appendix illustrates the presumed causal relationships between individual 

factor returns and their corresponding macroeconomic indicators.  

 

Appendix 3A – HML returns and logarithmic change in market volatility.  

 

 

Figure 10: HML Returns and Volatility Indicator  

The vertical axis on the left-hand side of both panels represent the cumulative returns of HML. The vertical 

axis on the right-hand side represents the change in market volatility. Panel A shows the period 1990-1998 

and panel B shows the period 1998-2006. 

 

Appendix 3B – WML returns and CLI. 

 

  

Figure 11: WML Returns and CLI  

The vertical axis on the left-hand side represent cumulative returns of the momentum factor. The vertical axis 

on the right-hand side represents the level of the CLI. Panel A shows the period 1990-1998 and panel B 

shows the period 1998-2006. 
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Appendix 3C – SMB returns and logarithmic change in market liquidity.  

 

 

Figure 12: SMB Returns and Liquidity 

The vertical axis on the left-hand side represent cumulative returns of the size factor. The vertical axis on the 

right-hand side represents the change in liquidity. Panel A shows the period 1990-1998 and panel B shows 

the period 1998-2006. 

 

Appendix 3D – BAB returns and CLI.  

 

 
Figure 13: BAB Returns and CLI 

The vertical axis on the left-hand side represent cumulative returns of the BAB factor. The vertical axis on the 

right-hand side represents the level of the CLI. Panel A shows the period 1990-1998 and panel B shows the 

period 1998-2006. 
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Appendix 3E – BAB returns and logarithmic change in market liquidity. 

 

 
Figure 14: BAB Returns and Liquidity 

The vertical axis on the left-hand side represent cumulative returns of the BAB factor. The vertical axis on the 

right-hand side represents the change in liquidity. Panel A shows the period 1990-1998 and panel B shows 

the period 1998-2006. 
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