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ABSTRACT 

 
We hypothesize that machine learning algorithms are better equipped at fore- 

casting policy rates. To test this hypothesis, we gathered several machine 

learning algorithms and compared their forecasts of the Norwegian policy rate 

against Norges Bank’s own forecasts. The hypothesis builds upon the idea of 

machine learning as a general tool. Therefore, we tested a broad set of machine 

learning algorithms instead of developing a hyper specific model. The machine 

learning algorithms we tested were the elastic net algorithm, the decision tree 

algorithm, the long short-term memory neural network, the convolutional neu- 

ral network, and an ensemble learner. Consistent with our hypothesis, the 

algorithms did indeed exhibit lower prediction errors than the benchmark. A 

deeper analysis of the results indicated that this is due to their ability to bet- 

ter adjust to drastic changes in the economy and that Norges Bank’s model 

performs better during stable economic periods. 
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1 Introduction 
 

The financial industry is changing. Digital tools and high computing power 

have provided us with techniques and methods that have otherwise been un- 

available. Easy and affordable access to powerful computers has made it pos- 

sible to process large datasets in a precise and efficient way that challenges 

conventional models. Among other things, this has led to the emergence of 

high-frequency trading, decentralized banks, and cryptocurrencies. Machines 

have not only led to changing business models, but also made it possible to 

revisit old research to explore whether new techniques are able to change or 

improve results. Here, machine learning is particularly interesting. In short, 

machine learning is about using statistical models in combination with the 

computer’s high computational power to find patterns in data. This makes it 

particularly useful for finding shrouded patterns that are difficult to identify 

with traditional methods. 

Making accurate economic predictions is a difficult but important task. 

Both policy makers and consumers utilize economic outlooks for decision mak- 

ing. Central banks use these projections to decide whether to stimulate or 

depress economic growth. Stock market participants make decisions regarding 

stock prices in conjunction with similar forecasts. Consequently, accuracy in 

economic outlooks is pertinent to proper financial decision making. 

One of the most prominent signals of the state of an economy is the central 

bank’s policy rate. This is because it acts as an intermediary between the 

government and the economy. In Norway, the policy rate is the interest rate 

commercial banks receive on deposits. The interest rates that the commercial 

banks are exposed to will affect the products that these banks offer. Hence, 

a change in the policy rate will affect the whole Norwegian economy, from 

consumers’ spending behavior to the Norwegian Krone. This makes the policy 

rate particularly interesting to forecast. In essence, forecasting policy rate 

decisions is analogous to forecasting the economy. 

As of writing this thesis, the Norwegian central bank, Norges Bank, uses 

a dynamic stochastic general equilibrium (DSGE) model for policy rate fore- 

casting. At the same time, machine learning has been implemented in several 

parts of economics and finance. Despite the application of machine learning 
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in related fields, machine learning has yet to be implemented in conjunction 

with policy rates. To further the discussion on utilizing machine learning in 

fiscal policy decisions, we wanted to test the efficacy of these algorithms in 

such environments. In fact, we hypothesize that machine learning algorithms 

can better predict the policy rate than conventional DSGE models. 

To test this hypothesis, we compared several machine learning algorithms 

to Norges Bank’s DSGE forecasts: (i) the elastic net algorithm, (ii) the decision 

tree algorithm, (iii) long short-term memory, (iv) convolutional neural network, 

and (v) ensemble learner. The purpose of this thesis was not to create a 

hyper optimized machine learning model. Rather, we wanted to investigate 

the efficacy of machine learning as a tool. Therefore, we opted to test several 

well-known algorithms without excessive optimization. This means that this 

research, and subsequently its results, only pertain to the models themselves. 

Our results confirmed our hypothesis; the machine learning algorithms fore- 

casted the Norwegian policy rate more accurately than Norges Bank’s DSGE 

model. Aggregated over several time-steps, the worst machine learning algo- 

rithm predicted the policy rate with approximately six percent higher accuracy 

than Norges Bank. However, a deeper analysis of the forecasts show that this is 

mostly due to Norges Bank’s model’s inadequacy to adjust to drastic changes in 

the economy. Conversely, the machine learning algorithms are better equipped 

at adjusting to these changes, which is reflected in the final forecasting score. 

In the subsequent chapters, we will examine prior research on machine 

learning and interest rates. Furthermore, we will present the methodological 

approach related to choosing, constructing, and tuning the different machine 

learning algorithms. Next, we showcase the details surrounding the data prepa- 

ration stage of this thesis. Then, the results from our analysis are presented. 

Lastly, the thesis ends with a discussion of the results and conclusive thoughts 

related to the thesis. 
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2 Literature review 

 
2.1 The policy rate 

 
The policy rate, also known as the Folio rate, is normally set every six weeks at 

Norges Bank’s interest rate meeting. The policy rate is the central bank’s most 

important instrument for stabilizing inflation and developments in the Norwe- 

gian economy (Norges Bank, n.d.) because it corresponds to the interest rate 

that commercial banks receive on their deposits with the central bank. This 

will in turn control the interest rate that the commercial banks offer to their 

customers on loans and deposits. If the central bank lowers the policy rate, 

it will lead to cheaper loans, which in turn stimulates increased consumption. 

With higher consumption, unemployment declines and inflation rises. At the 

same time, it will weaken the currency because foreign players relocate assets 

out of the country to a country with higher interest rates. Conversely, these 

effects are reversed if the policy rate is increased. Consequently, Norges Bank’s 

interest rate decision is significant for the Norwegian economy. 

The Norwegian economy is governed by an explicit inflation target, which 

is currently 2 percent (Norges Bank, 2020a). It states that “Inflation targeting 

shall be forward-looking and flexible so that it can contribute to high and stable 

output and employment, and to counteracting financial imbalances” (Lovdata, 

2019). 

To understand how central banks set policy rates, one must first under- 

stand the difference between rule-based monetary policy and discreet mone- 

tary policy. Rule-based monetary policy refers to placing restrictions on the 

authorities’ ability to control the economy. In this scenario, the central bank 

follows a rule that defines which measures can be implemented, e.g., Fried- 

man’s k-percent rule. This rule states that the central bank will increase the 

money supply at a constant rate, regardless of cyclical fluctuations (Friedman, 

1960). The main advantage of setting such rules is higher predictability of the 

economy. 

The other side of monetary policy is discreet monetary policy. Under discre- 

tion, a monetary authority is free to act in accordance with its own judgment. 

This means that the authorities must define the state of the economy and act 
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accordingly. With this form of monetary policy, the central bank will use the 

tools at their disposal to satisfy the economic requests put forth by the au- 

thorities. An example of this is that the central bank lowers the policy rate to 

support the authorities’ desire for lower unemployment. 

Norges Bank practices a combination of the two policies. Under normal 

circumstances, they rely on an economic model named NEMO to indicate 

the appropriate interest rate level and to forecast the economy. However, the 

policy rate decision is ultimately made by a team of experts from Norges Bank. 

This relationship between discreet and rule-based monetary policy is especially 

interesting during crises, which we will analyze in detail in later chapters. 

 
2.1.1 The Taylor rule 

 
It is a challenging task to predict policy rates based on discrete monetary 

policies using machine learning. That is because the methods used to make the 

decision are partly based on subjectivity. In addition, the relative importance 

and size of the feature space varies across time. However, this does not mean 

that the policy rate is completely unpredictable. It turns out that monetary 

policy rules can be indicative of policy rate developments. 

A well-known rule is the Taylor rule (Taylor, 1993). The advantage of this 

rule is that it contains few explanatory variables while still producing sufficient 

estimates. The rule states that if actual inflation is higher than the inflation 

target, the policy rate should be raised, and vice versa. In addition, he includes 

a variable that adjusts for the pressure in the economy. Taylor formulated the 

rule as follows: 
1 1 

r = p + 
2 

y + 
2 

(p − 2) + 2 (1) 

Where r is the US federal funds rate, p is the rate of inflation over the previous 

four quarters, and y is the percent deviation of real GDP from a target. The US 

Federal Funds rate does not correspond to the Norwegian policy rate. Thus, 

the Norwegian version includes a neutral real interest rate in equilibrium. A 

neutral interest rate is the interest rate that in itself does not provide increased 

or reduced price and cost growth in the economy (Lønning & Olsen, 2000). 
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The adjusted Taylor rule looks like this: 

i = r∗ + π∗ + β1(π − π∗) + β2(y − y∗) (2) 

Where i is the policy rate, r∗ is the neutral real interest rate in equilibrium, π 

and π∗ are the actual inflation and target inflation, y − y∗ is the output gap, 

and β are the coefficients. 

 

2.1.2 Norges Bank’s model 

 
Norges Bank’s model for forecasting the policy rate is called NEMO (Nor- 

wegian Economic Model). NEMO is a type of dynamic stochastic general 

equilibrium model, often abbreviated as DSGE. DSGE models are widely used 

by monetary authorities for policy analysis and forecasting (Vitek, 2017). The 

model is dynamic and stochastic as the endogenous variables are probabilistic 

and the paths that the solution creates are dependent upon future stochastic 

shocks (Brubakk & Sveen, 2009). These shocks are supposed to be analogous 

to boom-bust cycles in the economy. Furthermore, general equilibrium implies 

that the market systems in the model at all times will stabilize supply and 

demand in equilibrium. Hence, one could stipulate that the system models the 

Norwegian economy on a smaller scale. 

The model consists of a system of processes as visualized in Figure 1. Dif- 

ferent parts of the system correspond to different parts of a simplified version 

of the Norwegian economy, such as the oil sector, households, and capital pro- 

ducers. These segments then aggregate the economic output of the system 

(Kravik & Paulsen, 2017): 

 

1 
Y = (A − Q + I + X − M ) 

1 − log(z) 
(3) 

Where X is total export, z is an inventory shock to the mainland economy, A 

is final retail goods, Q is domestic intermediate goods, I is investments, M is 

imported intermediate goods. 

The policy rate is derived by minimizing a loss function contingent on 

Norges Bank monetary policy mandate and preferences (Alstadheim et al., 

2010). The loss function for optimal policy can be simplified to the following 
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(Olsen, 2011):  
L = (π − π∗)2 + λ(Y  − Y ∗)2 (4) 

 

Where (π − π∗)2 is the squared inflation gap and (Y  − Y ∗)2  is the squared 

output gap. The trade-off between stabilizing inflation and avoiding output 

gap volatility is expressed by λ. This is essentially a version of the Taylor rule. 

In essence, the model emulates the Norwegian economy through different 

actors such as intermediary producers and households, for which the policy 

rate is fitted to reduce the inflation- and output gap in the model. Hence, the 

policy rate is a function of the economic model’s future development. 
 
 

 

Figure 1: Birds eye view of NEMO (Brubakk et al., 2006). K and L are inputs in the 

production of intermediate goods T, respectively capital services and differentiated labor. T ∗ 

is exported intermediary goods and M ∗ is imported intermediate goods. These three inputs; 

T , T ∗, and M ∗ are inputs corresponding to domestic intermediate goods, Q, and imported 

intermediate goods, M ∗. Q and M are inputs in A, which is the final retail good.  A can  be 
used for consumption, C, Investment, I, government spending, G, and oil investment, 

IOIL. 
 
 
 

2.2 Machine learning algorithms 
 

As mentioned in the introduction, virtually any research has been conducted 

on the use of machine learning to predict policy rates. On the other hand, 

researchers have been studying machine learning’s ability to predict interest 

rates and yield curves. A yield curve is a line of interest rates for bonds with 

identical credit quality, but different maturities. The curve signals the market’s 
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expectations of the economy, much like the policy rate. No one knows exactly 

which factors affect the yield curve and the policy rate, but it is reasonable to 

assume that they possess many similarities. Thus, we believe that a natural 

starting point would be to investigate the methods for using machine learning 

in conjunction with interest rates and yield curves. 

Oh and Han, 2000 used a combination of change points and backpropa- 

gation neural network (BPN) to predict US interest rates. Their hypothesis 

was that the interest rate movement has several change points due to mon- 

etary policy and by including these in the model, they would achieve higher 

accuracy. They find that the model outperforms the pure BPN model. 

Zimmermann et al., 2002 claim that an Error Correction Neural Network 

(ECNN) model is an appropriate model for predicting systems with noise and 

missing parameters. They agree with Oh and Han that pure neural networks 

do not achieve the highest possible accuracy. Therefore, they introduce a 

variant-invariant separation through a bottleneck neural network to account 

for high-dimensional problems. The researchers concluded that their modified 

ECNN model outperforms classical machine learning algorithms such as the 

Recurrent Neural Network (RNN) and the Multilayer Perceptron (MLP). 

MLP is often referred to as the standard neural network. It belongs within 

the category of feedforward neural networks, but to be considered an MLP the 

system must consist of at least three layers (input, hidden layer, and output). 

While Zimmermann et al. use MLP as a benchmark for their model, Hong 

and Han, 2002 use MLP as a starting point in their paper. In the paper, they 

introduce a data collector called Knowledge-Based News Miner in combination 

with the MLP algorithm to study the Korean interest rate. They find that a 

combination of neural networks and event information produces better results 

than a Random Walk and an MLP without event information. Hong and Han’s 

findings are supported by Yasir et al., 2020 which also finds event information 

together with a convolutional neural network (CNN) model to be a viable 

method of predicting interest rates. CNNs have been primarily used for image 

classification and computer vision. However, recent studies have shown great 

results using CNNs for financial forecasting, for instance asset price predictions 

(Sezer & Ozbayoglu, 2018) and macroeconomic indicator forecasting (Smalter 

Hall & Cook, 2017). 
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Support Vector Machines (SVM) have also been used to predict interest 

rate movements. SVMs are praised for their robustness and ability to solve 

classification problems. Jacovides, 2008 tested SVM against an MLP and 

found that the SVM produced more accurate results. Results from Gogas  et 

al., 2015 support Jacovides’ findings. They forecasted the yield curve of 

American interest rates with the intention of identifying recessions. Although 

their model produced some “false alarms”, the model accurately predicted all 

recessions. 

Machine learning has also had a wide variety of applications across finance 

and macroeconomics beyond interest rate predictions. The long short-term 

memory (LSTM) algorithm, first developed by Hochreiter and Schmidhuber, 

1997, is considered by many to be a modern artificial neural network. LTSM 

is an extension of the classic RNN. The algorithm’s advantage is its abil- 

ity to store long-term information. This makes it attractive for processing 

time series where important information may lie in trends. Little research has 

been done on LSTM and interest rates. However, research has been done on 

LSTM’s ability to predict the stock market. The results from these reports 

suggest that LSTM performs better than traditional methods ((Sirignano & 

Cont, 2019); (Lanbouri & Achchab, 2019); (Z. Zou & Qu, 2020); (Qiu et al., 

2020)). Kim and Swanson, 2014 showed that hybrid shrinking methods, such 

as elastic net, do particularly well in predicting macroeconomic and financial 

variables. Kuzey et al., 2014 showed that decision tree algorithms can be used 

to determine the relative importance of firm performance metrics. West et al., 

2005 showed that ensemble methods were better equipped at generalization of 

financial decision making such as bankruptcy classification and credit scoring. 

Given the findings in this review, there is much to suggest that machine 

learning predicts interest rates better than traditional methods. In fact, we 

have not found a single research article that concludes otherwise. We assume 

that this is related to the fact that the use of machine learning in finance is 

relatively new and that there is some confirmation bias in the research. In 

addition, we note that there are many different machine learning algorithms, 

each with its own specialty. In the subsequent review of methodology, we will 

present the algorithms we believe are well suited for the specific task at hand. 
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3 Methodology 
 

Machine learning is a subfield of artificial intelligence that focuses on com- 

puter algorithms’ ability to learn from data by itself and ultimately predict 

its outputs. This is different from the data modeling paradigm of traditional 

statistical tools such as linear regressions, which requires several assumptions 

regarding the underlying process (Breiman et al., 2001). This can make ma- 

chine learning particularly attractive for forecasting purposes as these algo- 

rithms can capture the underlying pattern in the data without necessarily 

knowing it (Zhang & Hu, 1998). In addition, the era of big data has further 

prompted the relevancy of such algorithmic models because of its efficacy in 

handling large amounts of information (Zhou et al., 2017). 

Our hypothesis is that machine learning algorithms are able to predict the 

policy rate with higher accuracy than Norges Bank’s model. In this chapter, 

we will explain our methodological approach to testing the hypothesis. First, 

we describe general considerations related to performing a test using machine 

learning algorithms. Then we describe the functionalities and peculiarities of 

the selected algorithms. 

 
3.1 Training the machine 

 
Several elements of defining machine learning algorithms are recognizable to re- 

searchers working with classical regression models. Data processing and model 

evaluation are in principle the same, while parameter definition and error min- 

imization are to some degree dissimilar. In the six upcoming subchapters, 

we will highlight key elements of defining and running machine learning al- 

gorithms. Train-test split and under- versus overfitting should be familiar 

subjects to researchers working with classical regression models, while cross- 

validation, hyperparameter tuning, and gradient descent may be perceived as 

new topics. 

 
3.1.1 Train-test split 

 
Whether you use the classical linear regression model or a neural network for 

predictions, it is crucial to split the data into at least two parts; (i) training 

data and (ii) testing data. It is important to differentiate between these two 
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subsets to get an unbiased estimate of the model’s performance. In extreme 

cases, one could define a model that performs perfectly in-sample but fails 

miserably when applied to out-of-sample data. In-sample data, or the training 

data, is used to tune the parameters of the model, while the out-of-sample 

data, or the test data, is used to measure the efficacy of the model. 

There is no definite answer as to how one should split the data. The main 

concern is the variance of the training performance versus the variance of the 

test performance. The models require enough training observations to tune 

the parameters during training, as well as enough test observations to attain a 

robust evaluation of the generalizability of the model. This is less of a problem 

as the number of observations increase, because any split would result in a large 

amount of observations on either side of the split. Our dataset consisted of 

159 observations, and we allocated 80 percent of the data to training and 20 

percent to testing 

 
3.1.2 Under- versus overfitting 

 
The ultimate goal of machine learning models is to generalize the pattern in 

the training data in such a way that the fitted model is able to make correct 

predictions on unseen data. This process is often referred to as generalization. 

Underfitting and overfitting are symptoms of a model that is unable to gener- 

alize properly. Underfitting means that the model is too simplistic to explain 

the underlying process for which we are modeling. Overfitting is the opposite; 

the model is too complex, making it too rigid to adapt to new information 

(Figure 2). 

Overfitting is more common than underfitting for machine learning models. 

This is linked to several aspects of how the data is structured and how models 

are defined. For example, when fitting a model, the model builder must define 

the number of epochs. Epochs refers to how many times the training set is 

passed through a neural network. A low epoch-number restricts the model’s 

ability to learn patterns, while a large number overfits the training data and 

causes errors in test predictions. This balancing act is known as the bias- 

variance trade-off. In Figure 3, we see that the prediction error of the training 

set declines with the model complexity. This is also true for the test error until 
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the model becomes too complex and the test error increases. 
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Figure 2: Example of overfitting and underfitting. The left plot corresponds to an 

underfitted model This is visualized by the fitted line deviating substantially from the data 
points. The mid plot corresponds to an optimized model. This model is fitted to assimilate 
the underlying process, but not too complex to warrant high out-of-sample error. This is 
visualized by a smoother curve that follows the trend of the data points. The right plot 
corresponds to an overfitted model. Here, the fitted line perfectly follows the data points. 
This will most likely result in poor out-of-sample performance as the model is too rigid to 
adapt to new data. 

 

 
There exist techniques that inhibit sub-optimal model construction related 

to overfitting and underfitting. A common preventive technique used with 

neural networks is early-stopping. Early-stopping is a function that monitors 

the validation loss of the model and stops the algorithm from learning when a 

minimum target of improvement in performance is reached. You are in essence 

trying to withhold the model from proceeding beyond the optimum point in 

Figure 3. We used early-stopping for both of our neural networks. 
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Figure 3: Bias-Variance trade-off. Overfitting can be defined as when the validation loss 
starts to increase and training loss decreases. This means that the model starts to fit itself 
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to noise in the training data. This results in lower training error but higher test error. 
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3.1.3 Cross-validation 

 
Cross-validation is used to evaluate the generalizability of the model. This 

process validates the parameters of the model, making sure that they are op- 

timally adjusted to perform well out-of-sample, rather than in-sample. Con- 

sequently, this reduces the chance of overfitting. A commonly used cross- 

validation method is k-fold cross-validation. For this method, the data is shuf- 

fled and partitioned into k subsets, in which one subset is kept for validation 

while the model tunes its parameters on the rest. This is not an appropriate 

method for this analysis, because we must consider the temporal aspect of our 

data. Hence, we instead use walk-forward validation (Figure 4). Walk-forward 

validation is similar to k-fold cross-validation, in that the dataset is partitioned 

into subsets. However, the data is not shuffled at the start and the order of 

the subsets is kept intact. The model is then trained on the subsets in chrono- 

logical order, adding the test subsets to the training subset as the subsets are 

trained on. 

 

 

Figure 4: Example of walk-forward-validation (Hyndman & Athanasopoulos, 2018). This 

example consists of a dataset partitioned into eight folds. The temporal order of the folds 
goes from left to right. For the first validation, the first fold of the dataset is used as training 
data, while the second fold is used as a validation set. In the next iteration, the first and 
second fold are used as a training set, while the third fold is used as a test set. This iterative 
process proceeds until there are no folds left or a certain criteria is met, such as number of 
folds left untouched. 
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3.1.4 Hyperparameter tuning 

 
Hyperparameters are parameters manually set by the model builder before 

the model is fitted. Conversely, model parameters are adjusted automatically 

during the learning process. An example of a hyperparameter is the number 

of layers in a neural network. This is a choice the model builder makes before 

the learning process, which affects how the model is tuned and how it learns 

underlying patterns.  The weights of a neural network on the other hand,  is 

an example of model parameters. These parameters are adjusted during the 

learning process and will affect how the input from a previous layer is 

transferred to another. 

We can optimally adjust these hyperparameters by splitting the training 

data into a section called validation set. Here, we train the model while ad- 

justing the hyperparameters for each training session and choose the hyperpa- 

rameters that optimize our predictions. 

 
3.1.5 Gradient descent 

 
Some may argue that gradient descent is the most important element to dif- 

ferentiate machine learning from classical regressions. Gradient descent is an 

optimization algorithm that tunes the weights of the parameters in an artifi- 

cial neural network to minimize a cost function. This minimization process is 

a function of the gradient of the dataset, which is the direction and rate of 

fastest increase at a specific point in a graph. Hence, the gradient can indicate 

the shortest path to a minimum- or a maximum point. 

Since we want to minimize the errors of our neural networks, we want to 

find the minimum point of the cost function. Consequently, we must use the 

negative gradient as a compass for which direction to proceed. Backpropaga- 

tion, short for backward propagation of errors, is a well-suited tool to compute 

the gradient. Backpropagation is a method for calculating the gradient more 

efficiently, in which the gradient is computed by going backwards in the net- 

work, using information from the prior layer. The technical details of back- 

propagation are outside the scope of this thesis. However, it is important to 

highlight the overall function of gradient descent and backpropagation, and to 

understand how these algorithms interact to fine-tune neural networks. A way 
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to think about this relationship is that gradient descent is doing the learning 

itself, while backpropagation is outside the learning process, guiding where the 

learning should go. 

The gradient descent is illustrated in Figure 5. It starts by placing the ball 

at a random starting point by assigning the weights some arbitrary values. 

Next, the gradient is computed, for instance through backpropagation. The 

ball is then shifted in the direction of the negative gradient. The algorithm 

reiterates until the algorithm is stopped manually or by a built-in function 

such as early-stopping. 

 

 

 
 

Figure 5: Illustration of gradient descent in a neural network. The left figure is a 

simplified version of a fully connected neural network illustrating how the parameter weights 
are the links between the nodes. The right figure illustrates the relationship between the 
cost and the parameter weights, and how the backpropagation function affects the gradient 
descent. 

 

 
While studying Figure 5, one might notice that there are several minimum 

points. Since the optimal parameter weight is where the cost is minimized, we 

prefer the ball to move towards the global minimum. However, if the ball is 

placed so that the ball “falls” towards a local minimum point, the fitted model 

ends up being unoptimized. And since this process is unobservable, there is 

no way to detect such problems. One can only guess that this is a problem 

and try to counteract it. 

 
3.1.6 Measuring efficacy 

 
So far, we have discussed data preparation and how to prepare the model for 

training. As previously mentioned, the model is trained by minimizing a cost 
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function. The cost-function of choice will have drastic consequences for how 

the model is fitted, which subsequently affects the results. Hence, differences 

across cost functions and the most appropriate one for our hypothesis is a 

relevant discussion. 

There are numerous cost-functions one can use. Perhaps the two most 

utilized regression cost-functions are the mean absolute errors (MAE) and the 

mean squared errors (MSE). Both measures respect the issue of cancelling out 

errors by either squaring or taking the absolute value of the errors. However, 

the difference between the measures lies in their sensitivity to outliers. The 

MSE is more sensitive towards outliers because it squares the errors, which 

exponentially increases the cost-function for greater residuals. Hence, it makes 

more sense to use the MSE if large outliers are problematic. Using the MSE 

will ensure that the model adjusts itself towards lessening large deviations from 

the true value, rather than purely looking at all errors proportionally equal. 

Given the outlier sensitivity of the different cost functions, we assess the 

MSE to be the more suitable cost function for the purpose of this thesis.  As 

previously argued, the policy rate affects several aspects of the economy, 

from inflation to pricing in the financial markets. Furthermore, policy rate 

forecasts themselves are an indicator for the ensuing economic growth, affecting 

assumptions regarding future cash flows. Hence, having proper forecasts of 

the policy rate might enable governments to more easily prepare for the future 

state of the economy and lead to less volatile financial systems. Consequently, 

we presuppose that it is better to facilitate forecasts that predict the general 

direction of the policy rate rather than minimize smaller errors throughout 

the whole prediction period, as we believe this reduces the chance of large 

deviations due to unexpected changes. 

 
3.2 Machine learning algorithms 

 
We have selected five machine learning algorithms to test our hypothesis. The 

algorithms are listed in Table 1. Every algorithm is suitable for processing 

large amounts of data and for making time series predictions. Each has their 

own specialties which we will describe in detail in subsequent subchapters. 

We used Python and the machine learning packages “Keras” and “sklearn” 
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to define and run the algorithms. When defining the CNN- and LSTM models, 

we used a built-in Keras function called “Sequential”. This feature enabled 

us to stack layers of machine learning functions one after the other, which 

in turn let us build complex and customized models. One can theoretically 

build an infinite number of different versions of the algorithms. Our model 

building strategy was therefore to define relatively simplistic models with only 

the necessary function layers. This is consistent with the purpose of this thesis, 

which is to test the efficacy of machine learning algorithms as a forecasting tool, 

not to optimize the algorithms to the specific task at hand. 

Selected algorithms Type of machine learning algorithm 
 

 

Elastic net Regularization 

Convolutional neural network Deep learning (neural network) 

Decision tree Classification and regression tree (CART) 

Long short-term memory Deep learning (neural network) 

Ensemble learner Stacked generalization 

Table 1: Selected machine learning algorithms and their algorithm type. 

 
 
 

3.2.1 Elastic net 

 
The elastic net algorithm is closely related to the classical linear regression. 

The main difference is that it uses regularization. Regularization, in the con- 

text of machine learning, is a technique that expands the cost function of the 

algorithm to improve out-of-sample accuracy. The classical linear regression is 

sensitive towards bias, which means that the coefficients of such models typ- 

ically exhibit a substantial amount of variance. This tends to make classical 

linear regressions poorly equipped to generalize beyond in-sample data, espe- 

cially if the underlying data is high-dimensional. The elastic net algorithm 

tries to circumvent this issue by trading variance for bias by employing two 

regularization techniques: (i) lasso and (ii) ridge regularization. 

(i) The lasso regularization estimates the coefficients of the model subject 

to the sum of the absolute value of the coefficients (Tibshirani, 1996). We can 
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write the cost function as: 
 

β̂ = arg  min 

 
 

 
n 

i=1 

 
(y − Xβ̂)2 + λ 

 
 
 

 

j=1 

 
|β̂| 

 
 

 
(5) 

The process of estimating λ is sometimes referred to as regression shrinkage. 

This regularization method tends to produce zero-coefficients. 

(ii) The ridge regularization is particularly good at minimizing the coef- 

ficients that are correlated with each other, which in addition to improving 

precision, can reduce multicollinearity. We can write the cost function as: 

 

β̂ = arg  min 

n 

i=1 

(y − Xβ̂)2 + λ 

 

  

j=1 

(β̂)2 

 
(6) 

Suppose the elastic net algorithm finds that GDP growths are irrelevant to 

predicting the policy rate and that cross-country CPIs are highly correlated. 

Then, the lasso regularization would set the parameters of GDP growth to 

zero, while the ridge regularization would reduce the coefficients related to the 

aforementioned CPI variables proportionally. 

We use the elastic net algorithm because it solves three problems. (i) The 

ridge regression usually fails to come up with parsimonious models as it never 

sets any of the parameters equal to zero (H. Zou & Hastie, 2005). Furthermore, 

(ii) the lasso regression will at most include n number of parameters out of 

p candidates (Efron et al., 2004). (iii) The elastic net algorithm, as well as 

the other regularization algorithms, reduce overfitting by shrinking, or even 

eliminating, coefficients. The elastic net algorithm estimates the coefficients 

of the regression given the following constraint: 

 

β̂ = arg  min 

n 

i=1 

(y − Xβ̂)2 + λ 

p 
 
 

j=1 

(1 − α)(β̂)2 + α|β̂| 
 

(7) 

Coding-wise, we used scikit-learn’s “ElasticNetCV”.  This package allows us 

to optimize the parameters using cross-validation. We used grid search for 

hyperparameter tuning of alpha and lambda. Grid search comprehensively 

searches the whole hyperparameter space to find the optimal values. We tuned 

the elastic net models using values of alpha from 0 to 1 with 0.1 increments. 

p 

p 
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For lambda, we used values on an exponential scale, starting from 1e-5 to 100. 
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3.2.2 Convolutional neural network 

 
A neural network (NN) is a type of machine learning algorithm that mimics 

the brain’s structure. It is an interconnected set of nodes that take some 

input which interacts with the neurons of the structure and ultimately produce 

some output (left-hand figure in Figure 5). These outputs are then calibrated 

in conjunction with its adjacency to the real value of the task.  However,  the 

nodes do not consider the order of the observations without any further 

modification. Hence, we found it reasonable to utilize a CNN, because they 

are better equipped for capturing spatial and temporal relationships. 

The CNN algorithm has two particularly attractive attributes: (i) it is 

computationally efficient because it reduces the sample size, and (ii) it can 

find complex patterns in the dataset as the layers of the network will focus on 

smaller subset of the underlying process for which it can generalize to the data 

set as a whole (Ketkar & Santana, 2017). 

The CNN algorithm is by far the most sophisticated algorithm used to test 

our hypothesis. Thus, a thorough explanation of its features and structure is 

beside the purpose of this thesis. We will, however, highlight key elements of 

how samples are managed throughout each layer in the algorithm, and clarify 

the intention of the algorithm’s demeanor. The algorithm requires a three- 

dimensional dataset to operate as intended. Thus, we first altered the dataset 

so that each input contains several successive observations, as opposed to just 

one. A single input in the CNN algorithm is referred to as a “sample”. Then 

we defined a CNN algorithm with six layers: A convolution layer, a pooling 

layer, a flattening layer, a dropout layer, and two dense layers. The purpose of 

the first four layers is to reduce the sample size and identify trends in the data, 

while the last two layers constitute a fully connected neural network. The one- 

dimensional convolution layer applies a pre-specified number of random kernels 

that “slides” along each sample (blue rectangle in Figure 6). The kernel is a 

type of filter that attempts to detect features and trends in the dataset. For 

example, the network may be able to identify how a long-term rise in consumer 

confidence combined with a decline in the Swedish three-month treasury bill 

results in an increase in the policy rate. The pooling layer further reduces 

the size of the sample by dropping all values but the largest within the defined 
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windows. Next, the sample is flattened to facilitate a neural layer. The dropout 

layer is a regularization method that makes the CNN models more robust. The 

last two layers are fully connected layers that function as the traditional MLP 

neural network. 

 

 
 

Figure 6: Illustration of how the CNN algorithm processes one sample. Each section  in 
the illustration, except the “one sample”-section, corresponds to a layer in the CNN 
algorithm. 

 
 

As previously mentioned, the CNN algorithm is defined using the “sequential” 

function within the Keras package. Each layer is modestly customized to our 

dataset using hyperparameter tuning. We tuned the CNN models by testing 

variations of activation functions, number of filters, kernel sizes, dropout rates, 

pool sizes, and number of dense nodes. 

 
3.2.3 Decision tree regression 

 
A decision tree is a well-known and widely used strategic tool for decision- 

making due to its ability to present processes in a simple and coherent way. 

The essence of the model is to understand action patterns and illustrate that an 

event has one or more outcomes that are related to each other. The decision- 

making tool has gradually been adopted by the field of machine learning be- 

cause of its predictive abilities. 

Decision tree regressions have several advantages compared to other ma- 

chine learning algorithms. First, the algorithm is easy to define and under- 

stand. Second, it has an innate ability to select features. Thirdly, it requires 

little computer power, relatively speaking. Lastly, non-linear relationships be- 

tween features will not affect the model’s performance. On the other hand, 

decision tree regressions are prone to disadvantages. The model is easily over- 

fitted and may be subject to poor model variance. Variance refers to how 
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much the prediction changes when you change the underlying data. Decision 

tree regressions will also create biased trees if certain classes dominate. 

Two factors are considered when building a decision tree regression model: 

which features should be included in the model and which conditions should 

affect the outcome space. At the root of the tree, the ability of all variables to 

predict the dependent variable is assessed using a cost function. The variable 

with the lowest cost is defined as the best predictor and is set as the root 

variable. The root variable is then split into branches and then eventually 

leaves using the cost function. The tree stops growing when the cost function 

is reduced to a minimum. The goal of the algorithm is to make a structure 

of economic variables that is able to predict the policy rate. For instance, it 

could be that the decision tree algorithm discovers that certain stock markets 

are the only features worth utilizing to predict the policy rate, thus making a 

decision tree consisting of OBX, S&P 500, DAX, FTSE, and Russell 1000. 

A decision tree model trained on many features is prone to overfitting 

because the model will most likely find combinations of features that always 

reduce the in-sample cost function to zero. With 687 variables in our dataset, 

this problem is apparent. There are several ways to treat overfitting and it is 

mainly about limiting the tree’s ability to split branches. For the decision tree 

models, we have chosen three parameters to reduce overfitting. The restrictions 

are placed on the depth of the tree, the number of samples per split and the 

number of samples per leaf. The parameters are defined in combination with 

the “GridSearchCV” function which is a hyperparameter tuning tool within 

sklearn. Figure 7 is a simplified illustration of a decision tree with depth = 2, 

minimum samples per split = 130 and minimum samples per leaf = 40. This 

figure showcases how decision trees make predictions; it will make a decision 

if a set of conditions are met. For example, if the change in OBX is less than 

5 percent, and the change in S&P 500 is greater than 13 percent, then the 

decision tree predicts the policy rate to be 3.5 percent (Figure 7). 
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Figure 7: Example of a fitted decision tree. Each observation follows a path from left to 
right which is determined by the condition within the branches. The value of the output is 
then determined by the value of the leaves. 

 
 

3.2.4 Long short-term memory 

 
The long short-term memory (LSTM) neural network was first introduced by 

Hochreiter and Schmidhuber, 1997. LSTM models are trained using back- 

propagation through time and aims to solve the short-term memory problem 

of RNNs, formally referred to as the vanishing gradient problem. When pass- 

ing information through an RNN, some information from previous steps is lost 

in the backpropagation process. RNNs use gradients to update the network 

and the problem arises as the gradient values deflate to insignificant values. 

LSTM models solve the vanishing gradient problem by passing information 

through iterations and defining its importance. This is accomplished with gate 

units within memory cells. A memory cell consists of multiplicative input-, 

forget- and output gates (Figure 8). “Multiplicative” refers to how the sample 

vector is handled. A memory cell has three inputs and outputs: The observa- 

tion Xi, candidate (input and output), hidden state (input and output), and 

the model output ŷ.  The observation and candidate input are first combined 

and then passed through the gates (bottom-left corner in Figure 8). Informa- 

tion passed through the forget gate is subject to a sigmoid activation function 
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and later combined with candidate inputs passing through the cell state. The 

purpose of the forget gate is to decide whether to keep or dismiss the infor- 

mation. Information passed through the input gate is transformed with both 

a sigmoid- and a tanh function. The tanh function regulates the network, and 

the output from the sigmoid function determines the importance. The input 

gate-output is then combined with the candidate information passing through 

the cell state. Lastly, the information is passed through an output gate and 

combined with the candidate information to produce a hidden state output 

and the prediction of y. 

 

 
Figure 8: Illustration of a memory cell within the LSTM network. A new observation is 
passed to the cell from the bottom and information from previous iterations is passed from 
left to right on the horizontal inputs. 

 

 
The details and technicalities of how inputs and outputs in the memory cell are 

treated are regarding the variable’s behavior from the past is either important 

or worthless for the present. Important information is passed forward while 

worthless information is suppressed. In practical terms, this means that the 

models will use information on OBX’ behavior in the past to predict the policy 

rate if that is important. For example, the models may learn that a negative 

change in the index one year ago is important for the policy rate today, while a 

positive change in GDP six months ago is worthless. Thus, the LSTM is able 

to identify long-term trends as opposed to other algorithms that treat each 

observation independently. 

Our LSTM algorithm consisted of few sequential layers. We chose to use 

two LSTM layers because the initial testing proved that an additional layer 

increased the models’ predictive ability. The only parameter used to tune the 
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models was the number of units in each LSTM layer. One unit is equivalent 

to one memory cell. 

 
3.2.5 Ensemble learner 

 
An Ensemble Learning algorithm constructs a set of machine learning models 

and bases its prediction on a combination of the outputs from these models 

dependent on their optimal weighting (Dietterich, 2002). The ensemble learner 

algorithm’s upper-hand relative to other machine learning algorithms is anal- 

ogous to diversification in finance; by including several learning techniques 

(assets) in our model (portfolio), we reduce the noise (idiosyncratic risk) that 

is present in a single learning technique. More specifically, it reduces compu- 

tational and statistical variance while reducing the chance of overfitting. 

An ensemble learner algorithm has a set of base-models for which the meta- 

model fits itself to. The base-models are not chosen at random. In fact, it is 

an important part of the construction of the algorithm. When choosing which 

algorithms to include, it is important to construct a diverse set of machine 

learning techniques to facilitate the diversification benefit mentioned prior 

(Kuncheva & Whitaker, 2003). However, it is imperative to not add irrele- 

vant algorithms either, even though they might increase the diversity of the 

set (Gashler et al., 2008). Based on these requirements, we have chosen the 

following algorithms displayed in Table 2, ranging from the standard linear 

regression model to the non-linear deep neural networks of LSTM and CNN. 

When constructing the ensemble learner, the data is split in two parts; 

one for the base-models and one for the meta-model. Again, it is important 

to differentiate the subsets to get an unbiased estimate of the out-of-sample 

performance of the meta-model. The base-models are then fitted to the first 

part of the data. Furthermore, the meta-model is fitted to the out-of-sample 

predictions of the base-models. This dataset is then split further into training 

and testing. The meta-model in our case is an elastic net algorithm identical 

to the one used in former parts of the analysis. 
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Algorithm Algorithm type 

Linear regression Modeling linear relationship with ordinary 

least squared. 

Elastic net Regression analysis that combines the lasso 

and ridge regularizations. 

K nearest neighbor Models relationships between variables by 

averaging observations of adjacent data 

points. 

Decision tree Using binary decision trees for predictions. 

Adaptive boosting Ensemble method where the base-learners 

are fitted sequentially. 

Bagging regressor Ensemble method where data for the base- 

learners are randomly sampled with replace- 

ment. 

Random forest Ensemble method where the base-learners 

are made up of decision trees. 

Extra trees Same as random forest but with random op- 

timization of tree split. 

Deep neural network Collection of interconnected inputs that 

produce outputs. 

Long-short-term memory Temporally sequenced neural network with 

longer memory. 

Convolutional neural network Regularized neural network through  sub- 

samples. 

Table 2: Chosen base algorithms for the ensemble learner. 
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4 Data 
 

Variable selection and proper data processing are instrumental in the success 

of machine learning. Our overall strategy for variable selection and processing 

was to include all variables that may influence the policy rate. This resulted in 

a high-dimensional feature space. We justify using many variables with the fact 

that machine learning algorithms have a built-in ability to detect and select 

predictive features, and that we want to utilize the algorithms’ ability to detect 

economic contexts that may appear unrelated. This strategy mainly affected 

two data processing areas; the number of variables selected, and the number 

of observations included. We also employed a strict data gathering criteria in 

order to preserve data quality. This criteria entailed to exclusively use highly 

reliable sources. Our sources include: International Monetary Fund, Statistics 

Norway, Bloomberg, Oslo Stock Exchange, OECD, Finans Norge, and central 

banks such as Norges Bank, the European Central Bank, Bank of England, 

and the Federal Reserve1. 

Figure 9 shows an overview of the data preparation. We started by collect- 

ing data on 115 base variables and made conversions on some variables to get a 

homogeneous format. Then we created periodic returns and lags on variables 

depending on their frequency, and forward-filled NaN-observations2. Finally, 

we sliced the dataset on policy rate decisions to get a complete dataset. We 

will explain each step in detail in the following sections. 

1See Exhibit 1 to see which variables are related to which source. 
2NaN stands for Not a Number, which refers to a data point that is undefined. 
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Figure 9: Overview of the data preparation. 
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4.1 Collecting base variables 
 

When studying macroeconomic measures, especially the policy rate, it is im- 

portant to consider the country itself and its relationship to other countries. 

Norway is a small and open economy, which means we must look for indicators 

that do not only pertain to Norway. 

We started the data preparation by collecting a wide variety of international 

and domestic explanatory variables. We used Norwegian macroeconomic in- 

dicators such as the Consumer Price Index (CPI), Norway’s Gross Domestic 

Product (GDP), and Producer Price Index (PPI). We also collected other 

countries’ macroeconomic indicators such as interest rates, GDPs, and current 

accounts. Furthermore, we used stock market data for some of the bigger stock 

exchanges such as S&P 500, DAX, and OSEBX. Additional variables included 

oil prices, lending rates, industry indicators, and currencies. Our data col- 

lecting strategy was to include all variables that may, either by themself or in 

combination with others, affect the policy rate. In total, our dataset consisted 

of 115 base variables with varying length and frequency34. Issues related to 

the latter are covered in later sections. 

To avoid look-ahead bias, we shifted the variables in conjunction with their 

publication schedule. Look-ahead bias occurs when using unavailable data at 

the time of prediction. For instance, the Norwegian household consumption is 

part of the national accounts. The national accounts are updated monthly but 

with 30 days publication lag. Thus, we shifted this variable 30 days backwards, 

e.g., the observation on December 12th, 2012 is first observed January 11th, 

2013. 

 
4.2 Derivative variables 

 
In addition to the 115 base variables, we created 572 derivative variables. 

The number of derivative variables related to a specific base variable and the 

derivative variables themselves, depend on the frequency of the base variable. 

For instance, a variable on daily frequency produces derivative variables of 

daily change, weekly change, bi-weekly change, et cetera. A variable of monthly 

3See Exhibit 1 for full list of base variables. 
4See Exhibit 2 for correlation matrix. 
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frequency produces derivative variables of monthly change, bi-monthly change, 

quarterly change, and so forth. The variables that were already on a return- 

basis were converted to absolute values to produce derivative variables. This 

was achieved by computing the cumulative return of the variable: 

 

rci = rci−1(1 + ri), where rc0 = 1 (8) 

 
The resulting dataset consisted of 687 explanatory variables, all on return- 

basis. Since all the variables were in returns, we circumvented the issue of 

non-stationarity. Stationarity refers to a stochastic process in which the mean 

and variance of that process do not change over time. This can result in 

spurious coefficients as the model picks up on the trend in the process. 

Stationarity is strictly necessary for the models to function as intended. A 

decision tree model, for example, would fail to make predictions if variables 

are increasing over time. However, taking first differences in combination with 

reducing frequency of variables has unintended side-effects on rare occasions. 

This is evident in for example the US Yield Spread. Figure 10 shows both the 

cumulative return and the first difference of the yield spread. The cumulative 

return is evidently non-stationary, which suggests differencing to be an appro- 

priate approach to achieve stationarity. As the right-hand figure suggests, the 

process seems to be stationary, but we simultaneously create extreme outliers. 

 

US Yield Spread: Cumulative Return 
 

 
80 

 

 
60 

 

 
40 

 

 
20 

 
 
 
 

200 
 

150 
 

100 
 

50 
 

0 

US Yield Spread: First Difference 

 

0 
 

 
2000 2004 2008 2012 2016 2020 

−50 

 
−100  

2000 2004 2008 2012 2016 2020 

 

 

Figure 10: Comparison of cumulative- and first difference of the US Yield Spread from 
January 2000 to December 2020. 

 

 
We encountered a handful of observations with values equal to infinity or 

minus infinity. Instead of removing the observation, we replaced these data 
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points with zero. Some may argue that such data management is incorrect, as 

infinity does not equal zero. However, we assessed the benefit of including all 

the other values within these observations as greater than the cost of some of 

the observations containing potentially “incorrect values”. 

In addition to creating derivative variables based on periodic returns, we 

created lags of daily variables. We assessed a week of lags (n = 5) as appro- 

priate to capture enough information while simultaneously not overcrowding 

the dataset with irrelevant variables. The reason we included lags of variables 

with daily frequency was to capture movements in leading indicators. The 

idea is that a sudden movement in, for example, the OBX index can influence 

the policy rate a few days after the event. Since the policy rate is not fully 

market-driven, there will usually be a lag in the policy rate movement. Fig- 

ure 11 shows how the OBX index and the policy rate moved at the beginning 

of the covid-19 pandemic. It is clear that the policy rate reacts with a lag in 

relation to the OBX index. 
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Figure 11: Plot of the OBX index and the policy rate from February 1st, 2020 to May 1st, 
2020. 

 
 
 

4.3 The dependent variable 
 

The dependent variable in this study is the Norwegian policy rate. Norges 

Bank first offered interest rates on banks’ deposits in January 1991. Before 

1991, the central bank used the D-loan rate, which is equivalent to the interest 

rate on the bank’s loans (Norges Bank, 2015). We assessed the D-loan rate 
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as dissimilar to the current policy rate and therefore found it inappropriate to 

combine them. Consequently, the first observation was in January 1991. 

To avoid look-ahead bias and to make sure that we were able to compare our 

models to Norge Bank’s own forecasts properly, we shifted the policy rate two 

observations back in time. There are two reasons behind this decision. Firstly, 

as indicated in the latest monetary policy report, Norges Bank uses data up 

until the date of the committee’s rate decision meeting, which is a day prior 

to the publication itself (Norges Bank, 2021). Additionally, we assume that 

Norges Bank is not able to gather intraday closing data for all their variables. 

For instance, we do not expect Norges Bank’s meeting to be after the closing 

of S&P 500. Thus, we shifted the variable once more for a total of two shifts. 
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Figure 12: The Norwegian policy rate in percent from January 1st, 2000 to December 
31st, 2020. 

 

 
Based on the plot in Figure 12, the policy rate seems to be non-stationary. 

The rate is trending downwards, and the variance is not constant within the 

selected time period. To test its stationarity, we used an augmented Dickey- 

Fuller test. The result is presented in Table 3. We see that the null hypothesis 

is not rejected on both the 1 percent, 5 percent, and the 10 percent significance 

level. Thus, the policy rate is non-stationary. 

Then, we tested if taking first differences makes the policy rate stationary. 

Since the p-value is 0.0011, we reject the null hypothesis on all presented signif- 

icance levels. This implies that we succeeded in making the process stationary. 

Thus, our models will be constructed to forecast a change in the policy rate 
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rather than the absolute value of the policy rate. 

 
 

Policy rate First difference 

ADF statistic -2.5257 -4.0612 

p-value 0.1093 0.0011 

1% -3.4727 -3.4760 

5% -2.8801 -2.8816 

10% -2.5767 -2.5774 

n 160 159 

Table 3: Augmented Dickey-Fuller test of the policy rate and of the first difference of the 
policy rate. 

 
 
 

4.4 Heterogeneous feature frequency 
 

The data we collected were of varied frequency. We solved this by  fitting the 

variables to a complete data frame, removing observations with all NaNs, and 

forward-filling missing observations. For instance, if the observation on 

January 1st was 100 and the observation on January 10th was 105, the obser- 

vations between January 1st and January 10th equals 100. Some may argue 

that filling missing data points is an inappropriate method. We argue, how- 

ever, that removing observations is worse. Macroeconomic variables such as 

GDP are published with low frequency which produce severe gaps in the data 

set. If we were to remove all observations containing NaNs, the total number 

of observations would be close to zero, which defeats the purpose of using ma- 

chine learning. By forward-filling NaNs, each observation contains the most 

recently observed information of each variable. 

 
4.5 Data length 

 
The collected data were of varied length as well. The algorithms require a 

balanced dataset in order to be fitted, which means that we had to do a cost-

benefit analysis regarding which variables to include versus the number of 

observations to cut from the dataset. The economic union of the European 

Union (EU) was established in 1998, which means that most of the data re- 

lated to the EU is first observed around the year 2000. Thus, we found it 
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appropriate to exclude data before January 2000 as it allows us to keep im- 

portant variables related to the EU. This resulted in the exclusion of 10 base 

variables5. Furthermore, we excluded observations after August 1st, 2020. We 

did this because of the publication inconsistencies. Extending the data length 

beyond this point would exclude important variables. 

 

4.6 Data frequency 
 

At this stage of the data preparation, we had to make a decision regarding the 

data frequency. We could either keep daily observations or cut the dataset to 

accommodate a certain frequency. The benefit of the former is that the dataset 

then consists of far more observations, which is an important prerequisite for 

most machine learning algorithms to properly fit the data. On the other hand, 

this would result in a dataset with mostly repeated data points and a depen- 

dent variable that primarily consists of zeros. This partly defeats the purpose 

of exposing the machine learning algorithms to many different environments. 

Additionally, the machine learning algorithms are then optimized to predict 

a near constant process. Pre-testing showed that the algorithms struggled to 

do so and mostly predicted no change for the whole testing period. Hence, we 

chose to cut the data frame in such a way that the algorithms instead predicted 

subsequent policy rate decisions. 

Cutting the dataset such that each observation corresponds to a policy 

rate decision was done to emulate Norges Bank’s own forecasts. As previously 

mentioned, Norges Bank publishes their forecasts for each policy rate decision, 

where the forecasts are partly based on the current policy rate decision. Sim- 

ilarly, by cutting the data set by each decision, the models essentially make 

forecasts at each policy rate decision, using the information currently available 

at that time. 

 
4.7 Data preparation output 

 
The resulting data set contained 687 explanatory variables and 159 observa- 

tions for a total sum of 109,233 data points (Figure 13). The first observation 

is on August 8th, 2000, while the last is on June 16th, 2020. We believe that 

5See Exhibit 3 for a list of all variables that were deleted. 
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the number of data points is sufficient to do robust testing of the machine 

learning algorithms. 

 
 

 
 

Figure 13: Illustration of the output from the data preparation. 
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5 Results 
 

When Norges Bank publicizes their policy rate decisions, they create a forecast 

of the policy rate from the date of publicization to 15 quarters in the future. 

To assess the algorithms and to properly compare the algorithms to Norges 

Bank’s own forecasts, we performed multi-step forecasting as well. However, 

instead of forecasting 15 quarters in the future, we limited our forecast to four 

policy rate decisions ahead. The rationale behind this decision was that; (i) the 

probability of having enough quality information to forecast that far into the 

future seemed low, and (ii) the practicality of forecasts beyond four decisions 

is sparse given the amount of time between decision-making and outcome. 

To do multi-step forecasting, we opted to create several models for each 

algorithm. Each model within each algorithm forecasts the policy rate for a 

specific step-ahead. The periods for which we forecasted ranged from nowcast- 

ing to four decisions ahead, resulting in five models per algorithm. Thus, we 

created 25 different models (Figure 14). 

 

 
Figure 14: Multi-step forecasting construction. Five models with different time-steps 
are constructed per machine learning algorithm.The time-steps range from t = 0 to t = 4.  t 
= 0 corresponds to nowcasting, while t = 4 corresponds to forecasts of four policy rate 
decisions in the future. 

 

 
By combining the out-of-sample predictions for all the models, we produced 

a data table with multi-step predictions for each observation across all algo- 

rithms (Figure 15). For instance, the observation with the date “2016-12-13” 

had columns corresponding to nowcasting at that date, the prediction for one 

decision ahead of 2016-12-13, the prediction for two decisions ahead of 2016- 

12-13, and so forth for all the algorithms. This allowed us to easily plot and 

analyze the multi-step predictions. See Figure 17 for a sample of an observa- 

tion. These observations, and subsequently the plots, are supposed to mirror 
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Norges Bank’s visualization of the policy rate forecast6. 

 

 
 

Figure 15: Complete data frame of multi-step predictions. Each algorithm employs five 

models for time-steps t = 0 to t = 4. Concatenating the model outputs results in a  data 
frame with 25 columns where each row corresponds to the time-step prediction at that time. 

For instance, t = 0 predictions in the row ”2016-12-13” corresponds to the algorithms’ 

predictions for that date. Furthermore, t = 1 predictions in the same row corresponds to the 
algorithms’ prediction for the next policy rate decision, i.e., March 14th, 2017. This allows 
us to easily plot the figures on the right-hand side. One can think of one row as the 
predictions every model makes at that particular date, in which the time until the prediction 

occurs will vary proportionally from t = 0 to t = 4. 
 

 
As mentioned in Section 3.1.6: Measuring efficacy, we opted to use the MSE 

as a cost-function for tuning the models. We could use the same cost-function 

to assess the out-of-sample model performance. However, we instead chose to 

use the root mean squared error (RMSE). RMSE is an extension of MSE. It 

represents the standard deviation of the residuals and is sometimes preferable 

as it is scaled in accordance with the data (Hyndman & Koehler, 2006). Hence, 

RMSE is doing the same computation as the MSE by squaring the residuals. 

However, by taking the root of the MSE, we make sure that the measure is 

more comprehensible and on a scale that is equal to the policy rate. 

 
5.1 Benchmark 

 
We have chosen to compare the results from our algorithms to that of Norges 

Bank’s own predictions. Norges Bank generally forecasts the policy rate on 

a quarterly basis. This means that we must either make predictions on a 
 

6See Exhibit 4 for reference to example of plot. 
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γi 

( ) 

frequency equal to the frequency of Norges Bank’s quarterly forecasts or adjust 

Norges Bank’s forecasts to reflect its predictions at each policy rate decision. 

We opted for the latter to extend the out-of-sample data size, increasing the 

number of observations from 14 to 26. Our out-of-sample predictions start at 

2016-11-01, which means that the first out-of-sample rate decision is 2016-12- 

13. We gathered the benchmark data from Norges Bank’s monetary policy 

reports (Norges Bank, 2021). 

 
5.2 Zero-to-four step-ahead predictions 

 
Table 4 presents the zero-to-four step-ahead RMSEs for the algorithms and the 

benchmark. t = 0-predictions are nowcasting errors, while t = 4-predictions 

are errors of four step-ahead predictions. The table also presents the best 

algorithm for each time-step and the percentage difference between the best 

algorithm and the benchmark. 

 

 
t = 0 t = 1 t = 2 t = 3 t = 4 

Norges Bank 0.002768 0.004041 0.004607 0.005562 0.006305 

LSTM 0.002023 0.003177 0.004563 0.005084 0.005873 

Ensemble Learner 0.001849 0.003379 0.004681 0.005547 0.006003 

CNN 0.002521 0.003667 0.004581 0.004971 0.006239 

Elastic Net 0.001725 0.002949 0.004188 0.005076 0.006166 

Decision Tree 0.001592 0.002887 0.004034 0.005098 0.005650 

Best Model DT DT DT CNN DT 

Difference 0.5531 0.3362 0.1326 0.0915 0.1096 

Table 4: RMSEs across time-steps. DT refers to the decision tree algorithm. The 

algorithms are showcased vertically, while the time-steps models are represented horizontally. 
The next to last row corresponds to the best model for the specific time step. The last row 
corresponds to the difference between the best model and Norges Bank’s model for the 
specific time step.  This is computed by the logarithm of the values corresponding to the 

two models: ln NBi , where γi is the best-performing algorithm for the specific time-step 

i. 
 

 
There are three aspects of the model performances that are evident by inves- 

tigating Table 4. Firstly, the decision tree algorithm consistently outperforms 

the other algorithms across step-aheads. The only step for which the decision 

tree algorithm ceases to outperform is at t = 3. However, the difference be- 
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Figure 16: RMSE paths. This is a visualization of Table 4. 

 

tween the decision tree algorithm and the relative best algorithm is minute. 

Secondly, the benchmark is outperformed by all algorithms across time-steps, 

except for the ensemble learner’s three step-ahead model. Thirdly, the differ- 

ence between the algorithm performances and the benchmark decreases across 

steps. Nevertheless, the differences are substantial, especially for nowcasting 

in which the decision tree algorithm predicts the policy rate with 55 percent 

higher accuracy than Norges Bank’s model. 

Figure 17 is supposed to be akin to Exhibit 4 in the appendix and is only 

one “window” of zero-to-four step-ahead predictions out of 26. One “window” 

is equal to one row in Figure 15. The plot might indicate that Norges Bank’s 

model is better at predicting zero-to-four steps-ahead relative to the machine 

learning algorithms. However, Table 5 shows the average RMSE across steps. 

If the assertion above regarding the benchmark’s overall performance were to 

be true, then the benchmark’s average RMSE should be lower than the other 

algorithm’s average RMSEs. In fact, we see the opposite; the decision tree 

algorithm has the lowest average RMSE while Norges Bank’s model has the 

highest average RMSE, confirming the evidence presented in Table 4. 
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Figure 17: Zero-to-four time step predictions. This plot shows one image of the algo- 
rithms’ forecast of the policy rate paths at a particular date, in this case January 22nd, 2019. 

 
 
 

  

Algorithm RMSE 

Decision Tree 0.003852 

Elastic net 0.004021 

LSTM 0.004144 

Ensemble learner 0.004292 

CNN 0.004396 

Norges Bank 0.004657 
 

Table 5: Averaged RMSE across time steps. It is ranked from best to worst. 

 
 

The mean of the prediction errors might not portray the full story. It sheds 

light on the aggregated performance across time, but it does not provide a de- 

tailed description of the forecasting ability for each policy rate decision. Thus, 

a more thorough analysis of each observation is interesting. The following Fig- 

ure 18 shows the number of times each model “won” a prediction. “Winning” 

a prediction implies that a model predicted a value closest to the actual value 

relative to other models. This computation is done across all steps. 

Norges Bank’s model wins most of the observations across all time-steps. 

This indicates that Norges Bank’s model is more consistent, but its total RMSE 

suffers because of large outliers. Total won predictions does not mirror Table 5. 

Although the elastic net- and the ensemble learner algorithm exhibit lower ag- 
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gregated RSME scores, the neural networks LSTM and CNN win substantially 

more observations. This indicates that the neural networks behave similarly 

to Norges Bank’s model, but to a lesser extent 

 

Number of won predictions across  steps 
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Figure 18: Number of won predictions across time steps. “Winning” a prediction implies 
that a model predicted a value closest to the actual value relative to other models. 

 
 
 

5.3 One step-ahead predictions 
 

We assess the one step-ahead predictions as particularly important, because it 

predicts far enough into the future such that adjustments can be made, but not 

too far as immediate adjustments have little practical effect. Figure 19’s left 

plot shows the one step-ahead predictions for each algorithm, while the right 

plot shows the logarithmic cumulative squared errors. From these plots, we see 

that Norges Bank’s model performs well during periods with constant policy 

rates but suffers when the policy rate changes substantially. For instance, as 

Norges Bank changed the policy rate from 50 basis points to 75 basis points 

in 2018, the cumulative errors sharply increased. The same happens when 

Norges Bank changed the policy rate from 1.5 percent to 25 basis points in the 

beginning of the covid-19 pandemic. 
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Figure 19: t = 1 forecasts and cumulative squared errors for the out-of-sample period. 

The squared errors are displayed on a logarithmic scale to better visualize the jumps in 
residuals. The index starts at 1, because the logarithm of a number less than 1 would result 
in an error. The out-of-sample period corresponds to dates between December 13th, 2016 
to March 18th, 2020. 
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Figure 20: Per year RMSE of t = 1 predictions. 

 
 

Figure 20 shows one step-ahead RMSE per year from 2017 to 2020. It displays 

changes across two-dimensions: (i) relative RMSE changes per year and (ii) 

idiosyncratic RMSE changes per year. The RMSE moves similarly for most 
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of the algorithms. However, Norges Bank’s model outperforms the other algo- 
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rithms in both 2017 and 2019. 2017 was characterized by a constant policy rate 

and 2019 consisted of evenly spaced out policy rate increases of 25 basis points. 

On the other hand, Norges Bank’s RMSE is substantially larger than the other 

algorithms in 2020. The ensemble learner’s relative RMSE varies across the 

years. Most notably, the algorithm outperforms all other algorithms in 2020. 

We also note that the two best-performing algorithms, the decision tree- and 

the elastic net algorithm, exhibit the lowest RMSEs in 2020. 

 
5.4 Uncertainty in RMSE measure 

 
By studying the confidence interval of the RMSEs, we can analyze the uncer- 

tainty of the measures. Table 6 shows the 95 percent confidence intervals of 

the algorithms’ one step-ahead root-squared errors. A 95 percent confidence 

interval means that with many repeated samples, the true RMSE will be be- 

tween the limits of the confidence interval 95 percent of the samples (Brooks, 

2019). For instance, the RMSE of the ensemble learner’s one step-ahead model 

will lie between 8.52 and 44.11 basis points in 95 percent of the cases in a large 

sample. 
 

Norges EnsembleLSTM CNN Elastic Decision 

 

Bank learner net tree 

 

Mean 0.004041 0.003177 0.003379 0.003667 0.002949 0.002887 

Lower CI NaN 0.000852 0.000840 NaN NaN 0.000842 

Upper CI 0.005980 0.004411 0.004705 0.005263 0.004182 0.003995 

n 26 26 26 26 26 26 
 

Table 6: RMSE confidence intervals. Confidence interval is referred as CI. These are 

computed by squaring the errors and computing the confidence interval for these vectors. 
Next, the confidence intervals and the mean are transformed to values equivalent to the 
RMSEs by taking the root of the values. Some algorithms posses negative lower CI’s of 
squared errors, which is impossible. These are therefore NaN. 

 

 
The confidence intervals seem to be relatively equal across algorithms. Fig- 

ure 21 shows boxplots of the algorithm’s one step-ahead squared errors. Box- 

plots are compact and robust figures that are particularly useful for compar- 

ing distributions across groups (Stryjewski & Wickham, 2010). The median is 

given by the horizontal blue line, the first and fourth quartiles are given by the 
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upper and lower edge of the box, and the upper and lower extremes are given 

by the upper and lower end of the vertical line. The extreme values are the 

minimum and maximum values in the distribution excluding outliers. Finally, 

the blue diamonds are the means of the distribution. 

 
 
 

1.6 
 

1.4 
 

1.2 
 

1.0 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0.0 

Norges Bank  Elastic Net Decision Tree LSTM CNN Ensemble Learner 
 
 
 

Figure 21: Boxplot of squared errors across algorithms. The median is given by the 

horizontal blue line, the first and fourth quartiles are given by the upper and lower  edge  of 
the box, and the upper and lower extremes are given by the upper and lower end of the 
vertical line. The extreme values are the minimum and maximum values in the distribution 
excluding outliers. Finally, the blue diamonds are the means of the distribution. 

 

 
The dispersion between the benchmark’s median- and average squared errors 

is particularly interesting. All the algorithms exhibit a higher mean- than 

median squared errors, which indicates positive skewness of the distributions. 

However, Norges Bank’s model exhibits the widest difference between the two. 

Both the mean and the median can significantly differ if the data is skewed, 

for instance if it contains extreme outliers. Unlike the median, the mean is 

sensitive towards outliers, which means that a distribution with data points 

substantially above the median will have a mean exceeding the median and 

be positively skewed. This indicates two aspects of the distributions above. 

Firstly, the predictions of all the algorithms consist of small errors with in- 

frequent larger errors. Secondly, this behavior is significantly more present in 

the benchmark. Additionally, as the errors are squared, outliers are even more 

pronounced. 
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The box plot’s x-axis is ranked by the median of the distributions. This 

means that if we were to rank the algorithms based on the median of the 

errors, we would say that Norges Bank’s model is the best for one step-ahead 

predictions, while the decision tree algorithm only places number three. This 

further confirms our assumption about Norges Bank’s consistent predictions 

outside of large changes in the policy rate. Furthermore, a decision-maker 

with a different loss-function, such as MAE, would perhaps produce different 

results. 

 
5.5 Robustness test 

 
The policy rate is used as a tool to lessen the effect of financial crises on  the 

economy. Therefore, it is interesting to study how the algorithms perform 

during crises. Figure 22 shows the algorithms’ predictions prior to the Covid-19 

pandemic and at the moment where governments began lowering their interest 

rates. 
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Figure 22: zero-to-four step-ahead predictions before and at the beginning of the covid- 

19 pandemic. t = 0 for plot 1 corresponds to December 17th, 2019 and t = 0 for plot 2 
corresponds to March 11th, 2020. 

 

 
From the left-hand plot, we see that none of the algorithms are particularly 

good at predicting the crisis. Most of them predict a stable rate at approx- 

imately 1.5 percent. When examining the second plot, we observe that the 

decision tree algorithm performs the best. However, none of the algorithms, 

including the decision tree algorithm, managed to predict the sharp decrease 

in policy rate. The decision tree algorithm seems to be able to predict a 
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downward curve, but not to the extent of the actual policy rate. 
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Table 7 shows descriptive statistics of the one step-ahead errors of the 

algorithms pre-2020 and in-2020. All the algorithms suffer from the pandemic, 

but the increase in RMSE of Norges Bank’s model is staggering. The pandemic 

could therefore explain some of its poor performance. Note, however, the small 

number of observations in 2020 (n = 3). 

 

Pre covid-19 Max Min Median MAE RMSE 

Norges Bank 0.002300 0.000000 0.000100 0.000883 0.001391 

LSTM 0.003765 0.000006 0.000147 0.001243 0.001876 

Ensemble Learner 0.003685 0.000009 0.000576 0.001365 0.001931 

CNN 0.003223 0.000056 0.000727 0.001196 0.001598 

Elastic Net 0.002799 0.000024 0.000410 0.001021 0.001412 

Decision Tree 0.003388 0.000005 0.000533 0.001145 0.001536 
      

During covid-19 Max Min Median MAE RMSE 

Norges Bank 0.014100 0.005000 0.012500 0.010533 0.011256 

LSTM 0.010386 0.003845 0.007670 0.007300 0.007778 

Ensemble Learner 0.010869 0.004021 0.008767 0.007886 0.008390 

CNN 0.011593 0.005268 0.011348 0.009403 0.009848 

Elastic Net 0.009905 0.004904 0.007618 0.007476 0.007750 

Decision Tree 0.008922 0.004986 0.007615 0.007175 0.007359 

Table 7: Descriptive statistics of pandemic one step-ahead RMSE. Top is outside pan- 
demic (n = 23) statistics while the bottom table is the inside pandemic (n = 3) performance. 
Max, min, and median measures are absolute errors. 

 

 
Figure 23 shows prediction deviations across algorithms. These are one-to- 

four step-ahead predictions, which means that the predictions are made on 

December 17th, 2019. Notably, Norges Bank’s model seizes to outperform the 

other algorithms as the pandemic starts to solidify. Furthermore, the ensemble 

learner and the LSTM algorithm have the lowest absolute errors across the five 

dates. 
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Figure 23: Pandemic errors. Each group of bar charts corresponds to the squared 
distance between the algorithms’ predictions and the actual values for a specific decision. 
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6 Discussion 
 

All the results presented so far have pointed toward a common denominator; 

the machine learning algorithms outperform Norges Bank’s model due to better 

adaptability to shocks in the dependent variable. Norges Bank’s model has the 

lowest RMSE when we exclude 2020 and its high RMSE is mostly caused by 

a few abnormal policy rate decisions. Beyond this, the results can be divided 

into three parts: (i) the decision tree algorithm and its dominant performance 

across time-steps, (ii) the elastic net and ensemble learner algorithms’ short- 

term forecasting accuracy, and (iii) LSTM and CNN’s long-term predictive 

precision. 

 
6.1 Relative algorithm performance 

 
6.1.1 The decision tree algorithm 

 
Section 5.5 Robustness test presents how the different algorithms adapted to 

the covid-19 pandemic. This is the only financial crisis present in our test 

dataset. The training dataset, however, consists of two financial downturns: 

(i) the great recession in 07-08, and (ii) the drop in oil prices in 2015. The 

covid-19 pandemic destabilized the global economy due to the worrying eco- 

nomic outlook. In late February 2020, major stock markets fell as the number 

of covid-19 cases rose in countries such as Italy and South Korea. As the 

pandemic solidified, governments around the world sought monetary decision- 

making to alleviate economic contractions. For  instance,  the EU initiated a 

historic 1.8 trillion dollar stimulus package called NextGenerationEU (Eu- 

ropean Comission, 2021). Numerous countries lowered their policy rates to 

historic lows, including Norway. In other words, the global economic situation 

during 2020 was rarely reflected in the dataset prior to this period. 

The decision tree algorithm performed the best on an aggregated level (Ta- 

ble 5). The algorithm consistently outperformed the other algorithms and 

exceeded the benchmark by approximately 55 percent for nowcasting predic- 

tions. Additionally, the decision tree’s RMSE distribution is the least posi- 

tively skewed, which indicates less outliers relative to the other algorithms. 

These findings, in addition to the algorithm’s pandemic performance, might 
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suggest that the decision tree algorithm exhibits greater adaptability to dras- 

tic changes in the economy. Kosina and Gama, 2012 argue for such traits in 

decision tree algorithms. They showed that decision rules models, which are 

similar to decision trees, exhibit high adaptive abilities, which could be due to 

its robustness to outliers and extraneous features. This robustness to super- 

fluous information comes from pruning the branches of the tree (John, 1995), 

as described in Section 3: Methodology. 

The fact that the decision tree algorithm performs well might also indicate 

that the relationship for which we are trying to model is nonlinear. Decision 

trees can be classified as a piecewise regression method, where each branch is 

its own regression. This means that the decision tree can opt to utilize dif- 

ferent variable dependencies based on how the data looks at a certain point 

in time. Transferring this rationale to economic reasoning, this might suggest 

that the decision tree algorithm manages to identify when the economy is in 

a stable condition and when it is not.  Döpke et al., 2017 showed that boosted 

regression trees performed well in predicting financial recessions, supporting 

the assertion above. This paper also showed that short-term interest rates, 

yield spreads, and stock market metrics are important indicators, which sub- 

sequently corresponds to the variable selection for our decision tree models7. 

In conclusion, our findings and prior research indicates that the decision 

tree’s ability to quickly adapt to abrupt changes translates to a model well- 

equipped to predict the policy rate during volatile economic cycles. As a 

result, this algorithm outperforms every other algorithm, partly because our 

out-of-sample data consists of a volatile period in the global economy. 

 
6.1.2 Elastic net and ensemble learner 

 
The elastic net and the ensemble learner algorithms performed well up to 

three steps. For shorter predictions, the algorithms performed better relative 

to other algorithms, excluding the decision tree algorithm. Why these two 

algorithms performed well for this time interval is most likely different between 

the algorithms, but the similarities in RMSE paths might be due to the meta- 

model of the ensemble learner being an elastic net algorithm. 
 

7See Exhibit 5 for decision tree models’ trees. 
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As previously mentioned, the elastic net regularization can perform vari- 

able selection while simultaneously grouping correlated variables. Thus, its 

edge comes from efficiently trading variance for bias in a systematic manner, 

increasing its out-of-sample predictive power. Furthermore, the evidence men- 

tioned prior might indicate that this regularization benefit ceases to exist as the 

time step increases. This assertion is further strengthened by how the inter- 

cept dominates the feature space of the elastic net algorithm as the prediction 

distance increases8. 

Unfortunately, we cannot read directly from Exhibit 6 and stipulate the 

importance of a variable or the magnitude of a specific relationship. This is 

due to the elastic net regularization and how it shrinks and excludes certain 

variables. However, we can get a sense of the overall relationship between 

the whole dataset and the output variable by examining several of the most 

weighted variables and their relative position, e.g., how the elastic net algo- 

rithm favors a higher intercept for longer predictions. The plot suggests that 

the most important variables for the elastic net algorithm are mostly interna- 

tional macroeconomic indicators and interest rates related to western countries. 

This is consistent with our assertion that the Norwegian economy is small and 

open. 

We can do a similar analysis for the ensemble learner algorithm by looking 

at Exhibit 7 in the appendix. We see that the algorithm mostly depends on 

decision trees. This corresponds to our findings related to the decision tree 

algorithm’s performance, which did particularly well nowcasting-wise. 

The regularization paths for both algorithms can be seen in Figure 24. This 

figure illustrates how the models and the two algorithms differ in regulariza- 

tion. If 0 < α < 1, the model utilizes both regularization techniques. An α 

closer to zero indicates that the regularization is weighted more towards the 

ridge penalty, which is responsible for proportionally reducing correlated coef- 

ficients, while an α closer to one indicates that the regularization is weighted 

more towards the lasso penalty, which is responsible for variable selection. For 

instance, the elastic net algorithm employs an α = 0.9 for its two step-ahead 

model, favoring the lasso regularization. Subsequently, the lambda path in- 

dicates the severity of the penalties. A λ equal to zero is equivalent to an 

8See Exhibit 6 for elastic net coefficients. 
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ordinary least squares regression, while a high λ indicates severe penalty acti- 

vation. For instance, the ensemble learner’s two step-ahead model utilizes the 

highest lambda in the grid search, λ = 100, indicating that the regularization 

imposes severe penalties on the coefficients. 
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Figure 24: Elastic net and ensemble learner regularization paths. The two y-axes repre- 

sents the magnitude of the elastic net algorithm parameters. Note that the ensemble learner 
utilizes an elastic net algorithm as meta-model. Hence, when we describe the elastic net 
algorithm here, it is referred to the general algorithm that is present in every model of the 
elastic net algorithm and the ensemble learner algorithm. The x-axis corresponds to every 
model related to the two algorithms. 

 

 

Perhaps the clearest implication from these plots is that both algorithms utilize 

the regularizations to predict the policy rate. Both algorithms utilize the 

lasso and the ridge regularization except for longer predictions, where both 

algorithms favor the ridge regression. 

Our dataset consists primarily of international macroeconomic data. Sub- 

sequently, the elastic net regularization is able to capitalize on the similarities 

between the variables. For instance, the correlation between GDPs is most 

likely high, in which the elastic net regularization groups these variables to- 

gether and reduces their coefficients proportionally. This is also evident by the 

clustering of correlations visualized in the correlation plot9. 

It is interesting to note the similar results but differing model construction 

between the elastic net algorithm and the ensemble learner. Both algorithms 

discontinue to create sparse models for four step-ahead predictions, but the 

ensemble learner is less reliant on the intercept than the elastic net algorithm. 

The ensemble learner seems to be able to combine the input variables in a 

way to increase performance beyond just the intercept. It is therefore inter- 

esting to explore why this difference might occur. The only difference between 

the algorithms is in the dataset they are fitted to. The meta-model of the 
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9See Exhibit 2 for correlation matrix. 



0992352 1003981 GRA 19703 

51 

 

 

ensemble learner is fitted to the outputs from the different models that use 

the same dataset as the elastic net algorithm. This difference might explain 

the elastic net algorithm’s reliance on the intercept, as the ensemble learner 

condenses information from the dataset from the beginning. The reason why 

the algorithms produce similar results might lie in the elastic net algorithm’s 

inability to capture long-term trends. As opposed to other machine learning 

algorithms, the elastic net algorithm does not have an innate ability to map 

temporal relationships. 

In conclusion, we know that both algorithms exhibit significant increases 

in RMSE for three- and four step-ahead predictions. For the elastic net algo- 

rithm, this seems to be due to its inability to map meaningful relationships 

between the input variables, because the algorithm mostly relies on the in- 

tercept for its predictions. For the ensemble learner on the other hand, the 

reduced performance seems to come from its inability to combine the different 

predictions from the base-models in a meaningful way, but still a combina- 

tion that is more accurate than purely relying on the intercept. Nevertheless, 

the elastic net algorithm’s ability to capture long-term trends might be the 

common denominator for the algorithms’ poor long-term forecasting accuracy. 

 
6.1.3 The neural networks 

 
Both neural networks performed well relative to the benchmark (Table 4). In 

fact, the poorest performing algorithm, CNN, had an aggregated RMSE only 

14.1 percent higher than the best performing algorithm. We have made several 

interesting discoveries after studying the results. First, both algorithms per- 

form better for longer time steps. Second, the volatility of CNN’s predictions 

is high compared to all other algorithms. Finally, we see that LSTM has a re- 

markably low RMSE throughout 2017 and behaves similarly to Norges Bank’s 

model. 

Both neural networks possess features that enable them to capture long- 

term trends. The CNN algorithm analyzes several observations per iteration, 

in contrast to the other algorithms who only process one observation at a time. 

This allows the algorithm to observe the feature space temporally and capture 

time-dependent relationships. LSTM, on the other hand, only processes one 
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observation at a time, but sends information from previous iterations forward 

in time. We argue that CNN’s- and LSTM’s temporal qualities are reflected 

in the results. In fact, CNN has the best performing model for three step- 

ahead predictions and LSTM has an RMSE only 3.9 percent higher than the 

decision tree for four step-ahead predictions. Therefore, we argue that they 

are, to a certain extent, able to identify structural changes in the dataset which 

consequently allows them to better predict the long-term future. 

The volatility of CNN’s predictions is high (Figure 25). Volatility in in- 

sample predictions is not a problem by itself, but if the volatility reduces the 

out-of-sample accuracy, it may indicate that the model is underfitted. Based 

on analyzes of the CNN algorithm’s structure, it appears that the volatility is 

due to the model construction. Through several initial layers in the CNN 

models, the sample size is reduced before the information is sent to a neural 

network. In our models, it appears that the pooling layer and the dropout 

rate have been too large, which has led to the natural networks having too few 

data points to process. After studying the results, we tested a CNN model 

with a lower dropout rate and without a pooling layer. The test shows that 

the in-sample predictions became less volatile, while the aggregate RMSE was 

6.1 percent higher. This indicates that lower volatility in the predictions did 

not improve the accuracy of the predictions. 
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Figure 25: In-sample predictions for CNN and LSTM. 

 

Figure 20 and the right-hand graph in Figure 19 show that the LSTM algorithm 
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cumulative RMSE behaves approximately the same as Norges Bank’s model. 

What makes this finding interesting is that the policy rate level is flat equal to 

50 basis points throughout 2017. In addition, both LSTM’s- and Norges Bank’s 

cumulative RMSE increased significantly on September 18th, 2018 because 

the interest rate was raised from 50 basis points to 75 basis points. This 

indicates that the LSTM algorithm has a significant dependence on previous 

observations of the policy rate and that the algorithm is less flexible than other 

algorithms such as the decision tree. 

In conclusion, we succeeded in exploiting the temporal qualities of the 

LSTM- and CNN algorithm. This is reflected in their respective RMSEs for 

longer time steps, relative to the other algorithms. Nevertheless, it seems 

that the CNN algorithm was under-optimized given the volatility in in-sample 

predictions. Although the aggregated RMSE did not improve by reducing 

volatility, we believe that the algorithm can be improved by facilitating the 

structure of the data and spending more time on pre-testing. In addition, we 

see that the LSTM algorithm possesses similar characteristics to Norges 

Bank’s model. Both models have a clear dependence on previous observations 

of the policy rate, and they struggle to adjust for structural changes in the 

dataset. 

 
6.1.4 Norges Bank’s model 

 
Norges Bank’s model emerges as the worst predictor for our forecasting pe- 

riod. It mostly presents the highest RMSE scores across time-steps and has 

the highest aggregated RMSE by approximately six percent. This is despite 

generally exhibiting superior performance across other analyzes. As previously 

mentioned, we believe that this is due to a handful of policy rate decisions and 

an accuracy measure that heavily penalizes large errors. Therefore, it is inter- 

esting to discuss Norges Bank’s model to potentially explain some of its poor 

performance relative to the machine learning algorithms. 

Norges Bank is not the only central bank utilizing a DSGE model for 

macroeconomic analysis and forecasting. DSGE models are generally favored 

by financial policy makers in part because of its transparency in highlighting 

economic forces and how these affect each other (Christiano et al., 2018). How- 
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 Norges Bank 

    
  

Decision Tree 

ever, the DSGE model is not without controversy. Its inability to predict crises 

is among its flaws (Linde, 2018), which corresponds to our findings related to 

Norges Bank’s model’s ineffective response to shocks in the economy. In Fig- 

ure 26, we plotted the nowcasting forecasts and the one step-ahead forecasts 

of Norges Bank’s model and the decision tree algorithm. These figures show 

how quickly the decision tree algorithm is able to adapt to a shock relative to 

the benchmark. 
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Figure 26: Nowcasting and one step-ahead predictions for Norges Bank’s model and the 
decision tree algorithm. 

 

 
This is not to say that Norges Bank’s DSGE model fails at what it is trying to 

accomplish. The DSGE model is,  on one hand,  a forecasting tool.  But  it is 

just as much a tool for transparent policy making. DSGE models have for 

instance been useful for highlighting the benefits of fiscal stimulus during 

crises (Woodford, 2011). Moreover, DSGE models are not inept at forecast- 

ing. In fact, Norges Bank’s model performed better than the machine learning 

algorithms during normal economic periods. Despite having an aggregated 

RMSE above the other algorithms, Norges Bank’s model won the most obser- 

vations during our out-of-sample period, predicting closest to the policy rate 

for approximately 54 percent of all observations (Figure 18). Furthermore, 

Norges Bank’s model’s RMSE is the lowest if we exclude the covid-19 pan- 

demic (Table 7) and it outperformed the other algorithms during 2017 and 

2019 (Figure 20). Lastly, it is evident from the accumulated squared errors 

that the model for the most part produces low residuals (Figure 19). 
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Summarized, we argue that Norges Bank’s DSGE model is a versatile multi- 

faceted model used for broader fiscal policy making. But blindly following a 
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mathematical model is usually not advised. Blanchard, 2016, former chief 

economist at the International Monetary Fund, argues that DSGE models 

should not be imperialistic, but rather inclusive to other models. Perhaps com- 

bining a DSGE model and machine learning algorithms is the next step. This 

macroeconomic framework could yield a tool which utilizes the transparency 

of the DSGE model and the flexibility of machine learning algorithms. 

 
6.2 Improvements  and further research 

 
6.2.1 Machine learning disadvantages 

 
Machine learning algorithms’ ability to learn non-linear relationships, effi- 

ciently apply big data, and improve out-of-sample predictability is impres- 

sive. However, there are some disadvantages to machine learning relative to 

other statistical tools. Perhaps the biggest disadvantage is that most machine 

learning algorithms are so-called black-box algorithms. A black-box algorithm 

refers to the inability or difficulty of deciphering how the algorithm makes pre- 

dictions. It is a process where the input and the outputs are known, but the 

internal transformation is unknown. 

The deciphering problem becomes exponentially onerous as the technol- 

ogy improves, the complexity increases, and application of these algorithms 

expands (Castelvecchi, 2016). This problem can be a particular issue for ap- 

plications where the interpretability of the underlying process is imperative, 

for instance autonomous vehicles or disease detection. The interpretability of 

the forces behind changes in the policy rate is most likely imperative to policy 

makers. One of the reasons why governments use DSGE models is that they 

are highly interpretable. Norges Bank is expected to be able to explain the mo- 

tivation behind each decision, which makes black-box algorithms unattractive 

and will unlikely replace current models. They can however supplement cur- 

rent methods, which appear reasonable given that machine learning algorithms 

outperform Norges Bank’s model during times of crisis. 

An action is naturally followed by a reaction. The black box problem has 

issued increased research into explainable artificial intelligence (XAI). XAI is a 

paradigm shift in AI which aims to facilitate the creation of more transparent 

machine learning algorithms while maintaining high performance (Adadi & 
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Berrada, 2018). One approach is to create a set of machine learning models 

that collectively produce more explainable transformations (Gunning, 2017). 

For instance, the CNN algorithm is notoriously difficult to decipher. One could 

therefore use a sequential RNN model, such as an LSTM, to generate words 

and captions that describe the transformations that are happening. XAI might 

be the bridge between monetary policy decisions and machine learning where 

interpretability is imperative. 

 
6.2.2 Model construction 

 
This thesis studies machine learning’s application in policy rate predictions. 

As a result, we focused on a broad range of machine learning algorithms that 

were neither chosen for perfect optimization nor optimized to perfection. On 

the contrary, the algorithms were chosen to capture the spectrum of machine 

learning and to focus on well-known algorithms. Furthermore, we chose to 

keep the standardization of the algorithms and not do extensive hyperparame- 

terization. Hence, there may be custom versions of the selected algorithms, or 

untested algorithms, better suited for this particular application. For instance, 

(Vaswani et al., 2017) shows that transformers outperform CNN’s and RNN’s 

while requiring less time to train. Transformers are similar to other sequential 

algorithms but differ in their mechanism of attention. This means that it can 

reduce the impact of less important data while highlighting important ones 

making it attractive to users that require interpretability. 

 
6.2.3 Features 

 
In simplified terms, machine learning boils down to making a model do the 

same task repeatedly. This repeated process is an attempt at making the 

model used to the task and therefore better at doing that task in the future. 

This is why data is so important in machine learning. The model needs to 

get familiarized with the task by getting exposed to different examples of 

environments, which means that the data should in general contain plenty of 

observations. Furthermore, the number of features in the data should reflect 

the real environment of the task at hand, mapping the relevant variables that 

affect the dependent variable. Lastly, the environment needs to be readable to 
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the machine, which poses numerous data formatting constraints. 

Making sure the data is optimized for the proper task is generally difficult. 

Every task requires different data, which implies different feature structures, 

spaces, lengths, and dimensions. Hence, every choice made in Section 4: Data 

had an impact on the final result, and different choices would yield different 

results. For instance, we focused on gathering mostly macroeconomic data. 

In addition to this, we could have collected non-macroeconomic data, such 

as the number of airline tickets purchased per day. While the relationship 

between the policy rate and airline tickets seems unfounded, one could argue 

that the number of airline tickets purchased is a proxy for global economic 

stimulus. The point is that there could be an entire feature space that we 

have overlooked due to the obscure connection between the independent- and 

dependent variable. 

On the other hand, reducing the feature space could also yield better re- 

sults. This should not be an issue for algorithms well-equipped for feature 

space regularization such as the elastic net and decision tree, but for algo- 

rithms such as LSTM and CNN, the number of features can pose a problem. 

LSTM and CNN have some implicit feature selection functionality as LSTM 

suppresses irrelevant information and CNN compresses each sample. However, 

being inattentive to the models’ data handling process may allow non-causal 

features to disturb the generalization of the models, making them prone to 

produce unoptimized predictions. Thus, reducing the feature space by being 

more restrictive in the variable selection process may reduce noise and yield 

more accurate predictions. One could, for example, make an LSTM model 

with only the variables used in Norges Bank’s model. 

The feature length of our dataset is also worth a discussion. As stated, 

machine learning algorithms generally require many observations to get fa- 

miliarized with a task. In Section 4: Data, we excluded observations where 

Norges Bank did not make a policy rate decision, which left us with 127 train- 

ing observations. This is, by machine learning standards, a small but sufficient 

amount. However, given the philosophy that “more is better”, a larger dataset 

could have produced better results. There is an implicit limitation to the fea- 

ture length given the amount of available policy rate decisions, but since the 

rate is constant until a change is made, one could theoretically use daily data. 
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There are several considerations to make when building such models, but it is 

nevertheless possible. 
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7 Conclusion 
 

The purpose of this thesis was to explore various standardized machine learn- 

ing algorithms and measure their ability to predict the Norwegian policy rate. 

The policy rate and its future development is an important variable to an- 

alyze because of its instrumental role in the economy. The forecasts of the 

policy rate can be seen as a proxy for the direction of the economy. Hence, a 

prediction of the policy rate is essentially a prediction of the direction of the 

economy. Therefore, improved research on current and new methods for 

forecasting policy rates are an attractive goal. 

The hypothesis of this thesis is that machine learning algorithms can pro- 

duce more accurate predictions than Norges Bank’s own model, NEMO. This 

is a bold but compelling statement. To test the hypothesis, we first collected 

data on numerous economic variables with varying frequency and length in 

order to give the machine learning algorithms a wide set of features to extract 

patterns from. Then, we selected five well-known machine learning algorithms 

as candidates to compete against Norges Bank’s model: (i) the elastic net 

algorithm, (ii) the decision tree algorithm, (iii) LSTM, (iv) CNN, and (vi) en- 

semble learner. These are algorithms with different properties and functions 

that are suitable for time series predictions. 

The result of the test confirmed our hypothesis; every algorithm managed 

to forecast the policy rate better than Norges Bank’s model. We can therefore 

claim that the machine learning algorithms predict the policy rate with greater 

accuracy than Norges Bank’s model. However, this does not reflect the whole 

truth. A thorough analysis showed that Norges Bank made by far the most 

correct predictions and had the lowest RMSE when we excluded the covid-19 

pandemic. Our results therefore indicate that our machine learning algorithms 

do not perform better than Norges Bank’s model under normal circumstances. 

However, during crises, Norges Bank’s model lacks the flexibility to adapt to 

sudden macroeconomic changes and the predictions become highly inaccurate. 

The machine learning algorithms, on the other hand, are more flexible and are 

able to anticipate the crisis to a greater extent. 

In addition to exceeding the benchmark, the machine learning algorithms 

exhibited performance heterogeneity. The decision tree algorithm performed 
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best overall. We believe that this is due to the algorithm’s ability to quickly 

adapt to changes in economic conditions. The two neural networks CNN and 

LSTM performed better than the other algorithms for longer predictions, which 

we believe to be due to the algorithms’ innate ability to remember temporal 

relationships. Surprisingly,  the ensemble learner algorithm underperformed. A 

priori fitting, we believed that this algorithm would outperform the other 

algorithms by an effect analogous to the wisdom of the crowd. 

We believe our results indicate the potential for machine learning algo- 

rithms in monetary policy decisions. However, the models described in this 

thesis are not optimized to the task at hand, which means that there most 

likely exists algorithms and models better equipped at forecasting the policy 

rate. Furthermore, the current state of machine learning does not elicit a re- 

placement of current methods such as DSGE models. Machine learning might 

instead be a supplementary instrument to traditional policy tools. 
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8 Appendices 

 
Exhibit 1: Overview of collected base variables. Lag refers to the publication lag of the 
variable, which is displayed in number of days. 

 

Variable Basis Type Source Frequency Lag 

BoE base rate Return Interest 

Rate 

Bank of Eng- 

land 

Daily 0 

EuroStoxx50 Return Financial Bloomberg Daily 0 

OBX, 25 Most Liquid 

Stocks 

Return Financial Bloomberg Daily 0 

OSE25GI, Consumer 

Discretionary 

Return Financial Bloomberg Daily 0 

OSE3030GI, House- 

hold & Personal 

Products 

Return Financial Bloomberg Daily 0 

OSE10GI, Energy Return Financial Bloomberg Daily 0 

OSE40GI, Finance Return Financial Bloomberg Daily 0 

OSE35GI, Health Care Return Financial Bloomberg Daily 0 

OSE20GI, Industry Return Financial Bloomberg Daily 0 

OSE45GI, IT Return Financial Bloomberg Daily 0 

OSE50GI, Telecommu- 

nication Services 

Return Financial Bloomberg Daily 0 

OSE55GI, Utilities Return Financial Bloomberg Daily 0 

OMX Return Financial Bloomberg Daily 0 

DAX Return Financial Bloomberg Daily 0 

FTSE Return Financial Bloomberg Daily 0 

S&P500 High Return Financial Bloomberg Daily 0 

S&P500 Low Return Financial Bloomberg Daily 0 

S&P500 Adjusted 

Close 

Return Financial Bloomberg Daily 0 

S&P500 Volume Absolute Financial Bloomberg Daily 0 

Index of Industrial Absolute Industry Bloomberg Monthly 45 
 

Production (Manufac- 

turing, Absolute) 

Index of Industrial 

Production (Total) 

Index of Industrial 

Production (Manufac- 

turing, Return) 

Return Industry Bloomberg Monthly 30 

Return Industry Bloomberg Monthly 30 
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Exhibit 1: Overview of collected base variables. Lag refers to the publication lag of the 
variable, which is displayed in number of days. 

 

Variable Basis Type Source Frequency Lag 

Housing Prices Absolute CPI Bloomberg Quarterly 12 

China Real GDP Return National Bloomberg Quarterly 18 

Aluminium Spot Price Return CommodityBloomberg Daily 0 

Aluminium 

Price 

Futures Return CommodityBloomberg Daily 0 

EU Economic Senti- 

ment 

Absolute Survey Bloomberg Monthly 21 

ISM Manufacturing In- 

dex 

Absolute Survey Bloomberg Monthly 5 

US Conference Board 

Leading Index 

Return Survey Bloomberg Monthly 21 

US Conference Board 

Leading Index 

Absolute Survey Bloomberg Monthly 21 

Brent Crude Oil Spot 

Price 

Absolute CommodityBloomberg Daily 0 

Volatilty Index (VIX) Return Financial Bloomberg Daily 0 

Norwegian 10-year 

Treasury Yield 

Return Interest Bloomberg 

Rate 

Daily 0 

Fish Price Index Return CommodityBloomberg Weekly 7 

EU Quantitative Eas- 

ing 

Absolute Financial ECB Yearly 0 

US Quantitative Eas- 

ing 

Absolute Financial FED Quarterly 0 

Effective Federal 

Funds Rate 

Return Interest Federal Re- 

Rate serves 

Daily 0 

Norwegian yield- 

spread (10Y-2Y) 

Return Interest Federal Re- 

Rate serves 

Daily 0 

Norwegian Consumer 

Trust 

Absolute Survey Finans Norge Quarterly -15 

Norwegian Unemploy- 

ment Rate 

Return CPI SSB Monthly 0 

Norwegian CPI (Abso- 

lute) 

Absolute CPI SSB Monthly 10 

Norwegian CPI (Re- 

turn) 

Return CPI SSB Monthly 10 
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Exhibit 1: Overview of collected base variables. Lag refers to the publication lag of the 
variable, which is displayed in number of days. 

 

Variable Basis Type Source Frequency Lag 

Norwegian CPI Year- 

to-Year Change 

Return CPI SSB Monthly 10 

Norwegian CPI-AT Return CPI SSB Monthly 10 

Norwegian CPI-ATE Return CPI SSB Monthly 10 

Norwegian CPI-AE Return CPI SSB Monthly 10 

Norwegian CPI-AEL Return CPI SSB Monthly 10 

Denmark Real GDP Return National OECD Quarterly 30 

France Real GDP Return National OECD Quarterly 30 

Germany Real GDP Return National OECD Quarterly 30 

Netherlands Real GDP Return National OECD Quarterly 30 

Sweden Real GDP Return National OECD Quarterly 30 

US Real GDP Return National OECD Quarterly 30 

UK Real GDP Return National OECD Quarterly 30 

EU Real GDP Return National OECD Quarterly 30 

Denmark Real GDP Return National OECD Quarterly 30 
 

Year-to-Year Change 

France Real GDP Return National OECD Quarterly 30 

 

Year-to-Year Change  

Germany Real GDP 

Year-to-Year Change 

Return National OECD Quarterly 30 

Netherlands Real GDP 

Year-to-Year Change 

Return National OECD Quarterly 30 

Sweden Real GDP 

Year-to-Year Change 

Return National OECD Quarterly 30 

US Real GDP Year-to- 

Year Change 

Return National OECD Quarterly 30 

UK Real GDP Year-to- 

Year Change 

Return National OECD Quarterly 30 

EU Real GDP Year-to- 

Year Change 

Return National OECD Quarterly 30 

Norwegian Real GDP 

Year-to-Year-Change 

Return National OECD Quarterly 30 

Sweden CPI Return CPI IMF Monthly 10 

Germany CPI Return CPI IMF Monthly 10 

UK CPI Return CPI IMF Monthly 10 
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US CPI Return CPI IMF Monthly 10 
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Exhibit 1: Overview of collected base variables. Lag refers to the publication lag of the 
variable, which is displayed in number of days. 

 

Variable Basis Type Source Frequency Lag 

Hong Kong CPI Return CPI IMF Monthly 10 

China CPI Return CPI IMF Monthly 10 

France CPI Return CPI IMF Monthly 10 

Denmark CPI Return CPI IMF Monthly 10 

Netherlands CPI Return CPI IMF Monthly 10 

Norwegian Policy Rate Return Interest Norges Bank Daily 0 

  Rate    

ECB Folio Rate Return Interest ECB Monthly 0 

  Rate    

Hong Kong Folio Rate Return Interest IMF Monthly 0 

  Rate    

Sweden Folio Rate Return Interest IMF Monthly 0 

  Rate    

Denmark Folio Rate Return Interest IMF Monthly 0 

  Rate    

OSEBX Open Return Financial Oslo Børs Daily 0 

OSEBX High Return Financial Oslo Børs Daily 0 

OSEBX Low Return Financial Oslo Børs Daily 0 

OSEBX Close Return Financial Oslo Børs Daily 0 

Norway Household Absolute National SSB Quarterly 30 

Consumption      

Norway Gross Fixed Absolute National SSB Quarterly 30 

Capital Formation Oil      

Norway Gross Real Absolute National SSB Quarterly 30 

Capital Formation      

Norway Export Absolute National SSB Quarterly 30 

Norway Import Absolute National SSB Quarterly 30 

Norway Domestic Absolute National SSB Monthly 30 

Debt      

Norway Domestic Absolute National SSB Monthly 31 

Debt Provinces 
     

Norway Domestic Absolute National SSB Monthly 32 

Debt Non-Financial      

Corporations      

Norway Domestic Absolute National SSB Monthly 33 

Debt Households 
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Exhibit 1: Overview of collected base variables. Lag refers to the publication lag of the 
variable, which is displayed in number of days. 

 

Variable 
 

Basis Type Source Frequency Lag 

Spread Borrowing Return Interest SSB Monthly 30 

Rate/Policy Rate 
 

Rate 
   

Power Prices Absolute Industry SSB Quarterly 30 

Norway GDP Market 

Value 

Absolute National SSB Quarterly 30 

UK Treasury Yield 3 

Year 

Return Interest 

Rate 

IMF Monthly 0 

France Treasury Yield 

3 Year 

Return Interest 

Rate 

IMF Monthly 0 

US Treasury Yield 3 

Year 

Return Interest 

Rate 

IMF Monthly 0 

Norway Treasury Yield 

3 Year 

Return Interest 

Rate 

IMF Daily 0 

Norway Treasury Yield 

5 Year 

Return Interest 

Rate 

IMF Daily 0 

Norway Treasury Yield 

10 Year 

Return Interest 

Rate 

IMF Daily 0 

UK Folio Rate Return Interest 

Rate 

IMF Monthly 0 

UK Treasury Yield 1 

Year 

Return Interest 

Rate 

IMF Monthly 0 

US Treasury Yield 1 

Year 

Return Interest 

Rate 

IMF Monthly 0 

Sweden Treasury Yield 

1 Year 

Return Interest 

Rate 

IMF Monthly 0 

Hong Kong Treasury 

Yield 1 Year 

Return Interest 

Rate 

IMF Monthly 0 

Norway Overnight 

Lending Rate 

Return Interest 

Rate 

IMF Daily 0 

USD-to-NOK Absolute Currency IMF Daily 0 

EUR-to-NOK Absolute Currency IMF Daily 0 

GBP-to-NOK Absolute Currency IMF Daily 0 

Norway Business Cycle Return National SSB Monthly 30 
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Exhibit 2: Correlation matrix of base variables. The full correlation matrix can be put together by places in the order of the index (i, j), where i refers to the row 
and j refers to the column. 
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EUROSTOXX50 

OENG 

OHCG 
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OUTG 
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NO housing prices 

NO industrial prod manu 

china GDP growth 
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brent spot 
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(2, 1) 

 

 

 

 
 

 
 

 
 

 
loans total 

loans non financial corporations 

ECB deposit rate 

UK folio rate 

france Tbill 3M 

US Tbill 

sweden Tbill 

ChinaHK folio rate 

NO overnight lending rate 

NO Tbill 5Y 

STYRINGSRENTEN abs 

denmark CPI 

germany CPI 

SWE CPI 

UK CPI 
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(3, 1) 

 

 

 

 
 

 
 

 
 

 
NO KPI JE 
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GBP NOK 

den gdp 
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ger gdp 
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uk gdp q2q 

eu gdp q2q 
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export 

NOR GDP 

SP high 
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US PMI 
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(2, 2) 
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loans non financial corporations 

ECB deposit rate 

UK folio rate 

france Tbill 3M 
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(3, 2) 
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(3, 3) 
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Exhibit 3: Variables excluded during dataframe slicing. 
 

Variables excluded: cont. 
  

 

sweden folio rate m 2 m 

sweden folio rate m 2 2m 

sweden folio rate m 2 k 

sweden folio rate m 2 2k 

sweden folio rate m 2 y 

interest rates on loans m 2 m 

interest rates on loans m 2 2m 

interest rates on loans m 2 k 

interest rates on loans m 2 2k 

interest rates on loans m 2 y 

FED QE k 2 k 

FED QE q 2 2k 

FED QE q 2 y 

fish pool NOK w 2 w 

fish pool NOK w 2 2w 

fish pool NOK w 2 m 

fish pool NOK w 2 2m 

fish pool NOK w 2 k 

fish pool NOK w 2 2k 

fish pool NOK w 2 y 

ECB QE å 2 å 

oil inv k 2  k 

oil inv q 2 2k 

oil inv q 2 y 

EUR NOK d 2 y 
 

 

NO EL price k 2  k 

NO EL price q 2 2k 

NO EL price q 2  y 

NO KPI JA m 2  m 

NO KPI JA m 2 2m 

NO KPI JA m  2  k 

NO KPI JA m 2 2k 

NO KPI JA m  2  y 

NO KPI JAE m 2 m 

NO KPI JAE m 2 2m 

NO KPI JAE m 2 k 

NO KPI JAE m 2 2k 

NO KPI JAE m 2 y 
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Exhibit 4: Norges Bank’s policy rate forecast from monetary policy report published on 
March 12th, 2020. (Norges Bank, 2020b) 
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Exhibit 5: Decision trees 

 
 

Exhibit 6.1:  Decision tree output for t = 0 predictions. 
 
 
 

 

 

Exhibit 6.2:  Decision tree output for t = 1 predictions. 
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Exhibit 6.3:  Decision tree output for t = 2 predictions. 
 

 

 
Exhibit 6.4:  Decision tree output for t = 3 predictions. 
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Exhibit 6.5: Decision tree output for t = 4 predictions. 
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Exhibit 6: Elastic net coefficients for the nowcasting-, one-step-, and four-step model. 
 

 
 
 

Norway Treasury Yield 3 Year 

Intercept 

OSE55GI, Utilities 

ECB Folio Rate 

US Treasury Yield 3 Year 

Norwegian Consumer Trust 

Hong Kong Treasury Yield 1 Year 

US Treasury Yield 1 Year 

Nowcasting 

0.1079 

 

 

Norway Treasury Yield 3 Year 

Intercept 

OSE55GI, Utilities 

Volatilty Index (VIX) 

Norwegian Consumer Trust 

OSE45GI, IT 

Brent Crude Oil Spot Price 

Sweden Treasury Yield 1 Year 

One-step 
 

 
0.1757 

 

 

Intercept 

Norwegian Consumer Trust 

Hong Kong Treasury Yield 1 Year 

Volatilty Index (VIX) 

OSE55GI, Utilities 

Sweden Treasury Yield 1 Year 

Norwegian yield-spread (10Y-2Y) 

Norway Treasury Yield 3 Year 

Four-step 
 

 
0.080 

France Treasury Yield 3 Year 

Volatilty Index (VIX) 

France Treasury Yield 3 Year 

Hong Kong Treasury Yield 1 Year 

OSE3030GI, Household & Personal Products 

OSE45GI, IT 

 

NO Tbill 3Y d 2 y 

NO Tbill 3Y d 2 2k 

Intercept 

OCSG d 2 y 

NO consumer confidence k 2 k 

US Tbill m 2 2m 

ECB deposit rate m 2 k 

france Tbill 3M m 2 y 

US Tbill 3M m 2 m 

ECB deposit rate m 2 y 

 
 
 

0.0178 

0.0121 

0089 

 

0.0565 

0.0514 

NO Tbill 3Y d 2 2k 

NO Tbill 3Y d 2 y 

Intercept 

VIX d 2 y 

OUTG d 2 y 

OCSG d 2 y 

brent spot d 2 2k 

OCSG d 2 2k 

NO consumer confidence k 2 k 

sweden Tbill m 2 2k 

0.0977 

0.078 

0.0315 

0.0214 

0159 

0.0148 

0.0145 

0.0138 

0.0136 

0.0111 

Intercept                              

NO consumer confidence k 2 k 

NO consumer confidence q 2 2k 

sweden Tbill m 2 2k 

VIX d 2 y 

OUTG d 2 y 

ChinaHK Tbill m 2 2k 

FED eff fed funds rate d 2 y 

OCSG d 2 y 

sweden Tbill m 2 y 

0.080 
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Exhibit 7: Ensemble learner coefficients across time-steps. 
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Exhibit 8: URL to github repository for Python codes and data sets. 

 

 
Github repository: 

https://github.com/BenjLian/Using-artificial-intelligence-in-economic-policy-forecasting. 

https://github.com/BenjLian/Using-artificial-intelligence-in-economic-policy-forecasting



