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a b s t r a c t

We compare alternative univariate versus multivariate models and frequentist versus
Bayesian autoregressive and vector autoregressive specifications for hourly day-ahead
electricity prices, both with and without renewable energy sources. The accuracy of point
and density forecasts is inspected in four main European markets (Germany, Denmark,
Italy, and Spain) characterized by different levels of renewable energy power generation.
Our results show that the Bayesian vector autoregressive specifications with exogenous
variables dominate other multivariate and univariate specifications in terms of both
point forecasting and density forecasting.
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Forecasters. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Despite the recent availability of high-frequency data
for forecasted demand and renewable generation, the lit-
erature on forecasting electricity prices using these ex-
ogenous variables is still relatively scarce. Therefore, we
aim to fill this gap by looking at linear models, in both
univariate and multivariate frameworks, while comparing
the frequentist approach with the Bayesian approach and
evaluating both point forecasts and density forecasts.

We show that hourly prices can be predicted efficiently
by taking advantage of intraday information available to
market participants when fossil fuels are controlled for.
We have explored linear autoregressive (AR) and vector
AR (VAR) models, both with and without fundamental
predicted drivers (forecasted demand, forecasted wind
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and solar power generation). These exogenous variables
play an important role in formulating day-ahead con-
ditional expectations, and their effects have motivated
extensive research. Furthermore, in the last ten years, the
amount of electricity generated from renewable energy
sources (RES-E) has grown significantly because of polit-
ical and financial support for these sources, which may
play an essential role not only in reducing the energy
dependence (on imported fossil fuels) of a country but
also, and more importantly, in mitigating global warming
(by reducing greenhouse gas emissions). The renewable
energy sources’ (RES) share of the total power capacity
increased from 24% to 44% between 2000 and 2015 in
Europe, reaching a total of more than 2,000 GW in 2016.
The share of wind power increased from 2.4% to 15.6%,
with total generation of approximately 300 TWh, covering
more than 10% of EU demand. Denmark and Germany
were among the leading countries for total wind power
capacity per inhabitant. The global solar photovoltaic (PV)
capacity totalled an estimated 106 GW in Europe at the
end of 2016, which is more than 32 times the capacity
observed in 2006. Germany, Italy, and Spain belong to
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the group of top-ten countries worldwide for capacity
and additions (REN21, 2017). These statistics support our
choice of selected markets.

On the operational side, RES have added complexity
to the management of the electricity system, and thus to
electricity price modelling and forecasting. Consequently,
a growing body of literature has investigated the effects
of RES on electricity price dynamics in several markets
around the world (Europe, United States, Canada, and
Australia). Given the uncertainties in the forecasted levels
of demand and RES-E, market operators are concerned
about the forecasts of day-ahead prices.

Still, there is no empirical consensus about the supe-
riority of multivariate models versus univariate models,
and we aim to fill this gap when all fundamental drivers
are considered, thus providing clear operational guide-
lines in forecasting hourly day-ahead electricity prices.
Therefore, in this article we compare various univariate
and multivariate linear models with and without RES-E
forecasts and other fundamental drivers, estimated with
use of frequentist and Bayesian approaches, for produc-
ing day-ahead forecasts of selected European electricity
prices. Indeed, the advent of RES has raised numerous
challenges for electricity markets in terms of managing,
monitoring, modelling, and forecasting. Renewables (as
wind and solar energy) have zero marginal production
cost but are intermittent: if the wind blows and/or the
sun shines, electricity prices are low; otherwise, when
the sun stops shining or the wind stops blowing, tradi-
tional thermal plants running on fossil fuels must produce
demanded electricity with higher generation costs. Conse-
quently, some negative prices can arise when power from
RES is sufficient to meet demand and some units must
be paid to reduce production and/or increase demand.1
Therefore, this emphasizes the importance of including
RES-E and fossil fuels when one is looking for the best
price forecasts. While there is consensus that including
demand forecasts or RES-E forecasts (if the market pene-
tration is not negligible) leads to more accurate forecasts,
it is still an open question as to which RES-E forecast is
more informative in which market, and also whether their
inclusion can reduce the importance of fossil fuels. Hence,
models with only a subset of exogenous variables have
also been considered.

Our results show that demand and renewable energies
increase the point and density accuracy of the predic-
tive models, especially during peak hours. However, their
inclusion does not reduce the importance of fossil fu-
els, which we suggest should be retained in the models.
Moreover, we find evidence of better forecasting of the
multivariate models, given that they allow for interre-
lationships among different hours of the day, and the
Bayesian approach leads to further forecasting improve-
ments. Finally, and for the first time since the increasing
RES penetration, we show that the models with fore-
casted wind power only (besides forecasted demand and

1 Negative prices are considered market signals of inflexibility: the
system is not able to increase demand on one hand and reduce
generation on the other hand because turning conventional power
plants on and off would be inefficient and uneconomical.

fuels) perform better than those with forecasted solar
power only (besides forecasted demand and fuels). Fur-
thermore, their simultaneous inclusion further improves
the performance.

The rest of this article is structured as follows.
Section 2 summarizes previous research on forecasting
electricity prices and highlights our contributions.
Section 3 contains the description of the market together
with details of the data used. Section 4 presents our
models, the estimation method, and the metrics used
to assess our results. These are discussed in Section 5,
together with the major findings. Finally, our conclusions
are presented in Section 6.

2. Literature review

As emphasized in the reviews by Nowotarski and
Weron (2018) and Weron (2014), there is increasing
interest in electricity price forecasting. However, few stud-
ies have addressed the comparison of univariate and
multivariate models within the frequentist and Bayesian
approaches when considering both point forecasts and
density forecasts and the forecasting ability of funda-
mental drivers. In performing extensive empirical com-
parisons, we aim to fill this gap while exploring several
combinations of forecasted variables and fossil fuel prices.

Several studies have considered the univariate dimen-
sion for modelling purposes; for example, Chen and Bunn
(2014), Gianfreda and Grossi (2012), Karakatsani and Bunn
(2008), and Koopman, Ooms, and Carnero (2007). How-
ever, they did not include any forecasted renewable power
generation. More recent articles have analysed the impact
of RES on wholesale electricity price dynamics; see, for ex-
ample, Gelabert, Labandeira, and Linares (2011), Jónsson,
Pinson, and Madsen (2010), Ketterer (2014), Martinez-
Anido, Brinkman, and Hodge (2016), Mauritzen (2013),
Paraschiv, Erni, and Pietsch (2014), Pircalabu, Hvolby,
Jung, and Høg (2017), Rintamäki, Siddiqui, and Salo (2017),
and Woo, Horowitz, Moore, and Pacheco (2011). It is
worth emphasizing that most of the authors modelled
each hourly time series individually (i.e. 24 hourly time
series separately), as in García-Martos, Rodríguez, and
Sánchez (2007) and Misiorek, Trueck, and Weron (2006),
hence ignoring the relationships among different hours of
the day.

To overcome this issue, Maciejowska and Nowotarski
(2016) proposed 24 separate AR models, including, among
the regressors of the models, the early morning hours
(up to 4 a.m.), the last prices (at hours 23 and 24) from
the previous day, historical prices (at lags 1 and 7), a
weekend dummy to capture seasonality, and load se-
lected again at lags 1 and 7; however, no RES were in-
cluded. In addition to AR models, Maciejowska and Weron
(2015) also proposed VAR models for hourly and averaged
daily prices, with 480 estimated parameters for work-
ing/weekend days, daylight hours, and a constant 7-lag
order structure, which still does not involve demand and
renewable power.

Therefore, following Conejo, Contreras, Espínola, and
Plazas (2005), Maciejowska and Weron (2015), and Mi-
siorek et al. (2006), we select AR models as benchmarks
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because of their widespread use in the literature and
their relatively good performance in predicting electric-
ity prices. Moreover, we consider VAR representations to
detect improvements in the forecasting performances. In-
deed, we expect better forecasts frommultivariate models
than from univariate models given the larger information
contained in a panel of data, as suggested by Stock and
Watson (2002).

Being aware of the explosion in dimensionality, we
push these models forward by including also forecasted
demand and RES-E in both our univariate AR models and
our multivariate VAR models. Furthermore, we consider
exploring natural gas, coal, and CO2 if their inclusion im-
proves the forecasting ability, as shown by Maciejowska
and Weron (2016). Hence, we manage a total of 161
parameters for each hour.

As far as forecasting is concerned, and has emerged
from the reviews, few studies have considered density
forecasting (e.g. Gianfreda & Bunn, 2018; Huurman, Ravaz-
zolo, & Zhou, 2012; Jónsson, Pinson, Madsen, & Nielsen,
2014; Panagiotelis & Smith, 2008).

More recently, but without accounting for fundamen-
tal drivers and looking only at point forecasts, Raviv,
Bouwman, and van Dijk (2015) compared the perfor-
mances of models for the full panel of 24 hourly prices
by studying Nord Pool from 1992 to 2010. On the ba-
sis of univariate AR and multivariate VAR models, they
computed forecast combinations and empirically demon-
strated that the useful predictive information contained
in disaggregated hourly prices improves the forecasts of
multivariate models. They showed that shrinking VAR
models leads to further better forecasts, with the Bayesian
VAR model outperforming the unrestricted VAR model.
However, no density forecasting was performed and no
RES were included in their models, as in Ziel and Weron
(2018). Ziel and Weron (2018) proposed 58-parameter
regression univariate and multivariate models account-
ing for different forms of seasonality, but no evidence
of the uniform superiority of multivariate specifications
was provided across all 12 markets, seasons, or hours
studied. More specifically, and closer to our analysis, they
concluded that, in Spain, the multivariate specification of-
ten outperforms the univariate specification in the morn-
ing hours, whereas in Germany and in the two Danish
zones, the univariate specification often outperforms the
multivariate specification in the late evening/night hours.
However, these results depend on the specifications of
their models and may produce different results if fore-
casted demand and RES-E are included. Therefore, this
further supports our investigation, and we aim to provide
even clearer evidence of linear univariate and multivariate
forecasting performances by comparing frequentist and
Bayesian models when more complexity is induced by
uncertain and intermittent renewable generation.

3. Market structure and data description

3.1. The electricity market and its sessions

Wholesale electricity markets are platforms where elec-
tricity is traded. These are organized in sequential ses-
sions: the day-ahead, intraday, and balancing sessions. In

the day-ahead session, bids to buy and offers to sell elec-
tricity for each hour of the following day are submitted in
pairs of prices and quantities by consumption units and
generators on a voluntary basis (there is no obligation to
act). This session opens several days in advance and closes
one day before physical delivery. For this reason, these
markets are often called forward, auction, or day-ahead
markets, in which individual supply offers and demand
bids are ordered giving priority of dispatch to more ef-
ficient and less polluting units with lower marginal costs
(then wind and solar energy – RES in general – enter the
supply curve before nuclear, coal, and gas units, which
have higher marginal costs; this is the so-called merit
order criterion). Hence, the price is computed under a
cost-minimizing objective on an hourly basis and it is
identified by the intersection of the aggregated curves of
supply and demand. This day-ahead price is determined
according to generators’ planned schedules of production
and by forecasted consumption programmes, which can
be affected by sudden outages and weather conditions
among many other factors.

Subsequently, the intraday sessions take place, wherein
units are allowed to modify (by buying or selling) their
day-ahead schedules as new information (such as better
weather forecasts) becomes available. These operations
are undertaken generally by units of intermittent and
variable generation (but recently also some thermal units
have started to participate in day-ahead and intraday
sessions to explore higher profit opportunities in bal-
ancing sessions where prices are higher and the price
as bid is used). The participation in the day-ahead and
intraday sessions occurs on a voluntary basis; they are
both managed by the system operator and a marginal
pricing rule applies.

The balancing sessions represent the last sessions used
by the transmission system operator to grant system se-
curity and grid stability and to match instantaneously
demand and supply in the case of any unexpected imbal-
ance. These are usually organized in an ‘ex ante’ planning
phase (when generation resources are committed) and in
a ‘real-time’ session (when the balancing is granted to
restore frequency and quantity deviations); hence, several
types of products are actually remunerated. Given that
only generators with the required degree of flexibility
are allowed to provide these services, these sessions are
generally more concentrated than are the former ones,
the participation is mandatory, and the pay-as-bid pricing
mechanism is applied; for additional details, see Hirth and
Ziegenhagen (2015) and Poplavskaya and de Vries (2019).

Day-ahead forecasts are particularly important for the
market itself and for operators, because if the day-ahead
forecasts (of quantities) are wrong, then energy must be
acquired in the real-time market at a (potentially and
generally) higher price, as highlighted by Gianfreda, Pari-
sio, and Pelagatti (2018), who investigated all these mar-
ket sessions and the bidding behaviour of (hydro, water
pumping, and thermal conventional) units responsible for
balancing in the northern zone of Italy.

Given the uncertainties in the forecasted levels of de-
mand and, more importantly, those in the forecasted lev-
els of RES-E (affecting the supply curve according to the
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levels of RES penetration), substantial variability is intro-
duced. This also explains why one-step-ahead forecasts
are gaining increasing interest. Moreover, market oper-
ators and traders are concerned about these forecasts
of day-ahead prices because they are used in the bal-
ancing pricing mechanisms and can provide an indica-
tion of the magnitude of price spreads across sessions;
see Bunn, Gianfreda, and Kermer (2018) and Lisi and Edoli
(2018) for further details about imbalances and strategic
speculations.

3.2. Data

We use hourly day-ahead prices (in levels) to estimate
models for electricity traded/sold in Germany, Denmark,
Italy, and Spain. These markets are particularly interest-
ing given their high levels of RES penetration. Follow-
ing Uniejewski, Nowotarski, and Weron (2016) and Ziel
and Weron (2018), we refer to day-ahead prices and spot
prices interchangeably to identify prices determined in
a market today for delivery in a certain hour tomor-
row, according to the literature on European electricity
markets. Formally, they are forward prices determined
one day in advance and with maturity on the following
day.2 This time difference is important in understanding
the use of forecasted variables (as demand, wind, and
solar energy) available to operators when they run their
forecasting models to obtain a set of 24 prices to be
submitted to power exchanges before the closure of the
market.3 We obtained national electricity prices directly
from the corresponding power exchanges: the German
hourly auction prices of the power spot market from
the European Energy Exchange (EEX)4; the two-hourly
zonal prices for Denmark from Nord Pool5 (these were
averaged to obtain a single price series for the whole
country); the Italian hourly single national prices (prezzo
unico nazionale, PUN) from the Italian system operator
Gestore dei Mercati Energetici (GME)6; and the precios
horario del mercado spot diario for Spain from the Oper-
ador del Mercado Ibérico, Polo Español (OMIE).7 These
hourly electricity prices (quoted in euros per megawatt
hour), with daily frequency, were preprocessed for clock-
time changes to exclude the 25th hour in October and to
interpolate the missing 24th hour in March; hence, there
are no missing observations.

As main drivers, we considered both the supply side
and the demand side. As far as the supply side is con-
cerned, we downloaded daily settlement prices for coal

2 However, it must be emphasized that in the United States the spot
market is used to indicate the real-time market, whereas the day-ahead
market is usually and more properly called the forward market.
3 Hence, we are not considering real-time prices determined by

balancing needs to match instantaneously demand and supply. These
prices are usually called balancing prices and are determined in other
market sessions regulated by different pricing mechanisms; for further
insights see Gianfreda et al. (2018), Gianfreda, Parisio, and Pelagatti
(2019), Hirth and Ziegenhagen (2015).
4 Precisely, we accessed data from http://www.eex.com thanks to

Europe Energy.
5 https://www.nordpoolgroup.com.
6 http://www.mercatoelettrico.org.
7 http://www.esios.ree.es.

from Datastream and interpolated them for missing week-
ends and holidays (as for the Intercontinental Exchange
API2 cost, insurance and freight Amsterdam, Rotterdam,
and Antwerp, with ticker LMCYSPT), for carbon emissions
(as for the EEX-EU CO2 emissions E/EUA in euros, with
ticker EEXEUAS), and for natural gas prices (as for the
ICE UK, as it represents a pure hub benchmark and can
be used for all EU markets, as suggested by Gianfreda,
Parisio, & Pelagatti, 2016) all converted into euros per
megawatt hour with use of the USEURSP rates from US
dollars to euros (WMR&DS). In addition, we considered
the forecasted renewable generation (from wind and solar
PVs). We downloaded forecasted values for RES-E and
demand directly from the market transmission system
operators, apart for the German and Italian forecasts,
which were provided by Thomson Reuters at hourly fre-
quency. In these last two cases, the results from two
weather providers (the European Centre for Medium-
Range Weather Forecast and the Global Forecast System
of the American weather service of the National Centers
for Environmental Prediction) were inspected.8 We de-
cided to use only forecasts obtained with the European
Centre for Medium-Range Weather Forecast operational
model running at midnight, because this model is up-
dated daily from 5.40 a.m. to 6.55 a.m., thus representing
the latest information available to market operators to
formulate their day-ahead bidding strategy.

While demand forecast models use weather forecasts
accounting for temperature, precipitation, pressure, wind
speeds, and cloud cover or radiation, forecasted wind
values are obtained with use of the information on wind
speeds and installed capacity. Finally, forecasted solar
power production considers only PV installations, solar
radiation, and installed capacity given the predominance
of PV plants over solar thermal ones. It is worth recall-
ing that the time series for solar power exhibits a block
structure of null values in hours early in the mornings and
late in the evenings, creating collinearity issues. Hence,
we preprocessed these series by a linear transformation:
drawing from a uniform distribution and adding these
small numbers to the original zero values in the series.
This results in (column) blocks of very small values close
to but different from zero, instead of (column) blocks of
zeros.

To summarize, we used daily fossil fuel prices (CO2,
gas, and coal, denoted by m, g , and c , respectively, and
kept constant over the 24 h) and hourly data (with daily
frequency) for electricity prices, forecasted demand (de-
noted by x), wind power (denoted by w), and solar PV
generation (denoted by z) from 1 January 2011 to 31
December 2016 for Germany and Denmark and from 13
June 2014 to 13 June 2017 for Italy and Spain. We used
the first four years as an estimation sample for Germany
and Denmark, and the first two years for Italy and Spain,

8 Both use two types of weather models: the operational one, which
is deterministic, with no involved randomness and high resolution;
and the ensemble one, which is a probabilistic model, with lower
resolution and variations around the initial set of weather conditions,
hence providing different weather scenarios and, consequently, an idea
of the weather instability. Both providers use one single run for the
operational model and different runs for the ensemble at specific hours.

http://www.eex.com
https://www.nordpoolgroup.com
http://www.mercatoelettrico.org
http://www.esios.ree.es
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Fig. 1. Hourly series for electricity day-ahead prices (top left), forecasted demand (top right), forecasted wind power generation (bottom left), and
forecasted solar PV generation (bottom right) observed in Germany from 1 January 2011 to 31 December 2016.

whereas we used the last two year/one year as the fore-
cast evaluation period. The historical dynamics of these
series observed in Germany are reported in Fig. 1. Prices
show clearly the new stylized fact of ‘downside’ spikes
together with mean reversion, whereas forecasted de-
mand and solar generation exhibit clearer yearly seasonal
patterns, with an increasing trend for solar power gen-
eration according to the new capacity additions through
years. Similarly, forecasted wind power shows its depen-
dence on weather conditions, albeit with an increasing
trend,9 corresponding again to investments in new ca-
pacity. To highlight calendar seasonality, monthly profiles
for electricity prices, forecasted demand, wind and solar
power generation are depicted in Fig. 2. Furthermore,
to emphasize the weekly seasonality, Fig. 3 depicts the
intraday dynamics across days of the weeks for demand
and prices; obviously, wind and solar power generation
are not presented, as they are weather dependent. Similar
figures for the other countries are reported in Section S.1
in the supplementary material.

Finally, the intraday profiles for the yearly average
values of forecasted demand and RES-E are presented in
Fig. 4 to identify scenarios of high/low demand and/or
RES-E expected to affect prices and, consequently, fore-
casts. We can observe that the ramp-up hours (during
which the demand for electricity is expected to grow

9 Given that trends can be observed in the series studied, we tested
whether its inclusion does not improve substantially the forecasting
performance.

substantially) as well as the ramp-down hours (when
demand is expected to decrease sharply) change across
markets according to the time of the day or night and
geographical locations. However, they confirm higher de-
mand levels in the peak period (roughly between 8 a.m.
and 8 p.m. for all markets). The intraday profiles for fore-
casted wind power generation show different dynamics:
we can again identify scenarios for high wind power gen-
eration during peak hours in Denmark and Italy, whereas
the opposite occurs in Germany and Spain. Obviously, the
intraday profiles for forecasted solar PV generation are,
instead, common for all markets, where available. There-
fore, we can expect a stronger combined effect of high
demand and wind power generation in Denmark, and
high demand, wind generation, and solar power genera-
tion in Italy, but contrasting scenarios for demand, wind
power generation, and solar power generation during the
day in Germany and Spain: a low–high–low one (i.e. low
demand and solar power generation versus high wind
power generation) in the early and late hours versus a
high–low–high one (i.e. high demand and solar power
generation versus low wind power generation) for peak
hours.

4. Forecasting models

We considered univariate and multivariate models for
hourly prices with seasonality and with the introduction
of exogenous variables relative to the forecasted demand
and forecasted RES-E. Furthermore, we included fossil
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Fig. 2. Intraday profiles of monthly averages for electricity day-ahead prices (top left), forecasted demand (top right), forecasted wind power
generation (bottom left ), and forecasted solar PV generation (bottom right) observed in Germany. January (blue ◦), February (+), March (⋆), April
(•), May (×), June (□), July (⋄), August (△), September (▷), October (D), November (7), December (green ◦).

Fig. 3. Intraday profiles across days of the week for forecasted demand (left) and day-ahead electricity prices (right) in Germany. Saturday (◦),
Sunday (+), Monday (⋆), Tuesday (•), Wednesday (×), Thursday (□), Friday (⋄).

fuels to account for marginal costs, hence reflecting the
non-linearity of the supply curve. Specifically, coal, natu-
ral gas, and CO2 settlement prices were included with a
delay of one day, given that market operators know their
values determined at the market closure on the day before
(i.e. on day t −1) when they run their models early in the
morning on day t to submit the 24-hour price forecasts
by 11 a.m. (of the same day) for trades occurring on the
following day, t + 1.

Therefore, we have specified the following models
to compare the forecasting performances when demand,
forecasted RES-E, and fossil fuels are taken into account.
There is consensus that including demand forecasts or
RES-E forecasts (if the market penetration is not negli-
gible) leads to more accurate forecasts. However, it is
still an open question as to which RES-E forecast is more

informative in which market and also whether their in-
clusion can reduce the importance of fossil fuels; hence,
models with only a subset of exogenous variables were
also considered. All together this resulted, first, in our
inspecting simple models with only dummy variables for
seasonality; second, in our adding regressors accounting
for both demand and supply curves (i.e. dummies plus
forecasted demand and lagged fossil fuels); third, in our
considering if the forecasting ability for demand and RES-
E reduces the need to include fuels; and finally, in our
verifying if only forecasted wind power generation and/or
forecasted solar power generation are/is efficient in pro-
viding good price forecasts. We follow common practice
in the literature and restrict lags to t − 1, t − 2, and
t − 7, which correspond to the previous day, two days
before, and one week before the delivery time, recalling,
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Fig. 4. Intraday profiles of yearly averages for forecasted demand (left), forecasted wind power generation (centre), and forecasted solar PV generation
(right) observed in Germany (first row), Denmark (second row), Italy (third row), and Spain (last row). 2011 (blue ◦), 2012 (+), 2013 (⋆), 2014 (•),
2015 (×), 2016 (□).

first, similar conditions that may have characterized the
market over the same hours and similar days (such as
congestions and blackouts) and, second, the demand level
during the days of the week. Knittel and Roberts (2005),
Raviv et al. (2015), and Weron and Misiorek (2008) show
that these specifications provide accurate forecasts be-
cause they capture seasonal patterns in electricity prices.
In addition, this formulation reduces the risk of overpa-
rameterization. Hence, hourly prices with a reduced 7-lag
structure are considered, and, with an abuse of notation
in the remainder of the article, p = 3 is used in all our
univariate and multivariate models to denote the number
of lags included instead of the maximum lag.

4.1. Multivariate models

We consider and compare the performances of two dif-
ferent multivariate model specifications with and without
exogenous variables used as benchmarks for the corre-
sponding multivariate models. These are the VAR model,
the VAR model with exogenous variables (VARX model)
estimated by use os ordinary least squares, see Eqs. (2.3.2)
and (2.3.4) in Kilian and Lutkepohl (2017), and their
Bayesian formulations (BVAR and BVARX models, respec-
tively) with a normal–Wishart prior; see Section 8 in the
supplementary material.
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4.1.1. VAR model
Let yt = (y1t , . . . , yHt )′ denote the (H × 1) vector of

hourly electricity prices, with H = 24. Moreover, we
denote by dt = (d1t , . . . , dKt )′ the (K × 1) dummy vector,
with (d1t , . . . , d12t ) representing the 12 months of the
year and (d13t , d14t ) representing Saturdays and Sundays;
hence K = 14. The VAR model of order p is formulated as
follows:

yt = Φ ′Xt + et , t = 1, . . . , T , (1)

where Φ is the ((Hp + K ) × H) matrix containing the
AR coefficients as well as the coefficients for all dummy
variables, and Xt = (yt−1, . . . , yt−p, dt ) is the matrix
((Hp + K ) × H) made by the lagged electricity prices and
the dummy variables. The vector of errors et is assumed
to be serially uncorrelated and normally distributed with
zero mean and a full covariance matrix Σ .

4.1.2. VARX model
The VARX model includes the forecasted demand, as

well as the forecasted wind and solar power generation,
when available, and fossil fuel prices for coal, gas, and
CO2. The exogenous demand and RES variables are rep-
resented by the following vectors of dimensions (H × 1):
xt = (x1t , . . . , xHt )′, zt = (z1t , . . . , zHt )′, and wt =

(w1t , . . . , wHt )′, respectively. On the other hand, fuel prices
do not change over the 24 h and are determined on the
previous day, t − 1. Thus, mt−1, gt−1, and ct−1 are the
representations for CO2, gas, and coal at previous time,
respectively. From Eq. (1), we redefine the matrix Xt as
Xt =

(
yt−1, . . . , yt−p, dt , xt , zt ,wt ,mt−1, gt−1, ct−1

)
and,

consequently, the matrix of coefficients Φ of size ((Hp +

K +3H+3)×H). The matrix Xt now comprises the vector
of lagged hourly electricity prices, the vectors of dummy
variables, and the exogenous variables. From Eq. (1), as
the observations vary with time t = 1, . . . , T , the VAR
and VARX models of order p can be rewritten in a compact
way:

Y = XΦ + E, (2)

where Y = (y′

1, . . . , y
′

T ) is a (T × H) matrix, and X =

(X1, . . . , XT )′ is the (T × (Hp + K + 3H + 3)) matrix of
explanatory variables containing all the exogenous vari-
ables.10 The (T × H) error matrix E = (e′

1, . . . , e
′

T ) is
normally distributed and serially uncorrelated with co-
variance matrix Σ .

4.1.3. BVAR models
Our multivariate models with or without exogenous

variables were additionally estimated with the Bayesian
method. From Eq. (2), a BVAR or BVARX model has the
following stacked form:

y = (IH ⊗ X)α + ε, (3)

where α = vec(Φ) and y = vec(Y) are vectorized matrices
and ε ∼ N (0,Σ ⊗ IT ), with IT being a T -dimensional

10 We also performed the forecasting exercises including the lags
(1, 2, and 7) for exogenous variables, but the results were unchanged
although computationally intensive and time demanding. For these
reasons, and to have proper forecasts, we prefer to use the former
models without lagged exogenous variables.

identity matrix. This stacked-form representation allows
us to define and study the prior and posterior distribution
of the matrix of coefficients and the covariance matrix,
leading to a closed-form distribution. In particular, we de-
fine prior information on the matrix of coefficients and on
the covariance matrix using a conjugate normal–Wishart
prior.11

4.2. Univariate models

For all previous models, we formulated 24 (parsimo-
nious) univariate AR specifications with the same as-
sumptions on the lag order of the VAR specifications,
whereas the errors were assumed to be normally dis-
tributed with zero mean and σ 2

h variance for the hours
h = 1, . . . , 24. The AR model with only dummy variables
was used as benchmark in the forecasting comparisons,
and can be written as follows:

yh,t =

p∑
l=1

φlyh,t−l +

K∑
k=1

ψkdkt + εh,t .

On the other hand, the univariate frequentist and Bayesian
AR models extended with exogenous variables, ARX and
BARX models respectively, can be written as:

yh,t =

p∑
l=1

φlyh,t−l +

K∑
k=1

ψkdkt + α1xht + α2zht + α3wht

+ β1mt−1 + β2gt−1 + β3ct−1 + εh,t ,

where xht , zht , and wht represent (forecasted) demand and
renewable energy variables, whereas mt−1, gt−1, and ct−1
are the fossil fuel prices previously described. Even in the
univariate case, we used both the frequentist estimation
procedure and the Bayesian estimation procedure.

To support the multivariate formulation, we run 24
univariate models with dummies, lags of yt , and funda-
mentals lagged same-hour prices, adding also the first lag
of all other remaining hours; that is,

yh,t =

p∑
l=1

φlyh,t−l +

K∑
k=1

ψkdkt + α1xht + α2zht + α3wht

+ β1mt−1 + β2gt−1 + β3ct−1 +

∑
j̸=h

γjyj,t−1 + εh,t .

Then, from the resulting 24 residual series of each model,
ε̂h,t , the variance–covariance matrix was computed. Un-
correlated residuals make the multivariate VAR specifica-
tion unnecessary; however, we found evidence of large
correlations across all markets studied.12 Therefore, a VAR
model with full covariance matrix Σ seems more appro-
priate to estimate this covariance structure and it should
result in increased density forecast accuracy.

11 We performed the analysis using both a standard Minnesota prior
and the normal–Wishart priors, and the results were similar. Therefore,
because of lack of space, we report only the results for the latter.
Details on the prior information and posterior distribution are reported
in Section 8 in the supplementary material.
12 These results have been omitted for lack of space, but they are
available on request.
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4.3. Forecast assessment

We assessed the goodness of our forecasts using differ-
ent point and density metrics. Considering the accuracy
of point forecasts, we used the root-mean-square errors
(RMSEs) for each of the hourly prices, as well as the
RMSEs of the daily average and of an average restricted
only to central hours, as specified below. The RMSE for
h = 1, . . . , 24 hourly prices is computed as

RMSEh =

√ 1
T − R

T−1∑
t=R

(
ŷh,t+1|t − yh,t+1

)2
, (4)

where T is the number of observations, R is the length of
the rolling window, and ŷh,t+1|t are the individual hourly
price forecasts. In addition, we analysed the average RM-
SEs for all 24 h (RMSEAvg) and for the hours from 8 a.m.
to 8 p.m. (peak hours, RMSEP

Avg), computed as follows:

RMSEAvg =
1
24

24∑
h=1

RMSEh, (5)

RMSEP
Avg =

1
13

20∑
h=8

RMSEh. (6)

To evaluate density forecasts, we used the average con-
tinuous ranked probability score (CRPS).13

As indicated in Gneiting and Raftery (2007) and Gneit-
ing and Ranjan (2011), some researchers view the CRPS
as having advantages over the log score. In particular,
the CRPS does a better job of rewarding values from the
predictive density that are close to – but not equal to –
the outcome, and it is less sensitive to outlier outcomes.
The CRPS, defined such that a lower number is a better
score, is given by

CRPSh,t (yh,t+1) =

∫
∞

−∞

(
F (z) − I{yh,t+1 ≤ z}

)2 dz
= Ef |Yh,t+1 − yh,t+1| − 0.5Ef |Yh,t+1 − Y ′

h,t+1|,

where F denotes the cumulative distribution function as-
sociated with the predictive density f , I{yh,t+1 ≤ z}
denotes an indicator function taking the value 1 if yh,t+1 ≤

z and 0 otherwise, and Yh,t+1 and Y ′

h,t+1 are independent
random draws from the posterior predictive density. In
the same way we can construct the average CRPS over the
24 h and over peak hours on day t + 1.

More specifically, we report the RMSEs and the aver-
age CRPS for all the univariate and multivariate models
and for every third hour.14

In addition, we apply Diebold–Mariano t tests Diebold
and Mariano (1995) for equality of the average loss (with
loss defined as the squared error or CRPS) to compare
predictions of alternative models with the benchmark
for a given horizon h.15 The differences in accuracy that

13 We also found that the log predictive score and results were
similar; hence, they have not been reported.
14 Tables with all hours are available in Sections 10–13 in the
supplementary material.
15 In our application for testing density forecasts, we used equal
weights without adopting a weighting scheme, as in Amisano and
Giacomini (2007).

are statistically different from zero are denoted with
one, two, or three asterisks, corresponding to significance
levels of 10%, 5%, and 1%, respectively. The underlying
p values are based on t statistics computed with a serial
correlation-robust variance with use of the prewhitened
quadratic spectral estimator of Andrews and Monahan
(1992). Our use of the Diebold–Mariano test, with fore-
casts from models that are, in many cases, nested, is
a deliberate choice, as in Clark and Ravazzolo (2015),
and, as noted by Clark and West (2007) and Clark and
McCracken (2012), this test is conservative and might
result in underrejection of the null hypothesis of equal
predictability. We report p values based on one-sided
tests, taking the AR (VAR) as the null and the other current
models as the alternative.

Finally, we applied the model confidence set proce-
dure of Hansen, Lunde, and Nason (2011) across models
for a fixed horizon to jointly compare their predictive
power without disentangling univariate and multivariate
models. The R package MCS detailed in Bernardi and
Catania (2016) was used, and the differences were tested
separately for each hour and model, with the full process
repeated across all countries. The results are discussed in
the following section.

5. Results

Our results are based on a one-step-ahead forecasting
process with a rolling window approach of four years for
Germany and Denmark and of two years for Italy and
Spain. We recall that we have two estimation samples:
1 January 2011 to 31 December 2014 for Germany and
Denmark and 13 June 2014 to 13 June 2016 for Italy and
Spain. We have two forecast evaluation periods: 1 January
2015 to 31 December 2016 for Germany and Denmark (for
a total of 731 observations) and 14 June 2016 to 13 June
2017 for Italy and Spain (hence only 365 observations).

Before we evaluate the out-of-sample results, our in-
sample evidence provides statistically significant coeffi-
cients for the RES variables in all markets, hence con-
firming the empirical findings in previous literature on
univariate models augmented with RES variables and ex-
tending similar conclusions also to multivariate models.
In particular, the coefficients for forecasted wind and
forecasted solar power are negative in Germany, Italy,
and Spain. Also in Denmark, wind power has a negative
coefficient.16 These results confirm that RES are signifi-
cantly connected to and reduce electricity prices. There-
fore, we continue our analysis by investigating whether
these relationships can result in forecast gains.

To this end, our results show the performance of our
different univariate and multivariate models, from the
simplest ones (with only dummy variables, the bench-
marks) to more complex ones containing gas, coal, CO2,
and forecasts for demand, wind power, and solar power.
Alternative formulations referred to subsets of drivers are
described in Table 3 in the supplementary material, and
the results are summarized in Tables 1 and 2 across all

16 Detailed in-sample results are available on request.
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Table 1
RMSE values for AR (VAR) benchmark models, and RMSE ratios for other models.

Hour

1 4 7 10 13 16 19 22 Avg Avg8−20

Germany
AR 7.240 7.387 8.027 8.905 9.214 9.669 8.692 6.277 8.259 9.333
ARX (FD+RES+Fuels) 5.336∗∗∗ 5.939∗∗ 6.430∗∗∗ 6.928∗∗∗ 6.662∗∗∗ 7.068∗∗∗ 6.867∗∗∗ 4.871∗∗∗ 6.326 7.065
BAR 7.226∗∗ 7.387 8.011∗∗ 8.887∗∗∗ 9.214 9.659∗∗∗ 8.666∗∗∗ 6.258∗∗∗ 8.251 9.314
BARX (FD+RES+Fuels) 5.329∗∗∗ 5.932∗∗ 6.430∗∗∗ 6.768∗∗∗ 6.597∗∗∗ 7.068∗∗∗ 6.728∗∗∗ 4.821∗∗∗ 6.260 6.972
VAR 4.278 4.944 6.271 6.905 7.934 8.350 8.290 6.164 6.839 7.993
VARX (FD+RES+Fuels) 4.492 5.404 6.396 6.083∗∗∗ 6.315∗∗∗ 7.039∗∗∗ 6.715∗∗∗ 4.654∗∗∗ 5.964 6.698
BVAR 4.282 4.939 6.271 6.912 7.934 8.342 8.290 6.158 6.839 7.993
BVARX (FD+RES+Fuels) 4.445 5.414 6.415 6.035∗∗∗ 6.276∗∗∗ 6.964∗∗∗ 6.591∗∗∗ 4.629∗∗∗ 5.923 6.642

Denmark
AR 5.850 6.566 6.857 13.162 8.226 8.029 10.300 6.012 8.468 10.465
ARX (FD+RES+Fuels) 5.376 6.211 6.082∗∗∗ 9.661∗∗∗ 6.893∗∗∗ 6.544∗∗∗ 8.240∗∗∗ 5.345∗ 6.969 8.121
BAR 5.838∗∗ 6.553∗∗∗ 6.843∗∗∗ 13.096∗∗∗ 8.210∗∗∗ 8.021∗∗∗ 10.279∗∗∗ 6.000∗∗∗ 8.451 10.444
BARX (FD+RES+Fuels) 5.382 6.211 6.089∗∗∗ 9.635∗∗∗ 6.885∗∗∗ 6.552∗∗∗ 8.219∗∗∗ 5.339∗ 6.961 8.110
VAR 3.413 4.131 5.159 10.913 7.607 7.466 10.441 5.897 7.197 9.328
VARX (FD+RES+Fuels) 4.386 5.684 5.690 10.553 6.778∗∗ 6.421∗∗∗ 8.750∗∗∗ 5.213∗∗∗ 6.974 8.460
BVAR 3.413 4.135 5.164 10.913 7.599∗∗∗ 7.451∗∗∗ 10.431∗∗ 5.891∗∗ 7.190 9.319
BVARX (FD+RES+Fuels) 4.386 5.680 5.690 10.553 6.755∗∗∗ 6.421∗∗∗ 8.760∗∗∗ 5.201∗∗∗ 6.974 8.451

Italy
AR 4.560 4.405 5.162 9.107 6.389 8.122 9.835 7.104 6.838 8.331
ARX (FD+RES+Fuels) 4.410 4.185 4.966 8.561 5.776∗∗∗ 7.513∗∗ 9.638 6.862 6.469 7.806
BAR 4.551 4.401 5.157 9.098∗∗ 6.389 8.122∗ 9.835 7.111 6.831 8.331
BARX (FD+RES+Fuels) 4.432 4.238 4.961∗ 8.524∗∗ 5.756∗∗∗ 7.488∗∗∗ 9.560∗ 6.870 6.455 7.764
VAR 3.884 4.105 4.753 8.569 6.144 7.650 9.582 6.893 6.507 7.901
VARX (FD+RES+Fuels) 4.094 4.228 4.881 8.098 5.511∗∗∗ 7.107∗∗ 9.668 6.996 6.357 7.530
BVAR 3.880 4.101 4.753 8.569 6.150 7.650 9.572∗∗ 6.893∗ 6.507 7.901
BVARX (FD+RES+Fuels) 4.051 4.142 4.853 8.106 5.523∗∗∗ 7.061∗∗ 9.649 6.934 6.325 7.506

Spain
AR 7.036 6.741 7.066 6.421 6.140 6.873 5.574 4.628 6.299 6.389
ARX (FD+RES+Fuels) 5.692∗∗∗ 5.251∗∗∗ 5.483∗∗∗ 5.162∗∗∗ 4.992∗∗∗ 5.471∗∗∗ 4.922∗∗ 4.721 5.197 5.201
BAR 7.029∗ 6.728∗∗∗ 7.045∗∗∗ 6.382∗∗∗ 6.122∗∗∗ 6.852∗∗∗ 5.541∗∗∗ 4.609∗∗∗ 6.274 6.363
BARX (FD+RES+Fuels) 5.755∗∗∗ 5.379∗∗∗ 5.688∗∗∗ 5.419∗∗∗ 5.145∗∗∗ 5.601∗∗∗ 5.033∗∗ 4.813 5.335 5.360
VAR 3.943 4.638 5.227 4.761 5.018 5.908 5.363 4.823 5.110 5.317
VARX (FD+RES+Fuels) 3.947 4.360 4.406∗∗∗ 4.071∗∗∗ 4.140∗∗∗ 4.443∗∗∗ 4.242∗∗∗ 4.138∗∗ 4.262 4.259
BVAR 3.943 4.638 5.227 4.751 5.013 5.890∗∗ 5.325∗∗∗ 4.794∗∗∗ 5.100 5.301
BVARX (FD+RES+Fuels) 3.982 4.415∗ 4.474∗∗∗ 4.094∗∗∗ 4.160∗∗∗ 4.472∗∗∗ 4.274∗∗∗ 4.148∗∗ 4.298 4.286

FD, forecasted demand.
Notes:
1Forecast errors are calculated using a rolling window estimation. ‘Avg’ and ‘Avg8–20 ’ stand for RMSEs computed as in Eqs. (5) and (6).
2See Section 4 for details on model formulations. ‘X’ indicates models with exogenous variables, while ‘B’ represents Bayesian conjugate
normal–Wishart priors.
3∗∗∗ , ∗∗ , and ∗ indicate RMSE ratios are significantly different from 1 at the 1%, 5%, and 10% significance levels according to the Diebold–Mariano
test.
4Grey cells indicate those models that belong to the superior set of models resulting from the model confidence set procedure at a confidence
level of 10%.

markets at every third hour, whereas extensive compar-
isons are shown in Tables 4–11 in the supplementary
material.

Recalling the main objectives of this analysis, we have
shown clearly the superiority of multivariate models when
the full structure of 24 h is considered. Multivariate VAR
models outperform simple AR models when only sea-
sonality is included. This holds true systematically across
all countries, and according to both point metrics and
density metrics. For instance, in Germany, the average
RMSE changes from 8.259 e/MWh in the univariate case
to 6.839 e/MWh in the multivariate case. In Spain, it
changes from 6.299 e/MWh to 5.110 e/MWh. The case is
similar for the CRPSs, for which we observe substantial re-
ductions of almost 18% (from 4.427 to 3.643) in Germany,
13% (from 4.901 to 4.273) in Denmark, 5% (from 3.658 to
3.469) in Italy, and 20% (from 3.517 to 2.831) in Spain for
average values computed over the 24 h. The AR models

are included in the model confidence set in only ten
cases over 64 horizons in Tables 1 and 2 for both metrics
and mainly for the Italian market. VAR models have a
much higher frequency of inclusion. Hence, this supports
our expectations of more efficient forecasts obtained by
considering the interrelationships among the whole 24 h,
as suggested by Stock and Watson (2002) and anticipated
by Raviv et al. (2015).

Moreover, considering the most important fact, which
is the forecasting improvements resulting from the inclu-
sion of RES and/or a subset of drivers, our results show
that the Bayesian multivariate models with forecasted
RES-E and fuels exhibit substantial improvements gen-
erally in all markets. The average reductions in the loss
function are similar for both metrics and range from 10%
to 20% in Germany and Spain and from 1% to 5% in Den-
mark and Italy. Forecast gains increase in the peak hours,
as shown in the columns with header ‘Avg8–20’. When
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Table 2
Average CRPS for AR (VAR) benchmark models, and CRPS ratios for other models.

Hour

1 4 7 10 13 16 19 22 Avg Avg8−20

Germany
AR 3.770 4.062 4.467 4.942 4.962 4.970 4.792 3.423 4.427 4.964
ARX (FD+RES+Fuels) 2.926∗∗∗ 3.420∗∗∗ 3.672∗∗∗ 3.781∗∗∗ 3.563∗∗∗ 3.593∗∗∗ 3.786∗∗∗ 2.663∗∗∗ 3.422 3.733
BAR 3.770 4.062 4.458∗ 4.927∗∗∗ 4.957∗ 4.960∗∗ 4.768∗∗∗ 3.409∗∗∗ 4.418 4.954
BARX (FD+RES+Fuels) 2.926∗∗∗ 3.420∗∗∗ 3.672∗∗∗ 3.702∗∗∗ 3.528∗∗∗ 3.598∗∗∗ 3.719∗∗∗ 2.646∗∗∗ 3.391 3.688
VAR 2.261 2.901 3.443 3.772 4.185 4.208 4.525 3.347 3.643 4.173
VARX (FD+RES+Fuels) 2.390 3.040 3.443 3.316∗∗∗ 3.294∗∗∗ 3.509∗∗∗ 3.692∗∗∗ 2.570∗∗∗ 3.169 3.497
BVAR 2.254∗∗ 2.886∗∗∗ 3.426∗∗∗ 3.764∗∗ 4.177∗∗ 4.191∗∗∗ 4.507∗∗∗ 3.334∗∗∗ 3.632 4.160
BVARX (FD+RES+Fuels) 2.358 3.037 3.426 3.282∗∗∗ 3.260∗∗∗ 3.472∗∗∗ 3.615∗∗∗ 2.554∗∗∗ 3.137 3.451

Denmark
AR 3.236 3.690 3.896 8.844 4.400 4.156 5.379 3.188 4.901 6.199
ARX (FD+RES+Fuels) 2.997∗∗∗ 3.446∗∗∗ 3.471∗∗∗ 7.517∗∗∗ 3.670∗∗∗ 3.387∗∗∗ 4.255∗∗∗ 2.866∗∗∗ 4.210 5.151
BAR 3.230∗∗ 3.683∗∗ 3.892 8.817∗∗∗ 4.387∗∗∗ 4.148∗∗ 5.368∗∗ 3.182∗∗ 4.891 6.187
BARX (FD+RES+Fuels) 2.997∗∗∗ 3.443∗∗∗ 3.475∗∗∗ 7.509∗∗∗ 3.665∗∗∗ 3.387∗∗∗ 4.249∗∗∗ 2.866∗∗∗ 4.210 5.151
VAR 2.019 2.644 3.035 7.829 3.925 3.761 5.329 3.100 4.273 5.606
VARX (FD+RES+Fuels) 2.314 3.093 3.199 7.727∗ 3.556∗∗∗ 3.295∗∗∗ 4.487∗∗∗ 2.737∗∗∗ 4.119 5.219
BVAR 2.007∗∗∗ 2.631∗∗∗ 3.020∗∗∗ 7.790∗∗∗ 3.901∗∗∗ 3.731∗∗∗ 5.308∗∗∗ 3.088∗∗∗ 4.247 5.572
BVARX (FD+RES+Fuels) 2.300 3.067 3.178 7.743∗ 3.532∗∗∗ 3.268∗∗∗ 4.460∗∗∗ 2.725∗∗∗ 4.106 5.208

Italy
AR 2.547 2.460 2.851 4.772 3.494 4.390 5.037 3.616 3.657 4.413
ARX (FD+RES+Fuels) 2.476 2.362∗ 2.731∗∗ 4.514∗∗ 3.141∗∗∗ 4.100∗∗∗ 4.992 3.522∗∗ 3.481 4.157
BAR 2.539∗∗ 2.455 2.854 4.767 3.491 4.386 5.032 3.609∗∗ 3.653 4.409
BARX (FD+RES+Fuels) 2.488 2.386 2.720∗∗ 4.457∗∗∗ 3.113∗∗∗ 4.039∗∗∗ 4.881∗∗ 3.511∗∗ 3.449 4.095
VAR 2.147 2.265 2.588 4.509 3.342 4.095 4.954 3.569 3.469 4.177
VARX (FD+RES+Fuels) 2.291 2.378 2.694 4.356 3.008∗∗∗ 3.812∗∗ 5.177 3.744 3.455 4.043
BVAR 2.145 2.263 2.580∗ 4.482∗∗∗ 3.329∗∗ 4.075∗∗∗ 4.924∗∗∗ 3.551∗∗∗ 3.452 4.156
BVARX (FD+RES+Fuels) 2.259 2.310 2.653 4.338 2.991∗∗∗ 3.763∗∗∗ 5.157 3.708 3.417 4.014

Spain
AR 3.914 3.757 3.948 3.555 3.402 3.844 3.139 2.669 3.517 3.556
ARX (FD+RES+Fuels) 3.112∗∗∗ 2.915∗∗∗ 3.064∗∗∗ 2.901∗∗∗ 2.786∗∗∗ 3.037∗∗∗ 2.734∗∗∗ 2.613 2.891 2.895
BAR 3.910 3.746 3.952 3.541 3.388 3.832 3.117 2.658 3.503 3.538
BARX (FD+RES+Fuels) 3.151∗∗∗ 2.987∗∗∗ 3.190∗∗∗ 3.040∗∗∗ 2.858∗∗∗ 3.106∗∗∗ 2.787∗∗∗ 2.666 2.961 2.973
VAR 2.128 2.536 2.897 2.644 2.743 3.267 3.019 2.745 2.831 2.945
VARX (FD+RES+Fuels) 2.145 2.381∗ 2.422∗∗∗ 2.239∗∗∗ 2.271∗∗∗ 2.447∗∗∗ 2.364∗∗∗ 2.306∗∗∗ 2.350 2.350
BVAR 2.122 2.526 2.885 2.631 2.724 3.244 2.989 2.720 2.814 2.924
BVARX (FD+RES+Fuels) 2.164 2.414 2.471∗∗∗ 2.250∗∗∗ 2.263∗∗∗ 2.440∗∗∗ 2.373∗∗∗ 2.306∗∗∗ 2.361 2.353

FD, forecasted demand.
Notes:
1Forecast errors are calculated by a rolling window estimation. ‘Avg’ and ‘Avg8–20 ’ stand for average CRPS for average values.
2See Section 4 for details on model formulations. ‘X’ indicates models with exogenous variables, while ‘B’ represents Bayesian conjugate
normal–Wishart priors.
3∗∗∗ , ∗∗ , and ∗ indicate average score ratios are significantly different from 1 at the 1%, 5%, and 10% significance levels according to the
Diebold–Mariano test.
4Grey cells indicate those models that belong to the superior set of models resulting from the model confidence set procedure at a confidence
level of 10%.

we focus on each individual hour, BVARX models sta-
tistically outperform VAR models, and they are included
in the model confidence set in most of the cases, and
almost always for late morning, afternoon, and evening
hours. VARX models also perform accurately, but give
some economically smaller gain than do BVARX models.

Going into detail and exploring the forecasting ability
of several models with different combinations of variables
to inspect their individual contribution, we first find evi-
dence of forecasting improvements when demand and all
RES are included. Moreover, the BVAR model with only
forecasted power wind generation (besides forecasted de-
mand and fuels) leads to better forecasts than those ob-
tained with the inclusion of only forecasted solar power
generation (besides forecasted demand and fuels), espe-
cially for point forecasts over hours 8–24 in Germany,
Italy, and Spain (not performed in Denmark because there
is no available solar power). From comparison of the

ability of the BVAR model with forecasted demand and
RES with that containing forecasted demand and fuels,
the former is found to perform better. However, there
are further gains when all these exogenous regressors are
considered simultaneously.17

17 This may be due to the contribution of individual fuels. For
instance, in an additional analysis within the frequentist approach, we
observed that models with selected fuels, forecasted demand, and RES
show slight improvements in the RMSEs: in Germany, the inclusion of
both CO2 and coal increases the forecast accuracy over hours 8–24;
in Denmark, the inclusion of only gas improves the forecast accuracy
during hours 8–12, whereas the inclusion of coal increases the forecast
accuracy over hours 13–24. In Italy, coal and gas together are important
during ramp-up and ramp-down hours (9–10 and 18–19), whereas
only gas is important during hours 11–17; this is consistent with
Italy’s dependence on thermal generation (and so on traditional fuels),
given the still marginal penetration of RES (compared with the other
countries studied). In Spain, the inclusion of coal slightly and generally
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6. Conclusions

We have compared the forecasting performances of
linear univariate and multivariate models with enlarged
specifications. Our set of models include AR and VAR
models with only dummy variables for seasonality, which
are used as a baseline for the corresponding formula-
tions enlarged by including also fuels, forecasted demand,
and forecasted RES, analysed from both the frequentist
preservative and the Bayesian perspective.

Our results indicate that models with demand, RES,
and fuels dominate those without fuels and forecasted
RES in terms of both point forecasting and density fore-
casting. In particular, the first important finding is that
the multivariate models outperform the univariate ones,
given that they allow for interrelationships among dif-
ferent hours of the day. Secondly, the Bayesian approach
leads to further forecasting improvements. Thirdly, and
for the first time since the increase in RES penetration, we
show that the models with only forecasted wind power
generation perform better than those with solar power
generation only. Their simultaneous inclusion further im-
proves the performance.

We also provide strong empirical evidence for the
influence of renewable power generation during the day,
and consistently with the country intraday profiles. Dur-
ing the first hours of the day, the models without fore-
casted RES-E are more accurate than those with it, and
again with errors from multivariate models being lower
than those from univariate ones. In contrast the increasing
amount of RES-E during the day leads to more accurate
forecasts from augmented models. Furthermore, our re-
sults are consistent across all scoring rules used, such as
the RMSE and the CRPS.

From an energy forecasting perspective these linear
multivariate AR models with forecasted RES, forecasted
demand, and fuels seem to have interesting and impor-
tant advantages over the widely used univariate ones. It
is worth emphasizing the increasing relevance of den-
sity forecasting since in recent years market operators
have been exploring opportunistic bidding across market
sessions, as emphasized by Bunn et al. (2018). Indeed,
forecasting the day-ahead prices is important for market
operators and traders to plan their strategy. For example,
arbitrage opportunities can be explored by deciding on in
which market session to bid according to the forecasted
day-ahead prices. For this reason, energy regulatory au-
thorities are trying to formulate optimal pricing rules to
avoid these market inefficiencies. Agents operating units
responsible for balancing are exposed to economic con-
sequences from differentials between day-ahead and bal-
ancing prices, which are used to evaluate the actual unit
imbalance according to the sign of the system imbalance.
In simple words, if one unit is short imbalanced when the

increases the forecast accuracy, which is, however, comparable with
the model with all fuels at selected hours (12–15 and 23–24). In all
these cases, adding the omitted fuels results in only a very small
reduction in the performances, hence supporting the conclusion of the
overall importance of all fossil fuels when one is forecasting day-ahead
electricity prices. These results are omitted for lack of space, but they
are available on request.

market is long (or long imbalanced when the market is
short), it receives profits for relieving the system (which
are computed on the basis of price differentials). Other-
wise, if the unit and the system have signs in agreement,
the unit receives penalties because it increases the system
imbalance.

All these considerations clearly show the extreme rel-
evance of both point forecasting and density forecasting
for these day-ahead electricity prices, and our results
highlight that the Bayesian multivariate models with the
drivers considered improve them substantially.
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