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Abstract

We compare a credit rating agency’s incentives to acquire costly information when it is

only paid for giving favorable ratings to the corresponding incentives when the agency is

paid upfront, i.e. irrespective of the ratings assigned. We show that, in the presence of

moral hazard, contingent fees provide stronger dynamic incentives to acquire information

than upfront fees and may induce higher social welfare. When the fee structure is chosen

by the agency, contingent fees arise as an equilibrium outcome, in line with the way the

market for credit rating actually works.
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1 Introduction

Credit rating agencies’ (CRAs) principal source of revenue comes from issuers of rated secu-

rities, in the form of fees paid only if the issuer chooses to publish the rating obtained.1 To

receive any fees, rating agencies are thus effectively forced to give favorable ratings. Several

commentators have proposed that issuers instead be required to pay CRAs upfront (i.e., in-

dependently of whether or not an issuer received a favorable rating), the idea being that with

fees paid upfront CRAs would no longer have incentives to inflate ratings.2 However, the

difficulty to monitor CRAs’ research activities adds a moral hazard dimension to the problem

of regulating the credit rating industry.3 The primary goal of our paper is to argue that

contingent fees provide stronger dynamic incentives to acquire information than upfront fees

and to show that, accounting for moral hazard, contingent fees can in fact result in more

information acquisition and higher social welfare than upfront fees.

We study a CRA rating an infinite sequence of short-lived firms. Each firm seeks to

finance a project with uncertain return. Costly information acquisition enables the agency

to determine those returns. However, whether the agency shirks or acquires information is

unobserved by firms and investors. Each period, the agency’s choice is between (a) acquiring

information to assign a favorable rating if and only if this period’s project is high return, and

(b) shirking and assigning a favorable rating automatically. In the spirit of Kreps and Wilson

(1982) and Milgrom and Roberts (1982) the agency is one of two private types, “committed”

or “strategic”. The committed agency makes choice (a) in all periods. The strategic agency

chooses between (a) and (b) with a view to maximize its expected intertemporal profit. The

reputation of the agency refers to firms and investors’ belief that the agency is committed.

Each period, the reputation of the agency is updated based on the accuracy of the last period’s

rating.

We assume that firms pay fees proportional to the expected financial gain which a rating

induces, and examine two settings. The contingent-fee setting is such that fees are only paid

if and when a firm obtains a favorable rating. These fees are proportional to the financial

gain resulting from a favorable rating. The upfront-fee setting is such that fees are paid before

1See, e.g., US SEC (2012): 12.
2Andrew Cuomo, who served as Attorney General of New York during the financial crisis, was among the

first public figures to support this change of regulation.
3As noted by a US Senate report (US Senate (2011): 304), during the build-up of the financial crisis

“neither Moody’s nor S&P hired sufficient staff or devoted sufficient resources to ensure that the initial rating
process ... produced accurate credit ratings”.
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ratings are assigned. These fees are thus proportional to the expected financial gain induced by

the rating process. In either setting, the agency’s choice of information acquisition is derived

by weighing the immediate gains from shirking and assigning a favorable rating against future

gains derived from a high reputation (obtained through correct ratings).4 Compared to fees

paid upfront, contingent fees raise the immediate gains from assigning a favorable rating.

Moreover, this effect strengthens with the reputation of the agency (since increasing the

agency’s reputation pushes the fees upward). Hence, when the agency’s reputation is initially

high, upfront fees induce more information acquisition than contingent fees.

On the other hand, when the agency’s reputation is initially low then reputational incen-

tives can induce the strategic agency to acquire more information under contingent fees than

under upfront fees. The logic is the following. The more reputable the agency, the lower the

chances that a firm will obtain a favorable rating from the agency. So fees paid upfront are

in part pressed downward by an increase in the agency’s reputation. This, in turn, implies

that, from the viewpoint of the agency, incentives to build up reputation are weaker in the

upfront-fee setting than in the contingent-fee setting. We show in our main theorem that the

aforementioned mechanism can lead to more information acquisition and higher social welfare

when fees are contingent than when they are upfront. This result suggests that replacing

contingent fees with upfront fees could be socially damaging in markets where all CRAs have

become suspect, as is perhaps the case today. The same would be true of markets with many

new CRAs having to build up their reputations.

In the second part of the paper we extend our model so as to explore the strategic agency’s

choice of fee structure. We allow the agency to make each period a take-it-or-leave-it offer to

the firm it proposes to rate. We assume –in line with current practice in the industry– that

the fee offered by the agency is unobserved by investors. First, contingent fees arise as an

equilibrium outcome irrespective of the agency’s reputation. This prediction matches the way

the market for credit rating actually works. Second, in any equilibrium, the agency’s take-

it-or-leave-it offers induce the same amount of information acquisition as the contingent-fee

structure examined in the first part our paper, irrespective of whether or not contingent-

fees are socially optimal. Our findings thus suggest that regulatory intervention might be

necessary.

The paper is structured as follows. The related literature is discussed below. The model

is presented in Section 2. An overview of the main result is given in Section 3, in a simplified

4In the model we assume that the cost of information is sufficiently small that acquiring information is
socially optimal. So more information acquisition implies higher social welfare.
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two-period setting. The core analysis is in Section 4. Section 5 extends our baseline model

by endogenizing the agency’s fee structure. Section 6 contains a discussion of the policy

implications of our analysis, and Section 7 points to the limitations of our model. Section 8

concludes.

Related Literature. This paper contributes to the literature on credit rating by analyzing

the link between different compensation schemes and a rating agency’s incentives to acquire

costly information. Specifically, we identify the conditions under which fees paid upfront by the

issuer of a security generate less shirking than fees paid only in case of a favorable rating. Our

paper builds on the work of Mathis, McAndrews and Rochet (2009) showing that when fees are

contingent then reputational concerns are typically insufficient to discipline rating agencies.

The effects of reputational concerns in the credit rating industry are further analyzed in five

recent papers: Fulghieri, Strobl and Xia (2014), Frenkel (2015), Kashyap and Kovrijnykh

(2016), Bouvard and Levy (2018) and Kovbasyuk (2018). Fulghieri et al. (2014) analyze the

effect of introducing unsolicited credit ratings on CRAs’ behavior in a model with contingent

fees. The authors show that the adoption of unsolicited ratings raises CRAs’ profits, and can

lead to more informative ratings, thereby improving social welfare. Both Frenkel (2015) and

Bouvard and Levy (2018) examine a rating agency paid upfront by the rated firms. In Frenkel

(2015), the CRA has an incentive to maintain a reputation for credibility among investors

but also an incentive to develop a second reputation for leniency among issuers. The author

shows that in markets with few issuers, these incentives may lead the CRA to inflate ratings

as a strategic tool to form a “double reputation”. In the setting of Bouvard and Levy (2018),

the agency chooses how much information to acquire. The firms’ projects are heterogeneous

in quality and so a reputation for providing accurate ratings attracts high-quality firms but

repels low-quality firms. The agency thus aims for a balanced reputation. The fee structure

of CRAs is endogenized in both Kashyap and Kovrijnykh (2016) and Kovbasyuk (2018). In

Kashyap and Kovrijnykh (2016) the focus is on who should pay for the ratings. The authors

find that rating errors tend to be larger in the issuer-pays models than in the investor-pays

model. Kovbasyuk (2018) analyzes the merits of forcing CRAs to publish the fees charged to

rated firms and shows that whereas private payments lead to coarse ratings, public payments

on the other hand induce precise ratings at the top of the rating scale.

Our paper is related at a broader level to the vast literature on rating agencies recently

surveyed in Jeon and Lovo (2013) and Sangiorgi and Spatt (2017), and particularly to two

strand of papers, those studying information acquisition in the credit rating industry and

3



those exploring rating inflation. Both Kashyap and Kovrijnykh (2016) and Bouvard and Levy

(2018) belong to the first strand of research, which also includes Opp, Opp and Harris (2013)

and Bongaerts (2014), though the focus of the latter papers bears little relation to what we

do.5 The strand of research exploring rating inflation includes Skreta and Veldkamp (2009)

on the connection between asset complexity and rating inflation, Sangiorgi and Spatt (2016)

examining the implications of opacity about contacts between issuers and rating agencies,

and Goldstein and Huang (forthcoming) on the link between rating inflation and firms’ in-

vestments. Bolton, Freixas and Shapiro (2012) note for instance that upfront fees eliminate

the incentives for CRAs to inflate ratings, but do not eliminate shopping.

Finally, we are connected more generally to the literature exploring the regulation of

markets for financial advice surveyed in Inderst and Ottaviani (2012), and to the work of

Chade and Kovrijnykh (2016) exploring optimal contracts for delegated information acqui-

sition. However, since we aim to capture frictions that are specific to the market for credit

ratings, the settings of those papers differ in many ways from ours.

2 A Model of Credit Rating with Contingent Fees

We examine a CRA rating a sequence of short-lived firms indexed by t ∈ {1, 2, . . . }. Each firm

seeks to persuade investors to finance a project with uncertain (net) return qt ∈ {−1, 1}. The

sequence {qt} is independent and identically distributed according to P(qt = 1) = 1
2
.6 Firms

which obtain a favorable rating pay to the agency a fee proportional to investors’ perceived

increase in their project’s expected return. Incurring a cost enables the agency to learn a

project’s return, but information acquisition is unobservable. The agency is either committed

to acquire information in all periods, or behaves strategically so as to maximize its expected

intertemporal profit. The details of the model are laid out below. We shall at times refer to

this model as the contingent-fee setting (the upfront-fee setting will be presented in Section

4).

Ratings and Information Acquisition. Each period the agency assigns a rating rt ∈
{−1, 1} (potentially) informing firms and investors about qt. Incurring a cost c ∈ (0, 1

2
) at

5Opp et al. (2013) examine the impact of rating-contingent regulations. Bongaerts (2014) sheds light on
the relative merits of the investor-pays vs issuer-pays models of the rating industry by investigating which
alternative generates more shirking.

6We abuse notation slightly and use qt to denote both the random variable and its realization.
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the beginning of period t enables the agency to observe qt (noisy signals of project quality

are considered in Online Appendix A). Assuming c < 1
2

ensures that acquiring information

is socially optimal. The choice of the agency is between (a) acquiring information to assign

rt = qt and (b) automatically assigning rt = 1 without acquiring information in the first

place.7 Information acquisition is unobservable and therefore non-contractible.

Reputation. The agency is of one of two types: committed or strategic. The agency’s type

is private information, and determined by nature once and for all at the onset of the game.

Each period the committed agency acquires information and assigns rt = qt. The strategic

agency on the other hand chooses between acquiring information and shirking with a view to

maximize profits over the infinite horizon. Let ρt denote firms and investors’ beginning-of-

period-t belief that the agency is committed. We assume ρ1 ∈ (0, 1) and refer to ρt as the

agency’s reputation in period t.

Firms and Investors. At the beginning of each period firms and investors form beliefs

regarding the probability that the strategic agency will acquire information in the current

period; let êt denote the probability attached to the strategic agency acquiring information in

period t.

If the agency announces rt = −1 then firm t’s project is instantly dropped. On the other

hand, applying Bayes’ rule, the rating rt = 1 raises firms and investors’ perceived expected

return from 0 to

E[qt|rt = 1, ρt, êt] =
1− (1− ρt)(1− êt)
1 + (1− ρt)(1− êt)

. (1)

Investors are assumed to be on the long side of the market, so that, if rt = 1, the project of

firm t is sold to investors at the price E[qt|rt = 1, ρt, êt] ≥ 0.

Fees. Let φcot (rt) denote the agency’s period-t fee given rt (the superscript refers to “contin-

gent”). We assume that the agency obtains a fraction β of all proceeds resulting from selling

projects to investors; for now β is exogenous and can be interpreted as the bargaining power

7That the agency (when it acquires information) truthfully reports what it observes is without loss of
generality, as shirking always dominates acquiring information followed by misreporting qt. The case in which
the agency possibly deflates ratings when shirking is considered in Online Appendix B.
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of the agency (Section 5 endogenizes the fee structure). Thus,8

φcot (rt) =

βE[qt|rt = 1, ρt, êt] if rt = 1;

0 if rt = −1.
(2)

If β < 2c then, in the upfront-fee setting presented in Section 4, the strategic agency always

shirks. To make the analysis interesting we thus assume β > 2c.

Timing. The timing within a period is as follows (see Figure 1). The agency first decides

whether or not to acquire information. Based on information gathered (if any), the agency

publicly announces rt, and receives the fee φcot (rt). All players observe qt and the game moves

on to the next period.9

agency shirks
or acquires
information

agency
announces rt

agency
receives φcot (rt)

qt is observed
by all players

Figure 1: timeline

Payoffs. The period-t profit of the agency is πcot := φcot (rt)− c1{info. acq. in period t}, where 1X

denotes the indicator function of X. The payoff of firm t is 1{rt=1}E[qt|rt = 1, ρt, êt, ]−φcot (rt).

Finally, investors’ payoff in period t is given by 1{rt=1}
(
qt − E[qt|rt = 1, ρt, êt]

)
.

All payoffs are discounted according to the discount factor δ ∈ (0, 1), δ 6= 2β+4c
3β+2c

.10 We

refer to
∑∞

t=1 δ
t−1πcot as the agency’s intertemporal profit. Social welfare, W , is defined as the

discounted sum of all players’ payoffs:

W :=
∞∑
t=1

δt−1
(
qt1{rt=1} − c1{information acquired in period t}

)
.

As c < 1
2
, acquiring information each period maximizes expected social welfare.

8All our results carry through more generally as long as the fee is some increasing function of all proceeds
resulting from selling projects to investors. See Online Appendix C.

9Whether or not qt is observed when rt = −1 is irrelevant, since rt = −1 implies qt = −1. Assuming that
qt is always observed at the end of a period enables us to economize on notation.

10We rule out δ = 2β+4c
3β+2c for expositional simplicity. In this case, multiple equilibria exist which only differ

off equilibrium path.
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Equilibrium. A strategy of the agency specifies a probability of acquiring information as

a function of the history.11 We focus on Perfect Bayesian Equilibria in which the strategic

agency uses a stationary Markov strategy with reputation as the state variable. Let

ρ+
t :=

ρt
ρt + (1− ρt)êt

.

The following definition is adapted from Mathis et al. (2009):

Definition 1. An equilibrium is a mapping e : [0, 1] → [0, 1] specifying the probability e(ρt)

that the strategic agency acquires information given reputation ρt, such that, for all ρ1:

(i) the strategy e(·) maximizes the agency’s expected intertemporal profit given ρt+1 = Ψ(ρt, rt, qt),

where

Ψ(ρt, rt, qt) :=


ρt if qt = 1;

ρ+
t if qt = −1 = rt and ρt > 0;

0 if qt = −1 = −rt, or ρt = 0.

(ii) firms and investors’ beliefs satisfy êt = e(ρt).

In equilibrium investors correctly infer the probability with which the strategic agency

chooses to acquire information, and the agency’s choice of information acquisition is optimal

given the evolution of beliefs captured by Ψ. The beliefs are updated using Bayes’ rule

whenever possible. In particular, if qt = 1 then rt = 1 whether the agency shirks or acquires

information, hence reputation does not change. If qt = −1, two cases arise: rt = 1 reveals that

the agency has shirked (and thus, that the agency is strategic), and rt = −1 reveals that the

agency has acquired information. In the latter case reputation (weakly) increases since the

committed agency acquires information with probability 1. Zero-probability events are dealt

with by assuring that ρt = 0 is an absorbing state of the Markov process and by ascribing any

misreporting to the strategic agency (that is, whether or not the initial probability that the

agency is strategic is positive).

11The structure of the model enables us to focus on the single-agent decision problem facing the agency.
Specifically, we simplified the exposition by leaving a number of “actions” outside of the model: we assumed
that (a) conditional on rt = 1, firm t sells the project to investors at the price E[qt|rt = 1, ρt, êt], and (b) the
division of surplus between the firms and the agency is determined by the exogenous parameter β.
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3 Overview of the Main Result

In this section we briefly analyze a two-period version of the model in order to develop intuition

for the paper’s main result.

We solve this game by backward induction. With two periods only, the strategic agency

shirks at t = 2. Then ê2 = 0 and, by (1) and (2), the agency’s period-2 profit is

πco2 (ρ2) = φco2 (1) = βE[q2|r2 = 1, ρ2, 0] =
βρ2

2− ρ2

.

Consider now the agency’s problem at t = 1. If it shirks (and automatically assigns r1 = 1)

the agency’s expected intertemporal profit is12

φco1 (1) + δ
(1

2
πco2 (ρ1) +

1

2
πco2 (0)

)
.

If instead the agency acquires information, then its expected intertemporal profit is13

1

2
φco1 (1)− c+ δ

(1

2
πco2 (ρ1) +

1

2
πco2 (ρ+

1 )
)
.

where, recall, ρ+
1 = ρ1

ρ1+(1−ρ1)ê1
denotes the Bayes-updated belief that the agency is committed

after observing that q1 = −1 = r1. Shirking is thus optimal if and only if

1

2
φco1 (1) + c ≥ δ

2

(
πco2 (ρ+

1 )− πco2 (0)
)
. (3)

The left-hand side represents the short-run incentive to shirk : 1
2
φco1 (1) captures the gain from

securing a positive fee irrespective of period-1 project’s return, and c the saving from not

paying the cost of information. The right-hand side represents the long-run incentive to

acquire information, and captures the gain from obtaining a larger fee at t = 2 due to a higher

reputation.

In particular, an equilibrium in which the strategic agency shirks with probability 1 at t = 1

exists if and only if (3) holds for ê1 = 0. Noting that ê1 = 0 implies ρ+
1 = 1, straightforward

12To understand (3) note that with probability 1
2 , q1 = 1 in which case nothing is learned about the type

of the agency between periods 1 and 2 (ρ2 = ρ1), while with probability 1
2 , q1 = −1 in which case firms and

investors observe that the agency shirked, and thus learn that the agency is strategic (ρ2 = 0).
13In this case the agency receives the fee φ1(1) with probability 1

2 only, since if qt = −1 the agency announces
rt = −1 and receives φ1(−1) = 0.
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algebra shows that this condition becomes

δ ≤ ρ1

2− ρ1

+
2c

β
. (?)

We next carry out similar calculations, but in a setting in which fees are paid upfront

rather than depending on the rating assigned. We first note that, prior to knowing the rating

assigned, firm t’s “expected value of the rating rt” is P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt] (this is

firm t’s expected revenue from investors). So with fees paid upfront, the agency’s period-t fee

φupt (the superscript refers to “upfront”) satisfies

φupt = βP(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt]. (4)

Then the agency (which still chooses to shirk at t = 2) obtains the period-2 profit

πup2 (ρ2) = φup2 = βP(r2 = 1|ρ2, 0)E[q2|r2 = 1, ρ2, 0] =
βρ2

2
.

Consider now the agency’s problem at t = 1 in the upfront-fee setting. If it shirks the

agency’s expected intertemporal profit is

φup1 + δ
(1

2
πup2 (ρ1) +

1

2
πup2 (0)

)
.

If instead the agency acquires information then its expected intertemporal profit is

φup1 − c+ δ
(1

2
πup2 (ρ1) +

1

2
πup2 (ρ+

1 )
)
.

Hence, here, shirking is optimal if and only if

c >
δ

2

(
πup2 (ρ+

1 )− πup2 (0)
)
, (5)

and an equilibrium in which the strategic agency shirks with probability 1 exists if and only

if (5) holds for ê1 = 0, giving, after a few steps of algebra,

δ ≤ 4c

β
. (??)

Now notice that if ρ1 is sufficiently small (ρ1 <
4c

β+2c
) β, c and δ can be chosen such that
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(??) holds while (?) is violated. This shows that under certain conditions the strategic agency

acquires information (with some positive probability) when fees are contingent but shirks when

fees are paid upfront.14

To gain intuition for this finding, consider the marginal benefit from building a reputation

in the contingent-fee setting (dπco2 /dρ2) and the corresponding benefit under upfront fees

(dπup2 /dρ2). For all ρ2 > 0:

dπco2
dρ2

=
2β

(2− ρ2)2
>
β

2
=
dπup2

dρ2

. (6)

Consequently, the long-run incentive to acquire information is stronger under contingent fees

than under upfront fees:

δ

2

(
πup2 (ρ+

1 )− πup2 (0)
)
>
δ

2

(
πco2 (ρ+

1 )− πco2 (0)
)
, ∀ê1 ∈ [0, 1].

The reason is that with upfront fees the agency is paid at t = 2 proportionately to firm 2’s

belief that it will obtain a favorable rating (that is, proportionately to P(r2 = 1|ρ2, 0)). Yet,

firm 2 expects a reputable agency to act truthfully, and thus to deliver negative ratings with

high probability:

P(r2 = 1|ρ2, 0) =
1

2
· ρ2 + 1 · (1− ρ2)

is decreasing in ρ2. So, in an upfront-fee setting, building a reputation is only moderately

rewarding for the agency. By contrast, firm 2’s belief that it will obtain a favorable rating

plays no role under contingent fees, as the firm only pays the agency conditional on r2 = 1.

As we will see in the next section, the previous findings do not rest on the two-period

nature of the simple model examined here. We further show in the online appendices that

these findings are robust to various modifications of the baseline model: we show in Online

Appendix A that they still hold if the agency observes noisy signals of project quality; Online

Appendix B checks the robustness of our analysis by allowing the strategic agency to announce

rt = −1 whether or not in period t the agency chooses to acquire information; in Online

Appendix C we show that the main results carry through if instead of being paid a fixed

fraction β of all proceeds from selling the projects to investors, the agency is paid an arbitrary

increasing function of these proceeds; Online Appendix D allows the prior probability of qt = 1

14This remark implicitly assumes that an equilibrium exists in the contingent-fee setting for the parameters
we are considering. The existence of an equilibrium is easy to prove.
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to take any value in (0, 1); finally, Online Appendix E shows that our main results continue

to hold in a setting in which qt is never observed by firms and investors.

4 Main Analysis

We characterize in Subsection 4.1 the unique equilibrium of the contingent-fee setting pre-

sented in Section 2. The upfront-fee setting is presented and examined in Subsection 4.2. Our

first main result (Theorem 1) is stated and discussed in Subsection 4.3.

4.1 Contingent Fees

By Bellman’s Principle of Optimality, an equilibrium with value function Vco(·) satisfies the

equation

Vco(ρ) = max
e∈[0,1]

{
(1−e)

[
ϕco(ρ)+δ

(1

2
Vco(ρ)+

1

2
Vco(0)

)]
+e
[ϕco(ρ)

2
−c+δ

(1

2
Vco(ρ)+

1

2
Vco(ρ

+)
)]}

,

where ϕco(ρt) := βE[qt|rt = 1, ρt, e(ρt)] denotes the fee paid to the agency in case rt = 1 as a

function of the agency’s reputation ρt. As the maximand is linear in the control variable, the

previous equation simplifies to

Vco(ρ) = max
{
ϕco(ρ) + δ

(1

2
Vco(ρ) +

1

2
Vco(0)

)
,
ϕco(ρ)

2
− c+ δ

(1

2
Vco(ρ) +

1

2
Vco(ρ

+)
)}
.

We show in the appendix that Vco(0) = 0. Hence, if ϕco(ρ)
2

+ c = δ
2
Vco(ρ

+) the strategic agency

is indifferent between shirking and acquiring information; if ϕco(ρ)
2

+ c > δ
2
Vco(ρ

+) shirking is

uniquely optimal; and if ϕco(ρ)
2

+ c < δ
2
Vco(ρ

+) then acquiring information is uniquely optimal.

In the terminology of Section 3, ϕco(ρ)
2

+ c represents the short-run incentive to shirk, while
δ
2
Vco(ρ

+) represents the long-run incentive to acquire information.

The following proposition establishes that an equilibrium exists, is unique, and exhibits

a familiar pattern (Bénabou and Laroque (1992), Mathis et al. (2009), Board and Meyer-

ter-Vehn (2013)): the strategic agency builds up reputation when it is low, and milks its

reputation when it is high.15

15Like Bénabou and Laroque (1992) and Mathis et al. (2009), our model of reputation is in the spirit of
Kreps and Wilson (1982) and Milgrom and Roberts (1982) in that the agency’s reputation concerns some
underlying permanent type of the agency. In Board and Meyer-ter-Vehn (2013), reputation instead refers to
some changing but sluggish state. Whenever feedback about the state is of the “perfect good news” kind, the
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δ

ρ

0
0

1

1

2β+4c
3β+2c

2c
β+c

e(ρ) = 0 e(ρ) ∈ (0, 1) e(ρ) = 1

ρ ρ

Figure 2: equilibrium with contingent fees

Proposition 1. An equilibrium of the contingent-fee setting exists and is unique. In equilib-

rium, e(0) = 0; for ρ > 0 the equilibrium is characterized by cutoffs ρ ≤ ρ, such that
if ρ ∈ [ρ, 1] then e(ρ) = 0;

if ρ ∈ (ρ, ρ) then e(ρ) ∈ (0, 1);

if ρ ∈ (0, ρ] then e(ρ) = 1.

Moreover, in equilibrium, the fee φcot (1) paid to the agency in the case of a favorable rating is

a non-decreasing function of the agency’s reputation ρt.

The proof of the proposition is in Appendix A. A description of the strategic agency’s

equilibrium behavior for different values of δ is given in Figure 2 (the details of all calculations

are in Appendix A). For δ > 2β+4c
3β+2c

we obtain ρ = 1, that is, the strategic agency acquires

information with probability 1 as long as its reputation is not zero. For δ < 2c
β+c

we obtain

ρ = 0, that is, the strategic agency shirks with probability 1 irrespective of its reputation.

For δ ∈ ( 2c
β+c

, 2β+4c
3β+2c

) we obtain ρ = 0 < ρ < 1, that is, the strategic agency shirks above a

certain level of reputation, and randomizes between shirking and acquiring information below

this reputation.

authors show that the pattern of effort induced is as in the first kind of models, with reputation building at
low reputation and reputation milking at high reputation. This pattern is reversed when feedback about the
state is of the “perfect bad news” kind.
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4.2 Upfront Fees

In this subsection we present and analyze the upfront-fee setting. This setting replicates all

features of the contingent-fee setting (see Section 2) except for the fact that since a firm’s

expected revenue from investors at the time of paying the fee is now P(rt = 1|ρt, êt)E[qt|rt =

1, ρt, êt], the agency’s period-t fee φupt satisfies φupt = βP(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt].

We proceed to characterize the equilibrium behavior of the strategic agency in this setting.

In equilibrium the agency is paid ϕup(ρt) := βP(rt = 1|ρt, e(ρt))E[qt|rt = 1, ρt, e(ρt)] in period

t, and an equilibrium with value function Vup(·) satisfies the Bellman equation16

Vup(ρ) = max
{
ϕup(ρ) + δ

(1

2
Vup(ρ) +

1

2
Vup(0)

)
, ϕup(ρ)− c+ δ

(1

2
Vup(ρ) +

1

2
Vup(ρ

+)
)}
.

We show in the appendix that Vup(0) = 0. Hence, if c = δ
2
Vup(ρ

+) the strategic agency is

indifferent between shirking and acquiring information; if c > δ
2
Vup(ρ

+) shirking is uniquely

optimal; and if c < δ
2
Vup(ρ

+) acquiring information is then uniquely optimal. In other words,

in this setting c represents the short-run incentive to shirk, while δ
2
Vup(ρ

+) represents the

long-run incentive to acquire information.

The following proposition establishes that an equilibrium exists and is unique.

Proposition 2. If δ < 4c
β+2c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium with

upfront fees. If δ > 4c
β+2c

the unique equilibrium is

e(ρ) =

1 if ρ > 0;

0 if ρ = 0.

Figure 3 illustrates the proposition. Its proof is in Appendix B. The familiar pattern of

Proposition 1 is here replaced by a different one: either the strategic agency shirks irrespective

of its reputation, or the strategic agency acquires information with probability 1 at all positive

values of reputation. The difference is explained by the fact that, with contingent fees, the

16Where, as in Section 4.1, the equation in the text is obtained from

Vup(ρ) = max
e∈[0,1]

{
(1− e)

[
ϕup(ρ) + δ

(1

2
Vup(ρ) +

1

2
Vup(0)

)]
+ e
[
ϕup(ρ)− c+ δ

(1

2
Vup(ρ) +

1

2
Vup(ρ

+)
)]}

,

noting that the maximand is linear in the control variable.

13
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Figure 3: equilibrium with upfront fees

short-run incentive to shirk is an increasing function of reputation; by contrast, with upfront

fees the short-run incentive to shirk is independent of reputation.

4.3 Main Result

We are now ready to state our first main result: as acquiring information is socially optimal

and 4c
β+2c

∈
(

2c
β+c

, 2β+4c
3β+2c

)
, the combination of Propositions 1 and 2 yields the following theorem.

Theorem 1. There exists ρ̃ > 0 such that, if δ ∈
(

2c
β+c

, 4c
β+2c

)
then, for ρ1 ∈ (0, ρ̃), contingent

fees improve expected social welfare relative to upfront fees. If instead δ ∈
(

4c
β+2c

, 2β+4c
3β+2c

)
, then

upfront fees improve expected social welfare relative to contingent fees. In all other cases,

expected social welfare is the same whether fees are upfront or contingent.

The first part of the theorem is our first main result: contingent fees can improve expected

social welfare relative to upfront fees. The basic mechanism is as indicated in Section 3 for the

two-period case, namely, contingent fees result in more information acquisition than upfront

fees by inducing stronger long-run incentives to acquire information. To illustrate here this

point in a simple way, it is useful to compare the long-run incentives to acquire information

(that is, δ
2
Vi(·), for i ∈ {co, up}) for the parametric region δ < 2c

β+c
in which, under either fee

setting, e(·) = 0 in equilibrium. Then the respective Bellman equations yield:

Vi(ρt) =
ϕi(ρt)

1− δ
2

, for i ∈ {co, up}. (7)
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We thus obtain first

Vup(ρt) =
P(rt = 1|ρt, 0)ϕco(ρt)

1− δ
2

= P(rt = 1|ρt, 0)Vco(ρt),

followed by
δ

2
Vco(ρt) ≥

δ

2
Vup(ρt), ∀ρt.

5 Endogenous Fees

We assumed up to this point that the fee structure of the rating agency was exogenously

given. In this section we endogenize the fee structure and show that contingent fees arise as

an equilibrium outcome irrespective of the agency’s reputation.

The endogenous fees model enables the agency to make a take-it-or-leave-it offer
(
φent (1), φent (−1)

)
to the firm in period t, specifying payments φent (rt) depending on rt (the superscript refers to

“endogenous”).17 In line with the fact that in practice CRAs do not publish the fees that they

charge their clients (see Kovbasyuk (2018) for a discussion of the pros and cons of transparent

fees), we assume moreover that only firm t can observe the agency’s offer;18 we discuss later

the importance of this feature.

The timing within period t is here as follows (see Figure 4). First, the agency makes the

offer
(
φent (1), φent (−1)

)
. If the firm rejects, the game moves on to the next period (we let

rt = ∅ denote the situation in which the agency’s offer is rejected); if it accepts, the agency

then decides whether or not to acquire information. Based on information gathered (if any),

the agency publicly announces rt, and receives φent (rt). All players observe qt and the game

moves on to the next period.

A stationary strategy of the agency is a triple
(
(φ(1, ·), φ(−1, ·)), e(·)

)
, where (φ(1, ·), φ(−1, ·)) :

[0, 1]→ R2
+ and e : [0, 1]→ [0, 1] specifying, respectively, the agency’s offer and the probabil-

ity of acquiring information as functions of the agency’s reputation ρt. A stationary strategy

of the firms is a mapping d : R2× [0, 1]→ {accept, reject} specifying which offers to accept as

17As noted by the European Securities and Markets Authority (ESMA) “ESMA is concerned that CRAs
with significant market power could exploit their market power and margins, which gives them large space for
fee flexibility. Costs are not currently the key pricing factor for these CRAs, which ultimately might result
in price discrimination. [...] The fees charged to clients appear an estimation of the value for the individual
client rather than being linked to the cost of production”.

18The largest credit rating agencies provide broad guidelines concerning their rating fees (see, e.g.
Standard & Poor’s Guidelines For Fees.), however fees actually paid by firms are not disclosed.
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qt is
observed by
all players

Figure 4: Timeline with endogenous fees

a function of the agency’s reputation ρt.

We focus on equilibria such that, each period, the committed agency makes an offer which

the firm accepts, but make no other assumptions concerning offers made by the committed

type.19 The next definition adapts the equilibrium concept used previously; we refer to the

model described here as the endogenous-fee setting.

Definition 2. An equilibrium with endogenous fees is a tuple
(
(φ(1, ·), φ(−1, ·)), e(·), d(·)

)
such that:

(i) in period t, the strategic agency makes the offer (φ(1, ρt), φ(−1, ρt));

(ii) the strategic agency acquires information with probability e(ρt), and investors’ beliefs

satisfy

êt = e(ρt);

(iii) each firm’s beliefs satisfy Bayes’ rule whenever possible and d((φent (1), φent (−1)), ρt) =

accept if and only if, upon observing
(
φent (1), φent (−1)

)
, firm t expects a non-negative

payoff from accepting the offer;

(iv) the strategy
(
(φ(1, ·), φ(−1, ·)), e(·)

)
maximizes the agency’s expected intertemporal profit

19Exactly what offers the committed agency makes is irrelevant for this section’s main result; the committed
agency could make any offer (φent (1), φent (−1)) satisfying

1

2
E[qt|rt = 1, ρt, e(ρt)] ≥

φent (1) + φent (−1)

2
.
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given the firms’ decision rule and ρt+1 = Ψ(ρt, rt, qt), where

Ψ(ρt, rt, qt) :=


ρt if qt = 1 = rt;

ρ+
t if qt = −1 = rt and ρt > 0;

0 if qt = −1 = −rt, or ρt = 0, or rt = ∅.

(v) each period t the committed agency makes an offer that is accepted by the firm in period

t.

Note that with endogenous fees, firm t’s beliefs at the time of deciding whether to accept or

reject the offer
(
φent (1), φent (−1)

)
could differ from investors’ beliefs in period t. In equilibrium

investors attach probability ρt to the agency being committed and probability e(ρt) to the

strategic agency acquiring information. By contrast, the offer
(
φent (1), φent (−1)

)
might affect

firm t’s beliefs concerning both the type of the agency, and the probability with which the

strategic agency chooses to acquire information.20 The central remark is that, conditional on

rt = 1, firm t’s project is sold to investors at the price E[qt|rt = 1, ρt, e(ρt)] irrespective of the

agency’s underlying offer to the firm. Hence, in equilibrium the offer
(
E[qt|rt = 1, ρt, e(ρt)], 0

)
(i.e. the contingent fee of Section 2 with β = 1) is acceptable irrespective of firm t’s beliefs

concerning the agency’s type and of firm t’s beliefs about the probability with which the

strategic agency chooses to acquire information.

In fact, we show in the proof of the next theorem that the offer
(
E[qt|rt = 1, ρt, e(ρt)], 0

)
is

optimal for the agency in any equilibrium and that, in consequence, equilibrium offers induce

the same amount of information acquisition as the contingent-fee structure of Section 2.

Theorem 2. Let e∗(·) denote the equilibrium with contingent fees and β = 1 described in

Proposition 1. In every equilibrium with endogenous fees, e(·) = e∗(·). Moreover, an equi-

librium with endogenous fees exists in which, for all ρt, the strategic agency makes the offer(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
.

As information acquisition is here as in the contingent-fee setting of Section 2, social welfare

is as in the equilibrium described in Proposition 1. Combining Proposition 1 and Theorem

2 thus establishes that the condition δ > 2+4c
3+2c

is both necessary and sufficient for the fee

structure chosen by the strategic agency to be socially optimal.

20For instance if
(
φent (1), φent (−1)

)
differs from the offer of the committed type then

(
φent (1), φent (−1)

)
reveals that the agency is strategic.
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6 Discussion

Socially Optimal fee structures. Our model assumes that acquiring information maxi-

mizes social welfare. We have shown that, both upfront and contingent fees induce, for some

parameter values, the agency to acquire information with probability 1 each period, thus

achieving the social optimum. Yet neither of the fee structures considered in this paper is al-

ways socially optimal (i.e., for all parameter values). This raises the following question: does

there exist a fee structure that always induces the strategic agency to acquire information

with probability 1 each period? Consider the following family of fee structures: if ρt = 0 then

φt(1) = φt(−1) = 0, while if ρt = ρ1 then φt(1) = a and φt(−1) = b. We show in Online

Appendix G that the necessary and sufficient conditions for such a fee structure to induce

et = 1 each period are:
b− a

2
+

aδ

2− δ
≥ c

and

a+ b ≤ 1.

The first highlighted inequality captures the strategic agency’s incentive compatibility con-

straint; the second captures the firms’ participation constraint. As c < 1
2
, a solution always

exists: just choose a = 0 to obtain 2c ≤ b ≤ 1. Hence a = 0 and b = 1 induces the strategic

agency to acquire information with probability 1 each period. Intuitively, since the rating

rt = −1 maximizes the likelihood that the agency acquired information, rewarding the agency

exclusively at rt = −1 optimally incentivizes information acquisition.

Upfront vs contingent fees without moral hazard. Our paper emphasizes that in

the presence of moral hazard concerning the production of information by CRAs, contingent

fees can generate higher social welfare than upfront fees. The highlighted qualifier is of the

essence. We show in Online Appendix F that without moral hazard (i.e., whenever information

acquisition is observable): (i) upfront fees are socially optimal regardless of the parameters

and (ii) upfront fees generate strictly higher (expected) social welfare than contingent fees for

a subset of parameters. The logic is straightforward. With observable information acquisition,

the strategic agency must acquire information in order not to lose its reputation. The question

is whether the strategic agency misreports the information it acquires. With fees paid upfront,

the agency has no incentive to misreport. On the other hand, by rewarding the agency for

giving out favorable ratings, contingent fees incentivize rating inflation.
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Policy Implications. Our analysis and results have two main policy implications. We

confirm first of all that if a regulator monitors information acquisition and sanctions shirking

(thus eliminating moral hazard) then upfront fees are (a) socially optimal and (b) superior to

contingent fees. Alternatively, the regulator could leave information acquisition unsupervised,

while making sure that the agency adopts a socially optimal fee structure. The regulator could

directly impose a socially efficient fee structure, or else offer CRAs a way to publicly commit to

whichever fee structure they prefer. Commitment could for example be achieved by supervising

the transactions between agencies and rated firms, as discussed in the next section. All these

policy options have advantages and shortcomings. Monitoring CRAs’ research activities might

be expensive, but offers the advantage that upfront fees ensure efficiency even if investors and

the regulator are not fully aware of CRAs’ incentives.21 By contrast, the policy options that

focus on the fee structure alone might be cheaper to implement, but require regulator and

investors to have a correct notion of the CRAs’ incentives.22

7 Limitations of our Analysis

We list here the main limitations of our analysis:23

1. Our main theorem exhibits a range of parameters for which contingent fees improve

(expected) social welfare relative to upfront fees. Whether this parameter range is

plausible in practice is an empirical question for which our analysis alone provides no

answer.

2. We showed in Section 6 that there exist fee structures that are socially optimal even for

parameter values for which neither upfront nor contingent fees are socially optimal.24

It is easy to check that these socially optimal fee structures require that the agency is

21This policy ensures efficiency even if investors are uncertain about the value of c and δ. Furthermore, the
regulator does not need to know the value of these parameters to implement upfront fees.

22As shown in Section 5, whether a fee structure is efficient or not depends on c and δ. On the one hand,
regulating the fee structure while ignoring the value of these parameters might result in socially inefficient
fee structures. On the other hand, letting the agency commit publicly to a fee structure, might result in the
agency choosing a socially inefficient fee if investors are uncertain about c and δ.

23We thank two anonymous referees for these remarks.
24Thus, for some parameter values, our analysis compares two suboptimal fee structures. The reasons we

chose to focus on contingent and upfront fees are as follows. First, as we show in Section 5, contingent fees are,
for all relevant matters, the only equilibrium fee structure. Second, as discussed in the introduction, upfront
fees have both been the subject of attention of policy makers, and are always socially optimal in the absence
of moral hazard (see Online Appendix F).
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paid more for lower ratings. Such fee structures have not, to the best of our knowledge,

been considered in the policy debate. Whether this is due to oversight on the part of

regulators or to particular aspects of the rating process that make such fees hard to

implement is beyond the scope of our analysis.

3. We have shown in section 5 that the contingent fee structure rewarding CRAs for giving

favorable ratings emerges endogenously as long as investors cannot observe an agency’s

fee structure. What would happen if the government instead forced CRAs to announce

their fee structure? In this case, any socially optimal fee structure could be enforced

by an equilibrium with endogenous fees, depending on the fee structure chosen by the

committed agency. Yet, many other fee structures could arise in equilibrium, possibly

making such a policy undesirable.25 A natural route for future investigation is to ask

whether equilibrium refinements would allow us to make robust predictions in this case.

4. Our equilibrium strategies require the agency to mix between shirking and exerting

effort. Rubinstein (1991), among others, presents alternative interpretations of mixed

strategies, and argues that, in most contexts, none of the interpretations is without

flaws. The credit rating process is no exception. A universally convincing interpretation

of mixed strategies in the rating process would make our analysis more relevant for the

policy debate.

5. In our model ratings have a purely informative role. In reality, credit ratings have a

regulatory role, namely certain types of institutional investors can only buy assets with

investment-level ratings, thus making a rating valuable regardless of its informational

content. Our analysis has no bite in markets where ratings are purchased purely in order

to access a larger set of investors.

6. Our choice to model a period both as the time elapsed between two ratings as well as

the time it takes for the quality of a project to become public knowledge implies that

firms and investors learn about the agency’s type by comparing ratings and project

qualities. In reality, ratings assigned are likely to affect a CRA’s reputation even when

no information about the rated securities is obtained. While this simplification implies

that our model does not capture the full dynamics of a CRA’s reputation, we show in

25To see an example, suppose that with publicly observed fees the agency commits to upfront fees. Then
our analysis shows that the policy could lower social welfare.
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Online Appendix E that our main results continue to hold even if qt is never revealed to

firms and investors.

8 Conclusion

This paper examined information acquisition by a credit rating agency with reputational

concerns. Each period, the agency chooses whether or not to acquire costly information. The

agency is either committed to acquire information, or behaves strategically with the objective

of maximizing intertemporal profits. We first compare two compensation schemes. In one

setting the agency receives a fee only if it assigns a favorable rating. This setting corresponds

to the way rating agencies are currently compensated. In the other setting, the agency receives

a fee irrespective of the rating assigned. Whereas fees paid upfront are socially optimal when

information acquisition is publicly observable (or costless), moral hazard can lead contingent

fees to induce higher social welfare than upfront fees. With endogenous fees, the contracts

offered by the agency to the rated firms induce the agency to acquire information as if the fees

were contingent. Our results contribute to the ongoing debate regarding the optimal way to

compensate credit rating agencies. Specifically, our findings suggest that replacing contingent

fees with upfront fees could be socially damaging in markets where all CRAs have become

suspect, and in markets with many new CRAs having to build up their reputations.

The model could be extended in several directions. For example, the literature on com-

petition among rating agencies shows how specific features of the market for credit ratings

determine whether competition is feasible and desirable: along these lines, it would be inter-

esting to evaluate the effect of the entry of new rating agencies under different compensation

schemes.26 Alternatively, the analysis could be extended to study how different compensation

schemes fare in markets in which each firm hires a rating agency multiple times.27

26Previous work on the effect of market structure on the quality of ratings includes Strausz (2005), Faure-
Grimaud, Peyrache and Quesada (2009), Bolton, Freixas and Shapiro (2012), Doherty, Kartasheva and Phillips
(2012), Bouvard and Levy (2018), Hirth (2014), and Bizzotto (2014).

27As in Frenkel (2015), for example.
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Appendix A

Define Φ(·, ·) : [0, 1]× [0, 1]→ R by

Φ(ρ, e) :=
1− (1− ρ)(1− e)
1 + (1− ρ)(1− e)

.

Notice that E[qt|rt = 1, ρt, êt] = Φ(ρt, êt), and that Φ(·, ·) is continuous, weakly increasing in

both variables, Φ(ρ, e) > 0 unless ρ = e = 0, and Φ(1, e) = Φ(ρ, 1) = 1 for all e and ρ in [0, 1].

Given a function e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0.

Lemma 1. In any equilibrium, e(0) = 0 and V (0) = 0, where V (·) denotes the equilibrium

value function. For all ρ > 0,if δ
2
V (ρ+) > β

2
Φ(ρ, e(ρ)) + c then e(ρ) = 1,

if δ
2
V (ρ+) < β

2
Φ(ρ, e(ρ)) + c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,28

V (ρ) = max
{
βΦ(ρ, e(ρ))+δ

(1

2
V (ρ)+

1

2
V (0)

)
,
β

2
Φ(ρ, e(ρ))−c+δ

(1

2
V (ρ)+

1

2
V (ρ+)

)}
, (8)

for all ρ ∈ [0, 1], and the agency’s choice implied by e(ρ) maximizes the right-hand side of the

expression above. That is:

28Consider a state space X, a control space U , a law of motion a such that xt+1 ∼ a(xt, ut), and a bounded
reward function r : X × U → R. Let π : X → U denote an arbitrary (stationary) policy, and define

V (x) := sup
π

E
[ ∞∑
t=0

δtr(xt, ut)
∣∣∣x0 = x

]
.

Bellman’s Principle of Optimality states that

V (x) = sup
u0

[
r(x0, u0) + δE[V (x1)|x0 = x, u0]

]
,

and that π is an optimal policy if and only if π(x) maximizes the right-hand side of the expression above, for
all x ∈ X.
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e(ρ) = 1 if β
2
Φ(ρ, e(ρ))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
> βΦ(ρ, e(ρ)) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if β
2
Φ(ρ, e(ρ))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
< βΦ(ρ, e(ρ)) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.

We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the above,

noting that ρ+ = 0 if ρ = 0. Then V (0) = βΦ(0, 0) + δV (0) = δV (0). Hence V (0) = 0.

�

Lemma 2. In any equilibrium,
if e(ρ) = 1 then V (ρ) =

β
2

Φ(ρ,1)−c
1−δ = max

{
β
2

Φ(ρ,1)−c
1−δ , βΦ(ρ,1)

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = βΦ(ρ,e(ρ))

1− δ
2

.

Furthermore, V (1) = max

{
β
2

Φ(1,e(1))−c
1−δ , βΦ(1,e(1))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Φ(1, e) = 1 for all

e ∈ [0, 1], and (d) Φ(·, ·) is weakly increasing in both variables.

�

Proposition 3. If δ ≥ δ := 2β+4c
3β+2c

then

e(ρ) =

1 if ρ > 0,

0 if ρ = 0,
(9)

is an equilibrium. If δ < δ, in any equilibrium: e(ρ) < 1 for all ρ ∈ [0, 1].

Proof: By Lemma 1, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1 then

by Lemma 1 and the observation that ρ+ = ρ:

δ

2
V (ρ) ≥ β

2
Φ(ρ, 1) + c.

Applying Lemma 2 now yields

δ

2

( β
2
Φ(ρ, 1)− c

1− δ

)
≥ β

2
Φ(ρ, 1) + c,
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or, equivalently, δ ≥ δ once we note that Φ(ρ, 1) = 1. The condition δ ≥ δ is thus necessary

for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle.

�

Lemma 3. The following are equivalent:

δ ≥ δ, (10)

β

2
Φ(ρ, 1) + c ≤ δ

2

( β
2
Φ(ρ, 1)− c

1− δ

)
, (11)

β

2
Φ(ρ, 1) + c ≤ δ

2

(
βΦ(ρ, 1)

1− δ
2

)
, (12)

min

{ β
2
Φ(ρ, 1)− c

1− δ
,
βΦ(ρ, 1)

1− δ
2

}
=
βΦ(ρ, 1)

1− δ
2

. (13)

Moreover, the equivalence between (10)-(12) continues to hold with strict inequalities instead

of weak inequalities.

Proof: Equivalence is easily checked using Φ(ρ, 1) = 1.

�

Proposition 4. If δ > δ then (9) is the unique equilibrium.

Proof: By Lemma 1, e(0) = 0 in any equilibrium. So we are only left to show that, in any

equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose that an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first

Lemma 1 then Lemma 2:

β

2
Φ(ρ̂, e(ρ̂)) + c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
βΦ(ρ̂+, e(ρ̂+))

1− δ
2

)
.

We thus obtain, using the equivalence between (10) and (12) (with strict inequalities), the

following sequence of inequalities:

δ

2

(
βΦ(ρ̂, 1)

1− δ
2

)
>
β

2
Φ(ρ̂, 1) + c ≥ β

2
Φ(ρ̂, e(ρ̂)) + c ≥ δ

2

(
βΦ(ρ̂+, e(ρ̂+))

1− δ
2

)
,

from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:
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(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,

(iii) β
2
Φ(ρn, e(ρn)) + c ≥ δ

2

(
βΦ(ρn+1,e(ρn+1))

1− δ
2

)
.

By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Φ(·, ·) and the fact that Φ(1, e) = Φ(ρ, 1) = 1 for all e and ρ in [0, 1]):

β

2
Φ(1, 1) + c ≥ δ

2

(
βΦ(1, 1)

1− δ
2

)
. (14)

The equivalence between (10) and (12) (with strict inequalities) establishes a contradiction

between (14) and δ > δ.

�

Proposition 5. If δ ≤ δ := 2c
β+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium.

Proof: Note first that δ ≤ δ if and only if

c ≥ δ

2

(
βΦ(1, e(1))

1− δ
2

)
. (15)

Next, the assumption β > 2c > 0 implies δ < δ; combining Lemmas 2 and 3 thus shows that,

in any equilibrium,

V (1) =
βΦ(1, e(1))

1− δ
2

, (16)

whenever δ < δ. Combining (15), (16) and Lemma 2 now yields c > δ
2
V (ρ), for all ρ ∈ [0, 1).

Hence, by Lemma 1, e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0 for all ρ ∈ [0, 1] is an equilibrium is immediate from (15), (16), and the

one-shot deviation principle.

�

Proposition 6. Let δ ∈ (δ, δ). There exists a unique equilibrium. In equilibrium,e(ρ) = 0 if ρ ∈ {0} ∪ [ρ̃, 1],

e(ρ) ∈ (0, ẽ] if ρ ∈ (0, ρ̃),
(17)
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where ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1) are defined implicitly by

β

2
Φ(ρ̃, 0) + c =

δ

2

(
βΦ(1, 0)

1− δ
2

)
(18)

and
β

2
Φ(0, ẽ) + c =

δ

2

(
βΦ(0, 1)

1− δ
2

)
(19)

respectively.

Proof: Applying Lemma 3,

δ < δ ⇔ β

2
Φ(ρ, 1) + c >

δ

2

(
βΦ(ρ, 1)

1− δ
2

)
.

Moreover, by (15),

δ > δ ⇔ c <
δ

2

(
βΦ(ρ, 1)

1− δ
2

)
.

Thus ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1).

We now prove the rest of the proposition. We will first proceed by induction to show that

there can exist at most one equilibrium. We will then argue that the inductive procedure

yields an equilibrium. As a preliminary step, observe that by Lemma 2 and the equivalence

between (10) and (13), an equilibrium must satisfy:

V (ρ) =
βΦ(ρ, e(ρ))

1− δ
2

, (20)

for all ρ ∈ [0, 1].

The inductive procedure starts as follows. Combining (18) and (20), any equilibrium must

be such that, for all ρ > ρ̃ :
β

2
Φ(ρ, 0) + c >

δ

2
V (ρ+).

Thus, by Lemma 1, if an equilibrium exists it must satisfy e(ρ) = 0 for all ρ > ρ̃. A similar

argument shows that in fact the same must be true for ρ = ρ̃.

By contrast, consider ρ ∈ (0, ρ̃). The combination of (18), (20), and Lemma 1 shows that

e(ρ) = 0 is impossible in equilibrium. Similarly, the combination of (19), (20) and Lemma 1

shows that e(ρ) > ẽ is impossible in equilibrium. Thus, any equilibrium must satisfy (17). By
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virtue of Lemma 1 this in turn implies that the indifference condition

δ

2
V (ρ+) =

β

2
Φ(ρ, e(ρ)) + c (21)

must hold for all ρ ∈ (0, ρ̃).

Next define ρ1 < ρ̃ such that

ρ̃ =
ρ1

ρ1 + (1− ρ1)ẽ
.

By construction of ρ1 and property (17), in any equilibrium: ρ+ ≥ ρ̃ for all ρ ∈ [ρ1, ρ̃).

(21), (17) and (20) now pin down a unique candidate equilibrium e(ρ) for each ρ ∈ [ρ1, ρ̃).

Moreover, this candidate equilibrium is continuous in ρ and such that Φ(ρ, e(ρ)) is increasing

in ρ. Repeating the step above with ρ1 instead of ρ̃ yields ρ2 < ρ1 and a unique candidate

equilibrium e(ρ) for each ρ ∈ [ρ2, ρ1), and so on. This defines a sequence {ρn} where, for all

n, ρ̃n = ρn+1

ρn+1+(1−ρn+1)ẽ
. As ẽ < 1, ρn → 0. This inductive procedure therefore pins down a

unique candidate equilibrium. That this candidate equilibrium is in fact an equilibrium is a

consequence of the one-shot deviation principle.

�

Proof of Proposition 1: Follows from Propositions 3-6.

�
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Appendix B

Define Υ(·, ·) : [0, 1]× [0, 1]→ R by

Υ(ρ, e) :=
1

2

(
1− (1− ρ)(1− e)

)
.

Notice that P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt] = Υ(ρt, êt), and that Υ(·, ·) is continuous, weakly

increasing in both variables, Υ(ρ, e) > 0 unless ρ = e = 0, and Υ(1, e) = Υ(ρ, 1) = 1
2

for all e

and ρ in [0, 1]. We also borrow the definition of ρ+ from Appendix A.

Lemma 4. In any equilibrium, e(0) = 0 and V (0) = 0, where V (·) denotes the equilibrium

value function. For all ρ > 0,if δ
2
V (ρ+) > c then e(ρ) = 1,

if δ
2
V (ρ+) < c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

V (ρ) = max
{
βΥ(ρ, e(ρ))+δ

(1

2
V (ρ)+

1

2
V (0)

)
, βΥ(ρ, e(ρ))−c+δ

(1

2
V (ρ)+

1

2
V (ρ+)

)}
, (22)

for all ρ ∈ [0, 1], and the choice implied by e(ρ) maximizes the right-hand side of (22). That

is:e(ρ) = 1 if βΥ(ρ, e(ρ))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
> βΥ(ρ, e(ρ)) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if βΥ(ρ, e(ρ))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
< βΥ(ρ, e(ρ)) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.

We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the above,

noting that ρ+ = 0 if ρ = 0. Substituting back into (22) then yields V (0) = βΦ(0, 0)+δV (0) =

δV (0). Hence V (0) = 0.

�

Lemma 5. In any equilibrium,
if e(ρ) = 1 then V (ρ) = βΥ(ρ,1)−c

1−δ = max

{
βΥ(ρ,1)−c

1−δ , βΥ(ρ,1)

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = βΥ(ρ,e(ρ))

1− δ
2

.
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Furthermore, V (1) = max

{
βΥ(1,e(1))−c

1−δ , βΥ(1,e(1))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Υ(1, e) = 1
2

for all

e ∈ [0, 1], and (d) Υ(·, ·) is weakly increasing in both variables.

�

Proposition 7. If δ > 4c
β+2c

, then

e(ρ) =

1 if ρ > 0

0 if ρ = 0
(23)

is an equilibrium. If δ < 4c
β+2c

, in any equilibrium: e(ρ) < 1 for all ρ ∈ [0, 1].

Proof: By Lemma 4, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1 then

Lemma 4 and the observation that ρ+ = ρ yield

δ

2
V (ρ) ≥ c.

Applying Lemma 5 now gives
δ

2

(
βΥ(ρ, 1)− c

1− δ

)
≥ c,

or, equivalently, δ ≥ 4c
β+2c

once we note that Υ(ρ, 1) = 1
2
. The condition δ ≥ 4c

β+2c
is thus

necessary for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle.

�

Lemma 6. The following are equivalent:

δ ≥ 4c

β + 2c
, (24)

c ≤ δ

2

(
βΥ(ρ, 1)− c

1− δ

)
, (25)

c ≤ δ

2

(
βΥ(ρ, 1)

1− δ
2

)
, (26)

min

{
βΥ(ρ, 1)− c

1− δ
,
βΥ(ρ, 1)

1− δ
2

}
=
βΥ(ρ, 1)

1− δ
2

. (27)
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Moreover, the equivalence between (24)-(26) continues to hold with strict inequalities instead

of weak inequalities.

Proof: Equivalence is easily checked using Υ(ρ, 1) = 1
2
.

�

Proposition 8. If δ > 4c
β+2c

, then (23) is the unique equilibrium.

Proof: By Lemma 4, e(0) = 0 in any equilibrium. So we are only left to show that, in any

equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first Lemma 4

then Lemma 5:

c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
βΥ(ρ̂+, e(ρ̂+))

1− δ
2

)
.

We thus obtain, using equivalence of (24) and (26) (with strict inequalities), the following

sequence of inequalities:

δ

2

(
βΥ(ρ̂, 1)

1− δ
2

)
> c ≥ δ

2

(
βΥ(ρ̂+, e(ρ̂+))

1− δ
2

)
,

from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:

(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,

(iii) c ≥ δ
2

(
βΥ(ρn+1,e(ρn+1))

1− δ
2

)
.

By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Υ(·, ·) and the fact that Υ(1, e) = Υ(ρ, 1) = 1
2

for all e and ρ in [0, 1]):

c ≥ δ

2

(
βΥ(1, 1)

1− δ
2

)
. (28)

The equivalence between (24) and (26) (with strict inequalities) establishes a contradiction

with (28).

�

30



Proposition 9. If δ < 4c
β+2c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium.

Proof: By Lemma 6, we have δ < 4c
β+2c

if and only if

c >
δ

2

(
βΥ(1, e(1))

1− δ
2

)
. (29)

Next, combining Lemmas 5 and 6 yields

V (1) =
βΥ(1, e(1))

1− δ
2

. (30)

Combining (29) and (30) gives c > δ
2
V (1); hence, by Lemma 5, c > δ

2
V (ρ) for all ρ ∈ [0, 1].

Lemma 4 thus yields e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0, for all ρ ∈ [0, 1] is an equilibrium is immediate from (29), (30), and the

one-shot deviation principle.

�

Proof of Proposition 2: Follows from Propositions 7-9.

�

Proof of Theorem 1: Proposition 1 characterizes the unique equilibrium with contingent

fees, and Proposition 2 characterizes the unique equilibrium with upfront fees. The cutoff

δ = 2β+4c
3β+2c

is taken from Proposition 3. The cutoff δ = 2c
β+c

is taken from Proposition 5.

With upfront fees, either the strategic agency shirks irrespective of ρt or the strategic agency

acquires information with probability 1 irrespective of ρt. Hence, all that remains to show is

that the expected period-t welfare is an increasing function of the probability with which the

strategic agency chooses to acquire information.

The expected period-t welfare is

P(rt = 1)E[qt|rt = 1]− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
+

(1− ρt)(1− e(ρt))
2

)1− (1− ρt)(1− e(ρt))
1 + (1− ρt)(1− e(ρt))

− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
− c
)(
ρt + (1− ρt)e(ρt)

)
;

the result follows, since c < 1
2
.

�
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Appendix C

Proof of Theorem 2: We start with the first part of the theorem, namely, we show that

e(·) = e∗(·) in any equilibrium. Consider an arbitrary equilibrium
(
(φ(1, ·), φ(−1, ·)), e(·), d(·)

)
,

denoted by E. We separate the analysis into three cases.

Case 1: in E, for all ρt, the offer of the committed type differs from (φ(1, ρt), φ(−1, ρt)). In

E, the offer
(
E[qt|rt = 1, ρt, e(ρt)], 0

)
is acceptable since no matter firm t’s beliefs the firm can

recoup with investors the fee paid to the agency. Therefore,(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt) ≥

(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)],

otherwise offering
(
E[qt|rt = 1, ρt, e(ρt)], 0

)
and acquiring information with probability e(ρt)

would be a strictly profitable deviation for the agency. On the other hand, in E, the offer

(φ(1, ρt), φ(−1, ρt)) is acceptable as well. Therefore,(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)] ≥

(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt),

since
(

1− e(ρt)
2

)
E[qt|rt = 1, ρt, e(ρt)] is firm t’s expected revenue from investors following the

offer (φ(1, ρt), φ(−1, ρt)) (the offer of the committed type differs from (φ(1, ρt), φ(−1, ρt)), so

firm t assigns probability 1 to the strategic type upon observing (φ(1, ρt), φ(−1, ρt))). Com-

bining the previous inequalities,(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)] =

(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt). (31)

We now claim that E ′ ≡
((
E[qt|rt = 1, ρt, e(ρt)], 0

)
, e(·), d(·)

)
comprises an equilibrium,

with off-path beliefs as in equilibrium E wherever possible, or such that firm t assigns prob-

ability 1 to the agency being strategic and acquiring information with probability e(ρt)

in case
((
E[qt|rt = 1, ρt, e(ρt)], 0

)
6= (φ(1, ρt), φ(−1, ρt)) and the agency makes the offer

(φ(1, ρt), φ(−1, ρt)). Note first that, by (31), E and E ′ induce identical expected payoffs

on their respective equilibrium paths. Thus E and E ′ also induce identical continuation pay-

offs. That E ′ comprises an equilibrium now follows from the one-shot deviation principle.

However, if E ′ is an equilibrium then e(·) = e∗(·) by virtue of Proposition 1.
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Case 2: in E, for all ρt, both types of the agency offer (φ(1, ρt), φ(−1, ρt)). In E, the offer(
E[qt|rt = 1, ρt, e(ρt)], 0

)
is acceptable. So φ(−1, ρt) = 0 trivially implies φ(1, ρt) = E[qt|rt =

1, ρt, e(ρt)]. In what follows, we consider the case φ(−1, ρt) > 0. First,(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt) ≥

(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)], (32)

otherwise offering
(
E[qt|rt = 1, ρt, e(ρt)], 0

)
and acquiring information with probability e(ρt)

would be a strictly profitable deviation for the agency. On the other hand, in E, the offer

(φ(1, ρt), φ(−1, ρt)) is acceptable as well. Therefore,[
ρt
2

+(1− ρt)
(

1− e(ρt)

2

)]
E[qt|rt = 1, ρt, e(ρt)]

≥ ρt

(
φ(1, ρt) + φ(−1, ρt)

2

)
+ (1− ρt)

[(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt)

]
,

or, equivalently,

ρt
2

[
E[qt|rt = 1, ρt, e(ρt)]− φ(1, ρt)− φ(−1, ρt)

]
≥ (1− ρt)

[(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt)−

(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)]

]
.

By (32), the right-hand side in the previous inequality is non-negative, giving E[qt|rt =

1, ρt, e(ρt)] ≥ φ(1, ρt) + φ(−1, ρt). Thus,(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)] ≥

(
1− e(ρt)

2

)
φ(1, ρt) +

(
1− e(ρt)

2

)
φ(−1, ρt).

The latter inequality yields e(ρt) = 1 since, given φ(−1, ρt) > 0, e(ρt) < 1 would imply(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)] >

(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt)

and contradict (32). We therefore obtain(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)] ≥

(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt),
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which, combined with (32), yields(
1− e(ρt)

2

)
φ(1, ρt) +

e(ρt)

2
φ(−1, ρt) =

(
1− e(ρt)

2

)
E[qt|rt = 1, ρt, e(ρt)]. (33)

We now claim that E ′ ≡
((
E[qt|rt = 1, ρt, e(ρt)], 0

)
, e(·), d(·)

)
comprises an equilibrium,

with off-path beliefs as in equilibrium E. First, by (33), E and E ′ induce identical expected

payoffs on their respective equilibrium paths. Thus E and E ′ also induce identical continuation

payoffs. That E ′ comprises an equilibrium now follows from the one-shot deviation principle,

combined with the observation that in E ′ the offer (φ(1, ρt), φ(−1, ρt)) of the committed type

is still acceptable (since we showed that e(ρt) = 1). However, if E ′ is an equilibrium then

e(·) = e∗(·) by virtue of Proposition 1.

Case 3: general case. The case in which for some values of ρt both types of the agency offer

(φ(1, ρt), φ(−1, ρt)), while the offer of the committed type differs from (φ(1, ρt), φ(−1, ρt)) for

other values of ρt is a straightforward extension of Cases 1 and 2 above.

We next show the second part of the theorem, that is, we show that an equilibrium with

endogenous fees exists in which the strategic agency makes offers
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
.

Let Vco(·) denote the value function of the agency in the unique equilibrium of Proposition

1 with β = 1. To fix ideas, assume that each period the committed type makes the offer(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)

(other cases are similar). Moreover, suppose that investors’ beliefs

satisfy êt = e∗(ρt) (we are not claiming at this stage that these beliefs are consistent). For

each offer ω 6=
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)

accepted in period t let ẽ(ω, ρt) denote an optimal

information acquisition strategy of the agency given the continuation payoffs Vco(·) (accepting

ω need not be optimal for firm t). Let d
((
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
, ρt
)

= accept and, for all

ω 6=
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
, d(ω, ρt) = accept if and only if firm t’s expected payoff from

accepting ω is non-negative given beliefs that the agency is strategic and acquires information

with probability ẽ(ω, ρt).

We claim that
(
(E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
, e∗(ρt), d(ρt)

)
constitutes an equilibrium, with

off-path beliefs such that upon observing an offer ω 6=
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)

firm t as-

signs probability 1 to the agency being strategic and acquiring information with probability

ẽ(ω, ρt). By virtue of the one-shot deviation principle all that we need to show is that no

one-shot deviation gives the agency strictly greater expected payoff than following the strat-
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egy
(
(E[qt|rt = 1, ρt, e

∗(ρt)], 0
)
, e∗(ρt)

)
. One-shot deviations to an offer which firm t rejects

are clearly unprofitable. So we examine a one-shot deviation to an offer ω = (φω(1), φω(−1))

which firm t accepts. The most profitable such deviation entails acquiring information with

probability ẽ(ω, ρt). The corresponding expected payoff is

ẽ(ω, ρt)

[
1

2

(
φω(1) + φω(−1)

)
− c+

δ

2

(
Vco(ρt) + Vco(ρ

+
t )
)]

+ (1− ẽ(ω, ρt))
[
φω(1) +

δ

2
Vco(ρt)

]
.

(34)

On the other hand, the offer ω being acceptable (under the belief that the agency is strategic

and acquires information with probability ẽ(ω, ρt)),(
1− ẽ(ω, ρt)

2

)
E[qt|rt = 1, ρt, e

∗(ρt)] ≥
(

1− ẽ(ω, ρt)

2

)
φω(1) +

ẽ(ω, ρt)

2
φω(−1).

The latter inequality implies that the strategic agency can obtain at least the expected payoff

(34) by making the offer
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)

and acquiring information with probability

ẽ(ω, ρt). As with offer
(
E[qt|rt = 1, ρt, e

∗(ρt)], 0
)

the information acquisition probability e∗(ρt)

is optimal, combining the previous remarks shows that no one-shot deviation to an offer ω

which firm t accepts is strictly profitable for the agency.

�
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Online Appendix A

In this appendix we check the robustness of our analysis by relaxing the assumption on the

perfect observability of project returns in case the agency chooses to become informed. We

show that, as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods, t = 1, 2.29 For concreteness, we distinguish

now between a project’s quality, qt ∈ {−1, 1}, and a project’s return, Qt. By acquiring

information in period t, the agency observes a noisy signal st ∈ {−1, 1} of the project quality

qt, such that P(st = qt|qt) = 1− ε, with ε ∈ (0, 1
2
). A project’s return is related to its quality

by Qt = qt
1−2ε

.30 As in the baseline model, the sequence {qt} is independent and identically

distributed according to P(qt = 1) = 1
2
. The baseline model therefore corresponds to ε = 0.

Applying Bayes’ rule gives

E[qt|rt = 1, ρt, êt] = Φ(ρt, êt) :=
1− (1− ρt)(1− êt)
1 + (1− ρt)(1− êt)

,

and

P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt] = Υ(ρt, êt) :=
1

2

[
1− (1− ρt)(1− êt)

]
.

Next, given e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0
; ρg :=

0 if ρ = 0

ρ(1−ε)
1−ε+ε(1−ρ)(1−e(ρ))

if ρ > 0
; and

ρb :=

0 if ρ = 0

ρε
ε+(1−ε)(1−ρ)(1−e(ρ))

if ρ > 0
.

The next definition is immediately adapted from the equilibrium concept of Section 2.

29We set here β = 1 to reduce notation.
30We scale up project returns by a factor equal to 1

1−2ε to keep the expected return conditional on observing
st precisely equal to st.
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Definition 3. An equilibrium with contingent fees comprises functions et : [0, 1] → [0, 1]

specifying the probabilities et(ρt) that the strategic agency acquires information in period t

given reputation ρt, for t = 1, 2, such that each period:

(i) the choice(s) implied by et(ρt) maximize the agency’s expected intertemporal profit given

πcot = Φ(ρt, êt)1{rt=1} − c1{information acquired in period t}, (35)

and

ρ2 =


ρg1 if q1 = 1 = r1;

ρ+
1 if q1 = −1 = r1;

ρb1 if q1 = −1 = −r1.

(ii) firms and investors’ beliefs satisfy êt = et(ρt).

The definition of an equilibrium with upfront fees is obtained by replacing (35) with

πupt = Υ(ρt, êt)− c1{information acquired in period t}. (36)

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition 10. With contingent fees, in equilibrium e1(ρ1) > 0 if and only if δ > 2c and

ρ1 < ρco(δ), where ρco(δ) is defined implicitly by

δ =

(
c+

ρco
2(2− ρco)

)(
2− (1 + ε)ρco

2− (1 + 2ε(1− ε))ρco

)(
2− (2− ε)ρco

1− ρco

)
.

Moreover limc→0 e1(ρ1) < 1 for any ρ1 and δ.

Proposition 11. With upfront fees, in equilibrium e1(ρ1) > 0 if and only if δ > 4c and

ρ1 < ρup(δ), where ρup(δ) is defined implicitly by

δ = 4c

(
1

1− 2ε(1− ε)ρup
+

ε(1− ε)ρ2
up

(1− ρup)(1− 2ε(1− ε)ρup)

)
.

2



Moreover limc→0 e1(ρ1) = 1 for any ρ1 and δ.

We illustrate the propositions in Figure 5. At t = 1 the strategic agency acquires infor-

mation, with some probability, for all (δ, ρ1) lying to the right of the curve ρco when fees are

contingent and to the right of the curve ρup when fees are upfront.

ρ1

δ
0 2c 4c

1

1

ρco ρup

Figure 5: Noisy signals of project returns

Welfare Comparison. As in equilibrium the strategic agency shirks at t = 2 irrespective

of the fee structure, comparing expected social welfare in equilibrium under different fee

structures reduces to comparing the probability that a strategic agency acquires information

at t = 1. When fees are contingent, for δ ∈ (2c, 4c) the strategic agency acquires information

at t = 1 with positive probability provided its reputation is not too high (Proposition 10). By

contrast, for δ ∈ (2c, 4c) the strategic agency shirks with probability 1 when fees are upfront

(Proposition 11). For δ ∈ (2c, 4c) and sufficiently low reputation expected social welfare is

therefore higher under contingent fees than under upfront fees. Moreover for any δ and ρ1,

limc→0 e1(ρ1) = 1 only in the case of upfront fees. Thus upfront fees increase expected social

welfare if the cost of information acquisition is sufficiently low.
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Proof of Proposition 10: First, note that the function Φ is continuous, weakly increasing

in each of its arguments, and Φ(1, ·) = Φ(·, 1) = 1. Moreover, notice that in any equilibrium

the strategic agency must shirk at t = 2 with probability 1 giving π2 = Φ(ρ2, 0) = ρ2
2−ρ2 .

Define V (ρ) := ρ
2−ρ . At t = 1, the agency’s expected intertemporal profit from shirking and

announcing rt = 1 is equal to Φ(ρ1, ê1) + δ
2

[
V (ρg1) + V (ρb1)

]
. The intertemporal profit from

acquiring information is equal to 1
2
Φ(ρ1, ê1)− c+ δ

2

[
V (ρ+

1 ) + (1− ε)V (ρg1) + εV (ρb1)
]
.

Fix ρ1 ∈ (0, 1). An equilibrium in which e1(ρ1) = 1 exists if and only if

1

2
Φ(ρ1, 1) +

δ

2
[εV (ρ1) + (1− ε)V (ρ1)] ≤ δ

2
V (ρ1)− c.

This condition is always violated, thus in equilibrium e1(ρ1) < 1. An equilibrium in which

e1(ρ1) = 0 in turn exists if and only if

1

2
Φ(ρ1, 0) +

δ

2

[
εV

(
ρ1(1− ε)
1− ερ1

)
+ (1− ε)V

(
ρ1ε

1− (1− ε)ρ1

)]
≥ δ

2
V (1)− c.

Substituting for Φ(·) and V (·) and simplifying yields

δ ≤ δ̃(ρ1) :=

(
c+

ρ1

2(2− ρ1)

)(
2− (1 + ε)ρ1

2− (1 + 2ε(1− ε))ρ1

)(
2− (2− ε)ρ1

1− ρ1

)
.

Notice that δ̃(ρ1) is continuous and increasing in ρ1 for ρ1 ∈ (0, 1) as it is the product of 3

terms, each of which is continuous and increasing in ρ1 for ρ1 ∈ (0, 1). Hence δ < δ̃(ρ1) is

equivalent to ρ1 > ρco(δ); moreover as δ̃(0) = 2c, then e1(ρ1) > 0 only if δ > 2c. Furthermore,

an equilibrium in which e1(ρ1) ∈ (0, 1) exists if and only if

δ

2

[
V

(
ρ1

ρ1 + (1− ρ1)e(ρ1)

)
− εV

(
ρ1(1− ε)

1− ε+ ε(1− ρ1)(1− e(ρ1))

)
(37)

− (1− ε)V
(

ρ1ε

ε+ (1− ε)(1− ρ1)(1− e(ρ1))

)]
= c+

1

2
Φ(ρ1, e(ρ1)).

The left-hand side of (37) is strictly decreasing in e(ρ1), while the right-hand side is strictly

increasing in e(ρ1), thus there is at most one e(ρ1) that satisfies the equality. Moreover, for

e(ρ1) = 0 this equality reduces to δ = δ̃(ρ1). As the left-hand side of (37) is increasing in δ and

the right-hand side does not depend on δ, then δ > δ̃(ρ1), which is equivalent to ρ1 < ρco(δ),

is necessary for an equilibrium in which e1(ρ1) ∈ (0, 1). That this condition is also sufficient

follows from standard arguments.
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Pick a pair δ and ρ1. For sufficiently small c, δ > δ̃(ρ1), thus in equilibrium e1(ρ1) satisfies

(37). Note also that for c = 0 the unique e(ρ1) that satisfies (37) belongs to the interval

(0, 1). As both Φ(·) and V (·) are continuous in each of their arguments, then in equilibrium

limc→0 e1(ρ1) < 1.

�

Proof of Proposition 11: First notice that Υ is continuous, weakly increasing in each of

its arguments, and Υ(1, ·) = Υ(·, 1) = 1
2
. Moreover, note that in any equilibrium the strategic

agency must shirk at t = 2 with probability 1, giving π2 = Υ(ρ2, 0) = ρ2
2

. Define V (ρ) := ρ
2
.

At t = 1, the agency’s expected intertemporal profit from shirking and announcing rt = 1 is

equal to Υ(ρ1, ê1) + δ
2

[
V (ρg1) + V (ρb1)

]
. The intertemporal profit from acquiring information

is equal to Υ(ρ1, ê1)− c+ δ
2

[
V (ρ+

1 ) + (1− ε)V (ρg1) + εV (ρb1)
]
. Fix ρ1 ∈ (0, 1). An equilibrium

in which e1(ρ1) = 1 exists if and only if

δ

2
[εV (ρ1) + (1− ε)V (ρ1)] ≤ δ

2
V (ρ1)− c.

This condition is always violated. An equilibrium in which e1(ρ1) = 0 exists if and only if

δ

2

[
εV

(
ρ1(1− ε)
1− ερ1

)
+ (1− ε)V

(
ρ1ε

1− (1− ε)ρ1

)]
≥ δ

2
V (1)− c.

Substituting for V (·) and simplifying yields

δ ≤ δ(ρ1) := 4c

(
1

1− 2ε(1− ε)ρ1

+
ε(1− ε)ρ2

1

(1− ρ1)(1− 2ε(1− ε)ρ1)

)
.

As δ(ρ1) is continuous and increasing in ρ1, then δ < δ(ρ1) is equivalent to ρ1 > ρup(δ);

moreover, as δ(0) = 4c, then e1(ρ1) > 0 only if δ > 4c. Furthermore, an equilibrium in which

e1(ρ1) ∈ (0, 1) exists if and only if

δ

2

[
V

(
ρ1

ρ1 + (1− ρ1)e(ρ1)

)
− εV

(
ρ1(1− ε)

1− ε+ ε(1− ρ1)(1− e(ρ1))

)
(38)

− (1− ε)V
(

ρ1ε

ε+ (1− ε)(1− ρ1)(1− e(ρ1))

)]
= c.

The left-hand side of (38) is strictly decreasing in e(ρ1), and the right-hand side is strictly
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increasing in e(ρ1), thus there is at most one e(ρ1) that satisfies the equality. Moreover, for

e(ρ1) = 0 this equality reduces to δ = δ(ρ1). As the left-hand side is increasing in δ and

the left-hand side does not depend on δ, δ > δ(ρ1) is necessary for an equilibrium in which

e1(ρ1) ∈ (0, 1). That this condition is also sufficient follows from standard arguments.

Next, fix δ and ρ1. For sufficiently small c, δ > δ(ρ1), thus in equilibrium e1(ρ1) satisfies

(38). Note also that, for c = 0, e(ρ1) = 1 satisfies (38). Continuity of Φ thus ensures that in

equilibrium limc→0 e1(ρ1) = 1. �
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Online Appendix B

In this appendix we check the robustness of our analysis by allowing the agency to announce

rt = −1 whether or not in period t the agency chooses to acquire information. We show that,

as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods, t = 1, 2.31 We let ẑt denote the beginning-of-

period-t belief that the strategic agency will announce rt = −1 in case it shirks.32 Applying

Bayes’ rule,

E[qt|rt = 1, ρt, êt, ẑt] = Φ(ρt, êt, ẑt) :=
1− (1− ρt)(1− êt)

1 + (1− ρt)(1− êt)(1− 2ẑt)
,

while

E[qt|rt = −1, ρt, êt, ẑt] =
(−1)(1− (1− ρt)(1− êt))

ρt + (1− ρt)êt + 2ẑt(1− ρt)(1− êt)
.

Note that E[qt|rt = 1, ρt, êt, ẑt] ≥ 0 ≥ E[qt|rt = −1, ρt, êt, ẑt] for all ρt, êt and ẑt. So with

contingent fees the period-t profit of the agency is

πt = Φ(ρt, êt, ẑt)1{rt=1} − c1{information acquired in period t}. (39)

Applying Bayes’ rule again,

P(rt = 1|ρt, êt, ẑt)E[qt|rt = 1, ρt, êt, ẑt] = Υ(ρt, êt) :=
1

2

[
1− (1− ρt)(1− êt)

]
.

With upfront fees, the period-t profit of the agency is

πt = Υ(ρt, êt)− c1{information acquired in period t}. (40)

31We set here β = 1 to reduce notation.
32As noted in the baseline model, upon acquiring information the strategic agency would report truthfully

even if it had the option to misreport. Thus we assume here, as in the baseline model, that upon acquiring
information the agency reports truthfully.
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Given functions et(·) and zt(·) from [0, 1] to [0, 1], define

ρ+
t :=

0 if ρt = 0;

ρt
ρt+(1−ρt)[et(ρt)+(1−et(ρt))(1−zt(ρt))] if ρt > 0;

and

ρ++
t :=

0 if ρt = 0;

ρt
ρt+(1−ρt)[e(ρt)+(1−e(ρt))zt(ρt)] if ρt > 0.

The next definition is immediately adapted from the equilibrium concept of Section 2.

Definition 4. An equilibrium with contingent fees comprises functions et : [0, 1]→ [0, 1] and

zt : [0, 1] → [0, 1], for t = 1, 2, specifying the probabilities et(ρt) that the strategic agency ac-

quires information and zt(ρt) of announcing rt = −1 conditional on shirking, given reputation

ρt, such that each period:

(i) the choices implied by et(ρt) and zt(ρt) maximize the agency’s expected intertemporal

profit given (39) and

ρ2 =


ρ+

1 if q1 = r1 = 1;

ρ++
1 if q1 = r1 = −1;

0 if q1 = −r1.

(ii) firms and investors’ beliefs satisfy êt = et(ρt) and ẑt = zt(ρt).

The definition of an equilibrium with upfront fees is obtained replacing (39) with (40).

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition 12. Let fees be contingent. In equilibrium e1(ρ1) < 1 for all ρ1 ∈ (0, 1). More-

over, e1(ρ1) ∈ (0, 1) for δ > 2c−1+
√

1+12c+4c2

2
and ρ1 ∈

(
2c(2+δ)
1+2δ+δ2

, 4c−2δ
2c−1−δ

)
.
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Proposition 13. Let fees be upfront. In equilibrium, if δ ≤ 4c then e1(ρ1) = 0 for all

ρ1 ∈ (0, 1). If instead δ > 4c then
if ρ1 ∈ [4c

δ
, 1) then e(ρ1) = 1;

if ρ1 ∈ ( 2c
δ−2c

, 4c
δ

) then e(ρ1) ∈ (0, 1);

if ρ1 ∈ (0, 2c
δ−2c

] then e(ρ1) = 0.

We illustrate in Figure 6 the regions in (δ, ρ1)-space identified in the two propositions.

When fees are contingent, at t = 1 the strategic agency acquires information, with some

probability, for all (δ, ρ1) lying to the right of the solid curves. When fees are upfront, the

strategic agency acquires information, with some probability, for all (δ, ρ1) in between the

dashed lines, and acquires information with probability 1 for all (δ, ρ1) to the right of both

dashed lines.

ρ1

δ
ba0 1

1

4c−2δ
2c−1−δ

4c
δ

2c
δ−2c

2c(2+δ)
1+2δ+δ2

a = 2c−1+
√

1+12c+4c2

2 b = 4c

Figure 6: Deflated ratings

Welfare Comparison. Since the strategic agency shirks at t = 2 irrespective of the fee

structure, and, for the symmetrical payoffs we consider, welfare does not depend on the

9



agency’s choice to inflate or deflate a rating in case it shirks, social welfare is therefore uniquely

determined by the probability that the agency acquires information at t = 1. Note that in the

parameter region defined by δ ∈ (2c−1+
√

1+12c+4c2

2
, 4c) and ρ1 ∈

(
2c(2+δ)
1+2δ+δ2

, 4c−2δ
2c−1−δ

)
the agency

shirks at t = 1 with upfront fees (Proposition 13) but acquires information with positive

probability with contingent fees (Proposition 12), thus contingent fees improve expected social

welfare. Note also that for c sufficiently close to 0 any ρ1 and δ satisfy δ > 4c and ρ1 >
4c
δ

,

hence ensuring e1(ρ1) = 1 with upfront fees (Proposition 13). As e1(ρ1) < 1 everywhere with

contingent fees (Proposition 12), the previous remarks establish that, for any ρ1 and δ, upfront

fees improve expected social welfare relative to contingent fees as long as c is sufficiently small.

Proof of Proposition 12: The function Φ is continuous, weakly increasing in each of its

arguments, and Φ(1, ·, ·) = Φ(·, 1, ·) = 1. Notice that in any equilibrium the strategic agency

must shirk and announce r2 = 1 at t = 2 with probability 1 giving π2 = Φ(ρ2, 0, 0) = ρ2
2−ρ2 . De-

fine V (ρ) := ρ
2−ρ . Let ρ+

1 (e, z) (respectively ρ++
1 (e, z)) denote the value of ρ+

1 (respectively ρ++
1 )

for e1(ρ1) = e and z1(ρ1) = z. At t = 1, the agency’s expected intertemporal profit from shirk-

ing and announcing rt = 1 is equal to Φ(ρ1, ê1, ẑ1) + δ
2
V (ρ+

1 (ê1, ẑ1)), the intertemporal profit

from shirking and announcing rt = −1 is equal to δ
2
V (ρ++

1 (ê1, ẑ1)), and the intertemporal profit

from acquiring information is equal to 1
2
Φ(ρ1, ê1, ẑ1) − c + δ

2

[
V (ρ+

1 (ê1, ẑ1)) + V (ρ++
1 (ê1, ẑ1))

]
.

The rest of the proof contains 3 steps. Step 1 establishes than in equilibrium e1(ρ1) < 1.

Step 2 computes the probability with which the strategic agency must announce r1 = −1 if

in equilibrium e1(ρ1) = 0. Step 3 characterizes a parameter region in which e1(ρ1) > 0.

Step 1: An equilibrium with e1(ρ1) = 1 requires

δV (ρ1)

2
− c ≥ Φ(ρ1, 1, z1)

2
, (41)

for some z1. Note that, for any z1 and any ρ1: Φ(ρ1, 1, z1) = 1 > V (ρ1). Thus (41) holds only

if δ−1
2
> c. This condition is violated as c > 0 > δ−1

2
. Hence in equilibrium e(ρ1) < 1.

Step 2: Define z̃(ρ1) implicitly by

Φ(ρ1, 0, z̃(ρ1)) =
δ

2

[
V (ρ++

1 (0, z̃(ρ1)))− V (ρ+
1 (0, z̃(ρ1)))

]
,

10



which is equivalent to

ρ1

1 + (1− ρ1)(1− 2z̃)
=
δ

2

(
ρ1

ρ1 + 2(1− ρ1)z̃
− ρ1

1 + (1− ρ1)(1− 2z̃)

)
.

Simplifying to solve for z̃ gives z̃(ρ1) = δ(1−ρ1)−ρ1
2(1−ρ1)(δ+1)

. Note that z̃(ρ1) < 1 for all ρ1 ∈ (0, 1),

while z̃(ρ1) > 0 if and only if ρ1 <
δ

1+δ
.

Now, in equilibrium, if e1(ρ1) = 0 then Φ(ρ1, 0, z1(ρ1)) > δ
2

[
V (ρ++

1 ) − V (ρ+
1 )
]

implies

z1(ρ1) = 0 and Φ(ρ1, 0, z(ρ1)) < δ
2

[
V (ρ++

1 )− V (ρ+
1 )
]

implies z(ρ1) = 1. Thus, by construction

of z̃(ρ1), in equilibrium, e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if ρ1 ≤ δ
1+δ

and z(ρ1) = 0 if ρ1 >
δ

1+δ
.

Step 3: Let ρco(δ) := 4c−2δ
2c−1−δ and ρco(δ) := 2c(2+δ)

1+2δ+δ2
. Note that ρco(δ) ∈ ( δ

1+δ
, 1) ⇔ ρco(δ) ∈

(0, δ
1+δ

)⇔ δ ∈ (2c−1+
√

1+12c+4c2

2
, 1).

Fix δ ∈ (2c−1+
√

1+12c+4c2

2
, 1). Consider a ρ1 ≥ δ

1+δ
. Step 2 ensures that an equilibrium with

e1(ρ1) = 0 exists if and only if: Φ(ρ1,0,0)
2

+c ≥ δV (1)
2

. This condition is equivalent to: ρ1 ≥ ρco(δ).

Now consider a ρ1 ≤ δ
1+δ

. Step 2 ensures that an equilibrium with e1(ρ1) = 0 exists if and

only if: Φ(ρ1,0,z̃(ρ1))
2

+ c ≥ δV (ρ++
1 (0,z̃(ρ1)))

2
. This condition is equivalent to: ρ1 ≤ ρco(δ). Thus, in

light of step 1, we conclude that for ρ1 ∈ (ρco(δ), ρco(δ)) in equilibrium e1(ρ1) ∈ (0, 1). �

Proof of Proposition 13: Note that Υ is continuous, weakly increasing in each of its argu-

ments, and Υ(1, ·) = Υ(·, 1) = 1
2
. Define V (ρ) := ρ

2
. At t = 1, the agency’s expected intertem-

poral profit from shirking and announcing rt = 1 is equal to Υ(ρ1, ê1) + δ
2
V (ρ+

1 ), the intertem-

poral profit from shirking and announcing rt = −1 is equal to Υ(ρ1, ê1) + δ
2
V (ρ++

1 ), and the

intertemporal profit from acquiring information is equal to Υ(ρ1, ê1)+ δ
2

[
V (ρ+

1 )+V (ρ++
1 )
]
−c.

Observe that in any equilibrium e1(ρ1) < 1 implies z1(ρ1) = 1
2
, since z1(ρ1) > 1

2
(resp. z1(ρ1) <

1
2
) implies ρ+

1 > ρ++
1 (resp. ρ+

1 < ρ++
1 ) and thus V (ρ++

1 ) < V (ρ+
1 ) (resp. V (ρ+

1 ) < V (ρ++
1 )).

Moreover, e1(ρ1) = 1 implies ρ+
1 = ρ++

1 = ρ1. We thus obtain ρ+
1 = ρ++

1 = f(ρ1, e1(ρ1)) in any

equilibrium, where

f(ρ1, e1(ρ1)) :=
ρ1

ρ1 + (1− ρ1)
(
e1(ρ1) + 1

2
(1− e1(ρ1))

) .
Next, an equilibrium in which e1(ρ1) = 0 exists if and only if δ

2
V (f(ρ1, 0)) ≤ c that is, if and

11



only if either δ ≤ 4c, or else δ > 4c and

ρ1 ≤
2c

δ − 2c
.

Similarly, an equilibrium in which e1(ρ1) = 1 exists if and only if δ
2
V (f(ρ1, 1)) ≥ c that is,

if and only if

ρ1 ≥
4c

δ
.

Note that 4c
δ
< 1⇔ δ > 4c.

An equilibrium with e1(ρ1) ∈ (0, 1) requires δ
2
V (f(ρ1, e1(ρ1))) = c. As ∂f(·)

∂e1(ρ1)
< 0, a

(unique) equilibrium with e1(ρ1) ∈ (0, 1) exists if and only if δ > 4c and ρ1 ∈ ( 2c
δ−2c

, 4c
δ

). �
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Online Appendix C

We show in this appendix that our main results do not depend on the assumption that the

agency obtains a fraction β of all proceeds from selling projects to investors. Specifically, we

generalize the baseline model by letting φcot (rt) satisfy

φcot (rt) =

f(E[qt|rt = 1, ρt, êt]) if rt = 1;

0 if rt = −1,

where f(·) : [0, 1]→ [0, 1] denotes a strictly increasing continuous function satisfying f(x) ≤ x

for all x ∈ [0, 1]. We assume in line with the baseline model that c < f(1)
2

. In what follows we

first state the main results, and then provide all the proofs.

Proposition 14. An equilibrium exists and is unique. In equilibrium, e(0) = 0; for ρ > 0 the

equilibrium is characterized by cutoffs ρ and ρ, ρ ≤ ρ, such that
if ρ ∈ [ρ, 1] then e(ρ) = 0,

if ρ ∈ (ρ, ρ) then e(ρ) ∈ (0, 1),

if ρ ∈ (0, ρ] then e(ρ) = 1.

Moreover, the equilibrium fee is a non-decreasing function of the agency’s reputation.

The model with upfront fees is generalized by letting

φupt (1) = φupt (−1) = f(P(rt = 1|ρt, êt)E[qt|rt = 1, ρt, êt]).

Proposition 15. If δ < 2c
f( 1

2
)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium with

upfront fees. If δ > 2c
f( 1

2
)+c

the unique equilibrium is

e(ρ) =

1 if ρ > 0;

0 if ρ = 0.

Combining Propositions 14 and 15 yields the next theorem.

Theorem 3. There exists ρ̃ such that, if δ ∈ ( 2c
f(1)+c

, 2c
f( 1

2
)+c

) then, for ρ1 ∈ (0, ρ̃), contingent

fees improve expected social welfare relative to upfront fees. Moreover if 2c
f( 1

2
)+c

< 2f(1)+4c
3f(1)+2c

then

13



for δ ∈ ( 2c
f( 1

2
)+c
, 2f(1)+4c

3f(1)+2c
) upfront fees improve expected social welfare relative to contingent fees.

In all other cases, expected social welfare is the same whether fees are upfront or contingent.

We prove in the rest of this appendix all of the previous results. Define Φ(·, ·) : [0, 1] ×
[0, 1]→ R by

Φ(ρ, e) :=
1− (1− ρ)(1− e)
1 + (1− ρ)(1− e)

.

Given a function e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0.

Lemma 7. In any equilibrium, e(0) = 0 and V (0) = 0, where V (·) denotes the equilibrium

value function. For all ρ > 0,if δ
2
V (ρ+) > 1

2
f(Φ(ρ, e(ρ))) + c then e(ρ) = 1,

if δ
2
V (ρ+) < 1

2
f(Φ(ρ, e(ρ))) + c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

V (ρ) = max
{
f(Φ(ρ, e(ρ)))+δ

(1

2
V (ρ)+

1

2
V (0)

)
,

1

2
f(Φ(ρ, e(ρ)))−c+δ

(1

2
V (ρ)+

1

2
V (ρ+)

)}
,

(42)

for all ρ ∈ [0, 1], and the choice implied by e(ρ) maximizes the right-hand side of the expression

above. That is:e(ρ) = 1 if 1
2
f(Φ(ρ, e(ρ)))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
> f(Φ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if 1
2
f(Φ(ρ, e(ρ)))− c+ δ

(
1
2
V (ρ) + 1

2
V (ρ+)

)
< f(Φ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.

We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the above,

noting that ρ+ = 0 if ρ = 0. Substituting back into (42) then yields V (0) = f(Φ(0, 0)) +

δV (0) = δV (0). Hence V (0) = 0.

�
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Lemma 8. In any equilibrium,
if e(ρ) = 1 then V (ρ) =

1
2
f(Φ(ρ,1))−c

1−δ = max

{
1
2
f(Φ(ρ,1))−c

1−δ , f(Φ(ρ,1))

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = f(Φ(ρ,e(ρ)))

1− δ
2

.

Furthermore, V (1) = max

{
1
2
f(Φ(1,e(1)))−c

1−δ , f(Φ(1,e(1)))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Φ(1, e) = 1 for all

e ∈ [0, 1], and (d) Φ(·, ·) is weakly increasing in both variables.

�

Proposition 16. If δ ≥ δ := 2f(1)+4c
3(1)+2c

then

e(ρ) =

1 if ρ > 0,

0 if ρ = 0.
(43)

is an equilibrium. If δ < δ, in any equilibrium: e(ρ) < 1 for all ρ ∈ [0, 1].

Proof: By Lemma 7, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1 then

by Lemma 7 and the observation that ρ+ = ρ:

δ

2
V (ρ) ≥ 1

2
f(Φ(ρ, 1)) + c.

Applying Lemma 8 now yields

δ

2

( 1
2
f(Φ(ρ, 1))− c

1− δ

)
≥ 1

2
f(Φ(ρ, 1)) + c,

or, equivalently, δ ≥ δ once we note that Φ(ρ, 1) = 1. The condition δ ≥ δ is thus necessary

for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle.

�

Lemma 9. The following are equivalent:

δ ≥ δ (44)
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1

2
f(Φ(ρ, 1)) + c ≤ δ

2

( 1
2
f(Φ(ρ, 1))− c

1− δ

)
(45)

1

2
f(Φ(ρ, 1)) + c ≤ δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
(46)

min

{ 1
2
f(Φ(ρ, 1))− c

1− δ
,
f(Φ(ρ, 1))

1− δ
2

}
=
f(Φ(ρ, 1))

1− δ
2

(47)

Moreover, the equivalence between (44)-(46) continues to hold with strict inequalities instead

of weak inequalities.

Proof: Equivalence is easily checked using Φ(ρ, 1) = 1.

�

Proposition 17. If δ > δ then (43) is the unique equilibrium.

Proof: By Lemma 7, e(0) = 0 in any equilibrium. So we are only left to show that, in any

equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose that an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first

Lemma 7 then Lemma 8:

1

2
f(Φ(ρ̂, e(ρ̂))) + c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
f(Φ(ρ̂+, e(ρ̂+)))

1− δ
2

)
.

We thus obtain, using the equivalence between (44) and (46) (with strict inequalities), the

following sequence of inequalities:

δ

2

(
f(Φ(ρ̂, 1))

1− δ
2

)
>

1

2
f(Φ(ρ̂, 1)) + c ≥ 1

2
f(Φ(ρ̂, e(ρ̂))) + c ≥ δ

2

(
f(Φ(ρ̂+, e(ρ̂+)))

1− δ
2

)
,

from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:

(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,

(iii) 1
2
f(Φ(ρn, e(ρn))) + c ≥ δ

2

(
f(Φ(ρn+1,e(ρn+1)))

1− δ
2

)
.
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By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Φ(·, ·), continuity of f(·) and the fact that Φ(1, e) = Φ(ρ, 1) = 1 for all e and ρ in [0, 1]):

1

2
f(Φ(1, 1)) + c ≥ δ

2

(
f(Φ(1, 1))

1− δ
2

)
. (48)

The equivalence between (44) and (46) (with strict inequalities) establishes a contradiction

between (48) and δ > δ.

�

Proposition 18. If δ ≤ δ := 2c
f(1)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium.

Proof: Note first that δ ≤ δ if and only if

c ≥ δ

2

(
f(Φ(1, e(1)))

1− δ
2

)
. (49)

Next, the assumption f(1) > 2c > 0 implies δ < δ; combining Lemmas 8 and 9 thus shows

that, in any equilibrium,

V (1) =
f(Φ(1, e(1)))

1− δ
2

, (50)

whenever δ < δ. Combining (49), (50) and Lemma 8 now yields c > δ
2
V (ρ), for all ρ ∈ [0, 1).

Hence, by Lemma 7, e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0 for all ρ ∈ [0, 1] is an equilibrium is immediate from (49), (50), and the

one-shot deviation principle.

�

Proposition 19. Let δ ∈ (δ, δ). There exists a unique equilibrium. In equilibrium,e(ρ) = 0 if ρ ∈ {0} ∪ [ρ̃, 1]

e(ρ) ∈ (0, ẽ] if ρ ∈ (0, ρ̃)
(51)

where ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1) are defined implicitly by

1

2
f(Φ(ρ̃, 0)) + c =

δ

2

(
f(Φ(1, 0))

1− δ
2

)
, (52)
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and
1

2
f(Φ(0, ẽ)) + c =

δ

2

(
f(Φ(0, 1))

1− δ
2

)
, (53)

respectively.

Proof: Applying Lemma 9,

δ < δ ⇔ 1

2
f(Φ(ρ, 1)) + c >

δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
.

Moreover, by (49),

δ > δ ⇔ c <
δ

2

(
f(Φ(ρ, 1))

1− δ
2

)
.

Thus ρ̃ ∈ (0, 1) and ẽ ∈ (0, 1).

We now prove the rest of the proposition. We will first proceed by induction to show that

there can exist at most one equilibrium. We will then argue that the inductive procedure

yields an equilibrium. As a preliminary step, observe that by Lemma 8 and the equivalence

between (44) and (47), an equilibrium must satisfy:

V (ρ) =
f(Φ(ρ, e(ρ)))

1− δ
2

, (54)

for all ρ ∈ [0, 1].

The inductive procedure starts as follows. Combining (52) and (54), any equilibrium must

be such that, for all ρ > ρ̃ :
1

2
f(Φ(ρ, 0)) + c >

δ

2
V (ρ+).

Thus, by Lemma 7, if an equilibrium exists it must satisfy e(ρ) = 0 for all ρ > ρ̃. A similar

argument shows that in fact the same must be true for ρ = ρ̃.

By contrast, consider ρ ∈ (0, ρ̃). The combination of (52), (54), and Lemma 7 shows that

e(ρ) = 0 is impossible in equilibrium. Similarly, the combination of (53), (54) and Lemma 7

shows that e(ρ) > ẽ is impossible in equilibrium. Thus, any equilibrium must satisfy (51). By

virtue of Lemma 7 this in turn implies that the indifference condition

δ

2
V (ρ+) =

1

2
f(Φ(ρ, e(ρ))) + c (55)

must hold for all ρ ∈ (0, ρ̃).
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Next define ρ1 < ρ̃ such that

ρ̃ =
ρ1

ρ1 + (1− ρ1)ẽ
.

By construction of ρ1 and property (51), in any equilibrium: ρ+ ≥ ρ̃ for all ρ ∈ [ρ1, ρ̃). (55),

(51) and (54) now pin down a unique candidate equilibrium e(ρ) for each ρ ∈ [ρ1, ρ̃) (which

moreover is continuous in ρ). Repeating the step above with ρ1 instead of ρ̃ yields ρ2 < ρ1 and

a unique candidate equilibrium e(ρ) for each ρ ∈ [ρ2, ρ1), and so on. This defines a sequence

{ρn} where, for all n, ρ̃n = ρn+1

ρn+1+(1−ρn+1)ẽ
. As ẽ < 1, ρn → 0. This inductive procedure

therefore pins down a unique candidate equilibrium. That this candidate equilibrium is in

fact an equilibrium is a consequence of the one-shot deviation principle.

�

Proof of Proposition 14: Follows from Propositions 16-19.

�

Define Υ(·, ·) : [0, 1]× [0, 1]→ R by

Υ(ρ, e) :=
1

2
(1− (1− ρ)(1− e)).

Lemma 10. In any equilibrium with upfront fees, e(0) = 0 and V (0) = 0, where V (·) denotes

the equilibrium value function. For all ρ > 0,if δ
2
V (ρ+) > c then e(ρ) = 1,

if δ
2
V (ρ+) < c then e(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

V (ρ) = max
{
f(Υ(ρ, e(ρ))) + δ

(1

2
V (ρ) +

1

2
V (0)

)
, f(Υ(ρ, e(ρ)))− c+ δ

(1

2
V (ρ) +

1

2
V (ρ+)

)}
,

(56)

for all ρ ∈ [0, 1], and the choice implied by e(ρ) maximizes the right-hand side of (56). That

is:

e(ρ) = 1 if f(Υ(ρ, e(ρ)))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
> f(Υ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
,

e(ρ) = 0 if f(Υ(ρ, e(ρ)))− c+ δ
(

1
2
V (ρ) + 1

2
V (ρ+)

)
< f(Υ(ρ, e(ρ))) + δ

(
1
2
V (ρ) + 1

2
V (0)

)
.
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We are only left to show that e(0) = 0 and V (0) = 0. That e(0) = 0 follows from the above,

noting that ρ+ = 0 if ρ = 0. Substituting back into (56) then yields V (0) = f(Φ(0, 0)) +

δV (0) = δV (0). Hence V (0) = 0.

�

Lemma 11. In any equilibrium with upfront fees,
if e(ρ) = 1 then V (ρ) = f(Υ(ρ,1))−c

1−δ = max

{
f(Υ(ρ,1))−c

1−δ , f(Υ(ρ,1))

1− δ
2

}
,

if e(ρ) < 1 then V (ρ) = f(Υ(ρ,e(ρ)))

1− δ
2

.

Furthermore, V (1) = max

{
f(Υ(1,e(1)))−c

1−δ , f(Υ(1,e(1)))

1− δ
2

}
≥ V (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) e(ρ) = 1 implies ρ+ = ρ, (b) ρ = 1 implies ρ+ = 1, (c) Υ(1, e) = 1
2

for all

e ∈ [0, 1], and (d) Υ(·, ·) is weakly increasing in both variables.

�

Proposition 20. If δ > 2c
f( 1

2
)+c

then

e(ρ) =

1 if ρ > 0,

0 if ρ = 0.
(57)

is an equilibrium with upfront fees. If δ < c
f( 1

2
)+c

, in any equilibrium with upfront fees: e(ρ) < 1

for all ρ ∈ [0, 1].

Proof: By Lemma 10, e(0) = 0 for all δ. Next, consider ρ > 0. If in equilibrium e(ρ) = 1

then Lemma 10 and the observation that ρ+ = ρ yield

δ

2
V (ρ) ≥ c.

Applying Lemma 11 now gives

δ

2

(
f(Υ(ρ, 1))− c

1− δ

)
≥ c,

or, equivalently, δ ≥ 2c
f( 1

2
)+c

once we note that Υ(ρ, 1) = 1
2
. The condition δ ≥ 2c

f( 1
2

)+c
is thus

necessary for e(ρ) = 1. Sufficiency follows from the one-shot deviation principle.
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�

Lemma 12. The following are equivalent:

δ ≥ 2c

f(1
2
) + c

, (58)

c ≤ δ

2

(
f(Υ(ρ, 1))− c

1− δ

)
, (59)

c ≤ δ

2

(
f(Υ(ρ, 1))

1− δ
2

)
, (60)

min

{
f(Υ(ρ, 1))− c

1− δ
,
f(Υ(ρ, 1))

1− δ
2

}
=
f(Υ(ρ, 1))

1− δ
2

. (61)

The equivalence between (58)-(60) continues to hold with strict inequalities instead of weak

inequalities.

Proof: Equivalence is easily checked using Υ(ρ, 1) = 1
2
.

�

Proposition 21. If δ > 2c
f( 1

2
)+c

then (57) is the unique equilibrium.

Proof: By Lemma 10, e(0) = 0 in any equilibrium. So we are only left to show that, in any

equilibrium, e(ρ) = 1 for all ρ > 0.

Suppose an equilibrium exists such that e(ρ̂) < 1 for some ρ̂ > 0. Applying first Lemma

10 then Lemma 11:

c ≥ δ

2
V (ρ̂+) ≥ δ

2

(
f(Υ(ρ̂+, e(ρ̂+)))

1− δ
2

)
.

We thus obtain, using equivalence of (58) and (60) (with strict inequalities), the following

sequence of inequalities:

δ

2

(
f(Υ(ρ̂, 1))

1− δ
2

)
> c ≥ δ

2

(
f(Υ(ρ̂+, e(ρ̂+)))

1− δ
2

)
,

from which we infer that e(ρ̂+) < 1. We can thus repeat the steps above with ρ̂+ instead of

ρ̂, and so on. This process determines a sequence {ρn} such that, for all n:

(i) e(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)

> ρn,
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(iii) c ≥ δ
2

(
f(Υ(ρn+1,e(ρn+1)))

1− δ
2

)
.

By (i)-(ii), either e(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Υ(·, ·) and the fact that Υ(1, e) = Υ(ρ, 1) = 1
2

for all e and ρ in [0, 1]):

c ≥ δ

2

(
f(Υ(1, 1))

1− δ
2

)
. (62)

The equivalence between (58) and (60) (with strict inequalities) establishes a contradiction

with (62).

�

Proposition 22. If δ < 2c
f( 1

2
)+c

then e(ρ) = 0 for all ρ ∈ [0, 1] is the unique equilibrium with

upfront fees.

Proof: By Lemma 12, we have δ < 2c
f( 1

2
)+c

if and only if

c >
δ

2

(
f(Υ(1, e(1)))

1− δ
2

)
. (63)

Next, combining Lemmas 11 and 12 yields

V (1) =
f(Υ(1, e(1)))

1− δ
2

. (64)

Combining (63) and (64) gives c > δ
2
V (1); hence, by Lemma 11, c > δ

2
V (ρ) for all ρ ∈ [0, 1].

Lemma 10 thus yields e(ρ) = 0, for all ρ ∈ [0, 1].

That e(ρ) = 0, for all ρ ∈ [0, 1] is an equilibrium is immediate from (63), (64), and the

one-shot deviation principle.

�

Proof of Proposition 15: Follows from Propositions 20-22.

�

Proof of Theorem 3: Proposition 14 characterizes the unique equilibrium with contingent

fees, and Proposition 15 characterizes the unique equilibrium with upfront fees. The cutoff

δ = 2f(1)+4c
3f(1)+2c

is taken from Proposition 16. The cutoff δ = 2c
f(1)+c

is taken from Proposition 18.

With upfront fees, either the strategic agency shirks irrespective of ρt or the strategic agency
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acquires information with probability 1 irrespective of ρt. Hence, all that remains to show is

that the expected period-t welfare is an increasing function of the probability with which the

strategic agency chooses to acquire information. For this proof

The expected period-t welfare is

P(rt = 1)E[qt|rt = 1]− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
.1 +

1

2
(1− ρt)(1− e(ρt))

)1− (1− ρt)(1− e(ρt))
1 + (1− ρt)(1− e(ρt))

− c
(
ρt + (1− ρt)e(ρt)

)
=
(1

2
− c
)(
ρt + (1− ρt)e(ρt)

)
;

the result follows, since c < 1
2
.

�
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Online Appendix D

In this appendix we generalize the model presented in Online Appendix B by letting the prior

probability γ of qt = 1 take any value in (0, 1) and show that all our main results continue

to hold. We normalize a project’s return so that either qt = 1 or qt = −γ
1−γ . Hence E[qt] = 0

irrespective of γ. The model described in Online Appendix B corresponds to the case γ = 1
2
.

The definitions from Online Appendix B all apply here as well with the functions Φ and Υ

now replaced, respectively, by

Φ†(ρt, êt, ẑt) :=
1− (1− ρt)(1− êt)

1 + 1−γ
γ

(1− ρt)(1− êt)(1− ẑt
1−γ )

and

Υ†(ρt, êt) := γ
[
1− (1− ρt)(1− êt)

]
.

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. With 2 periods the strategic agency always shirks in period 2. So the focus is on

information acquisition at t = 1. Proofs of the propositions are relegated to the end of this

appendix.

Proposition 23. Let fees be contingent. In equilibrium e1(ρ1) < 1 for all ρ1 ∈ (0, 1). More-

over, the equilibrium is characterized by cutoffs ρ†, ρ† and δ such that, for δ > δ, e1(ρ1) ∈ (0, 1)

for all ρ1 ∈
(
ρ†, ρ†

)
.

Proposition 24. Let fees be upfront. Let x := min{γ, 1− γ}. In equilibrium, if δ ≤ c
γx

then

e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If instead δ > c
γx

then
ρ1 ∈ ( c

δγx
, 1) implies e(ρ1) = 1;

ρ1 ∈ ( c
δγ−c ,

c
δγx

) implies e(ρ1) ∈ (0, 1);

ρ1 ∈ (0, c
δγ−c) implies e(ρ1) = 0.

Welfare Comparison. As in Online Appendix B, since the strategic agency shirks at t = 2

irrespective of the fee structure, and, for the payoffs we consider, welfare does not depend on

the agency’s choice to inflate or deflate a rating in case it shirks, social welfare is uniquely

determined by the probability that the agency acquires information at t = 1. In the parameter
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region defined by δ ∈ (δ, c
γx

) and ρ1 ∈
(
ρ†, ρ†

)
the agency shirks at t = 1 with upfront

fees (Proposition 24) but acquires information with positive probability with contingent fees

(Proposition 23), thus contingent fees improve expected social welfare. Since δ < c
γx

, the

aforementioned region is non-empty (we call this observation Remark 1 and prove it below).

Note too that, for c sufficiently close to 0, any ρ1 and δ satisfy δ > c
γx

and ρ1 >
c
δγx

, hence

ensuring e1(ρ1) = 1 with upfront fees (Proposition 24). As e1(ρ1) < 1 everywhere with

contingent fees (Proposition 23), then for any ρ1 and δ upfront fees improve expected social

welfare for sufficiently small c.

Proof of Proposition 23: The function Φ† is continuous, weakly increasing in each of its

arguments, and Φ†(1, ·, ·) = Φ†(·, 1, ·) = 1. Notice that in any equilibrium the strate-

gic agency must shirk and announce r2 = 1 at t = 2 with probability 1 giving π2 =

Φ†(ρ2, 0, 0) = γρ2
1−(1−γ)ρ2

. Define V (ρ) := γρ
1−(1−γ)ρ

. Let ρ+
1 (e, z) (respectively ρ++

1 (e, z)) de-

note the value of ρ+
1 (respectively ρ++

1 ) for e1(ρ1) = e and z1(ρ1) = z. At t = 1, the

agency’s expected intertemporal profit from shirking and announcing rt = 1 is equal to

Φ†(ρ1, ê1, ẑ1)+δγV (ρ+
1 (ê1, ẑ1)), the intertemporal profit from shirking and announcing rt = −1

is equal to δ(1 − γ)V (ρ++
1 (ê1, ẑ1)), and the intertemporal profit from acquiring information

is equal to γΦ†(ρ1, ê1, ẑ1) − c + δ
[
γV (ρ+

1 (ê1, ẑ1)) + (1 − γ)V (ρ++
1 (ê1, ẑ1))

]
. The rest of the

proof contains 3 steps. Step 1 establishes than in equilibrium e1(ρ1) < 1. Step 2 computes

the probability with which the strategic agency must announce r1 = −1 if in equilibrium

e1(ρ1) = 0. Step 3 characterizes a parameter region in which e1(ρ1) > 0.

Step 1: An equilibrium with e1(ρ1) = 1 requires

δ(1− γ)V (ρ1)− c ≥ (1− γ)Φ†(ρ1, 1, z1), (65)

for some z1. Note that, for any z1 and any ρ1: Φ(ρ1, 1, z1) = 1 > V (ρ1). Thus (65) is violated

as c > 0 and δ < 1. Hence in equilibrium e(ρ1) < 1.

Step 2: Define z̃(ρ1) implicitly by

Φ†(ρ1, 0, z̃(ρ1)) = δ
[
(1− γ)V (ρ++

1 (0, z̃(ρ1)))− γV (ρ+
1 (0, z̃(ρ1)))

]
,
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which is equivalent to

ρ1γ

1− ρ1(1− γ)− (1− ρ1)z̃
= δ

(
ρ1γ(1− γ)

ρ1 + (1− ρ1)z̃ − (1− γ)ρ1

− γ2ρ1

1− ρ1(1− γ)− (1− ρ1)z̃

)
.

Simplifying to solve for z̃ gives z̃(ρ1) = δ(1−γ)
1+δ

+ ρ1γ
1−ρ1

δ(1−2γ)−1
1+δ

. Note that z̃(ρ1) < 1 if and

only if ρ1 <
1+γδ

(1+γδ)−(γ(1−δ)+2δγ2)
and this condition is satisfied for all ρ1 ∈ (0, 1); furthermore,

z̃(ρ1) > 0 if and only if ρ1 < ρ†1(δ) where ρ†1(δ) := (1−γ)δ
(1−γ)δ+(γ(1−δ)+2γ2δ)

. Note that ρ†1(δ) ∈ (0, 1).

By construction of z̃(ρ1), in equilibrium, e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if ρ1 ≤ ρ†1(δ) and

z(ρ1) = 0 if ρ1 > ρ†1(δ).

Step 3: Define ρ†(δ) = δ(1−γ)−c
δ(1−γ)2+(γ−c)(1−γ)

, ρ†(δ) := c(1+δγ)
δ2γ2−2cδγ2+cδγ+2δγ2−2cγ+γ2+c

. Consider first

ρ1 ≥ ρ†1(δ). Step 2 ensures that an equilibrium with e1(ρ1) = 0 exists if and only if: (1 −
γ)Φ†(ρ1, 0, 0) ≥ (1 − γ)δV (1) − c. This condition is equivalent to: ρ1 ≤ ρ†(δ). We conclude

that if ρ1 ∈ [ρ†1(δ), ρ†(δ)) in equilibrium e1 ∈ (0, 1). Now consider a ρ1 ≤ ρ†1(δ). Step 2

ensures that an equilibrium with e1(ρ1) = 0 exists if and only if (1− γ)Φ†(ρ1, 0, z̃(ρ1)) + c ≥
(1 − γ)δV (ρ++

1 (0, z̃(ρ1))). This condition is equivalent to: ρ1 ≤ ρco(δ). We conclude that if

ρ1(ρco(δ), ρ†1(δ)) in equilibrium e1 ∈ (0, 1).

Finally, straightforward algebra shows that both ρco(δ) > ρ†(δ) and ρco(δ) < ρ†(δ) are

equivalent to c < δγ(1−γ)(1+δ)
1+δγ

. This inequality is satisfied if δ ∈ (δ, 1) and violated if δ ∈ (0, δ],

where δ :=
cγ+γ2−γ+

√
c2γ2+2cγ3+γ4−6cγ2−2γ3+4cγ+γ2

2γ(1−γ)
. This concludes the proof. �

Proof of Proposition 24: Note that Υ† is continuous, weakly increasing in each of its ar-

guments, and Υ†(1, ·) = Υ†(·, 1) = γ. Define V (ρ) := γρ. Let ρ+
1 (e, z) (respectively ρ++

1 (e, z))

denote the value of ρ+
1 (respectively ρ++

1 ) for e1(ρ1) = e and z1(ρ1) = z. At t = 1, the

agency’s expected intertemporal profit from shirking and announcing rt = 1 is equal to

Υ†(ρ1, ê1) + δγV (ρ+
1 (ê1, ẑ1)), the intertemporal profit from shirking and announcing rt = −1

is equal to Υ†(ρ1, ê1) + δ(1 − γ)V (ρ++
1 (ê1, ẑ1)), and the intertemporal profit from acquiring

information is equal to Υ†(ρ1, ê1) + δ
[
γV (ρ+

1 (ê1, ẑ1)) + (1− γ)V (ρ++
1 (ê1, ẑ1))

]
− c.

We now consider two cases. These cases together prove the proposition.

Case 1. Let γ ∈ (0, 1
2
]. In equilibrium, if δ < c

γ2
then e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If
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instead δ > c
γ2

then 
if ρ1 ∈ ( c

δγ2
, 1) then e(ρ1) = 1,

if ρ1 ∈ ( c
δγ−c ,

c
δγ2

) then e(ρ1) ∈ (0, 1),

if ρ1 ∈ (0, c
δγ−c) then e(ρ1) = 0.

Define z̃(ρ1) implicitly as follows:

γV (ρ+
1 (0, z̃(ρ1))) = (1− γ)V (ρ++

1 (0, z̃(ρ1))), (66)

Solving (66) we obtain z̃(ρ1) = 1− γ + (1− 2γ) ρ1
1−ρ1 .

As γ ∈ (0, 1
2
], then z̃(ρ1) > 0 for all ρ1, while z̃(ρ1) < 1 if and only if ρ1 <

γ
1−γ , where

γ
1−γ ∈ (0, 1). By construction of z̃(ρ1), in equilibrium e1(ρ1) = 0 implies z(ρ1) = z̃(ρ1) if

ρ1 <
γ

1−γ , and z(ρ1) = 1 if ρ1 ≥ γ
1−γ .

Fix first ρ1 ≥ γ
1−γ . An equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+

1 (0, 1)) ≤ c,

which is equivalent to δ ≤ c
γ2

. Fix δ < c
γ2

. As V (ρ+
1 (0, 1)) = V (1) ≥ V (ρ2) for all ρ2 ∈ [0, 1],

then for and any e1 and z1: δγV (ρ+
1 (e1, z1)) < c. Hence in any equilibrium e1(ρ1) = 0 (and

z1(ρ1) = 1).

Fix now ρ1 <
γ

1−γ . An equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+
1 (0, z̃(ρ1))) ≤

c, which is equivalent to ρ1 ≤ c
δγ−c . Fix ρ1 < c

δγ−c . Clearly in this region if in equi-

librium with z1(ρ1) = z̃(ρ1) then e1(ρ1) = 0. Suppose an equilibrium exists in which

z1(ρ1) > z̃(ρ1); note that for any ê1: δ(1−γ)V (ρ++
1 (ê1, z1(ρ1))) ≤ δ(1−γ)V (ρ++

1 (0, z1(ρ1))) <

δ(1− γ)V (ρ++
1 (0, z̃1(ρ1))) = δγV (ρ+

1 (0, z̃1(ρ1))) < c, hence in such an equilibrium e1(ρ1) = 0.

Suppose now that an equilibrium exists in which z1(ρ1) < z̃(ρ1); note that for any ê1:

δγV (ρ+
1 (ê1, z1(ρ1))) ≤ δγV (ρ+

1 (0, z1(ρ1))) < δγV (ρ+
1 (0, z̃1(ρ1))) < c, hence in such an equilib-

rium e1(ρ1) = 0. Hence in any equilibrium e1(ρ1) = 0 (and z1(ρ1) = z̃(ρ1)).

Note that, for δ < c
γ2

, c
δγ−c > 1 ≥ ρ1 for all ρ1. Hence if either δ < c

γ2
or δ > c

γ2
and

ρ1 <
c

δγ−c then in equilibrium e1(ρ1) = 0.

Consider now an equilibrium in which e1(ρ1) = 1. In such equilibrium ρ++
1 = ρ+

1 = ρ1. As

γ ≤ 1
2
, in such equilibrium γV (ρ+

1 ) < (1− γ)V (ρ++
1 ), hence z1(ρ1) = 1. Thus an equilibrium

with e1(ρ1) = 1 exists if and only if δγV (ρ1) ≥ c that is, if and only if ρ1 ≥ c
δγ2

. Let

ρ1 >
c
δγ2

. Note that for any e1 and z1, ρ+
1 (e1, z1) ≥ ρ1, hence δγV (ρ+

1 ) > c, i.e. there is no

equilibrium in which the agency shirks and deflates with positive probability. Moreover, as

γ ≤ 1
2
: δ(1 − γ)V (ρ+

1 ) ≥ δ(1 − γ)V (ρ1) ≥ δγV (ρ1) > c, i.e. there is no equilibrium in which
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the agency shirks and inflates with positive probability. Thus for ρ1 > c
δγ2

in equilibrium

e1(ρ) = 1. Noting that an equilibrium exists for all parameter values concludes the proof of

case 1.

Case 2. Let γ ∈ (1
2
, 1). In equilibrium, if δ < c

γ(1−γ)
then e1(ρ1) = 0 for all ρ1 ∈ (0, 1). If

instead δ > c
γ(1−γ)

then
if ρ1 ∈ ( c

δγ(1−γ)
, 1) then e(ρ1) = 1,

if ρ1 ∈ ( c
δγ−c ,

c
δγ(1−γ)

) then e(ρ1) ∈ (0, 1),

if ρ1 ∈ (0, c
δγ−c) then e(ρ1) = 0.

Consider z̃(ρ1), as defined by (66). As γ ∈ (1
2
, 1), then z̃(ρ1) < 1 for all ρ1, while z̃(ρ1) > 0

if and only if ρ1 <
1−γ
γ

, where 1−γ
γ
∈ (0, 1). By construction of z̃(ρ1), in equilibrium e1(ρ1) = 0

implies z(ρ1) = z̃(ρ1) if ρ1 <
1−γ
γ

, and z(ρ1) = 0 if ρ1 ≥ 1−γ
γ

.

So for ρ1 ≥ 1−γ
γ

an equilibrium with e1(ρ1) = 0 exists if and only if δ(1−γ)V (ρ++
1 (0, 0)) ≤ c,

which is equivalent to δ ≤ c
γ(1−γ)

. Consider δ < c
γ(1−γ)

. As V (ρ++
1 (0, 0)) = V (1) ≥ V (ρ2) for

all ρ2, then for any e1 and z1: δ(1− γ)V (ρ++
1 (e1, z1)) < c. Thus in this region, in equilibrium,

e1(ρ1) = 0.

For ρ1 <
1−γ
γ

instead, an equilibrium with e1(ρ1) = 0 exists if and only if δγV (ρ+
1 (0, z̃(ρ1))) ≤

c, which is equivalent to ρ1 ≤ c
δγ−c . The proof that in equilibrium e1(ρ1) = 0 for ρ1 <

c
δγ−c

follows the same steps as the proof that e1(ρ1) = 0 for γ ∈ (0, 1
2
] and ρ1 <

c
δγ−c discussed

above.

Consider now an equilibrium in which e1(ρ1) = 1. As γ > 1
2
, in such equilibrium z1(ρ1) = 0.

Thus an equilibrium with e1(ρ1) = 1 exists if and only if δ(1 − γ)V (ρ1) ≥ c that is, if and

only if ρ1 ≥ c
δγ(1−γ)

. Let ρ1 >
c

δγ(1−γ)
. Note that for any e1 and z1, ρ++

1 (e1, z1) ≥ ρ1, hence

δ(1 − γ)V (ρ++
1 ) > c. Moreover, as γ > 1

2
: δγV (ρ+

1 ) ≥ δγV (ρ1) > δ(1 − γ)V (ρ1) > c. Thus

for ρ1 >
c

δγ(1−γ)
in equilibrium e1(ρ) = 1. Noting that an equilibrium exists for all parameter

values concludes the proof of case 2.

�

Proof of Remark 1: As shown in the Proof of Proposition 23, δ > δ implies

c <
δγ(1− γ)(1 + δ)

1 + δγ
. (67)
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We prove the remark by showing that for δ = c
γx

condition (67) holds. We consider the cases

γ ≤ 1
2

and γ > 1
2

separately.

Let γ ≤ 1
2
, hence x = γ. For δ = c

γ2
, (67) reduces to:

c <

c
γ
(1− γ)(1 + c

γ2
)

1 + c
γ

⇔

(2γ − 1)γ2 < (1− γ − γ2)c.

This last inequality holds as (2γ − 1)γ2 < 0 < (1− γ − γ2)c.

Let now γ > 1
2
, hence x = 1− γ. For δ = c

γ(1−γ)
, (67) reduces to:

c <

c
γ(1−γ)

γ(1− γ)(1 + c
γ(1−γ)

)

1 + c
γ(1−γ)

γ

This condition is equivalent to γ < 1, which clearly holds. �
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Online Appendix E

In this appendix we check the robustness of our analysis by assuming that investors and firms

never observe q. We show that, as in the baseline model:

• for some parameter values contingent fees improve expected social welfare relative to

upfront fees;

• upfront fees improve expected social welfare relative to contingent fees as long as the

cost of information acquisition, c, is sufficiently small.

The Model. The agency lives for two periods. The model differs from the one discussed in

Section 3 only in that investors and firms never observe qt (and we set β = 1).

Given e : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0
; ρ− :=

0 if ρ = 0

ρ
1+(1−ρ)(1−e) if ρ > 0

The next definition is immediately adapted from the equilibrium concept of Section 2.

Definition 5. An equilibrium with contingent fees comprises functions et : [0, 1] → [0, 1]

specifying the probabilities et(ρt) that the strategic agency acquires information in period t

given reputation ρt, for t = 1, 2, such that each period:

(i) the choice(s) implied by et(ρt) maximize the agency’s expected intertemporal profit given

by (35), and

ρ2 =

ρ+
1 if r1 = −1;

ρ−1 if r1 = 1;

(ii) firms and investors’ beliefs satisfy êt = et(ρt).

The definition of an equilibrium with upfront fees is obtained by replacing (35) with (36).

The Equilibria. We next characterize the equilibria with, respectively, contingent fees and

upfront fees. Proofs of the propositions are relegated to the end of this appendix.
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Proposition 25. With contingent fees, in equilibrium e1(ρ1) > 0 if and only if δ > 2c and

ρ1 < ρco(δ), where ρco(δ) is defined implicitly by

δ =

(
4− 3ρco

2(1− ρco)

)(
ρco

2− ρco
+ c

)
.

Moreover limc→0 e1(ρ1) < 1 for any ρ1 and δ.

Proposition 26. With upfront fees, in equilibrium e1(ρ1) > 0 if and only if δ > 4c and

ρ1 < ρup(δ) := 4c−δ
2−δ . Moreover limc→0 e1(ρ1) = 1 for any ρ1 and δ.

Welfare Comparison. When fees are contingent, for δ ∈ (2c, 4c) the strategic agency

acquires information at t = 1 with positive probability provided its reputation is not too high

(Proposition 25). By contrast, for δ ∈ (2c, 4c) the strategic agency shirks with probability

1 when fees are upfront (Proposition 26). For δ ∈ (2c, 4c) and sufficiently low reputation

expected social welfare is therefore higher under contingent fees than under upfront fees.

Moreover for any δ and ρ1, limc→0 e1(ρ1) = 1 only in the case of upfront fees. Thus upfront

fees increase expected social welfare if the cost of information acquisition is sufficiently low.

Proof of Proposition 25: Define V (ρ) := ρ
2−ρ . At t = 1, the agency’s expected intertempo-

ral profit from shirking and announcing rt = 1 is equal to Φ(ρ1, ê1) + δV (ρ−1 ). The intertem-

poral profit from acquiring information is equal to 1
2
Φ(ρ1, ê1)− c+ δ

2

[
V (ρ+

1 ) + V (ρ−1 )
]
.

Fix ρ1 ∈ (0, 1). An equilibrium in which e1(ρ1) = 1 exists if and only if

Φ(ρ1, 1) + δV (ρ1) ≤ 1

2
Φ(ρ1, 1)− c+ δV (ρ1). (68)

This condition is always violated, thus in equilibrium e1(ρ1) < 1. An equilibrium in which

e1(ρ1) = 0 in turn exists if and only if

Φ(ρ1, 0) + δV

(
ρ1

2− ρ1

)
≥ 1

2
Φ(ρ1, 0) +

δ

2

(
V (1) + V

(
ρ1

2− ρ1

))
− c.

Substituting for Φ(·) and V (·) and simplifying yields

δ ≤ δ̃(ρ1) :=

(
4− 3ρ1

2(1− ρ1)

)(
ρ1

2− ρ1

+ c

)
.
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Notice that δ̃(ρ1) is continuous and increasing in ρ1 for ρ1 ∈ (0, 1) as it is the product of

2 terms, each of which is continuous and increasing in ρ1 for ρ1 ∈ (0, 1). Hence δ < δ̃(ρ1)

is equivalent to ρ1 > ρco(δ); moreover as δ̃(0) = 2c, then e1(ρ1) > 0 only if δ > 2c. The

proof that δ > δ̃(ρ1) is necessary and sufficient for an equilibrium in which e1 ∈ (0, 1) follows

standard arguments.

Pick a pair δ and ρ1. For sufficiently small c, δ > 2c, thus in equilibrium e1(ρ1) ∈ (0, 1).

Note also that for c = 0 and e(ρ1) = 1 (68) is violated. Thus, by continuity of V and Φ in

equilibrium limc→0 e1(ρ1) < 1.

�

Proof of Proposition 26: Define V (ρ) := ρ
2
. At t = 1, the agency’s expected intertemporal

profit from shirking and announcing rt = 1 is equal to Υ(ρ1, ê1) + δV (ρ−1 ). The intertemporal

profit from acquiring information is equal to Υ(ρ1, ê1)−c+ δ
2

[
V (ρ+

1 )+V (ρ−1 )
]
. Fix ρ1 ∈ (0, 1).

An equilibrium in which e1(ρ1) = 1 exists if and only if

δV (ρ1) ≤ δV (ρ1)− c. (69)

This condition is always violated for c > 0. An equilibrium in which e1(ρ1) = 0 exists if and

only if
δ

2
V

(
ρ1

2− ρ1

)
≥ δ

2
V (1)− c.

Substituting for V (·) and simplifying yields

δ ≤ δ(ρ1) :=
2c(2− ρ1)

1− ρ1

.

As δ(ρ1) is continuous and increasing in ρ1, then δ < δ(ρ1) is equivalent to ρ1 > ρup(δ);

moreover, as δ(0) = 4c, then e1(ρ1) > 0 only if δ > 4c. The proof that δ > δ(ρ1) is necessary

and sufficient for an equilibrium in which e1 ∈ (0, 1) follows standard arguments.

Next, fix δ and ρ1. Note also that, for c = 0, e(ρ1) = 1 satisfies (69). Continuity of Υ and

V thus ensure that in equilibrium limc→0 e1(ρ1) = 1. �
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Online Appendix F

In this appendix we present and analyze the model with observable information acquisition.

The model and the main result of this appendix (Proposition 27) are presented in Subsection

F.1. The analysis of an auxiliary game needed in the proof of Proposition 27 is carried out in

Subsection F.2. Subsection F.3 contains the proof of Proposition 27.

F.1 The model

Fees. Each period, firms and investors form beliefs regarding the probability that the strate-

gic agency will truthfully report what it observes. Let ât denote the beginning-of-period-t belief

that, conditional on acquiring information and observing qt = −1, the strategic agency truth-

fully assigns the rating rt = −1. We maintain the notation êt for the beginning-of-period-t

belief that the strategic agency will acquire information in period t, and set β = 1 to reduce

notation. So the contingent fee is

φt(rt) =

E[qt|rt = 1, ρt, êt, ât] if rt = 1;

0 if rt = −1.
(70)

while the upfront fee is φt(1) = φt(−1) = P(rt = 1|ρt, êt, ât)E[qt|rt = 1, ρt, êt, ât].

Timing. The timing within period t is as follows. The agency first decides whether or not

to acquire information. In case the agency shirks the game moves on to the next period. This

captures the idea that a regulatory authority prevents the agency from rating firm t in case

the agency is caught shirking. In case it chose to acquire information and observed qt = 1

the agency publicly announces the rating rt = 1. If it observed qt = −1 the agency chooses

whether to truthfully assign rt = −1, or inflate the rating and assign rt = 1. The agency then

receives φt(rt), all players observe qt and the game moves on to the next period.

Strategies and Payoffs. A stationary strategy for the agency now comprises a pair
(
e(·), a(·)),

where e : [0, 1]→ [0, 1] and a : [0, 1]→ [0, 1], specifying respectively the probability of acquir-

ing information and the probability of truthfully assigning the rating rt = −1 conditional on

observing qt = −1, both expressed as a function of the agency’s reputation ρt. The payoffs

are as in Section 2. The next definition adapts the equilibrium concept of that section.
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Definition 6. An equilibrium with observable information acquisition comprises a pair
(
e(·), a(·)

)
such that:

(i) in period t, the strategic agency acquires information with probability e(ρt) and, con-

ditional on observing qt = −1, truthfully assigns the rating rt = −1 with probability

a(ρt);

(ii) the strategy
(
e(·), a(·)

)
maximizes the agency’s expected intertemporal profit given ρt+1 =

Ψ(ρt, rt, qt), where33

Ψ(ρt, rt, qt) :=


ρt

ρt+(1−ρt)êt if qt = 1 = rt and ρt > 0;

ρt
ρt+(1−ρt)êtât if qt = −1 = rt and ρt > 0;

0 if rt = ∅, or qt = −1 = −rt, or ρt = 0;

(iii) firms and investors’ beliefs satisfy êt = e(ρt) and ât = a(ρt).

In equilibrium investors correctly infer the probabilities with which the strategic agency

chooses to acquire information and to truthfully assign rt = −1 when observing qt = −1,

and these choices are optimal for the agency. Firms and investors’ beliefs are updated using

Bayes’ rule whenever possible. The agency loses its reputation whenever it is caught shirking.

If it acquires information and qt = 1 then reputation is updated based on the belief êt = e(ρt)

alone, that is, reputation jumps up to

ρ+
t :=

ρt
ρt + (1− ρt)e(ρt)

.

By contrast, two cases arise if the agency acquires information and qt = −1: rt = 1 reveals

that the agency inflated the rating (and thus, that the agency is strategic), and rt = −1 that

the agency truthfully reported what it observed. In the latter case reputation is updated

based both on the belief êt = e(ρt) and on the belief ât = a(ρt), that is, reputation jumps up

to34

ρ++
t :=

ρt
ρt + (1− ρt)e(ρt)a(ρt)

.

We proceed to characterize the equilibrium behavior of the strategic agency. If the agency

shirks, the agency is revealed to be strategic and the game moves on to the next period. So in

33We let rt = ∅ denote the case in which the agency shirks in period t.
34As usual zero-probability events are dealt with by assuring that ρt = 0 is an absorbing state of the Markov

process, and by ascribing any misreporting to the strategic agency.
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order to obtain a positive payoff the agency is now forced to acquire information. Conditional

on acquiring information, the agency can inflate the rating in case qt = −1 or truthfully

report what it observes. Inflating the rating guarantees the fee φt(1). The downside is that

the agency could lose its reputation: either qt = 1 in which case ρt+1 = ρ+
t , or qt = −1 in

which case ρt+1 = 0. By contrast, truthfully reporting what the agency observes lowers the

probability of receiving φt(1) to just 1
2
, but could induce a reputation boost: either qt = 1 in

which case ρt+1 = ρ+
t , or qt = −1 in which case ρt+1 = ρ++

t . By virtue of Bellman’s Principle

of Optimality an equilibrium with value function V (·) therefore satisfies the Bellman equation

V (ρ) = max
{
φ(ρ)− c+ δ

(1

2
V (ρ+) +

1

2
V (0)

)
,
φ(ρ)

2
− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)}
.

We show later that V (0) = 0. Hence, the strategic agency is either indifferent between

inflating the rating and truthful reporting, or φ(ρ)
2

> δ
2
V (ρ++) in which case inflating the

rating is uniquely optimal, or, lastly, φ(ρ)
2

< δ
2
V (ρ++) in which case truthful reporting is

uniquely optimal.

The following proposition is the main result of this appendix.

Proposition 27. With observable information acquisition:

1. if δ < 2
3−2c

then upfront fees improve expected social welfare relative to contingent fees;

2. if δ > 2
3−2c

then expected social welfare is the same whether fees are upfront or contingent.

F.2 An Auxiliary Game

We analyze in this subsection the auxiliary game in which, by assumption, the strategic agency

(i) shirks if ρt = 0, and (ii) acquires information if ρt > 0. Hence, e(0) = 0 and e(ρ) = 1

for all ρ > 0, and in this setting a stationary strategy for the agency is simply a mapping

a : (0, 1] → [0, 1] specifying the probability of truthfully assigning the rating rt = −1 when

observing qt = −1, as a function of the agency’s reputation in period t. Our objective is to

prove the following result:

Proposition 28. Let δ < 2
3−2c

. There exists a unique equilibrium of the auxiliary game. Its

value function, Ṽ (·), is strictly increasing and continuous over (0, 1], and Ṽ (1) > 0.

We start with two simple lemmas. Define, Ξ(·, ·) : (0, 1]× [0, 1]× [0, 1]→ R such that

Ξ(ρ, e, a) :=
ρ+ (1− ρ)ea

ρ+ (1− ρ)e(2− a)
.
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Note that E[qt|rt = 1, ρt, êt, ât] = Ξ(ρt, êt, ât) for all ρt > 0, and that Ξ(·, ·, ·) is continuous,

weakly increasing in ρ and in a, weakly decreasing in e, Ξ(ρ, e, a) > 0, and Ξ(1, e, a) =

Ξ(ρ, e, 1) = Ξ(ρ, 0, a) = 1.

Given a function a : [0, 1]→ [0, 1], define

ρ† :=

0 if ρ = 0,

ρ
ρ+(1−ρ)a(ρ)

if ρ > 0.

Lemma 13. In any equilibrium of the auxiliary game with value function Ṽ (·), for all ρ > 0,if δṼ (ρ†) > Ξ(ρ, 1, a(ρ)) then a(ρ) = 1,

if δṼ (ρ†) < Ξ(ρ, 1, a(ρ)) then a(ρ) = 0.

Proof: By virtue of Bellman’s Principle of Optimality,

Ṽ (ρ) = max
{

Ξ(ρ, 1, a(ρ))− c+
δ

2
Ṽ (ρ) ,

1

2
Ξ(ρ, 1, a(ρ))− c+ δ

(1

2
Ṽ (ρ) +

1

2
Ṽ (ρ†)

)}
(71)

for all ρ > 0, and the choice implied by a(ρ) maximizes the right-hand side of (71).

�

Lemma 14. In any equilibrium of the auxiliary game,
if a(ρ) = 1 then Ṽ (ρ) =

1
2

Ξ(ρ,1,1)−c
1−δ = max

{
1
2

Ξ(ρ,1,1)−c
1−δ , Ξ(ρ,1,1)−c

1− δ
2

}
,

if a(ρ) < 1 then Ṽ (ρ) = Ξ(ρ,1,a(ρ))−c
1− δ

2

.

Furthermore, Ṽ (1) = max

{
1
2

Ξ(1,1,1)−c
1−δ , Ξ(1,1,1)−c

1− δ
2

}
≥ Ṽ (ρ), for all ρ ∈ [0, 1].

Proof: The lemma follows from Bellman’s Principle of Optimality together with the obser-

vations that (a) a(ρ) = 1 implies ρ† = ρ, (b) ρ = 1 implies ρ† = 1, (c) Ξ(1, 1, a) = 1 for all

a ∈ [0, 1], and (d) Ξ(·, 1, ·) is weakly increasing in both variables.

�

Proof of Proposition 28: Define ρ and a implicitly by

Ξ(ρ, 1, 0) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
, (72)
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and

Ξ(0, 1, a) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
, (73)

respectively. As δ < 2
3−2c

⇔ Ξ(1, 1, 1) > δ
(

Ξ(1,1,1)−c
1− δ

2

)
, we have ρ < 1 and a < 1. Noting that

(since c < β
2

= 1
2
) the right-hand side in (72) and (73) is strictly positive whereas Ξ(0, 1, 0) = 0

yields ρ > 0 and a > 0. Thus ρ ∈ (0, 1) and a ∈ (0, 1).

We now show that there is a unique equilibrium of the auxiliary game, and that the

equilibrium satisfies a(ρ) = 0 if ρ ≥ ρ

a(ρ) ∈ (0, a] if ρ ∈ (0, ρ).
(74)

We will first proceed by induction to show that there can exist at most one equilibrium. We

will then argue that the inductive procedure yields an equilibrium.

As a preliminary step observe that, as δ < 2
3−2c

, then max

{
1
2

Ξ(1,1,1)−c
1−δ , Ξ(1,1,1)−c

1− δ
2

}
=

Ξ(1,1,1)−c
1− δ

2

. Hence, by Lemma 14,

Ṽ (ρ) =
Ξ(ρ, 1, a(ρ))− c

1− δ
2

, (75)

for all ρ > 0.

The inductive procedure starts as follows. Combining (72) and (75) any equilibrium must

be such that, for all ρ > ρ :

Ξ(ρ, 1, 0) > δṼ (ρ†).

Thus, by Lemma 13, if an equilibrium exists it must satisfy a(ρ) = 0 for all ρ > ρ. A similar

argument shows that in fact the same must be true for ρ = ρ.

By contrast, consider ρ ∈ (0, ρ). The combination of (72), (75), and Lemma 13 shows that

a(ρ) = 0 is impossible in equilibrium. Similarly, the combination of (73), (75) and Lemma 13

shows that a(ρ) > a is impossible in equilibrium. Thus, any equilibrium must satisfy (74).

By Lemma 13 this in turn implies that the indifference condition

δṼ (ρ†) = Ξ(ρ, 1, a(ρ)) (76)

must hold for all ρ ∈ (0, ρ).
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Next define ρ1 such that

ρ =
ρ1

ρ1 + (1− ρ1)a
.

Thus ρ1 < ρ. By construction of ρ1 and property (74), in any equilibrium: ρ† ≥ ρ for all

ρ ∈ [ρ1, ρ). (76), (74) and (75) now pin down a unique candidate equilibrium a(ρ) for each

ρ ∈ [ρ1, ρ) (which moreover is continuous in ρ). Repeating the step above with ρ1 instead

of ρ yields ρ2 < ρ1 and a unique candidate equilibrium a(ρ) for each ρ ∈ [ρ2, ρ1), and so on.

This defines a sequence {ρn} where, for all n, ρn = ρn+1

ρn+1+(1−ρn+1)a
. As a < 1, ρn → 0. This

inductive procedure therefore pins down a unique candidate equilibrium, whose value function

is continuous over (0, 1] (see (75)). That this candidate equilibrium is in fact an equilibrium

is a consequence of the one-shot deviation principle.

It remains only to show that the value function Ṽ of the unique equilibrium is strictly

increasing over the interval (0, 1]. We proceed by induction. Ṽ is trivially increasing over

[ρ, 1]. Next, suppose that we can find ρa and ρb with ρ > ρb > ρa ≥ ρ1 and Ξ(ρa, 1, a(ρa)) ≥
Ξ(ρb, 1, a(ρb)). Then we must also have a(ρa) > a(ρb), which in turn implies ρ†b > ρ†a ≥ ρ

and Ṽ (ρ†b) > Ṽ (ρ†a). The latter inequality contradicts Lemma 13. Hence, Ξ(ρa, 1, a(ρa)) <

Ξ(ρb, 1, a(ρb)). (75) thus yields Ṽ (ρa) < Ṽ (ρb) and establishes that Ṽ is increasing over [ρ1, 1].

Repeating the step above with ρ1 instead of ρ, and so on, establishes that Ṽ is increasing over

(0, 1].

�

F.3 Proof of Proposition 27

Define Ξ(·, ·, ·) : (0, 1]× [0, 1]× [0, 1]× → R such that

Ξ(ρ, e, a) :=
ρ+ (1− ρ)ea

ρ+ (1− ρ)e(2− a)
.

Note that E[qt|rt = 1, ρt, êt, ât] = Ξ(ρt, êt, ât) for all ρt > 0, and that Ξ(·, ·, ·) is continuous,

weakly increasing in ρ and in a, weakly decreasing in e, Ξ(ρ, e, a) > 0, and Ξ(1, e, a) =

Ξ(ρ, e, 1) = Ξ(ρ, 0, a) = 1.

Given two functions e : [0, 1]→ [0, 1] and a : [0, 1]→ [0, 1], define

ρ+ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)

if ρ > 0,

38



and

ρ++ :=

0 if ρ = 0,

ρ
ρ+(1−ρ)e(ρ)a(ρ)

if ρ > 0.

Lemma 15. In any equilibrium, with V (·) denoting the value function of the equilibrium:

1. e(0) = a(0) = V (0) = 0,

2. e(ρ) > 0 for all ρ > 0,

3. for all ρ > 0:

V (ρ) = (77)

max
{

Ξ(ρ, e(ρ), a(ρ))− c+
δ

2
V (ρ+) ,

1

2
Ξ(ρ, e(ρ), a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)}
.

Proof: Consider an arbitrary equilibrium; by virtue of Bellman’s Principle of Optimality,

since ρ = 0 is an absorbing state, a(0) > 0 implies 0 ≥ 1
2
E[qt|rt = 1, 0, e(0), a(0)]. However,

if a(0) > 0 then E[qt|rt = 1, 0, e(0), a(0)] = a(0)
2−a(0)

> 0. Thus, by contradiction, a(0) = 0 and

the fee of the agency with reputation ρt = 0 is 0. As c > 0, for ρt = 0 the agency’s expected

intertemporal profit from acquiring information in period t is strictly negative. This implies

e(0) = 0 and V (0) = 0.

Next observe that, whichever e and a,

V (1) ≥
1
2
Ξ(1, e, a)− c

1− δ
=

1
2
− c

1− δ
> 0. (78)

Thus e(1) = 1, since each period the agency’s payoff from shirking is 0. Suppose now that

e(ρ̂) = 0 for some ρ̂ > 0, and ρt = ρ̂. Then by acquiring information in period t the agency

would (i) command in period t the fee Ξ(ρ̂, 0, a(ρ̂)) = 1 and (ii) guarantee itself ρt+1 = 1. In

other words, the agency’s expected intertemporal profit from acquiring information in period

t equals V (1). But then acquiring information strictly dominates shirking, contradicting

the initial assumption that e(ρ̂) = 0. This shows that e(ρ) > 0 for all ρ > 0. We can

thus compute the value function of the equilibrium by conditioning on the strategic agency

acquiring information, yielding the Bellman equation (77). The first expression on the right-

hand side is the expected intertemporal profit conditional on acquiring information and lying
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about qt in case qt = −1. The second expression on the right-hand side is the expected

intertemporal profit conditional on acquiring information and truthfully assigning rt = −1 in

case qt = −1.

�

Proposition 29. Let δ > 2
3−2c

. There exists a unique equilibrium. In equilibrium:

1. e(0) = a(0) = 0,

2. e(ρ) = a(ρ) = 1, for all ρ > 0.

Proof: Let V̂ denote the value function corresponding to the strategy described in the state-

ment of the proposition. Thus V̂ (0) = 0 and V̂ (ρ) =
1
2
−c

1−δ > 0 for all, ρ > 0. By virtue of the

one-shot deviation principle if no single deviation is profitable then the strategy considered

is an equilibrium. It is easy to see that there is no profitable deviation if ρt = 0. It is also

clear that if ρt > 0 then shirking is not a profitable deviation. So we only have to check that

if ρt > 0 then lying about qt when qt = −1 is not profitable either. That is, we have to check

that Ξ(ρ, 1, 1) ≤ δ
(

1
2
−c

1−δ

)
, which is equivalent to δ ≥ 2

3−2c
.

We proceed to show that the strategy described in the statement of the proposition is the

unique equilibrium. If a(ρ) = 1 for all ρ > 0 then V (ρ) ≥
1
2
−c

1−δ > 0 for all ρ > 0. Therefore

a(ρ) = 1 for all ρ > 0 implies e(ρ) = 1 for all ρ > 0. Next, suppose that an equilibrium exists

such that a(ρ̂) < 1 for some ρ̂ ∈ (0, 1). By virtue of (77),

Ξ(ρ̂, e(ρ̂), a(ρ̂)) ≥ δV (ρ̂++).

If a(ρ̂++) were equal to 1 we would then have (recall, from Lemma 15, e(ρ̂) > 0),

1 > Ξ(ρ̂, e(ρ̂), a(ρ̂)) ≥ δ

( 1
2
Ξ(ρ̂++, e(ρ̂++), 1)− c

1− δ

)
,

that is, δ < 2
3−2c

. Hence by contradiction a(ρ̂++) < 1. We can thus repeat the steps above

with ρ̂++ instead of ρ̂, and so on. This process determines a sequence {ρn} such that, for all

n:

(i) a(ρn) < 1,

(ii) ρn+1 = ρn
ρn+(1−ρn)e(ρn)a(ρn)

> ρn,
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(iii) Ξ(ρn, e(ρn), a(ρn)) ≥ δV (ρn+1) ≥ δ
(

Ξ(ρn+1,e(ρn+1),a(ρn+1))−c
1− δ

2

)
.

By (i)-(ii), either a(ρn) → 1 or ρn → 1. Hence, taking limits in (iii) yields (using continuity

of Ξ(·, ·, ·) and the fact that Ξ(1, e, a) = Φ(ρ, e, 1) = 1 for all ρ, e and a):

Ξ(1, 1, 1) ≥ δ

(
Ξ(1, 1, 1)− c

1− δ
2

)
. (79)

This simplifies to δ ≤ 2
3−2c

.

�

Lemma 16. Let δ < 2
3−2c

. There exists ρ ∈ (0, 1) and a ∈ (0, 1) such that, in any equilibrium:

1. e(ρ) = 1 for all ρ ≥ ρ,

2. a(ρ) ≤ a for all ρ ∈ [0, 1].

Proof: Since Ξ(1, e, a) = 1 for all e and a and Ξ(·, ·, ·) is continuous, (77) yields V (ρ) > 0 for

all ρ sufficiently close to 1. But V (ρ) > 0 implies e(ρ) = 1.

Next, define a implicitly by

Ξ(0, 1, a) = δ
(Ξ(1, 1, 1)− c

1− δ
2

)
. (80)

Observe that a < 1 since δ < 2
3−2c

, and a > 0 since the right-hand side of (80) is strictly

positive.

Suppose that we can find an equilibrium with a(ρ̂) > a for ρ̂ > 0. Then, by (77) and

Bellman’s Principle of Optimality, δV (ρ̂++) ≥ Ξ(ρ̂, e(ρ̂), a(ρ̂)). Combined with (80), this

yields V (ρ̂++) > Ξ(1,1,1)−c
1− δ

2

. Yet, given δ < 2
3−2c

, we have

V (1) = max
{Ξ(1, 1, 1)− c

1− δ
2

,
1
2
Ξ(1, 1, 1)− c

1− δ

}
=

Ξ(1, 1, 1)− c
1− δ

2

,

yielding V (ρ̂++) > V (1), which cannot be.

�

In what follows let ã(·) denote the unique equilibrium of the auxiliary game analyzed in
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Subsection F.2, Ṽ (·) the corresponding value function, and for δ < 2
3−2c

define ρ̃ implicitly byρ̃ = 0 if Ṽ (ρ) > 0 for all ρ > 0,

Ṽ (ρ̃) = 0 otherwise.

By virtue of Proposition 28, ρ̃ is well defined. Finally, given ρ > 0, let

ρ† :=
ρ

ρ+ (1− ρ)ã(ρ)
.

We will now show that there can be at most one equilibrium for δ < 2
3−2c

. The proof is

somewhat complicated. To help the reader get the gist of the argument, we defer the main

result and start with a slightly weaker version of the result, by focusing on the class of equilibria

with a non-decreasing value function.

Lemma 17. Let δ < 2
3−2c

. In any equilibrium whose value function is non-decreasing:

1. if ρ̃ = 0: e(ρ) = 1 for all ρ > 0,

2. if ρ̃ > 0: e(ρ) = 1 for all ρ ≥ ρ̃ and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃).

Proof: We first show the proof of the lemma for the case in which ρ̃ = 0. The case ρ̃ > 0 is

considered at the end.

Define ρ1 implicitly by

ρ =
ρ1

ρ1 + (1− ρ1)a
,

with ρ and a satisfying the conditions stated in Lemma 16. Thus ρ1 < ρ (since a < 1), and in

any equilibrium ρ++ ≥ ρ for all ρ ≥ ρ1.

The proof is by induction: we have e(ρ) = 1 for all ρ ≥ ρ and we proceed to show that

e(ρ) = 1 for all ρ ≥ ρ1.

Step 1: for all ρ ≥ ρ1, Ξ(ρ, e(ρ), a(ρ)) ≥ Ξ(ρ, 1, ã(ρ)). If e(ρ) = 1 then a(ρ) = ã(ρ) and so

the result is trivial. Suppose now that e(ρ) < 1, and Ξ(ρ, e(ρ), a(ρ)) < Ξ(ρ, 1, ã(ρ)). Then

a(ρ) < ã(ρ), which in turn implies

Ξ(ρ, e(ρ), a(ρ)) ≥ δV (ρ++) = δṼ (ρ++) > δṼ (ρ†) ≥ Ξ(ρ, 1, ã(ρ)).

The first inequality follows from (77) and a(ρ) < 1. The subsequent equality follows from
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noting that ρ++ ≥ ρ while V (ρ) = Ṽ (ρ) for all ρ ≥ ρ. The second inequality is due to the

fact that since a(ρ) < ã(ρ), ρ++ > ρ†, while Ṽ is strictly increasing (Proposition 28). The last

inequality follows from (71) and ã(ρ) > 0.

Step 2: for all ρ ≥ ρ1, Ṽ (ρ++) ≥ Ṽ (ρ†). First, suppose a(ρ) = 0. Then ρ++ = 1 and, since

Ṽ (·) is increasing on (0, 1] (Proposition 28), Ṽ (ρ++) ≥ Ṽ (ρ†).

Next, suppose ã(ρ) = 0. Then ρ† = 1 and Ξ(ρ, 1, ã(ρ)) ≥ δṼ (ρ†) = δṼ (1). Therefore,

if we had Ṽ (ρ++) < Ṽ (ρ†) we would have (by Step 1) Ξ(ρ, e(ρ), a(ρ)) > δṼ (ρ++), and since

V (ρ) = Ṽ (ρ) for all ρ ≥ ρ, Ξ(ρ, e(ρ), a(ρ)) > δV (ρ++). Given (77), this would imply a(ρ) = 0,

and ρ++ = 1. But then Ṽ (ρ++) = Ṽ (ρ†).

Finally, suppose a(ρ) > 0 and ã(ρ) > 0. We then obtain, in view of (71), (77), Step 1 and

V (ρ) = Ṽ (ρ) for all ρ ≥ ρ,

δṼ (ρ++) = δV (ρ++) = Ξ(ρ, e(ρ), a(ρ)) ≥ Ξ(ρ, 1, ã(ρ)) = δṼ (ρ†).

Step 3: for all ρ ≥ ρ1, V (ρ) ≥ Ṽ (ρ). Using V (ρ) = Ṽ (ρ) for all ρ ≥ ρ, if V (·) is non-decreasing

then (77), Step 1 and Step 2 yield

V (ρ) ≥ max
{

Ξ(ρ, 1, ã(ρ))− c+
δ

2
V (ρ) ,

1

2
Ξ(ρ, 1, ã(ρ))− c+ δ

(1

2
V (ρ) +

1

2
Ṽ (ρ†)

)}
, (81)

for all ρ ≥ ρ1. Comparing (81) with (71) gives V (ρ) ≥ Ṽ (ρ), for all ρ ≥ ρ1.

We conclude from Step 3 that V (ρ) > 0 for all ρ ≥ ρ1, which in turn implies that e(ρ) = 1

for all ρ ≥ ρ1. We can thus repeat Steps 1-3 with ρ1 instead of ρ, and so on. This process

defines a sequence {ρn} such that, for all n, e(ρ) = 1 for all ρ ≥ ρn, and ρn = ρn+1

ρn+1+(1−ρn+1)a
.

As a < 1, ρn → 0. Thus e(ρ) = 1 for all ρ > 0.

We now show the proof of the lemma for the case in which ρ̃ > 0. Reasoning as in the

previous case shows that V (ρ) > 0 for all ρ > ρ̃, and therefore that e(ρ) = 1 and V (ρ) = Ṽ (ρ)

for all ρ > ρ̃. Furthermore V (1) ≥
1
2

Ξ(1,1,1)−c
1−δ > 0, from which follows that e(ρ) > 0 for

all ρ > 0; if this were not the case, acquiring information would yield the strategic agency

V (1) > 0. Hence, we are only left to show that e(ρ̃) = 1. Suppose that e(ρ̃) < 1. Then
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ρ̃+ > ρ̃, and so Ṽ (ρ̃+) > 0. Hence, we obtain

V (ρ̃) ≥ 1

2
Ξ(ρ̃, e(ρ̃), a(ρ̃))− c+ δ

(1

2
V (ρ̃+) +

1

2
V (ρ̃++)

)
=

1

2
Ξ(ρ̃+, 1, a(ρ̃))− c+ δ

(1

2
V (ρ̃+) +

1

2
V (ρ̃++)

)
=

1

2
Ξ(ρ̃+, 1, ã(ρ̃+))− c+ δ

(1

2
Ṽ (ρ̃+) +

1

2
Ṽ (ρ̃++)

)
= Ṽ (ρ̃+) > 0.

The first line follows from (77), and the second from noting that Ξ(ρ̃, e(ρ̃), a(ρ̃)) = Ξ(ρ̃+, 1, ã(ρ̃)).

The third line is obtained by noting that, since e(ρ̃+) = 1 = e(ρ̃++), the trade off between

lying and telling the truth faced by the strategic agency with reputation ρ̃ is the same as the

trade off faced by the strategic agency with reputation ρ̃+ in the auxiliary game. Therefore,

a(ρ̃) = ã(ρ̃+). The sequence above yields V (ρ̃) > 0, and so e(ρ̃) = 1.

�

Lemma 18. Let δ < 2
3−2c

. In any equilibrium:

1. if ρ̃ = 0: e(ρ) = 1 for all ρ > 0,

2. if ρ̃ > 0: e(ρ) = 1 for all ρ ≥ ρ̃ and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃).

Proof: We will show the proof of the lemma for the case in which ρ̃ = 0. We omit the proof

of the case ρ̃ > 0, which is very similar to the case we consider.

First, notice that V (1) ≥
1
2
−c

1−δ > 0. It ensues that e(ρ) > 0 for all ρ > 0; if this were not

the case, acquiring information would yield the strategic agency V (1) > 0. Since a(ρ) < 1 for

all ρ > 0 (Lemma 16) Bellman’s Principle of Optimality yields

V (ρ) = Ξ(ρ, e(ρ), a(ρ))− c+
δ

2
V (ρ+). (82)

Define ρ1 implicitly by

ρ =
ρ1

ρ1 + (1− ρ1)a
,

with ρ and a satisfying the conditions stated in Lemma 16. Thus ρ1 < ρ (since a < 1), and in

any equilibrium ρ++ ≥ ρ for all ρ ≥ ρ1.

The proof is by induction: we have e(ρ) = 1 for all ρ ≥ ρ and we proceed to show that

e(ρ) = 1 for all ρ ≥ ρ1.
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Suppose that we can find ρ ≥ ρ1 such that e(ρ) < 1. We claim that e(ρ) < 1 implies

e(ρ+) < 1. To see this, observe that if e(ρ+) = 1 then

V (ρ) ≥ 1

2
Ξ(ρ, e(ρ), a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)
=

1

2
Ξ(ρ+, 1, a(ρ))− c+ δ

(1

2
V (ρ+) +

1

2
V (ρ++)

)
=

1

2
Ξ(ρ+, 1, ã(ρ+))− c+ δ

(1

2
Ṽ (ρ+) +

1

2
Ṽ (ρ++)

)
(83)

= Ṽ (ρ+).

The first line follows from (77), and the second from noting that Ξ(ρ, e(ρ), a(ρ)) = Ξ(ρ+, 1, a(ρ)).

The third line is obtained by noting that, since e(ρ+) = 1 = e(ρ++), the trade-off between

lying and telling the truth faced by the strategic agency with reputation ρ is the same as the

trade-off faced by the strategic agency with reputation ρ+ in the auxiliary game. Therefore,

a(ρ) = ã(ρ+). The sequence (83) yields V (ρ) ≥ Ṽ (ρ+) > 0, and so e(ρ) = 1, contradicting

our initial assumption.

Since we showed that e(ρ) < 1 implies e(ρ+) < 1, if we can find ρ ≥ ρ1 such that e(ρ) < 1

then there exists a strictly increasing sequence {ρn} with e(ρn) < 1 for all n, and ρn+1 = ρ+
n .

Let ρ̂ = limn→∞ ρn; by Lemma 16, ρ̂ < ρ+ z for all z > 0, as otherwise for n large enough we

would get e(ρn) = 1. As ρ < 1 this is turn implies that limn→∞ e(ρn) = 1.

We next claim that for all ε > 0 there exists N such that, for all n > N :

| Ξ(ρn, e(ρn), a(ρn))− Ξ(ρ̂, 1, ã(ρ̂)) |< ε. (84)

To see this, suppose that ã(ρ̂) > 0 (the case ã(ρ̂) = 0 can be dealt with in a similar way).

Hence,

δṼ (ρ̂†) = Ξ(ρ̂, 1, ã(ρ̂)). (85)

We therefore have

lim
n→∞

Ξ(ρn, e(ρn), 0) = Ξ(ρ̂, 1, 0) < Ξ(ρ̂, 1, ã(ρ̂)) = δṼ (ρ̂†) ≤ δṼ (1),

from which follows that, for n large enough, a(ρ) > 0. Hence δV (ρ++
n ) = Ξ(ρn, e(ρn), a(ρn))

for all n large enough. Since, ρ++
n ≥ ρ for all n, we obtain

δṼ (ρ++
n ) = Ξ(ρn, e(ρn), a(ρn)), (86)
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for all n large enough. That (84) holds for sufficiently large n now follows from (85), (86) and

continuity of Ṽ (·) (see Proposition 28).

Now, by construction of {ρn}, (82) yields

V (ρn) =
∞∑
k=0

(δ
2

)k(
Ξ(ρn+k, e(ρn+k), a(ρn+k))− c

)
for all n. Moreover, we showed above that for all ε > 0 there exists N such that, for all n > N ,

(84) holds. Thus, for all η > 0, choosing ε sufficiently small and n sufficiently large gives

∣∣∣V (ρn)−
∞∑
k=0

(δ
2

)k(
Ξ(ρ̂, 1, ã(ρ̂))− c

)∣∣∣ < η,

i.e., noting that
∑∞

k=0

(
δ
2

)k(
Ξ(ρ̂, 1, ã(ρ̂))− c

)
= Ξ(ρ̂,1,ã(ρ̂))−c

1− δ
2

= Ṽ (ρ̂),

∣∣V (ρn)− Ṽ (ρ̂)
∣∣ < η.

As Ṽ (ρ̂) > 0, we conclude that V (ρn) > 0, implying e(ρn) = 1. This contradicts the construc-

tion of the sequence {ρn}. Thus e(ρ) = 1 for all ρ ≥ ρ1.

We can now repeat the steps above with ρ1 instead of ρ, and so on. This process defines a

sequence { ˆ̂ρn} such that, for all n, e(ρ) = 1 for all ρ ≥ ˆ̂ρn, and ˆ̂ρn =
ˆ̂ρn+1

ˆ̂ρn+1+(1− ˆ̂ρn+1)a
. As a < 1,

ˆ̂ρn → 0. Thus e(ρ) = 1 for all ρ > 0.

�

Proposition 30. Let δ < 2
3−2c

. There exists a unique equilibrium. This equilibrium is such

that, for some cutoff ρc:

1. e(0) = a(0) = 0;

2. e(ρ) = 1 for all ρ ∈ (ρ̃, 1], and e(ρ) ∈ (0, 1) for all ρ ∈ (0, ρ̃);

3. a(ρ) = 0 for all ρ ∈ [ρc, 1], and a(ρ) > 0 for all ρ ∈ (0, ρc).

Proof: We take up the case in which ρ̃ > 0. The case in which ρ̃ = 0 is similar and simpler,

we therefore omit the proof.
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By virtue of the one-shot deviation principle, the following strategy is an equilibrium:

e(0) = a(0) = 0;

e(ρ) = 1 for all ρ ≥ ρ̃;

ρ̃ = ρ
ρ+(1−ρ)e(ρ)

for all ρ < ρ̃;

a(ρ) = ã(ρ) for all ρ ≥ ρ̃;

a(ρ) = ã(ρ̃) for all ρ ∈ (0, ρ̃).

Uniqueness follows from Lemma 18. The existence of the cutoff ρco is a consequence of

Proposition 28.

�

Proposition 31. Let δ 6= 2
3−2c

. There is a unique equilibrium with observable information

acquisition and contingent fees. In this equilibrium, if δ > 2
3−2c

, then e(ρ) = a(ρ) = 1 for all

ρ > 0. If instead δ < 2
3−2c

then the equilibrium is characterized by cutoffs ρc1 < 1 and ρc2 < 1

such that:

1. e(ρ) = 1 if ρ > ρc1 and e(ρ) ∈ (0, 1) if ρ ∈ (0, ρc1);

2. a(ρ) = 0 if ρ > ρc2 and a(ρ) > 0 if ρ ∈ (0, ρc2).

Furthermore, e(0) = a(0) = 0 for all δ.

Proof: Follows from Propositions 29 and 30. �

Proposition 32. There is a unique equilibrium with observable information acquisition and

upfront fees. In this equilibrium, e(ρ) = a(ρ) = 1 for all ρ > 0.

Proof: Consider an equilibrium of the game with observable information acquisition and fees

received upfront by the agency such that e(0) = a(0) = 0. Let V denote the value function.

Thus V (0) = 0, while V (1) ≥
1
2

Ξ(1,1,1)−c
1−δ > 0. Hence e(1) = 1. It immediately follows that

e(ρ) > 0 for all ρ > 0; if this were not the case, acquiring information would yield the strategic
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agency V (1) > 0. This gives

V (ρ) =

max
{
P(rt = 1|ρ, e(ρ), a(ρ))Ξ(ρ, e(ρ), a(ρ))− c+

δ

2
V (ρ+) , (87)

P(rt = 1|ρ, e(ρ), a(ρ))Ξ(ρ, e(ρ), a(ρ))− c+ δ
(1

2
V (ρ+) +

1

2
V (ρ++)

)}
,

for all ρ > 0. Moreover, no matter e(ρ), we have P(rt = 1|ρ, e(ρ), 1)Ξ(ρ, e(ρ), 1) = 1. This

implies that we can find a < 1 such that, either (i) V (ρ) > 0 or (ii) a(ρ) < a and V (ρ++) = 0.

Case (ii) is however impossible as it implies the existence of a sequence {ρn} tending to 1 as

n → ∞ and such that V (ρn) = 0 for all n. Therefore, V (ρ) > 0 for all ρ > 0. It ensues that

e(ρ) = a(ρ) = 1 for all ρ > 0.

�

Proof of Proposition 27: Follows from Propositions 31 and 32.

�
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Online Appendix G

In this appendix we characterize the set of socially optimal fee structures. Consider a fee

structure such that: if ρt = ρ1 then φt(1) = a and φt(−1) = b while if ρt = 0 then φt(1) = y

and φt(−1) = z. The fee structure is socially optimal if: firms prefer to get a rating as long

as ρt = ρ1 and their beliefs satisfy êt = 1 (call this condition 1) and there exist an equilibrium

of the game with such a fee structure in which e(ρ1) = 1 (call this condition 2). Condition 1

boils down to:

a

2
+
b

2
≤ (

1

2
· 1 +

1

2
· 0),

where the left-hand side is the firm’s expected payment to the agency and the right-hand side

is the firm’s expected revenue from investors if firm t decides to obtain a rating for ρt = ρ1

and êt = 1. Condition 1 is equivalent to:

a+ b ≤ 1.

Condition 2 boils down to:

a− b
2

+ c ≤ δ

2

(
1

1− δ

(
a+ b

2
− c
)
−max

{
y

1− δ
,
y + 2

2(1− δ)
− c
})

.

where the left-hand side the CRA’s short-run incentive to shirk and the right-hand side is the

CRA’s long-run incentive to acquire information for ρt = ρ1 and êt = 1. Rearranging terms,

this condition can be written as:

b− a
2

+
aδ

2− δ
≥ c+ max

{
y

1− δ
,
y + 2

2(1− δ)
− c
}

2(1− δ)
2− δ

.

The largest set of a and b for which this condition holds is obtained for y = z = 0, in which

case the condition reduces to:

b− a
2

+
aδ

2− δ
≥ c.
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