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Abstract

We study how structural parameter variations affect the decision rules and eco-
nomic inference. We provide diagnostics to detect parameter variations and to ascer-
tain whether they are exogenous or endogenous. A constant parameter model poorly
approximates a time-varying DGP, except in a handful of relevant cases. Linear ap-
proximations do not produce time-varying decision rules; higher order approximations
can do this only if parameter disturbances are treated as decision rule coefficients.
Structural responses are time invariant regardless of order of approximation. Adding
endogenous variations to the parameter controlling leverage in Gertler and Karadi’s
(2010) model substantially improves the fit of the model.
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Detecting Time-Varying Parameters

1 Introduction

In macroeconomics it is standard to work with models that are structural in the sense

of Hurwicz (1962) - that is, models where the parameters characterizing the preference

and the constraints of the agents and the technologies to produce goods and services

are invariant to changes in the parameters describing government policies. Such a

requirement is crucial, for example, to distinguish structural from reduced-form models

and to conduct correctly designed policy counterfactuals.

Dueker et al. (2007), Fernandez-Villaverde and Rubio-Ramirez (2007), Canova

(2009), Rios-Rull and Santaeularia-Llopis (2010), Liu et al. (2011), Vavra (2014), Dew-

Backer (2014), Meier and Sprengler (2015), Seoane (2016), Castelnuovo and Pellegrino

(2018) among others, have shown that the parameters of dynamic stochastic general

equilibrium (DSGE) models are not time invariant and that variations are small but

persistent. Parameter variations do not necessarily imply that DSGE models are not

structural (see, e.g., Cogley and Yagihashi, 2010, Chang et al., 2013, Schmitt-Grohe

and Uribe, 2003, Hansen and Sargent, 2010, and Cogley et al., 2015), but they create

concerns about the economic interpretation of the results.

Recently, DSGE models with time-varying parameters have begun to appear. In

modeling time variations, investigators have followed the vector autoregression (VAR)

literature: parameter variations are assumed to be exogenous, drifting smoothly as

independent random walks (as in Cogley and Sargent, 2005; and Primiceri, 2005) or

switching between a finite number of states (as in Sims and Zha, 2006). Many economic

questions, however, hint at the possibility that parameter variations may instead be

endogenous. For example, does a central bank react to inflation in the same way in

an expansion as in a contraction (see Davig and Leeper, 2006)? Do fiscal multipliers

depend on the level of inequality (see, e.g., Brinca et al., 2016)? Are households as

risk averse when they are wealthy as when they are poor? Clearly, analyses conducted

under the assumption of time invariant models or exogenous rather than endogenous

forms of time variations may lead to misleading conclusions regarding, e.g., the welfare

costs of business cycles, and to invalid policy prescriptions.
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This paper is concerned with the consequences of time-varying misspecification,

that is, the misspecification induced by neglected parameter variations or incorrect

assumptions about time variation in structural parameters. We focus on DSGE models

with smoothly evolving parameters and work with first and higher order perturbed

solutions. We characterize the approximate decision rules when parameter variations

are present; discuss the conditions under which constant parameter models provide a

good approximation to the data generating process (DGP) and the potential distortions

that emerge when the DGP features parameter variations. We also examine whether

the evidence produced by time-varying parameter VAR and DSGE models can be

matched and provide two diagnostics to detect time-varying misspecification.

The literature is generally silent on these issues. Earlier work by Parkin (1988)

studied whether the parameters of a Real Business Cycle (RBC) model are a function of

one particular omitted variable. Seoane (2016) finds endogenous parameter variations,

interprets it as evidence of misspecification, and proposes a more complex constant

parameter model that fits the data better. Kulish and Pagan (2017) characterize the

decision rules and the likelihood function of a DSGE model when predictable structural

breaks occur. Magnusson and Mavroedis (2014) examine how time variations in certain

parameters may affect the identification of other structural parameters. Justiniano

and Primiceri (2008) and Fernandez-Villaverde et al. (2011) investigate to what extent

variations in the shock volatility matter for real variables.

Given lack of work in the area, understanding how models with smoothly varying

parameters work, documenting the distortions induced by estimating constant parame-

ters models, and designing diagnostics to detect parameter variations are prerequisites

to answer broader questions - such as the distinction between shocks and parameters

when the latter are allowed to vary or the form of structural parameter variations

(smoothly changing, Markov switching, etc.) that best captures patterns in the data.

The next section presents a motivating example to set ideas. We consider a simple

RBC model where certain structural parameters are constant or time varying and, in

the latter case, we allow variations to be either exogenous or endogenous. We examine

what time variations imply for the optimality conditions of the problem and discuss
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their implications for responses to technology disturbances. Constant and varying

parameter models generally produce different dynamic responses because income and

substitution effects are altered. Endogenous parameter variations add to the uncer-

tainty of the environment, making agents prefer to consume more today relative to the

future for the same transitory fluctuations in income.

Section 3 formally shows that when parameter variations are present, it is generally

impossible for a constant parameter model to “reasonably” approximate the DGP.

When linearized solutions are considered, there are two special cases when the dynamics

in response to structural shocks will be isomorphic, but even in these cases, historical

and variance decomposition exercises are distorted. When second order solutions are

considered, structural responses in time-varying and constant-parameter models are

proportional only when parameter variations are exogenous . For higher order solutions,

the structural responses will be highly distorted.

Linear approximations of time-varying parameter models do not produce time-

varying decision rules and higher order approximations can do this only if parameter

disturbances are interpreted as (reduced form) decision rule coefficients. Still, regard-

less of order of approximation employed, structural responses will be time invariant.

Thus, smoothly varying parameter VAR are not the natural reduced form counterpart

of the smoothly varying DSGE models we consider.

In Section 4, we design diagnostics to detect time-varying misspecification. In the

context of a Monte Carlo exercise, we show that the diagnostics are able to signal

potential problems and to detect the true DGP with high probability.

Section 5 focuses on linear approximations and briefly discusses the identification

and inferential repercussions that neglected time variations may have for the estima-

tion time-invariant parameters. Supporting evidence for this section is in the online

appendix. In the context of a Real Business Cycles (RBC) example, we show that

pathologies occur: the likelihood is flattened, twisted, and moved away from the true

parameter values. Moreover, there are important biases in the estimates of the parame-

ters controlling shock persistence and income and substitution effects, which do not die

away as sample size increases. Decision rule misspecification and shock misaggregation
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account for the distortions.

In Section 6, we estimate a few structural parameters of Gertler and Karadi’s

(GK) (2010) model of unconventional monetary policy, apply the diagnostics to detect

parameter variations, and estimate versions of the model where the bank’s moral hazard

parameter is allowed to vary over time. We find that a fixed parameter model is

misspecified; that making parameter variations an endogenous function of net worth

is preferable; and that the dynamic effects of capital quality shocks on the spread and

on bank net worth may be different than previously thought. Section 7 concludes.

2 A motivating example

To motivate our interest in time-varying parameter models, we use a closed-economy

RBC model. For ease of presentation, we restrict the discussion to first order solutions.

The representative agent maximizes:

maxE0

∞∑
t=1

βt(
C1−η
t

1− η
−AN

1+γ
t

1 + γ
)

subject to the sequence of constraints:

Yt = Ct +Kt − (1− δt)Kt−1 +Gt,

Yt = ζtK
α
t−1N

1−α
t ,

where Yt is output, Ct consumption, Kt the stock of capital, Nt is hours worked, and

Gt is government expenditure. The system is perturbed by two exogenous structural

disturbances: one to technology ζt and one to government spending Gt, both assumed

to follow time-invariant AR(1) processes:

ln ζt = (1− ρζ) ln ζ + ρζ ln ζt−1 + eζt ,

lnGt = (1− ρG) lnG+ ρG lnGt−1 + eGt ,

with variables without time subscript denoting steady state quantities. There are

six structural parameters (α, the capital share; η, the risk-aversion coefficient; γ, the

inverse of the Frisch elasticity of labor supply; A, the constant in utility; βt, the
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time discount factor; and δt, the depreciation rate), and six auxiliary parameters (the

steady-state values of government expenditure and of TFP, (ζ,G); their autoregressive

parameters, (ρζ , ρg); and their standard deviations (σζ , σg)). Because we care about

time-varying structural parameters, we let the auxiliary parameters be time invariant.

For illustration, we assume that α, γ,A, η are constant and allow βt and δt to be

time-varying. The law of motion of (βt, δt) is described next. Dueker et al. (2007),

Liu et al (2011), Gourio (2012), and Meier and Sprenger (2015) provide evidence that

these parameters are indeed varying over time. None of the arguments here depend on

which parameter is allowed to be time-varying. The optimality conditions are:

ACηt N
γ
t = (1− α)Yt/Nt,(1)

βtC
−η
t = Et

(
βt+1C

−η
t+1(

αYt+1

Kt+1
+ 1− δt+1)

)
+ Et

(
∂βt+1

∂Kt
u(Ct+1, Nt+1)− ∂δt+1

∂Kt
Kt

)
,(2)

Yt = Ct +Kt − (1− δt)Kt−1 +Gt,(3)

Yt = ζtK
α
t−1N

1−α
t .(4)

Time variations in βt and δt affect optimal choices in two ways. There is a direct

effect in the Euler equation and in the resource constraint when βt and δt are time-

varying; and if agents take into account that their decisions may affect parameter

variations, there will be an additional effect due to variations in the derivatives of βt+1

and δt+1 with respect to the endogenous states (see equation (2)). As the optimality

conditions clearly show, time-varying parameters cannot be treated as “wedges” in

the sense of Chari et al. (2007), because they imply cross-equation restrictions. To

understand what time variations in βt, δt imply, we consider a number of cases.
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2.1 Model A: Constant parameters.

Let βt = β and δt = δ. The optimality conditions are

Et [f(Xt+1, Xt, Xt−1, Zt+1, Zt, µ)] =

Et


ACηt N

γ+1
t − (1− α)Yt

C−ηt − EtβC
−η
t+1 (αYt+1/Kt + 1− δ)

Yt − Ct +Kt − (1− δ)Kt−1 −Gt
Yt − ζtKα

t−1N
1−α
t

 = 0,

where Xt = (Kt, Yt, Ct, Nt)
′, Zt = (ζt, Gt)

′. In the steady state, we have

K

Y
=

α

δ − 1 + 1/β
;
C

Y
= 1− δK

Y
− G

Y
;
N

Y
= ζ

1
1−α

(
K

Y

) α
α−1

; Y =

[
A

(1− α)

(
C

Y

)η (N
Y

)1+γ
]− 1

η+γ

.

The (first order) decision rules are (Xt − XA) = P (µ)(Xt−1 − XA) + Q(µ)Zt, where

XA are the steady states and µ the vector of model’s parameters.

2.2 Model B: Exogenous parameter variations

Here we let dt = βt+1/βt; Θt+1 −Θ ≡ (dt+1 − β, δt+1 − δ)′ = Ut+1 and postulate

ud,t+1 = ρdud,t + εd,t+1,

uδ,t+1 = ρδuδ,t + εδ,t+1.

We restrict the support of ε so that variations in dt generate finite expected utility 2.

Here, ∂(βt+1/βt)
∂Kt

= ∂δt+1

∂Kt
= 0 and the optimality conditions are

Et [f(Xt+1, Xt, Xt−1, Zt+1, Zt,Θt+1,Θt)] =

Et


ACηt N

γ+1
t − (1− α)Yt

1− dtC−ηt+1/C
−η
t (αYt+1/Kt + 1− δt+1)

Yt − Ct −Kt + (1− δt)Kt−1 −Gt
Yt − ζtKα

t−1N
1−α
t

 = 0,(5)

With the selected parameterization, the steady-state values of βt and δt are β and

δ so that (KY ,
C
Y ,

N
Y , Y ) coincide with those of the constant parameter model and XA =

XB. In addition, since time variations in (dt+1, δt+1) are exogenous, the (first order)

2A sufficient condition is that limT→∞ P (
∏t

i di < exp(−at),∀t > T̄ , for any a > 0)=1.
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Detecting Time-Varying Parameters

decision rules for model B are (Xt −XB) = P (µ)(Xt−1 −XB) +Q(µ)zt +R(µ, µB)εt,

where µB are the parameters specific to model B. Thus, shocks to the parameters play

the role of additional disturbances, but they do not affect the transmission of structural

shocks, which are regulated by the matrices P(µ) and Q(µ).

2.3 Model C: Endogenous parameter variations, no inter-
nalization

We assume that dt and δt depend on Kt. Making the growth rate of the discount factor

a function of the capital stock captures the idea that agents may have different saving

rates depending on their level of wealth. Similarly, making the depreciation rate a

function of the capital stock may capture “congestions” effects. We specify:

(6) Θt+1 = [Θu − (Θu −Θl) ◦ e−φa(Kt−K)] + [Θu − (Θu −Θl) ◦ eφb(Kt−K)] + Uθ,t+1

where ◦ is the Hadamart (elementwise) product, φa, φb,Θu,Θl are (2 × 1) vectors of

parameters, and Uθ,t+1 is a zero mean, i.i.d. vector of shocks with bounder domain.

We restrict || − φa + φb|| < M for some small M , so that expected utility exists.

In (6), we specify parameter variations in the same way the literature has modeled,

e.g., the relationship between the capital depreciation rate and capacity utilization

(see, e.g., Justiniano and Primiceri, 2008). Our setup is more flexible and allows for

endogenous and exogenous variations to simultaneously occur. Furthermore, depending

on the choice of φ′s, we can accommodate linear or quadratic relationships, which are

symmetric or asymmetric. If we set Θl = (β/2, δ/2), XC = XA.

We assume that agents treat the capital stock appearing in (6) as an aggregate

variable. This assumption is similar to the ‘small k - big k’ situation or the ‘internal-

external’ habit formation distinction encountered in fixed parameter rational expec-

tations models. Since agents’ first order conditions do not take into account the fact

that their optimal capital choice changes dt and δt, ∂βt+1/∂Kt = ∂δt+1/∂Kt = 0 and

the equilibrium conditions are as in (5). Still, since in the aggregate dt and δt depend

on Kt, the (first order) decision rules for model C are (Xt −XC) = P (µ, µC)(Xt−1 −

XC)+Q(µ, µC)zt+R(µ, µC)εt, where µC are the parameters specific to model C. Here,
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shocks to the parameters still play the role of additional disturbances, but they may

affect the transmission of structural shocks. It turns out that, with the parameteriza-

tion used, variations in dt, δt will affect P and Q if their law of motion is asymmetric,

i.e. φa,β 6= φb,δ and/or φa,δ 6= φb,δ.

2.4 Model D: Endogenous parameter variations, internal-
ization.

We still assume that time variations in (βt, δt) are as in equation (6). Contrary to model

C, agents internalize the effects their capital decisions have on parameter variations.

The relevant derivatives are

d′t+1 ≡ ∂dt+1/∂Kt = −(βu − β/2)[−φa,βe−φa,β(Kt−K) + φb,βe
φb,β(Kt−K)]

δ′t+1 ≡ ∂δt+1/∂Kt = −(δu − δ/2)[−φa,δe−φa,δ(Kt−K) + φb,δe
φb,δ(Kt−K)].

In order for XD = XA we restrict φa,β = φb,β = φβ, φa,δ = φb,δ = φδ. The optimality

conditions now are:

0 = Et [f(Xt+1, Xt, Xt−1, Zt+1, Zt,Θt+1,Θt)] =

Et


ACηt N

γ+1
t − (1− α)Yt

1− d′t u(Ct+1, Nt+1)/C−ηt − dt C
−η
t+1/C

−η
t (αYt+1/Kt+1 + 1− δt+1) + δ′t+1Kt)

Yt − Ct −Kt + (1− δt)Kt−1 −Gt
Yt − ζtKα

t−1N
1−α
t

 ,

where as before Xt = (Kt, Yt, Ct, Nt)
′, Zt = (ζt, Gt)

′ but now Θt = (dt, δt, d
′
t, δ
′
t)
′ and

dt+1

δt+1

d′t+1

δ′t+1

 = Φ(Θ,Kt, Ut+1) =


2du − (du − β/2)[e−φβ(Kt−K) + eφβ(Kt−K)] + Uβ,t+1

2δu − (δu − δ/2)[e−φδ(Kt−K) + eφδ(Kt−K)] + Uδ,t+1

−(du − β/2)φ1[−e−φβ(Kt−K) + eφβ(Kt−K)]

−(δu − δ/2)φ3[−e−φδ(Kt−K) + eφδ(Kt−K)]

 .

The (first order) decision rules for model D are (Xt −XD) = P (µ, µD)(Xt−1 −XD) +

Q(µ, µD)zt+R(µ, µD)εt, where µD are the parameters specific to model D. As in models

B and C, shocks to the parameters play the role of additional disturbances but they

will affect the transmission of structural shocks regardless of whether the relationship

between parameters and endogenous variables is symmetric or not.
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2.5 Impulse responses

Why is the transmission of structural shocks zt in models C and D potentially different

from the transmission in models A and B? To give some intuition, we compute responses

to technology shocks. For the parameters common to all models, we choose α = 0.30,

β = 0.99, δ = 0.025, γ = 2, η = 2, A = 4.50, ζ = 1, ρζ = 0.90, σζ = 0.00712, G = 0.28,

ρg = 0.50, and σg = 0.052. For the other parameters, we choose the following:

• For µB we select ρβ = 0.90, ρδ = 0.80, σβ = 0.0008, and σδ = 0.01.

• For µC , we select φa,β = 0.01, φb,β = 0.03, φa,δ = 0.2, φb,δ = 0.1, σd = 0.008,

σδ = 0.005, βu = 0.999, and δu = 0.025.

• For µD, we select φa,β = 0.001, φb,β = 0.016, φa,δ = 0.2, φb,δ = 0.1, σd = 0.009,

σδ = 0.001, βu = 0.999, and δu = 0.025.
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Figure 1: Responses to technology shocks, first order approximation.

Figure 1 reports the responses of hours, capital, consumption, and output to technology

shocks in percentage deviation from the steady states in the four models. The sign of

the responses is unchanged by the presence of parameter variations and, as expected

from the above discussion, the dynamics in models A and B are the same. The shape
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and persistence of hours, consumption, and capital responses in models C and D instead

differ because the income and substitution effects are altered. In particular, in response

to technology shocks, agents work and save less and consume more in models with

endogenously varying parameters. Thus, endogenous parameter variations are similar

to uncertainty shocks. Note that the responses of model D are generally between those

of models C and A because agents internalize the second order effects that lower capital

accumulation has on the endogenous variables.

3 Our framework of analysis

The class of DSGE models we are interested in studying is:

0 = Et [f(Xt+1, Xt, Xt−1, Zt+1, Zt,Θt+1,Θt)] ,(7)

Zt+1 = Ψ(Zt, σΣzε
z
t+1),(8)

Θt+1 = Φ(Θ, Xt, Ut+1),(9)

Ut+1 = Ω(Ut, σΣuε
u
t+1),(10)

(7) are the equilibrium conditions, where Xt is an nx × 1 vector of endogenous vari-

ables; Zt an nz × 1 vector of strictly exogenous variables; and Θt a vector of possibly

time-varying structural parameters. Since the distinction between variables and pa-

rameters is blurred when we allow for parameter variations, we use the convention that

parameters are the variables typically assumed to be constant by economists (discount

factor, Frisch elasticity of substitution, etc.). (8) is the law of motion of the exogenous

variables; εzt+1 is a nε × 1 vector of independent identically distributed (i.i.d.) struc-

tural disturbances with mean zero and identity covariance matrix, nz ≥ nε; σ ≥ 0 is

an auxiliary scalar; and Σε is a known nε × nε matrix. (9) is the law of motion of

the structural parameters; Ut+1 is a nu × 1 vector of exogenous disturbances, and Θ

is a vector of constants. (10) describes the evolution of the exogenous component of

parameter variations Ut+1; εut is a nu × 1 vector of i.i.d. disturbances, with mean zero

and identity covariance matrix, uncorrelated with the εzt+1, and Σu is a known nu×nu
matrix. (8)-(10) are known to the agents when they optimize. We assume that f , Ψ,

11



Detecting Time-Varying Parameters

Φ and Ω are continuous and differentiable up to some order q, and that (8)-(10) induce

stationary fluctuations in Zt+1 and Ut+1.

We posit that the decision rules are of the form:

(11) Xt = h(Xt−1,Wt, σΣεt,Θ),

where h is continuous and differentiable, εt = [εz′t , ε
u′
t ]′, Σ = diag[Σz,Σu], Wt = [Z ′t, U

′
t ]
′.

It is useful to highlight three features of our setup. First, (9) permits parameters

be a constant, exogenously or endogenously drifting, or both, depending on whether

the derivatives of Φ with respect to Xt and Ut+1 are zero or not, and Θt will be serially

correlated if Xt, Ut+1, or both are serially correlated. Second, the setup allows for time

variations in the parameters regulating preferences, technologies, and constraints but

does not consider variations in the auxiliary parameters regulating the law of motion of

Zt and Ut+1 or the mapping Φ. Thus, we do not study time variations due to stochastic

volatility, GARCH, or rare event phenomena (as in, e.g., Andreasen, 2012), nor those

driven by evolving persistence of the exogenous processes. Finally, while we examine

stationary environments, non stationarities can be dealt with, as usual, scaling the

endogenous variables by the common growth process. 3

For the rest of this section we focus on two issues. Under what conditions would

an econometrician using a constant parameter model approximate well a time varying

parameter model? Would a time varying parameter VAR model the be correct reduced

form counterpart a time varying parameter DSGE?

3.1 First order approximations

Linearly expanding (7) around the steady states leads to

(12) 0 = Et [Fxt+1 +Gxt +Hxt−1 + Lzt+1 +Mzt +Nθt+1 +Oθt] ,

where F = ∂f
∂Xt+1

, G = ∂f
∂Xt

, H = ∂f
∂Xt−1

, L = ∂f
∂Zt+1

, M = ∂f
∂Zt

, N = ∂f
∂Θt+1

, and

O = ∂f
∂Θt

, all evaluated at the steady-state values of (Xt, Zt,Θt), with lowercase letters

3An interesting question not addressed in the paper is whether stationary solutions that look like (11)
can be obtained when non stationarities are present in all parameters or only in a selected group of them.
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indicating deviations from the steady states. Linearly expanding (11) leads to:

(13) xt = Pxt−1 +Qzt +Rut,

where P = ∂h
∂Xt−1

, Q = ∂h
∂Zt

, and R = ∂h
∂Ut

, all evaluated at steady-state values.

Proposition 1 describes how to compute the matrices P,Q,R and Corollary 2 high-

lights the differences with the constant parameters case.

Proposition 1. The matrices P, Q, R satisfy:

• P solves FP 2 + (G+Nφx)P + (H +Oφx) = 0.

• Given P , Q solves V Q = −vec(Lψz+M) and V = ψ′z⊗F+Inz⊗(FP+G+Nφx).

• Given P , R solves WR = −vec(Nφuωu +Oφu), and W = ω′u⊗F + Inθ ⊗ (FP +

G+Nφx),

where φu = ∂Φ/∂Ut+1, φx = ∂Φ/∂Xt, ψz = ∂Ψ/∂Zt, ωu = ∂Ω/∂Ut, and vec denotes

the columnwise vectorization.

Corollary 2. If φx = φu = 0, R=0, P solves FP 2 + GP + H = 0 and, given P , Q

solves V Q = −vec(Lψz +M), where V = ψ′z ⊗ F + Inz ⊗ (FP +G).

(The proof of propositions and corollaries are in the online appendix A.)

The linear decision rules of a time varying parameter model differ from those of

a constant parameter model because there will be an additional set of disturbances

driving the endogenous variables, and because the responses of the endogenous variables

to structural shocks may be altered. Thus, a constant parameter model, in general,

incorrectly measures the structural dynamics and the relative importance of different

sources of fluctuations in endogenous variables.

Corollary 3 gives conditions under which the structural dynamics of a time varying

parameter model are reproduced with a constant parameter model.

Corollary 3. If φx = 0, or if φu = 0 and Nφx and Oφx are zero, the dynamics in

response to zt shocks are identical to those obtained when parameters are constant.
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When parameter variations are purely exogenous, φx = 0, the variability of xt will

be altered but the dynamics produced by structural disturbances will not. Thus, for

example, the dynamics induced by technology shocks do not depend on whether the

discount factor is constant or exogenously varying, provided technological and discount

factor innovations are uncorrelated. Nevertheless, variance or historical decomposition

exercises will be distorted, since the constant parameter model omits sources of varia-

tions (the εut disturbances). When parameter variations are purely endogenous, φu = 0,

there will be no extra source of variability in xt. However, to know if a constant pa-

rameter model correctly characterizes the responses to structural shocks we need to

check the entries of Nφx and Oφx matrices.

Although in (9) Θt+1 depends on the endogenous variables Xt, endogenous time

variations can also be obtained by making parameters a function of the exogenous

variables, Θt+1 = Φ(Θ, Zt, Ut+1) as, e.g., in Ireland (2007). The equations for P,Q,R

are now different (P now solves FP 2+GP+H = 0; given P,Q solves V Q = −vec(Lψz+

M + Nφzψz + Oφz) and V = Inz ⊗ (FP + G + Fφz); and given P,R solves WR =

−vec(Nφuωu + Oφu), where W = Inz ⊗ (FP + G + Fωu)). However, the conclusions

we derived hold with φz replacing φx in proposition 1 and corollaries 2 and 3.

Proposition 1 is derived under continuous and smooth parameter variations. An

alternative would be to assume a Markov switching specification for the time variations

(see e.g., Bianchi and Melosi, 2016). In our setup, parameters are treated as variables

because it is computationally infeasible to solve the model taking into account all

(infinite) future parameter paths. In Markov switching models, the number of future

parameter paths is finite so that the model can be explicitly solved for these paths. This

difference has pros and cons. In switching models, non linearities due to parameter

variations are retained, while in smoothly varying parameters they appear only with

higher order solutions. However, for computational reasons, the number of states

must be kept small; when it is large, a smoothly varying specification provides a good

approximation to a Markov switching specification. Also, while in smoothly varying

parameter models the likelihood function is typically taken to be normal, in Markov

switching specifications it is a mixture of normals.
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Our preference for smoothly varying specifications comes from the empirical evi-

dence, e.g., in Stock and Watson (1996), and with the practice employed in numerous

time-varying parameter VARs. Note that the framework is flexible and can accom-

modate once-and-for-all breaks (at a known date), as long as the transition between

states is smooth. For example, a smooth threshold exogenously switching specification

can be approximated with θt+1 = (1 − ρ)θ + ρθt + a exp(t − T0)/(b + exp(t − T0)),

t = 1, . . . , T0 − 1, T0, T0 + 1, . . . T , where a and b are vectors; and θt+1 = (1 − ρ)θ +

ρθt + a exp(−(Xt−X))/(b+ exp(−(Xt−X)), where X is the steady-state value of Xt,

can approximate smooth threshold endogenously switching specifications. Since mod-

els with occasionally binding constraints are special cases of switching models with

endogenous probability of smooth transitions (see Binning and Maih, 2017), our anal-

ysis is applicable also to these situations. However, variations occurring at unknown

dates, as in, e.g., Liu et al. (2011), or abrupt changes, as in, e.g., Davig and Leeper

(2006), are not covered by Proposition 1, since the smoothness condition is violated.

The (linear) solution (13) is a VAR(1) with fixed coefficients. Thus, linearized

DSGE models with time-varying parameter do not generate new issues when it comes

to time aggregation, invertibility, or non fundamentalness relative to a linearized fixed

parameter DSGE models. In a linear framework, the P and Q matrices will be time-

varying only if Φ is time-varying. Thus, it is incorrect to consider time-varying parame-

ter VARs as the reduced form counterpart of continuously varying parameter linearized

DSGE models: variations in DSGE parameters cannot produce the time-varying cor-

relation structure VAR models generate unless the auxiliary parameters vary (see, e.g.,

Ascari et al., 2018) or there is learning (see, e.g., Cogley et al., 2015).

Kulish and Pagan (2017) developed solution and estimation procedures for models

with abrupt breaks and learning between the states. Their solution for the pre-break

and post-break period is a constant coefficients VAR, while for the learning period it is

a time-varying coefficients VAR. Thus, a few words distinguishing Kulish and Pagan’s

approach from ours are needed. First, they are interested in characterizing the solution

during the learning period when the structure is unchanged, while we are interested in

the decision rule when parameters are continuously varying. Second, their modeling
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of time variations is abrupt, and the solution is designed to deal with that situation.

Third, in our setup, expectations are varying with the structure; in Kulish and Pagan,

they vary only in anticipation of a (foreseeable) break.

Finally, as (13) indicates, it is hard to distinguish linearized time-varying models

from linearized time-invariant models featuring an additional set of shocks. In fact,

models with n1 structural shocks and n2 time-varying parameters, models with n =

n1 + n2 structural shocks and models with n1 structural shocks and n2 measurement

errors are observationally equivalent:

xt = Pxt−1 +Qzt +Rut,

xt = Pxt−1 +Q∗z∗t ,

xt = Pxt−1 +Qzt + vt,

where Q∗ = [Q,R]; z∗t = [z′t, u
′
t]
′; and vt = Rut. In applications, procedures like the one

by Seoane (2016), can be used to select the interpretation of the additional shocks.

3.2 Higher order approximations

The online Appendix A shows that, in a time-varying parameter model, the second

order approximate decision rule is

(14) xt = Pxt−1 +Qzt +Rut + CΛ̃t + D,

where, by construction, P,Q, and R are the same as in the first order solution,

Λ̃t = vec



xt
xt−1

zt
ut

 [x′t x′t−1 z′t u′t
] ,

and (C,D) are matrices. The second order approximate decision rule in a constant

parameter model is

(15) xt = P ccxt−1 +Qcczt + CccΛ̃t + Dcc,

where (P cc, Qcc) are the same as in the first order solution. Note that (Ccc) will have

zero entries corresponding for all cross terms involving ut (see appendix for details).
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(14) and (15) will differ for four reasons: P cc 6= P,Qcc 6= Q,R 6= 0 as in the first

order case; there will additional cross terms not present in the constant parameter

solution and the quadratic terms in xt will have different coefficients (Ccc 6= C); the

adjustment due to risk will be different (Dcc 6= D). Thus, even when P = P cc and

Q = Qcc, the second order responses to structural shocks in the two models will differ.

To illustrate this situation, consider:

Etyt+1 ≡f(xt, θt) = θtx
0.95
t ,(16)

xt − x̄ =0.8(xt−1 − x̄) + εzt ,(17)

θt ≡Φ(xt−1, ε
u
t ) = 2− 0.5[e−0.9(xt−1−x̄) + e0.9(xt−1−x̄)] + εut ,(18)

where both εzt and εut are i.i.d. and x̄ ≡ Ext = 1. The second order solution is

yt − ȳ = 1.37(xt−1 − x) + 1.71εzt + εut − 0.11(xt−1 − x)2 − 0.04εz2t + 0.07(xt−1 − x)εzt

+ 0.76(xt − x)εut + 0.95εzt ε
u
t ,(19)

while the second order solution of the constant parameter version of the model is

yt − ȳ = 1.37(xt−1 − x) + 1.71εzt − 0.03(xt−1 − x)2 − 0.04εz2t + 0.07(xt−1 − x)εzt

(20)

The linear responses to εzt computed with (19) and (20) are the same, since Nφx and

Oφx are zero. However, second order responses will differ since there is second order

effect from xt−1 to θ (φxx = −0.08) 4.

There is one case of interest when the constant solution will only produce mild dis-

tortions: when parameter variations are exogenous, the responses to structural shocks

will be proportional and the proportionality factor depends on differences in the steady

states due to risk terms.

Proposition 4. If φx = 0, then Ccc = C and the dynamics of (xt−D) and (xt−Dcc)

in response to zt shocks in time-varying and constant parameter models are the same.

4In this example, the risk terms do not appear because (17)-(18) are linear
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For higher order solutions, the decision rules in constant and time-varying param-

eter models differ and the responses to structural shocks will be incorrectly charac-

terized. This is because, for example, in a third order approximation, the optimality

conditions feature terms requiring a correction of the linear terms to account for uncer-

tainty. Since shocks are omitted in constant parameter models, the correction terms

differ.

3.3 Time-varying decision rules?

There are typically two reasons for using a time-varying parameter structural model.

The first is to improve the fit of a constant parameter model: by allowing additional

sources of variations, not necessarily structurally interpretable, one hopes to absorb

both unexplained variability and serial correlation. As we have seen, even linearized

solutions can serve this purpose. The second reason is to allow changes over time in

the data correlation and in the dynamics induced by the structural shocks. Linearized

solutions are incapable of producing these time variations. Does the conclusion change

when higher order solutions are considered? Equation (14) can be rewritten as

xt ' Pxt−1 +Qzt +Rut + C22vec(xt−1x
′
t−1) + C33vec(ztz

′
t) + C44vec(utu

′
t)

+C23vec(xt−1z
′
t) + C24vec(xt−1u

′
t) + C34vec(ztu

′
t).(21)

If ut is treated as an (exogenous) variable, (21) is again a fixed coefficient representation.

Thus, higher order solutions do not necessarily produce time-varying decision rules.

However, if we interpret ut as a ”parameter,” letting γ1t = P + C24ut, and γ2t =

Q+ C34ut and neglecting a number of square terms, we have

(22) xt ≈ A+ γ1txt−1 + γ2tzt +Rut,

a time-varying decision rule. Thus, to hope to match the evidence produced by a time-

varying VAR, one must consider at least second order solutions, neglect a number of

terms, and treat ut as a reduced form parameter vector for the purpose of inference.

However, even under the “parameter” interpretation, structural responses will be time

invariant. Expression (22) can generate time-varying responses to zt shocks if and only
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if these shocks have effects on ut, which is excluded a-priori since zt and ut innovations

are uncorrelated. To be clear, with endogenous parameter variations, shocks to zt may

affect θt, and this will be reflected in the P and C24 matrices. However, since ut is zero

at all t when computing responses to elements of zt, structural responses will be time

invariant, regardless of the form of parameter variations.

4 Characterizing time-varying misspecification

Because an econometrician using the decision rules of a constant parameter model

generally misspecifies the structural relationships when the DGP features parameter

variations, it is important to detect time-varying misspecification problems. This sec-

tion considers two diagnostics: one based on the optimality “wedges”and one based on

the forecast errors of the constant parameter model. To see what the wedge diagnostic

involves, consider the optimality conditions of a constant parameter model:

(23) Et
[
F(Xcc

t−1,Wt, σΣεzt ,Θ)
]

= 0

where forXt we use the constant parameter decision rule: Xcc
t = hcc(Xcc

t−1,Wt, σΣεzt ,Θ).

Here F is a martingale difference process. If instead Xt has been generated by a time-

varying parameter model Xt = h(Xt−1,Wt, σΣεt,Θ), F(Xt−1,Wt, σΣεzt ,Θ) will not be

a martingale difference process since σΣεzt 6= σΣεt and h 6= hcc. Moreover, it will be

predictable using lags of Xt−1.

While these implications hold in general, we illustrate the argument using a first

order approximate solution. The optimality wedge in this case is

(F (P − P cc)2 +G(P − P cc))xt−1 +

(F (Q−Qcc)ψz +G(Q−Qcc) + F (P − P cc)(G−Gcc))zt +

(F (P − P cc)R+GR+ FRωu)ut.(24)

When P cc = P,Qcc = Q, as in an exogenously varying model, the wedge reduces to

(GR+FRωu)ut, which is non zero if R 6= 0 and predictable using xt−j , j ≥ 1 if ωu 6= 0.

When P cc 6= P,Qcc 6= Q, as in an endogenously varying model, the wedge will be non

zero, even when R = 0, and predictable using xt−j , even when ωu = 0.
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The wedge diagnostic shares with standard generalized method of moments (GMM)

overidentification tests the idea of using a Lagrange-type test to detect deviations

from the null, but it differs in two important respects: parameter estimates will be

obtained with likelihood-based methods; and wedges can be non zero even without

overidentification restrictions.

To detect time-varying misspecification, one can estimate a constant parameter

model using approximate decision rules of different orders, compute optimality wedges

in each case, and regress them on lags of the observables. If the regression coefficients

obtained with different approximations are jointly significant, the martingale difference

condition is violated, and there is evidence of time-varying parameters. Note that the

diagnostic assumes that the model is correctly specified up to parameter variations. If

this is not the case, lags of the observables may be significant, even without time-varying

parameters (see, e.g., Inoue et al., 2015). Monte Carlo evidence on the properties of

the wedge diagnostic when other forms of misspecifications are present is in table 1.

The logic of the forecast error diagnostic is similar. Because the argument is inde-

pendent of the order of the approximation used, we present it for second order decision

rules. The constant parameter solution is xt ' P ccxt−1 +Qcczt + Ccc22vec(xt−1x
′
t−1) +

Ccc33vec(ztz
′
t)+Ccc23vec(xt−1z

′
t), and the time-varying solution is xt ' Pxt−1+Qzt+Rut+

C22vec(xt−1x
′
t−1) + C33vec(ztz

′
t) + C44vec(utu

′
t) + C23vec(xt−1z

′
t) + C24vec(xt−1u

′
t) +

C34vec(ztu
′
t). Let vcct be the forecast error in predicting xt using the constant parameter

decision rule and the data generated from the time-varying parameter model. Then

vcct ' xt − P ccxt−1 − Ccc22(xt−1x
′
t−1)

' Qzt +Rut − (P cc − P )xt−1 − (Ccc22 − C22)vec(xt−1x
′
t−1) + C33vec(ztz

′
t)

+ C44vec(utu
′
t) + C23vec(xt−1z

′
t) + C24vec(xt−1u

′
t) + C34vec(ztu

′
t).(25)

Thus, when P cc 6= P and Ccc22 6= C22, forecast errors are functions of lags of the

observables xt−1 . When P cc = P and Ccc22 = C22, forecast errors may still depend

on the lags of the observables if ut is serially correlated. Hence, an alternative way to

check for parameter variations involves estimating the constant parameter model using

approximate decision rules of different orders, in-sample predicting the endogenous
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variables, regressing the resulting forecast errors vcct on lags of the observables, and

checking the joint significance of the regression coefficients.

DGP Estimated model Optimality wedge Forecast errors
T=500 T=150 T=500 T=150

Fixed parameter Fixed parameter 0.00 0.00 0.00 0.00
Exogenously varying Fixed parameter 0.58 0.28 1.00 0.78

Endogenously varying Fixed parameter 0.99 0.25 1.00 0.99
Endogenously varying (internalization) Fixed parameter 0.60 0.05 1.00 0.99

Fixed parameter Fixed parameter
second order solution first order solution 0.00 0.00 0.00 0.00

Fixed parameter Fixed parameter
time to build no time to build 0.12 0.08 0.49 0.11

Fixed parameter Fixed parameter
capacity utilization no capacity utilization 0.00 0.00 1.00 0.80

Fixed parameter Fixed parameter
stochastic volatility constant volatility 0.00 0.00 0.00 0.00

Fixed parameter Fixed parameter
second order, adjustment costs first order, no adjustment costs 0.00 0.00 0.00 0.00

Two states, one switch Fixed parameter 1.00 0.20 0.99 0.97
Occasionally binding Fixed parameter 0.59 0.41 1.00 0.99

Table 1: Percentage of rejections at the 0.05 confidence level of the null of no time variations in 200

experiments. The dependent variable is either the Euler wedge or the forecast error in the output equation.

The regressors are lagged consumption and lagged real rate for the Euler wedge; lagged output, lagged

consumption, and lagged hours for the forecast error.

We apply the two diagnostics to samples constructed using the RBC model of

section 2. The parametrization is as in section 2.5. Table 1 reports the rejection rate

of an F-statistic for the null hypothesis that all regression coefficients are zero at the 5

percent confidence level for two sample sizes (T=150, T=500) and a number of designs.

The first four rows consider the models discussed in section 2: constant parameter,

exogenously time-varying β and δ, endogenously time-varying β and δ as a function

of the capital stock, with or without internalization. The next five rows consider

situations where the estimating model neglects nonlinearities, high order terms, or

structural features present in the data-generating process. The last two rows consider

the case of a switching model with once-and-for-all switch in a number of parameters

and an occasionally binding constraint on investment decisions (details on the models

used are in the online appendix B).
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The wedge diagnostic has good size properties (does not reject the null of constant

parameters) when the estimating model is correctly specified and when there are a

number of important forms of misspecification. However, it displays some distortion

with the one-period time to built DGP. It has instead conservative power properties

(does not reject the null very often) when the DGP features parameter variations.

This occurs primarily in the smaller sample, and it is due to the fact that parameter

variations are small - with the chosen calibration they explain 3-6 percent of the output

variance. If parameter variations are larger - they explain, say, 15-20 percent of output

variance - the rejection rate is close to its nominal value (see table B.1 in the online

appendix). The statistic has also good power in detecting once-and-for-all breaks or

time variation due to occasionally binding constraints.

The forecast error diagnostic has similar size properties, except when the DGP

features capacity utilization, but better power properties, even when time variations

explain a small portion of output variance. Differences in power are due to the fact that

the wedge diagnostic uses the nonlinear optimality conditions and thus needs either

larger samples or larger parameter variations to detect time-varying misspecification.

4.1 Exogenous versus endogenous parameter variations

If the diagnostics indicate the presence of parameter variations, one may want to know

whether they are of the exogenous or endogenous type. To distinguish the two options,

we use the logic of the DGSE-VAR methodology of Del Negro and Schorfheide (2004).

Let L(α|y) be the likelihood of the VAR model for data y, and let gj(α|γj ,Mj) be

the prior induced by the DSGE model Mj using parameters γj on the VAR parameters

α. The marginal likelihood is hj(y|γj ,Mj) =
∫
L(α|y)gj(α|γj ,Mj)dα, which for a

given y is a function of Mj . Since L(α|y) is fixed, hj(y|γj ,Mj) reflects the plausibility

of gj(α|γj ,Mj) in the data. Thus, if g1 and g2 are two DSGE-based priors for the VAR

and h1(y|γ1,M1) > h2(y|γ2,M2), there is better support in the data for g1.

We use a similar idea to examine whether a model with exogenous or endogenous

variations is better suited to explain the data. Given a sample of data, one uses a

model with either exogenous or endogenous variations as a prior and generates data
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Data Generating Process

Prior, T1=150 Prior, T1=450

Model B Model C Model D Model B Model C Model D

Data added from B 1.00 0.00 0.00 1.00 0.00 0.00
Data added from C 0.01 0.97 0.01 0.00 0.99 0.00
Data added from D 0.00 0.00 1.00 0.00 0.00 1.00

Table 2: Fraction of 100 experiments when the Bayes factor exceeds 3.0. Marginal likelihoods are obtained

using T = 150 data points produced by the models listed in the first column and T1 data from the model

listed in the rows. When rows do not sum up to one, the Bayes factor is inconclusive (below 3.0).

form it. A statistically larger marginal likelihood, say, when the exogenously varying

parameter model is used as prior, would indicate that the available sample is more

likely to be generated by a model with this feature. We prefer to use the DSGE-VAR

device, rather than comparing the marginal likelihood of different models directly to

avoid small sample distortions. Since we can add as many data points as we like from

the prior, small sample distortions are less of an issue in the DSGE-VAR setup.

Table 2 reports Monte Carlo results for the RBC example. The parameterization is

as in section 2, and a first order approximate solution is used to generate the data. We

use proper priors on all parameters which are estimated using consumption, output,

capital, and hours as observables and three measurement errors. Bayes factors are

computed when the sample has T = 150 observations and T1 = 150 or T1 = 450

observations from the models listed in the rows are added to the sample. The statistic

is powerful: marginal likelihood differences are quite large, even when T1 = 150.

4.2 Some practical suggestions

To diagnose and analyze time variations in structural parameters of a given model we

suggest researchers to use the following steps

i) Estimate the constant parameter version of the model, possibly allowing for time

variations in the variance of the shocks.

ii) Run the diagnostics using the estimated model and, if time variations are perva-

sive, check whether endogenous versus exogenous variations are more likely. Because
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the two diagnostics have different small sample properties, it seems wise to use both

of them in empirical applications.

When the model is of large scale, running regressions on lags of all endogenous

variables is likely to lead to overparameterization and multicollinearity. To make the

test powerful, users should employ the states of the model in the regressions. Similarly,

when performing exogenous versus endogenous checks, having the proper state variables

for the endogenous specification is important to make the comparison fair. To avoid

overparameterization, it is a good idea to a-priori shrink the coefficients of the auxiliary

regressions toward zero. Rejection of the no time variations null will give researchers

stronger confidence that parameter variations are indeed present.

iii) When time variations are detected, one needs to choose which parameters are

time-varying. One option is to specify time variations in all structural parameters

and design a prior that allows the variance of some elements of Ut to be zero (see,

e.g., Ferroni et al., 2017). Alternatively, one could introduce time variations only in

parameters known to be unstable or suspected to be time-varying.

iv) Estimate the time-varying parameter model and compare its structural dynamics

with those of the constant parameter model. One can proceed in two ways: enlarge the

number of observable variables whenever a new shock to the parameters is introduced;

or maintain the same number of observables, even if a new shock is introduced. We

follow these steps in the empirical application of section 6.

5 Inference

Given the results of section 3, important inferential distortions may occur using a

constant parameter specification when the DGP features time varying parameters. In

this paper, as in the majority of the literature, estimation and inference are based on

the likelihood function of the linearized constant parameter model.

The likelihood function is typically constructed via the Kalman filter and, thus,

it is a function of the forecast errors computed with the constant parameter model.

Thus, one should expect the forecast error misspecification described in section 4 to

24



Detecting Time-Varying Parameters

spread to the likelihood function. Two problems are relevant: the matrix P entering

the prediction formula is generally incorrect; a smaller number of shocks is assumed to

drive the endogenous variables. If structural and parameter disturbances are AR(1),

shock aggregation produces a lower dimensional ARMA(2,1) process. Because the

disturbances of a constant parameter model are assumed to be AR(1), distortions are

likely to occur in the serial correlation properties of the estimated shocks and the

parameters regulating the internal propagation of the model.

We have investigated how these two problems affect the identification of the con-

stant parameters and the conclusions concerning the propagation and the relative im-

portance of structural shocks in the context of the RBC model of section 2. The online

appendix C presents the results of a Monte carlo exercise. Two main conclusions

emerge. First, the identification issues highlighted by Canova and Sala (2009) are gen-

erally important when time varying misspecification is present. When a constant pa-

rameter model is incorrectly assumed, the maximum of the likelihood function changes

location, its shape is twisted, and its curvature flattened. It turns out that both shock

misaggregation and decision rule misspecification induce identification pathologies and

that the distortions created by the latter are considerably worse.

Likelihood estimation of a constant parameter model shows an interesting pattern

of biases. Because the decision rules are misspecified and shocks misaggregated, the

parameters most distorted are those regulating the estimated persistence of the struc-

tural shocks and those controlling income and substitution effects. Thus, one is more

likely to find that very persistent processes are required for the time-invariant model to

fit the data when the DGP features time-varying parameters and that parameters such

as the labor share or the intertemporal elasticity of substitution tend to be biased.

6 Time-varying financial frictions?

We apply the technology we developed to study time variations in the parameters of

Gertler and Karadi’s (2010) - GK for short - model. Our contribution is threefold.

First, we provide likelihood estimates of the model-specific parameters (the fraction
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of capital diverted by banks λ, the proportional transfer to entering bankers ω, and

the survival probability of bankers θ), which the authors have calibrated to match the

steady-state spread, the steady-state leverage, and a notional length of bank activity.

Second, we use the diagnostics of section 3 to gauge the extent and the sources of

parameter variations. Third, we estimate models where λ is time-varying and examine

what it implies for the responses of capital quality shocks. We use U.S. data on the

growth rates of output, of consumption, of leverage, of intermediary demand for assets

(credit) and a spread measure - the difference between the yield of a BAA 10-year

corporate bond and the 10-year Treasury bond of constant maturity - in estimation.

Yield, real personal consumption expenditures, and GDP are from the Federal Reserve

Economic Data (FRED). Leverage and credit are from Haver Analytics. The former

measures Tier 1 (core) capital as a percent of average total assets; the latter, total loans

scaled by the size of the U.S. population. We consider two samples: 1985:2- 2014:3

and 1985:3-2007:4. The linearized equations and the prior used are in appendix D.

The posterior modal estimates for the full sample are λ = 0.170, θ = 0.452, and

ω = 0.012; the posterior standard deviations are small (0.007, 0.008, and 0.0005). For

the shorter sample, posterior modal estimates are λ = 0.138, θ = 0.399, and ω = 0.01,

and the posterior standard deviations are 0.007, 0.011, and 0.0006. For comparison,

GK used λ = 0.318, θ = 0.972, ω = 0.002. Note that λ regulates private leverage: the

value used by GK implies a steady-state leverage of 1.38. Our full sample estimate

implies a steady-state leverage of 3.39, closer to the value in U.S. corporate and non

corporate business sectors.

We run our diagnostics to check for parameter variations (see table 3). With the full

sample, the forecast errors of all equations but output are predictable, and typically,

lagged output and the lagged spread are significant. In addition, lagged consumption

and lagged investment to output ratios significantly explain movements of the Euler

wedge (coefficients are, respectively, -0.10 and 0.72, with t-statistics of -7.96 and 5.37).

Because the conclusions for the shorter sample are similar, the time variations we detect

are not due to the financial crisis.

While all parameters could a-priori be varying, we choose to study time variation
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Ct−1 Yt−1 Creditt−1 Leveraget−1 Spreadt−1

t-statistic F-statistic

Forecast error Sample 1985:3-2014:3

C -0.10 3.11 -0.01 0.58 6.13 3.64
Y -1.33 1.37 0.38 -0.60 0.68 1.24
Credit -0.22 3.38 0.87 -0.36 6.02 5.74
Leverage 0.14 -3.27 -0.91 0.40 -5.81 5.51
Spread -0.10 -4.07 -0.15 0.48 -5.76 7.25

Sample 1985:3-2007:4

C -0.19 3.11 -0.01 -0.58 6.13 3.64
Y -1.33 1.37 0.38 0.60 0.68 1.24
Credit -0.22 3.38 0.98 -0.36 6.02 5.74
Leverage 0.14 -3.27 -0.91 0.40 -5.81 5.51
Spread -0.10 -4.07 0.15 0.48 -5.76 7.25

Table 3: Forecast error diagnostic. The left-hand side regression variable is the forecast error in the equation
listed in the first column; the right-hand side variables are listed in columns 2 through 5. Critical values for
the null of zero coefficients are F(5,112)=2.56 (full sample) and F(5,85)=2.90 (shorter sample).

in only λ, because it regulates leverage and drives movements in the credit and spread

equations, whose forecast errors are highly predictable. We specify:

λt = (1− ρλ)λ+ ρλλt−1 + σλet,λ (Exogenous variations)(26)

λt = (2λu − (λu −
λ

2
) ∗ (exp(−φ1(Xt−1 −Xs)) + exp(φ2(Xt−1 −Xs))) + σλet,λ

(Endogenous variations),(27)

where X is net bank wealth and Xs its steady-state value. We select bank net wealth

as the relevant state variable in (27) because of its importance in determining the

magnitude of the spread and the dynamics of credit. Depending on the values of

λu, φ1, φ2, (27) may generate variations that affect the steady states, the dynamic re-

sponses to shocks, or both, and the variations in dynamic responses could be symmetric

(if φ1 = φ2) or asymmetric (if φ1 6= φ2). We add to the original model either equation

(26) or (27) and assume that agents know them when optimizing. When considering en-

dogenous time variation, we focus on the case where agents do not internalize the effects

of their choices on the parameters, which is arguably more relevant for this application.

We calculate the marginal likelihood for each DSGE-VAR style specification, averaging
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the marginal likelihood obtained on a grid when ρλ = [0.7, 0.9] and σλ = [0.01, 0.05]

for the exogenously varying model and when σλ = [0.01, 0.05], φ1 = [0.01, 0.1], and

φ2 = [0.05, 0.2] for the endogenous specification (we keep λu = 0.8 fixed), setting

T1 = T = 115 (our full sample size). The endogenously varying specification is strongly

preferred: the average difference in the log marginal likelihood of the two specifications

exceeds 300 and nowhere in the chosen intervals is the difference smaller than 100.

Parameter Constant Parameters Exogenous time variations Endogenous time variations

h 0.431 (0.006) 0.235 (0.029) 0.213 (0.003)
λ 0.170 (0.007) 0.628 (0.028) 0.331 (0.045)
ω 0.012 (0.0005) 0.014 (0.0009) 0.050 (0.0008)
θ 0.452 (0.008) 0.504 (0.010) 0.445 (0.036)
ρξ 0.672 (0.020) 0.990 (0.003) 0.726 (0.066)
σxi 0.159 (0.012) 0.155 (0.010) 0.180 (0.028)

ρλ 0.998 (0.002) 0.599 (0.016)
σλ 0.028 (0.002) 0.027 (0.004)
λu 0.859 (0.036)
φ1 0.022 (0.008)
φ2 0.182 (0.029)

Log ML -608.36 1550.52 1574.94

Table 4: Parameter estimates, Gertler and Karadi model, sample 1985:3-2014:3. Posterior standard devi-
ations in parenthesis. Log ML lists the log marginal likelihood of each specification.

We estimate the parameters allowing λ to be time-varying. The priors for the new

parameters are in appendix D. Table 4 reports estimates of selected parameters.

In the model with exogenously varying parameters, variations in λt are very persis-

tent. Compared with the constant parameter model, estimates of (λ, θ) are larger, the

lifetime of bankers slightly increase, and the persistence of the capital quality shock

increases. With the endogenous specification, the estimate of λ is intermediate between

the other two estimates but bankers’ survival probability is roughly unchanged. The

data requires a strong asymmetric specification for time variations (φ1 < φ2), implying

a negative relationship between the fraction of funds that bankers can divert and their

net worth. Finally, confirming our DSGE-VAR analysis, the endogenous specification

has larger marginal likelihood than the alternative specifications.
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Figure 2 plots estimates of the responses of output, inflation, investment, net worth,

leverage, and the spread to a 1 percent capital quality shock. The constant parameter

specification closely replicates the dynamics in GK’s figure 3. There is a decline in

output, investment temporarily falls and then increases because capital is below its

steady state. Bankers’ net worth falls, and the spread sharply increases.
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Figure 2: Dynamics in response to capital quality shock.

With an exogenously varying λ, the responses are more persistent, primarily because

the persistence of the capital quality shock is abnormally high. Quantitatively, output,

net worth, and the spread fall more in the short run, primarily because the steady-state

value of λ increases. Thus, making λ exogenously time-varying enhances the model’s

ability to capture the impact recessionary effects of capital quality shocks.

With endogenously varying λ, the medium-term dynamics reproduce those of the

constant parameter model, but in the short run, the effect on leverage, net worth and

the spread is stronger. This is because shocks that lower net worth make the share of

funds diverted by banks higher, and this produces stronger dynamics in the financial

block. Since the dynamic responses of net worth are larger, the spread increases more.

Nevertheless, differences in the responses of investments and output relative to the
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time invariant model are small. Interestingly, estimates of the habit parameter h dra-

matically fall in the time-varying specifications. Thus, in the estimated time invariant

model, h captures, in part, the missing dynamics due to the time variations of λ.

We take this evidence as suggestive of the potential problems one encounters esti-

mating time invariant structural models and indicative that the relationship between

λ and net worth needs a proper micro fundation for policy counterfactuals to be inter-

preted. Providing this micro fundation is beyond the scope of the paper, but attempts

to endogenize crucial parameters in models like Gertler and Karadi’s exist (see, e.g.,

Bigio, 2012; Ferrante, 2018). In these models, an endogenous deterioration of the qual-

ity of loans generally leads to higher aggregate leverage, higher aggregate risks, and a

larger probability of bank runs.

7 Conclusions

This paper is concerned with the misspecification induced by neglected parameter

variation and with the consequences of assuming incorrect forms of time variation and

provides researchers with a new set of tools to assess the quality of their models. We

characterize the approximate decision rules of a DSGE model when parameter variation

is present; discuss whether constant parameter models provide a good approximation

to the DGP; and examine whether time-varying parameter DSGE models generate

decision rules comparable to those of time-varying parameter VARs. We provide di-

agnostics to detect time-varying misspecification and study the consequences of using

time-invariant models when the DGP features parameter variations.

When parameter variations are present, a constant parameter model does not “rea-

sonably” approximate the DGP. When linearized solutions are considered, there are

two special cases when the dynamics in response to structural shocks will be the same.

When second order solutions are considered, structural responses in time-varying and

constant parameter models are proportional only when parameter variations are ex-

ogenous. For higher order solutions, the structural responses will be highly distorted.

Constant and time-varying parameter models produce dynamics that are different be-
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cause income and substitution effects are altered. Disturbances to the parameters add

to the uncertainty of the environment, making agents prefer to consume more today

relative to the future for the same transitory fluctuations in income.

We show that linear approximations do not produce time-varying decision rules and

higher order approximations can do this only if parameter disturbances are interpreted

as (reduced form) decision rule coefficients. Still, regardless of order of approximation

employed, structural responses will be time invariant.

The diagnostics we design are able to detect neglected parameter variations and

distinguish exogenous and endogenous forms of time variations. We highlight that

certain identification problems noted in the literature may be the result of neglected

time variations. Our Monte Carlo study indicates that parameter and impulse response

distortions may be large, even for modest parameter variations.

We show that the parameter regulating moral hazard in the Gertler and Karadi

(2010) model is likely to be time-varying. When we allow variations to be a function

of net worth, the fit of the model dramatically improves because there is an additional

propagation channel that makes spread and output responses to capital quality shocks

stronger and more persistent.
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