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ON IDENTIFICATION AND NON-NORMAL
SIMULATION IN ORDINAL COVARIANCE

AND ITEM RESPONSE MODELS

NJÅL FOLDNES AND STEFFEN GRØNNEBERG

Abstract. A standard approach for handling ordinal data in co-

variance analysis such as structural equation modeling is to assume

that the data was produced by discretizing a multivariate normal

vector. Recently concern has been raised that this approach may

be less robust to violation of the normality assumption than pre-

viously reported. We propose a new perspective for studying the

robustness towards distributional misspecification in ordinal mod-

els using a class of non-normal ordinal covariance models. We show

how to simulate data from such models, and our simulation results

indicate that standard methodology is sensitive to violation of nor-

mality. This emphasizes the importance of testing distributional

assumptions in empirical studies. We include simulation results on

the performance of such tests.

1. Introduction and summary

Empirical investigations in the social and behavioral sciences are of-

ten based on categorical data, which has been collected using ordinal

scales (e.g., Likert-type scales). A popular method for modeling such

data is to assume that a continuous latent variable underlies each cat-

egorical variable, so that the observations on each ordinal variable is

the result of discretizing the corresponding continuous variable. In the

context of covariance modeling such as structural equation modeling

(SEM) and confirmatory factor analysis (CFA) this approach was ini-

tiated by ? for the dichotomous case, with later expansions to the

polytomous case (e.g., ??).

In this article we investigate identifiability issues that arise from

the assumption of an underlying random vector whose discretization

produces the observed variables. Based on our identifiability findings
1
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we propose a new method of simulating ordinal data that allows true

violation of the normality assumption. In the process, we propose a

class of non-normal ordinal covariance models, whose estimation theory

is not dealt with in this paper.

We are given n independent observations of an ordinal d-dimensional

random vector X = (X1, X2, . . . , Xd)
′. In practice, each Xi may corre-

spond to an item in a test or questionnaire, that is scored on an ordinal

scale. We postulate an underlying continuous variable ξi that produces

the observed variable Xi through discretization. Many aspects of the

the underlying discretized vector ξ = (ξ1, ξ2, . . . , ξd)
′ are not identified.

This means that there is a large class of distributions for ξ that will

result in the exact same distribution for X, and we call members of

this class of distributions discretize equivalent to ξ. One consequence

is that a crucial assumption in ordinal SEM and CFA, namely that ξ is

a multivariate normal vector, can not be consistently tested. Another

consequence is that many simulation studies designed to address the

robustness of model inference to violation of the normality assump-

tion have generated data that only appear to violate the normality

assumption, but that in fact is indistinguishable from discretizing a

normal vector, as recently shown by ?. This observation is the starting

point for our paper: How should a proper simulation study outside the

normality assumption be conducted?

We note that although the discussion in the present article deals

almost exclusively with ordinal SEM and CFA, our findings extend also

to the case of multidimensional IRT (?). The close relationship between

IRT and CFA in terms of statistical procedures is well-established (?),

and we provide extensions to this body of work in Appendix A.

This article is organized as follows. In Section 2 we review the ordinal

covariance model discretization framework and establish identifiability

results, and in Section 3 we summarize earlier results on testing for

discretized normality. The results on identifiability lead us to Section

4, where we embed the normal theory ordinal covariance models into a

larger model class which supports more general distributional assump-

tions. In Section 5 we then discuss how to simulate data for this model

class, which enables us to investigate the robustness of conventional
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ordinal covariance models to violation of the underlying normality as-

sumption in a controlled manner. Numerical illustrations are given in

Section 6. We here also include a discussion and evaluation of a test

of underlying normality that has been largely neglected in the litera-

ture. The present study points to the high importance of testing for

underlying normality in empirical work. Concluding remarks are given

in the last section.

2. On identifiability and normality in ordinal covariance

models

Suppose each coordinate of X takes on K > 1 possible distinct

values x1, x2, . . . , xK . We assume further that X is the result of the

discretization of a d-dimensional random vector ξ. In the following

we refer to ξ as the discretized variable. Initially, we do not impose

any further restrictions on ξ, and define X using the relation that for

i = 1, 2, . . . , d we have

Xi =


x1, if τi,0 < ξi ≤ τi,1
x2, if τi,1 < ξi ≤ τi,2
...

xK , if τi,K−1 < ξi ≤ τi,K

where τi,0 = −∞ < τi,1 ≤ τi,2 ≤ · · · ≤ τi,K−1 ≤ τi,K = ∞, and

where x1 < x2 · · · < xK . Following ?, a compact representation of each

coordinate Xi of X for 1 ≤ i ≤ d is given by

(1) Xi =
K∑
j=1

xjI{τi,j−1 < ξi ≤ τi,j}

where we use that |ξi|< ∞ since ξ is assumed to be a random vector,

and where I{A} is the indicator function of A, i.e., it is one if A is true

and zero otherwise. We next combine this discretization framework

with covariance modeling to obtain the traditional normality-based or-

dinal SEM model.
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Definition 1. A normal ordinal covariance model has the data

generating mechanism of eq. (1), where ξ is assumed to be a multivari-

ate normal vector with standard normal marginals, and a correlation

matrix Σ◦ = Σ(θ◦) where θ 7→ Σ(θ) is a covariance model.

In the above definition the vector θ◦ contains the population values

of the covariance model parameters, and Σ◦ is the population corre-

lation matrix of ξ implied by θ◦. Ordinal SEM/CFA as proposed by,

e.g., ?, is based on fitting the proposed structural model Σ(θ) to an

estimate of the correlation matrix Σ◦ of ξ, the so-called polychoric cor-

relation matrix. The first step in ordinal SEM estimation is therefore

to estimate Σ◦, which is only possible under additional assumptions

concerning ξ. The model above makes the traditional assumption of

multivariate normality of ξ, which allows Σ◦ to be estimated using

normal theory maximum-likelihood (ML) estimation (?). This is the

approach implemented by default in SEM software.

Researchers have been concerned with potential bias in the estima-

tion of Σ◦, should the normal ordinal covariance model not hold due

to distributional misspecification. That is, when ξ is not multivari-

ate normally distributed, the estimation of polychoric correlations may

become biased, and the bias may propagate to parameter estimates

and invalid inference for the structural model. Starting with ?, the

robustness of the normal ordinal covariance model to distributional

misspecification have often been studied by discretizing a non-normal

vector obtained through the approach of ? (e.g., ??????????). The

consensus reached by these studies, is that the normality-based poly-

choric correlation estimator seems to be quite robust to violation of

the underlying normality assumption. However, recently ? showed

that ordinal data stemming from discretizing a Vale-Maurelli (VM)

vector is in most cases numerically equivalent to data stemming from

discretizing a multivariate normal vector. Hence, these studies do not

provide information about the robustness of the normal ordinal covari-

ance model to distributional misspecification. This surprising finding is

a consequence of the lack of identifiability of ordinal covariance models,
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combined with the fact that VM vectors in most cases have a normal

copula (?).

This points to the importance of taking identifiability in ordinal co-

variance models more fully into account. We start with the observation

that there are many vectors ξ which, when discretized according to

eq. (1), lead to the same distribution for X. That is, the distribution

of ξ is not fully identified based on the distribution of X.

Definition 2. If a d-dimensional random vector ξ̃ were to be dis-

cretized with appropriate thresholds and the resulting ordinal vector,

say, X̃, has the same distribution as X, then we say that ξ̃ is discretize

equivalent to ξ.

That ξ̃ and ξ are discretize equivalent means that it is impossible to

distinguish X̃ and X statistically, since their distributions are equal.

That is, the thresholds and the distribution of ξ are not identified, as

they cannot be uniquely determined from the distribution of X. As

we now show, the class of discretize equivalent distributions always

contain many members: there are many combinations of thresholds

and distributions of ξ that lead through eq. (1) to the same ordinal

distribution.

Using the above definition, we may briefly summarize the investiga-

tion of ? as follows: If the polynomials of the VM-transformation are

monotonous, the VM-distributed random vector ξ̃ is discretize equiva-

lent to a multivariate normal random vector ξ.

We next provide two lemmas and a proposition on discretize equiv-

alent random vectors. These results do not make any assumptions

on the distribution of X, other than X has a finite number of out-

comes. The first lemma indicates that we should analyze the class of

ordinal covariance models with caution, firstly as we can generate any

discrete random vector with a finite number of outcomes by eq. (1),

and secondly as ξ is always discretize equivalent to a purely discrete

random vector. Having ξ as a discrete random vector is far removed

from the multivariate normal case. The lemma is proved simply by
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self-discretizing X. The assumption of a finite number of outcomes is

made for simplicity and can be avoided.

Lemma 1. (1) Let X be a discrete random vector with a fi-

nite number of possible outcomes. Then there exists a random

vector ξ such that eq. (1) is fulfilled.

(2) Suppose eq. (1) is fulfilled. There exist a purely discrete ξ̃ with

the same number of possible outcomes as X that is discretize

equivalent to ξ.

Proof. See Appendix C. �

The premise and motivation for the class of ordinal covariance models

since the time of ? has been that ξ is a continuous random vector. The

following proposition shows that the marginals of ξ can be taken to

be standard normal, or, by a trivial extension, any other continuous

univariate distribution.

Proposition 1. There exists a continuous random vector ξ̃ with

standard normal marginals that is discretize equivalent to ξ.

Proof. See Appendix C. �

Remark 1. Note that by Lemma 1 (1) and Proposition 1, any

discrete random vector with a finite number of outcomes can be thought

of as being discretized from a random vector ξ with normal marginals

using eq. (1).

Note that in the argument underlying Proposition 1, the thresholds

in the representation of eq. (1) are changed, as allowed by the definition

of discretize equivalent. This has the consequence that the proposition

only applies to models where the thresholds are free parameters. To

our knowledge, this applies to all known statistical models for eq. (1).

Proposition 1 implies that the marginal distributions of ξ are not

identified, i.e., we cannot deduce the marginal distributions of ξ when

only observing X – unless further restrictions on the distribution of

ξ are imposed. This has been noticed before, e.g., by ?, who argued

that the marginals therefore can be taken as uniform on [0, 1], though
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their argument assumes that ξ has continuous marginals with strictly

increasing cumulative distribution functions, and our argument is gen-

eral.

When ξ is assumed to have uniform marginals, its joint distribution

C is known as a copula. Also the copula of ξ is not fully identified, see ?.

Indeed, for any copula C̃ with the same probabilities over rectangles in

[0, 1]d defined by the thresholds (τi,j), we have that ξ̃ ∼ C̃ is discretize

equivalent to ξ.

3. Testing for underlying normality

As we will see in our numerical illustrations in Section 6, statistical

methodology assuming a normal ordinal covariance model may be less

robust to deviations of underlying normality than reported in previous

studies. Testing the normality of ξ is therefore of practical importance

in empirical studies. Due to the above lack of identifiability, testing

whether ξ is multivariate normal based on observations from X, means

testing whether ξ is discretize equivalent to a normal random vector

(this interpretation of tests of normality was also noticed by ?).

To the best of our knowledge, only one test has been proposed in

the literature for detecting underlying multivariate non-normality in

an ordinal dataset. ?, section 4.2 proposed a test statistic T which

is still understudied, and whose only empirical evaluation is a small

simulation study under two approximations reported by ?. The test

statistic is based on the discrepancy between the observed bivariate

proportions in the sample and the probabilities implied by assuming

that ξ is multivariate normally distributed. Let k 6= l and denote

by pkl,ij the number of observations in the sample with Xk = xi and

Xl = xj, divided by the sample size. Likewise, we can estimate the

thresholds and the polychoric correlation between ξk and ξl (?), and

calculate πkl,ij = P (τ̂k,i−1 < ξk ≤ τ̂k,i, τ̂l,j−1 < ξl ≤ τ̂l,j), assuming

that ξk and ξl are bivariate normal with standard normal marginals

and a correlation equal to the polychoric correlation. Note that in the

probability defining πkl,ij, the parameters estimated from data and are

treated as fixed, and their distributions are not included in the proba-

bility calculation. Let rkl,ij = pkl,ij − πkl,ij be the residual between the
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observed proportion and the proportion implied by normality. There

are K2d(d − 1)/2 such residuals. ? derived the following asymptotic

distribution, provided ξ is multivariate normal:

(2) T := n
∑

r2kl,ij
d−−−→

n→∞

m∑
i=1

λiχ
2
1,

where m = (K2 − 2K)d(d − 1)/2. The coefficients α1, . . . , αm are the

eigenvalues of the matrix

(3) M = (I −∆G)Γ̂(I −∆G)′,

where I is the identity matrix, and ∆ is a Jacobian matrix defined as

∂π/∂κ, where π contains the model-implied bivariate proportions, and

κ contains the thresholds and the polychoric correlations. The matrix

G is such that
√
n(κ̂− κ0)

a
= G
√
n(p− π0), where π0 contains the true

bivariate proportions (?, eq. 14).

It is important to note that there are various ways of approximating

the distribution of T to obtain a p-value, see ? for a thorough dis-

cussion. The small simulation study in ? only included a mean-scaled

and a mean-and-variance scaled approximation, but we deem it impor-

tant to consider several approximations in order to best profit from the

result in eq. (2). We therefore include not only the classical approx-

imations, but also new developments proposed by ?, which have yet

been little evaluated in the literature. Hence, in Section 6, we evaluate

four approximations to the limiting distribution. Two of these approx-

imations are well-known, based on scaling (?) and scaling-and-shifting

(?). In addition two approximations based on the recently proposed

technique of eigenvalue block averaging (EBA) were evaluated (?). In

full EBA we estimate the eigenvalues λj and obtain the p-value as

pEBAF = P

(
d∑
j=1

λ̂jZ
2
j > T

)
,

while in the split-half approach we sort the eigenvalues and split them

at the median. In each of the two halves, we replace the eigenvalues



SIMULATION IN NON-NORMAL ORDINAL COVARIANCE MODELS 9

with their group-based average to obtain the p-value as

pEBAH = P

dd/2e∑
j=1

λ̃1Z2
j +

d∑
j=dd/2e+1

λ̃2Z2
j > T

 ,

where λ̃1 = 1
dd/2e

∑dd/2e
j=1 λ̂j and λ̃2 = 1

d−dd/2e
∑d

j=dd/2e+1 λ̂j.

4. A non-normal ordinal covariance model

We now turn to the problem of simulating from a non-normal ξ that

is then discretized into X. A central aim in conducting such simulations

is to assess the performance of normal-theory methods for estimating

the model in Definition 1, when ξ is in fact non-normal. For instance,

one might study the bias in polychoric correlation estimates based on

the popular two-step method of ? in conditions where the discretized

vector is truly non-normal.

The first step in identifying the types of distributions to simulate

from is to extend the normal ordinal covariance model in Definition 1

to a model which supports non-normality. That is, we wish to de-

fine a model we may call a non-normal ordinal covariance model. The

difficulty in identifying a proper extension to embed the normal ordi-

nal covariance model into is that the marginals are not identified, see

Proposition 1.

At a minimum, the model class should allow for non-normal ξ whose

covariance matrix equals Σ(θ◦). Since the covariance between two ran-

dom variables depends on the marginals as well as the copula of the

variables, the choice of marginals will influence the meaning of the co-

variance matrix. In order that the normal ordinal covariance model is

to be a special case of the non-normal ordinal covariance model, we fix

the marginals to standard normal. Another less technical motivation

for assuming normal marginals may be given on a priori grounds, see

Appendix B.

Definition 3. A non-normal ordinal covariance model (with normal

marginals) fulfils eq. (1), where ξ is assumed to have standard normal

marginals and a correlation matrix Σ◦ = Σ(θ◦) following a covariance

model θ 7→ Σ(θ).
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By the Cauchy-Schwarz inequality, the covariance matrix of ξ al-

ways exists, since ξ has standard normal marginals and hence finite

univariate moments of all orders.

Since the above model class is considerably larger than the normal

ordinal covariance model, the problem of identifiability is also more

complex. Indeed, while the marginals and covariance matrix are given,

the copula of ξ is free to vary, meaning that the distribution of ξ – and

therefore also X is only partly specified. There may be a large class

of copulas which when joined with normal marginals yield the desired

covariance matrix. We here use “model” in a rather loose sense: A

non-normal ordinal covariance model does not completely specify the

probability distribution of X, but instead specifies a space of probabil-

ity distributions.

We note that also Σ◦ and θ◦ are not in general identified, i.e., cannot

be deduced from the distribution of X – unless further restrictions on

the distribution of ξ are imposed. If an estimation theory is to be devel-

oped for this model class, one either has to impose further restrictions

on the distribution of ξ and thereby gaining identifiability, or one could

analyze this model class in terms of partial identification (see e.g., ??).

The approach of partial identification would then not estimate Σ◦ or

θ◦, but instead identify sets which contain these parameters. We con-

sider this issue outside the scope of this paper, in which we focus on

simulation.

While Proposition 1 shows that the marginal distributions of ξ are

not identified, this argument does not take into account potential knowl-

edge of the covariance matrix of ξ belonging to the space of covariance

matrices given by θ 7→ Σ(θ). We leave this issue open to further re-

search.

To assess the distributional robustness of normal-theory methods in

normal ordinal covariance models, we may simulate from a non-normal

ordinal covariance model and assess how these methods perform.
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5. Simulating from the non-normal ordinal covariance

model using the VITA method

In order to simulate from a non-normal ordinal covariance model,

we must discretize a random vector with normal marginals and a fixed

covariance matrix Σ◦. To the best of our knowledge, currently only the

VITA simulation method of ? is capable of constructing such random

vectors.

Briefly stated, the VITA method identifies a so-called vine copula

distribution whose covariance matrix under chosen marginals equals a

target covariance matrix. Vine copula distributions are made up of

a sequence of bivariate copulas, known as pair copulas, and are com-

bined through a sequence of tree structures in a manner that always

yield a valid high dimensional copula distribution. See ? and ? for

more details on vines. While having marginals and the covariance ma-

trix fixed, the VITA method allows the specification of the mentioned

tree-structure and its pair copula classes. A large class of distributions

fulfilling the required restrictions on the marginals and covariance ma-

trix can be obtained in this manner.

In general, after having identified a simulation method for a non-

normal random vector whose marginals are standard normal and whose

covariance matrix equals Σ◦, one can use this to generate a whole class

of non-normal random vectors with varying degrees of non-normality

and with standard normal marginals and covariance matrix Σ◦ (?, Sec-

tion 3.1). Indeed, let us denote a multivariate normal vector whose

covariance matrix equals Σ◦ by Z. And let us denote by V a VITA

vector, generated independently from Z, whose covariance matrix is

Σ◦, and whose marginal distributions are standard normal. Then, for

any 0 ≤ α ≤ 1, the vector

(4) ξ =
√

1− α · Z +
√
α · V

has covariance matrix Σ◦ and standard normal marginals. By letting α

run from 0 to 1, the generated vector ξ violates the underlying normal-

ity assumption to a higher and higher degree. When α = 1 we arrive

at a pure VITA vector V .
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In simulation studies, after having identified the non-normal ξ that

is to be discretized, either by using VITA or some other method yet to

be proposed, it is important to test whether ξ is discretize equivalent to

the multivariate normal. Since the marginals of ξ are fixed to normal

in Definition 3, this will not happen in trivial ways, as happened in the

VM simulation method examples discussed in ? where the copula of ξ

is exactly normal. Still, we recommend simulating a large sample from

ξ, and test its discretized vector X for underlying normality using the

test of ? discussed in Section 3 and illustrated below.

6. Illustration of ordinal data simulation

To illustrate ordinal data simulation with proper violation of un-

derlying normality, consider a two-factor model where the first factor

has two indicators ξ1 and ξ2, while the second factor has three indica-

tors ξ3, ξ4 and ξ5. The structural parameters are five factor loadings

λ1, . . . λ5 and the interfactor correlation φ. We fix these parameters to

the following population values: θ◦ = (0.95, 0.95, 0.95, 0.95, 0.95, 0.9)′.

That is, in the population the factor loadings are 0.95 and the inter-

factor correlation is 0.9. Each factor has unit variance. The implied

covariance matrix of the discretized vector ξ is then

Σ◦ =


1

0.902 1

0.812 0.812 1

0.812 0.812 0.902 1

0.812 0.812 0.902 0.902 1

 .

Our goal is to simulate ξ that matches this covariance matrix. More-

over, in accordance with the non-normal ordinal covariance model from

Definition 3, each marginal is to be standard normally distributed:

ξi ∼ N(0, 1) for i = 1, . . . , 5.

We are interested in how the polychoric estimates and subsequent

model inference are affected when ξ violates the underlying normality

assumption. In case non-normality has a deteriorating effect on these

outcomes, we are also interested in investigating to what degree we can

detect violation of the underlying normality assumption. Therefore, we
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will also evaluate the performance of the underlying normality test of

?.

To investigate how sensitive the estimation of polychoric correlations

and model parameters are to violation of normality, we will follow the

interpolation method described in Section 5 to simulate under a se-

quence of conditions that interpolate between multivariate normality

at one end, and a distinctively non-normal VITA condition at the other.

In the present study, we considered two such distinctively non-normal

distributions as end conditions for our interpolation, each obtained us-

ing the VITA methodology of ?. Note that the above covariance model

was also studied in Section 3.1 in ?, and we here use the same tree

structure as in that paper. The choices of correlations and distribu-

tions were in that paper made to illustrate the effect of a high level

of non-normality, and this is also the case here. The results we now

report will therefore reflect a scenario of high non-normality in a highly

correlated setting. A more complete and systematic simulation study

with varying degrees of correlations and non-normality should be un-

dertaken in future research.

Given the large class of non-normal copulas, we here included two

VITA vectors that were based on different pair-copulas. Using exclu-

sively ? pair-copulas resulted in the regular vine here referred to as VG.

The second VITA vector VC was based on using ? pair-copulas to con-

struct the regular vine. We emphasize that both VG and VC are random

non-normal vectors of dimension 5 with standard normal marginal dis-

tributions and covariance matrix Σ◦. Although both the Gumbel and

Clayton copulas belong to the class of Archimedean copulas, their cor-

responding VITA vectors represent different kinds of non-normality.

For instance, the Clayton copula captures lower tail dependence, while

the Gumbel copula exhibits strong upper tail dependence, and we ex-

pect these characteristics to be partially reflected in their respective

regular vines. We may illustrate these differences by restricting our-

selves to the bivariate case. Figure 1 displays the contour plots for

three bivariate distributions, all of which have a correlation of 0.812

and all having standard normal marginals, but with different copulas.

We also included in the contour plots thresholds τ1,1 = −1, τ1,2 = 0
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Figure 1. Three bivariate distributions with correla-

tion 0.812 and standard normal marginals. The vertical

and horizontal lines represent thresholds.

for ξ1 and τ2,1 = −2, τ2,2 = −1 for ξ2. Table 1 contains all five sets of

thresholds used to obtain ordinal data X by discretizing ξ.

This yields K = 3 possible values for each of X1, . . . , X5, whose mar-

ginal distributions are given in Figure 2. To illustrate the difference

in distributions when discretizing, we may again consider the bivariate

case depicted in Figure 1. The thresholds of ξ1 and ξ2 illustrated in
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ξ1 ξ2 ξ3 ξ4 ξ5

τ1 -1.00 -2.00 -1.00 0.00 0.00

τ2 0.00 -1.00 1.00 1.00 1.00

Table 1. Thresholds for discretizing ξ1, . . . , ξ5.

X1 X2 X3 X4 X5

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0.0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Figure 2. Marginal distributions of the ordinal vari-

ables X1, . . . , X5.

Normal copula

X2

1 2 3

X1

0.021 0.078 0.059

X1 0.002 0.053 0.287

0.000 0.005 0.495

Gumbel copula

X2

1 2 3

0.018 0.072 0.069

0.004 0.056 0.281

0.000 0.008 0.491

Clayton copula

X2

1 2 3

0.023 0.108 0.027

0.000 0.027 0.314

0.000 0.001 0.499

Table 2. Probability tables for (X1, X2) obtained by

discretizing the distributions in Figure 1.

Figure 1 were used to discretize the normal, the Gumbel and the Clay-

ton bivariate distributions in Figure 1, with the resulting probability

tables given in Table 2. Note that the row and column sums of the

tables are equal (up to rounding error) across the three distributions.

However, the different copulas imply different pairwise probabilities in

the three contingency tables.

The simulation design was as follows. For α = 0, 0.1, 0.2, . . . , 0.9, 1

we simulated ξ for both V = VG and V = VC , and at three different

sample sizes: n = 100, 300 and n = 1000. This results in 3+10·2·3 = 63
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conditions, in each of which 2000 samples were generated. For each

such sample we estimated

• the polychoric correlations using the method of ?.

• the model parameters (λ̂i for i = 1, . . . , 5 and the interfactor

correlation φ̂) using diagonally weighted least squares (DWLS)

estimation based on the polychoric correlation matrix.

• the p-value of the test of correct CFA model, using the scaled-

and-shifted statistic. Note that the scaling and shifting in this

case is applied applied to n times the DWLS fit function used

to estimate the model parameters.

• the p-value under four approximations of the ? test of un-

derlying non-normality, namely the mean-scaled test (S), the

scaled-and-shifted test (SS), and the full and two-block EBA

tests (EBAF and EBAH). Note that these are approximations

to the test statistic in eq. (2).

Data generation was conducted in the R computing environment (?)

with the help of the VineCopula package (?) and model estimation

was conducted using the lavaan package (?).

6.1. Results. In the following we mostly exclude the results for the

intermediate sample size n = 300 to simplify the presentation. Sample

size was not found to affect the estimation of polychoric correlations

or model parameters to a large degree. Figure 3 contains the mean

values of the estimated polychoric correlations. As expected, under

multivariate normality (α = 0) the polychoric estimator is unbiased.

Moving away from normality by letting α increase is associated with

larger and larger bias in the polychoric estimator. Finally, when α = 1

we reach the distributions VG (upper panels) and VC (lower panels).

It is clearly seen that while some polychoric correlations are rather

robust to the underlying non-normality (e.g., at n = 1000 we have

ρ̂14 = 0.809 under VG, close to the population value of ρ14 = 0.812),

other polychoric correlations are severely biased at α = 1 (e.g., at n =

1000 we have ρ̂23 = 0.957 under VC , not close to the population value

of ρ23 = 0.812). Also, it is noteworthy that the polychoric estimator

is sensitive to the kind of underlying non-normality as represented by
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Figure 3. The mean of estimated polychoric correla-

tions. i-j refers to the polychoric correlation ρij between

ξi and ξj.

VG and VC . For instance, for the polychoric correlation between ξ2 and

ξ3, we have for n = 1000 that ρ̂23 ≈ 0.957 under the Clayton VITA,

compared to ρ̂23 ≈ 0.731 under the Gumbel VITA. In other words,

we find that the polychoric estimator is severely biased for some pairs

of variables, under both VG and VC , and that the bias is in opposite

directions.



18 NJÅL FOLDNES AND STEFFEN GRØNNEBERG

In Figure 4 are depicted the mean of DWLS model estimates as we

move from the multivariate normal case (α = 0) towards the VITA dis-

tributions VG and VC . Given that DWLS estimation is based on poly-

choric correlations, which are increasingly biased as α increases, it is

not surprising to see this reflected in the model estimates. However, of

the six model parameters, four remain close to their population values,

despite increasing non-normality in the underlying vector, under both

VC and VG. In a sense, it seems that the distributional misspecification

is absorbed as estimation bias for the two remaining parameters, λ2
and φ. Again we see that the nature of the underlying non-normality

strongly affects the bias. Under VG both λ̂2 and φ̂ have a negative

bias, with λ̂2 = 0.898 at n = 1000 compared to the population value

λ2 = 0.95, and φ̂ = 0.871 compared to the population value λ2 = 0.9.

The bias under VC is even more pronounced, although in the opposite

direction: λ̂2 = 1.043, and φ̂ = 0.968.

To study to what degree the underlying non-normality affects the

test of correct model specification, we depict in Figure 5 the rejec-

tion rate at the 5% significance level of the scaled-and-shifted statistic,

which is the default in lavaan under DWLS estimation. Previous stud-

ies (??), have reported that this test tends to underreject a correctly

specified model, and this is confirmed in our findings for n = 100 and

n = 300, where α = 0 corresponds to correct model and distributional

specification. At sample sizes n = 100 and n = 300 the test of model

fit is only moderately affected by underlying non-normality. At the

largest sample size, n = 1000, at α = 1, the correctly specified covari-

ance model is rejected in 84% of the VC samples, and in 26% of the VG
samples, when estimated using normal theory estimators.

Given the effect of underlying non-normality on the polychoric cor-

relations and model inference depicted in Figures 3-5, we next proceed

to investigate whether the underlying non-normality is detectable. As

expected, the power to detect non-normality generally increases with

increasing α. The rejection rates of the four approximations to the

test statistic of ? are shown in Figure 6. It is clear that only two of

the approximations are able to properly control Type I error, namely

EBAF and SS, with EBAF Type I error slightly superior to that of SS.
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Figure 4. Mean of estimates for five factor loadings and

the intrafactor correlation. load1-load5= factor loadings

λ1, . . . , λ5. phi= the intrafactor correlation φ.

Under interpolation toward the Gumbel distribution VG the tests have

very low power to detect the increasing underlying non-normality, un-

less the sample size is n = 1000. The statistics again differ between VG
and VC , and although the tests show poor power to detect underlying

non-normality of the Clayton VITA distribution at n = 100, the power

significantly increases at n = 300, especially as α approaches 1.

6.2. Discussion of results. We have seen that polychoric correla-

tions, and therefore also model estimates and goodness-of-fit tests, are
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Figure 5. Rejection rate at the 5% significance level

of the DWLS scaled-and-shifted test of correct model

spesification.

affected by underlying non-normality. We have demonstrated that the

type of non-normality (Gumbel VITA versus Clayton VITA) has a

pronounced effect on the direction and magnitude of bias introduced

by non-normality. For polychoric correlations and model estimates we

saw this manifested particularly in statistics related to variable X2

(e.g., ρ12, ρ23 and λ2). We believe that this is related to the fact that

X2 is the most asymmetrical of the ordinal variables, see Figure 2.

Although we deem this topic outside the scope of the present illustra-

tion, we conjecture that asymmetrical ordinal distributions combined

with tail dependence in the corresponding variables may be particu-

larly detrimental to the performance of the polychoric estimator. Also,

asymmetrical copulas were not used in our illustrations, but may have

a pronounced effect on parameter estimates.
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Figure 6. Rejection rates at the 5% significance level

for four tests of underlying non-normality. EBAF=full

eigenvalue block-averaging test. EBAH = eigenvalue

block-averaging with two blocks. S= Mean-scaled test.

SS= Scaled-and-shifted test.

7. Concluding remarks

? recently reported that many influential studies on the robustness

of ordinal SEM against underlying non-normality employed simula-

tion methods that were equivalent to discretizing a multivariate normal

random vector. Therefore, these investigations did not in fact study

robustness against underlying non-normality. The degree to which

non-normality influences polychoric estimates and related quantities is

therefore an understudied problem that deserves further study, as the

present paper only presents results from a limited simulation design.

That this surprising finding has not been detected before may be

due to quite subtle identifiability issues that arise when assuming that

the ordinal data at hand was produced by discretizing some underlying
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vector. The purpose of the present article was to shed light on this is-

sue, and to formulate a non-normal ordinal covariance model that may

serve as a basis for future empirical investigations into the robustness

of ordinal SEM, CFA and IRT to non-normality of the discretized vec-

tor. It was demonstrated how one may simulate ordinal data based

on this model that properly violated the normality assumption. The

numerical results of this simulation study showed that non-normality

embedded in the discretized vector affected polychoric correlation esti-

mates, model parameter estimates and model fit statistics, introducing

more substantial bias than previously reported. In addition, the specific

type of non-normality embedded in the discretized vector was shown

to affect both size and the direction of this bias.

Given these findings, it is important for users of ordinal SEM and

CFA to try to detect whether the underlying normality assumption is

plausible for their data. In the final simulation study we evaluated a

test statistic for underlying non-normality, and found it to have rather

poor power at small and moderate sample sizes. Further work is needed

to develop tests with improved performance. Also, our simulation study

was of limited scope, studying a low dimensional model with very high

correlations. A systematic and more complete simulation study ought

to be undertaken.
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Appendix A. On dichotomous multidimensional IRT models

For simplicity we limit the discussion to the dichotomous IRT case. We

derive a stochastic representation of the IRT model under weak assumptions,

which to our knowledge is a new result, and this representation immediately

shows that IRT models are of the form of eq. (1). This representation is then

applied to analyze how marginal assumptions (usually called link functions)

in the IRT models transfer to the present discussion.
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Assumption 1. Consider a random vector X = (X1, X2, . . . , Xd)
′ where

each coordinate takes on the value 0 or 1.

(1) There is a p-dimensional random vector f which is such that for

i 6= j we have that Xi and Xj are independent conditional on f .

(2) We assume for i = 1, 2, . . . , d that πi(f) := P (Xi = 1|f) = H(ζi)

where ζi is a function of f , and H is a CDF with density h with

respect to Lebesgue measure.

A standard assumption (?) is that f ∼ N(0, I) and that

(5) ζi = αi,0 +

d∑
j=1

αi,jfj .

This implies that ζ = (ζ1, ζ2, . . . , ζd)
′ ∼ N(µ,Σ) for some µ and Σ which

are functions of the (αi,j) parameters. The link function H is typically

assumed to either be the normal CDF, or the logistic CDF.

Let Z = (Z1, Z2, . . . , Zd) consist of IID random variables with marginal

distribution H, and Z is independent from ζ = (ζ1, ζ2, . . . , ζd), where ζ is

defined in Assumption 1 (2). The proof of the following result is given in

the online supplementary material.

Proposition 2. A stochastic representation of X fulfilling Assumption

1 is X = (I{ξ1 ≤ 0}, . . . , I{ξd ≤ 0})′ where ξ = Z − ζ.

Since Z1, . . . , Zd are IID and independent to ζ, we have Cov (ξ) = Cov (Z−
ζ) = Cov (Z) + Cov (−ζ) = σ2ZI + Cov (ζ) where σ2Z = Var (Z1) and I is

the identity matrix. This simple correspondence means that the covariance

structure of Z is that of ζ, except for changes in the variances. However, the

choice of H influences the marginals of ξ, and the mathematical definition

of the covariance of ξ depends on both the marginals and the copula of ξ.

Hence, H plays a major role in the interpretation of the covariance of ξ,

since it dictates at what “scale” the covariance model is to be interpreted.

When ζ is multivariate normal, ξ will not be multivariate normal unless H

is a normal CDF. Indeed, copulas are not preserved under marginal convo-

lution, so that not even the copula of ξ is normal when H is not a normal

CDF. This means that when ζ follows a normal covariance model but when

H is not the normal CDF, the resulting IRT model does not follow even a

non-normal covariance model (with respect to the covariance model of ζ) as
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defined in Definition 3, since we there insist that the marginals are standard

normal.

Consider the popular choice of H given by the logistic CDF. Then ξ is

not multivariate normal even when ζ is multivariate normal. Also, ξ will

not have a normal copula. While ξ does have the same covariance matrix

as ζ, the covariance matrix is given at a scale where the marginals Fξi
are convolutions between a logistic and a normal distribution. Since the

marginal distributions are not identified when observing only copies of X,

it seems difficult to interpret what the covariance matrix of ζ means. If the

marginals are transformed to standard normal, one would instead of ξ study

the discretize equivalent variable ξ̃ = (Φ−1Fξ1(ξ1), . . . ,Φ
−1Fξd(ξd))

′, whose

covariance is neither Cov (ξ) nor has a simple relation to Cov (ζ). Finally,

using arguments given in the upcoming Appendix B, a more natural a priori

class of marginals for ξ is often normal, and not the convolution of a logistic

and a normal.

Appendix B. An a priori justification for marginal normality

of ξ that may be plausible in certain applications

We assume that the continuous discretized vector ξ have a covariance

matrix obtained from a SEM model, that is, certain equations among la-

tent variables are to hold, and these equations have error terms that fulfil

certain restrictions in terms of correlation. The covariance model θ 7→ Σ(θ)

for ξ is therefore motivated independently of the distributional class of ξ.

Now, in many psychometric settings a central limit theorem argument can

be used to make an a priori assumption of normality of ξ plausible. In-

deed, let us suppose that ξ can be written as a sum of N random vectors

ξ
(1)
N , . . . , ξ

(N)
N . Under mild conditions, the simplest being that ξ

(i)
N = εi/

√
N

where ε1, . . . , εN are IID random vectors, the multivariate distribution of ξ

is close to that of a multivariate normal when N → ∞ by a central limit

theorem. If this approximation is very good, then the normal theory ordinal

model in Definition 1 is appropriate. However, the quality of the approxima-

tion need not be very good for finite N , especially when the dimensionality d

is high, which is the case in many applications of ordinal covariance models:

Indeed, consider the ordinal confirmatory factor analysis model underlying

many standard measurement instruments in empirical psychology, contain-

ing hundreds of items. In these cases, the marginal distributions of ξ may

still be close to normal, since each marginal distribution is not affected by
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the relation between N and d, but the full distribution of ξ may be far from

normal. If the marginals are close to normal but the full distribution is not,

then the copula of ξ is not close to normal, and we have marginal normal-

ity but not joint normality. This may in certain cases make the marginal

normality of ξ plausible, while the full copula of ξ is not normal.

Appendix C. Proofs for Section 2

Proof of Lemma 1. Self-discretize X, i.e., let ξ̃ = X and apply the trans-

formation in eq. (1). The thresholds can be chosen in such a way that the

discretization transformation is the identity transformation. The discretized

version of X is then equal to X, which clearly has the same distribution as

X, as required by discretize equivalence. �

We need the following preliminary lemma to prove Proposition 1.

Lemma 2. There exists a continuous random vector ξ̃ which is discretize

equivalent to ξ.

Proof. We here only give a compressed version of the argument. The online

supplementary material contains a detailed verification of technical details.

By Lemma 1, we may without loss of generality assume that ξ = X. Define

x0 = x1−1, and let Q = {x = ⊗dl=1(xjl , xjl+1] : jl ∈ {0, 1, . . . ,K−1} for l =

1, 2, . . . , d} contain the hyper-rectangles contained between the points of the

support SdX of X. Let Q1, Q2, . . . , QN be the sets in Q, and note that they

are disjoint. We now define a density f̃ , which smears the probability that X

is in Qi uniformly over each Qi. I.e., we let f̃(x) =
∑N

i=1
P (X∈Qi)

Vi
I{x ∈ Qi},

where Vi =
∫
Rd I{x ∈ Qi} dx 6= 0 for i = 1, 2, . . . , N , and I{A} is the

indicator function of A, which is one if A is true and zero otherwise. Let

ξ̃ have f̃ as density. Then ξ̃ has the same probability as ξ (i.e., X) of

being within the thresholds defined by the limits of the rectangles in Qk for

k = 1, 2, . . . , N , completing the proof. �

Proof of Proposition 1. By Lemma 2, we may assume that ξ is a continu-

ous random vector. This implies that any marginal cumulative distribution

function Fi is continuous and increasing. Since it is illustrative, we here

give a proof that assumes that Fi is also strictly increasing. A proof of

this special case is also given in ? (see their eq. (12)), and our argument

follows closely Section 3 in ?. The general case, which appears to be new,

is proved in the online supplementary material. Since Fi(ξi) is uniform on
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[0, 1] we have that Φ−1(Fi(ξi)) is standard normal, where Φ−1 is the quan-

tile function of the standard normal distribution. Since both Fi and Φ−1

are strictly increasing, so is Φ−1 ◦ Fi. For each coordinate Xi of X, we

may therefore apply Φ−1 ◦ Fi to each part of the inequalities defining Xi,

and get Xi =
∑K

j=1 xjI{τi,j−1 < ξi ≤ τi,j} =
∑K

j=1 xjI{Φ−1(Fi(τi,j−1)) <
Φ−1(Fi(ξi)) ≤ Φ−1(Fi(τi,j))} =

∑K
j=1 xjI{τ̃i,j−1 < ξ̃i ≤ τ̃i,j} where τ̃i,j−1 =

Φ−1(Fi(τi,j−1)), ξ̃i = Φ−1(Fi(ξi)) and τ̃i,j = Φ−1(Fi(τi,j)). �
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