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Abstract

The asymptotically distribution-free (ADF) test statistic introduced in a landmark paper

by Browne (1984) depends on very mild distributional assumptions and is theoretically

superior to many other so-called robust tests available in structural equation modeling.

The ADF test, however, often leads to model overrejection even at modest sample sizes. To

overcome its poor small-sample performance, Chun, Browne, and Shapiro (2018) recently

proposed a family of robust test statistics obtained by modifying the ADF statistic. This

study investigates by simulation the performance of the new modified test statistics. The

results revealed that although a few of the test statistics adequately controlled Type I error

rates in each of the examined conditions, most performed quite poorly. This result

underscores the importance of choosing a modified test statistic that performs well for

specific examined conditions. A parametric bootstrap method is proposed for identifying

such a best-performing modified test statistic. Through further simulation it is shown that

the proposed bootstrap approach performs well.
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Examining the Performance of the Modified ADF Goodness-of-Fit Test Statistic in

Structural Equation Models

Introduction

Structural equation modeling (SEM) has for decades maintained an unprecedented

level of popularity in social and behavioral science research. One reason for its pervasive

use is that it offers researchers an opportunity to conduct detailed investigations of

theoretical models. For example, in a theoretical model with observed and latent variables,

specific relationships among the observed and the latent variables can be explicitly

formulated and tested. With the help of popular software such as EQS (Bentler, 2008),

Mplus (Muthén & Muthén, 2012), LISREL (Jöreskog & Sörbom, 2015) and lavaan

(Rosseel, 2012), parameters in these models can then be readily estimated and assessed.

Thus for any given model, a parameter vector θ, containing all the unknown parameters in

the proposed model to be estimated can be stipulated, with the estimation based on a

sample covariance matrix S assumed to converge to the population covariance matrix for

large samples. To obtain the actual model parameter estimates, a fit function is then

minimized, whereas to assess the appropriateness of a model the discrepancy between the

model-implied and the sample covariance matrices is investigated.

As long as the sampled empirical data come from a population that has a

multivariate normal distribution, model parameters and fit statistics may be efficiently

estimated by a normal-theory based maximum likelihood (ML) procedure. The resulting

test statistic, here denoted TML, equals the sample size times the minimum value of the

discrepancy function (commonly denoted as FML(θ)), and will in the multivariate normal

case approximate a central chi-square distribution as long as the model holds in the

population. In practice, however, the assumption of multivariate normality seldom holds

and this has led to the development of several robust statistics based on fourth-order

sample moments. For example, Satorra and Bentler (1994) introduced two such robust fit

statistics by modifying TML. Other robust approximations (e.g., Foldnes & Grønneberg,
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2018; Wu & Lin, 2016) have also been presented in the literature. In addition, computer

intensive methods have been proposed. For example, the approach proposed by Bollen and

Stine (1992) utilizes a non-parametric bootstrap, whereas the approach introduced by

Grønneberg and Foldnes (2018) combines the bootstrap and robust approximations.

Despite the availability of these various approaches and the plethora of Monte Carlo

studies examining their performance, no clear test statistic candidate among the

bootstrap-based and the approximation-based methods has yet emerged as the best choice

across model, sample size, and distributional conditions.

Preceding the above mentioned robust approximations and computer intensive

methods, Browne (1984) proposed in a landmark paper the asymptotic distribution-free

(ADF) statistic as a seemingly natural choice for situations with violations of the normality

assumption. A key feature of this statistic, denoted as TADF, is that it is not based on

approximating the distribution of TML, nor does it rely on the bootstrap. Instead, it is

based on estimating the fourth-order moments of the underlying distribution and, as such,

yields a test statistic which is asymptotically chi-square distributed under very general

non-normal conditions. So the ADF statistic is theoretically superior to many of the above

mentioned robust approximations later developed (for a more detailed overview concerning

the widespread impact of the ADF test, see Cai (2012)).

Unfortunately, in practice TADF may not be a good choice for evaluating models when

the observed sample is only moderately sized. To date, numerous simulation studies (e.g.,

Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992) have demonstrated that unless

the sample size is very large, TADF may even severely overreject correctly specified models.

Indeed, in situations involving moderately sized sample, the above-mentioned bootstrap-

and approximation-based test statistics will generally outperform TADF (e.g., Fouladi, 2000;

Nevitt & Hancock, 2001).

As a remedy to the well-known poor small-sample performance of ADF, Chun et al.

(2018) recently proposed some modifications to the original TADF test statistic.
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Undoubtedly the potential significance of this recent contribution is immense, especially

given the current lack of a convincingly best test statistic that can be used with typical

sample sizes. As indicated by Chun et al. (2018), the proposed modification yields d− 1

new modified test statistics, where d is the model degrees of freedom. That is, for each

integer m = 1, 2, . . . , d− 1, there is a corresponding modified test statistic, denoted by

TM(m). As is the case with TADF, under quite general conditions each TM(m) is

asymptotically distribution-free in the sense that it converges in distribution to a

chi-square distribution with m degrees of freedom.

In order to effectively utilize this newly proposed modified test statistic, a natural

uncertainty for any applied researcher would be: Given a posited model and a set sample

size, how should the number m of modified degrees of freedom be determined? Although

Chun et al. (2018) did sketch a heuristic for determining m, they did not report details on

the performance of the recommended heuristic. Instead, they evaluated the performance of

the modified test statistic at fixed values of m. Across three models, Chun et al. (2018)

tabulated the performance of TM(m) only for limited ranges of m. For instance, Model 3

had d = 189 degrees of freedom, and hence m may range from m = 1 to m = 188.

However, the authors present results only for m = 77, . . . , 85 (Chun et al., 2018, Table 7).

In fact, to the best of our knowledge, no study has thus far systematically

investigated how the small-sample performance of TM(m) is affected by m. Additionally, no

study has to date evaluated whether the proposed heuristic for determining m will in effect

result in an acceptable procedure for testing model fit.

The purpose of this study is twofold: (i) to investigate how the choice of m actually

affects the performance of TM(m) under realistic sample size conditions, and (ii) to

investigate how to expressly choose the value of m. To accomplish these goals, we

empirically evaluate how the heuristic proposed by Chun et al. (2018) performs and

subsequently propose and evaluate a new bootstrap-based approach for determining m.

The remainder of this article is organized as follows. We first review and illustrate
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the modified ADF test statistic. We then discuss heuristics for determining m, and present

a new bootstrap-based method that can be applied for this task. Next we present three

informative simulation studies. The first study evaluates the performance of TM(m) as m

varies. The second study evaluates the performance of several simple heuristics for

determining m. The third simulation study evaluates the bootstrap approach for

determining m. Finally, we present a general discussion, highlight limitations and

remaining challenges, and end with some closing remarks.

The modified ADF test statistic

Let X be a random p-dimensional vector, with finite fourth order moments, and with

population covariance matrix Σ. Let S be an unbiased estimator of Σ obtained from a

sample of n independent observations. We denote the vector of all non-duplicated elements

of S by s = vech(S), which is a p∗× 1 vector, where p∗ = 1
2p(p+ 1). Similarly we define the

population counterpart as σ = vech(Σ). Let all the independent parameters in the model

be contained in the q vector θ and let Σ(θ) denote the model implied covariance matrix.

We assume that σ(θ) = vech(Σ(θ)) is differentiable and we denote its p∗ × q Jacobian

matrix by ∆(θ) = ∂σ(θ)
∂θ

. We declare that the model holds if there exists a parameter vector

θ0 so that Σ(θ0) = Σ. Asymptotically,
√
n(s− σ) follows a multivariate normal distribution

with zero mean vector and a covariance matrix Γ. By imposing mild assumptions on the

employed estimator and the rank of ∆ and Γ, Browne (1984) showed that the test statistic

in Equation 1 will asymptotically follow a chi-square distribution with p∗ − q degrees of

freedom:

TADF = n(s− σ̂)′[ Γ̂−1 − Γ̂−1∆̂(∆̂′Γ̂−1∆̂)−1∆̂′Γ̂−1](s− σ̂), (1)

where Γ̂ denotes a consistent estimate of Γ.

Despite the theoretical appeal of this general result, it is well known that the ADF

test statistic in most cases has too slow of a convergence toward the chi-square distribution

to be useful for making inferences that are based on small samples (e.g., Curran et al.,
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1996). The verified slow convergence rate has been attributed to the instability of

estimating the fourth-order elements in Γ with small to moderate sample sizes. Related to

this issue is also the tendency for Γ to be ill-conditioned (i.e., that the inverse of Γ̂ in

eq. (1) has high variability (Chun et al., 2018; Huang & Bentler, 2015). One measure of

ill-conditioning is the condition number cond(Γ) = δmax/δmin, where δmax and δmin are the

largest and smallest eigenvalues of Γ. Huang and Bentler (2015) postulated that this

ill-conditioning aspect is the main reason behind the poor small-sample performance of the

TADF.

To remedy the effect of ill-conditioning in Γ, Chun et al. (2018) proposed to

transform Γ into a reduced dimensional matrix. This is achieved by replacing Γ̂ by Υ′Γ̂Υ in

eq. (1), where Υ is a p∗ × r matrix with q < r < p∗ such that Υ′Γ̂Υ is non-singular. The

modified ADF statistic now results from also substituting ∆̂ by Υ′∆̂ and (s− σ̂) by

Υ′(s− σ̂), which gives

TM(m) = n(s− σ̂)′Υ
[
(Υ′Γ̂Υ)−1

− (Υ′Γ̂Υ)−1Υ′∆̂
(
∆̂′Υ(Υ′Γ̂Υ)−1Υ′∆̂

)−1
∆̂′Υ(Υ′Γ̂Υ)−1

]
Υ′(s− σ̂) (2)

Given thatΥ′ΓΥ is non-singular, TM(m) converges in distribution to a chi-square

statistic with m := r − q degrees of freedom, where r = rank(Υ′ΓΥ) (Chun et al., 2018,

Theorem 1). Note that in the present study we limit the discussion to a specific choice of

Υ, namely the matrix whose jth column is the eigenvector of Γ̂ that corresponds to the jth

largest eigenvalue of Γ̂ (Chun et al., 2018, p.55). Although it is possible that other choices

of Υ may lead to different results than those reported in the present study, this topic is

beyond the scope of the present article. Future studies may wish to examine whether this

choice has any notable ramifications.
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Illustration

We illustrate results obtained with the modified ADF test statistic using the political

democracy model discussed in Bollen (1989), see Figure 1, where residual errors are not

depicted for ease of presentation. As can be seen by examining the model, there are four

indicators of political democracy measured twice (in 1960 and 1965), and three indicators

of industrialization measured once (in 1960). The model has q = 31 free parameters, and

d = 35 degrees of freedom. The sample consists of n = 75 countries. The model was

estimated in lavaan (Rosseel, 2012) using normal-theory maximum likelihood estimation.

There are 34 possible values for r, namely the integers ranging from 32 to 65. We

calculated TM(m) for each corresponding degrees of freedom value m, running from 1 to 34.

The p-values associated with TM(m), m = 1, . . . , 34 were then computed and are plotted in

Figure 2.

The most striking aspect of the results displayed in Figure 2 is the clear division of

the modified test statistic p-values into two distinct clusters. Accordingly, all test statistics

with a modified degrees of freedom m < 14 indicate a well-fitting model, whereas all test

statistics with m ≥ 14 indicate poor model fit. This clearly illustrates that the choice of

the modified degrees of freedom m is indeed a crucial element in the proposed modified

ADF procedure. In the present illustration there undeniably is a marked transition from

m = 13 to m = 14, corresponding to the transition from r = 44 to r = 45. Having observed

this result, it is then only natural to inquire whether this might somehow be reflected in

the eigenvalues of Γ̂. Examining these eigenvalues we detected no discernible shift between

the 44th and 45th largest eigenvalues of Γ̂. The condition number of Γ̂ is large:

cond(Γ̂) ' 1.92 · 106.

Methods for determining m

In order for TM(m) to improve the performance of TADF in small sample settings, Υ

should be chosen so that instability in the estimation of Γ is reduced. To do so then
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requires that the recommendations of Chun et al. (2018) be followed to implement the

modified statistic with the columns of Υ consisting of those eigenvectors of Γ̂ that

correspond to the m+ q largest eigenvalues of Γ̂.

This of course now raises the issue of how to choose m. Chun et al. (2018) proposed a

simple way to determine m: Given a proportion 0 < β < 1, let k be the number of

eigenvalues of Γ̂ that are less than βδmax, where δmax is the maximum eigenvalue of Γ̂.

Then m is determined as m = max(d− k, 1), and Υ will consist of the m+ q eigenvectors

of Γ that correspond to the largest eigenvalues. Chun et al. (2018) proposed that β be in

the range 0.0005− 0.012, but did not provide a statistical justification for recommending

this range. Even within this range different β will generally determine different values of

m. For instance, for the illustrative example in the preceding section δmax = 1836.4, and 23

and 49 of the eigenvalues of Γ̂ are smaller than 0.0005 · δmax and 0.012 · δmax, respectively.

So using the lower bound of β = 0.0005 yields m = max(35− 23, 1) = 12, while the upper

bound of β = 0.012 yields m = max(35− 49, 1) = 1. This means that TM(1), . . . , TM(12)

are all admissible test statistics according to the heuristic range. Chun et al. (2018) do not

provide recommendations on how to choose among the values of m prescribed by their

heuristic. We will refer to these methods as eigenvalue heuristics, although how to choose

the specific proportion level β for these heuristics is yet undetermined. The best choice of

β may depend on both the sample and model characteristics.

We next propose a new method for determining m, based on the bootstrap selection

in Grønneberg and Foldnes (2018). The method simulates B bootstrap samples from a

multivariate normal distribution where the model fits perfectly, and calculates TM(m) for

m = 1, . . . d− 1 in each bootstrap sample. Then m is determined by inspecting how close

the rejection rate of TM(m) approaches the 0.05 nominal level of significance. As outlined

in Algorithm 1, this is done by minimizing the absolute value of the difference between the

observed bootstrap rejection rates and 0.05.
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Algorithm 1 Bootstrap selection of m
1: procedure Select(sample, model, B)

2: Calculate the model-implied covariance matrix Σ̂

3: for k ← 1, . . . , B do

4: boot.sample ← A random sample drawn from N(0, Σ̂)

5: for m ∈ 1, . . . , d− 1 do

6: Calculate TM(m) from fitting the model to boot.sample

7: Rejection(m, k)← 1 if TM(m) leads rejection of the model, 0 otherwise

8: end for

9: end for

10: for m ∈ 1, . . . , d− 1 do

11: RejectionRate(m)←
∑B

k=1 Rejection(m,k)
B

12: end for

13: return arg min1≤m≤d−1|RejectionRate(m)− 0.05|

14: end procedure



MODIFIED ADF TEST STATISTIC 11

Method

This section provides a detailed description of the proposed models examined in this

simulation study, the analyzed sample sizes, and the distributional characteristics evaluated

in the simulations in terms of data generation and program implementation. The selected

conditions examined in this study were based on a detailed review of the literature on past

simulation studies. Accordingly, a number of study features were selected to be fixed across

conditions while others were varied. Features fixed in the simulations included the models

examined, while those that were varied included the sample size and the underlying

distributions.

Models

The simulation studies employed the same two confirmatory factor analytic models.

We denote byM1 as a 3-factor model x = Λξ + δ where each factor ξ1, ξ2 and ξ3 has five

indicators, resulting in d = 87 degrees of freedom. Data generation forM1 was done using
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the following factor loadings and covariance matrix Φ of ξ:

Λ =



1.00

0.80

0.80

0.80

0.80

1.00

0.50

0.50

0.50

0.50

1.00

0.30

0.30

0.30

0.30



, Φ =


1

0.50 1

0.50 0.50 1

 ,
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while the residuals δ have unit variances. The second model, denoted byM2, is a

five-factor model with 265 degrees of freedom, where each factor has five indicator variables:

Λ =



1.00

0.80

0.80

0.80

0.80

1.00

0.50

0.50

0.50

0.50

1.00

0.30

0.30

0.30

0.30

1.00

0.30

0.30

0.30

0.30

1.00

0.30

0.30

0.30

0.30



, Φ =



1

0.50 1

0.50 0.50 1

0.10 0.10 0.10 1

0.10 0.10 0.10 .50 1


,
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and the residuals have unit variance.

Sample sizes

Three different sample sizes were selected to reflect small, medium, and large sample

sizes. The selected sample sizes forM1 were n = 150, n = 300 and n = 1000, while for the

larger modelM2 samples of size n = 350, n = 700 and n = 1500 were used.

Distributions

Data from two distributional conditions were employed in this simulation study,

normal and non-normal data. Given that the ADF approach is theoretically and

empirically less sensitive to the underlying distribution than other robust statistics

(Hoogland & Boomsma, 1998, p. 263), only two distributions were considered in this study.

Non-normal data were generated by the Vale-Maurelli (VM) transform (Vale & Maurelli,

1983), so that each marginal distribution had skewness 2 and excess kurtosis 10. To

investigate the claim (Chun et al., 2018; Huang & Bentler, 2015) that the condition

number of Γ affects the finite-sample performance of TADF, we calculated Γ under both

multivariate normal and non-normal distributions (Foldnes & Grønneberg, 2017). For

modelM1 the condition number under normal and VM distributions were 38.3 and 111.9,

respectively. For modelM2 the condition numbers were 39.0 and 120.8, for the

multivariate normal and VM distribution, respectively. Hence, if the condition number in

fact predicts performance, then we would expect the performance of TADF to be markedly

worse in the VM distributional condition compared to the multivariate normal condition.

Another way to compare the two distributions is to calculate the asymptotic standard

errors of the model estimates. ModelM1 andM2 have 18 and 30 free parameters,

respectively. We entered the calculated Γ into a sandwich-type formula (Browne, 1984, eq.

(2.12a)) and obtained the asymptotic covariance matrix of
√
nθ̂. For simplicity, we only

consider the diagonal of this matrix, that is, we focus on the variances of the 18 estimates

forM1 and the 30 estimates forM2, see Figure 3. It is evident that the parameter
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estimates vary much more under the VM distribution than under the normal distribution,

as many points lie far above the x = y line. This reflects the larger variability of Γ̂ under

the VM distribution compared to the multivariate normal distribution.

Data generation

All data generation was conducted in the R computing environment. Model

estimation using normal-theory based maximum likelihood was computed using the

package lavaan (Rosseel, 2012). Finally, the modified ADF statistics were computed using

auxiliary functions from lavaan, see the Appendix for R code. Interested readers can access

this material in order to inspect, run, and modify our code. Because simulation study 3

was much more computationally intensive than study 1 and 2 (as for each simulated

dataset in each condition a bootstrap procedure needed to be employed), the simulations

were all performed on the Abel computer cluster, owned by the University of Oslo and

Uninett/Sigma2.

The three studies

All three studies assumed a correctly specified model. Given the sparse literature on

modified ADF statistics, the present article is restricted to the primary concern of

adequate Type I error control. The outcome variable in all three studies was the rejection

rate of the test statistic calculated at the conventional α = 0.05 level.

The first study investigated the empirical Type I error control of TM(m) across the

range of m = 1, 2, . . . , d− 1, as well as of TADF. In each condition, 2000 samples were

generated and the empirical rejection rates was calculated as the proportion of TM(m)

values that exceeded the 0.95 quantile of the chi-square distribution with m degrees of

freedom.

The second study investigated the performance of the eigenvalue heuristic for

determining the modified degrees of freedom number m. It operates by determining r as

the number of eigenvalues of Γ̂ that is larger than some given proportion β of the maximum
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eigenvalue δmax. This heuristic was proposed, but not evaluated, by Chun et al. (2018),

who suggested that β take some value between 0.0005 and 0.012. Accordingly, in the

present study we included β = 0.0005, 0.001, 0.005, 0.012. In the case that r < q, we set r

equal to q + 1, so that TM(1) is picked for model evaluation. Given the insensitivity of the

modified test statistic to underlying distribution (as will be demonstrated in the reported

findings from study 1), we limited ourselves to the non-normal data condition for study 2.

The third study evaluated the performance of the proposed bootstrap approach for

determining m. For each original simulated sample, we simulated B = 1000 bootstrap

samples based on the model-implied covariance matrix. In each bootstrap sample we

calculated TM(m) for m = 1, . . . , d− 1. Finally, m was determined so that the rejection

rate was closest to 0.05. The p-value was then calculated with respect to TM(m) based on

the original simulated sample. This was replicated 1000 times to yield the rejection rate

associated with the bootstrap procedure. See Algorithm 1 for further details.

Results

Study 1

The rejection rates of TM(m) for m = 1, 2, . . . , 86 for the examined modelM1 are

plotted in Figure 4. The rejection rate of TADF for m = 87 is also plotted in the same

figure. We observe that the rejection rate of TADF expectedly approaches the nominal 0.05

as sample size increases, although very slowly. To supplement Figures 4 and 5 we give in

Table 1 for each condition the value of m whose associated rejection rate comes the closest

to the nominal 5% level. Also listed are the range of m whose associated rejection rates are

larger than 0.025 and smaller than 0.075, which we deem acceptable (Bradley, 1978).

These results demonstrate that m is much more affected by sample size than by the

underlying distribution of the data. Rejection rates increase almost monotonically with

increasing degrees of freedom. Values of m below 50 lead to exceptionally poor Type I

error control for all distributions and sample sizes. For the largest values of m, TM(m)
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performs somewhat similarly to TADF in the sense that it severely overrejects the correctly

specifiedM1. Indeed, the "window" of acceptable m values in Table 1 are quite narrow in

each condition in that there are only a few m values in each condition that yield adequate

Type I error control.

Figure 5 presents plots of the empirical rejection rates for modelM2, for TM(m) for

m = 1, 2, . . . , 264, as well as for TADF at m = 265. We observe a similar pattern of results

with modelM2. Specifically, increasing rejection rates with m and a narrow interval of m

values where TM(m) adequately controls Type I error rates. The optimal values of m are

found in Table 1. As can be seen from these findings, it is again evident that sample size

has a strong effect on the optimal m value, while the underlying distribution has a much

smaller impact on the optimal m value. The window of acceptable m values is quite narrow

also forM2. For instance, under normality at n = 700 there are only seven acceptable

values across the whole range of possible m values (m = 1 to m = 264). It is also

important to note that in both examined models and at all sample sizes, TADF is found to

be unaffected by the underlying distribution.

Study 2

Figure 6 displays the rejection rates of the eigenvalue heuristics for modelM1 across

three sample sizes, in the upper three panels. In the lower three panels is seen the

eigenvalue heuristic rejection rates for modelM2 across three sample sizes. It appears that

the appropriate 5% rejection rate is attained within the range proposed by Chun et al.

(2018). However, none of the four values within this range evaluated in this study come

close to attaining adequate Type I error control. The rejection rates are zero for β = 0.005

and β = 0.012, while for β = 0.0005 and β = 0.001 the rejection rates are generally too

high. The optimal value for β for the conditions in Study 2 seems to lie between 0.001 and

0.005, but currently no method exists for determining this optimal value. We remark that

the results are in accordance with the results from Study 1, where it was found that high
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values of m were associated with high rejection rates, while low values of m corresponded

to close-to-zero rejection rates. The lower β is, the larger value of m will be chosen by the

heuristic, and consequently the larger the rejection rate will be. Similarly, increasing β

entails that the m chosen by the heuristic decreases, resulting in lower rejection rates.

Study 3

Table 2 presents the rejection rates obtained by using the parametric bootstrap

approach to determine m. Examining Table 2, it is evident that the rejection rates are

unsurprisingly better with an underlying normal distribution compared to a non-normal

distribution. These results were expected since the multivariate normal distribution was

used to generate the bootstrap samples in Algorithm 1. Nevertheless, it is also apparent

that even under non-normality the bootstrap demonstrates acceptable Type I error control,

except at the smallest sample sizes under the large model, where the bootstrap tends to

overreject. However the bootstrap rejection rates (11.1% and 8.2%) in these conditions are

much closer to the nominal level than any of the eigenvalue heuristic rejection rates

depicted in the two leftmost panels in the lower row of Figure 6.

Without a doubt, the bootstrap clearly outperforms the four eigenvalue heuristics

investigated in study 2. If we deem a rejection rate acceptable if it falls in the 0.025− 0.075

interval, the bootstrap is acceptable in 10 of the 12 conditions in Table 2. Compare this to

the four eigenvalue heuristics, whose rejection rates under non-normality are depicted in

Figure 6. Three of the four heuristics have unacceptable rejection rates in every condition,

while one heuristic has unacceptable rejection rates in five of six conditions.

The last column contains the mean value of m across the 1000 replications used for

study 3. Using the optimal m values from Table 1 as benchmarks, for both models and all

sample sizes the bootstrap moderately overestimates m under normality and

underestimates m under non-normality.
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Discussion

The first simulation study systematically investigated the performance of each

modified test statistic across the full range of permissible modified degrees of freedom. This

differs from Chun et al. (2018), which reported results for only a limited range of m.

The second simulation study evaluated the performance of eigenvalue heuristics

proposed by Chun et al. (2018) for the determination of m, and the third study evaluated a

new bootstrap based procedure for determining m.

The findings from study 1 showed that the finite-sample performance of the modified

test statistics was highly dependent on m, the number of modified degrees of freedom. For

both models, all sample sizes and distributional conditions, the same pattern of results was

observed: For low values of m the modified test statistics exhibited poor performance,

almost always failing to reject the model. Then, as m increased, there came a small

interval of m values where the modified test statistics exhibit acceptable Type I error

control, rejecting the model in about 5% of the simulated samples. Then, as m increased

beyond this narrow interval, the modified test statistics resembled the original ADF test in

severely overrejecting the model. We remark that this observed pattern of rejection rates

increasing monotonously with increased modified degrees of freedom was not observed in

the simulations reported by (Chun et al., 2018, Table 3), where the rejection rates dropped

from above 5% to below 5%, before increasing again to above 5%, with increasing m. In

accordance with the findings of Chun et al. (2018), results from study 1 revealed that only

a small number of the modified test statistics were able to control Type I error much better

than the original ADF test. Also, the m associated with the optimal modified test statistic

was shown to depend upon sample size. However, although the condition number of Γ was

much larger under the non-normal distribution than under multivariate normality, the

optimal m value did not change much between the two distributional conditions.

Additionally, the asymptotic variances of the estimated parameters were larger under

non-normality, compared to normality. Therefore, it was surprising that the effect of
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non-normality on ADF and the modified test statistics was only modest. These findings do

not support the acknowledged claim (Chun et al., 2018; Huang & Bentler, 2015) that the

condition number of Γ might explain the poor performance of the ADF test. We found that

ADF performed just as poorly under multivariate normality as it did under the non-normal

distribution, despite a much larger condition number of Γ under the latter distribution.

Study 1 revealed that the values of m that are associated with acceptable performance

of the modified test statistics were few. It was also determined that the optimal degrees of

freedom m varied with sample size. The larger the sample size, the larger the value of m

that is needed to achieve adequate Type I error control. These results clearly indicated the

vital importance of investigating whether there are methods that may reliably identify the

correct value of m, which in turn would result in acceptable Type I error control.

Study 2 was purposely designed to evaluate methods based on eigenvalues of Γ̂, as

proposed by Chun et al. (2018). However, none of these eigenvalue heuristics performed

satisfactorily. The performance of the eigenvalue heuristic was very sensitive to the chosen

cut-off value β. For instance, in most conditions, setting β = 0.001 in the heuristic

produced far too high rejection rates, while setting β = 0.005 resulted in far too low

rejection rates (see Figure 6). It therefore seems difficult to find a method that estimates β

from the specific data and model at hand so that adequate type I error control are

maintained. This might be seen in relation to the above-mentioned lack of association

between the condition number of Γ and the performance of the modified test statistics. We

could find no support for an association between the eigenvalues of Γ or Γ̂ and the

performance of modified test statistics.

In the third study, we evaluated a parametric bootstrap procedure to determine m,

which was found to outperform the eigenvalue heuristics. In most conditions the bootstrap

was able to determine a m value close to the optimal value, and thus resulted in acceptable

Type I error control. Only in the large model, for the smallest sample sizes and under

non-normality conditions did the rejection rates wander too far from the 5% level to be
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deemed adequate. A weakness of the proposed parametric bootstrap is that the bootstrap

samples are generated based on multivariate normality. This is in contrast to the

conditions that the original ADF test was designed to handle, namely moderate to severe

non-normality. However, as observed in study 1, the performance of ADF is not very

sensitive to the underlying distribution. This may help explain why the parametric

bootstrap might offer acceptable performance even under non-normality. While preparing

to conduct this study we also experimented with the non-parametric bootstrap for

determining m, but we found that it consistently underestimated m, resulting in too low

rejection rates. For this reason, we abandoned any further work on its application. Of

course, an added limitation with the bootstrap procedure, common to all such procedures,

is the amount of time needed to identify m. In each bootstrap sample, many modified test

statistics must be computed, so that the bootstrap procedure needs several minutes in total

running time. However, the bootstrap may be implemented with parallel computing on a

modern multiple-core computer, thereby reducing considerably the required running time.

As with any simulation study, obtained results are strictly speaking only valid for the

conditions investigated and one must be cautious in overgeneralizing these findings. In this

study, only two factor models and two distributional conditions were examined. Although

we found that the modified test statistics depended little on the underlying distribution, it

is possible that more extreme conditions of non-normality than those considered in this

study and extra complex models may influence the performance of the modified test

statistics in a more pronounced manner.

Conclusion

We have investigated by Monte Carlo simulation the performance of newly proposed

test statistics based on modifying the ADF test of Browne (1984). These tests exhibited

rather large variability in performance, as a function of the degrees of freedom chosen.

Only a small range of degrees of freedom resulted in acceptable performance for the
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modified test statistics. This range was found to depend on sample size, and to a lesser

extent on underlying normality. Earlier proposed heuristics for determining the degrees of

freedom were also found to perform poorly. In contrast, the proposed bootstrap procedure

was better able to determine the optimal value for the degrees of freedom to use in the

modified test statistic, except under conditions of small sample size and non-normal data.
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Model Distribution Sample size Optimal m Acceptable m

M1

Normal

150 52 50-53

300 66 64-68

1000 80 76-81

Non-normal

150 56 54-58

300 69 66-70

1000 80 77-82

M2

Normal

350 153 150-156

700 190 185-193

1500 221 214-224

Non-normal

350 163 158-165

700 196 190-199

1500 222 214-227
Table 1

Study 1: Optimal value of m in terms of Type I error control, together with range of m

whose rejection rates are in (0.025, 0.075).
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Model Distribution Sample size Rejection rate Mean of m

M1

Normal

150 0.052 55.7

300 0.041 67.8

1000 0.057 79.9

Non-normal

150 0.033 54.2

300 0.033 66.5

1000 0.049 79.2

M2

Normal

350 0.038 161.6

700 0.049 195.5

1500 0.053 222.6

Non-normal

350 0.111 159.5

700 0.082 193.5

1500 0.049 220.9
Table 2

Study 3: Rejection rates obtained when determining m by the bootstrap procedure in

Algorithm 1.
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Figure 1 . Bollen’s political democracy model. dem60: Democracy in 1960. dem65:

Democracy in 1965. ind60: Industrialisation in 1960.
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included.



MODIFIED ADF TEST STATISTIC 31

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●
●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●

●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●

●
●
●
●

●

Non−normal

150

Non−normal

300

Non−normal

1000

Normal

150

Normal

300

Normal

1000

1 25 50 75 87 1 25 50 75 87 1 25 50 75 87

0.00
0.05

0.50

1.00

0.00
0.05

0.50

1.00

m

R
ej

ec
tio

n 
ra

te

Figure 4 . Study 1: ModelM1, rejection rates for TM(m), m = 1, . . . , 86. At m = 87 the

rejection rate of TADF is also plotted. Each panel shows a combination of distribution and

sample size, with a horizontal line at α = 0.05.
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Figure 5 . Study 1: ModelM2, rejection rates for TM(m), m = 1, . . . , 264. At m = 265 the

rejection rate of TADF is also plotted. Each panel shows a combination of distribution and

sample size, with a horizontal line at α = 0.05.
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Figure 6 . Study 2: Type I error rates for eigenvalue heuristic, applied to modelsM1

(upper panel) andM2 (lower panel). The horizontal line refers to the nominal α = 0.05

Type I error rate.
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Appendix

R code for Illustration

library(lavaan)

bollen.model <-

"# measurement model

ind60 =~ x1 + x2 + x3

dem60 =~ y1 + y2 + y3 + y4

dem65 =~ y5 + y6 + y7 + y8

# regressions

dem60 ~ start(0.8)*ind60

dem65 ~ start(0.2)*ind60 + start(0.5)*dem60

# residual correlations

y1 ~~ start(0.2)*y5

y2 ~~ start(0.2)*y4 + start(0.2)*y6

y3 ~~ start(0.2)*y7

y4 ~~ start(0.2)*y8

y6 ~~ start(0.2)*y8"

fit= sem(bollen.model, data=PoliticalDemocracy)

Gamma <- lavTech(fit, "gamma")[[1]]

Delta <- lavaan:::computeDelta(lavmodel = fit@Model)[[1]]

resid= matrix(lav_matrix_vech(residuals(fit)$cov), ncol=1)

eigenvectors = eigen(Gamma)$vectors

mod.df = 10 # for example

r = ncol(Delta)+mod.df

ypsilon <- eigenvectors[, 1:r]
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A = t(ypsilon)%*%Gamma%*%ypsilon

A=solve(A)

B=solve(t(Delta)%*%ypsilon%*%A%*%t(ypsilon)%*%Delta)

res=ypsilon %*% (A-A%*%t(ypsilon)%*%Delta%*%B%*%t(Delta)%*%ypsilon%*%A)%*% t(ypsilon)

n=nrow(PoliticalDemocracy)

chisquare = n * t(resid)%*%res%*%resid

pval = 1 - pchisq(chisquare, df = mod.df)


