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Abstract

We study dividend payouts when banks face coordination-based rollover crises. Banks

in the model can use dividends to both risk shift and signal their available liquidity to

short-term lenders, thus, influencing the lenders’ actions. In the unique equilibrium both

channels induce banks to pay higher dividends than in the absence of a rollover crisis.

In our model banks exert an informational externality on other banks via the inferences

and actions of lenders. Optimal dividend regulation that corrects this externality and

promote financial stability includes a binding cap on dividends. We also discuss testable

implications of our theory. (JEL G01, G21, G35)

The dividend policies of banks received much attention in the wake of the 2007–2008 financial

crisis. The U.S. banking sector maintained large dividend payouts throughout 2007 and 2008, even

as losses were increasing rapidly (Acharya et al., 2009), so that aggregate dividends paid by U.S.

banks in 2008 exceeded their aggregate earnings by about 30% (Floyd et al., 2015). One explanation

for banks’ dividend policies during the early stages of the financial crisis is that they reflected a

form of moral hazard. Scharfstein and Stein (2008) argue that banks engaged in “risk shifting” and
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that their dividend policies were “... an attempt by shareholders to beat creditors out the door.”

Another explanation focuses on a signaling role of dividends in response to rollover risk. Acharya

et al. (2011) suggest that U.S. banks were worried that cutting dividends could induce a run by

their short-term creditors.

At first glance these two views seem incompatible. After all, if high dividend payouts are

associated with bank insiders “beating creditors out the door,” then they are also bad news about

the bank’s ability to survive a run. Consequently, paying dividends in the middle of a rollover

crisis should exacerbate rather than soften a run by short-term creditors. Second, and related to

the first point, while the role of dividends as a (positive) signal of future profitability has been well

established (e.g., Bhattacharya 1979), the question of the role of dividends as a signal of available

liquidity in the midst of a rollover crisis has received far less attention. This is worrying, because a

proper understanding of that role is central for the design of dividend regulation policies that can

improve financial stability.

In this paper, we examine theoretically the role of dividends when banks are subject to coordination-

based rollover crises or runs. We show that higher dividends can (in equilibrium) be interpreted as

good news about available liquidity even if banks can (and in some cases do) use them to engage in

risk shifting. Moreover, the interaction between signaling and coordination reverses the signaling

incentives relative to the established view of dividend signaling: the lower -quality types overpay

dividends in an attempt to mimic higher-quality types, rather than higher-quality types overpaying

dividends in order to separate from lower types. Finally, when dividends signal available liquidity,

banks’ dividend choices fail to internalize an informational externality that operates through the

inferences and actions of lenders. In that case a cap on dividends that forces surviving banks to

pool on a common dividend level improves financial stability.

We consider a bank that is financed by a continuum of short-term lenders that face a coor-

dination problem when rolling over maturing debt.1 If a sufficient share of lenders refuse to roll

over (run, for short), then the bank does not have enough liquidity to repay all lenders and is

forced to fail. In that case, an individual lender is better off running than rolling over. At an

initial stage, prior to the rollover episode, the bank (owner) chooses a dividend payout. It derives a

1Even though we motivate and frame our analysis in the context of banking and dividend payouts, the implications
are applicable more generally to any firm subject to rollover risk and that can take an action that has a direct negative
effect on its liquidity position but also conveys information to lenders. See Section 6 for a further discussion.
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positive payoff from consuming the dividends but also incurs a reduction in the liquidity available

to meet the demands of running lenders and in the value of bank assets, given successful rollover.

Therefore, a bank that expects an unsuccessful rollover has an incentive to pay out all available

liquidity in dividends. Additionally, and consistent with the existing dividend signaling literature,

we assume that (conditional on surviving the rollover episode) the marginal cost of liquidity is lower

for higher-quality banks.

We introduce dividend signaling to this environment by assuming that the lenders observe

the bank’s dividends and make their rollover decisions based on the inferences they draw about

the bank’s type and its available liquidity. Therefore, the dividend choice of the bank acts as

an endogenous signal about the bank’s probability of surviving the run. To ensure equilibrium

uniqueness, we also assume that lenders observe the dividend with small idiosyncratic noise.2 With

rollover risk, the ability to pay dividends means that some banks that can survive the rollover

instead choose to “beat creditors out the door” by paying out all available liquidity as dividends.

We call this direct negative effect on survival the resilience effect of dividends. However, dividends

also convey information, so they indirectly affect the incentives of short-term lenders to roll over

their debt. We call this second indirect effect on survival the signaling effect.

Whether the signaling effect reinforces or counters the resilience effect depends on whether higher

dividends are good or bad news about the bank’s type and its available liquidity. Nevertheless,

how lenders interpret a higher dividend signal may be endogenous to the behavior of banks, thus,

giving rise to multiple equilibria (Angeletos et al., 2006). We show conditions under which higher

dividends are interpreted as good news and, moreover, no equilibria exist in which higher dividends

are interpreted as bad news. Our conditions are a simple strengthening of the assumptions on

the existence of dominance regions familiar from global games. Specifically, if a sufficiently large

share of low-quality banks always fail and pay no dividends, then it is possible for dividends to

signal good news about survival in equilibrium. Intuitively, even if some failing banks are paying

higher dividends than some surviving banks, if lenders’ priors are such that, “on average,” failing

banks are associated with limited liquidity and a low dividend payout, then higher dividends can

be interpreted as good news in equilibrium.

2If dividends are common knowledge, the economy trivially admits multiple equilibria. Introducing a small amount
of private noise in the observation of dividends removes the common knowledge aspect from the dividend signal. Such
private noise can be interpreted as the result of limited attention (Sims (2003); Myatt and Wallace (2012)).
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Under these conditions, if lenders observe dividend signals with sufficiently small noise, then the

signaling effect dominates the resilience effect and paying dividends can actually decrease the total

liquidity outflow that the bank experiences. Intuitively, the high signal precision means that the

dividend choice of the bank affects the inference and actions of many lenders, so that a reduction

in the liquidity outflow due to a lower dividend payout is dominated by the increase in the run size.

One implication of facing such a trade-off is that banks would never choose a dividend that leaves

them on the downward sloping part of the liquidity outflow schedule. Therefore, banks choose to

distort their dividends up to a level where the total liquidity outflow is again increasing in dividends.

At that level any additional benefits associated with dividend signaling are small and so a large

set of (surviving) banks choose similar dividend payouts. Therefore, the equilibrium outcome of a

strong signaling effect is a dividend policy that features both higher dividend payouts and a lower

sensitivity of dividends to the bank type compared to the dividend policy absent rollover.

Unlike dividend signaling about future profitability, in the case with dividend signaling about

available liquidity and rollover risk the banks that distort their dividends the most in equilibrium

are low type (surviving) banks rather than high types. The intuition for this reversal in signaling

incentives is simple: In the presence of a coordination-based rollover episode, the lower-quality

(surviving) banks, which are more exposed to the rollover, have stronger incentives to signal that

they have sufficient available liquidity. In contrast when signaling about future profitability, it is

higher types that have stronger incentives to distort their dividends up and separate from lower

types.

As lenders observe bank dividends with smaller and smaller noise, the strengthening of the

signaling effect relative to the resilience effect lowers the bank failure cutoff – the value of fun-

damentals at which a bank is indifferent between failing and surviving. We show this interesting

feature of the signaling effect in the limiting case in which the noise vanishes and lenders are almost

perfectly coordinated. In that case for a bank that is subject to a run, even a marginal increase in

dividends ends up inducing all lenders to choose to roll over.3

Despite this intriguing effect of dividend signaling on the failure cutoff, we show that from the

point of view of a regulator with preferences for minimizing the bank failure cutoff, the banks’

3Also, in the limit, incentives to compress dividend payouts are so strong for surviving banks around the failure
threshold so that, locally, banks pool their dividend payouts.
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equilibrium dividend payouts can be inefficiently high during a rollover episode. There are two

sources of inefficiencies: the risk shifting that banks may engage in, which mechanically raises the

failure cutoff, and an informational externality that banks fail to take into account when choosing

their dividends. We show that the optimal dividend policy in a rollover episode consists of a

common dividend payout for all surviving banks. This effective dividend cap pools all surviving

banks together, which decreases the dividend signal cutoff at which a lender is indifferent between

running and rolling over. At the same time more failing banks are forced to pay zero dividends

under the optimal dividend policy. Intuitively, the regulator wants failing and surviving banks to

pay sufficiently distinct dividends, so that, given the noise in lender observations, the lenders can

identify failing from surviving banks more easily. Therefore, with dividend signaling, a binding cap

on dividends is a more effective macroprudential tool compared to a complete dividend restriction

(Goodhart et al., 2010).

Finally, we discuss the empirical relevance of our theory. We test two salient implications of

the signaling effect, namely that it leads to a dividend policy that features both higher dividend

payouts and a lower sensitivity of dividends to fundamentals compared to the dividend policy

absent rollover. We also provide a test to identify the signaling effect from the resilience effect,

leveraging on the observation that for banks with relatively high fundamentals, higher exposure to

rollover risk moves dividends in opposite directions under the two effects. We document two novel

facts consistent with our model. Consistent with the first implication, we show that surviving banks

which were more reliant on short-term funding prior to the 2007-2008 financial crisis paid higher

dividends during the crisis. Also, consistent with the second implication, we show that, across

industries, dividend payouts are less variable in industries that are more reliant on short-term

funding.

1 Related Literature

Our paper is related to the growing literature on bank dividend payouts, particularly during a

financial crisis, and the optimal policy response to those (Acharya et al. (2016), Floyd et al. (2015),

Hirtle (2014), Cziraki et al. (2016)).Acharya et al. (2016) study a model of bank dividend payouts, in

which risk shifting by the bank equity holders due to a possible low future franchise value influences
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bank dividend payouts. When banks are linked through an inter-bank market, this risk shifting

interacts with an additional dividend externality that may trigger a systemic crisis. Our modeling

approach complements this important framework by studying the informational role of dividends

when banks are exposed to a coordination-based run. We argue that with dividend signaling there is

an additional informational externality that banks fail to internalize in addition to the risk-shifting

inefficiencies. However, rather than arising from direct spillovers via bank linkages, in our model,

the informational externality arises through the inference of lenders and their rollover decisions.

The informational role of dividends relates our model to the seminal paper on dividend signal-

ing about future profitability of Bhattacharya (1979) and a large subsequent literature (Miller and

Rock (1985), John and Williams (1985), Hausch and Seward (1993), Guttman et al. (2010), Baker

et al. (2016)). Bhattacharya (1979) argues that with asymmetric information about future prof-

itability, if the marginal cost of paying dividends is decreasing in the firm’s type (so there is single

crossing), then dividends can serve as a signal to outside investors that separates higher from lower

profitability firms. In contrast, we show that with coordination-based runs the signaling incentives

are completely reversed. Specifically, it is the lower-quality (surviving) banks that have the stronger

signaling incentives. Therefore, despite single crossing, the interaction of the coordination-based

run and signaling in our framework pushes the banks that signal through dividends toward pooling

rather than toward separation in equilibrium.

The reduced sensitivity of dividends to fundamentals that results from these dividend signaling

incentives relates the paper to the partial pooling result of Guttman et al. (2010). However,

there are several important differences. Conceptually, the reduced sensitivity of dividends in our

framework is the unique outcome of the signaling incentives imposed by the underlying coordination

game and is not driven by out-of-equilibrium beliefs. Consequently, our model makes new testable

predictions about when dividends should be expected to be less sensitive to fundamentals. Finally,

the informational externality that we uncover in our framework is a unique feature of the interaction

between dividend signaling and coordination.

Our paper is related to the large literature on global games of regime change (e.g., Carlsson

and van Damme (1993); Morris and Shin (1998)) and, particularly, to global game models of bank

runs (Goldstein and Pauzner (2005); Rochet and Vives (2004)) and rollover crises (Morris and
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Shin, 2004).4 We contribute to this important literature by analyzing how banks use their dividend

payouts to manage the rollover crisis. In addition, while most of these models assume an exogenous

information structure for lenders or an exogenous resilience level for banks, both the information

structure of lenders and the resilience level of banks are endogenous in our model. This endogenous

information structure relates our paper to a growing literature on information acquisition in global

games (He and Manela (2016); Szkup and Trevino (2015); Yang (2015); Ahnert and Kakhbod

(2017)) and also to papers studying the effects of information quality and transparency on stability

(Iachan and Nenov (2015); Moreno and Takalo (2016); Ahnert and Martinez-Miera (2019)).

Our paper is particularly related to models of signaling in global games. Angeletos et al. (2006)

and Angeletos and Pavan (2013) consider a regime-change game in which a policy maker can take

a costly policy action to influence the cost of attacking. They show that there exist multiple

equilibria, depending on how the policy action is interpreted. For example, there always exists

an “inactive-policy” equilibrium in which agents ignore the policy action when choosing to attack

and the policy maker anticipates this and does not intervene. There also exists an “active-policy”

equilibrium in which only intermediate types choose to intervene. In contrast, there is a unique

equilibrium interpretation of dividend signals in our framework. One reason for this is that the bank

enjoys a direct utility from paying dividends, which rules out any “inactive-policy” type equilibria.

In addition, the dividend action has no direct effect on the cost of attacking and, rather, affects the

lenders’ actions only through their inferences. Finally, because dividends have a large impact on

lenders’ inferences for all bank types, all surviving banks signal through dividends in equilibrium.

Edmond (2013) studies a model of regime-change in which the regime can engage in costly

manipulation of the private information of agents considering staging a revolution. In equilibrium,

agents try to infer the true type of the regime given the signals they observe. His framework features

a unique equilibrium. As in Edmond (2013), our economy also admits a unique equilibrium despite

the signaling effect of the bank’s actions and the endogenous information structure that arises.

However, while he studies how a regime engages in costly manipulation of agents’ private signals

about its type (i.e., propaganda), we study how a bank optimally chooses its dividend policy

when faced with a coordination-based run. Also, in our framework, the direct effect of paying

out dividends is to weaken the ability of the bank to survive the rollover episode. In contrast, in

4Vives (2014) uses a global games model of bank runs to analyze liquidity regulation.
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Edmond (2013) the regime’s action cannot be destabilizing.

Goldstein and Huang (2016a) study how a regime can increase the probability of survival by

committing to abandoning the status quo for some fundamentals. However, the information trans-

mission that takes place in their model, and which ends up stabilizing the regime, is more in the

spirit of the Bayesian persuasion literature (Kamenica and Gentzkow, 2011) rather than through

sending a costly signal.5

Finally, our focus on the link between dividend signaling and financial stability relates our paper

to the recent literature on the effects of information disclosure on financial stability (for instance,

from stress-testing as in Bouvard et al. (2015), Faria-e Castro et al. (2016), and Goldstein and

Leitner (2018) or credit ratings as in Goldstein and Huang (2016b) and Holden et al. (2018)). In

contrast to many of these papers, we focus on information generated by one of the parties in the

rollover game, which maximizes its own payoff, rather than a third party (i.e., a regulator) who has

an explicit objective to improve financial stability.

2 Model

Consider an economy with three periods, t ∈ {0, 1, 2}. There is a bank with an exogenously given

balance sheet. At t = 0 the bank (owner) chooses how much to pay in dividends from the bank’s

total available liquidity. The bank has a continuum of short-term creditors who make rollover

decisions on their debt at t = 1. The bank uses its total remaining available liquidity (net of the

t = 0 dividend payout) to repay creditors who refuse to roll over. The bank fails if it cannot pay all

creditors that refuse to roll over. At t = 2 creditors obtain payoffs based on their actions and the

outcome of the rollover episode, and the bank owner obtains any remaining equity value. Figure 1

illustrates a summary of the timing of events. We now provide the details for this environment.

[Figure 1 here.]

5Shapiro and Skeie (2015) also study a model of signaling and banking crises. However, in their paper the sender
of the costly signal is a policy maker rather than the bank itself. Also, runs on banks are not due to a coordination
failure like in our framework.
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2.1 The bank

2.1.1 Assets. At the beginning of t = 0, the bank holds a portfolio of assets that deliver payoffs

at t = 2. At t = 0 and t = 1 the bank can convert part of these assets into liquidity by selling or

borrowing against them as collateral. We call the maximum liquidity the bank can obtain in this

way, its total available liquidity and denote it by `. The bank uses liquidity to make a dividend

payment d at t = 0 and to meet redemptions by short-term creditors at t = 1. We let l equal the

sum of the dividend payment and the redemptions by short-term lenders that the bank chooses to

meet. Therefore, l ≤ ` is the total liquidity outflow from the bank at the end of t = 1.

We denote the t = 2 value of the remaining bank assets, given successful rollover at t = 1, by

v (θ, l). Here, θ ∈ R parametrizes the portfolio quality of the bank (its “fundamentals”), and l is

the liquidity outflow. We assume that v(θ, l) is twice continuously differentiable, with vθ > 0, and

vl < 0. Therefore, the value of the bank’s assets is increasing in θ (so higher θ means stronger

fundamentals). It is also decreasing in l, because obtaining liquidity shrinks the asset portfolio at

t = 2. We assume that the total available liquidity ` (θ) satisfies

v
(
θ, ` (θ)

)
= κ (1)

for some κ ≥ 0. By the properties of v, ` (θ) is strictly increasing in θ (i.e., `
′

= −vθ/vl > 0).

Therefore, banks with better fundamentals also have more available liquidity to pay dividends and

meet redemptions by short-term lenders. In addition to these assumptions, we let vll < 0, so that

the marginal cost of liquidity is strictly increasing. Also, we assume that vlθ > 0, so that the

marginal cost of liquidity is lower for higher θ banks. Finally, we assume

Assumption B1. vθ(θ,l)
−vl(θ,l) is strictly decreasing in l.

We briefly discuss some of our assumptions on v and their implications for the analysis and for

the empirical relevance of the model. The assumption vlθ > 0 is a single crossing condition that

is often made in signaling models (e.g., Bhattacharya (1979)). In standard signaling environments

this assumption implies a positive link between dividends and future profitability, consistent with
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empirical evidence (see, e.g., Nissim and Ziv (2001); Cziraki et al. (2016)). While this condition is

only sufficient for our results, as we discuss in Section 3.2.5, we maintain it in most of the analysis

to facilitate comparison with the existing dividend signaling literature. To provide additional

intuition for the single crossing condition and the portfolio restrictions that it implies, in the Online

Appendix we present one possible microfoundation for v that gives rise to this condition (and the

other conditions on v). Our example is a continuous and “smoothed” version of the asset portfolios

commonly assumed in banking models, where assets are grouped into discrete asset classes based

on their liquidity. Finally, Assumption B1 ensures that a bank’s incentives to fully liquidate its

portfolio and pay it out as dividends at t = 0 are decreasing in θ.6

2.1.2 Liabilities and bank payoff. The t = 0 liabilities of the bank consist of dispersed short-

term debt that matures at t = 1 with a total face of b > 0.7 The short-term debt is held by a

unit-measure continuum of lenders, who at t = 1 choose whether to redeem it or roll it over into

t = 2. The bank may fail at t = 1, if it does not have enough liquidity to meet redemptions by

short-term lenders. Specifically, if A denotes the fraction of short-term lenders that refuse to roll

over, then the bank can survive iff

`− d ≥ bA. (2)

We assume that the expected t = 2 payoff of the bank owner conditional on survival is v (θ, l).

Hence, conditional on successful rollover, there is no conflict of interest between the (remaining)

lenders and the bank owner, because the bank owner cares about the full residual value of the

bank’s assets. Therefore, we can write the bank owner’s t = 0 payoff as

W (θ, d, A) = λd+ 1{`−d≥bA}v(θ, d+ bA), (3)

where 1{`−d≥bA} is an indicator for whether the bank survives the rollover episode at t = 1, and

λ > 0 parametrizes the degree to which the bank owner cares about paying out a dividend at t = 0

6To see how this assumption relates to our other assumptions about v, we differentiate the logarithm of vθ/ (−vl)
with respect to l and rearrange to obtain the following condition that is equivalent to Assumption B1: vlθ < vθ

vll
vl
.

Therefore, one way to interpret Assumption B1 is that it puts an upper bound on vlθ, so that even though the
marginal cost of liquidity is lower for higher θ banks, it remains increasing in the amount of liquidity that the bank
extracts.

7For simplicity, we disregard long-term debt. Long-term liabilities will decrease the equity payout to the bank
owner conditional on bank survival and will strengthen the owner’s incentives to liquidate early. See also footnote 8.
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versus waiting for assets to mature. Therefore, there is a conflict of interest at t = 0, because the

dividend payoff carries a direct private benefit to the bank owner and no benefit to lenders.8

2.2 The lenders

At t = 1, after dividends are paid out, the lenders decide whether to roll over their debt to t = 2

or refuse to roll over (or run, for short). We assume that the lenders have a uniform prior about

θ over [−K,K] for K > 0. Lenders observe additional information, which we detail in Section 3.

Because the information will be heterogeneous across agents, we will denote the probability with

respect to lender i’s information set by Pr i {.}.

We assume that a lender i chooses to run if the probability she assigns to the bank surviving is

sufficiently low. Formally, the lender runs iff

Pr i
{
` ≥ d+ bA

}
≤ p, (4)

where as is standard in regime-change global games, p determines the aggressiveness of lenders and

the severity of the rollover crisis, while b determines the short-term liabilities of the bank.9 Defining

π̂i ≡ p− Pr i
{
` ≥ d+ bA

}
, (5)

we have that a lender i runs iff π̂i ≥ 0. In our analysis below, we will work with this object when

characterizing the lenders’ actions.10To simplify notation, for most of the analysis below we will

analyze the model for the case when b = 1. However, we return to the more general case in Section

5 and show that the equilibrium effects from changes in p versus b tend to be qualitatively similar.

8Assuming instead that the bank owner only cares about his expected t = 2 equity payoff net of promised payments
to maturing short-term lenders would lead to a t = 2 continuation payoff for the bank owner of

W2 = max {0, v (θ, d+ bA)−B (1−A)} ,

where B > b is the promised payoff to lenders that roll over. Noting that, given t = 1 survival, W2 ≤ v (θ, d+ bA),
it follows that if the t = 2 payoff is W2 rather than v, then the bank owner’s incentives to liquidate early by paying
out a large dividend and inducing the bank’s failure, even when the bank has the resources to survive, are only
strengthened. Because such incentives are already present even with the payoffs assumed in (3), allowing for the more
general continuation payoff for the bank owner will not change the qualitative predictions of our model but will come
at a substantial reduction in tractability.

9In general, p and b are related, as we show in the Online Appendix.
10In the Online Appendix we further discuss lender payoffs that will give rise to the reduced-form payoff in (5).
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2.3 Dominance regions

We assume that there exist lower and upper dominance regions.

• Lower dominance region: There exists a θ > −K, such that for θ < θ, ` (θ) = 0.

• Upper dominance region: There exists a θ < K, such that for θ > θ, ` (θ) > 1, and λ¯̀(θ) <

v(θ, 1).

• Multiplicity region: For θ ∈
(
θ, θ
)
, ` (θ) ∈ (0, 1).

Therefore, banks with very weak fundamentals are insolvent and fail with probability one for any

A ∈ [0, 1]. Conversely, banks with very strong fundamentals can meet all demands for withdrawals.

Furthermore, it is never optimal for such banks to liquidate all their assets at t = 0.11 In between,

whether or not a bank can survive depends on whether lenders coordinate on running or rolling

over. If all lenders run, then the bank cannot survive, and if all lenders roll over, the bank can

survive. The equilibrium concepts that we work with are standard and are included in the Online

Appendix.

2.4 No-run benchmark

To highlight the interaction between dividends and rollover risk, we first characterize the dividend

payout of a bank that does not face a run. We assume that

Assumption B2. λ ≥ −vl (θ, 0),

so that even banks with low values of θ find it optimal to pay dividends. We view this particular

case as the empirically relevant one in light of our discussion of the risk-shifting incentives by banks

in the Introduction.

Proposition 1. (No run benchmark) Consider a bank that does not face a run, that is, A = 0.

There is a unique cutoff θnr ∈
[
θ, θ
)

that solves

λ = −vl
(
θnr, ` (θnr)

)
, (6)

11To see this, observe that ` (θ) > 1 and the properties of v (i.e., vll ≤ 0), imply that λ+ vl
(
θ, ` (θ)

)
≤ λ+ vl (θ, 1).

Furthermore, λ` (θ) < v (θ, 1) < λ + v (θ, 1), and because Wd = λ + vl (θ, d) is monotone decreasing in d (because
vll < 0), it follows that λ+ vl

(
θ, ` (θ)

)
< 0.
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such that banks with θ ≤ θnr choose dnr (θ) = ` (θ), and banks with θ > θnr choose dnr (θ) = d∗,

where d∗ solves the first-order condition

λ = −vl (θ, d∗) . (7)

Moreover, dnr (θ) is increasing in θ.

Proof. See the appendix. �

Proposition 1 shows that, in the absence of runs, banks with higher portfolio quality pay higher

dividends. This outcome is a direct implication of the single crossing condition, vlθ > 0.

3 Equilibrium Analysis

We characterize equilibrium outcomes under two different information structures. First, we consider

the case when lenders do not observe the dividend choice of the bank and instead observe an

exogenous private signal about the bank’s type. Then, we introduce dividend signaling by assuming

that lenders observe the bank’s dividend and make inferences about the bank’s type based on that

information and their prior beliefs.

3.1 Exogenous information and the resilience effect

Suppose that lenders do not observe the bank’s dividend choice but only observe a private signal

about θ, θi = θ+ηθi , with ηθi ∼i.i.d. N
(
0, α−1

θ

)
, where αθ denotes the signal precision.12 We consider

equilibria in monotone strategies by lenders; that is, lenders attack iff their signal θi ≤ θ̂ for some

θ̂. In addition, the bank’s problem is characterized by a failure cutoff θf , such that a bank with

type θ < θf fails the rollover episode, and a bank with type θ > θf survive. Given the distribution

of signals and a monotone strategy summarized by the cutoff θ̂, the share of lenders that run on a

bank of type θ is

A
(
θ, θ̂
)

= Φ
(√

αθ(θ̂ − θ)
)

(8)

12For simplicity, for this section only, we assume that lenders have improper uniform priors over the entire real line,
that is, K →∞.
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Proposition 2 shows that there is a unique equilibrium in monotone strategies, and that this is the

unique equilibrium of the rollover game.

Proposition 2. (Exogenous information) There exists a unique equilibrium, which is in monotone

strategies and is given by a failure cutoff θf , and a strategic cutoff θ̂ that satisfy

λ` (θf ) = λd∗ (θf ) + v (θf , d
∗ (θf ) + p) , (9)

and

Φ
(√

αθ

(
θ̂ − θf

))
= p, (10)

where d∗ (θ) ≥ 0 satisfies the Kuhn-Tucker conditions λ+ vl

(
θ, d∗ +A

(
θ, θ̂
))
≤ 0, and

(
λ+ vl

(
θ, d∗ +A

(
θ, θ̂
)))

d∗ = 0. (11)

Furthermore, the optimal bank policy satisfies

d (θ) =


` (θ) , θ ≤ θf

d∗ (θ) , θ > θf

.

Proof. See the appendix. �

[Figure 2 here.]

Figure 2 illustrates the optimal dividend policy in this equilibrium. To gain some intuition, note

first that with exogenous lender signals the size of the run does not depend on the dividend payout

of the bank. Moreover, as in other global games models (Morris and Shin, 2003), the strategic

uncertainty resulting from dispersed private information determines a run size of A
(
θf , θ̂

)
= p

for a bank at the equilibrium failure threshold, θf . Such a bank is indifferent between paying out

` (θf ) and failing or paying out d∗ (θf ), enduring a run of size p, and surviving. Therefore, the total

liquidity outflow for a bank at the failure threshold is d∗ + p. In this case, higher dividend payouts

always increase the liquidity outflow of the bank. Contrast this with the case when banks do not

pay dividends. In that case the failure threshold is not determined by whether the bank chooses to

survive but by whether survival is feasible given the run size p.
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Because the liquidity outflow for the bank at the failure threshold is only p in that case, and a

higher liquidity outflow can be met only by a bank with higher type, paying dividends clearly leads

to more banks failing. We call this the resilience effect associated with dividend payouts.

Finally, as Figure 2 illustrates, compared to the no run benchmark, in the exogenous information

case a bank that chooses to survive distorts its dividend payout below the no-run dividend level,

dnr (θ) determined by Equation (7). Specifically, d∗ (θ) = max
{

0, dnr (θ)−A
(
θ, θ̂
)}

. Therefore,

for a bank that chooses to survive, payouts to running lenders crowd out dividend payouts.

3.2 Endogenous information and the signaling effect

Next, we introduce dividend signaling by assuming that lenders observe the bank’s dividend and

make inferences about the bank’s type based on that information and their prior beliefs. We assume

that dividends are observed by lenders with idiosyncratic noise. Formally, each lender observes a

private signal about dividends, di = d (θ)+ηdi , with ηdi ∼i.i.d. N
(
0, α−1

)
, where d (θ) is the dividend

choice of a bank with type θ, and α denotes the dividend signal precision. We make this assumption

to abstract away from the equilibrium multiplicity arising because of common certainty, resulting

from the observation of a public signal (as in Woodford (2002), Myatt and Wallace (2014), Kolbin

(2015), Gaballo (2016), or Angeletos and Lian (2018)). In addition to its technical role, we can

interpret the private noise in dividend observations as a reduced form for limited attention by

lenders.13

[Figure 3 here.]

We again consider monotone strategy equilibria, in which a lender runs if di < d̂, for some

cutoff d̂.14 With normally distributed dividend signals and monotone strategies, the share of lenders

running given d̂, is

A(d (θ) , d̂) = Φ(
√
α(d̂− d (θ))), (12)

and the total liquidity outflow from paying out a dividend d is

l (d) = d+A
(
d, d̂
)
. (13)

13The Online Appendix provides a microfoundation for dispersed dividend signals of agents based on limited
attention.

14Proposition 9 in the appendix shows conditions under which that restriction is without loss of generality.
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3.2.1 Dividend payouts with signaling. When lenders follow a monotone strategy d̂, a bank

reduces the run it is facing by paying higher dividends. We call this the signaling effect. It is

useful to define dmin as the minimizer of l (d).15 We will consider economies with d̂ ∈ (0, 1) and

α sufficiently large, so that dmin > 0.16 In that case, as Figure 3 shows, the liquidity outflow that

a bank experiences is decreasing for some values of d, so that the signaling effect dominates the

resilience effect.

We focus on this case, because it highlights how signaling affects the equilibrium dividend

policies of banks. Given the interpretation of α as a parameter that determines the degree of lender

attention toward publicly available information, we also believe that it is empirically plausible in

many relevant cases, for example, when banks have sophisticated institutional lenders. Proposition

3 characterizes the solution to the bank problem in that setting.

Proposition 3. Suppose that lenders follow a monotone strategy with cutoff at d̂. Then there is a

unique critical threshold over bank fundamentals given by θf , such that banks with θ ≤ θf fail and

banks with θ > θf survive. Furthermore, θf satisfies

λ` (θf ) = λd∗ (θf ) + v
(
θf , d

∗ (θf ) +A
(
d∗ (θf ) , d̂

))
, (14)

where d∗ (θ) > dmin satisfies the condition

λ = −vl
(
θ, d∗ (θ) +A

(
d∗ (θ) , d̂

))(
1 +Ad

(
d∗ (θ) , d̂

))
. (15)

The bank’s optimal dividend policy is given by

d (θ) =


` (θ) , θ ≤ θf

d∗ (θ) , θ > θf

. (16)

15For sufficiently large α, dmin is formally the solution to 1 +Ad
(
d, d̂

)
= 0, such that d̂ < dmin.

16Conditions B3 and B4 in the appendix ensure that in any monotone strategy equilibrium of this economy,

d̂ ∈ (0, 1), while the observation that dmin → d̂ and A
(

0, d̂
)
→ 1 as α→∞ ensure that dmin+A

(
dmin, d̂

)
≤ A

(
0, d̂

)
,

for sufficiently large α. Focusing on economies in which d̂ ∈ (0, 1) is the most interesting given the assumption on
feasible dividend payouts for banks at the lower and upper dominance thresholds. In the Online Appendix we
characterize the equilibrium for all values of α.
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Proof. See the appendix. �

As in the exogenous information case, a bank chooses whether to fail or survive by comparing

the payoff from paying out ` (θ) and failing the rollover episode, against the payoff from paying

a dividend d∗ and surviving a run of size A
(
d∗ (θf ) , d̂

)
. A bank at the failure threshold is then

exactly indifferent between failing (and paying out ` (θf )) and surviving (and paying out d∗ (θf )).

The dividend payout of surviving banks is given by Equation (15). The left-hand side corre-

sponds to the marginal benefit from paying out one more dollar of dividends, whereas the right-hand

side corresponds to the marginal cost. Because of the signaling effect, the (effective) marginal cost

of paying dividends is lower compared to both the no run case (cf. Equation (7)) or the case with

exogenous information (cf. Equation (11)). Intuitively, paying out one more dollar in dividends

leads to a total liquidity outflow of only 1 +Ad < 1. The lower effective marginal cost implies that

a bank has incentives to distort its dividend payout above the no-run dividend level, dnr (θ). On

the other hand, as in the exogenous information case, the resilience effect tends to push toward the

bank setting a dividend payout below the no-run level, due to crowding out by the run. When the

signaling effect is strong, the former effect dominates, and the bank increases its dividend above

dnr (θ).17

The signaling effect is particularly strong for banks with type θ, such that dnr (θ) ≤ dmin. For

these banks, increasing the dividend above dnr (θ) is associated with a lower liquidity outflow.

Banks then optimally choose a dividend of at least dmin. In addition, the marginal impact on

the size of the run given by Ad, decreases strongly in d around dmin. Intuitively, because lenders

care about whether the bank fails or survives the rollover episode (rather than the specific bank

type), the dividend payouts of banks with higher fundamentals are already interpreted by most

lenders as strong evidence that the bank will survive the rollover episode, so any upward distortion

in dividends has only a small effect on lenders’ inference. Therefore, all banks that distort their

dividends above the no-run level choose payouts above but close to dmin. In summary, a strong

signaling effect induces (surviving) banks with different types to choose similar dividend payouts.

17In the Online Appendix we discuss the equilibrium dividend policy when the signaling effect is weak. In that
case, the resilience effect might dominate the signaling effect for some bank types despite dividends being interpreted
as good news about survival by lenders.
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3.2.2 Lenders’ inference and actions. Unlike the exogenous information case, how lenders

interpret a higher dividend signal – whether as good or bad news about bank survival – can now

be endogenous to the behavior of banks. On the other hand, the banks’ behavior depends on how

lenders interpret higher dividends. Therefore, it can easily be the case that there are multiple

equilibria as in Angeletos et al. (2006). Moreover, from Equation (16) and as illustrated in Figure

4, even when higher dividends are good news about survival and lead to fewer lenders running,

the dividend policy of banks is nonmonotone and some failing bank types choose to pay higher

dividends than some surviving banks. Therefore, a lender’s posterior belief about the bank failing

given dividend signal di, Pr(θ < θf |di), may not always decrease with di. Put differently, a higher

dividend signal may not always be good news about bank survival.

With these subtleties in mind, we first characterize the lenders’ inference and the conditions

under which Pr(θ < θf |di) is decreasing in di. To do so, we define two probability densities,

ψN,i (x) =
φ
(√
α
(
` (x)− di

))∫ θf
−K φ

(√
α
(
` (z)− di

))
dz
, for x ∈ [−K, θf ] , (17)

and

ψD,i (x) =
φ (
√
α (d∗ (x)− di))∫K

θf
φ (
√
α (d∗ (z)− di)) dz

, for x ∈ [θf ,K] , (18)

Analogously, we define expectations EN,i [.] and ED,i [.]. The following result summarizes when

higher dividends are good news about survival.

Lemma 1. The posterior belief of a lender observing signal di, Pri {θ < θf |di}, is strictly decreasing

in di iff

EN,i
[
` (θ)

]
< ED,i [d∗ (θ)] . (19)

Proof. See the appendix. �

Intuitively, if a lender with signal di expects a lower dividend from a bank that fails compared to

a bank that survives, then a lender with a marginally higher signal is more optimistic about the bank

surviving. To apply Lemma 1, notice that by Proposition 3, d∗ (θ) > dmin, so ED,i [d∗ (θ)] > dmin.

Therefore, higher dividends are always good news about bank survival if EN,i
[
` (θ)

]
< dmin. One
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sufficient condition for this inequality is that K is sufficiently large, so that the lower dominance

region (in which ` (θ) = 0) is large. In that case lenders expect most failing bank to have no

available liquidity, including for paying dividends. We use this observation to characterize the

lenders’ actions.

Proposition 4. Suppose that banks with θ < θf fail, where θf ≤ θ is given in (14) and that banks

follow the dividend policy given in (16). There exists a K1 > 0 such that for K > K1 > 0, there is

a lender with signal di = d̂, where d̂ is uniquely determined by

∫ θf
−K φ

(√
α
(
` (θ)− d̂

))
dθ∫K

θf
φ
(√

α
(
d∗ (θ)− d̂

))
dθ

=
1− p
p

, (20)

who is indifferent between running and rolling over, with φ (.) denoting the standard normal p.d.f.

Furthermore, a lender that observes di < d̂ is strictly better off from running, while a lender

observing di > d̂ is strictly worse off from running.

Proof. See the appendix. �

3.2.3 Equilibrium characterization. Turning to equilibrium characterization, Proposition 9

in the appendix combines the results from Propositions 3 and 4, and characterizes equilibria in

monotone strategies for this economy with the property that higher dividends are good news about

bank survival. Furthermore, it shows conditions under which, if the monotone strategy equilibrium

is unique, it is the unique equilibrium of this economy. To show equilibrium uniqueness, one has to

show that in any equilibrium higher dividends can only be interpreted as good news.18 A sufficient

condition for this is that the dominance regions (parametrized by K) are large and there is single

crossing, vlθ > 0, so that the dividend payouts of surviving banks are increasing in θ. Intuitively,

because banks with very low θ always pay no dividends and fail, and banks with very high θ

always pay dividends and survive, when these types are sufficiently prevalent, a higher private

signal is always interpreted as good news about survival, regardless of the actions of lenders with

intermediate signals or the dividend policies of banks in the multiplicity region.

18If higher dividends can be bad news about survival in equilibrium, then the signaling and resilience effects would
reinforce each other, and the equilibrium structure will be similar to that in the exogenous information case studied
in Section 3.1.
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[Figure 4 here.]

Figure 4 illustrates the equilibrium dividend policies and marginal lender for one particular

example. The figure plots both the dividend policy with endogenous information (solid line), and

the dividend policy in the no-run case (dashed line) for banks in the multiplicity region. Banks

below the failure threshold pay out all available liquidity as dividends. In contrast to the

exogenous information case, surviving banks pay a dividend that is higher than their no-run

dividend. Furthermore, the dividend payouts of surviving banks are more similar and vary less

with θ relative to the no-run case. As the signal precision is increased and the signaling effect is

strengthened, the dividend payouts of banks close to the failure threshold become even more

similar (and even less sensitive to θ).

Hence, dividend signaling in the presence of rollover risk implies a stronger upward distortion

in dividends for (surviving) banks with low types. This is intuitive – in the presence of rollover

risk banks signal available liquidity and the ability to survive a rollover episode. The lower-quality

banks which are more exposed to rollover thus signal “more.” This is opposite to the established

view of signaling future profitability (Bhattacharya, 1979), where the incentives to signal high

future profitability induce higher types to signal more and separate from lower types. In the Online

Appendix, we consider a modification of our model that illustrates this outcome. We use that

modified environment to point out three notable differences with our model. First, signaling about

future profitability implies no dividend distortion for the lowest bank type. In contrast, signaling

about available liquidity means that the distortion is largest for the lowest (surviving) bank type.

Second, signaling about future profitability implies dividend distortions for all types, including

the highest types. In contrast, signaling about available liquidity (combined with single crossing)

means that the distortion becomes arbitrarily small with type, because both the equilibrium run

size (A
(
d, d̂
)

) and the marginal effect of higher dividends on the run size (Ad

(
d, d̂
)

) go to zero

as d increases. Third, signaling about future profitability may imply that dividend distortions are

actually increasing in type.

3.2.4 A limit result. Next, we show the following stark result for the limiting case when lender

signals become arbitrarily precise.
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Proposition 5. In the limit, as α→∞, there is a unique equilibrium with θf → θnr, d̂→ ` (θnr).

Furthermore, the bank’s dividend policy, d (θ)→ dnr (θ) , ∀θ.

Proof. See the appendix. �

To build some intuition for this result, note that for any d > d̂, a higher value of α ends up

decreasing the liquidity outflow, l (d) = d+A
(
d, d̂
)

. Intuitively, when α is larger, lenders are more

coordinated and the same dividend choice influences the actions of more lenders. Put differently,

less noise in the observation of dividends strengthens the signaling effect. As α → ∞, lenders

become almost perfectly coordinated and so A→ 0, for d > d̂. Therefore, even a marginal increase

in dividends induces (almost) all lenders to choose to roll over. Consequently, any surviving bank

will face no run, including a bank at the failure cutoff θf , and the liquidity outflow will only equal

the dividend payout itself. This, however, can only be consistent with indifference between survival

and failure if θf = θnr – the “failure” cutoff when there is no run on the bank. Figure 4 illustrates

the strengthening of the signaling effect for finite values of α. More precise dividend signals reduce

the failure cutoff and bring it closer to the no-run cutoff. Additionally, dmin decreases, which

further reduces the cost associated with signaling.19One interesting implication of the limiting case,

(also suggested by Figure 4), is that when lenders observe arbitrarily precise signals, d∗′ (θf ) → 0.

Therefore, in equilibrium, banks that are close to the failure cutoff (approximately) pool on their

dividend payouts.20

3.2.5 Dividend signaling without single crossing. We extend our analysis to cases in which

the single crossing condition, vlθ > 0, does not hold. The single crossing condition holds in many

realistic settings linking bank type to the underlying portfolio. Nevertheless, it is violated if, for

example, a high θ bank has less cash than a low θ bank but has more (or higher-quality) illiquid

assets. Similarly, if banks have to liquidate assets at a common price that is independent of the

underlying asset quality, then vlθ < 0, as well.

19These direct effects ends up dominating any indirect effects arising from changes in the marginal lender. In fact,
as Proposition 5 suggests, for sufficiently high signal precision, changes in the marginal lender, d̂, should reinforce
these effects on θf .

20Intuitively, when lenders observe very precise signals, having an equilibrium marginal lender who observes a signal
d̂ lower than the dividend payout of all surviving banks means that the set of surviving banks paying dividends close
to d̂ must be large relative to the noise in the lender’s signal.
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Equilibrium characterization changes little without the single crossing condition.21 Specifically,

Proposition 3 holds independently of the single crossing condition. Intuitively, even if the single

crossing condition is reversed, so vlθ < 0, all surviving banks choose to pay a dividend above

dmin, the dividend payout that minimizes the total liquidity outflow. Given Proposition 3, the

single crossing condition is not relevant for the lenders’ inference, either, because it is still the

case that d∗ (θ) > dmin and so having a sufficiently large share of very low types that fail and

pay no dividends means that higher dividends are still interpreted as good news about survival in

equilibrium. Therefore, Proposition 4 continues to hold, as well.

Where the single crossing condition matters is for equilibrium uniqueness. Specifically, it is

no longer clear that in any equilibrium higher dividends can only be interpreted as good news.

However, one can show equilibrium uniqueness under different conditions than the single crossing

condition. For example, as long as there are sufficiently many banks in the upper dominance region

that pay a positive dividend (that is also bounded away from zero), Proposition 9 will still hold as

well.

In terms of equilibrium outcomes, without single crossing, the equilibrium dividend payouts of

surviving banks need not be increasing in θ. Instead, the dividend payouts of these banks could

be nonmonotone or even decreasing in θ. Moreover, it will no longer be the case that the lowest

surviving types distort their dividend payout the most relative to the no-run case. Instead, it is

high surviving types, which would prefer to pay a low dividend in the absence of a rollover episode,

that may have to distort up their dividend payout the most.

4 Policy Implications

The possibility that banks can influence the coordination-based run they face via their dividend

choices has important implications for dividend regulation aimed at improving financial stability

during a rollover crisis. In particular, suppose that a regulator cares about minimizing the set of

banks failing due to a coordination-based run (i.e., minimizing the failure threshold θf ). In this

section, we characterize the dividend policy, denoted by dP (θ), that achieves this. We will call this

21This observation provides another point to distinguish the signaling that takes place in our coordination-based
environment relative to classical dividend signaling à la Bhattacharya (1979), in which the single crossing condition
is necessary for signaling to commence.
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policy the optimal dividend policy for concreteness.

We assume that the regulator knows θ, so that there is no asymmetric information friction

between the regulator and the bank(s). We also assume that the regulator respects the information

sets of lenders and so cannot directly communicate any information to the lenders. The first

assumption ensures that we derive a benchmark optimal dividend policy akin to “first-best” optimal

policies in economies with asymmetric information. The second assumption is standard in the

literature on optimal policy in games with dispersed information(Angeletos and Pavan, 2007).

Later on, we discuss the implications of relaxing each of these assumptions.

Let θPf denote the failure threshold that the regulator can achieve by imposing the optimal

dividend policy dP (θ). Two sources of inefficiency may lead to θf ≥ θPf . First, some bank types are

better off failing and paying d = ` (θ) even when it is feasible for them to survive. This mechanically

raises the failure threshold, holding the behavior of lenders fixed. Formally, θf is determined by

Equation (14), while the smallest bank type for which surviving the run is feasible is given by θ0,

such that

` (θ0) = dmin +A
(
dmin, d̂

)
. (21)

Second, by Equation (20), the bank’s dividend policy influences the marginal lender with dividend

signal cutoff d̂ and, hence, the size of the run, A, that other bank types experience. This second

effect operates through the lenders’ inference. We will call the first source of inefficiency a “risk

shifting externality,” whereas the second an “informational externality.” We have the following

characterization result.22

Proposition 6. For sufficiently large values of α, the optimal dividend policy dP has the following

properties

dP (θ) =


0 , θ < `

−1
(
d̂P
)

{
0, ` (θ)

}
, θ ∈

[
`
−1
(
d̂P
)
, θPf

]
dPmin , θ > θPf

, (22)

where dPmin = d̂P + C0, and θPf = `
−1 (

dPmin + C1

)
, d̂P solves (20), given

{
dP (θ)

}
, and C0 and C1

22For technical reasons we will restrict the optimal policy function dP to be a step function on [−K,K], where
the number of steps is large but finite. Also, for technical reasons, we assume that the regulator cannot regulate the
dividend choice of a bank exactly at the failure cutoff θf , so that dP (θf ) = ` (θf ). Finally, because ` (θ) = 0, for

θ ≤ θ, to have a well-defined inverse we will adopt the notation `
−1

(0) = θ.
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are two constants.

Proof. See the appendix. �

The most striking difference between the optimal dividend policy, dP (θ), and the equilibrium

dividend policy d (θ) from (16) is that the dividend payout for surviving banks is capped at dPmin

and, moreover, that cap is binding for all surviving banks. In contrast, d (θ) is increasing in θ

(due to single crossing). Intuitively, under the equilibrium dividend policy, a lender observing the

marginal dividend signal, d̂, assigns a relatively low probability that the bank has a very high type,

as higher types pay much higher dividends than d̂. Suppose that all surviving types are mandated

to pay the same dividends at some level close to d̂. Because all of these banks survive the run,

observing a dividend of d̂ becomes stronger evidence in favor of survival, and the lender observing d̂

becomes strictly better off rolling over – the marginal lender becomes a lender with a lower dividend

signal.

Another important feature of the optimal dividend policy is that more failing banks are forced

to pay zero dividends compared to the equilibrium dividend policy. Intuitively, the regulator can

lower d̂ in two ways – by mandating that all surviving banks pool on paying the same dividend

or, due to the noise in lender dividend signals, by ensuring that failing and surviving banks pay as

distinct dividends as possible.

Proposition 6 provides a partial characterization of the optimal dividend policy, because dP (θ) ∈{
0, ` (θ)

}
in the set θ ∈

[
`
−1
(
d̂P
)
, `
−1
(
d̂P + C0 + C1

))
. However, that set is small for large values

of α, because both C0 and C1 tend to 0 as α → ∞. Therefore, as lender signals become perfectly

precise, we can characterize the optimal dividend policy (almost) fully. In that case we can also

determine the smallest failure cutoff θPf and the associated dividend cutoff d̂P .

Proposition 7. In the limit, as α→∞,

dP (θ)→ lim dP =


0 , θ < θPf

dPmin , θ > θPf

, (23)

where θPf → `
−1
(

lim d̂P
)

, dPmin → lim d̂P , and lim d̂P = 0.

Proof. See the appendix. �
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This result is intuitive in light of the regulator’s objective. The regulator does not put any weight

on the bank’s payoffs but only cares about minimizing the failure cutoff, so he chooses a dividend

policy to achieve the smallest feasible failure cutoff. In the limit, as α → ∞ and lenders become

perfectly coordinated, the smallest feasible failure cutoff is at the lower dominance threshold, so

θPf → θ. In contrast, with no dividend regulation, by Proposition 5, the failure threshold approaches

θnr > θ. Moreover, the distance between the two thresholds increases with λ.

4.1 Discussion

The two key features of the dividend policy from (22) are the full dividend restriction for low failing

types and the binding dividend cap for high surviving types. This structure is somewhat different

from macroprudential dividend regulation measures commonly proposed in the literature, which

call for a restriction of dividend payouts of all banks (Goodhart et al., 2010). The reason for the

difference is the dividend signaling effect, which a regulator can also utilize when stabilizing the

financial system. Below, we will examine the robustness of these features of the optimal dividend

policy to a set of alternative modeling assumptions.

4.1.1 Asymmetric information. In the presence of asymmetric information between the reg-

ulator and the bank, the dividend policy in (22) may not be incentive compatible for some bank

types for the following reasons. First, the policy (22) may contain nonmonotonicities. For example,

if dP (θ1) = ` (θ1) > dP (θ2), for θ1 < θ2, then with asymmetric information, a bank with type θ2

may be better off paying dP (θ1). Second, the policy mandates a full dividend restriction for some

bank types, for which paying a higher dividend may be feasible. In the Online Appendix we argue

that the region of fundamentals where these issues arise is small for high values of signal precision

and show that in that case a two-dividend menu, given by d ∈
{

0, d
}

, for an appropriately chosen

value of d, approximates well the optimal policy dP (θ).

4.1.2 Regulator communication. In the presence of dividend signaling, a regulator who ob-

serves θ uses the dividend policy to (indirectly) communicate information to lenders about the

bank’s ability to survive a run. Abstracting away from the small nonmonotonicity region, the divi-

dend policy (22) then looks like a binary disclosure rule that pools bank types into two groups – the
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failing banks and the surviving banks. This is similar to the disclosure rules analyzed in Goldstein

and Leitner (2018) in the context of stress testing, though in a different economic environment. In

our setting, rather than directly disclosing the results of the stress test via a binary scoring rule, the

regulator communicates the results of the stress test by either allowing the bank to pay a dividend

or not. Therefore, interpreted through the lens of stress testing and information disclosure, the

dividend policy we derive implies a link between stress test results and dividend payouts.

One can use the insight that the regulator communicates with lenders via the bank’s dividend

policy to also understand direct disclosures by the regulator in the context of our model. In the

Online Appendix we argue that optimal dividend policy (22) is qualitatively unchanged even with

direct (but noisy) regulator disclosure. In that case the regulator can use both the dividend and

its own direct disclosure to improve the overall precision of the lenders’ information.

4.1.3 Alternative policy objective. The assumption that the regulator only cares about min-

imizing bank failure is appropriate when thinking about policies that promote financial stability but

is generally quite stark, because it disregards any direct benefits from paying dividends. Therefore,

in the Online Appendix we consider an alternative notion of optimality, namely, maximizing the

expected bank payoff prior to the realization of the fundamental θ. A bank that can commit to

this optimal dividend policy will internalize the informational externality. We show that when λ

is small, this optimal dividend policy also features a binding cap on dividends for surviving banks

and a zero dividend payoff for low types.

5 Testable Implications and Empirical Relevance

Our model predicts that higher rollover risk leads to higher average dividend payouts. We capture

higher rollover risk by increasing the lenders’ incentive to run (p ↑) or the bank’s reliance on

short-term debt (b ↑).23

Proposition 8. limα→∞
dd̂
dp > 0 and limα→∞

dθf
dp > 0. Moreover, limα→∞

dd̂
db ≥ 0 and limα→∞

dθf
db ≥

0

23While we have focused on the case b = 1 so far, all of the results we have shown hold more generally for b > 0,
provided that the upper dominance region assumption is modified as follows: there exists a θ, such that for θ > θ,
` (θ) > b, and λ¯̀(θ) < v(θ, b). Also, for the comparative statics below, we will assume that p is increasing in b as in
the partial microfounded example for the lenders’ payoffs in the Online Appendix.
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Proof. See the appendix. �

Intuitively, as p is increased, the marginal lender needs to be more optimistic about bank

survival to be indifferent between running and rolling over. As a consequence, the new marginal

lender becomes an agent that observes a higher dividend signal – d̂ goes up. Because dmin – the

lower bound on dividend payouts for surviving banks, defined in Section 3.2.1 – is increasing in

d̂, it follows that dividends also increase. A change in the reliance on short-term debt, b, has an

analogous effect. We illustrate the comparative statics for p and b from Proposition 8 in Figure 5,

away from the limiting case of perfect signal precision.

[Figure 5 here.]

A second important prediction of our model, which we discussed in Section 3.2.1 in the context

of Proposition 3, is that the upward distortions in dividends due to signaling lowers the sensitivity

of dividends to fundamentals, because banks with different types choose similar dividend payouts

in equilibrium. This prediction is illustrated in Figure 5, where we also plot the dividend policy in

the no run case.

We document two novel empirical facts and relate them to our main testable implications.24

We first investigate cross-sectional variation in the evolution of dividend payouts during the 2007

financial crisis. We test the first prediction (cf. Proposition 8) – that an increase in rollover risk

increases the average dividend payout – by investigating whether banks that were more reliant on

short-term funding and, therefore, all else equal, were subject to more rollover risk, had higher

dividend payouts as the crisis progressed. We rank U.S. banks according to the share of liabilities

in short-term debt in 2006 and examine the behavior of dividend payouts for banks in the first and

fourth quartiles as the financial crisis was unfolding.

As shown in Panel (a) of Figure 6, both groups have similar trends in dividend growth before

2007. However, after 2007 their dividend payments diverge sharply. Banks that relied relatively

less on short-term debt decreased their dividend payouts starting in 2007. In contrast, banks that

relied relatively more on short-term debt stayed on their pre-2007 dividend growth trend during

2007 and 2008.

24The Online Appendix provides additional information on data and measurement.
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While this pattern is consistent with our model, it does not allow us to identify whether the

signaling or the resilience effect dominates during the crisis. Specifically, if the resilience effect

dominates, it is possible for dividend payouts to go up with higher exposure to rollover risk, driven

by an increase in dividends by failing banks that ends up outweighing any decline in dividends

by surviving banks due to the crowd-out effect.25 To distinguish between these two effects, we

use the observation that among the set of surviving banks, which are banks with relatively high

fundamentals, higher exposure to rollover risk implies that dividend payouts move in opposite

directions under the two effects. Specifically, if the signaling effect dominates, these banks would

increase dividends, while if the resilience effect dominates, they would decrease dividends.

[Figure 6 here.]

To implement this test empirically, we use a proxy for the bank fundamentals and repeat the

analysis for a subset of relatively strong banks. Specifically, we consider a subsample of banks

with average Return on Assets (RoA) in 2009 above the median.26 Panel (b) of Figure 6 plots the

evolution of dividends for this subsample of banks. The pattern is very similar to the one in the

left panel. Overall, we conclude that Figure 6 is consistent with a strong signaling effect.

Next, we test the second prediction (cf. Proposition 3) – exposure to rollover risk decreases the

sensitivity of dividends to fundamentals. In Figure 7, we plot the standard deviation of dividend

growth against the average share of short-term debt relative to assets for different U.S. industries.

Therefore, variation in the share of short-term debt captures variation in the exposure to rollover

risk, while variation in the standard deviation of dividend growth captures variation about the

sensitivity of dividends to fundamentals in a sector. These two quantities are negatively related,

suggesting that dividends are less variable in industries that rely more on short-term funding. This

is consistent with dividend payouts being less sensitive to fundamentals in industries where rollover

risk is higher.

[Figure 7 here.]

25For example, for the exogenous information case in Section 3.1, one can show that in the limit as αθ →∞, when
the crowd-out effect is switched off, an increase in p (weakly) increases d (θ).

26The results are qualitatively similar if we use other proxies for fundamentals such as return on equity or if we use
a higher cutoff on 2009 RoA.

28



6 Why Do Banks Signal through Dividends?

Our analysis focuses on dividend payouts as a signal of a bank’s available liquidity. This is motivated

by the recent financial crisis and the possible use of dividend signaling to manage coordination-

based runs. However, banks also take other actions in times of financial stress to signal “balance

sheet strength” that seem to worsen their liquidity positions. For example, Duffie (2010) provides a

description of a hypothetical dealer bank’s actions in response to financial stress. He notes that the

bank “... takes actions that worsen its liquidity position in a rational gamble to signal its strength

and protect its franchise value. [The bank] wishes to reduce the flight of its clients, creditors, and

counterparties.” Such actions include compensating clients for losses on investments arranged by the

bank or continuing with over-the-counter (OTC) derivative trades that reduce available liquidity.

Another related action, which is more relevant for classical bank runs, is the decision of a bank that

faces a run by depositors to not suspend convertibility of deposits into cash immediately but instead

to service withdrawing depositors. Although these actions are not our proximate motivation, our

theoretical framework can be interpreted more broadly and used to analyze their signaling effects

as well.

A bank can take other possible actions to convey information about its liquidity position and

balance sheet. One alternative is information disclosure in the form of updated balance sheet data

or other forms of bank health statements. A key challenge with such disclosures, however, is that

such statements may not be credible. As an example, Lehman Brothers boasted a Tier 1 capital

ratio of 11 % – well above the regulatory minimum – 5 days before its bankruptcy (The Economist,

2010).Another costly alternative to dividend payments is share repurchases. Without any difference

in signaling, share repurchases look similar to dividends from the bank’s perspective by constituting

an outflow of liquidity. Empirically, however, the signaling content of share repurchases is less

pronounced (Hirtle, 2014). One possible explanation is that share repurchases are most often

discretionary and conducted in the open market. Given stock market volatility, it may be hard for

market participants to infer from market prices whether a bank has discontinued a share repurchase

program to save on liquidity.
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7 Concluding Comments

U.S. banks paid large amounts in dividends during the financial crisis despite mounting losses. In

our paper we study a framework that incorporates two distinct views of the underlying reasons

for this behavior – risk shifting and signaling. We show that both of these increase the dividend

payouts of lower-quality banks when there is a coordination-based run. First, more banks choose to

liquidate early because of the rollover crisis, thus “beating creditors out the door.” Second, banks

that choose to survive pay higher dividends than is optimal for them in the absence of a rollover

crisis, because lenders interpret higher dividends as good news about the bank’s available liquidity.

Therefore, through the lens of our model, both forces lead to banks with low asset quality paying

high dividends during a financial crisis.

The signaling effect and related reluctance of banks to cut dividends due to an increased risk

of a rollover crisis may also explain why banks were reluctant to issue new equity (essentially a

negative dividend) during the financial crisis (Bigio, 2012). Examining the implications of new

equity issuance in an environment with rollover crises is a potentially important extension of our

framework that we leave for future research.

Appendix

A.1 Details on the Dividend Signaling Equilibrium Characterization

We first derive a condition under which in any monotone strategy equilibrium of this economy, the

cutoff d̂ ∈ (0, 1). To this end, we characterize the optimal dividend policy of a bank that faces a

run of A = 1 regardless of its fundamentals θ.

Lemma 2. Consider a bank that does face a run by all lenders, that is, A = 1, suppose that

λ ≥ −vl (θ, 0), and let dr (θ) denote the bank’s optimal dividend policy. Then banks with θ < θ

choose dr (θ) = l (θ), while banks with θ ≥ θ choose dr (θ) = d∗, where d∗ solves the first-order

condition

(λ+ vl (θ, d
∗ + 1)) d∗ = 0. (A2)

Proof. See the Online Appendix. �
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Next, let us define d̂max as the unique solution to

∫ θ
−K φ

(√
α
(
` (θ)− d̂max

))
dθ∫K

θ φ
(√

α
(
dr (θ)− d̂max

))
dθ

=
1− p
p

. (A3)

By Lemma 1 and the discussion after it, it follows that for any α, there is a sufficiently large K, such

that the left-hand side of (A3) is decreasing in d̂max and so (A32) can have at most one solution.

Furthermore, the left-hand side of that expression can be made arbitrarily large (arbitrarily close

to 0) for sufficiently small (large) values of d̂max and so there exists a solution. We can now state

condition B3 which ensures that in any monotone equilibrium, d̂ < 1.

Assumption B3. d̂max < 1.

Notice that d̂max is the signal of a marginal lender who is indifferent between running and

rolling over if all other lenders run regardless of their signal, and hence banks suffer a run of A = 1

regardless of θ. Therefore, this is the lender cutoff in the most pessimistic possible case, when other

lenders run regardless of their signals and only banks in the upper dominance region survive. As

we show in the proof of Proposition 9 below, this condition then ensures that in any monotone

strategy equilibrium, d̂ < d̂max < 1.

Similarly, let d̂min be the unique solution to

∫ θ∗
−K φ

(√
α
(
` (θ)− d̂min

))
dθ∫K

θ∗ φ
(√

α
(
dnr (θ)− d̂min

))
dθ

=
1− p
p

, (A4)

where θ∗ and dnr (θ) were defined in Proposition 1 that examines optimal bank behavior in the

case of no run. As with the case of d̂max it is straightforward to show that for sufficiently large K,

d̂minis unique. Condition B4 then is analogous to condition B3:

Assumption B4. d̂min > 0.

Therefore, d̂min is the signal of a marginal lender who is indifferent between running and rolling
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over if all other lenders roll over regardless of their signal and hence the bank experiences no run

for any θ. Therefore, this is the lender cutoff in the most optimistic possible case, when other

lenders do not run regardless of their signal and only banks with θ < θ∗ fail. As we show in the

proof of Proposition 9 , this condition then ensures that in any monotone strategy equilibrium,

d̂ > d̂min > 0.

Finally, to show equilibrium uniqueness, we additionally have to show that there cannot exist

equilibria in which higher dividends are interpreted as bad news about survival. Single crossing,

vlθ > 0, is a sufficient condition for this together with K being sufficiently large, as we will show

next.

Lemma 3. There exists a K2 such that for K > K2, in any equilibrium of this economy Pr {θ ∈ ΘF |di}

is strictly decreasing in di, where ΘF ⊂ R denotes a set of fundamentals for which a bank chooses

to fail.

Proof. See the Online Appendix. �

An equilibrium in monotone strategies consists of a lender cutoff d̂, a bank cutoff θf and a bank

dividend policy d (θ).

Proposition 9. Consider equilibria of this economy, in which lenders follow a monotone strategy

with cutoff at d̂. In those equilibria banks fail according to a cutoff θf , and d̂ and θf jointly satisfy

conditions (20) and (14), where the banks follow a dividend policy d (θ) given by Equation (16).

Furthermore, if θf and d̂ are unique, and assumptions B3 and B4 hold, then there exist a K2 > 0

such that for K > K2 the unique monotone strategy equilibrium is also the unique equilibrium of

this economy.

Proof. See the Online Appendix. �

A.2. Omitted Proofs

Proof of Proposition 1. The bank owner solves

W̃ (θ) = max
d∈[0,`(θ)]

{λd+ v (θ, d)} .
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Taking the first-order condition with respect to d and given Assumption B2, the optimal d∗ solves

λ = −vl (θ, d∗) + κ`,

where κ` is the Lagrange multiplier on the liquidity constraint l ≤ ` (θ), so that κ` and d∗ satisfy

the complementary slackness condition κ`
(
` (θ)− d∗

)
= 0. Therefore, d∗ satisfies

[λ+ vl (θ, d
∗)]
(
` (θ)− d∗

)
= 0, (A5)

Let

ϕ (θ) ≡ λ` (θ)− W̃ (θ) .

Given Assumption B1, ϕ (θ) is (weakly) decreasing in θ. To show this, note first that W̃ (θ) ≥ λ` (θ)

with equality, whenever d∗ = ` (θ), so ϕ (θ) ≤ 0. Also, note that because the problem is convex,

W̃ is differentiable for d∗ ∈
(
0, ` (θ)

)
and an envelope theorem holds. Therefore, ϕ (θ) is also

differentiable for d∗ ∈
(
0, ` (θ)

)
. Also, by the theorem of the maximum, W̃ (θ) is continuous in θ, so

d∗ and ϕ (θ) are also continuous in θ. Therefore, there are intervals of {θ ≥ θ}, where d∗ may be in

the interior or on the upper boundary of the feasible set. Denote those by ΘI , and ΘU , respectively.

For θ ∈ ΘU , ϕ (θ) = 0. Similarly, for θ ∈ ΘI , applying the envelope theorem, we obtain

ϕ′ (θ) = λ`
′
(θ)− vθ (θ, d∗) . (A6)

New we show that ϕ (θ) is strictly decreasing in θ, for any θ0 ∈ ΘI . Noting that `
′

= −vθ(θ0,`(θ0))
vl(θ0,`(θ0))

and using the first-order condition for d∗ at θ0, λ = −vl (θ0, d
∗ (θ0)), we obtain

ϕ′ (θ0) = vl (θ0, d
∗ (θ0))

vθ
(
θ0, ` (θ0)

)
vl
(
θ0, ` (θ0)

) − vθ (θ0, d
∗ (θ0)) (A7)

= vl (θ0, d
∗ (θ0))

(
vθ
(
θ0, ` (θ0)

)
vl
(
θ0, ` (θ0)

) − vθ (θ0, d
∗ (θ0))

vl (θ0, d∗ (θ0))

)
< 0, (A8)

where the last inequality comes from Assumption B1 and from vl < 0.

Finally, given assumption B2 a nonincreasing ϕ (θ) implies that there is a unique critical value

of θ, θnr, such that for a bank with θ ≤ θnr, d∗ = ` (θ) and for a bank with θ > θnr, d∗ < ` (θ).
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Furthermore, vlθ > 0, and continuity of d∗ imply that d∗ > 0 for θ > θnr. To show this, note that

for θ ∈ ΘI ,
∂d∗

∂θ = −vlθ
vll

> 0, and because d∗ > 0, for θ ≤ θnr and is continuous, there can be no

value of θ > θnr, for which d∗ = 0. Finally, d∗ is increasing in θ, because ∂d∗

∂θ = `
′
(θ), for θ < θnr.

Finally, notice that continuity of d∗ implies that θnr must solve

λ = −vl
(
θnr, ` (θnr)

)
. (A9)

�

Proof of Proposition 2 We show this result in several steps. First, we show that for every

strategic cutoff θ̂, there is a unique θf ∈ (θ, θ), such that the bank fails for θ ≤ θf and survives

otherwise. We also characterize the bank’s optimal dividend policy. Next, we show some properties

of π̂
(
x, θ̂
)

and conclude that there is a unique strategic cutoff θ̂. Finally, we argue using an interim

rationalizability argument that the monotone strategy equilibrium is the unique equilibrium of the

game.

A.2.1 Bank problem. The bank-owner solves

W̃ (θ) = max
d∈[0,`(θ)]

{
λd+ 1{d+A(θ,θ̂)≤`(θ)}v

(
θ, d+A

(
θ, θ̂
))}

.

Let us define D
(
θ, θ̂
)

=
{
d : d ≥ 0, d+A(θ, θ̂) ≤ ` (θ)

}
⊂
[
0, ` (θ)

]
. Given the properties of ` (θ)

and A
(
θ, θ̂
)

, D
(
θ1, θ̂

)
⊂ D

(
θ2, θ̂

)
, ∀θ1 < θ2. Specifically, given the properties of ` and A, there

is a θ0 ≥ θ, such that A
(
θ0, θ̂

)
= ` (θ0) ,and

D
(
θ, θ̂
)

=


∅ , θ < θ0[
0, ` (θ)−A

(
θ, θ̂
)]

, θ ≥ θ0

.

If D
(
θ, θ̂
)

= ∅, then the bank cannot meet the withdrawals of lenders. In that case it is optimal

for the bank to set d = ` (θ), the bank-owner obtains W̃ (θ) = λ` (θ) + κ, and the bank fails. If

D
(
θ, θ̂
)
6= ∅, then the bank can choose between:

- Setting d = ` (θ) and obtaining W̃ (θ) = λ` (θ);
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- Solving

max
d∈D

λd+ v
(
θ, d+A(θ, θ̂)

)
. (A10)

Two cases are possible depending on the parameters. In the first case, θ0 ≤ θnr, where θnr was

defined in (6). In that case for θ ∈ [θ0, θ
nr], λ > −vl

(
θ, ` (θ)

)
≥ −vl

(
θ,A

(
θ, θ̂
))

and so the value

of d that maximizes (A10) is d∗ = ` (θ) − A
(
θ, θ̂
)

. However, in that case it is clearly optimal for

the bank-owner to choose d = ` (θ) > ` (θ)−A
(
θ, θ̂
)

. Furthermore, for θ > θnr, the value of d that

maximizes (A10) satisfies the first-order condition

λ = −vl
(
θ, d∗ +A

(
θ, θ̂
))

. (A11)

In the second case, θ0 > θnr. In that case, there is a value of θ > θ0, which we can denote by θ1

such that dnr (θ1) = A
(
θ1, θ̂

)
, where dnr (θ) is defined in (7). In that case, for θ ∈ [θ0, θ1], the

value of d that maximizes (A10) is d∗ = 0, because λ ≤ −vl
(
θ,A(θ, θ̂)

)
. For θ > θ1, the value of d

that maximizes (7) satisfies (A11).

Putting these two cases together, it follows that the value of d that maximizes (A10) in all

relevant cases satisfies [
λ+ vl

(
θ, d∗ +A

(
θ, θ̂
))]

d∗ = 0. (A12)

In those cases, the bank-owner compares

λ` (θ) ≷ λd∗ + v
(
θ, d∗ +A(θ, θ̂)

)
. (A13)

Whenever the left-hand side is higher than the right-hand side, it sets d = ` (θ). Otherwise, it sets

d = d∗.

Next, define

ϕ (θ) ≡ λ` (θ)− λd∗ − v
(
θ, d∗ +A

(
θ, θ̂
))

, (A14)

for θ ≥ max {θ0, θ
nr}, where d∗ solves (A12), and let θf ≥ max {θ0, θ

nr} solve

ϕ (θf ) = 0. (A15)
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The lower and upper dominance region assumptions ensure that θf exists. To show this, note that

at θ = θ0,

ϕ (θ0) = λ` (θ0)− v
(
θ0, ` (θ0)

)
> 0. (A16)

Also, for θ > θ, the upper dominance region assumption implies that

λ` (θ) < v (θ, 1) ≤ λ
(

1−A
(
θ, θ̂
))

+ v (θ, 1)

≤ λd∗ + v
(
θ, d∗ +A

(
θ, θ̂
))

,

(A17)

where the next-to-last inequality in (A17) comes from observing that A
(
θ, θ̂
)
≤ 1 and vl < 0, while

the last inequality comes from individual optimality and feasibility of choosing d = 1 − A
(
θ, θ̂
)

(revealed preference). Thus, ϕ (θ) < 0 for θ > θ.

Next, Assumption B1 ensures that θf is unique. To show this, first note that because the

problem in (A10) is convex, the value function associated with it is differentiable and an envelope

theorem holds. Therefore, ϕ (θ) is differentiable as well. Differentiating ϕ (θ) and applying the

envelope theorem for (A10), we obtain

ϕ′ (θ) = λ`
′
(θ)− vθ

(
θ, d∗ +A

(
θ, θ̂
))
− vl

(
θ, d∗ +A

(
θ, θ̂
))

Aθ

(
θ, θ̂
)
. (A18)

Using the first order condition λ ≤ −vl
(
θ, d∗ +A(θ, θ̂)

)
and `

′
= −vθ

vl
, we obtain

ϕ′ (θ) ≤ −vl
(
θ, d∗ +A(θ, θ̂)

)
`
′
(θ)− vθ

(
θ, d∗ +A

(
θ, θ̂
))
− vl

(
θ, d∗ +A

(
θ, θ̂
))

Aθ

(
θ, θ̂
)

= vl

(
θ, d∗ +A(θ, θ̂)

) vθ (θ, ` (θ)
)

vl
(
θ, ` (θ)

) − vθ (θ, d∗ +A
(
θ, θ̂
))
− vl

(
θ, d∗ +A

(
θ, θ̂
))

Aθ

(
θ, θ̂
)

= vl

(
θ, d∗ +A(θ, θ̂)

)vθ (θ, ` (θ)
)

vl
(
θ, ` (θ)

) − vθ

(
θ, d∗ +A

(
θ, θ̂
))

vl

(
θ, d∗ +A(θ, θ̂)

) −Aθ (θ, θ̂)
 < 0,

(A19)

where the last inequality comes from Assumption B1 and from observing that Aθ < 0.

Therefore, any bank with θ ≤ θf optimally sets d = ` (θ), while a bank with θ > θf sets d = d∗

that solves (A12). Moreover, θf solves

λ` (θf ) = λd∗ (θf )− v
(
θf , d

∗ (θf ) +A
(
θf , θ̂

))
(A20)
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Using (10), we have that A
(
θf , θ̂

)
= Φ

(√
αθ

(
θ̂ − θf

))
= p, so θf satisfies (9).

A.2.2 Lender’s problem. We have

π̂(x, θf ) = p− Pr
{
`− d > A|x

}
= p− Pr {θ > θf |x} .

With a diffuse prior over θ, Bayes’ rule implies that θ|x ∼ N
(
x, α−1

θ

)
. Therefore,

Pr {θ > θf |x} = 1− Φ (
√
αθ (θf − x)) = Φ (

√
αθ (x− θf )) .

Therefore, θ̂ satisfies

Φ
(√

αθ

(
θ̂ − θf

))
= p. (A21)

A.2.3 Unique monotone equilibrium. Note that (9) only depends on θf . Moreover,

ϕ̃ (θf ) = λ` (θf )− λd∗ (θf )− v (θf , d
∗ (θf ) + p) (A22)

is strictly decreasing in θf by Assumption B1 and so θf is unique. Finally, θ̂ is uniquely determined

in (10), given θf .

A.2.4 Rationalizability. This part of the proof is standard, and, for brevity, it is included in

the Online Appendix.

�

Proof of Proposition 3. The bank-owner solves

W (θ) = max
d∈[0,`(θ)]

{
λd+ 1{d+A(d,d̂)≤`(θ)}v

(
θ, d+A

(
d, d̂
))}

.

Let d∗nr (θ) and W̃nr (θ) denote that optimal dividend policy and value function for a bank

that faces no run. Also, let θ∗nr denote that value of θ for which d∗nr (θ) = ` (θ) (see Proposition

1). Additionally, let us define D
(
θ, d̂
)

=
{
d : d ≥ 0, d+A(d, d̂) ≤ ` (θ)

}
⊂
[
0, ` (θ)

]
. Given the

properties of ` (θ), D
(
θ1, d̂

)
⊂ D

(
θ2, d̂

)
, ∀θ1 < θ2. Because dmin is the global minimizer of
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d+A
(
d, d̂
)

, it follows that

D
(
θ, d̂
)

=


∅ , θ < θ0[
dmin, d (θ)

]
, θ ≥ θ0

, (A23)

where d (θ) > dmin solves d (θ) +A(d (θ) , d̂) = ` (θ), and θ0 solves

` (θ0) = dmin +A
(
dmin, d̂

)
. (A24)

If D
(
θ, d̂
)

= ∅, then the bank cannot meet the withdrawals of lenders. In that case it is optimal

for the bank to set d = ` (θ) and g = 0, the bank-owner obtains W̃ (θ) = λl (θ), and the bank fails.

If D
(
θ, d̂
)
6= ∅, then the bank can choose between:

- Setting d = ` (θ) and obtaining W̃ (θ) = λ` (θ)

- Solving

max
d∈[dmin,d(θ)]

λd+ v
(
θ, d+A(d, d̂)

)
. (A25)

Taking the f.o.c. with respect to d, the optimal d∗ satisfies

λ+ vl

(
θ, d∗ +A

(
d∗, d̂

))(
1 +Ad

(
d∗, d̂

))
+ κ` ≤ 0

where κ` and d∗ satisfy the complementary slackness condition κ`

(
` (θ)− d∗ −A(d∗, d̂)

)
= 0.27

Notice, however, that whenever, d∗ + A(d∗, d̂) = ` (θ), the bank is better off setting d = ` (θ) and

g = 0, so one can disregard this case. Similarly, d∗ = dmin only if ` (θ) = dmin but in that case the

bank is better off setting d = ` (θ) and g = 0 as well.

For a value of d∗ > dmin that satisfies

λ+ vl

(
θ, d∗ +A

(
d∗, d̂

))(
1 +Ad

(
d∗, d̂

))
= 0, (A27)

27It is straightforward to show that d∗ ≤ dmin also satisfies the second-order condition

vll (θ, d∗ +A) (1 +Ad) + vl (θ, d∗ +A)Add < 0. (A26)
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the bank owner compares

λ` (θ) ≷ λd∗ + v
(
θ, d∗ +A(d∗, d̂)

)
. (A28)

Whenever the left-hand side is higher than the right-hand side, the bank sets d = ` (θ) and g = 0.

Otherwise, it sets d = d∗ and g = A
(
d∗, d̂

)
.

Next, define

ϕ (θ) ≡ λ` (θ)− λd∗ − v
(
θ, d∗ +A

(
θ, θ̂
))

, (A29)

for θ ≥ θ0, where d∗ solves (A27), and let θf ≥ θ0 solve

ϕ (θf ) = 0. (A30)

The lower and upper dominance region assumptions ensure that θf exists. To show this, note that

at θ = θ0,

ϕ (θ0) = λ` (θ0)− λdmin − v
(
θ0, ` (θ0)

)
= λ` (θ0)− λdmin − κ > 0.

(A31)

Also, for θ > θ, the upper dominance region assumption implies that

λ` (θ) < v (θ, 1) ≤ λd̃1 + v (θ, 1)

≤ λd∗ + v
(
θ, d∗ +A

(
d∗, d̂

))
,

(A32)

where d̃1 ≥ dmin solves d̃1 + A
(
d̃1, d̂

)
= 1. The last inequality in (A32) comes from individual

optimality and feasibility of choosing d = d̃1 (revealed preference). Thus, ϕ (θ) < 0 for θ > θ.

Next, Assumption B1 ensures that θf is unique. To show this, first note that the problem (A25)

is convex so the value function associated with it is differentiable and an envelope theorem holds.

Therefore, ϕ (θ) is also differentiable. Next, notice that (A27) also implies that d∗ is continuous in

θ. Differentiating ϕ (θ) and applying the envelope theorem, we get

ϕ′ (θ) = λ`
′
(θ)− vθ

(
θ, d∗ +A

(
d∗, d̂

))
. (A33)
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Using `
′
= −vθ

vl
, we obtain

ϕ′ (θ) = −λ
vθ
(
θ0, ` (θ0)

)
vl
(
θ0, ` (θ0)

) − vθ (θ, d∗ +A
(
d∗, d̂

))
= vl

(
θ, d∗ +A(d∗, d̂)

) vθ (θ0, ` (θ0)
)

vl
(
θ0, ` (θ0)

) − vθ (θ, d∗ +A
(
d∗, d̂

))

= vl

(
θ, d∗ +A(d∗, d̂)

)vθ (θ0, ` (θ0)
)

vl
(
θ0, ` (θ0)

) − vθ

(
θ, d∗ +A

(
d∗, d̂

))
vl

(
θ, d∗ +A(d∗, d̂)

)
 < 0,

(A34)

where the second line follows from the first order condition λ = −vl
(
θ, d∗ +A(d∗, d̂)

)
, and the last

inequality comes from Assumption B1.

Therefore, any bank with θ ≤ θf optimally sets d = ` (θ) and g = 0, while a bank with θ > θf

sets d = d∗ that solves (A27) and g = A
(
d∗, d̂

)
.

Finally, d is discontinuous at θ = θf . with d
(
θ−f

)
> d

(
θ+
f

)
. �

Proof of Lemma 1 It will be useful to work with the posterior odds that the bank fails, that is,

h (di, θf ) ≡
Pr {θ < θf |di}
Pr {θ > θf |di}

=

∫K
−K f (di|θ) f

(
θ|θ < θf

)
dθPr {θ < θf}∫K

−K f (di|θ) f (θ|θ > θf ) dθPr {θ > θf}

=

∫ θf
−K φ

(√
α
(
` (θ)− di

))
dθ∫K

θf
φ (
√
α (d∗ (θ)− di)) dθ

,

where the last line uses the symmetry of the normal pdf around the mean and an improper prior

over θ. Let

N (di, θf ) ≡
∫ θf

−K

√
αφ
(√
α
(
` (θ)− di

))
dθ,

and

D (di, θf ) ≡
∫ K

θf

√
αφ
(√
α (d∗ (θ)− di)

)
dθ.

Then

h (di, θf ) =
N (di, θf )

D (di, θf )
,

and so

log (h (di, θf )) = log (N (di, θf ))− log (D (di, θf )) .
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Therefore, h (di, θf ) is decreasing in di, iff log (h (di, θf )) is decreasing in di, which will be the case

iff

Ndi

N
<
Ddi

D
.

Note that

Ndi

N
= −

∫ θf
−K φ

′ (√α (` (θ)− di
))
dθ∫ θf

−K φ
(√
α
(
` (θ)− di

))
dθ

=

∫ θf

−K
α
(
` (θ)− di

) φ
(√
α
(
` (θ)− di

))∫ θf
−K φ

(√
α
(
` (θ)− di

))
dz
dθ

= α
{
EN,i

[
` (θ)

]
− di

}
.

Similarly,

Dx

D
= α {ED,i [d∗ (θ)]− di}

Therefore, the comparison simplifies to

α
{
EN,i

[
` (θ)

]
− di

}
< α {ED,i [d∗ (θ)]− di}

or

EN,i
[
` (θ)

]
< ED,i [d∗ (θ)] .

�

Proof of Proposition 4 A lender with signal d̂ is indifferent between running and rolling over

whenever

Pr
{
θ < θf |d̂

}
= 1− p,

or equivalently,

Pr
{
θ < θf |d̂

}
Pr
{
θ > θf |d̂

} =
1− p
p

.
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Next, notice that by the lower dominance assumption, ` (θ) = 0, for θ ≤ θ. Therefore, we can

rewrite EN,i
[
` (θ)

]
as

EN,i
[
` (θ)

]
= (1−ΨN,i (θ))EN,i

[
` (θ) |θ ∈ [θ, θf ]

]
,

≤ (1−ΨN,i (θ)) ` (θf ) ≤ 1−ΨN,i (θ)

where ΨN,i (x) denotes the cumulative distribution function of ψN,i (x). The first inequality follows

from the strict monotonicity of ` (θ) and the second inequality follows from the observation that

θf ≤ θ and the upper dominance region assumption. On the other hand, by Proposition 3, d∗ (θ) >

dmin, so ED,i [d∗ (θ)] > dmin. However, observe that

ΨN,i (θ) =

∫ θ
−K φ

(√
α
(
` (z)− di

))
dz∫ θf

−K φ
(√
α
(
` (z)− di

))
dz

=
φ (
√
α (di)) (θ +K)

φ (
√
α (di)) (θ +K) +

∫ θf
θ φ

(√
α
(
` (z)− di

))
dz

=
1

1 + 1
θ+K

∫ θf
θ

φ(
√
α(`(z)−di))
φ(
√
αdi)

dz

≥ 1

1 +
θf−θ
θ+K maxz∈[θ,θf ]

φ(
√
α(`(z)−di))
φ(
√
αdi)

Therefore, for sufficiently large values of K one can ensure that EN,i
[
` (θ)

]
< dmin < ED,i [d∗ (θ)],

for any di. Therefore, by Lemma 1, Pr {θ < θf |di} is monotone decreasing in di, and so is

Pr{θ<θf |di}
Pr{θ>θf |di} . Also, clearly,

Pr{θ<θf |di}
Pr{θ>θf |di} can be made arbitrarily large (arbitrarily close to 0) for

sufficiently small (large) di. Therefore, by the intermediate value theorem, there exists a unique

marginal lender with signal d̂ that satisfies (20). By the strict monotonicity of
Pr{θ<θf |di}
Pr{θ>θf |di} , for any

lender with di < d̂,
Pr{θ<θf |di}
Pr{θ>θf |di} <

1−p
p , so that lender is strictly better off attacking. Similarly, any

lender with di > d̂ is strictly better off not attacking. �

Proof of Proposition 5. Consider the condition for the marginal lender (20). First, let us

multiply both the numerator and denominator on the left-hand side by
√
α. Next, notice that both

` (θ) and d∗ (θ) are differentiable, by the Implicit function theorem. Also, ` (θ) is strictly monotone

on [θ, θf ] and also d∗ (θ) is strictly monotone for θ > θf for sufficiently large α. To see the latter,
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note that by the implicit function theorem, from (15) we have that

d∗
′
(θ) =

vlθ (θ, d∗ +A)

−vll (θ, d∗ +A) (1 +Ad)− vl Add1+Ad

= − vlθ
v2l
λ α

3/2
(
d∗ − d̂

)
φ
(√

α
(
d∗ − d̂

))
− λvllvl

,

where the second line uses condition (15) and the observation that

Add = α
(
d∗ − d̂

)
− α3/2

(
d∗ − d̂

)
φ
(√

α
(
d∗ − d̂

))
,

and note that limα→∞ αAd = limα→∞ α
3/2φ

(√
α
(
d∗ − d̂

))
= 0 for any d∗ > d̂. Therefore, we can

use a change of variable to rewrite the left-hand side of (20) as

√
αφ
(
d̂
)

(θ +K) +
∫ `(θf)

0
1

`
′(
`
−1

(x)
)√αφ(√α(x− d̂)) dx∫ d∗(K)

d∗(θf)
1

d∗′ (d∗−1(x))

√
αφ
(√

α
(
x− d̂

))
dx

.

Using integration by parts, we further obtain28

√
αφ
(√

αd̂
)

(θ +K) +
Φ(
√
α(`(θf)−d̂))

`
′
(θf)

− Φ(
√
α(−d̂))

`
′
(θ)

−
∫ `(θf)

0 Φ
(√

α
(
x− d̂

))
∂
∂x

(
1

`
′(
`
−1

(x)
)
)
dx

Φ(
√
α(d∗(K)−d̂))
d∗′ (K)

− Φ(
√
α(d∗(θf)−d̂))
d∗′(θf)

−
∫ d∗(K)

d∗(θf)
Φ
(√

α
(
x− d̂

))
∂
∂x

(
1

d∗′ (d∗−1(x))

)
dx

=

√
αφ
(√

αd̂
)

(θ +K) +
1−A(`(θf),d̂)

`
′
(θf)

− 1−A(0,d̂)

`
′
(θ)

−
∫ `(θf)

0

(
1−A

(
x, d̂
))

∂
∂x

(
1

`
′(
`
−1

(x)
)
)
dx

1−A(d∗(K),d̂)
d∗′ (K)

− 1−A(d∗(θf),d̂)
d∗′(θf)

−
∫ d∗(K)

d∗(θf)

(
1−A

(
x, d̂
))

∂
∂x

(
1

d∗′ (d∗−1(x))

)
dx

=

√
αφ
(√

αd̂
)

(θ +K) +
1−A(`(θf),d̂)

`
′
(θf)

− 1−A(0,d̂)

`
′
(θ)

−
∫ `(θf)

0

(
1−A

(
x, d̂
))

∂
∂x

(
1

`
′(
`
−1

(x)
)
)
dx

1−A(d∗(K),d̂)
d∗′ (K)

− 1−A(d∗(θf),d̂)
d∗′(θf)

−
(

1
d∗′ (K)

− 1
d∗′(θf)

)
+
∫ d∗(K)

d∗(θf)
A
(
x, d̂
)

∂
∂x

(
1

d∗′ (d∗−1(x))

)
dx

=

√
αφ
(√

αd̂
)

(θ +K) +
1−A(`(θf),d̂)

`
′
(θf)

− 1−A(0,d̂)

`
′
(θ)

−
∫ `(θf)

0

(
1−A

(
x, d̂
))

∂
∂x

(
1

`
′(
`
−1

(x)
)
)
dx

A(d∗(K),d̂)
d∗′ (K)

+
A(d∗(θf),d̂)
d∗′(θf)

+
∫ d∗(K)

d∗(θf)
A
(
x, d̂
)

∂
∂x

(
1

d∗′ (d∗−1(x))

)
dx

,

28We implicitly assume that v is differentiable of sufficient order for the expression below.
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where we use Φ
(√

α
(
x− d̂

))
= 1−Φ

(√
α
(
d̂− x

))
= 1−A

(
x, d̂
)

to substitute for the fraction

of lenders attacking for a given dividend level x. Notice that from the bank’s problem, ` (θf ) ≥

d∗
(
θf
)
> dmin > d̂, for sufficiently large α. Also, the integrals in the numerator and denominator

exist for any α, and in the limit, as α→∞, and lenders are perfectly coordinated.

A
(
x, d̂
)

=


0 , x > d̂

[0, 1] , x = d̂

1 , x < d̂

Thus,

lim
α→∞

∫ θf
−K φ

(√
α
(
` (θ)− d̂

))
dθ∫K

θf
φ
(√

α
(
d∗ (θ)− d̂

))
dθ

=

limα→∞
1

`
′(
`
−1

(d̂)
)

limα→∞
A(d∗(θf),d̂)
d∗′(θf)

=
1− p
p

or

lim
α→∞

A
(
d∗ (θf ) , d̂

)
d∗′ (θf )

=
p

1− p
lim
α→∞

1

`
′ (
`
−1
(
d̂
)) .

Because limα→∞A
(
d∗ (θf ) , d̂

)
= 0, it follows that d∗

′
(θf )→ 0, as well.

Next, consider the bank’s problem. For θ > θf , we can combine conditions (15) and (7) and

write condition (15) as

vl (θ, dnr (θ))

vl

(
θ, d∗ (θ) +A

(
d∗ (θ) , d̂

)) = 1 +Ad

(
d∗ (θ) , d̂

)
. (A35)

In the limit, as α → ∞ and lenders become perfectly coordinated, so Ad

(
d∗, d̂

)
→ 0 for d∗ > d̂.

Therefore, from (A35) we obtain

vl (θ, dnr (θ))

vl (θ, d∗ (θ))
→ 1,

and so d∗ (θ)→ dnr (θ). In addition, in the limit, the marginal bank that is indifferent between fail-

ing and surviving experiences no run in equilibrium, because limα→∞A
(
d∗ (θf ) , d̂

)
= 0. Therefore,

condition (14) implies that

λ` (θf ) = λd∗ (θf ) + v (θf , d
∗ (θf )) .

However, by the definition of θ∗ in (6), this in turn implies that θf → θ∗ and d∗ (θf ) → ` (θ∗).

44



Finally, note that

d∗
′
(θf ) = − vlθ

v2l
λ α

3/2
(
d∗ (θf )− d̂

)
φ
(√

α
(
d∗ (θf )− d̂

))
− λvllvl

→ 0

implies that α3/2
(
d∗ (θf )− d̂

)
φ
(√

α
(
d∗ (θf )− d̂

))
→ ∞, which can only be the case if d̂ →

d∗ (θf ). �

Proof of Proposition 6 First, notice that we can treat both the failure threshold θPf and the

dividend cutoff d̂P as choice variables for the policy maker, subject to two constraints. First, it

must be feasible for banks with θ > θPf to survive given the dividend payout dP (θ). The minimum

such payout for surviving banks is given by dPmin = arg mind

{
d+A

(
d, d̂P

)}
. Second, the dividend

cutoff d̂P must satisfy Equation (20) given θPf and dP (θ). Given these observations, we can write

the policy maker’s problem as

min
θPf ,d̂

P ,dPmin,{dP (θ)}
θPf (A36)

s.t. θPf ≥ `
−1
(
dPmin +A

(
dPmin, d̂

P
))

, (A37)

∫ θPf
−K φ

(√
α
(
dP (θ)− d̂P

))
dθ∫K

θPf
φ
(√

α
(
dP (θ)− d̂P

))
dθ

=
1− p
p

, (A38)

dPmin = arg min
d

{
d+A

(
d, d̂P

)}
. (A39)

dP (θ) ∈
[
dPmin, ` (θ)

]
,∀θ > θPf , (A40)

dP (θ) ∈
[
0, ` (θ)

]
,∀θ ≤ θPf , (A41)

where d (θ) solves d (θ) +A
(
d (θ) , d̂P

)
= ` (θ).

We will first simplify the policy maker’s problem (A36). Note that dPmin = d̂P + C0, where

C0 = 1√
α
φ−1

+

(
1√
α

)
, and φ−1

+ (.) denotes the inverse of φ (.) over the positive part of the domain,

which is a well-defined function. Similarly, A
(
dPmin, d̂

P
)

= C1 = Φ
(
φ−1

+

(
1√
α

))
, so the feasibility

constraint (A37) can be written as,

θPf ≥ `
−1
(
d̂P + C

)
, (A42)
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where C = C0 + C1. Next, notice that ∂d̂P

∂θPf
> 0, for sufficiently large K (see the proof of Propo-

sition 9). Therefore, the constraint (A37) must be binding at the optimum; otherwise, one can

decrease θPf and achieve a relaxation of the problem at the same time. Thus, we can substitute for

θPf = `
−1
(
d̂P + C

)
. Furthermore, notice that `

−1
(.) is monotone increasing, so minimizing θPf is

equivalent to minimizing d̂P . Therefore, the policy maker’s problem simplifies to29

min
d̂P ,{dP (θ)}

d̂P (A43)

s.t.

∫ `−1
(d̂P+C)

−K φ
(√

α
(
dP (θ)− d̂P

))
dθ∫K

`
−1

(d̂P+C)
φ
(√

α
(
dP (θ)− d̂P

))
dθ

=
1− p
p

, (A44)

dP (θ) ∈
[
d̂+ C0, ` (θ)

]
, ∀θ > θPf , (A45)

dP (θ) ∈
[
0, ` (θ)

]
,∀θ ≤ θPf , (A46)

Hence, the policy maker’s problem boils down to choosing dP (θ) to induce the smallest d̂P that

is consistent with the lenders’ inference and lender optimality. Furthermore, notice that the opti-

mization over
{
dP (θ)

}
is pointwise.30

Next, we will show that for sufficiently large values of α, ∂d̂P /∂dP (θ) > 0, iff dP (θ) < d̂P , for

θ < θPf and ∂d̂P /∂dP (θ) > 0, iff dP (θ) > d̂, for θ > θPf . To show this, consider Equation (A44)

and let

Φ ≡

∫ `−1
(d̂P+C)

−K φ
(√

α
(
dP (θ)− d̂P

))
dθ∫K

`
−1

(d̂P+C)
φ
(√

α
(
dP (θ)− d̂P

))
dθ
. (A47)

denote its left-hand side. Therefore, ∂d̂P /∂dP (θ) = −∂Φ/∂dP (θ)

∂Φ/∂d̂P (θ)
.31 Consider first the sign of the

denominator of this expression. For brevity, we will use again θPf = `
−1
(
d̂P + C

)
in the limits

of the integrals in (A47). Also, to establish the sign of ∂Φ/∂d̂P (θ) we will consider the sign of

29Assumptions B3 and B4 ensure that d̂ ∈ (0, 1). Those assumptions hold also for the optimal dividend policy.
30Technically, for θ > θPf , the choice of one value of dP influences the feasible set for other values of dP via its effect

on d̂. However, as we will see below even if we disregard the effect on the feasibility constraint, we still obtain that
it is optimal to be at the lowest feasible value for dP for any θ > θPf .

31Technically, we cannot apply the implicit function theorem because dP (θ) is infinite-dimensional. However, one
can invoke the theorem under the assumption that the optimal policy dP (θ) is a step function consisting of a large
but finite number of steps, denoted by N , where the optimization is over the values dP takes on disjoint intervals
{Ii}Ni=1 that cover [−K,K]. In that case, we let ∂d̂P /∂dP (θ) denote the partial derivative of d̂P with respect to the
value dP takes over the interval Ii that θ lies in.
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∂ log Φ/∂d̂P . Notice that

d log Φ

dd̂P
= α

[
EN,d̂

[
dP (θ)

]
− ED,d̂

[
dP (θ)

]]
+,

+

 φ
(√

α
(
dP
(
θPf

)
− d̂P

))
∫ θPf
−K φ

(√
α
(
dP (θ)− d̂P

))
dθ

+
φ
(√

α
(
dP,+

(
θPf

)
− d̂P

))
∫K
θPf
φ
(√

α
(
dP (θ)− d̂P

))
dθ

 ∂θPf
∂d̂

where EN,d̂ [.] and ED,d̂ [.] are defined immediately before Lemma 1. Furthermore, using (A44) and

the mean-value theorem, we can rewrite the second line as

d log Φ

dd̂P
= α

[
EN,d̂

[
dP (θ)

]
− ED,d̂

[
dP (θ)

]]
+

+

 φ
(√

α
(
`
(
θPf

)
− d̂P

))
φ
(√

α
(

0− d̂P
))

(θ +K) + φ
(√

α
(
dP
(
θ̃1

)
− d̂P

))(
θPf − θ

)
+

1− p
p

φ
(√

α
(
dP,+

(
θPf

)
− d̂P

))
φ
(√

α
(

0− d̂P
))

(θ +K) + φ
(√

α
(
dP
(
θ̃1

)
− d̂P

))(
θPf − θ

)
 ∂θPf
∂d̂P

,

for θ̃1 ∈
(
θ, θPf

)
. First, note that `

(
θPf

)
≥ dP,+

(
θPf

)
. Therefore, φ

(√
α
(
`
(
θPf

)
− d̂P

))
≤

φ
(√

α
(
dP,+

(
θPf

)
− d̂P

))
. Next, notice that

φ
(√

α
(
dP,+

(
θPf

)
− d̂P

))
φ
(√

α
(

0− d̂P
))

(θ +K) + φ
(√

α
(
dP
(
θ̃1

)
− d̂P

))(
θPf − θ

)
≤

φ
(√

α
(
dPmin − d̂P

))
φ
(√

α
(

0− d̂P
))

(θ +K) + φ
(√

α
(
dP
(
θ̃1

)
− d̂P

))(
θPf − θ

)
=

1

(θ +K)
φ(
√
α(0−d̂P ))

φ(
√
α(dPmin−d̂P ))

+
(
θPf − θ

)
φ(
√
α(dP (θ̃1)−d̂P ))

φ(
√
α(dPmin−d̂P ))

=
1

(θ +K)
√
αφ
(√

αd̂P
)

+
(
θPf − θ

)√
αφ
(√

α
(
dP
(
θ̃1

)
− d̂P

)) ,
where in the last line we use φ

(√
α
(
dPmin − d̂P

))
= φ

(√
α 1√

α
φ−1

+

(
1√
α

))
= 1√

α
and the symmetry
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of the standard normal density. Let d̃P ≥ d̂P solve

∫ θ
−K φ

(√
α
(

0− d̃P
))

dθ +
∫ `−1

(d̃P+C)
θ φ

(√
α
(
dP (θ)− d̃P

))
dθ∫K

`
−1

(d̃P+C)
φ
(√

α
(
d̃min − d̃P

))
dθ

=
1− p
p

,

where d̃min = arg mind

{
d+A

(
d, d̃P

)}
≥ dmin. Suppose that d̂P = d̃P . Then, we have that

1− p
p

=

∫ θ
−K φ

(√
αd̂P

)
dθ +

∫ `−1
(d̂P+C)

θ φ
(√

α
(
dP (θ)− d̂P

))
dθ∫K

θPf
φ
(√

α
(
dPmin − d̂P

))
dθ

=

=
(θ +K)

√
αφ
(√

αd̂P
)

+
(
θPf − θ

)√
αφ
(√

α
(
dP
(
θ̃1

)
− d̂P

))
K − θPf

.

Therefore,

1− p
p

φ
(√

α
(
dP,+

(
θPf

)
− d̂P

))
φ
(√

αd̂P
)

(θ +K) + φ
(√

α
(
dP
(
θ̃1

)
− d̂P

))(
θPf − θ

) =
1

K − θPf
. (A48)

and so

d log Φ

dd̂P
≤ α

[
EN,d̂

[
dP (θ)

]
− ED,d̂

[
dP (θ)

]]
+

1

K − θPf

1

1− p
∂θPf

∂d̂
.

Because EN,d̂
[
dP (θ)

]
− ED,d̂

[
dP (θ)

]
< 0 for sufficiently large K (see the proof of Proposition 4),

it follows that d log Φ

dd̂P
< 0 for sufficiently large values of α.

Suppose instead that 0 < d̂P < d̃P . Therefore,
√
αφ
(√

αd̂P
)
>
√
αφ
(√

αd̃P
)
≥ 0, and hence

1

(θ +K)
√
αφ
(√

αd̂P
)

+
(
θPf − θ

)√
αφ
(√

α
(
dP
(
θ̃1

)
− d̂P

)) ≤M
for M ≥ 0. In that case

d log Φ

dd̂P
≤ α

[
EN,d̂

[
dP (θ)

]
− ED,d̂

[
dP (θ)

]]
+

M

1− p
∂θPf

∂d̂
,

and again d log Φ

dd̂P
< 0, for sufficiently large values of α.
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Next, notice that for θ < θPf , ∂Φ/∂dP (θ) > 0, iff dP (θ) < d̂P , while for θ > θPf , ∂Φ/∂dP (θ) > 0,

iff dP (θ) > d̂P . Therefore, we consider three cases:

1. For θ > θPf , dP (θ) ≥ dmin > d̂P , so it follows that ∂d̂P

∂dP (θ)
> 0.

2. For θ < `
−1
(
d̂P
)
< θPf , dP (θ) < d̂P ,so ∂d̂P

∂dP (θ)
> 0, as well.

3. For θ ∈
[
`
−1
(
d̂P
)
, θPf

)
, ∂d̂P

∂dP (θ)
> 0 or ∂d̂P

∂dP (θ)
< 0, depending on whether dP (θ) < d̂P or

dP (θ) > d̂P .

For cases (1) and (2), it is optimal to set dP (θ) to its lowest feasible value, namely, dP (θ) =

dmin = d̂ + C0 for θ > θPf and dP (θ) = 0, for θ < `
−1
(
d̂P
)

. For case 3) it is still the case

that optimality implies that dP (θ) is at a corner. However, it is unclear whether dP (θ) = 0 or

dP (θ) = ` (θ) is optimal. Putting these three cases together we arrive at (22). �

Proof of Proposition 7 First, notice that with the optimal dividend policy given in (22), the

left-hand side of (20) becomes

∫ θPf
−K φ

(√
α
(
dP (θ)− d̂P

))
dθ∫K

θPf
φ
(√

α
(
dP (θ)− d̂P

))
dθ

=

∫ `−1
(d̂)

−K φ
(√

α
(

0− d̂P
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dθ +
∫ θPf
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(√

α
(
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dθ∫K
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(√

α
(
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))
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.

Next, notice that φ
(√

α
(
dPmin − d̂P

))
= φ

(√
α 1√

α
φ−1

+

(
1√
α

))
= 1√

α
,so the denominator of the

above expression is (K − θf ) 1√
α

. Similarly, the first term in the numerator is φ
(
−
√
αd̂P

)(
`
−1
(
d̂P
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+K
)

=

φ
(√

αd̂P
)(

`
−1
(
d̂P
)

+K
)

given the symmetry of the standard normal density around 0. There-

fore, the equation becomes

√
αφ
(√

αd̂P
) `

−1
(
d̂P
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K − `−1
(
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. (A49)

Next, notice that limα→∞
√
αφ
(√

αd̂P
)

= 0 for d̂P > 0. Also, limα→∞C = 0 and the integrand in

the second term on the left-hand side is bounded, so the second term converges to zero as α→∞.

Therefore, it must be the case that d̂P → 0. The rest of the proposition then follows directly. �

Proof of Proposition 8
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A.3 Comparative Statics with Respect to p Disregarding the effects through changes in

d∗ (θ) for now, we have that

dd̂

dp
=
∂d̂

∂p
+
dθf
dp

∂d̂

∂θf
=
∂d̂

∂p
+
dd̂

dp

∂θf

∂d̂

∂d̂

∂θf
,

so

dd̂

dp
=

∂d̂
∂p

1− ∂θf

∂d̂
∂d̂
∂θf

.

Next, note that ∂d̂
∂p > 0, because the left-hand side of (20) is increasing in d̂ for sufficiently large K

(by Lemma 1). Also, note that ∂θf

∂d̂
= − vl

vθ
> 0 (see the proof of Proposition 9). Furthermore, it is

bounded (because θ lies in a compact set and v is continuously differentiable). Finally, taking logs

on both sides of (20) and defining the left-hand side by log Φ, we have that

∂d̂

∂θf
= −

∂ log Φ/∂θf

∂ log Φ/∂d̂
> 0. (A50)

The numerator of this expression equals,

∂ log Φ

∂θf
=

φ
(√

α
(
` (θf )− d̂

))
∫ θf
−K φ

(√
α
(
` (θ)− d̂

))
dθ

+
φ
(√

α
(
d∗ (θf )− d̂

))
∫K
θf
φ
(√

α
(
d∗ (θ)− d̂

))
dθ

(A51)

and is bounded above (see the proof of Proposition 6). On the other hand, the denominator is

∂ log Φ

∂d̂
= α

[
EN,d̂

[
` (θ)

]
− ED,d̂ [d∗ (θ)]

]
, (A52)

where EN,d̂ [.] and ED,d̂ [.] are defined immediately before Lemma 1. It follows that ∂d̂
∂θf

can be made

arbitrarily small for sufficiently large values of α and, hence, dd̂
dp > 0. Finally, because d∗ (θ) > dmin

is determined by

λ = −vl
(
θ, d∗ (θ) +A

(
d∗ (θ) , d̂

)) [
1 +Ad

(
d∗ (θ) , d̂

)]
, (A53)

it follows that

∂d∗ (θ)

∂d̂
=
vll [1 +Ad]Ad̂ + vlAdd̂
vll [1 +Ad]

2 + vlAdd
.
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However, Ad̂ =
√
αφ
(√

α
(
d̂− d∗ (0)

))
→ 0 as α→∞, because d∗ > d̂. Also,

Add̂ = α3/2φ
(√

α
(
d̂− d∗ (θ)

))(
d̂− d∗ (θ)

)
→ 0,

as α→∞. On the other hand, vll [1 +Ad]
2 6= 0 for any α and d∗ > dmin. Therefore, limα→∞

∂d∗(θ)

∂d̂
=

0 for any θ > θf . Because p only affects d∗ (θ) through d̂, it follows that disregarding the

feedback effects of d∗ (θ) on d̂ is valid in the limit as α → ∞ and, so, limα→∞
dd̂
dp > 0. Also,

limα→∞
dθf
dp = limα→∞

dd̂
dp
∂θf

∂d̂
=
(

limα→∞
dd̂
dp

)(
limα→∞

∂θf

∂d̂

)
> 0.

A.4 Comparative Statics with Respect to b Note that for b 6= 1, the condition (14) for θf

becomes

λ` (θf ) = λd∗ (θf ) + v
(
θf , d

∗ (θf ) + bA
(
d∗ (θf ) , d̂

))
,

where d∗ (θ) > dmin satisfies the condition

λ = −vl
(
θ, d∗ (θ) + bA

(
d∗ (θ) , d̂

))(
1 + bAd

(
d∗ (θ) , d̂

))
, (A54)

and dmin satisfies 1 + bAd = 0, such that d̂ < dmin. As with the comparative statics for p, we first

disregard the effects through changes in d∗ (θ). Therefore,

dd̂

db
=
∂d̂

∂b
+
dθf
db

∂d̂

∂θf
=
∂d̂

∂b
+

(
∂θf
∂b
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dd̂

db
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)
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∂θf
,

so

dd̂

db
=

∂d̂
∂b + ∂d̂

∂θf

∂θf
∂b

1− ∂θf

∂d̂
∂d̂
∂θf

.

Next, note that ∂d̂
∂b ≥ 0. First of all, changes in b have no direct effect on d̂, so ∂d̂

∂b = 0. Second, in our

partially microfounded example in the Online Appendix, we have that p depends on b. Moreover

∂p
∂b > 0 in that case. Because ∂d̂

∂p > 0 from the proof of Proposition 8, it follows that ∂d̂
∂b > 0.

Next, by the implicit function theorem and envelope theorem,

∂θf
∂b

= − vlA

vθ

(
vl+λ
vl

) , (A55)
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and note that limα→∞
∂θf
∂b = 0, because limα→∞A → 0 for d∗ (θ) > d̂. Finally, using the same

argument as in the proof of Proposition 8 we have that ∂d̂
∂θf

can be made arbitrarily small for

sufficiently large values of α and, hence, dd̂
db . Also, as in Proposition 8 one can indeed disregard the

feedback effects of d∗ (θ) on d̂ in the limit as α→∞ and so limα→∞
dd̂
db > 0.

Finally, note that

lim
α→∞

dθf
db

= lim
α→∞

dd̂

db

∂θf

∂d̂

=

(
lim
α→∞

dd̂

db

)(
lim
α→∞

∂θf

∂d̂

)
≥ 0.
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Payoffs realized

Figure 1. Timing of events .
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Figure 2. Exogenous information and the no-run benchmark

This figure shows the equilibrium dividend policies under the no-run benchmark (black, dashed

line) and the exogenous information case (solid-red line).
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Figure 3. Liquidity outflow as a function of dividends paid

This figures shows the total liquidity outflow d+A
(
d, d̂
)

, for a given d̂, as a function of the dividend

d. In this case, α is sufficiently high so that the liquidity outflow is decreasing in a region around

d̂.
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Figure 4. Equilibrium dividend policies for low (left panel) and high (right panel)

dividend signal precisions

This figure shows the equilibrium dividend policy in the no-run benchmark (red, dashed lines)

and the dividend signaling case (solid-red lines). In the left panel, α = 400; in the right panel,

α = 1, 000, 000. See the Online Appendix for additional details.
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Figure 5. Dividend policy comparative statics with respect to p (left panel) and b

(right panel)

This figure shows the optimal dividend policy with dividend signaling for different values of p and

b. The left panel considers two different values of p (p = 0.5 for the solid-red line, and p = 0.7

for the blue dashed line), and the right panel shows the equilibrium for two different values of b

(b = 0.5 for the solid-red line, and b = 0.5 for the blue dashed line). In both panels, the black

dashed line is the equilibrium under the no-run benchmark.
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Figure 6. Yearly nominal dividend payments for large U.S. banks with different re-

liance on short-term debt

The figure shows the evolution of dividend payouts for U.S banks. In each panel, we split banks

into two groups, based on their degree of short-term funding. We follow Hirtle (2014) and focus

on large banks, defined as bank holding companies with more than $500 million in assets as of

Q12006. Bank holding companies are then grouped into four quartiles based on their short-term

debt relative to total liabilities in 2006. The figure compares the dividend payments of the 1st and

the 4th quartiles. Short-term debt is defined as the sum of repurchase agreements, time deposits

above $100,000, and federal funds. Left panel: All banks. Right panel: Only banks with average

RoA in 2009 above the median. Source: Y-9C reports of bank holding companies.
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Figure 7. Industry-level standard deviation of dividend growth and short-term debt

reliance.

The figure shows a binned scatter plot of industry-level short-term debt share (short-term debt as

share of total assets) (x -axis) plotted against the standard deviation of that industry’s dividend

growth. Short-term debt is defined as current liabilities. The industry-level correspond to 4-digit

SIC code, excluding financials (SIC codes 6000–6999) and utilities (SIC codes 4900–4949). Sources:

CRSP and Compustat.
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Figure legends

Figure 1: Timing of events.

This figure outlines the timing in our model.

Figure 2: Exogenous information and the no-run benchmark.

This figure shows the equilibrium dividend policies under the no-run benchmark (black, dashed

line) and the exogenous information case (red solid line).

Figure 3: Liquidity outflow as a function of dividends paid.

This figures shows the total liquidity outflow d+A
(
d, d̂
)

, for a given d̂, as a function of the dividend

d. In this case, α is sufficiently high so that the liquidity outflow is decreasing in a region around

d̂.

Figure 4: Equilibrium dividend policies for low (left panel) and high (right panel)

dividend signal precisions

This figure shows the equilibrium dividend policy in the no-run benchmark (red, dashed lines) and

the dividend signaling case (red solid lines). In the left panel, α = 400 and in the right panel

α = 1000000. See the Online Appendix for additional details.

Figure 5: Dividend policy comparative statics with respect to p (left panel) and b

(right panel).

This figure shows the optimal dividend policy with dividend signaling for different values of p and

b. The left panel considers two different values of p (p = 0.5 for the red solid line, and p = 0.7

for the blue dashed line) while the right panel shows the equilibrium for two different values of b

(b = 0.5 for the red solid line, and b = 0.5 for the blue dashed line). In both panels, the black

dashed line is the equilibrium under the no-run benchmark.

Figure 6: Yearly nominal dividend payments for large U.S banks with different reliance

on short-term debt.

The figure shows the evolution of dividend payouts for U.S banks. In each panel, we split banks

into two groups, based on their degree of short-term funding. We follow Hirtle (2014) and focus
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on large banks, defined as bank holding companies with more than $500 million in assets as of

Q1-2006. Bank holding companies are then grouped into four quartiles based on their short-term

debt relative to total liabilities in 2006. The figure compares the dividend payments of the 1st and

the 4th quartile. Short-term debt is defined as the sum of repurchase agreements, time deposits

above $100,000, and federal funds. Left panel: All banks. Right panel: Only banks with average

RoA in 2009 above the median Source: Y-9C reports of bank holding companies).

Figure 7: Industry-level standard deviation of dividend growth and short-term debt

reliance.

The figure shows a binned scatter plot of industry-level short-term debt share (short-term debt as

share of total assets) (x-axis) plotted against the standard deviation of that industry’s dividend

growth. Short-term debt is defined as current liabilities. The industry-level correspond to 4-digit

SIC code, excluding financials (SIC codes 6000-6999) and utilities (SIC codes 4900-4949) Sources:

CRSP and Compustat.
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