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ABSTRACT

We use a dividend-yield model from Campbell and Shiller (1988) to forecast the future stock
market return on the U.S and Norwegian data from 1984-2018. We use the method from
Cochrane (2008), by regressing a Vector Autoregression (VAR)-system and check for forecast-
ing power in the long-run. We find that return gives stronger evidence against unforecastable
null-hypothesis for return in the U.S data than the Norwegian data. Norwegian market gives
stronger evidence for the dividend growth. R2 increases in the long-run for dividend growth in
the Norwegian data, while R2 decreases for return. The opposite appears for the U.S data. We
conclude that stock market predictability using the dividend yield model from Campbell and
Shiller (1988) and Cochrane (2008) method gives different results for Norwegian data compared
to the U.S data.
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1 Introduction

Our thesis aims to examine Cochrane’s VAR system (2008) as applied to the

dividend-yield model of Campbell and Shiller (1988) and to assess whether or

not the system is applicable to predict return in the U.S and the Norwegian

stock market. How can this model be used to forecast the stock market return,

and how much of the variation in return and dividend growth can be explained

by dividend-yield (DP-ratio) for both of these markets? This particular system

(which we will henceforth refer to as the Cochrane System) uses the dp-ratio of

today as the dependent variable to forecast the one-year and long-run return,

dividend-growth and dividend-yield. Generally, a dividend is a distribution

of the company’s cashflows that is paid out to the shareholder (also known as

a stockholder) (Chen (2019)). Because of this, higher dividends signal higher

earnings for the company, which naturally involves a higher expected return

for the shareholders. Due to the structure of market mechanics, the price of a

stock is adjusted according to the dividend payout. Hence, a high dividend

payout gives a low ex-post stock price. This knowledge about the way divi-

dends affect the stock price is what we will come to refer to throughout our

paper as the economic intuition. Any true knowledge that can explain what ac-

tually moves prices is vital for any participant or spectator of the stock market.

Researchers, institutional investors, analysts, among others, would, with such

knowledge, be able to construct holding- or trading strategies to generate profit

from the market and improve the asset allocation process in the pursuit of cap-

ital gains.

The S&P 500, NASDAQ and Dow Jones are some of the indexes that are be-

ing used as a standard benchmark the performance of the stock market in the

1
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U.S. (Tradingview (2020)). For the Norwegian Stock market, the performance

is measured by the level of the Oslo Stock Exchange (2020). Today, we are fac-

ing a great deal of unclarity with regarding the most dominant factor(s) that

can predict return. How can this be when we have numerous researchers have

tried to identify parameters that can explain all variations in the stock market

with different models? Some examples are CAPM (Sharpe (1964)) and the re-

spective three- and five-factor model (Fama and French (2015)), and there are

many more. As of today, there is no common approach that can perfectly cap-

ture and explain all market variation in-sample, and especially out-of-sample.

Moreover, the Cochrane System (2008), which has been used with reasonable

accuracy to forecast the U.S. Market, has given too inconsistent results when

applied to European markets. For instance, this can be seen in Engsted and

Pedersen (2010) and Monteiro (2018), who arrived at completely different con-

clusions for the European market compared to the U.S. Market, and even found

inconsistencies between different European markets, despite always using the

same predicting variable. We will be examining Cochrane’s System further,

especially with respect to adequacy for the Norwegian market.

To summarize our empirical procedure, we used the dividend-growth model

of Campbell and Shiller (1988) and the Cochrane system (2008) for the U.S. and

Norwegian stock market from 1984 to 2018. We generated results from a one-

period regression, in addition to long-run regression to forecast for a maximum

of 11 years, given our current data. Based on the economic intuition, we expect a

negative coefficient for the DP-ratio on dividend-growth. From the short-term

(1 year) regression, this only seems to apply to the Norwegian market, and not

the U.S. market. The long-run forecasts imply an increasing return-coefficient

as we increase the number of lags in the U.S. This is what we would expect

based on the fact that the stock market has (historically speaking) yielded pos-

2
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itive returns in the long-run. However, when it comes to the Norwegian stock

market, the long-run forecast implies a lower return by generating negative

return coefficients - which is not expected to see. The estimates for return and

dividend-growth are calculated using a joint hypothesis test, assuming that one

dependent variable is forecastable, while the other is not. The coefficients for

return are based on the null-hypothesis that return is not forecastable, and the

alternative-hypothesis that dividend-growth is forecastable. By specifying each

test this way, we obtain more consistent evidence against a null-hypothesis that

assumes that dividend-growth is not forecastable, rather than a null-hypothesis

that assumes that return is. This is the case for both the U.S. and the European

markets. In order to conduct a more accurate out-of-sample (OOS) test, we be-

lieve that it would be necessary with more data than we have. Hence, we have

only conducted in-sample (IS) tests for long-run forecasting.

We start our paper by presenting some of the most relevant literature. We

give a brief description of each paper’s findings, why they are essential, and

how the different papers are connected. We then present our empirical results

and talk about distribution, volatility, and the correlation between the different

variables. The rest of the paper will include an analysis of the short- and long-

run regression of the real- and excess return and dividend-growth on the DP-

ratio and the time-varying probabilities for the dependant variable. Finally,

we will summarize and give an overall presentation of how our findings are

interconnected and related to the literature.

3
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2 Literature Review

In this thesis, we are interested in looking at stock return predictability. We

know that investors yield capital gains from stock either through cash flows

(e.g., dividends) or an increase in stock price, or both (Investopedia (2020)).

This means the return is dependent on these two elements (among others).

Therefore, we can form an equation where the investor buys a stock at time t,

earns cash flow (dividends) at time t+1, and sells the stock at time t+1. Starting

off, we can write the return of a stock, portfolio, or index as:

Rt+1 =
Pt+1 + Dt+1

Pt

Rt+1 =
(1 + Pt+1

Dt+1
)Dt+1

Dt
Pt
Dt

rt+1 = log[1 + e(pt+1−dt+1)] + ∆dt+1 + (dt − pt)

Where Rt+1 is the return at time t+1 and the equivalent written in lowercase

letters is the log of the corresponding variable.

2.1 Campbell and Shiller Decomposition

This equation is the foundation of the dividend-yield model which was pre-

sented by Campbell and Shiller (1988). According to them, the dividend-to-

price ratio is often interpreted as reflecting the prospect of future dividends.

For instance, if the DP-ratio is high, forecasts should imply a lower expected

future dividend growth due to a low price (Campbell and Shiller (1988)). Con-

versely, Campbell and Shiller’s alternative interpretation is that the DP-ratio

reflects the amount of future dividends that are discounted from the price as

it is today. In that sense, it is like a discount factor. At that time, the literature

lacked a more comprehensive and thorough analysis of time-varying DP-ratio

4
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with respect to the dividend-growth and the discount factor.

In their article, Campbell and Shiller approximate the part within the square

bracket in the equation above, log[1+ e(pt+1−dt+1)] using the Taylor Approxima-

tion, which is shown in the appendix. This term is seen as the way the change

in price-dividend ratio affects the return at time t+1, using a point estimation.

The point estimation can, therefore, be used to approximate the long-run esti-

mates. Hence we see that, when using this same approximation, both single

period returns and long-run returns should be affected by the DP-ratio, divi-

dend growth, and the point estimate of the the price-dividend ratio.

2.2 Fama and French forecasting power

Alongside Campbell and Shiller’s article, the year 1988 also saw the publication

of the better known Fama and French article (1988). In this article Fama and

French look at predicting stock return by using the dp-ratio as the independent

variable. That is, they look at the regression r(t, t+ T) = α+ β(Dt
Pt
)+ ε(t, t+ T),

where r is the return and Dt
Pt

is the dividend yield at time t. Moreover, they

find that the R2 for return increases as they increase the number of years that

the model is forecasting for. An interesting takeaway from their results is that

dividend yield tends to explain more of the expected return variances when

regressing more than five-year returns, compared to one-year returns. Thus,

long-run regressions lead to higher explanatory power on dividend yield and

account better for the variation on return. To quote from the Fama and French

article directly: “[...] high autocorrelation causes the variance of expected re-

turns to grow faster than the return horizon” Fama and French (1988, p. 1).

Hence, their findings are relevant to our findings and helps us to interpret re-

sults that can validate or challenge the work of Campbell and Shiller (1988).

5
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2.3 Forecasting articles in 2005-2018

During the period 2005-2008, many articles appeared on the topic of forecast-

ing, including those written by Cochrane (2008), Welch and Goyal (2008), and

Campbell and Thompson (2008). In the article from Cochrane (2008), he ap-

proached the topic of return forecasting in the U.S. with a first-order Vector

Autoregression (VAR)-system of log return, log dividend growth and log of

future dividend-yield, by using the dp-ratio as the predicting variable. The

equation is written as follows:

rt+1 = αr + βr(dt − pt) + εr
t+1 (1)

∆dt+1 = αd + βd(dt − pt) + εd
t+1 (2)

dt+1 − pt+1 = αdp + φ(dt − pt) + ε
dp
t+1 (3)

The relationship (blr
r − blr

d = 1), which is obtained from the VAR system

above, is mainly how Cochrane specifies the null-hypothesis for the unpredictable-

return and predictable dividend growth, respectively. Setting a null hypothe-

sis in this way assumes that return is unforecastable, while dividend-growth is

not forecastable. Alternatively, we can set up a null hypothesis that assumes

that dividend growth is not forecastable while return is forecastable. How-

ever, it is important to note that return and dividend-growth cannot both be

set as forecastable, nor is it possible to set neither as unforecastable using this

system. The dividend yield model developed by Campbell and Shiller (1988),

sets the foundation for the empirical procedure used here in Cochrane’s arti-

cle. The long-run and one-period regressions are used for the S&P 500 to ex-

amine the explanatory variable in one-period vs long-run forecasts, as well as

assessing the way the estimates move compared to the historical mean, which

6
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is used as a benchmark for our expectation. Cochrane (2008) finds that a null-

hypothesis that assumes that dividend growth is forecastable gives stronger

evidence against the null-hypothesis that assumes that return is unforecastable.

In their 2008 article disagreeing with Cochrane (2008), Welch and Goyal

regress the equity premium on the market using different variables. Among

the different variables such as interest rates, earnings price ratio, consumption

and wealth, they also used the DP-ratio. They take a more offensive position in

forecast ability and disagree with Cochrane’s approach, which finds that div-

idend yield must predict returns if it fails to predict dividend growth. They

conclude that ”He has strong priors, placing full faith in a stationary specifica-

tion of the underlying model—even though Welch and Goyal (2008) have doc-

umented dramatic increases in the autocorrelation of dividend growth” (Welch

and Goyal (2008, p. 1505)). They also conclude that most models fail to beat

the unconditional benchmark (the historical market return) and underperform

when it comes to their ability to forecast. Similarly to Cochrane’s approach,

Welch and Goyal generated the probability distribution from the bootstrapped

distribution. This is described in more detail in Data and methodology.

In 2010, the researchers Engsted and Pedersen used the Cochrane System

(2008) to look at predictability for U.S. and European data. The article reveals

major inconsistencies when applying the Cochrane system on the U.S.- and the

European markets. In their article, the R2 for dividend growth in Sweden and

Denmark is higher than it is for return. The article uses the same methodology

as Cochrane, using the same number of lags: up to k=20. Specifically, the R2

for return in Sweden is only 3.44 for 20 years, while it increases to as much

as 45.10 in the U.S. data. For dividend growth, Sweden obtains a R2 of 0.366,

whereas it is as low as 0.95 for the U.S. data. The probability values from the

Monte Carlo Simulation confirm that, in terms of the Swedish market, there is

7

10230681022351GRA 19703



better evidence against the unforecastable null for dividend growth than un-

forecastable null for the return. The opposite it true for the U.S. data; ”In addi-

tion, in Sweden and Denmark dividend growth is strongly predictable by the

dividend–price ratio in the ‘right’ direction while returns are not predictable”

Engsted and Pedersen (Engsted and Pedersen (2010, p. 587)). Monteiro’s article

of 2018 found the same pattern. Dividend growth was shown to be better fore-

castable than the return for Spain and Italy, while showing the opposite for the

U.S. and the U.K. market. Monteiro (2018) also finds that in France only returns

are predictable, while in Germany there is evidence for both return and divi-

dend growth predictability. Furthermore, when using Japanese data neither

returns nor dividend growth are forecastable. They conclude as follows in the

paper: ”Generally, there is no clear connection between dividend smoothness

and predictability” (Monteiro (2018, p. 1)). Key takeaways from the previous

papers are the way R2, bootstrap distributions, and probabilities is used to ex-

amine how the model performs in long- and one-period on return and what

the result implies for the respective hypotheses.

2.4 Differences & similarities

So far, we have shed light on the connection between Campbell and Shiller

(1988) and the articles that came later. Cochrane’s article (2008) revealed excit-

ing methods and findings, such as the VAR system and the better long-run pre-

dictability. We also found it interesting that there is stronger evidence against

the forecastable null for dividend growth than the unforecastable null for re-

turn. In the Methodology we describe how we applied Cochrane’s method

to explore this null hypothesis system for the Norwegian data. Campbell and

Shiller’s approximation and dividend price model (1988) is used by Cochrane

(2008) and sets the baseline for our empirical procedure.

8
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The way we specify return regression in our paper is identical to how Fama

and French specify it in their 1988 article. We also include Cochrane’s VAR

system as applied to Campbell and Shiller (1988). Fama and French (1988)

examined how R2 performs for a longer horizon. We also did this, as well

as including the power of forecastability by bootstrapping and Monte Carlo

Simulation. Fama and French (1988) conclude that dividend yield does not ex-

plain much on the return variation for one period, which is similar to Cochrane

(2008). It is worth pointing out that Welch and Goyal (2008) use a different

method whereby they regress different variables instead of choosing only one

variable or a VAR system. While Campbell and Shiller (1988) and Cochrane

(2008) regress with one independent variable, Welch and Goyal (2008) use 10.

Besides, they perform an out-of-sample (OOS) sample test, which we do not in-

clude. The data from the literature above comes from NYSE in the U.S., while

our data comes from the Oslo Stock Exchange in Norway. We are using data

from 1984- 2018, while most of the data in the literature mentioned comes from

1926-2004, except for Welch and Goyal (2008) who use data that goes as far back

as 1871.

These are some of the similarities and differences between our paper’s meth-

ods and the methods applied in the literature we have studied. It is also worth

noting that Engsted and Pedersen (2010) found that dividend growth gives

better predictability than return for the European market, compared to the U.S.

market. However, their results imply lower long-run estimates for return for all

European countries, except for the U.K. This is different from the article from

Cochrane (2008) who found better predictability for the return in the long-run.

The same applies to Fama and French (1988), who found that R2 increases for

the return in the long-run. On the whole, the empirical approaches of Camp-

bell and Shiller (1988), Fama and French (1988), Cochrane (2008), Engsted and

9
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Pedersen (2010), and Monteiro (2018) are all interconnected and show more

similarities than differences (Welch and Goyal (2008) are the exception who

appear to have had the most different approach out of all of these papers).
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3 Methodology and hypotheses

In this paper, we followed the methodology outlined in Cochrane’s article (2008).

Below is a numerated list of expressions, which we will refer to as identities. The

derivation of the steps and calculations revolving the underlying Vector Au-

toregression (VAR)-system, linearization of return, long-run regressions, and

the Monte Carlo simulations are described in depth in appendix. As briefly

mentioned, the article uses the first-order Vector Autoregression (VAR) system,

which is defined as follows:

rt+1 = αr + βr(dt − pt) + εr
t+1 (1)

∆dt+1 = αd + βd(dt − pt) + εd
t+1 (2)

dt+1 − pt+1 = αdp + φ(dt − pt) + ε
dp
t+1 (3)

where rt+1 is the log return, ∆t+1 is the log dividend change, and dt+1 − pt+1

is the difference between log dividend and log price at time t+1, hereafter divi-

dend yield at t+1. Campbell and Shiller (1988) linearize, rt+1;

rt+1 = ρ(pt+1 − dt+1) + ∆t+1 − (pt − dt) (4)

From this linearization, the identities for coefficients and errors are obtained

in Cochrane (2008) and is defined as follows:

βr = 1− ρφ + βd (5)

εr
t+1 = εd

t+1 − ρε
dp
t+1 (6)

Using the identity (5), we can form the hypothesis that return is unfore-
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castable (equation 7) and dividend growth is forecastable for one-period regres-

sion:

H0 : br = 0, bd = ρφ− 1

HA : br = 1− ρφ, bd = 0
(7)

H0 assumes that return is unforecastable and dividend-growth is forecastable. Alternative hypothesis

assumes the opposite.

Note that we only use one hypothesis in the one-period regression, and two

for the long-run forecasts. The reason to why is that we are looking at the vari-

ation in the long-run for return and dividend-growth. Further, we obtained the

OLS estimates by running the VAR system in (1)-(3). The estimates were calcu-

lated in a Monte Carlo simulation to check for probabilities that the coefficients

are greater than the simulated sample value under the null hypothesis. The

probabilities indicate how likely it is for the sample coefficients to appear by

pure chance (Cochrane (2008)). The same is done with the t-statistics. In his

article Cochrane (2008) divides identity (5) by 1− ρφ to obtain,

blr
r − blr

d = 1 (8)

where lr denotes the long-run estimate of the corresponding coefficient. Us-

ing this method, we defined our hypotheses of the return being unforecastable

(equation 9) and dividend growth being unforecastable (equation 10) for ong-

runl:
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H0 : blr
r = 0, blr

d = −1

HA : blr
r = 1, blr

d = 0
(9)

H0 assumes that return is unforecastable and dividend-growth is forecastable. Alternative hypothesis

assumes the opposite.

and

H0 : blr
r = 1, blr

d = 0

HA : blr
r = 0, blr

d = −1
(10)

H0 assumes that dividend-growth is unforecastable and return is forecastable. Alternative hypothesis

assumes the opposite.

The full derivation of (8) is described in appendix D.3 long-run. The Monte

Carlo simulation obtains the long-run estimates and simulated probability val-

ues. By applying identity (8) we are able to distinguish how much of the varia-

tion on dividend yield is caused by the return and how much is caused by the

dividend growth. Additionally, we examined statistics and probabilities for φ,

which Cochrane defines as the autocorrelation function on dividend growth

(Cochrane (2008)). These probabilities represent the effects on br and bd when

the autocorrelation on dividend-yield φ increases. The direct and indirect esti-

mates were calculated using weighted and unweighted regression coefficients.

The probabilites are likelihood of rejecting the H0. Hence, Lower probability

values indicates stronger evidence to reject the null-hypotheses. For instance,

if the probability values for an unforecastable null-hypothesis for return is low,

this means that we find stronger evidence to reject the null-hypothesis that re-

turn is not foreastable. In the long-run, this indicates indicates that most varia-

tion in dp-ratio comes from return, since we would now believe the alternative
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hypothesis.

Something important to note is that we have checked if the parameter esti-

mates from an OLS regression are BLUE. We conducted the appropriate tests

for all assumptions in all of the datasets, which can be seen in Appendix C-

Assumptions. In short, all of the dependent variables shows signs of positive

autocorrelation in the residuals, which implies a great deal of heteroscedasticity

in all samples for the U.S. and the Norwegian market from an Durbin-Watson

test. The estimates that were tested are derived from an OLS regression. The

use of generalized method of moments (GMM) in the OLS allows us to account

for the serial autocorrelation in the error-term, which would result to more het-

eroscedasticity in the standard errors (Hansen (1982)). In addition, since we

are following the method of Cochrane (2008), we use an OLSGMM and not an

OLS regression. The use of the method was validated by the script Cochrane

has available on his website. Finally, We use the delta-method for standard

errors.
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4 Data description

As previously stated, we are using the Cochrane System (2008) in this thesis.

We used data from Cochrane’s article to replicate the outputs from his paper.

The U.S. data from 1926-2004, as well as the value-weighted return on NYSE

with and without dividend, which Cochrane used in his 2008 paper, is avail-

able on his website (Cochrane (2020)). The dividends are not directly observ-

able; they are distinguished by subtracting the return with dividends from the

return without dividends (vwretd-vwretx). This calculation was essential in or-

der to set up the dividend-yield at time t as the independent variable (dt − pt),

as well as dividend-growth (∆dt+1), return (rt+1) and dividend-yield at time

t+1 (dpt+1) as the dependent variables. The risk-free rate and Consumer Price

Index (CPI) are the three-month treasury bill and the CPI from 1926-2004, re-

spectively (collected from Cochrane (2020)).

When comparing the Norwegian and U.S. data from 1984-2018, we used ad-

ditional sources to gather the U.S. data. Due to restrictions on more recent mar-

ket data on CRSP, we could not retrieve matching, nor additional data for the

years after 2004. Fortunately Welch and Goyal (2008) have annually updated

files on their web page, which made it possible to obtain an extended sample of

the value-weighted return for the U.S and the t-bill. To ensure that the data was

the same, we checked that there was a correlation between vwretx in Cochrane

(2008) and in Welch and Goyal (2008) during the period 1926-2004; we did the

same for vwretd. The high correlation of ≈ 0.99 convinced us to proceed with

the extended analysis for the U.S. In the U.S. data from 1984-2018, we used the

CPI from Shiller’s website (2019), since these are an exact match of Cochrane’s

CPI from 1926-2004. We simply extended the data to include the period 2005-

2018 from the website of Goyal (2020).
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The Norwegian Stock Market data was collected from the Oslo Stock Ex-

change (2020). We received access to the monthly index levels and risk-free

quarterly rates (accessed at Bernt (2020)) and calculated the market value of

aggregated dividends for the Norwegian market. We must emphasize that

the data is restricted to students and researchers at BI. As in Cochrane (2008),

the data is annualized. We also retrieved the CPI directly from SSB (2020).

We must emphasize that the stock market data is only available from 1984

to 2018. This restriction is due to the fact that the Norwegian index was not

fully developed before 1984, which is why our comparative analysis with the

U.S starts from 1984 (Oslo Stock Exchange (2020)). The proxy for risk-free

rate in Norway comes from Bloomberg, where we accessed the three-month

NIBOR rate (Bloomberg (2020)). However, this data was not available before

1986. We used the the nominal lending rate for banks in Norway to obtain the

three-month NIBOR rate for 1984 and 1985 and regressed NIBOR1986−2016 =

α + β[Nominal lending rate1986−2016] + ε, with R2 close to 0.962. The obtained

α ≈ −0.022 and β ≈ 1.009 are used to calculate the three-month NIBOR rate for

1984 and 1985. This is similar to the method used by Welch and Goyal (2008)

who regressed commercial papers as the proxy for the risk-free rate between

1871-1925.

In our Methodology, we regress the long horizon for Norwegian and U.S

data in the same way that Cochrane did in his article. The lags used are 1, 3, 5,

7, and 11 years for the data from 1984-2018 for both markets. We have checked

the maximum number of possible lags for the long-run forecast for our smallest

dataset (the Norwegian data), and obtained a maximum lag of 11 years for the

Norwegian market, and 20 for the U.S. If we were to use lags up to 20 years, as

Cochrane (2020), we would need more data for the Norwegian market. Due to

the structure of the long-run forecasts from Cochrane (2008), it requires three
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years of data observations in order for the model to forecast of one more lag.

Therefore, to compare and analyse long-run regressions on equal premises, we

have used maximum lag of 11 years for the forecast long-run forecasts.
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5 Results and analysis

This section mainly provides the results and analysis of the tests we have de-

scribed in the methodology and use these to compare the Norwegian and U.S.

market data from 1984-2018. We present a comparison between the Norwegian-

and the U.S market. We will illustrate two panels for each table, where the first

panel will represent the Norwegian market data for 1984-2018, and the sec-

ond panel will represent the U.S. market data for 1984-2018. This will be the

main comparison in our analysis. Lastly, we present the complete replication

of Cochrane’s findings (2008), including the U.S data for 1926-2004, as well as

an extension of the U.S. data for 1926-2018, which will include observed differ-

ences that should be noted for the U.S. data from 1926-2004/2018 relative to the

U.S sample starting from 1984. Looking at these differences allows us to exam-

ine the changes in parameters over a longer horizon for the U.S. market. The

extension and all tables from the U.S. extension is available in section extension

and appendix.

and use these to compare the Norwegian and U.S. market data from 1984-

2018. We present a comparison between the Norwegian- and the U.S market.

We will illustrate two panels for each table, where the first panel will represent

the Norwegian market data for 1984-2018 and the second panel will represent

the U.S. market data for 1984-2018. This will be the main comparison in our

analysis. Lastly, we present the complete replication of

5.1 Simple statistics

To look at forecast predictability, we will first of all look at plain statistics for

the one-period regressions. The return has a standard deviation of 0.27, while

the risk free rate has a standard deviation of 0.04 in the Norwegian data. In

this setting, we consider the historical mean as our proxy for expected return
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and express risk as the data’s standard deviation (volatility). The return of

S&P 500 comes with a higher expected return than our proxy for the risk-free

rate, although with a higher risk in terms of the standard deviation - which is

expected. After all, higher return involves higher risk (Sharpe (1994)). All of the

variables reject the joint normality test of Jarque-Bera (Thadewald and Büning

(2007)), with test statistics exceeding the critical value of 5.99 with two degrees

of freedom. Financial data tends to exhibit characteristics of leptokurtosis (i.e

the distribution has fat tails and a higher mode) and a left-skewed distribu-

tion (Brooks (2014)). The negative skewness entails that high negative return

is more likely than positive return of the same magnitude (Brooks (2014)). Yet

again, these common features seem to be the case for return for both markets.

Correlation, std on diagonal Other statistics

r dd dp RF CPI skew kurt jointly mean

Norwegian 1984-2018

r 0.27 0.21 0.18 -0.17 -0.10 -1.09 2.33 7.56 0.11

dd 0.21 0.26 -0.37 -0.10 -0.30 -0.95 2.12 6.39 0.09

dp 0.18 -0.37 0.39 -0.69 -0.26 0.42 -0.18 15.79 -3.56

RF -0.17 -0.10 -0.69 0.04 0.77 0.85 -0.39 20.93 0.06

CPI -0.10 -0.30 -0.26 0.77 0.02 1.78 3.76 19.36 0.03

U.S 1984-2018

r 0.16 0.67 0.38 0.21 0.07 -1.27 2.25 10.28 0.08

dd 0.67 0.13 0.09 -0.09 -0.03 0.14 0.25 11.13 0.03

dp 0.38 0.09 0.35 0.49 0.41 0.12 -0.38 16.79 -3.75

RF 0.21 -0.09 0.49 0.03 0.66 0.16 -1.27 26.77 0.03

CPI 0.07 -0.03 0.41 0.66 0.01 0.51 0.65 9.60 0.03

Table 1: Statistics

r is log return at time t+1 and dd is log dividend change t+1, deflated by CPI. Dp is log dividend price ratio at time t,

RF is T-bill Three months at t+1 and CPI is the consumption price index at t+1. In ”Correlation, std on diagonal”, the

diagonal is standard deviation of the corresponding letters, and the rest is the correlation.

When the correlation is different from zero, the variation on one variable

can cause some variation on other variables. Assessing the correlations, we can

see that the correlation between return (rt+1) and dividend price ratio (dpt) in

the Norwegian data is 0.18 and correlation between dividend growth (ddt+1)
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and (dpt) is -0.37. Statistically, since both correlations are different from zero,

it seems like dp has the potential to explain some of the variation on return

and dividend growth. However, the U.S. market shows different correlations,

where return shows high positive correlation with dividend-yield, while dividend-

growth is close to zero correlation. This implies that return moves more inde-

pendent to dividend-growth than the dividend-yield. Hence, more correlation

in the independent variable and almost none in delta of the independent vari-

able. Usually, we would expect the correlation between the risk-free rate and

CPI (inflation) to be negatively correlated. A higher interest rate should lead to

a higher yield to maturity on bonds, which is the benchmark for the risk-free

rate (Folger (2016)). However, the effects of an increase or a decrease in interest

rates usually propagates in the economy 2-4 years later (Folger (2016)). Hence,

looking at the one-period correlation between CPI and the risk-free rate does

not necessarily give much insight in this table.

5.2 Simple regressions and the VAR-system

To check for forecastability, we regressed return, excess return, and dividend

growth on the dividend-price ratio in table 2 below. We also tested for statis-

tical significance for the independent variables. The estimates of βr & βd are

based on the non-forecastable null-hypothesis for return. Meaning, β is cal-

culated under a non-forecastable return hypothesis while dividend-growth is

forecastable. Recall that the hypothesis written in methodology is as follows:

H0 : br = 0, bd = ρφ− 1

HA : br = 1− ρφ, bd = 0

H0 assumes that return is unforecastable and dividend-growth is forecastable. Alternative hypothesis

assumes the opposite.

20

10230681022351GRA 19703



Looking at the Norwegian data, the dividend yield variable on dividend

growth, βD, presents itself as a significant explanatory variable with a t-stat

of (−2.69), exceeding the critical value of +-1.96 at the 5% level. The dividend-

yield on return, βR, is not statistically significant alone with a t-stat of 1.19. This

is different from U.S. between 1984-2018 with a significant βR, where t-stat is

2.42 and thereby exceeds the critical value. This regression alone does not pro-

vide considerable insight. We see some inconsistencies in terms of which vari-

ables show statistical significance for the U.S. compared to the Norwegian stock

market. Some of the output for the U.S. has completely different implications

than the output for the Norwegian market. Regarding dividend growth, how-

ever, the Norwegian data has a profoundly negative βD of −8.474, compared

to the U.S βD, which is close to zero and slightly positive. From what we refer

to as the economic intuition in this thesis, high dividend-yield gives low prices,

leading to lower return and a decrease in future expected dividend growth

(Cochrane (2008)). Hence, the correlation between dividend growth and divi-

dend yield should be negative. This is why we find the negative Bd in by the

Norwegian data to have a high degree of economic significance. The fact that

the statistics look so different for the U.S. market is something we find very

significant and will discuss further later on.

From the statistics above, we obtain the correlation for the Norwegian data

of (corr[∆dt+1, dpt] < 0) ≈ −0.3656 and (corr[∆dt+1, dpt] > 0) ≈ 0.0929 for the

U.S. data. Recalling the economic intuition, we would expect a negative relation-

ship between the current dp-ratio and the future dividend growth. We can say

that this statistically holds for the Norwegian data. However, it does not hold

for the U.S. data (which has a positive correlation instead). Looking at the R2,

we see that the return comes with higher R2 in the U.S. data compared to the

Norwegian data, while it is lower in the U.S data for dividend growth. This
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β se t(β) R2 Stdx*b

Regression

Norwegian 1984-2018

Rt+1 = αR + βR(Dt/Pt) + εR
t+1 2.904 2.446 1.19 0.0197 0.039

Rt+1 − R f
t = αR + βR−RF(Dt/Pt) + εR

t+1 4.592 2.424 1.89 0.0470 0.061

Dt+1/Dt = αD + βD(Dt/Pt) + εD
t+1 -8.474 3.149 -2.69 0.1813 0.113

rt+1 = αr + βr(dt − pt) + εr
t+1 0.122 0.079 1.55 0.0331 0.048

∆dt+1 = αd + βd(dt − pt) + εd
t+1 -0.238 0.147 -1.62 0.1337 0.094

U.S 1984-2018

Rt+1 = αR + βR(Dt/Pt) + εR
t+1 6.157 2.547 2.42 0.1166 0.056

Rt+1 − R f
t = αR + βR−RF(Dt/Pt) + εR

t+1 5.226 2.533 2.06 0.0878 0.048

Dt+1/Dt = αD + βD(Dt/Pt) + εD
t+1 0.559 2.390 0.23 0.0013 0.005

rt+1 = αr + βr(dt − pt) + εr
t+1 0.177 0.067 2.64 0.1461 0.063

∆dt+1 = αd + βd(dt − pt) + εd
t+1 0.035 0.063 0.56 0.0086 0.012

Table 2: Forecasting

Capital letters are real returns using CPI, and small letters are logs of corresponding letters. Rt+1 is return, Dt+1
Dt

is real

dividend growth, and Dt
Pt

is dividend price ratio. R f
t is the risk-free rate at time t. br is coefficient for log return and bd

is coefficient for dividend growth. The coefficient for return is estimated under the null that assumes that return is not

forecastable while dividend growth is; The opposite applies for dividend-growth coefficient

implies better explanatory power for return for the U.S. and better explanatory

power for dividend-growth for the Norwegian market. Moving on, we look at

Cochrane’s VAR system (2008).

By using the VAR-system developed by Cochrane, we obtained estimates

for each coefficient and obtained identity (5), br = 1− ρφ + bd; all of which is

described in the methodology.

Table 3 shows the estimated β̂r, β̂d, β̂dp and the correlation between the

shocks from dependent variables. We obtained a negative correlation between

shocks in return and dividend yield for both markets: Corr(εr, εdp) ≈ −0.642

for the Norwegian market and Corr(εr, εdp) ≈ −0.527 for the U.S. This suggests

that a shock increase in price should lead to an increase in return and lower the

dividend yield (Linearization), as emphasized in the article of Cochrane (2008).

Recalling the economic intuition, we can immediately say that we find the value

for this specific correlation meaningful for both markets, due to the relation-
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Estimates ε s. d. diagonal and corr Null 1 Null 2

β̂ σ(β̂) Implied r ∆d dp β, Φ β, Φ

Norwegian 1984-2018

r 0.122 0.079 0.122 0.261 0.302 -0.642 0.000 0.000

∆d -0.238 0.147 -0.237 0.302 0.239 0.538 -0.360 -0.038

dp 0.659 0.156 0.658 -0.642 0.538 0.306 0.659 0.990

U.S 1984-2018

r 0.177 0.067 0.177 0.151 0.687 -0.527 0.000 0.000

∆d 0.035 0.063 0.036 0.687 0.133 0.255 -0.141 -0.033

dp 0.879 0.058 0.878 -0.527 0.255 0.116 0.879 0.990

Table 3: The Vector Autoregression (VAR)-system

Each row represents the one-period regression from the Vector Autoregression (VAR)-system described in the

methodology. For instance, the first row uses the regression rt+1 = α + βr(dt − pt) + εr
t+1, equivalent to identity 1; the

same applies for the second and third row for each set. r, ∆d and dp are in time t+1. The implied values are calculated

by solving the corresponding dependent variable in identity 5. ρ is defined as the constant Taylor-approximated point

estimate for the dividend yield and is used to calculate the implied value for the corresponding dependent variable in

table 3 above. The null columns are the coefficients that are used in the simulations under the null.

ship between return and dividend yield. The same applies for the correlation

between dividend growth and dividend yield This is why we believe the corre-

lation between dividend growth and dividend yield should be positive, which

is exactly what was revealed for both markets.

By looking at the regression for the dividend-growth (identity 3), rewriting

and solve for φ, we obtain br = 1 − ρφ + bd → bd−br+1
ρ = φ. The negative

corrN [∆dt+1, dpt] and positive corrN[rt+1, dpt] must, by construction, lead to a

low φ when the constant level of ρ is high. For the U.S data, this means that

positive corrU.S[∆dt+1, dpt] and corrU.S[rt+1, dpt], and high ρ, leads to high φ. In

short, we believe that the difference in correlation between dt+1 and dpt for the

corresponding markets is what makes the difference in the autocorrelation of

dividend-yield for φNorway and φU.S.
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5.3 The importance of phi

In the previous section, we looked at the Vector Autoregression (VAR)-system,

identity (1)-(3), and found that φ is different in the Norwegian data compared

to the U.S. Data. The dividend growth was also different due to the negative

correlation between ∆dt+1 and dpt in the Norwegian data, compared to the

positive correlation in the U.S. data. From the economic intuition, the autocor-

relation function for dividend-yield φ is expected to be negatively correlated

with return. We are interested in examining how the effects of an increase in φ

play out on the coefficients for real and excess return in each of the datasets.
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Percent probability values

Real returns Excess returns

βr φ brlr
min brlr

max βr φ brlr
min brlr

max

φ

Norwegian 1984-2018

0.640 26.07 4.98 14.24 14.33 14.00 1.33 3.34 3.38

0.659 25.99 6.99 15.24 15.38 13.82 2.04 3.65 3.69

0.700 25.64 12.79 17.64 17.76 13.58 3.95 5.03 5.10

0.800 25.38 42.08 25.63 25.77 13.05 18.69 10.15 10.24

0.900 24.87 78.46 38.26 38.40 11.82 54.63 20.12 20.23

0.960 25.22 90.75 50.58 50.70 11.27 76.40 30.98 31.11

0.980 25.51 93.38 55.80 55.95 11.54 81.65 36.33 36.45

0.990 25.55 94.34 58.74 58.84 11.58 84.32 40.07 40.18

1.000 25.89 95.01 61.80 61.91 11.63 86.25 42.78 42.92

1.010 24.49 95.92 64.70 64.79 10.56 88.73 45.89 46.01

Draw 25.34 18.57 15.33 15.41 13.60 15.30 8.18 8.19

U.S 1984-2018

0.840 23.83 3.47 2.15 2.21 26.19 4.43 3.59 3.66

0.879 23.59 4.72 3.27 3.34 26.22 6.50 5.55 5.69

0.900 23.03 5.92 4.43 4.54 25.78 7.64 6.76 6.86

0.960 22.65 10.27 9.76 9.94 25.49 13.48 13.23 13.39

0.980 22.69 12.11 12.49 12.69 25.54 16.43 16.55 16.76

0.990 23.02 13.91 14.63 14.81 25.46 17.95 18.43 18.67

1.000 22.88 15.39 16.56 16.75 25.62 19.70 20.17 20.37

1.010 21.58 16.74 19.13 19.35 24.27 22.12 22.98 23.19

Draw 24.34 5.73 5.26 5.36 26.75 7.38 7.02 7.14

Table 4: Increasing φ (phi)

Table 4 shows the probability values that the simulated coefficients are larger than the corresponding coefficients for

different values of φ. The probability value 25.99 for br is calculated as ∑ bsim
r >bdata

r
50.000 using φ = 0.659 in the simulations.

The coefficient for return is estimated under the unforecastable return-null while dividend growth is forecastable. The

coefficient for dividend-growth is estimated under the null that assumes that dividend-growth cannot be forecast

while return is forecastable.
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Figure 1: Conditional and unconditional likelihood

The figures show unconditional and conditional maximum likelihood function where the φ is peaked at around 0.659.

The figure is an Autoregression (AR)1 process of dividend yield, where the conditional likelihood uses the first data

point as fixed. The unconditional likelihood adds the log probability value of the first data point. The Likelihood

function for φ, autoregressive coefficient for dividend yield dt+1 − pt+1 = αt+1 + βdp(dt − pt) + ε
dp
t+1.

Here are the density functions for φNorway and φU.S. We can immediately

see that the distributions for φ are a bit different. Firstly, the distribution of

the unconditional mean φU.S is more left skewed than the φNorway. The density

function of φNorway is closer to a normal distribution, both for the conditional

and unconditional mean. When the mean is conditional in this case, it depends

on some past information, from its previous value, which in this case involves

having the first data point as fixed (Cochrane (2008)). Therefore, we are not

surprised to see that the shape of the conditional curves are quite similar. In

terms of the range φ, the spread of φNorway is wider than φU.S.. In fact, the

distribution is so different that, if one were to present the two curves on the

same graph, the end of the density function for φNorway would only just enter

the interval at which we find the mode for φU.S.. Due to the fact that the value

of φ is based on the mode (the peak value of the distribution) of the respective

distributions, this affects the way our difference in results for the two markets.

We saw in table 3 how ρ and corrN[∆dt+1, dpt] and corrN [rt+1, dpt] affects the

value of φ. However, we will later discuss how the lower φ for Norway and a
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higher φ for the U.S. can affect their respective long-run regressions.

The φ in Identity (3) represents the autocorrelation on dividend yield. By us-

ing the bootstrapping method, we used the mode of distribution for both φ and

ρ as the value of the respective coefficients, which is described in the appendix.

We obtained the autocorrelation value φNorway = 0.659 for the Norwegian data

and φU.S = 0.879 for the U.S data, denoted with corresponding subscripts for

the two markets. The probability values for the br exceeding its sample value

stay around 22-24% for any value of φ. As φ increases, bd increases, but does

not explode until φ reaches around 0.9 in the Norwegian data. From φ = 0.9

through φ = 1.01, there are no massive changes. Excess returns are better in

the sense that the probability values are lower, which insinuates less random

estimates with respect to the forecast. At φ = 1, the probability value is close

to 96%.

In terms of the difference in correlation, which we previously discussed, we

believe that this is the potential root of the difference in φ. Also, we do not find

it particularly comforting that bd more or less explodes and becomes pretty

much unstable due to the density function of the Norwegian data being nar-

rower than the U.S data. In other words, the φU.S. is more sensitive to changes

without making significant changes in estimates than φNorway. This lack of sta-

bility for the U.S. is more susceptible to spurious inference if φ increases too

much. We saw earlier in table 2 that the intuition of the sign of Bd for the

Norwegian market seems reasonable with regard to economic intuition. This

is aligned with the defined identities, and thereby with Campbell and Shiller

(1988).

Now that we have looked at the regressions, the Vector Autoregression (VAR)-

system, we are interested in looking at the probabilities for the predicting vari-

ables in the regressions. The probabilities will indicate the statistical likelihood
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to reject the unforeseeable null-hypotheses and thereby enable us to say how

likely it is for an estimate to exceed the sample value by pure chance.

5.4 Short-term forecasting

Table 5 shows the probabilities of the instances where the coefficients are greater

than their respective estimated sample values under the null-hypothesis. The

bootstrapping method enables us to visualize the (lack of) persistence of divi-

dend yield (Verdickt, Annaert, and Deloof (2019)). The return coefficient has a

probability of 25.812%, which is the probability that the coefficient br ≈ 0.122

is random. The probability for bd is much lower, 7.094% ,which implies that

dividend growth yields more fitting properties for forecasting by, in principle,

being less random over time. The excess return gives far better probabilities

than the real values for Norwegian data. The U.S. data from 1984-2018 gives

almost the same probability for return, but much lower for the t-stat than the

Norwegian probabilities. These differences, as well as the differences in the

probabilities for bd and td, are worth taking notes of.

βr tr φ td

Norwegian 1984-2018
Real 25.812 13.752 7.094 1.834

Excess 14.200 4.444 1.986 0.672

U.S 1984-2018
Real 23.454 3.418 4.968 2.924

Excess 25.800 4.878 6.204 5.050

Table 5: Monte Carlo Simulation by Bootstrapping

The columns give the probability that the coefficients are larger than the corresponding coefficients in the sample data.

Example is breal
r = ∑ br

sim(real)>bdata(real)
r

50.000 . 50.000 samples of br , tr , bd and td in a Monte Carlo simulation and calculated

how many of these samples that were greater than the sample coefficients. The coefficients are estimated under the

unforecastale return-null while dividend growth is forecastable.

Based on our Norwegian data results, the t-stat from the simulation is greater
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than the historical mean more often on real return than excess return. However,

this is not true for the U.S. market. Although the br coefficient implies less ac-

curacy on the returns by using this method, the other parameters deviate in

relatively few cases - especially we look at the probability values for the excess

return. Looking at the coefficients from Table 2, none of the log parameters

for r and dd are significant at 5% level in the Norwegian data. However, the

probabilities for return are higher than the probabilities for dividend growth,

assuming a null hypothesis that return is unpredictable. It seems like the U.S

performs better than the Norwegian market for return for a joint hypothesis

that return is unforecastable. This is the same as what Engsted and Pedersen

(2010) found. Therefore, it is easier to reject dividend growth forecastability

than return unforecastability for both markets. Moreover, the one-period re-

gression is one side of our research. Although we are interested in the regres-

sion to find indications for the one period, an equally significant aspect of this

research is to test the model’s long-run forecasting for the two markets.
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5.5 How does this work in the long-run?

Using the Cochrane System (2008), as applied to Campbell and Shiller’s model

(1988), we calculated the long-run coefficients for beta, standard error and t-stat

for both markets. Calculations are available in Appendix D.3 long-run.

βlr se t % prob.

values

Norwegian 1984-2018

rt+1 0.34 0.26 1.33 15.24-15.35

∆dt+1 -0.66 0.26 1.33 15.24-15.35

Excess rt+1 0.51 0.25 2.04 3.98-4.04

U.S 1984-2018

rt+1 1.25 0.49 2.55 3.30-3.40

∆dt+1 0.25 0.49 2.55 3.30-3.40

Excess rt+1 1.11 0.48 2.30 5.32-5.44

Table 6: Long-run horizon

Table 6 shows the long-run coefficients. Note that the ”lr” superscript denotes long-run coefficients. β̂lr
r is calculated

as β̂lr
r = b̂r

1−ρφ̂
where b̂r is the coefficient from the regression rt+1 = α + β̂r(dt − pt) + εr

t+1. φ̂ comes from the

autocorrelation dt+1 − pt+1 = α + φ̂dp(dt − pt) + ε
dp
t+1. The % probability values are the probability range under the

null-hypothesis φ from identity (10) in Methodology. The test-statistic for blr
d is calculated under the assumption that

b̂lr
d = −1, while the null-hypothesis for b̂lr

d assumes b̂lr
r = 0.

The point estimates for the Norwegian long-run return coefficient blr
r = 0.34

and long-run dividend growth coefficient blr
d = −0.66 signal that about 66%

dividend yield volatility comes from dividend growth and about 34% comes

from log returns. The negative correlation between dividend growth and dividend-

yield implies that the long-run blr
d should also be negative. This seems to be the

case for the VAR system’s dividend growth regression shown in section 5.2 of

this thesis and the long-run forecast for the Norwegian data in the table above.

Another interpretation is that the U.S. data shows considerably higher signif-

icance for all long-run variables, compared to the Norwegian data. The fore-

castability of the return is also consistent with the findings of Campbell and
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Shiller (1988), who argue that return can, to some extent, be forecastable. How-

ever, similar to what we saw in table 1, the long-run dividend growth estimate

imply the opposite of what we would expect for the U.S by having, what we

would consider, the ”wrong” sign. It returns a point estimate of 0.25. This is

something Cochrane (2008) himself regarded as a misleading result.

The range of simulated probability values of return for the Norwegian data

of ≈ 15.24 − 15.35% reflects the range of probabilities that the simulated co-

efficients are larger than the sample data coefficients. These are higher than

the probability values in the U.S data, blr
r (sim) > blr

r (data). The unanticipated

positive corr[∆dt+1, dpt] ≈ 0.0929 and the positive sign of the β̂d in the U.S

data, might affect these probability values and the t-stats. In the U.S data, more

than 125% of the dividend yield volatility comes from the return, blr
r , and about

25% comes from dividend growth, blr
d . Cochrane (2008) also notes that such a

decomposition can return values above 100% and less than 0% when not or-

thogonalized. This implies that most of the volatility comes from return and

significantly less comes from the dividend for the U.S., something which ap-

pears to be connected to the difference in correlation. Despite these probability

values, it is interesting to look at different values of φ. Phrased differently, high

br should lead to low phi due to the correlation between return shocks and dp

shocks, being largely negative. Similarly, the correlation between dividend-

growth shocks and shocks in the dividend-yield is highly positive, meaning

that a large φ should produce high bd. Further, in the Norwegian data, the

probability values for return decreased from short- to long-run under the null-

hypothesis for unforecastable return (identity 10), while it decreased signifi-

cantly much more in the U.S. market. This can be interpreted as the return un-

forecastability more likely to be rejected under the null for the U.S. market in

the long-run, compared to the Norwegian market. From this, we find stronger
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evidence against the null for unforecastable return than the forecastable divi-

dend growth for the U.S. market compared to the Norwegian. Hence, there is

evidence that return forecastability improves in the long-run only for the U.S.

market, which is consistent with the findings of Engsted and Pedersen (2010)

and Monteiro (2018) who found that that return is more forecastable in the U.S.

than the Norwegian market.

From the methodology, the variation in dp ratio is defined as either stem-

ming from the covariance between return and dp, or dd and dp. Cochrane

(2008) stressed the importance of looking at how much of each component’s

variation moves prices the most, instead of primarily focusing on if one of the

two moves prices the most. We determine the impact of variation by looking

at the correlations between the variables, which was shown in in table 3. The

higher the absolute value of the correlation, the greater the impact on the in-

dependent variable. Hence, most of the variation comes from return in the U.S

data, while most of the variation comes from dividend-growth for the Nor-

wegian market. In sum, the long-run estimates for the Norwegian data are

different from estimates for the U.S data.
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5.6 Long-run forecasting

After looking at the long-run regression, we are interested in looking at the

long-run forecasting in the same way as we did for one period in the section

forecasting. This section also focuses on the weighted and unweighted long-

run regressions, where r is included in the weighted formula. We assess the

regression based on direct estimates and implied estimates and different lags.

The implied long-run return coefficient was calculated by solving for Brlr in

identity 5. The value of the direct estimates descends from the formula at the

top of Table 7.

Weighted Unweighted

∑k
j=1 ρj−1rt+j = α + β

(k)
r (dt − pt) + εt+k ∑k

j=1 rt+j = α + β
(k)
r (dt − pt) + εt+k

Direct Implied Direct Implied

β̂
(k)
r φdata φ99 R2 β̂

(k)
r φdata φ99 β̂

(k)
r φdata φ99 R2 β̂

(k)
r φdata φ99

k

Norwegian 1984-2018

1.0 0.12 25.86 25.79 0.03 0.12 25.86 25.79 0.12 25.86 25.79 0.03 0.12 25.86 25.79

3.0 0.11 51.12 63.78 0.01 0.25 20.69 32.68 0.10 51.96 64.94 0.01 0.26 20.51 32.86

5.0 0.00 68.06 82.47 0.00 0.30 17.66 38.86 -0.01 69.52 83.91 0.00 0.31 17.26 39.30

7.0 -0.36 89.58 96.54 0.11 0.33 16.32 43.70 -0.44 91.11 97.25 0.14 0.34 15.77 44.65

11.0 -0.32 88.70 93.49 0.04 0.34 15.48 50.04 -0.37 88.62 93.08 0.04 0.36 14.73 51.88

∞ ∞ ∞ ∞ ∞ 0.34 15.27 58.96 ∞ ∞ ∞ ∞ 0.36 14.51 63.66

U.S 1984-2018

1.0 0.18 23.41 22.71 0.15 0.18 23.41 22.71 0.18 23.41 22.71 0.15 0.18 23.41 22.71

3.0 0.41 28.41 28.64 0.28 0.46 17.56 20.01 0.42 28.48 28.67 0.28 0.47 17.43 19.95

5.0 0.62 28.42 29.67 0.41 0.67 12.77 17.42 0.64 28.47 29.64 0.40 0.70 12.44 17.24

7.0 0.78 28.25 29.98 0.63 0.82 9.19 15.33 0.83 28.21 29.89 0.62 0.87 8.65 14.97

11.0 1.05 26.05 27.60 0.85 1.02 5.62 12.90 1.15 26.05 27.47 0.81 1.11 4.91 12.32

∞ ∞ ∞ ∞ ∞ 1.25 3.23 14.31 ∞ ∞ ∞ ∞ 1.46 2.58 15.19

Table 7: Long-run forecasting- Return

Table 7 shows the long-run coefficients for the regression b(k)r = ∑k
j=1 ρj−1φj−1br , where k is the number of lags.

The Table includes direct and indirect estimates for weighted and unweighted regression, respectively (calculation

available in direct and indirect estimates for weighted and unweighted regression). The b̂(k)r is the coefficient of the

long-run estimate for the corresponding lag. The phi data is the probability that the simulated long-run coefficient b̂(k)r

exceeds the sample value b̂(k)r , for each data set, under the assumption of null hypothesis for unforecastable return.

The long-run coefficient b̂(k)r declines in the Norwegian data as we increase

the number of lags, k. The probability values increase substantially. This is

due to the negative correlation between the return coefficient and the log of

dp-ratio, when j > 3, which is, in comparison, substantially more negative

in the Norwegian market. Historically speaking, the aggregated stock market

returns tends to increase in the long-run (Wohlner (2020)). Because of this, we
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would expect the long-run forecast to increase in value as k increases (Maio and

Santa-Clara (2015) and Cochrane (2008)); similar to what we see for the U.S. in

our sample, and for the extended periods. Surprisingly, the Norwegian market

shows a pattern for the return in the long-run, which is the opposite to what

was anticipated. This is unexpected in terms of what the model itself should

forecast, considering that all variables were the same. However, the articles by

Monteiro (2018) and Engsted and Pedersen (2010) show the same results and

emphasize that this seems to be the case when using the dividend-yield model

in most countries except for the U.S. Moreover, the dividend-yield autocorre-

lation φ is relatively low, making it harder to generate a positive coefficient for

return in the long-run (Cochrane (2008)). In other words, the lower value of

φNorway causes the long-run coefficient for return to decrease over time. This is

exactly what Fama and French (1988) concluded; ”high autocorrelation causes

the variance of expected returns to grow faster than the return horizon” (Fama

and French (1988, p. 1)).

Based on the declining p-values for the implied estimates, the expectation

would be that it would forecast better and better - in theory. By interpreting the

methodology’s hypotheses, we see that an increase in lags gives less evidence

against the unforecastable null for return in the Norwegian data. The U.S. data

provides better evidence against the null, but it is still worse than evidence for

the one period. That means that the probabilities are not giving better fore-

castability in the long-run compared to the direct estimates presented by Fama

and French (1988). The absence of forecastability and reduced evidence against

the null-hypothesis for return (identity 10) might be due to the reduced data

sample size or due to the 2008 financial crisis. The long-run probability val-

ues in Cochrane’s sample during 1926-2004 show a decline. When we extend

the data sample to include the years up to 2018 (shown in section 5.8: Exten-
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sion and the appendix), the probability values remains almost unchanged in

the long-run. Therefore, this indicate that forecastable estimation is improved

when using longer samples. Both weighted and unweighted estimates barely

differ in value, which is expected due to ρ ≈ 1. Moreover, the R2 increases sub-

stantially for the U.S. market, but stays close to zero for the Norwegian market.

This supports that return is more forecastable in the U.S. than Norway, which

is same as Fama and French (1988).

An equally important aspect of this research is to examine the unforecastable

null for dividend growth. This is an extension of Cochrane (2008) and is there-

fore not included in his paper.

Weighted Unweighted

∑k
j=1 ρj−1∆dt+j = α + β

(k)
d (dt − pt) + εt+k ∑k

j=1 ∆t+j = α + β
(k)
d (dt − pt) + εt+k

Direct Implied Direct Implied

β̂
(k)
d φdata φ99 R2 β̂

(k)
d φdata φ99 β̂

(k)
d φdata φ99 R2 β̂

(k)
d φdata φ99

k

Norwegian 1984-2018

1.0 -0.24 27.66 33.22 0.13 -0.24 27.66 33.22 -0.24 27.66 33.22 0.13 -0.24 12.58 0.42

3.0 -0.31 48.74 66.05 0.10 -0.49 20.92 42.48 -0.32 49.16 66.48 0.10 -0.50 20.72 42.72

5.0 -0.71 35.93 51.18 0.34 -0.59 16.34 50.76 -0.76 35.16 50.29 0.35 -0.62 15.72 51.57

7.0 -0.95 33.20 49.68 0.55 -0.63 13.96 57.43 -1.04 31.98 48.24 0.56 -0.67 13.10 58.79

11.0 -1.09 40.17 55.68 0.39 -0.66 12.58 66.00 -1.20 40.03 54.21 0.37 -0.69 11.20 68.39

∞ ∞ ∞ ∞ ∞ -0.66 12.16 78.80 ∞ ∞ ∞ ∞ -0.70 10.81 85.99

U.S 1984-2018

1.0 0.04 82.18 92.66 0.01 0.04 82.18 92.66 0.04 82.18 92.66 0.01 0.04 2.29 0.34

3.0 -0.01 76.34 86.90 0.00 0.09 82.31 92.38 -0.01 76.24 86.74 0.00 0.09 82.33 92.38

5.0 -0.07 76.04 84.41 0.01 0.13 82.52 92.13 -0.07 75.72 84.08 0.02 0.16 82.54 92.12

7.0 -0.14 75.63 82.63 0.08 0.16 82.66 91.86 -0.15 75.14 81.99 0.09 0.19 82.68 91.82

11.0 -0.18 78.01 82.18 0.15 0.20 82.86 91.51 -0.21 76.61 80.86 0.15 0.24 82.88 91.46

∞ ∞ ∞ ∞ ∞ 0.25 83.17 91.34 ∞ ∞ ∞ ∞ 0.29 83.40 91.82

Table 8: Long-run forecasting power- Dividend

Table 8 shows the long-run coefficients for the regression b(k)d = ∑k
j=1 ρj−1φj−1bd, where k is the number of lags.

The Table includes direct and indirect estimates for weighted and unweighted regression, respectively (calculation

available in direct and indirect estimates for weighted and unweighted regression). The b̂(k)d is the coefficient of the

long-run estimate for the corresponding lag. The φData is the probability that the simulated long-run coefficient b̂(k)d is

lower than sample value b̂(k)d , for each data set, under the assumption of null hypothesis for unforecastable dividend
growth.

Given a null-hypothesis assuming unforecastable dividend-growth, we see

similarities in explanatory power for long-run regression for both markets for

1984-2018, although considerably higher for the Norwegian market. More-

over, we obtain decreasing probability values for both markets, yet much lower
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values for Norway. Since the R2 increases and probability value decreases

for both markets, the statistics imply more evidence for long-run predictabil-

ity for dividend-growth for the Norwegian market than the U.S. market. In

fact, dividend-growth seem to be most forecastable in Norway. Correspond-

ing findings are found in the papers of (2010) and (2018), who found that

dividend-growth gives stronger statistical evidence in the long-run for Euro-

pean markets than U.S. markets. Return gives better forecasts in the longer-

horizon for U.S. market compared to the Norwegian market. Moreover, the

method of Cochrane (2008) cannot help predicting the Norwegian market for

return. Therefore, we cannot see that the dividend-yield model appears to be

applicable enough for the Norwegian market for return - something that was

also brought up in Engsted and Pedersen (2010) and Monteiro (2018) when

analysing the European market on the same premises.

5.7 Biases in our findings

Our final table serves only to showcasing the eventual bias(es) in the regression

for each coefficient, which appears as the difference in mean of the simulated

coefficients and the null-hypotheses Cochrane (2008).

Table 8 shows the means of the simulated coefficients. The possible biases

emerge as a result of obtaining a mean lower than the expected value for the

corresponding null. For the regressions, the mean of br is lower than the null

on both values of φ for both markets, indicating an upwards bias for br. Div-

idend growth, on the other hand, is considered biased downwards due to the

expected value from the null being higher in relation to the mean for both mar-

kets. This was expected due to the fact that dividend growth autocorrelation

φ is a near-unit-root process. Interestingly enough, a larger φ tends to incur an

increasing bias as a result of a higher φ; all of which applies to the long-run
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βr φ φ βlr
r βlr

d

Norwegian 1984-2018

0.658729 Null 0.000 -0.360 0.659 0.000 -1.000

Mean 0.049 -0.397 0.571 0.057 -0.943

0.990000 Null 0.000 -0.038 0.990 0.000 -1.000

Mean 0.078 -0.098 0.848 0.416 -0.584

U.S 1984-2018

0.878752 Null 0.000 -0.141 0.879 0.000 -1.000

Mean 0.080 -0.175 0.762 0.257 -0.743

0.990000 Null 0.000 -0.033 0.990 0.000 -1.000

Mean 0.097 -0.075 0.848 0.466 -0.534

Table 9: Mean values of coefficients and long-run

The means in table 7 shows the mean of the simulated corresponding coefficient. The null-hypothesis represents the

null for each coefficient.

forecast for Br and Bd. Moreover, The rejections of brlr = 0 or bdlr = -1, we are

still able to distinguish the biased null value brlr. For the Norwegian market,

we are able to distinguish even more for the blr
r , which cannot be rejected under

the unforecastable null-hypothesis for return (identity 10).

We calculated how much the biases accounts for the sample value by tak-

ing the difference between the simulated mean of the coefficient and the null-

hypothesis for the corresponding φ. Therefore, the small bias of 0.057 for blr
r

and the small bias of blr
d ≈ 0.06 accounts for almost nothing of their sam-

ple values, which supports the evidence that the parameter estimates will be

close to their sample values blr
r = 0.34 blr

d = −0.66 for Norway. Due to a sub-

stantially higher difference between the simulated mean and the value for the

null-hypothesis for the U.S, and a very low bias for the Norwegian market,

the simulated sample mean will therefore be closer to the null-hypothesis for

the Norwegian market than the U.S. This means that the Norwegian market

gives stronger evidence to not reject the unforecastable null-hypothesis for re-

turn and less evidence of rejecting the unforecastable return null-hypothesis for
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U.S. market. Since this supports the long-run conclusion from table 6, 7 and

8, we are more convinced that most of the variation in dividend-yield comes

from dividend-growth variation in the Norwegian market, while most comes

from return variation in the U.S. market. This is consistent with previous liter-

ature from Engsted and Pedersen (2010) and Monteiro (2018), which is that the

dividend-yield variation comes most from return in the U.S. market and most

from dividend-growth in the Norwegian market.

5.8 Extension of Cochrane‘s data

Regarding the replication of Cochrane’s data, we found very little worth men-

tioning in terms of difference and have therefore chosen to put all Tables in the

appendix Extension. All Tables with the sample period 1926-2004 are replica-

tions of Cochrane (2008) and present exactly the same results as those in his

article. However, the Tables containing probability values for 1926-2004 are

marginally different from those in his article due to random draws in the cal-

culations. On top of this, we then extended the original dataset by adding 14

extra years.

Initially, Cochrane started by regressing the one-period return and dividend

growth using 5 different regressions in the second Table. His strict hypothe-

ses were based on specifying a null-hypothesis that assumes that return is un-

forecastable and another assuming that the dividend-growth is unforecastable,

respectively. He show that the return is significant, while dividend growth is

not significant. However, in regards to the Monte Carlo in Table 13 (Cochrane’s

Table 3), he states the following: ”(...) the lack of dividend forecastability in the data

gives far stronger statistical evidence against the null than does the presence of return”

Cochrane (2008, p. 1543). Table 13 shows the Monte Carlo Simulation with

probabilities, interpreted with bootstrapping-inference. From what we can see,
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the probability of obtaining a higher simulated value than the mean is a lot

higher for return coefficient Br as opposed to the dividend-growth coefficient

Bd for the U.S. The original dataset and the extended dataset reveal exactly the

same interpretation in Table 10, except for the different sign of the dividend

growth coefficient. Moreover, the change in sign means that the interpretation

actually aligns with the economic intuition. Cochrane expected a negative div-

idend coefficient, rather than the positive coefficient that he found (Cochrane

(2008, p. 1535)). So far it is unknown why the sign is different between these

two datasets for the U.S. The φ is also the same for the original and extended

dataset, which is one of the reasons of why the results, regardless of the dif-

ferent starts and endings of the samples. Despite the financial crisis in 2008

(which was not included in Cochrane‘s article), the statistics show almost no

difference except skewness and kurtosis. The distribution remained almost the

same for all variables, except for dd and dp, which generated a higher t-stat for

the joint test and thereby moved further away from a normal distribution.

Moving on to Table 12: increasing phi, an increase in phi makes almost no

difference between the original and the extended dataset except for excess re-

turn. The probability values stay almost the same for br and bd for U.S. 1926-

2004 and U.S. 1926-2018. Moreover, the long-run estimates in Table 14: Long-

run horizon, are almost the same, where blr
r ≈ 1 and blr

d ≈ 0 for both datasets,

with almost the same t-statistics and % probability values. The long-run fore-

casting power in Table 15 shows that the probability values for return decrease

as k increases. However, the extended dataset generates a higher probability

value for return than the original dataset. Does this mean that using a longer

sample that includes a financial crisis and more volatility, leads to even less

reliable long-run forecasting? It is tempting to claim that the longer sample

gives a better estimate of whether or not long-run forecasting is reliable. Fi-
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nally, as expected, the implied probabilities stay almost the same between the

two datasets.

In sum, we obtained the same interpretation as Cochrane for both his orig-

inal datasets an our extended datasets. He concluded that a forecastable null-

hypothesis for dividend growth gives more evidence against the null, than the

unforecastable return (Cochrane (2008)) for the one-period regression. Mean-

ing for the one-period, return is predicted by dividend yield and there is no

predictability in dividend growth. The same interpretation can be seen in the

extended sample as well, where the probability for Bd in the Monte Carlo Sim-

ulation is much lower than the return. However, when using the long-run re-

gression, the extended sample provides a different interpretation as the original

dataset. We find less predictability over the long-run than the original dataset.

The probability values are therefore higher, and R2 is lower for the original-

and extended dataset.
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6 Conclusion

For the time-varying stock market return, during the period 1984-2018, the

Norwegian market gives stronger evidence against the unforecastable null-hypothesis

for dividend growth than return, while the U.S market finds the opposite con-

clusion, during the period 1984-2018. The estimates obtained in table 6 imply

that most of the variation in dividend yield comes more from the variation of

dividend-growth and less from the variation of return in the Norwegian mar-

ket. That is, the variation in dividend-yield is accounted for in a higher degree

for return compared to the variation in dividend-growth.

The R2 in table 7 shows that the explanatory power for return in the long-

run increases for the U.S. market, while it decreases for the Norwegian market.

With respect to the U.S. market, this is equivalent to the findings of Fama and

French (1988), who also obtained an increasing R2 for long-run return for the

U.S. The long-run dividend-growth, however, shows the opposite pattern. That

is, the R2 for dividend-growth for the Norwegian data increases as we increase

the number of lags, and the R2 decreases for the U.S. This is is exactly what

was found by Engsted and Pedersen (2010), who found that R2 increased for

dividend growth in the long-run for the European market and decreases in the

U.S.

The results imply that Cochrane’s VAR system (2008) can only yield increas-

ing long-run coefficients for return in the U.S., not for Norwegian Stock Market.

The autocorrelation for dividend-yield, φNorway = 0.659 is quite different from

φU.S. = 0.879. Fama and French (1988) concluded that ”high autocorrelation

causes the variance of expected returns to grow faster than the return horizon”

(Fama and French (1988, p. 1)). Due to the low φNorway, which gives a low and

negative return coefficient, while the larger φU.S causes a higher return for the
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U.S. market, we can say that the findings are consistent with the results from

Fama and French (1988) for each market.

The simulations give higher probability values than the sample mean for

the return in the Norwegian data compared to the U.S. data. We find that

dividend-growth gives stronger long-run predictability than return for the Nor-

wegian market. We also find that return is more forecastable in the long-run

than dividend growth in the U.S. market. As we can see, this result is different

for the two markets. This is consistent with what Engsted and Pedersen (2010)

concluded with, who finds better long-run predictability for return in U.S. than

the European market and the opposite for the dividend growth. The same ap-

plies for Monteiro (2018), who also arrived at different conclusions between

the U.S. and European markets; that is, return provides stronger evidence for

forecastability in the U.S., but the opposite for Germany, France, and Italy. The

replicated results of Cochrane’s Sample (1926-2004), the additional 14 years

of extended sample data and the U.S. data 1984-2018 gives approximately the

same φ and results. When comparing the U.S market and Norwegian market

for 1984-2018 on the other hand, the results are quite different. Hence, pre-

dictability in dividend-growth and return estimates with the dividend-yield

model from Campbell and Shiller (1988) depends on which market we forecast,

by using the method from Cochrane (2008).Hence, using the Cochrane Sys-

tem (2008) as applied to Campbell and Shiller’s dividend-yield model (1988)

predictability in dividend-growth and return estimates are very dependent on

which markets we forecast, and shows more accuracy when used for long-run,

rather than short-term estimates.

Future research could examine the VAR-system with more independent vari-

ables instead of only using one. This could be developed to a factor model, by

using book-to-market ratios, size and so on. Alternatively, assuming that the
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indices being used has more data, one could use this additional data in order

to forecast for, at most, 11 years as we did. An out-of-sample test with many

years of observations is also an interesting avenue for future research.
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APPENDIX

A Cochrane replication and extension- tables

In this appendix section, the tables for U.S 1926-2004, which is fully replicated

from Cochrane‘s article and U.S 1926-2018, is presented here. Only the tables

are presented, whereas comparison between each datasets are done in results

and analysis.

Correlation, std on diagonal Other statistics

r dd dp RF CPI skew kurt jointly mean

US 1926-2004

r 0.20 0.65 0.20 -0.07 -0.17 -0.68 0.28 30.52 0.07

dd 0.65 0.14 0.02 -0.10 -0.12 -0.02 0.17 26.29 0.01

dp 0.20 0.02 0.41 -0.18 -0.01 -0.94 0.93 25.65 -3.27

RF -0.07 -0.10 -0.18 0.04 0.39 1.01 1.16 24.62 0.04

CPI -0.17 -0.12 -0.01 0.39 0.04 0.21 3.03 0.60 0.03

U.S 1926-2018

r 0.20 0.63 0.20 -0.03 -0.15 -0.80 0.68 30.80 0.06

dd 0.63 0.14 -0.01 -0.09 -0.16 0.06 -0.02 35.31 0.02

dp 0.20 -0.01 0.44 0.06 0.07 -0.45 -0.33 46.12 -3.33

RF -0.03 -0.09 0.06 0.03 0.46 1.13 1.68 26.46 0.03

CPI -0.15 -0.16 0.07 0.46 0.04 0.35 3.84 4.56 0.03

Table 10: Statistics (Extension)

r is log return t+1 and dd is log dividend change t+1, deflated by CPI. Dp is log dividend price ratio at time t, RF is
T-bill 3 month at t+1 and CPI is consumption price index at t+1. In ”Correlation, std on diagonal”, the diagonal is
standard deviation of the corresponding letters and the rest are correlation

β se t(β) R2 Stdx*b

Regression

US 1926-2004

Rt+1 = αR + βR(Dt/Pt) + εR
t+1 3.387 1.488 2.28 0.0582 0.049

Rt+1 − R f
t = αR + βR−RF(Dt/Pt) + εR

t+1 3.829 1.465 2.61 0.0737 0.056

Dt+1/Dt = αD + βD(Dt/Pt) + εD
t+1 0.073 1.159 0.06 0.0001 0.001

rt+1 = αr + βr(dt − pt) + εr
t+1 0.097 0.050 1.92 0.0398 0.040

∆dt+1 = αd + βd(dt − pt) + εd
t+1 0.008 0.044 0.18 0.0005 0.003

U.S 1926-2018

Rt+1 = αR + βR(Dt/Pt) + εR
t+1 2.886 1.169 2.47 0.0532 0.046

Rt+1 − R f
t = αR + βR−RF(Dt/Pt) + εR

t+1 2.980 1.159 2.57 0.0573 0.047

Dt+1/Dt = αD + βD(Dt/Pt) + εD
t+1 -0.164 0.998 -0.16 0.0003 0.003

rt+1 = αr + βr(dt − pt) + εr
t+1 0.087 0.042 2.07 0.0382 0.038

∆dt+1 = αd + βd(dt − pt) + εd
t+1 -0.002 0.035 -0.06 0.0000 0.001

Table 11: Forecasting (Extension)

Table 11 shows the probability values that the simulated coefficients are larger than the corresponding coefficients for

different values of φ. The probability value 25.63 for br is calculated as ∑ bsim
r >bdata

r
50.000 using φ = 0.659 in the simulations.

The coefficient for return is estimated under the unforecastale return-null while dividend growth is. The coefficient for
dividend-growth is estimated under the null that assumes that dividend-growth cannot be forecasted while return is
forecastable.
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Estimates ε s. d. diagonal and corr Null 1 Null 2

β̂ σ(β̂) Implied r ∆d dp β, Φ β, Φ

US 1926-2004

r 0.097 0.050 0.101 0.196 0.660 -0.700 0.000 0.000

∆d 0.008 0.044 0.004 0.660 0.140 0.075 -0.093 -0.046

dp 0.941 0.047 0.945 -0.700 0.075 0.153 0.941 0.990

U.S 1926-2018

r 0.087 0.042 0.088 0.192 0.640 -0.679 0.000 0.000

∆d -0.002 0.035 -0.003 0.640 0.142 0.130 -0.091 -0.044

dp 0.942 0.039 0.943 -0.679 0.130 0.154 0.942 0.990

Table 12: VAR (Extension)

Each row represents the one-period regression from the VAR system described in methodology. The first row, for
instance, use the regression rt+1 = α + βr(dt − pt) + εr

t+1, equivalent to identity 1; the same applies for the second
and third row for each set. The implied values are calculated by solving for the corresponding dependent variable
in identity 5. ρ is defined as the constant taylor-approximated point estimate for the dividend yield and is used to
calculate the implied value for the corresponding dependent variable in in table 3 above. The null columns are the
coefficients which are used in the simulations under the null.
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Percent probability values

Real returns Excess returns

βr φ brlr
min brlr

max βr φ brlr
min brlr

max

φ

US 1926-2004

0.900 23.50 0.67 0.36 0.62 18.87 0.42 0.10 0.17

0.941 22.73 1.81 1.30 1.88 17.70 1.18 0.44 0.70

0.960 22.86 3.14 2.50 3.32 16.66 1.70 0.85 1.24

0.980 21.42 4.74 4.12 5.31 16.26 2.72 1.85 2.42

0.990 21.62 6.42 5.78 7.37 16.11 3.64 2.62 3.55

1.000 21.78 8.98 8.54 10.40 16.78 4.64 3.70 5.04

1.010 18.36 10.25 10.50 12.58 14.20 5.33 5.32 6.58

Draw 25.02 1.80 1.56 2.03 20.68 1.10 0.80 1.10

U.S 1926-2018

0.900 21.25 0.46 0.51 0.58 20.36 0.46 0.48 0.55

0.942 19.11 1.44 1.57 1.74 18.77 1.33 1.37 1.53

0.960 18.82 2.66 2.84 3.08 17.43 2.42 2.47 2.75

0.980 18.32 4.90 5.04 5.42 17.15 4.49 4.54 4.88

0.990 18.36 6.75 6.86 7.30 17.34 6.14 6.23 6.66

1.000 17.98 9.73 9.73 10.28 16.80 8.47 8.46 9.06

1.010 14.14 11.41 11.16 11.81 13.26 10.46 10.33 10.86

Draw 22.78 1.91 1.93 2.13 22.08 1.82 1.85 2.02

Table 13: Increasing φ (phi) (Extension)

Table 13 shows the probability values that the simulated coefficients are larger than the corresponding coefficients for

different values of φ. The probability value 25.63 for br is calculated as ∑ bsim
r >bdata

r
50.000 using φ = 0.659 in the simulations.

The coefficient for return is estimated under the unforecastale return-null while dividend growth is. The coefficient for
dividend-growth is estimated under the null that assumes that dividend-growth cannot be forecasted while return is
forecastable.

βr tr φ td

US 1926-2004
Real 22.095 10.120 1.800 1.675

Excess 17.045 6.015 1.085 0.795

U.S 1926-2018
Real 19.455 7.140 1.620 1.685

Excess 18.570 6.515 1.505 1.520

Table 14: Monte Carlo Simulation by Bootstrapping (Extension)

The columns gives the probability that the coefficients are larger than the corresponding coefficients in the sample data.

Example is breal
r = ∑ bsim(real)

r >bdata(real)
r

50.000 . 50.000 samples of br , tr , bd and td in a Monte Carlo simulation and calculated
how many of these samples that were greater than the sample coefficients. The coefficient for return is estimated under
the unforecastale return-null while dividend growth is. The coefficient for dividend-growth is estimated under the null
that assumes that dividend-growth cannot be forecasted while return is forecastable.
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βlr se t % prob.

values

US 1926-2004

rt+1 1.09 0.44 2.48 1.31-1.83

∆dt+1 0.09 0.44 2.48 1.31-1.83

Excess rt+1 1.23 0.47 2.62 0.41-0.68

U.S 1926-2018

rt+1 0.97 0.38 2.59 1.76-1.95

∆dt+1 -0.03 0.38 2.59 1.76-1.95

Excess rt+1 0.99 0.38 2.59 1.53-1.68

Table 15: Long-run (Extension)

Table 15 shows the long-run coefficients. Note that the ”lr” superscript denotes long-horizon coefficients. β̂lr
r is cal-

culated as β̂lr
r = b̂r

1−ρφ̂
where b̂r is the coefficient from the regression rt+1 = α + β̂r(dt − pt) + εr

t+1. φ̂ comes from the

autocorrelation dt+1 − pt+1 = α + φ̂dp(dt − pt) + ε
dp
t+1. The % probability values are the probability range under the

null hypotheses φ from each of the markets. The t statistic for blr
d is the t stats for the hypothesis that b̂lr

d = −1.

Weighted Unweighted

∑k
j=1 ρj−1rt+j = α + β

(k)
r (dt − pt) + εt+k ∑k

j=1 rt+j = α + β
(k)
r (dt − pt) + εt+k

Direct Implied Direct Implied

β̂
(k)
r φdata φ99 R2 β̂

(k)
r φdata φ99 β̂

(k)
r φdata φ99 R2 β̂

(k)
r φdata φ99

k

US 1926-2004

1.0 0.10 22.71 21.50 0.04 0.10 22.71 21.50 0.10 22.71 21.50 0.04 0.10 22.71 21.50

5.0 0.35 28.34 28.41 0.12 0.40 16.51 18.22 0.37 28.68 29.04 0.12 0.43 16.22 18.07

10.0 0.80 15.82 15.70 0.27 0.65 10.39 14.32 0.92 15.84 15.69 0.27 0.75 9.21 13.60

15.0 1.38 4.56 4.53 0.51 0.80 6.42 11.51 1.68 5.00 4.78 0.49 0.98 4.49 10.06

20.0 1.49 4.81 4.96 0.61 0.89 4.28 9.67 1.78 7.94 7.78 0.49 1.15 2.22 7.52

∞ ∞ ∞ ∞ ∞ 1.04 1.79 7.34 ∞ ∞ ∞ ∞ 1.64 0.50 9.12

U.S 1926-2018

1.0 0.09 19.72 17.43 0.04 0.09 19.72 17.43 0.09 19.72 17.43 0.04 0.09 19.72 17.43

5.0 0.28 29.62 28.78 0.12 0.36 14.92 15.22 0.30 30.03 29.33 0.11 0.39 14.75 15.10

10.0 0.56 23.97 23.92 0.28 0.59 9.56 12.50 0.63 24.46 24.32 0.27 0.67 8.62 12.02

15.0 0.74 22.42 22.83 0.35 0.73 5.94 10.37 0.89 23.28 23.72 0.33 0.89 4.66 9.18

20.0 0.98 15.62 16.56 0.39 0.82 4.26 8.80 1.20 18.24 19.25 0.34 1.04 2.58 7.47

∞ ∞ ∞ ∞ ∞ 0.96 1.94 7.10 ∞ ∞ ∞ ∞ 1.49 0.56 10.26

Table 16: Long-run forecasting (Extension)

Table 16 shows the long-run coefficients for the regression b(k)r = ∑k
j=1 ρj−1φj−1br , where k is the number of lags. The

table includes direct and indirect estimates for weighted and unweighted regression, respectively (calculation available

in direct and indirect estimates for weighted and unweighted regression). The b̂(k)r is the coefficient of the long-run

estimate for the corresponding lag. The phi data is the probability that the simulated long-run coefficient b̂(k)r exceeds

the sample value b̂(k)r , for each data set.
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βr φ φ βlr
r βlr

d

US 1926-2004

0.940974 Null 0.000 -0.093 0.941 0.000 -1.000

Mean 0.049 -0.097 0.886 0.246 -0.754

0.990000 Null 0.000 -0.046 0.990 0.000 -1.000

Mean 0.057 -0.050 0.927 0.398 -0.602

U.S 1926-2018

0.941731 Null 0.000 -0.091 0.942 0.000 -1.000

Mean 0.040 -0.096 0.895 0.206 -0.794

0.990000 Null 0.000 -0.044 0.990 0.000 -1.000

Mean 0.045 -0.050 0.936 0.374 -0.626

Table 17: Biases (Extension)

The means in table 17 shows the mean of the simulated corresponding coefficient. The null represents the null for

each coefficient.
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B Explanations

B.1 Stationarity in time series

The stationarity of a time series is a characteristic that can strongly influence

its behaviour and properties. For the sake of illustration, the word ‘shock’ is

commonly used to express a change or an unexpected change in a variable or

perhaps simply the value of the error term during a particular time period. As

explained in Brooks (2014):

”For a stationary series, ‘shocks’ to the system will gradually die away. That

is, a shock during time t will have a smaller effect in time t +1, a smaller ef-

fect still in time t +2, and so on. This can be contrasted with the case of non-

stationary data, where the persistence of shocks will always be infinite, so that

for a non-stationary series, the effect of a shock during time t will not have a

smaller effect in time t +1, and in time t +2, etc.”. Brooks (2014, p. 319).

B.2 Blue assumptions

What is referred to as BLUE assumptions are prerequisites for the OLS esti-

mator that we expect to to hold, to ensure that the parameter estimates has the

desirable underlying properties for accurate statistical use. ”If assumptions 1–4

hold, then the estimators α and β̂ determined by OLS will have a number of de-

sirable properties, and are known as best linear unbiased estimators (BLUE)”

(Brooks (2014, p. 44)). Here are definitions of the blue assumptions, described

in Brooks (2014):

• ”‘Best’ – means that the OLS estimator β̂ has minimum variance among

the class of linear unbiased estimators; the Gauss–Markov theorem proves

that the OLS estimator is best by examining an arbitrary alternative linear
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unbiased estimator and showing in all cases that it must have a variance

no smaller than the OLS estimator.” (Brooks (2014, p. 45))

• ”‘Estimator’ – α̂ and β̂ are estimators of the true value of α and β” (Brooks

(2014, p. 45))

• ”Linear’ – α̂ and β̂ are linear estimators – that means that the formula for

α̂ and β̂ are linear combinations of the random variables.” (Brooks (2014,

p. 45))

• ”‘Unbiased’ – on average, the actual values of α̂ and β̂ will be equal to their

true values” (Brooks (2014, p. 45))

The assumptions for a the linear estimators are the following:

1. E(ut)=0 - The expectation of residuals observed today is, on average, equal

to zero.

2. var(ut) = σ2 > ∞ - Assuming that the variance of residuals are constant,

which implies homoscedasticity.

3. cov(ui, uj) 6= 0 for i 6= j - No covariance between error terms over time.

Also know as being serially uncorrelated or linearly independent of one

another.

4. cov(ui, xt) 6= 0 - There is no relationship between the error term and the x

variable

5. (ut) N (0,σ2) - The error term is normally distributed. In principal, this is

a joint assumption of assumption 1 and 2.

B.3 Boostrapping

Bootstrapping is related to simulation, but with one crucial difference:
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”With simulation, the data are constructed completely artificially. Bootstrap-

ping, on the other hand, is used to obtain a description of the properties of em-

pirical estimators by using the sample data points themselves, and it involves

sampling repeatedly with replacement from the actual data” (Brooks (2014, p.

553))

According to Brooks (2014), the advantage of bootstrapping over the use

of analytical results is that it allows the researcher to make inferences without

making strong distributional assumptions, since the distribution employed will

be that of the actual data. Instead of imposing a shape on the sampling distribu-

tion of the φ̂ value, bootstrapping involves empirically estimating the sampling

distribution by looking at the variation of the statistic within-sample.

B.4 Direct and indirect

In table 6, we are using weighted and unweighted regression, where the weighted

use ρ and the unweighted does not include ρ.

B.5 Monte Carlo Simulation

The Monte Carlo Simulations are calculated with random draws using the

bootstrap method (Brooks (2014)).
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C Assumptions of linear regression

In this section, we present the results from the assumptions on linear regres-

sions. We briefly explain the assumptions, if the assumptions are violated, and

how it might affect the U.S and Norwegian Market data, respectively. Due to

this section being relevant to only some aspects of the paper and a bit long,

we have only decided only to include the test results for the BLUE assump-

tions below. We have presented a summary table of the variables that have

either satisfied or violated the assumptions before taking a closer look at each

assumption. Conclusively, we have written an overall summary for each mar-

ket. We have followed the steps of the test in Python, which was described by

Macaluso (2018) and the theory provided in the book of Brooks (2014).

C.1 BLUE assumptions

Assumption

1

Assumption

2

Assumption

3

Assumption

4

Assumption

5

Norwegian 1984-2018

r Satisfied Satisfied Positive Satisfied Not satisfied

dd Satisfied Satisfied Positive Satisfied Not satisfied

dp Satisfied Satisfied Satisfied Satisfied Satisfied

U.S 1984-2018

r Satisfied Satisfied Positive Satisfied Not satisfied

dd Satisfied Not satisfied Positive Satisfied Not satisfied

dp Satisfied Satisfied Positive Satisfied Not satisfied

Table 17: Summary of BLUE assumptions

The summary of assumption is a table which summarizes the variables that either satisfies or violates

each of the BLUE assumptions. The first panel represents the Norwegian market, and the second panel

represents the U.S market.
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C.2 Assumption 1

Assumption 1: Linearity

Assumption 1 tests if the mean of the data is equal to zero. According to the data, the mean of the

residuals is insignificantly different from zero for the Norwegian and U.S market. Hence, assumption 1

holds both all identities.
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C.3 Assumption 2

Assumption 2: Normality

The summary of assumption is a table which summarizes the variables that either satisfies or violates each of the

BLUE assumptions. The first panel represents the Norwegian market, and the second panel represents the U.S market.

U.S Assumption 2 tests if the mean of the residuals are equal to zero. Ac-

cording to the data, assumption 2 is holds for all identities, but identity 2 for

the U.S market. Identity 2 is the dependent dividend growth identity. This

indicates heteroscedasticity and sign of inconstant variance for identity 2. The

results are derived from an Anderson-Darling test.

Norwegian Assumption 2 tests if the mean of the residuals are equal to zero.

According to the data, assumption 2 holds for all identities. This indicates ho-

moscedastic error terms. The results are derived from an Anderson-Darling

test.
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C.4 Assumption 3 & 4

Assumption 3 Assumption 4

Durbin test Autocorr. Covariance Sign of cov?

Norwegian 1984-2018

r 1.0777 Positive -0.001 No sign

dd 1.3878 Positive 0.001 No sign

dp 2.0121 No sign -0.000 No sign

U.S 1984-2018

r 1.0410 Positive -0.000 No sign

dd 1.2489 Positive -0.000 No sign

dp 1.4255 Positive -0.000 No sign

Table 18: Assumption 3 and 4

The table above shows the t-test and the results from a Durbin-Watson test (assumption 3), as well as the covariance

between the respective variable and the error term (assumption 4

U.S 1984-2020

Assumption 3 tests for autocorrelation in the error-term. For the U.S data,

assumption three is violated for all identities . The results indicate signs of pos-

itive autocorrelation in the error terms. The results are derived from a Durbin-

Watson test. Assumption 4 tests for covariance between the corresponding x

variate and the error term. According to the data, the error terms shows signs

of no correlation between the error term and the independent variable on any

of the identities. Thus, assumption 4 holds all identities. The results are derived

directly from the python script by calculating the covariance.

Norwegian 1984-2020

Assumption three tests for autocorrelation in the error-term. Assumption three

only holds for identity 3, while the other identities shows sign of positive au-

tocorrelation. The results are derived from a Durbin-Watson test. Assumption

4 tests for covariance between the corresponding x variate and the error term.

According to the data, the error terms shows signs of no correlation between
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the error term and the independent variable on any of the identities. Thus, as-

sumption 4 holds all identities. The results are derived directly from the python

script by calculating the covariance.

C.5 Assumption 5

Jarque Bera Satisfied?

Norwegian 1984-2018

r 9.94 Not satisfied

dd 19.57 Not satisfied

dp 4.96 Satisfied

U.S 1984-2018

r 11.79 Not satisfied

dd 19.33 Not satisfied

dp 10.73 Not satisfied

Table 19: Assumption 5

The summary of assumption is a table which summarizes the variables that either satisfies or violates each of the

BLUE assumptions. The first panel represents the Norwegian market, and the second panel represents the U.S market.

Assumption 5 assumes joint normality. The results are derived from a Barque-

Jera test, that tests for excess skewness- and kurtosis in the distribution Brooks

(2014). In principal, the tests works as a joint test of assumption 1 and 2 to-

gether. . In principal, the tests work

Assumption 5 assumes joint normality. The results are derived from a Barque-

Jera test, that tests for excess skewness- and kurtosis in the distribution Brooks

(2014). In principal, the tests works as a joint test of assumption 1 and 2 to-

gether. Thus, since these assumptions holds for our data, it is not surprising

that assumption 5 holds.
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C.6 Summary

U.S 1984-2018

From what we can see, assumption 1 and 4 are the only assumptions that holds

for all identities for the U.S. The Anderson-test, that tests for homoscedasticity,

holds for all identities but identity 2, which implies heteroscedasticity in the

error term for dividend-growth. The Durbin-Watson test shows signs of posi-

tive autocorrelation with residuals for all identities, which has makes the stan-

dard errors biased downwards relative to the true value Brooks (2014). Lower

standard errors gives a higher t-stat than the true value, which can result in

conducting a type-I Brooks (2014). R2 is also likely to inflated due to this vi-

olation, according to Brooks (2014). Apart from that, the mean in assumption

1 is insignificantly different from zero, the independent variables are uncorre-

lated with the error term. If assumption 4 was violated, the estimates would

not even be consistent as the sample size increases.

Norwegian 1984-2018

From what we can see, assumption 1-2 and 4 holds for all identities, as well as

assumption 5 for the DP-ratio. The violation of assumption 3 implies a down-

wards bias in standard errors relative to the true value Brooks (2014). Lower

standard errors gives a higher t-stat than the true value, which can result in

conducting a type-I error when doing hypothesis testing. R2 is also likely to

inflated due to this violation, according to Brooks (2014).

Note that only assumption 1-4 must hold in order to say that the parameters

are, statistically, BLUE Brooks (2014).
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Assumption

1

Assumption

2

Assumption

3

Assumption

4

Assumption

5

US 1926-2004

r Satisfied Satisfied Positive Satisfied Not satisfied

dd Satisfied Not satisfied Positive Satisfied Not satisfied

dp Satisfied Satisfied Positive Satisfied Not satisfied

U.S 1926-2018

r Satisfied Satisfied Positive Satisfied Not satisfied

dd Satisfied Not satisfied Positive Satisfied Not satisfied

dp Satisfied Satisfied Positive Satisfied Not satisfied

Table 20: Summary of BLUE assumptions (Cochrane)

The summary of assumption is a table which summarizes the variables that either satisfies or violates

each of the BLUE assumptions. The first panel represents the U.S. market 1926-2004, and the second

panel represents the U.S. market 1926-2018.
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D Models

D.1 Campbell and Shiller decomposition

Start with the return equation,

Rt+1 =
Pt+1 + Dt+1

Pt
(1)

Rt+1 =
Pt+1 + Dt+1

Pt
∗

1
Dt
1

Dt

(2)

Rt+1 =
(1 + Pt+1

Dt+1
)Dt+1

Dt
Pt
Dt

(3)

Loglineralizing equation (3)

rt+1 = log[1 + e(pt+1−dt+1)] + log(
dt+1

dt
)− log(

pt

dt
) (4)

rt+1 = log[1 + e(pt+1−dt+1)] + ∆dt+1 − (pt − dt) (5)

A function can be approximated using Taylor series (July Thomas and Samir

Khan and Jimin Khim (2019)),

f (x) ≈ f (a) + f ′(x) ∗ (x− a) +
1
2

f ′′(x) ∗ (x− a)2 + ... +
1
n!

f (n)(x) ∗ (x− a)n

(6)

Campbell and Shiller (1988) used first order Taylor approximation for the first

term in equation (5), log[1 + e(pt+1−dt+1)],

log[1 + e(pt+1−dt+1)] ≈ log[1 + ept−dt ] +
ept−dt

1 + ept−dt
∗ ((pt+1 − dt+1)− (pt − dt))

(7)

Where x = pt+1 − dt+1 and a = pt − dt. From here, the approximation is

plugged into equation (5),
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rt+1 = log[1 + ept−dt ] +
ept−dt

1 + ept−dt
∗ ((pt+1 − dt+1)− (pt − dt)) + ∆dt+1 − (pt − dt)

≈ log[1 + ept−dt ]− (pt − dt) ∗
ept−dt

1 + ept−dt
+

ept−dt

1 + ept−dt
∗ (pt+1 − dt+1) + ∆dt+1 − (pt − dt)

≈ k + ρ(pt+1 − dt+1) + ∆dt+1 − (pt − dt)

Where ρ = ept−dt

1+ept−dt
and k=constant, is dropped, equation (10) is optained.
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D.2 Identities from VAR representation

Start with the VAR system in (Cochrane (2008)):

rt+1 = αr + βr(dt − pt) + εr
t+1 (1)

∆t+1 = αd + βd(dt − pt) + εd
t+1 (2)

dt+1 − pt+1 = αdp + φ(dt − pt) + ε
dp
t+1 (3)

Plugging the VAR representation into Campbell and Shiller (1988) linerization:

rt+1 = ρ(pt+1 − dt+1) + ∆t+1 − (pt − dt) (4)

This gives the equation

αr + βr(dt − pt) + εr
t+1 = −ρ(αdp + φ(dt − pt) + ε

dp
t+1) + αd + βd(dt − pt) + εd

t+1 − (pt − dt)

αr + ραdp − αd = −ρφ(dt − pt) + βd(dt − pt) + (dt − pt)− βr(dt − pt)− ρε
dp
t+1 − εr

t+1 + εd
t+1

αr + ραdp − αd = (dt − pt) ∗ (−ρφ + βd + 1− βr) + (−ρε
dp
t+1 − εr

t+1 + εd
t+1)

From the last equation, we get the same identity for regression coefficients

and the error link as in Cochrane (2008):

βr = 1− ρφ + βd (5)

εr
t+1 = εd

t+1 − ρε
dp
t+1 (6)
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D.3 Blr

Using the Campbell and Shiller (1988) present value theorem, gives the identity

dt − pt = Et

∞

∑
j=1

ρj−1rt+j − Et

∞

∑
j=1

ρj−1∆t+j (7)

Multiply with (dt − pt)− E(dt − pt) and take the expectation, gives

var(dt − pt) = cov
( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
− cov

( ∞

∑
j=1

ρj−1∆t+j, dt − pt

)
(8)

Dividing by var(dt − pt), the equation becomes

β

( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
− β

( ∞

∑
j=1

ρj−1∆t+j, dt − pt

)
= 1 (9)

For β

(
∑∞

j=1 ρj−1rt+j, dt − pt

)
it becomes

β

( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
=

∞

∑
j=1

ρj−1β

(
rt+j, dt − pt

)
(10)

β

( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
=

∞

∑
j=1

ρj−1φj−1br (11)

β

( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
=

br

1− ρφ
(12)

β

( ∞

∑
j=1

ρj−1rt+j, dt − pt

)
= blr

r (13)

The same can be accomplished using blr
d and we finally get the equation,

blr
r − blr

d = 1 (14)
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E Inconsistencies

In Cochrane (2008), there are inconsistency in table 6. In his paper, the un-

weighted implied coefficients are 1.02, 1.26 and 1.41 for 10, 15 and 20 years of

forecast, respectively. These coefficients should be 0.75, 0.98 and 1.15 instead,

because unweighted br is calculated as b(k)r = br
1−ρkφk

1−ρφ in his paper, while they

should not contain ρ. This mistake is explained by Cochrane (2020). Also, he

used the word ”power” in terms of probabilities s incorrect in this paper.
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