

GRA 19703

Master Thesis

Thesis Master of Science

Is the Fama French Five Factor model still working?

Navn: Noemi Muscolo

Start: 15.01.2020 09.00

Finish: 01.09.2020 12.00

Master Thesis

Is the Fama French Five Factor model still working?

Supervisor: Ignacio Garcia de Olalla Lopez

Hand-in date: 01.09.2020

Campus: BI Oslo

Examination code and name: **GRA 19703** Master Thesis

Programme:

Master of Science in Business with Major in Accounting and
Business Control

This thesis is a part of the MSc programme at BI Norwegian Business School. The school takes no responsibility for methods used, results found and conclusions drawn.

Content

Al	ostractpag	.3
1.	Introductionpag	.4
2.	Literature Reviewpag	.5
	2.1. International studiespag.	8
3.	Theorypag.	9
	3.1. CAPMpag	.9
	3.2. Fama & French Three Factor Modelpag.1	0
	3.3. Carhart Four Factor Modelpag.1	l 1
	3.4. Fama & French Five Factor Modelpag.1	. 1
4.	Research Methodologypag.1	14
4	-1. Portfolios constructionpag.1	4
2	.2 Factors constructionpag.1	6
5.	Data Collectionpag.1	8
6.	Empirical resultspag.2	0
6	1. Six size, book to market portfoliospag.2	20
6	2. Six size, momentum portfoliospag.2	23
7.	Conclusionpag.2	26
8.	List of Referencespag.2	:7
9.	Appendixpag.3	0

Is the Fama French Five Factor model still working?

Noemi Muscolo

BI Norwegian Business School

Abstract

Many different asset pricing models have been developed over the years, in order to understand how the risk of an investment should affect the expected return. None of the models developed seem to be completely exempt from criticism, but many economists prefer the Fama French Five factor model. The aim of this paper is to verify if the five factors of the model are still relevant and significant nowadays, in order to explain the expected return of an investment. At the beginning of the study, a lot of focus has been addressed to the validity of the value factor. Contrary to the initial expectations, our results show that this factor is still relevant to explain the average expected return. On the contrary there are other factors which may need further analysis and of which validity is questionable.

KEYWORDS: Asset pricing, stock returns, Fama-French 5 factor model, factors, risk, momentum factor, beta.

3

1. Introduction

Economists and scholars have always dedicated a lot of attention to the asset pricing topic, in order to explain the relationship between risk and return. The first model developed was CAPM by Sharpe (1964) and Lintner (1965). After this model, many other versions of CAPM were presented in order to improve the existing one. In 1993, Fama & French, introduced a new model that could explain the average return behavior better than CAPM. They decided to include two new factors other than the market factor, which were the size factor (measured with book value of equity) and the value factor (measured with the book to market ratio). Despite this, after the introduction of the three factor model a lot of criticism followed. For this reason, in the subsequent years Fama & French, decided to add two other factors to their previous model: the investment factor and the profitability factor. Moreover, in 1997 Carhart, added another explanatory variable to the factors presented in the Fama French three factor model: the momentum factor. In order to construct this new factor he considered the investment in past winners and the selling of past losers. The purpose of this paper is to analyze if Fama French five factor model still explains average returns in a satisfactory way. For our analysis, two different portfolios will be used: one portfolio sorted on size and on book to market values and another portfolio sorted on size and on momentum factor values. The independent variables will be the five different factors of the Fama French model and only at a later stage of our analysis, also the momentum factor will be added as a sixth independent variable. The choice to subsequently add this other factor was made in order to analyze if the results obtained were the same, also after the inclusion of this new variable.

2. Literature Review

During the years, many asset pricing models have been developed in order to analyse and to explain the returns for risk bearing assets. Financiers and economists have dedicated a lot of attention to this topic over the years, trying to identify a model that could explain asset returns in the best possible way. This is useful when investors have to make decisions regarding the investments to be done, and what return to expect when they invest in company's assets.

Sharpe (1964), Litner (1965) and Black (1972), were among the first to develop some theories regarding asset pricing. They supported the theory that expected returns on securities were a positive linear function of the market β s and that this was the only explanatory variable needed to explain returns behaviour. The model evaluated what the expected return should be, given a specific function of the market risk. The basis of the CAPM model took origin from the model of portfolio theory of Markowitz (1952), which allowed to assess the future performance of portfolios of risky assets. One of the model implications was that market portfolio is efficient.

Sharpe-Litner relation assumed unrestricted free borrowing and lending, which is a scenario which does not reflect reality. For this reason in 1972 a new version of the CAPM was proposed by Black, based on the assumption that borrowing and lending is not risk free and allowing unlimited short selling. Another problem was represented by the fact that it was very difficult to test the validity of the CAPM, when using individual securities returns, because of the difficulty to estimate the betas for individual assets. In order to solve these problems, some analysis started to be done on portfolios' returns rather than on individual securities. For this reason, Blume (1970) and Black (1972), took into consideration portfolios in order to estimate their betas.

The relationship between return and beta was also empirically confirmed by Fama and MacBeth (1973), their study was conducted on different portfolios including different stocks listed on New York stock exchange. From their findings, they indicated that beta was the only important factor in order to explain variation in expected returns.

Both of the CAPM versions of Lintner and Black, consider the beta as a factor sufficient enough to explain the variation in expected returns. Since1980, CAPM model started to be questioned by many economists, leaving space to the development of more accurate asset pricing models (Fama & French, 2004). Over the years, CAPM model, was constantly criticized from different point of views. From a theoretical point of view, the model is based on very restrictive assumptions which in most of the cases do not represent reality. CAPM model was very criticized also from an empirical point of view because according to many economists there were other relevant factors needed to explain average returns. Richard Roll (1977), criticized the fact that CAPM model was very difficult to test empirically because in the model there are not good proxies for the variables.

Different versions of CAPM, were developed during the years, Merton (1973) studied an intertemporal version of CAPM, he believed that for the assumptions to be realistic the model needed to have an intertemporal nature in order to catch results that could not have been recorded in the static model. Ross (1976a, 1976b) focused on the arbitrage model of the capital asset pricing model, which is based on the low of one price, according to which two identical assets need to have the same price in every market, but APT theory does not give any indications on the relevant factors to consider. Breeden (1979), instead, proposed a consumption based version of the CAPM.

Friend & Blume (1970), argued that CAPM model underestimates the cost of equity for low beta stocks and overestimates the cost of equity for high beta stocks, these claims were based on empirical observations based on the fact that the relation between beta and average return was flatter than what Sharpe Litner presented with their model. According to Basu (1977), the possibility to earn excess average return is not possible in an efficient market. The efficiency market hypothesis is questioned by many, some of them for instance believe that price-earnings (P/E) ratios could reflect the future performance of a security. In fact, in his study, he claims that investors are biased by the values of P/E. What he found from his analysis, was that portfolios with low P/E tend to have on average higher returns than the ones estimated with CAPM during the period 1957-1971. The result was explained by the author as a proof of market inefficiency.

According to Banz (1981), CAPM model was not complete because the "size effect" (market capitalization) was neglected. From his analysis, by adding market size as an independent variable in the cross-sectional regression, he found that small stocks present higher average returns relative to big firms. A "value effect" in US stock market was studied by Rosenberg, Reid and Lanstein (1985), according to their analysis stocks with high Book-to-market equity on average performed better than the stocks with low Book-to-market equity. The same results were also found by Stattman (1980). Another contradiction is presented by Bhandari (1988), he claimed a positive relationship between leverage and average returns. Moreover, other than the anomalies linked to size and value factors, there are also other elements as the momentum effect which lead to further inconsistency of CAPM model. The anomalies could be attributed to two different causes: the first one is related to market inefficiency while the second one is associated to the inaccuracy of the model.

In 1992 Fama & French, tested different variables such as: beta, size, leverage and book-to-market ratio in order to understand which variables are really relevant in order to anticipate future stock returns. They concluded that the effects of leverage and E/P could be easily summarized by two other variables: size factor and value factor. For this reason, they decided to add these factors to the existing CAPM model. They proved that value stocks (the stocks with high book to market values) outperform the market contrary to growth stocks. The validity of the Fama French three factors model was also tested by other scholars and with samples considering not only US stocks.

In 1997, Carhart added to the model the momentum factor. Fama & French (1993), claim that cross section average returns are negatively related to firm size (market capitalization) and positively related to the value factor (book-to-market ratio). In their 2006 paper, Fama & French, decided to add to their previous model two other factors in order to best explain the average stock returns. Their analysis was conducted taking into consideration only American stocks.

2.1 International studies

Some years later, the Fama French five Factor model was analyzed also in other countries. Fama and French (2017), conducted their study taking into consideration four different zones (North America, Asia, Europe and Japan) with a total of 23 developed markets. All of the five factors were relevant when explaining average returns for North American stocks, considering a period from 1990 to 2015. In the other zones instead, the investment factor was found to be not significant when considering the same period. The choice of the period is very important when testing the significance of the factors. In fact, the HML factor is considered to be redundant for explaining average returns, when examining a time period going from 1963 to 2013, while this is not the case when taking into consideration the period 1990-2015. What they found from their analysis was also that, contrary to the developed markets, the factor that best describes equity return is the profitability factor. Moreover, contrary to the expectations, the market factor results insignificant in many countries in general.

The five factor model was also tested for the Chinese stock market by Guo, Zhang, W., Zhang, Y. and Zhang, H (2017). They found significance when testing the size, value and profitability factors. Regarding, instead, the investment factor it was not recognized as very relevant for predicting average stock returns because its effect it is captured by the other factors. Their analysis was conducted over a period from July 1995 to June 2014. Moreover, from their analysis, it was evident that the Fama French five factor model performed much better than three factor model.

Huynn (2017) tried to observe the Fama French five factor model in Australia. With his research, he empirically proved that the investment and profitability factors are relevant when explaining the average stock returns for the Australian market. Despite this, when executing the Gibbons, Ross and Shanken's GRS test, both the Fama French three factor model and the Fama French five factor model do not perform well.

3. Theory

3.1 CAPM

CAPM model is built on the portfolio theory developed by Markowitz (1959).

The model is based on different assumptions: the investors are risk averse and they tend to choose portfolios which given an expected return, minimize the variance and given a specific variance, maximize the returns. The planning horizon is a single period and regarding the market structure, all information is considered to be publicly available, there are no taxes and transaction costs (Bodie et al, 2014). The CAPM add to these assumptions, the fact that borrowing and lending should be risk free. Furthermore, if the expected return on assets is not linked to market returns, it will be equal to the risk free rate. Sharp-Lintner equation for calculating expected return given a certain amount of risk is the following:

$$E(R_i) = R_f + [E(R_M) - R_f]\beta_{iM}, i = 1, ..., N.$$

Where the market beta it is defined as the ratio between the covariance of its return with the market return divided by the variance of the market return.

$$\beta_{iM} = \frac{cov(R_i, R_m)}{(\sigma^2 R_M)}$$

The expected return is defined as the sum between the risk free rate and the product between the market premium and the asset's market beta. Investors expect to be compensated for the risk they cover with the investment. The model assumes that there is a linear relation between the expected return and the beta and that no other variables are needed to predict expected returns. CAPM equation is not free of downsides, some of these are the unrealistic assumptions on which the model is built. Despite this, CAPM equation continue to be adopted in many occasions. (Fama & French, 1992).

3.2 Fama & French three factor model

As we previously stated, Fama & French focused their attention on what factors could explain in the best possible way the cross-section of US average stock returns. They added two important risk factors to CAPM model: size (market equity) and value (book-to-market ratio). The return on stocks were calculated for the period from 1963 to 1990. The time-series regression approach adopted was the one of Black, Jensen and Scholes (1972) and the model could be represented by this equation:

$$E(R_i) = R_f + \beta_i (E(R_m) - R_f) + s_i SMB + h_i HML$$

In the formula, SMB is the size factor and it stands for "small minus big", while HML is the value factor and it indicates "high minus low" book-to-market ratio. The SMB factor implies that on average investing on small stocks generates an additional return and the same it is true when investing in stocks with a high bookto-market factor. The result of their analysis was that these two factors could explain the cross-section of average returns on NYSE, Amex and NASDAQ stocks for the period under observation. In order to conduct their study, the stocks were sorted considering their size (price time shares) and book-to-market values in order to form six different portfolios. They separated NYSE stocks present on CRSP, using the median NYSE size, in order to divide them into two groups: small and big. The same was done for the book-to-market values, which instead, were separated into three different groups, using the bottom 30% for low value, the middle 40% for medium value and the top 30% for high book-to-market stocks. The book-to-market equity factor is defined as the ratio between the book value of equity at the end of the fiscal year divided by the market value of equity. By the intersection of these two factors, six different portfolios were created, in order to analyze the real effects that these factors have on stock returns. The same analysis was also conducted by Fama & French to calculate value-weighted monthly returns, by using 25 portfolios, given by the intersection of five different size groups and five book-to-market groups.

3.3 Carhart four factor model

In 1997 Carhart developed a four factor model. He based his study on what was previously found by Fama & French, with their three factor model and he also took into consideration the momentum factor from Jegadeesh & Titman's paper (1993). The momentum factor indicates that good stocks tend to continue performing well in the following periods, meaning that if the price is rising it keeps rising and if it is declining it keeps declining. According to Jegadeesh & Titman's paper by selling stocks which performed poorly and by buying stocks which performed well, significant returns can be generated in the short term. Furthermore Carhart, instead of using stocks for the analysis, he used regression mutual funds for his regressions. The regression for the four factor model can be represented with the following equation:

$$r_i - r_f = \alpha + \beta_1(r_m - r_f) + \beta_{2i}(SMB) + \beta_{3i}(HML) + \beta_{4i}(MOM) + \varepsilon_i$$

The equation is very similar to the one previously described for the Fama French Three Factor model, with the difference that there is a new factor represented by the variable MOM which shows the return on the momentum factor. The factor is calculated by winners stocks (top 30% percentile) minus loser stocks (bottom 30% percentile).

3.4 Fama & French five factor model

Fama & French with their paper in 2006, added to their previous model two other factors. They based their analysis starting from the dividend discount model with Modigliani valuation formula (1961). They thought that by adding two other factors to their model: investment and profitability, they could better describe the average stocks return.

$$M_t = \sum_{t=1}^{\infty} E(D_{t+\tau})/(1+r)^{\tau}$$

The share price is represented by M_t , according to the equation if two stocks have the same expected dividends $E(D_{t+\tau})$ we will expect from the stock with the lower price a higher expected return. After some changes to the formula, they arrived to the following equation:

$$\frac{M_t}{B_t} = \frac{\sum_{t=1}^{\infty} E(Y_{t+\tau} - dB_{t+\tau})/(1+r)^{\tau}}{B_t}$$

From this equation they concluded that low value of the book to market factor leads to lower expected returns. Moreover, higher expected earnings should result in higher expected returns and the same should be true when the expected growth in book equity is high. They considered the expected change in total book equity to current book equity as a measure of investment. For this reasons, they arrived at the conclusion that the three factor model could be improved by adding the investment and profitability factors. The new model can be summarized with the following equation:

$$E(R_i) = R_f + \beta_i (E(R_m) - R_f) + s_i SMB_t + h_i HML_t + r_i RMW_t + c_i CMA_t$$

RMW represents the profitability factor and it stands for robust minus weak profitability, on the other hand, CMA is the investment factor and it is the difference between conservative (low investment stocks) and aggressive (high investment stocks). By holding everything constant, they observed a positive relationship between expected profitability and expected stock return but a negative relationship between expected investment and expected stock return.

Despite the fact that the results of their study confirmed the relationship previously described, the addition of the two new factors in their model never improved the explanation of stock return provided by size and book to market factor. Several criticism followed, according to Novy-Marx (2009), the measure of profitability selected by Fama & French was not adequate in order to predict stock average return. In their analysis, instead of choosing current earnings as Fama & French, they adopted gross profit information in order to predict average return and they succeeded in explaining the relationship.

Another criticism came from Aharoni et al. (2013), in their paper they were able to find a statistically significant relationship between expected investment and average stock return, contrary to Fama & French.

Despite all of the critiques, the Fama French Five factor model performed better than CAPM and their three factor model, explaining 70%-94% of variation in average stock returns for the years going from July 1963 to December 2013. Another important aspect is that Fama & French in their paper after having introduced the investment and profitability factor, define the HML factor as redundant in order to describe the average stock return. One of the main objective of this thesis is to examine if this condition still holds over time or if other circumstances occur in the last periods.

4. Research Methodology

In order to understand if the five factors of the Fama French model are still working and if they are still relevant to explain expected asset returns, we conducted our analysis on an extended time frame taking into consideration the most recent period. We decided to test our analysis, considering different set of portfolios. First of all considering the different portfolios analyzing the five factors of Fama & French, and then observing the results by including also the momentum factor.

4.1 Portfolios construction

As we previously observed, the five Fama French factors are the following: The market factor (Rm - Rf), the size factor (SMB), the value factor (HML), the profitability factor (RMW) and the investment factor (CMA).

In order to construct the factors, there is the need first of all to create six different value-weight portfolios formed on size and book to market, six different value-weight portfolios formed on size and investment and six different portfolios formed on size and operating profitability. All of the portfolios include: NYSE, AMEX and NASDAQ stocks and consider monthly returns from July 1963 to June 2020.

The size and book-to-market portfolios are generated by intersecting two portfolios sorted on size (their market equity) and three portfolios considering the book-to-market value. The two size portfolios are divided taking into consideration as the threshold value the median NYSE market equity. The two thresholds, considered instead for dividing the three book-to-market portfolios are the 30th and 70th NYSE percentiles.

SIZE	Small	Big
B/M		
Value	Value Small	Value Big
Neutral	Neutral Small	Neutral Big
Growth	Growth Small	Growth Big

The size and investment portfolios is constructed in a very similar way to the one we have just described. The portfolios are formed by crossing two portfolios formed on size (market equity) and three portfolios sorted on the investment value. The latter is calculated by subtracting the change in total assets from the end of the year t to the end of year t+1, divided by the total assets in year t. As before, the size threshold it is the median, while for the investment the threshold are defined by the 30th and 70th NYSE percentiles.

SIZE	Small	Big
INV		
Small	Small Small	Small Big
Neutral	Neutral Small	Neutral Big
High	High Small	High Big

The size and operating profitability portfolios are constructed by intersecting the two size portfolios (sorted on market equity) and the three portfolios divided according to the profitability values. The operating profitability for each stock it is calculated by subtracting the cost of goods sold, interest expenses and selling and general expenses to the annual revenues and dividing this amount by book equity. Also in this case, the breakpoints for operating profitability are the 30th and 70th percentiles.

SIZE	Small	Big
PROFITABILITY		
Small	Small Small	Small Big
Neutral	Neutral Small	Neutral Big
High	High Small	High Big

4.2 Factors construction

Once having constructed all the different portfolios, it is possible to calculate the five factors for the Fama French model. The size factor, it is calculated by considering the difference between the average returns of all the big and small portfolios, considering a monthly basis. For all of the six combinations of portfolios previously described, we can calculate the difference between the average return of small and big stocks, by taking into consideration the different factors.

Excess return on the market

As we previously observed, the excess return on the market is the difference between the return on the market and the risk free rate. The stocks taken into examination are all stocks of American companies, listed on NYSE, NASDAQ or AMEX.

SMB factor

SMB factor by taking into consideration the different sorts on B/M value:

$$SMB(B/M) = 1/3$$
 (Small value + Small neutral + Small growth)
- 1/3 (Big value + Big neutral + Big growth)

SMB factor by taking into consideration the different sorts on investment value:

```
SMB(I) = 1/3 (Small conservative + Small neutral + Small aggressive) - 1/3 (Big conservative + Big neutral + Big aggressive)
```

SMB factor by taking into consideration the different sorts on operating profitability:

$$SMB(P) = 1/3 (Small \ robust + Small \ neutral + Small \ weak) - 1/3 (Big \ robust + big \ neutral + Big \ weak)$$

The final SMB factor is then calculated by making an average of the factors we just took into consideration.

$$SMB = \frac{1}{3} * SMB\left(\frac{B}{M}\right) + \frac{1}{3} * SMB(I) + \frac{1}{3} * SMB(P)$$

HML factor

HML factor is calculated by subtracting the average returns of the two value portfolios minus the average returns of the two growth portfolios.

$$HML = \frac{1}{2} (Small \ value + Big \ value) - \frac{1}{2} (Small \ growth + Big \ growth)$$

Profitability factor

The profitability factor is constructed exactly as the HML factor, but this time subtracting the return of the two robust profitability portfolios with the returns of the two weak profitability portfolios

$$RMW = \frac{1}{2} (Small \ robust + Big \ robust) - \frac{1}{2} (Small \ weak + Big \ weak)$$

Investment factor

The investment factor is defined as the difference between the average return of the two conservative portfolios and the two aggressive investment portfolios.

$$CMA = \frac{1}{2} (Small \ conservative + Big \ conservative)$$
$$-\frac{1}{2} (Small \ aggressive + Big \ aggressive)$$

Momentum factor

The momentum factor is calculated as the difference between the average returns of the two antecedent high portfolios returns and the two low antecedent portfolio returns. The formula can be identified as:

$$MOM = \frac{1}{2} (Small \ high + Big \ high) - \frac{1}{2} (Small \ low + Big \ low)$$

5. Data collection

For our analysis the data have been directly collected from Kenneth French data library (Kenneth R. French-Data Library, 2015). We observe monthly average returns in the US stock market, taking into consideration a total of 683 observations going from July 1963 to May 2020. In order to provide an accurate vision of the significance of the factors, the dataset was splitted into three different subperiods, in order to observe the behavior of the factors in each single period. The first period under observation goes from July 1963 to July 1982, the second period goes from August 1982 to August 2002 and the last timeframe goes from September 2002 to May 2020. The stocks under observations are American stocks listed on NYSE, NASDAQ and AMEX for which we have all of the required information in order to construct the factors (available market equity, positive book equity data).

Two different sets of six portfolios have been selected for our analysis: the first six portfolios sorted on size and on book-to-market ratio and the other six portfolios instead, were sorted according to their size values and momentum values.

The regressions were built using as the dependent variable the difference between the average return on each of the portfolios minus the risk free rate. The independent variables, instead, were composed by the different factors to be analyzed (Kenneth R. French Data Library).

From the summary statistic in table 1, we can observe that the highest average return is the one of the momentum factor, immediately followed by the market factor return. The values of the average monthly returns have a wide range from 21% to 65%. The highest volatile factor is the market factor, with a standard deviation value of 4.45.

Table 1 Summary statistics for the factors (including momentum factor) for the period July 1963 - May 2020

variables			Deviation		
			Deviation		
$(R_M)-R_f$	683	0.5338507	4.44761	-23.24	16.1
SMB	683	0.214041	3.02123	-14.91	18.32
HML	683	0.2568814	2.87556	-14.12	12.87
$\mathbf{R}\mathbf{M}\mathbf{W}$	683	0.2556955	2.15319	-18.34	13.33
CMA	683	0.26041	1.99557	-6.86	9.56
MOM	683	0.65490498	4.1895	-34.39	18.36

In order to assess if multicollinearity could be an issue for our analysis, we can observe from table 2, the existing correlation among the factors.

 Table 2 Correlation matrix of the factors

	$(R_M)-R_f$	SMB	HML	RMW	CMA	MOM
$(R_M)-R_f$	1.0000					
SMB	0.2882	1.0000				
HML	-0.2175	-0.0378	1.0000			
RMW	-0.2121	-0.3368	0.0695	1.0000		
CMA	-0.3806	-0.1034	0.6820	-0.0331	1.0000	
MOM	-0.1524	-0.0473	-0.2058	0.1040	-0.0261	1.0000

The highest correlation value is represented by the correlation between the value factor (HML) and the investment factor (CMA). Moreover, the correlation between the two has an absolute value of 0.6820, which is quite high. For this reason, there is the chance that our model could be affected by multicollinearity, but in any case not a severe one.

6. Empirical Results

6.1 Six size book to market portfolios

All of the portfolios have been examined for the three different periods. In order to define the relevance of each factor, we focus on the significance of the factors, determined considering a 95% confidence interval. In order to establish if the factors are significant or not we look at the p-values provided in the following tables, which summarize our analysis. We started the analysis by focusing on the average returns of the portfolios sorted on size values and book to market values. The first portfolio under observation is the one with small size values and low book to market ratios. We can observe from table 3 that the only insignificant factor is the investment factor for the period from 1963 to 1982, the same result we obtain when looking at the big size medium book to market portfolio. The second portfolio with small size and medium book to market values, shows the insignificance of the investment factor in the first and last period under observation. Also when considering the portfolios with small size and high book to market components the investment factor is insignificant in the first two periods. When observing the big size and low book to market portfolio, the investment factor results insignificant for the second and third periods. Regarding the profitability factor, we find insignificance mainly in the last period, when considering the small size medium book to market portfolio and the big size low book to market portfolio.

Table 3 3x2 Size – B/M Portfolios

	First pe	riod (1963	-1982)	Second	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt- Rf	1.063	75.34	0.000	1.060	75.43	0.000	1.046	78.89	0.000	
SMB	1.032	54.94	0.000	0.985	54.34	0.000	0.991	43.40	0.000	
HML	-0.451	-13.87	0.000	-0.269	-9.64	0.000	-0.350	-16.36	0.000	
RMW	-0.100	-2.18	0.030	-0.180	-7.80	0.000	-0.312	-10.21	0.000	
CMA	-0.007	-0.16	0.875**	0.141	-93.69	0.000	-0.179	-4.79	0.000	
Small Si	ze- mediun	n B/M								
	First pe	riod (1963	-1982)	Second period (1982-2002)			Third period (2002-2020)			
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt- Rf	0.963	92.02	0.000	0.985	84.51	0.000	0.968	85.02	0.000	
SMB	0.819	58.80	0.000	0.867	57.62	0.000	0.853	43.50	0.000	
HML	0.215	8.93	0.000	0.251	10.84	0.000	0.132	7.19	0.000	
RMW	-0.075	-2.20	0.029	0.129	6.72	0.000	0.004	0.15	0.883**	
CMA	-0.057	-1.74	0.083**	0.098	3.07	0.002	0.007	0.21	0.834**	

1 1 1 D	/3.4								
		i-1982)	Second	period (19	982-2002)	Third pe	eriod (2002	-2020)	
Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
1.014	93.74	0.000	0.999	95.55	0.000	0.987	96.39	0.000	
0.860	59.80	0.000	0.882	65.45	0.000	0.915	51.95	0.000	
0.553	22.20	0.000	0.553	26.64	0.000	0.523	31.01	0.000	
0.091	2.57	0.011	0.058	3.35	0.001	0.046	1.93	0.055**	
0.061	1.82	0.070**	0.045	1.57	0.117**	0.123	4.31	0.000	
- low B/M		•		•	•				
First pe	riod (1963	-1982)	Second	period (19	82-2002)	Third pe	riod (2002	-2020)	
Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
0.985	77.26	0.000	0.996	91.97	0.000	0.989	122.38	0.000	
-0.105	-6.17	0.000	-0.118	-8.43	0.000	-0.113	-8.13	0.000	
-0.198	-6.74	0.000	-0.329	-15.28	0.000	-0.252	-19.31	0.000	
0.207	4.97	0.000	0.204	11.44	0.000	0.065	3.47	0.001	
-0.090	-2.27	0.024	0.016	0.54	0.590**	-0.009	-0.42	0.677**	
- medium	B/M				•				
First pe	riod (1963	-1982)	Second	period (19	82-2002)	Third period (2002-2020)			
Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
0.978	46.83	0.000	1.053	46.75	0.000	1.021	75.61	0.000	
-0.123	-4.44	0.000	-0.063	-2.18	0.030	0.265	10.88	0.000	
0.157	3.27	0.001	0.377	8.43	0.000	-0.085	-4.27	0.000	
-0.183	-2.69	0.008	0.192	5.20	0.000	0.180	6.81	0.000	
0.112	1.73	0.086**	0.153	2.48	0.014	0.1889	5.01	0.000	
- high B/M	1							•	
First pe	riod (1963	-1982)	Second	period (19	82-2002)	Third pe	riod (2002	-2020)	
Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
1.034	62.94	0.000	1.058	55.44	0.000	1.049	59.59	0.000	
0.067	3.05	0.003	-0.014	-0.59	0.557**	-0.034	-1.10	0.271**	
0.067	3.05	0.003	-0.014 0.849	-0.59 22.40	0.557** 0.000	-0.034 0.866	-1.10 30.41	0.271** 0.000	
	Coef. 1.014 0.860 0.553 0.091 0.061 - low B/M First pe Coef. 0.985 -0.105 -0.198 0.207 -0.090 -medium First pe Coef. 0.978 -0.123 0.157 -0.183 0.112 - high B/M First pe Coef.	Coef. t-value 1.014 93.74 0.860 59.80 0.553 22.20 0.091 2.57 0.061 1.82 -low B/M First period (1963 Coef. t-value 0.985 77.26 -0.105 -6.17 -0.198 -6.74 0.207 4.97 -0.090 -2.27 -medium B/M First period (1963 Coef. t-value 0.978 46.83 -0.123 -4.44 0.157 3.27 -0.183 -2.69 0.112 1.73 - high B/M First period (1963 Coef. t-value	First period (1963-1982) Coef. t-value P-value 1.014 93.74 0.000 0.860 59.80 0.000 0.553 22.20 0.001 0.091 2.57 0.011 0.061 1.82 0.070** - low B/M First period (1963-1982) Coef. t-value P-value 0.985 77.26 0.000 -0.105 -6.17 0.000 -0.198 -6.74 0.000 -0.207 4.97 0.000	First period (1963-1982) Second (1963-1982) Coef. t-value P-value Coef. 1.014 93.74 0.000 0.999 0.860 59.80 0.000 0.882 0.553 22.20 0.000 0.553 0.091 2.57 0.011 0.058 0.061 1.82 0.070** 0.045 low B/M First period (1963-1982) Second (1963-1982) Coef. t-value P-value Coef. 0.985 77.26 0.000 0.996 -0.105 -6.17 0.000 -0.118 -0.198 -6.74 0.000 -0.329 0.207 4.97 0.000 0.204 -0.090 -2.27 0.024 0.016 medium B/M First period (1963-1982) Second (1963-1982) 0.123 -4.44 0.000 -0.063 0.157 3.27 0.001 0.377 -0.183	First period (1963-1982) Second period (1963-1982) Coef. t-value P-value Coef. t-value 1.014 93.74 0.000 0.999 95.55 0.860 59.80 0.000 0.882 65.45 0.553 22.20 0.000 0.553 26.64 0.091 2.57 0.011 0.058 3.35 0.061 1.82 0.070** 0.045 1.57 -low B/M First period (1963-1982) Second period (19 Coef. t-value P-value Coef. t-value 0.985 77.26 0.000 -0.996 91.97 -0.105 -6.17 0.000 -0.118 -8.43 -0.198 -6.74 0.000 -0.329 -15.28 0.207 4.97 0.000 0.204 11.44 -0.090 -2.27 0.024 0.016 0.54 medium B/M First period (1963-1982) Second period (19	First period (1963-1982) Second period (1982-2002) Coef. t-value P-value 1.014 93.74 0.000 0.999 95.55 0.000 0.860 59.80 0.000 0.882 65.45 0.000 0.553 22.20 0.000 0.553 26.64 0.000 0.091 2.57 0.011 0.058 3.35 0.001 0.061 1.82 0.070** 0.045 1.57 0.117** -low B/M First period (1963-1982) Second period (1982-2002) Coef. t-value P-value Coef. t-value P-value 0.985 77.26 0.000 0.996 91.97 0.000 -0.198 -6.74 0.000 -0.329 -15.28 0.000 -0.207 4.97 0.000 0.204 11.44 0.000 -0.900 -2.27 0.024 0.016 0.54 0.590** medium B/M First period (1963-	First period (1963-1982) Second period (1982-2002) Third period (1981-2002) Coef. t-value P-value Coef. 1.014 93.74 0.000 0.999 95.55 0.000 0.987 0.860 59.80 0.000 0.882 65.45 0.000 0.523 0.091 2.57 0.011 0.058 3.35 0.001 0.046 0.061 1.82 0.070** 0.045 1.57 0.117** 0.123 -low B/M First period (1963-1982) Second period (1982-2002) Third period (1963-1982) Coef. t-value P-value Coef. t-value P-value Coef. 0.985 77.26 0.000 -0.996 91.97 0.000 0.989 -0.105 -6.17 0.000 -0.118 -8.43 0.000 -0.252 0.207 4.97 0.000 0.204 11.44 0.000 -0.052 -0.090 -2.27	First period (1963-1982) Second period (1982-2002) Third period (2002) Coef. t-value P-value Coef. t-value P-value Coef. t-value 1.014 93.74 0.000 0.999 95.55 0.000 0.987 96.39 0.860 59.80 0.000 0.882 65.45 0.000 0.915 51.95 0.553 22.20 0.000 0.553 26.64 0.000 0.523 31.01 0.091 2.57 0.011 0.058 3.35 0.001 0.046 1.93 0.061 1.82 0.070** 0.045 1.57 0.117** 0.123 4.31 First period (1963-1982) Second period (1982-2002) Third period (2002 Coef. t-value P-value Coef. t-value P-value Coef. t-value 0.985 77.26 0.000 -0.996 91.97 0.000 -0.989 122.38 -0.105 -6.17 0.000 -0.329	

** insignificant factors when considering a 95% confidence interval

After having analyzed the regressions with the five Fama French factors, another factor has been added to the regression: the momentum factor. The factor was added to the analysis in order to see if the significance of some of the factors changed by adding this component. From table 4, we can observe that in most of the portfolios the momentum factor was found to be not even significant. Also in this case, the investment factor is insignificant in many cases, when considering the small size portfolios. The profitability factor is found insignificant for small size medium book to market portfolio and for small size high book to market portfolios, when considering the years from 2002 to 2020. Even when considering the three different big portfolios, the investment factor is not relevant in many occasions.

Table 4 3x2 Size - B/M Portfolios with momentum factor

	ze- low B/I	riod (1963	-1082)	Second period (1982-2002) Third period (2002-2020)						
Mkt-	Coef. 1.063	t-value 75.30	P-value 0.000	Coef. 1.062	t-value 77.40	P-value 0.000	Coef. 1.033	t-value 76.28	P-value 0.000	
NIKU- Rf	1.003	73.30	0.000	1.002	77.40	0.000	1.055	70.28	0.000	
SMB	1.033	54.79	0.000	0.987	55.79	0.000	0.998	44.40	0.000	
HML	-0.448	-13.75	0.000	-0.302	-10.51	0.000	-0.370	-16.92	0.000	
RMW	-0.104	-2.24	0.026	-0.178	-7.89	0.000	-0.295	-9.71	0.000	
CMA	-0.008	-0.18	0.858**	-0.094	-2.37	0.018	-0.184	-5.02	0.000	
MOM	0.012	0.86	0.393**	-0.046	-3.59	0.000	-0.038	-3.13	0.002	
Small Si	ze- mediun	n B/M								
		riod (1963		Second	period (19	82-2002)		eriod (2002	2-2020)	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-valu	
Mkt- Rf	0.962	96.76	0.000	0.986	84.37	0.000	0.969	81.36	0.000	
SMB	0.813	61.24	0.000	0.867	57.55	0.000	0.853	43.18	0.000	
HML	0.206	8.96	0.000	0.246	10.05	0.000	0.134	6.97	0.000	
RMW	-0.061	-1.88	0.062	0.129	6.73	0.000	0.003	0.10	0.924*	
CMA	-0.053	-1.70	0.090**	0.105	3.12	0.002	0.007	0.22	0.825*	
MOM	-0.051	-4.98	0.000	-0.007	-0.67	0.504**	0.003	0.28	0.780*	
	ze- high B	/M				<u> </u>				
	First pe	riod (1963	-1982)	Second period (1982-2002)			Third p	eriod (2002	2-2020)	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-valu	
Mkt- Rf	1.014	94.01	0.000	0.999	96.00	0.000	0.987	95.87	0.000	
SMB	0.859	59.65	0.000	0.882	65.79	0.000	0.915	51.82	0.000	
HML	0.550	22.07	0.000	0.540	24.79	0.000	0.526	31.91	0.000	
RMW	0.095	2.70	0.008	0.058	3.42	0.001	0.046	1.93	0.055*	
CMA	0.063	1.87	0.063**	0.063	2.09	0.038**	0.124	4.30	0.000	
MOM	-0.017	-1.55	0.124**	-0.018	-1.81	0.071**	0.001	0.17	0.866*	
Big Size	- low B/M									
		riod (1963			period (19			eriod (2002		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-valu	
Mkt- Rf	0.985	78.16	0.000	0.996	91.79	0.000	0.992	117.64	0.000	
SMB	-0.108	-6.43	0.000	-0.118	-8.44	0.000	-0.114	-8.20	0.000	
HML	-0.204	-7.00	0.000	-0.323	-14.22	0.000	-0.248	-18.25	0.000	
RMW	0.216	5.22	0.000	0.202	11.44	0.000	0.061	3.22	0.001	
CMA	-0.088	-2.23	0.026	0.008	0.24	0.809**	-0.008	-0.37	0.712*	
MOM	-0.032	-2.51	0.013**	0.008	0.80	0.422**	0.008	1.11	0.268*	
Big Size	- medium		1003	C		02 2002	Third period (2002-2020)			
	<u> </u>	riod (1963			period (19		-			
Mkt-	Coef. 0.979	t-value 47.15	P-value 0.000	Coef. 1.057	t-value 48.97	P-value 0.000	Coef. 1.047	t-value 49.16	P-valu 0.000	
MKt- Rf	0.979	47.15	0.000	1.05/	46.97	0.000	1.04/	49.10	0.000	
SMB	-0.119	-4.29	0.000	-0.059	-2.13	0.034	-0.139	-4.48	0.000	
HML	-0.165	3.44	0.001	0.309	6.83	0.000	0.309	6.89	0.000	
RMW	-0.195	-2.86	0.005	0.197	5.56	0.000	0.139	3.22	0.002	
CMA	0.109	1.69	0.093**	0.251	4.01	0.000	0.129	2.00	0.047	
MOM	0.042	1.99	0.048	-0.095	-4.72	0.000	0.003	0.20	0.845*	
	- high B/M	1								
		riod (1963	-1982)	Second	period (19	82-2002)	Third p	eriod (2002	2-2020)	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-valu	
Mkt- Rf	1.034	62.80	0.000	1.059	55.47	0.000	1.033	57.44	0.000	
SMB	0.066	3.01	0.003	-0.014	-0.55	0.580**	-0.024	-0.82	0.414*	
TT3 /T	0.798	20.99	0.000	0.835	20.88	0.000	0.840	28.96	0.000	
HML	0.770									
	0.016	0.29	0.770**	-0.033	-1.05	0.295**	-0.270	-6.68	0.000	
HML RMW CMA			0.770** 0.002	-0.033 -0.150	-1.05 -2.72	0.295** 0.007	-0.270 -0.310	-6.68 -6.39	0.000	

^{**} insignificant factors when considering a 95% confidence interval

6.2 Size momentum portfolios

The other six portfolios, under observation for our analysis, are formed by the intersection of two portfolios formed on size and three portfolios based on momentum values (prior returns). Firstly, we regress the average returns with the Fama French five factors and then we focus on which factors seem relevant and are significant and which not. From table 5, when taking into consideration the first period, from 1963 to 1982, the investment and profitability factors are basically always insignificant except when looking at the small size portfolio with low value momentum. In the second period, the investment factor is insignificant when dealing with small size, big size and medium momentum value portfolios. Also the profitability factor is insignificant in most of the portfolios in the second timeframe. In the period from 2002 to 2020, we can observe that the investment factor is not relevant with small size, low momentum portfolios and with big size, low and medium momentum value. As we previously examined with the other six portfolios sorted on size and book to market, also in this case, the majority of insignificant factors is composed by investment and profitability factors.

Table 5 3x2 Size – momentum Portfolios

	e- low MO	m portfoli M	<u> </u>							
		riod (1963-	1982)	Second 1	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	1.006	29.83	0.000	1.020	20.16	0.000	1.301	23.89	0.000	
SMB	1.021	22.72	0.000	0.870	13.45	0.000	0.900	9.59	0.000	
HML	0.226	2.84	0.005	0.577	5.82	0.000	0.264	2.99	0.003	
RMW	-0.262	-2.33	0.021	-0.147	-1.78	0.076**	-0.408	-3.25	0.001	
CMA	-0.250	-2.32	0.021	-0.834	-6.12	0.018	-0.079	0.52	0.605*	
Small Siz	e- medium	МОМ	•	•		•		•		
		riod (1963-	1982)	Second period (1982-2002)			Third period (2002-2020)			
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	0.939	70.49	0.000	0.949	50.75	0.000	0.969	60.72	0.000	
SMB	0.781	44.02	0.000	0.752	31.20	0.000	0.831	30.22	0.000	
HML	0.185	6.02	0.000	0.315	8.48	0.000	0.239	9.25	0.000	
RMW	-0.016	-0.36	0.722**	0.277	9.03	0.000	0.059	1.61	0.109*	
CMA	-0.602	1.45	0.148**	-0.039	-0.77	0.441**	-0.140	-3.12	0.002	
Small Siz	e- high M	ОМ								
	First per	riod (1963-	1982)	Second 1	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	1.049	36.23	0.000	1.059	40.63	0.000	0.983	36.35	0.000	
SMB	0.845	21.94	0.000	0.952	28.35	0.000	0.977	20.96	0.000	
HML	-0.051	-0.76	0.449	-0.130	-2.52	0.012	-0.092	-2.11	0.036	
RMW	-0.005	-0.05	0.960**	-0.031	-0.74	0.462	0.017	0.27	0.787*	
CMA	0.044	0.49	0.623**	0.172	2.42	0.016	-0.162	-2.12	0.035	

Big Size-	low MOM	1								
	First per	riod (1963-	1982)	Second p	period (198	32-2002)	Third pe	riod (2002	-2020)	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	1.088	23.81	0.000	0.985	17.69	0.000	1.266	23.33	0.000	
SMB	0.050	0.82	0.411**	-0.033	-0.46	0.645**	-0.134	-1.43	0.155**	
HML	-0.031	-0.30	0.767**	0.484	4.38	0.000	0.475	5.42	0.000	
RMW	-0.228	-1.53	0.127**	0.078	0.85	0.397**	-0.302	-2.41	0.017	
CMA	0.059	0.41	0682**	-0.701	-4.61	0.000	-0.165	-1.08	0.281**	
Big Size-	medium A	ИОМ								
	First per	riod (1963-	1982)	Second p	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	0.984	59.08	0.000	0.989	46.29	0.000	0.973	65.34	0.000	
SMB	-0.087	-3.91	0.000	-0.130	-4.72	0.000	-0.075	-2.94	0.004	
HML	0.031	0.81	0.420	0.154	3.64	0.000	0.102	4.23	0.000	
RMW	0.030	0.56	0.576**	0.244	6.94	0.000	0.123	3.58	0.000	
CMA	0.052	1.00	0.320**	0.066	1.12	0.263**	0.024	0.57	0.571**	
Big Size-	high MO	М								
	First per	riod (1963-	1982)	Second p	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	1.021	27.97	0.000	1.039	35.84	0.000	0.937	29.66	0.000	
SMB	0.026	0.53	0.594**	-0.035	-0.94	0.350**	0.148	2.73	0.007	
HML	-0.123	-1.47	0.144**	-0.239	-4.15	0.000	-0.182	-3.56	0.000	
RMW	0.070	0.59	0.556**	0.058	1.22	0.224**	0.170	2.34	0.020	
CMA	-0.071	-0.63	0.532**	-0.351	4.43	0.000	-0.185	-2.08	0.039	

** insignificant factors when considering a 95% confidence interval

As we did before, also in this case, in order to observe if the significance of the factors change by adding a new factor that may be relevant to explain average returns, we include the momentum factor. When examining the small size low momentum portfolios, we can see that for the second period the profitability and the momentum factors are insignificant. Regarding the last term, the investment factor is found insignificant. When considering the portfolios with small size and medium momentum values, the investment factor is insignificant for both the first and second period. The value factor is insignificant when observing the first two periods for the big size medium momentum value portfolios and for all of the periods when observing the big size high momentum portfolios.

Table 6 3x2 Size – momentum Portfolios with momentum factor

Small Siz	e- low MO	M .								
	First per	riod (1963-	1982)	Second	Second period (1982-2002)			Third period (2002-2020)		
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value	
Mkt-Rf	0.993	64.78	0.000	1.027	20.27	0.000	1.082	54.19	0.000	
SMB	0.983	48.04	0.000	0.896	13.43	0.000	1.022	30.86	0.000	
HML	0.135	3.82	0.000	0.589	5.94	0.000	-0.080	-2.49	0.014	
RMW	-0.120	-2.38	0.018	-0.131	-1.58	0.115**	-0.104	-2.32	0.022	
CMA	-0.206	-4.31	0.000	-0.821	-6.02	0.000	-0.009	-0.16	0.869**	
MOM	-0.474	-30.13	0.000	0.070	1.54	0.126**	-0.678	-38.37	0.000	

Small Size	e- medium	MOM							
		riod (1963-	1982)	Second p	period (198	32-2002)	Third pe	eriod (2002	2-2020)
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value
Mkt-Rf	0.939	78.14	0.000	0.954	57.57	0.000	0.944	60.89	0.000
SMB	0.771	48.07	0.000	0.757	35.45	0.000	0.845	32.89	0.000
HML	0.168	6.07	0.000	0.225	6.49	0.000	0.199	7.95	0.000
RMW	0.009	0.22	0.826**	0.284	10.42	0.000	0.095	2.72	0.007
CMA	0.673	1.80	0.074**	0.089	1.86	0.064**	-0.151	-3.60	0.000
MOM	-0.089	-7.24	0.000	-0.125	-8.09	0.000	-0.079	-5.76	0.000
Small Size	e- high Mo								
	First per	riod (1963-	1982)	Second p	period (198	32-2002)	Third pe	eriod (2002	2-2020)
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value
Mkt-Rf	1.052	74.88	0.000	1.046	59.90	0.000	1.081	71.74	0.000
SMB	0.887	47.27	0.000	0.940	41.78	0.000	0.922	36.88	0.000
HML	0.020	0.62	0.535**	0.068	1.86	0.064**	0.062	2.55	0.011
RMW	-0.110	-2.39	0.018	-0.045	-1.58	0.116**	-0.120	-3.54	0.000
CMA	0.014	0.31	0.753**	-0.113	-2.23	0.027	-0.122	-3.00	0.003
MOM	0389	26.94	0.000**	0.277	17.02	0.000	0.304	22.80	0.000
Big Size-	low MOM	1							
	First per	riod (1963-		Second p	period (198		Third pe	eriod (2002	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value
Mkt-Rf	1.083	58.05	0.000	1.017	45.01	0.000	1.051	47.42	0.000
SMB	-0.018	-0.72	0.472**	-0.003	-0.09	0.930**	-0.014	-0.39	0.697**
HML	-0.148	-3.42	0.001	-0.038	-0.80	0.424**	0.139	3.89	0.000
RMW	-0.055	-0.90	0.371	0.114	3.07	0.002	-0.004	-0.08	0.935**
CMA	0.109	1.87	0.062**	0.047	0.73	0.468**	-0.252	-4.21	0.000
MOM	-0.640	-33.39	0.000	-0.728	-34.56	0.000	-0.664	-33.83	0.000
Big Size-	medium A	МОМ							
		riod (1963-			period (198			eriod (2002	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value
Mkt-Rf	0.983	64.52	0.000	0.995	52.23	0.000	0.950	65.56	0.000
SMB	-0.098	-4.80	0.000	-0.124	-5.05	0.000	-0.062	-2.59	0.010
HML	0.120	0.34	0.734**	0.054	1.37	0.174**	0.065	2.78	0.006
RMW	0.059	1.18	0.241**	0.251	8.00	0.000	0.156	4.79	0.000
CMA	0.060	1.26	0.208**	0.209	3.80	0.000	0.014	0.37	0.715**
MOM	-0.104	-6.66	0.000	-0.140	-7.87	0.000	-0.073	-5.69	0.000
Big Size-	high MO			1			1		
		riod (1963-			period (198			eriod (2002	
	Coef.	t-value	P-value	Coef.	t-value	P-value	Coef.	t-value	P-value
Mkt-Rf	1.024	60.79	0.000	1.023	66.81	0.000	1.051	58.98	0.000
SMB	0.079	3.50	0.001	-0.050	-2.52	0.012	0.085	2.87	0.005
HML	-0.033	-0.84	0.400**	0.014	0.42	0.674**	-0.003	-0.10	0.922**
RMW	-0.064	-1.17	0.245**	0.041	1.61	0.109**	0.011	0.29	0.775**
CMA	-0.110	-2.10	0.037	-0.011	-0.26	0.795**	-0.139	-2.88	0.004
MOM	0.497	28.70	0.000	0.353	24.68	0.000	0.354	22.41	0.000

^{**} insignificant factors when considering a 95% confidence interval

7. Conclusion

This thesis analyzed the significance of the factors of the Fama French five factor model, in the most recent periods. To conduct our study we chose different value-weighted portfolios and we divided the dataset into three different subsamples according to the period. As stated at the beginning of the paper, what was initially expected from the analysis was the non-significance of the value factor. Contrary to the initial expectations, from the results of our regressions (see Appendix), we can easily observe that the value component in almost all of the scenarios is significant and relevant in order to explain the expected average return.

Contrary to our predictions, our findings indicate that the two new factors added in the Fama French Five factor model are considered to be insignificant when taking into consideration a 95% confidence interval. Specifically, the investment (CMA) and the profitability factors (RMW). However, in order to examine if the results of the analysis were accurate, we also decided to add the momentum factor to investigate if different results were obtained. What we found is that even when adding the momentum factor, the profitability and the investment factors keep to be insignificant. For this reason, it is evident that the validity of the profitability and investment factors may be questioned in most of the cases, leaving room to further research regarding the statistical significance of these risk factors.

Despite this, we should also take into consideration the variability of the results that could be obtained, because of the different possible combinations of portfolios chosen for the study. Another suggestion for further analysis could be the study of other relevant new factors that could improve the existing asset pricing models.

8. List of References

Aharoni, G., Grundy, B. & Zeng, Q. (2013). Stock Returns and the Miller Modigliani Valuation Formula: Revisiting the Fama French Analysis. *Journal of Financial Economics*, 110 (2), 347-357.

Basu, S. (1977). Investment performance of common stocks in relation to their price-earnings ratios: a test of the efficient market hypothesis.*. *The Journal of Finance*, 32(3), 663-682.

Bhandari, L., C. (1988). Debt/Equity ratio and expected common stock returns: Empirical evidence. *Journal of Finance*, 43, 507-528.

Blume, M. E. (1970). A Step Toward Its Practical Application. *The Journal of Business*, 43(2), 152-173.

Bodie, Z. Kane, A. & Marcus, A. (2014) *Investments*. 10th edition. New York. McGrawhil.

Breeden, D.T. (1979). An Intertemporal Asset Pricing Model with Stochastic consumption and investment opportunities. *Journal of Financial Economics*, 7(3), 265-296.

Carhart, M. (1997). On persistence in Mutual Fund Performance. *Journal of Financial Economics*, 52 (1), 57-82.

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. *Journal of Finance*, 47(2), 427-465. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns stocks and bonds. Journal of Financial Economics, 33 (1), 3–56.

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. *Journal of Financial Economics*, 116 (1), 1–22.

Fama, E. F., & French, K. R. (2017). International tests of a five-factor asset pricing model. *Journal of Financial Economics*, 123 (3), 441-463.

Fama, E. F., & MacBeth, J. D., (1973). Risk, Return, and Equilibrium: Empirical Tests. *The Journal of Political Economy*, 81(3), 607-636.

Friend, I. and Blume, M. (1970). Measurement of Portfolio Performance Under Uncertainty. American Economic Review, 60 (4), 561-575.

Guo, B., Zhang, W., Zhang, Y., & Zhang, H. (2017). The five-factor asset pricing model tests for the Chinese stock market. *Pacific-Basin Finance Journal*, 43, 84–106.

Huynh, T. D. (2017). Explaining anomalies in Australia with a five-factor asset pricing model. *International Review of Finance*, 18(1), 123–135.

Jegadeesh, N & Titman, S. (1993). Returns to Buying Winners and Selling Losers. Implications for Stock Market Efficiency, *Journal of Finance*, 48 (1), 65–91.

Kenneth R. French- Data Library. Retrieved from:

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

Lintner, J. (1965). Security Prices, Risk, and Maximal Gains from diversification. *The journal of finance*, 20(4), 587-615.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The review of economics and statistics, 47 (1), 13-37.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.

Merton, Robert C. (1973). An Intertemporal Capital Asset Pricing Model, Econometrica, 41, 867-887.

Novy-Marx, R. (2013). The Other Side of Value: The Gross Profitability Premium. *Journal of Financial Economics*, 108 (1), 1-28.

Roll, R., (1977). A critique of the asset pricing theory's tests Part I: On past and potential testability of the theory. *Journal of Financial Economics*, 4 (2), 129-176.

Rosenberg, B., Reid, K. & Lanstein, R. (1985). Persuasive Evidence of Market Efficiency. *Journal of Portfolio Management*, 11 (3), 9-16.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442.

9. Appendix

Six Size- Book to market portfolios

Small size low book to market first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

229	s =	er of ob	Numb	MS	df	SS	Source
3772.53	=	223)	F(5,				
0.0000	=) > F	4 Prob	2278.72284	5	11393.6142	Model
0.9883	=	quared	9 R-sq	.604031049	223	134.698924	Residual
0.9881	d =	R-square	— Adj				
.77719	=	MSE	8 Root	50.5627768	228	11528.3131	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.091009	387	1.035	0.000	75.34	.0141126	1.063198	MktRF
1.06905	115	.9950	0.000	54.94	.0187853	1.032031	SMB
3865033	307	5145	0.000	-13.87	.0324834	450517	HML
0096097	031	1911	0.030	-2.18	.0460489	1003564	RMW
.0797394	358	0935	0.875	-0.16	.0439638	0068982	CMA
.0/9/394							

Small size low book to market second period (1982/08 – 2002/08)

reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Numbe	er of ob	s =	241
				F(5,	235)	=	3784.07
Model	12110.3252	5	2422.06504	Prob	> F	=	0.0000
Residual	150.416295	235	.640069343	R−squ	uared	=	0.9877
				- Adj F	R-square	d =	0.9875
Total	12260.7415	240	51.0864229	Root	MSE	=	.80004
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF SMB HML RMW CMA _cons	1.060388 .9848317 26905 1802885 1414914 1708958	.0140571 .0181219 .0279234 .0231043 .0383817 .0563436	54.34 -9.64 -7.80 -3.69	0.000 0.000 0.000 0.000 0.000 0.003	1.0326 .94912 32406 22586 21716	295 621 066 077	1.088082 1.020534 2140378 1347704 0658751 0598927

Small size low book to market third period (2002/09 – 2020/05)

reg RiRf SMB MktRF HML RMW CMA

Source	ss	df	MS		r of ob	-	213
Model Residual	7644.98887 101.236618	5 207	1528.99777 .489065786	R-squ	> F lared	= =	3126.36 0.0000 0.9869 0.9866
Total	7746.22549	212	36.5387995		k-square MSE	d = =	.69933
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
SMB MktRF HML RMW CMA _cons	.9914378 1.045931 3507987 3123294 1788693 0330516	.0228463 .0132578 .0214417 .0305876 .0373277	78.89 -16.36 -10.21	0.000 0.000 0.000 0.000 0.000 0.511	.9463 1.019 3930 3726 2524 13	794 708 326 604	1.036479 1.072069 3085267 2520262 1052781 .0658367

Small size, medium book to market first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS		r of ob	-	229
Model	7731.90883	5	1546.38177	- F(5, ' Prob		=	4658.36 0.0000
Residual	74.0266867	223	.331958236			_	0.9905
Residuat	74.020007		.551550150		-square		0.9903
Total	7805.93552	228	34.2365593	•		=	.57616
nine	Conf	Std 5		D. 141	[050	C f	T-411
RiRf	Coef.	Std. Err.	t	P> t	[95%	Cont.	Interval]
MktRF	.9627464	.0104621	92.02	0.000	.9421	292	.9833636
SMB	.8188276	.0139261	58.80	0.000	.791	384	.8462712
HML	.2150511	.024081	8.93	0.000	.1675	957	.2625064
RMW	0749396	.0341375	-2.20	0.029	1422	129	0076663
CMA	0568156	.0325917	-1.74	0.083	1210	427	.0074115
_cons	.0441223	.0407091	1.08	0.280	0361	015	.1243461

Small size, medium book to market second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

CMA

_cons

Source	SS	df	MS	Number of		
Model Residual	5869.28662 103.506969	5 235	1173.85732 .440455187	R-squared	= I =	0.0000
Total	5972.79359	240	24.8866399	Root MSE	ared = =	
RiRf	Coef.	Std. Err.	t	P> t [9	5% Conf.	Interval]
MktRF SMB HML RMW	.9854601 .866256 .251116 .1288415	.011661 .0150329 .0231636 .019166	57.62 10.84	0.000 .8 0.000 .2	624868 3366396 8054812	1.008434 .8958724 .2967508 .1666005

0.002

0.620

.0350228

-.0688831

.1604762

.11528

3.07

0.50

.0467393

.0977495 .0318392

.0231984

Small size, medium book to market third period (2002/09 – 2020/05)

reg RiRf MktRF SMB HML CMA RMW

Source	SS	df	MS		er of obs	s = =	213 3575.66
Model	6443.59169	5	1288.71834			_	0.0000
Residual	74.6057491	207	.360414247	R-sq	uared	=	0.9886
				- Adj	R-square	= t	0.9883
Total	6518.19744	212	30.7462143	Root	MSE	=	.60035
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.9676181	.0113812	85.02	0.000	.9451	302	.9900561
SMB	.8531836	.0196126	43.50	0.000	.8145	L77	.8918496
HML	.1323295	.0184067	7.19	0.000	.09604	109	.1686181
CMA	.0067318	.0320441	0.21	0.834	0564	129	.0699065
RMW	.0038738	.0262581	0.15	0.883	04789	938	.0556413
_cons	.0458085	.0430594	1.06	0.289	03908	326	.1306997

Small size, high book to market first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS		er of obs	=	229
				- F(5,	223)	=	4670.46
Model	8284.29961	5	1656.85992	Prob	> F	=	0.0000
Residual	79.1098577	223	.354752725	R-sq	uared	=	0.9905
				- Adj	R-squared	=	0.9903
Total	8363.40947	228	36.6816205	Root	MSE	=	.59561
RiRf	Coef.	Std. Err.	t	P> t	[95% (onf.	Interval]
MktRF	1.013784	.0108153	93.74	0.000	.99247	02	1.035097
SMB	.8608346	.0143963	59.80	0.000	.83246	44	.8892048
HML	.5526502	.024894	22.20	0.000	.50359	25	.6017078
RMW	.0905784	.0352901	2.57	0.011	.02103	37	.1601231
CMA	.0613696	.0336921	1.82	0.070	00502	61	.1277652
CHA							

Small size, high book to market second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

241	=	ber of obs		MS	df	SS	Source
3146.71	=	, 235)			_		
0.0000	=	b > F	4 Prob	1112.65494	5	5563.27468	Model
0.9853	=	quared	2 R-so	.353592802	235	83.0943084	Residual
0.9850	=	R-squared	– Adj				
.59464	=	t MSE	4 Root	23.5265374	240	5646.36899	Total
Interval]	nf.	[95% Co	P> t	t	Std. Err.	Coef.	RiRf
1.018881	2	.977713	0.000	95.55	.0104481	.998297	MktRF
.9080872	5	.855015	0.000	65.45	.0134692	.8815514	SMB
.5938023	6	.51202	0.000	26.64	.0207542	.5529141	HML
.0913627	5	.023699	0.001	3.35	.0171724	.0575311	RMW
.1010577	8	011346	0.117	1.57	.0285274	.0448554	CMA
.1715236	3	.006516	0.035	2.13	.0418777	.08902	cons

Small size, high book to market third period (2002/09 – 2020/05)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Number of obs	=	214
Model Residual	8087.34035 60.6435081	5 208	1617.46807 .291555328	R-squared	= = =	0.0000 0.9926
Total	8147.98386	213	38.2534453	Adj R-squared Root MSE	=	0.9924 .53996
RiRf	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
MktRF SMB HML RMW CMA	.9865309 .9145695 .5257578 .0456046 .1234311	.0102352 .0176062 .0164256 .0236137 .0286326	51.95 32.01 1.93 4.31	0.000 .96635 0.000 .879 0.000 .49337 0.05500094 0.000 .06698)86 /59 82 337	1.006709 .949279 .5581398 .0921574 .1798784

Big size, low book to market first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

22	s =	ber of ob		MS	df	SS	Source
1932.3	=	, 223)	— F(5				
0.000	=	b > F	1 Pro	952.20201	5	4761.01005	Model
0.977	=	quared	1 R-s	.492781661	223	109.89031	Residual
0.976	d =	R-square	— Adj				
.7019	=	t MSE	1 Roo	21.3635981	228	4870.90036	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.01000	626	. 9597	0.000	77.26	.0127469	.9848823	MktRF
071265	139	138	0.000	-6.17	.0169674	104702	SMB
139913	516	2555	0.000	-6.74	.0293399	1977326	HML
.288704	746	.1247	0.000	4.97	.0415927	.2067396	RMW
012028	357	1685	0.024	-2.27	.0397093	0902822	CMA
						.0680167	

Big size, low book to market second period (1982/08 – 2002/08)

reg RiRf MktRF SMB HML RMW CMA

Source	ss	df	MS	Numbe	r of ob	s =	241 3069.84
Model	5835.12359	5	1167.02472			=	0.0000
Residual	89.3371538	235	.380158101			=	0.9849
					-square	d =	0.9846
Total	5924.46075	240	24.6852531	Root	MSE	=	.61657
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	.9963461	.0108334	91.97	0.000	.9750	031	1.017689
SMB	1177404	.013966	-8.43	0.000	1452	551	0902258
HML	3288659	.0215197	-15.28	0.000	3712	621	2864697
RMW	.2037709	.0178058	11.44	0.000	.1686	915	.2388504
CMA	.0159751	.0295797	0.54	0.590	0423	001	.0742503
_cons	.0722185	.0434223	1.66	0.098	0133	283	.1577653

Big size, low book to market third period (2002/09 – 2020/05)

reg RiRf MktRF SMB HML RMW CMA

21	s =	nber of ob	N	MS	df	SS	Source
3768.5	=	, 207)	— F				
0.000	=	Prob > F R-squared Adj R-squared		685.40168 .181873653	5	3427.0084	Model
0.989	=				207	37.6478463	Residual
0.988	ed =						
.42647	=	Root MSE		16.3427182	212	3464.65625	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
	1662				.0080849	.9894055	MktRF
1.00534	+003	.9734	0.00	122.38	. 0000049	. 3034033	1117 (111
1.00534 085788		.9734 140	0.00	122.38 -8.13	.0139321	1132559	SMB
	723						
085788	723 2204	140	0.00	-8.13	.0139321	1132559	SMB
085788 226663	0723 2204 0087	140 2782	0.00	-8.13 -19.31	.0139321 .0130755	1132559 2524421	SMB HML

Big size, neutral book to market first period (1963/07 – 1982/07)

reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Numb	er of ob	s =	229
				F(5, 223)		=	550.79
Model	3647.06328	5	729.412657	Prob	Prob > F R-squared		0.0000
Residual	295.320411	223	1.32430678	R-sq			0.9251
				- Adj	R-square	d =	0.9234
Total	3942.3837	228	17.2911566	Root	MSE	=	1.1508
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	.9786403	.0208964	46.83	0.000	.9374	607	1.01982
SMB	1233625	.0278152	-4.44	0.000	1781	768	0685482
HML	.1574433	.0480979	3.27	0.001	.0626	587	.252228
RMW	1832947	.0681842	-2.69	0.008	3176	626	0489268
CMA	.1123575	.0650968	1.73	0.086	0159	261	.2406411
_cons	0185696	.0813101	-0.23	0.820	1788	041	.1416648

Big size, neutral book to market second period (1982/08 – 2002/08)

reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Numb	er of ob	s =	241
				- F(5,	235)	=	508.40
Model	4179.03531	5	835.807063	Prob	> F	=	0.0000
Residual	386.341776	235	1.64400756	R-sq	uared	=	0.9154
				- Adj	R-square	d =	0.9136
Total	4565.37709	240	19.0224045	Root	MSE	=	1.2822
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	1.053142	.0225287	46.75	0.000	1.008	758	1.097525
SMB	0633634	.0290431	-2.18	0.030	1205	815	0061453
HML	.3770712	.0447514	8.43	0.000	.288	906	.4652364
RMW	.1923719	.0370281		0.000	.1194		.2653214
CMA	.1527733	.0615125		0.014	.031		.2739596
CMA							
_cons	2978482	.090299	-3.30	0.001	4757	472	1199491

Big size, neutral book to market third period (2002/09 – 2020/05)

reg RiRf MktRF HML SMB RMW CMA

Source	SS	df	MS	Number	r of ob	s =	454
				- F(5, 4	148)	=	1312.21
Model	8211.35984	5	1642.27197	Prob >	> F	=	0.0000
Residual	560.684088	448	1.25152698	R-squa	ared	=	0.9361
				– Adj R-	-square	d =	0.9354
Total	8772.04393	453	19.3643354	Root N	1SE	=	1.1187
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	1.021042	.0135045	75.61	0.000	.9945	022	1.047582
HML	.2646908	.0243275	10.88	0.000	.2168	806	.312501
SMB	0851923	.0199482	-4.27	0.000	124	396	0459886
RMW	.179882	.0264087	6.81	0.000	.1279	817	.2317823
CMA	.1885403	.0376019	5.01	0.000	.1146	422	.2624384

-3.38

0.001

-.2977591

-.0786936

Big size, high book to market first period (1963/07 – 1982/07)

.0557341

reg RiRf MktRF SMB HML RMW CMA

-.1882263

_cons

Source	SS	df	MS		Number of obs		229
Model	4773.8431	5	954.76862			=	1165.55 0.0000
Residual	182.672076	223	.819157291		Prob > F R-squared		0.9631
Residuat	102.072070	223	.01915/291			=	
Total	4956.51518	228	21.7391016	-	R-squared MSE	=	0.9623 .90507
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	1.034354	.0164346	62.94	0.000	1.0019	67	1.066741
SMB	.0666408	.0218762	3.05	0.003	.02353	03	.1097513
HML	.799042	.0378282	21.12	0.000	.72449	55	.8735885
RMW	.014988	.0536257	0.28	0.780	09069	01	.1206661
CMA	1591162	.0511975	-3.11	0.002	26000	91	0582234
_cons	0112194	.063949	-0.18	0.861	1372	41	.1148023

Big size, high book to market second period (1982/08 – 2002/08)

reg RiRf MktRF SMB HML RMW CMA

	-	F(5, 235) = Prob > F = R-squared =		MS	df	SS	Source
	=			901.40552	5	4507.02763	Model
	_			1.18015847	235	277.337241	Residual
				1.1001504			NC31ddd C
	=	t MSE		19.934853	240	4784.36487	Total
. Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.095827	0618	1.020	0.000	55.44	.0190877	1.058223	MktRF
.0340051	9525	0629	0.557	-0.59	.0246071	0144737	SMB
.9239283	5301	.7745	0.000	22.40	.0379162	.8492292	HML
.0278635	7514	0957	0.280	-1.08	.0313726	033944	RMW
0682238	5772	2735	0.001	-3.28	.0521172	1709005	CMA
0369648	1193	3384	0.015	-2.45	.076507	187692	cons

Big size , high book to market third period (2002/09 - 2020/05)

Source	SS	df	MS	Numb	er of ob	s =	213
				- F(5,	207)	=	1593.57
Model	6870.75045	5	1374.15009	Prob	> F	=	0.0000
Residual	178.498048	207	.862309411	. R-sq	uared	=	0.9747
				- Adj	R-square	d =	0.9741
Total	7049.2485	212	33.2511722	Root	MSE	=	.92861
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	1.049108	.0176043	59.59	0.000	1.014	401	1.083815
SMB	0335137	.0303364	-1.10	0.271	0933	217	.0262944
HML	.8657215	.0284712	30.41	0.000	.8095	907	.9218523
RMW	2924711	.0406157	-7.20	0.000	3725	444	2123977
CMA	3035642	.0495654	-6.12	0.000	4012	819	2058464
_cons	.0446943	.0666037	0.67	0.503	0866	142	.1760029

Six Size-Book to market portfolios with the inclusion of the Momentum factor

Small size, low book to market first period (1963/07 – 1982/07)

Source	SS	df	MS		er of obs	s =	229
				- F(6,	222)	=	3140.12
Model	11394.057	6	1899.0095	Prob	> F	=	0.0000
Residual	134.256092	222	.604757171	. R-sq	uared	=	0.9884
				- Adji	R-square	= b	0.9880
Total	11528.3131	228	50.5627768	Root	MSE	=	.77766
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	1.063287	.0141214	75.30	0.000	1.035	458	1.091116
SMB	1.033351	.0188597	54.79	0.000	.99618	836	1.070518
HML	4482595	.0326098	-13.75	0.000	51252	239	3839951
RMW	1037182	.0462438	-2.24	0.026	1948	511	0125852
CMA	0078764	.044005	-0.18	0.858	09459	974	.0788447
MOM	.0124118	.0145046	0.86	0.393	01617	725	.040996
_cons	0451931	.0569731	-0.79	0.428	15747	704	.0670841

Small size, low book to market second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

SS	df	MS			=	241 3315.31
12118.188	6	2019.69799			=	0.0000
142.553529	234	.609203115	R-sq	uared	=	0.9884
			- Adj I	R-squared	=	0.9881
12260.7415	240	51.0864229	Root	MSE	=	.78051
Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
1.062433	.0137258	77.40	0.000	1.03539	1	1.089475
.9867641	.0176878	55.79	0.000	.951916	5	1.021612
3019955	.0287439	-10.51	0.000	358625	4	2453656
178001	.0225494	-7.89	0.000	222426	7	1335753
0942264	.0396889	-2.37	0.018	172419	5	0160332
0459837	.0127996	-3.59	0.000	071200	9	0207665
1359254	.0558235	-2.43	0.016	245906	3	0259445
	12118.188 142.553529 12260.7415 Coef. 1.062433 .9867641301995517800109422640459837	12118.188 6 142.553529 234 12260.7415 240 Coef. Std. Err. 1.062433 .0137258 .9867641 .01768783019955 .0287439178001 .02254940942264 .03968890459837 .0127996	12118.188 6 2019.69799 142.553529 234 .609203115 12260.7415 240 51.0864229 Coef. Std. Err. t 1.062433 .0137258 77.40 .9867641 .0176878 55.793019955 .0287439 -10.51178001 .0225494 -7.890942264 .0396889 -2.370459837 .0127996 -3.59	Tell Tell	Tell F(6, 234) F(6, 234)	Text

Small size, low book to market third period (2002/09 – 2020/05)

213	s =	ber of obs		MS	df	SS	Source
2717.51	=	, 206)	- F(6,				
0.0006	=	b > F	Prob	1274.92998	6	7649.57986	Model
0.9875	=	quared	R-sc	.469153531	206	96.6456275	Residual
0.9872	d =	R-square	- Adj				
.68495	=	t MSE	Root	36.5387995	212	7746.22549	Total
							2:26
Interval]	Cont.	[95% (P> t	t	Std. Err.	Coef.	RiRf
1.060515	077	1.007	0.000	76.28	.0135522	1.033796	MktRF
1.042498	576	.9538	0.000	44.40	.0224799	.9981778	SMB
3267131	207	41292	0.000	-16.92	.0218629	3698169	HML
2354626	869	35548	0.000	-9.71	.0304391	2954747	RMW
1116169	078	25590	0.000	-5.02	.0365933	1837623	CMA
		0612	0.002	-3.13	.0120012	0375421	мом
0138813	.203						

Small size, medium book to market first period (1963/07 – 1982/07)

Source	SS	df	MS	Numb	per of obs	=	229
				F(6	, 222)	=	4299.87
Model	7739.3392	6	1289.88987	Prob) > F	=	0.0000
Residual	66.5963235	222	.299983439	R-sc	quared	=	0.9915
				Adj	R-squared	=	0.9912
Total	7805.93552	228	34.2365593	Root	t MSE	=	.54771
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
MktRF	.9623821	.0099457	96.76	0.000	.942781	9	.9819822
SMB	.8134217	.0132829	61.24	0.000	.78724	5	.8395985
HML	.2058039	.0229671	8.96	0.000	.160542	4	.2510653
RMW	0611688	.0325695	-1.88	0.062	125353	8	.0030161
CMA	052809	.0309928	-1.70	0.090	113886	7	.0082687
MOM	0508416	.0102156	-4.98	0.000	070973	5	0307097
cons	.0969111	.0401262	2.42	0.017	.017834	1	.175988

Small size, medium book to market second period (1982/08 – 2002/08)

24:	s =	er of ob	Numi	MS	df	SS	Source
2215.78	=	234)	- F(6				
0.000	=) > F	1 Prol	978.24745	6	5869.48471	Model
0.982	=	quared	5 R-s	.44149094	234	103.308881	Residual
0.982	d =	R-square	— Adj				
.6644	=	MSE	9 Roo	24.886639	240	5972.79359	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.00880	764	.962	0.000	84.37	.0116847	.9857847	MktRF
.8962283	972	.8368	0.000	57.55	.0150575	.8665628	SMB
.294095	678	.197	0.000	10.05	.0244695	.2458868	HML
.167023	852	.0913	0.000	6.73	.0191962	.1292045	RMW
.17181	862	.0386	0.002	3.12	.0337869	.1052516	CMA
.014168	766	028	0.504	-0.67	.0108962	0072987	MOM
.122375	771	0648	0.546	0.60	.0475223	.0287491	cons

Small size, medium book to market third period (2002/09 – 2020/05)

. reg RiRf MktRF SMB HML RMW CMA MOM

Residual 74.57 Total 6518. RiRf C MktRF .968		6 1073.93 206 .362026 212 30.7462	6866 R-squared Adj R-squ	= 1 =	0.0000 0.9886 0.9882
RiRf C	19744	212 30.7462			
MktRF .968					.00203
	oef. Std.	Err. t	P> t [9)5% Conf.	Interval]
	5695 .01196 6552 .01976 8204 .01926	473 43.18	8 0.000 .8 7 0.000 .0 0 0.9240	9450986 3137225 9959563 9501647 9562602	.9920404 .891588 .1716846 .0552696 .0704909

Small size, high book to market first period (1963/07 – 1982/07)

Source	SS	df	MS	Number of		229 3916.69
Model Residual	8285.14169 78.2677795	6 222	1380.85695 .352557565			0.0000 0.9906 0.9904
Total	8363.40947	228	36.6816205		=	.59377
RiRf	Coef.	Std. Err.	t	P> t [9	5% Conf.	Interval]
MktRF SMB HML RMW CMA MOM _cons	1.013661 .8590147 .5495371 .0952142 .0627184 0171155 .0651115	.0107821 .0143999 .0248985 .0353084 .033599 .0110746	59.65 22.07 2.70 1.87 -1.55	0.000 .8 0.000 .5 0.008 .0 0.0630 0.1240	924125 306367 004695 256318 034955 389404 206152	1.034909 .8873927 .5986048 .1647967 .1289322 .0047093

Small size, high book to market second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

Model Residual 5564.42371 81.9452754 6 927.403952 Prob > F Residual Prob > F Residual Total 5646.36899 240 23.5265374 Root MSE RiRf Coef. Std. Err. t P> t [95% MktRF .9990788 .0104067 96.00 0.000 .9785 SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247	Source	SS	df	MS	Number of obs	=	241 2648.26
Residual 81.9452754 234 .350193485 R-squared Adj R-squared Adj R-squared Adj R-squared Root MSE RiRf Coef. Std. Err. t P> t [95%] MktRF .9990788 .0104067 96.00 0.000 .9785 SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247	Model	5564.42371	6	927.403952		_	0.0000
Total 5646.36899 240 23.5265374 Root MSE RiRf Coef. Std. Err. t P> t [95% MktRF .9990788 .0104067 96.00 0.000 .9785 SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247			-			=	0.9855
RiRf Coef. Std. Err. t P> t [95% MktRF .9990788 .0104067 96.00 0.000 .9785 SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247					- Adj R-squared	=	0.9851
MktRF .9990788 .0104067 96.00 0.000 .9785 SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247	Total	5646.36899	240	23.5265374	Root MSE	=	.59177
SMB .8822901 .0134105 65.79 0.000 .8558 HML .5403198 .0217931 24.79 0.000 .4973 RMW .0584056 .0170965 3.42 0.001 .0247	RiRf	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
MOM0175785 .0097044 -1.81 0.0710366	SMB HML RMW CMA MOM	.8822901 .5403198 .0584056 .0629238	.0134105 .0217931 .0170965 .0300913	65.79 24.79 3.42 2.09	0.000 .85586 0.000 .49738 0.001 .02472 0.038 .00363 0.07103669	93 41 28 92	1.019582 .9087109 .5832556 .0920883 .1222084 .0015407

Small size, high book to market third period (2002/09 – 2020/05)

214		er of obs		MS	df	SS	Source
4601.5	=	, 207)		1347 00145	6	8087.34867	Model
	=) > F		1347.89145	_		
0.992	=	quared	2 R-s	.292923612	207	60.6351878	Residual
0.992	ed =	R-squared	— Adj				
.5412	=	t MSE	3 Roof	38.2534453	213	8147.98386	Total
Interval	Conf.	[95% C	P> t	t	Std. Err.	Coef.	RiRf
1.006959	3787	.96637	0.000	95.87	.0102918	.9866688	MktRF
.9493883	8021	.87980	0.000	51.82	.0176481	.9145952	SMB
.5581412	1863	.49318	0.000	31.91	.0164735	.5256638	HML
	166	00091	0.055	1.93	.0236992	.045806	RMW
.0925287	100						
.0925287		.06699	0.000	4.30	.0287216	.1236198	CMA
	955		0.000 0.866		.0287216 .0080953	.1236198 .0013644	CMA MOM

Big size, low book to market first period (1963/07 – 1982/07)

229)s =	ber of ob	Numb	MS	d f	SS	Source
1649.69	=	, 222)	- F(6				
0.000	=	b > F	L Prob	794.00831	6	4764.04986	Model
0.978	=	quared	L R-s	.481308561	222	106.850501	Residual
0.977	ed =	R-square	– Adj				
.6937	=	t MSE	L Root	21.3635981	228	4870.90036	Total
Interval:	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.00947	3224	.9598	0.000	78.16	.012598	.9846493	MktRF
075002	L317	141	0.000	-6.43	.0168251	1081597	SMB
1463159	786	2609	0.000	-7.00	.0290917	2036473	HML
.2968487	2464	.1342	0.000	5.22	.0412548	.2155476	RMW
0103543	847	1650	0.026	-2.23	.0392576	0877195	CMA
0070180	195	0580	0.013	-2.51	.0129398	032519	мом
00/010							

Big size, low book to market second period (1982/08 - 2002/08)

241		ber of ob		MS	df	SS	Source
2554.48	=	, 234)					
0.0000	=	b > F	Pro	972.561718	6	5835.37031	Model
0.9850	=	quared	R-s	.380728364	234	89.0904372	Residual
0.9846	ed =	R-square	- Adj				
.61703	=	t MSE	Roo	24.6852531	240	5924.46075	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.017362	059	.9746	0.000	91.79	.0108509	.9959838	MktRF
0905341	314	1456	0.000	-8.44	.013983	1180827	SMB
2782615	985	3677	0.000	-14.22	.0227234	32303	HML
.2384863	452	.1682	0.000	11.41	.0178263	.2033657	RMW
.0694179	125	0542	0.809	0.24	.0313758	.0076027	CMA
		0117	0.422	0.80	.0101187	.0081455	мом
.0280808	899	011/					

Big size, low book to market third period (2002/09 – 2020/05)

Source	SS	df	MS		of obs	s =	213
Model Residual	3427.23221 37.424039	6 206	571.205368 .181670092	R-squa	F red	= = = d =	3144.19 0.0000 0.9892
Total	3464.65625	212	16.3427182	_	squared SE	=	0.9889
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.992085	.0084332	117.64	0.000	.97545	584	1.008711
SMB	114744	.0139887	-8.20	0.000	14232	235	0871645
HML	2482431	.0136048	-18.25	0.000	27506	656	2214205
RMW	.0610614	.0189416	3.22	0.001	.02371	172	.0984056
CMA	0084306	.0227712	-0.37	0.712	05332	251	.0364639
MOM	.008289	.0074681	1.11	0.268	00643	346	.0230126
_cons	.0649846	.0305772	2.13	0.035	.00476	003	.1252689

Big size, medium book to market first period (1963/07 – 1982/07)

229	s =	ber of ob	Num	MS	df	SS	Source
465.71	=	, 222)	- F(6				
0.0000	=	b > F	B Pro	608.703448	6	3652.22069	Model
0.9264	=	quared	6 R-s	1.30704056	222	290.163005	Residual
0.9244	ed =	R-square	– Adj				
1.1433	=	t MSE	6 Roo	17.2911566	228	3942.3837	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.019856	314	.9380	0.000	47.15	.0207603	.9789438	MktRF
0642186	1988	1734	0.000	-4.29	.0277261	1188587	SMB
.2596241	707	.0706	0.001	3.44	.0479405	.1651474	HML
0607908	442	3287	0.005	-2.86	.0679841	1947675	RMW
.2365102	712	0184	0.093	1.69	.0646929	.1090195	CMA
.0843799	351	.0003	0.048	1.99	.0213235	.0423575	MOM
.1025122	100	2276	0.456	-0.75	.0837575	0625493	_cons

Big size, medium book to market second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

Source	SS	df	MS		er of ob	s =	241
Model Residual	4212.65489 352.7222	6 234	702.109148 1.50735983	Prob	234) > F uared	=	465.79 0.0000 0.9227
Total	4565.37709	240	19.0224045	,	R-square MSE	d = =	0.9208 1.2277
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF SMB HML RMW CMA MOM	1.05737 0593675 .3089465 .1971018 .2505079 095085	.0215907 .0278228 .045214 .03547 .0624304	-2.13 6.83	0.000 0.034 0.000 0.000 0.000	1.014 1141 .2198 .1272 .1275	826 679 204 104	1.099907 0045523 .3980251 .2669833 .3735054 0554185

-2.57

0.011

-.3985357

-.0525368

Big size, medium book to market third period (2002/09 – 2020/05)

.0878101

. reg RiRf MktRF SMB HML RMW CMA MOM

-.2255362

_cons

21	os =	ber of ob	Numb	MS	df	SS	Source
490.6	=	, 207)	- F(6				
0.000	=	b > F	2 Prob	622.169902	6	3733.01941	Model
0.934	=	quared	8 R-s	1.26818538	207	262.514374	Residual
0.932	ed =	R-square	– Adj				
1.126	=	t MSE	6 Root	18.7583746	213	3995.53379	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.08911	5137	1.005	0.000	49.16	.0212991	1.047128	MktRF
077624	5542	1995	0.000	-4.48	.0309233	1385891	SMB
.398029	3335	.2208	0.000	6.89	.0449397	.3094317	HML
.22418	3004	.0538	0.002	3.22	.0432116	.1389917	RMW
.255804	3776	.0018	0.047	2.00	.0643996	.1288408	CMA
.037292	5494	0305	0.845	0.20	.0172058	.0033717	MOM
						3155622	

Big size, high book to market first period (1963/07 – 1982/07)

Source	SS	df	MS		er of obs	s = =	229 967.08
Model	4773.86966	6	795.644944		-	=	0.0000
Residual	182.645512	222	.822727532	R-sq	uared	=	0.9632
				- Adj l	R-squared	i =	0.9622
Total	4956.51518	228	21.7391016	Root	MSE	=	.90704
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	1.034332	.0164709	62.80	0.000	1.0018	373	1.066791
SMB	.0663176	.0219975	3.01	0.003	.0229	67	.1096682
HML	.7984891	.0380352	20.99	0.000	.72353	328	.8734454
RMW	.0158114	.0539375	0.29	0.770	09048	36	.1221064
CMA	1588767	.0513263	-3.10	0.002	26002	258	0577276
MOM	0030399	.0169177	-0.18	0.858	03637	98	.0303
cons	0080631	.0664519	-0.12	0.904	13902	002	.1228941

Big size, high book to market second period (1982/08 – 2002/08)

241		ber of ob		MS	df	SS	Source
637.50	=	, 234)	- F(6				
0.0000	=	b > F	2 Pro	751.424912	6	4508.54947	Model
0.9424	=	quared	8 R-s	1.17869828	234	275.815397	Residual
0.9409	d =	R-square	— Adj				
1.0857	=	t MSE	6 Roo	19.9348536	240	4784.36487	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.096737	.508	1.021	0.000	55.47	.0190923	1.059122	MktRF
	958	0620	0.580	-0.55	.0246033	0136235	SMB
.0348488			0.500				
.0348488	964	.755	0.000	20.88	.0399821	.834735	HML
					.0399821 .0313657	.834735 0329376	HML RMW
.913506	328	.755	0.000	-1.05			
.913506 .0288576	328 715	.755 0947	0.000 0.295	-1.05 -2.72	.0313657	0329376	RMW

Big size, high book to market third period (2002/09-2020/05)

Source	SS	df	MS		of obs	=	213
Model Residual	6879.14758 170.100918	6 206	1146.5246 .82573261	. R-squa	F ared	=	1388.49 0.0000 0.9759
Total	7049.2485	212	33.2511722	,	-squared ISE	=	0.9752 .9087
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
MktRF SMB HML RMW CMA MOM	1.032695 0243984 .840001 2696764 3101817 0507728	.0179793 .0298234 .0290049 .0403826 .0485472	-0.82 28.96 -6.68 -6.39	0.000 0.414 0.000 0.000 0.000	.997248 083196 .782816 349292 405894 082162	6 5 6 7	1.068142 .0343998 .8971854 1900603 2144686
_cons	.0488917	.0651891		0.454	079631	-	.1774151

Six Size - Momentum portfolios

Small size, low momentum first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS		er of obs	s = =	230 558.27
Model	10102.1302	5	2020.42604			=	0.0000
Residual	810.679446	224	3.61910467	R-sq	uared	=	0.9257
				- Adj	R-squared	i =	0.9241
Total	10912.8096	229	47.6541906	Root	MSE	=	1.9024
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF SMB HML RMW CMA _cons	1.005893 1.021483 .2259591 2618215 2497836 6523778	.0337189 .0449639 .0794293 .1122004 .1074865 .1338214	22.72 2.84 -2.33 -2.32	0.000 0.000 0.005 0.021 0.021 0.000	.93944 .93287 .06943 48292 46159	763 849 249	1.072339 1.110089 .3824833 0407181 0379695 3886678

Small size, low momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

Source	ss	df	MS	Number of obs	s =	240
Model Residual	8838.42618 1883.99882	5 234	1767.68524 8.051277	R-squared	= =	219.55 0.0000 0.8243
Total	10722.425	239	44.8637029	· Adj R-squared Root MSE	d = =	0.8205 2.8375
RiRf	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]

RiRf	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
MktRF	1.019842	.0505858	20.16	0.000	.9201805	1.119504
SMB	.8697338	.06467	13.45	0.000	.7423239	.9971437
HML	.5768457	.099106	5.82	0.000	.3815916	.7720998
RMW	1467006	.0823088	-1.78	0.076	3088616	.0154603
CMA	834345	.1363024	-6.12	0.000	-1.102882	5658084
_cons	6680695	.199903	-3.34	0.001	-1.061909	2742299

Small size, low momentum third period (2002/09 – 2020/05)

Source	SS	df	MS	Number of obs	=	213
				F(5, 207)	=	285.47
Model	11778.2873	5	2355.65746	Prob > F	=	0.0000
Residual	1708.11249	207	8.25175115	R-squared	=	0.8733
				Adj R-squared	=	0.8703
Total	13486.3998	212	63.6150932	Root MSE	=	2.8726

RiRf	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
MktRF	1.300834	.0544579	23.89	0.000	1.193471	1.408197
SMB	.8999337	.0938439	9.59	0.000	.7149213	1.084946
HML	.2635261	.0880741	2.99	0.003	.0898889	.4371632
RMW	408347	.125642	-3.25	0.001	6560491	160645
CMA	.0795116	.1533276	0.52	0.605	2227723	.3817955
_cons	0125195	.2060345	-0.06	0.952	4187144	.3936755

Small size, neutral momentum first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Numb	er of ob	s =	229
M - d - 3	7072 21466				223)	=	2626.01
Model	7072.21466	5	1414.44293	B Prob	> F	=	0.0000
Residual	120.113867	223	.538627206	i R−sq	uared	=	0.9833
				– Adji	R-square	d =	0.9829
Total	7192.32852	228	31.5453005	Root	MSE	=	.73391
RiRf	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
MktRF	.9394043	.0133266	70.49	0.000	.9131	421	.9656666
SMB	.7807982	.0177391	44.02	0.000	.7458	404	.8157559
HML	.1846814	.0306744	6.02	0.000	.1242	326	.2451302
RMW	0155167	.0434844	-0.36	0.722	1012	097	.0701763

-.141408

.0629707

Small size, neutral momentum second period (1982/08 – 2002/08)

-.0392187 .0518554

. reg RiRf MktRF SMB HML RMW CMA

CMA _cons

Source	SS	df	MS		er of obs		241
				- F(5,		=	*******
Model	4913.76236	5	982.752472	Prob	> F	=	0.0000
Residual	265.907649	235	1.13152191	. R-squ	ıared	=	0.9487
				– Adj F	R−squared	=	0.9476
Total	5179.67001	240	21.5819584	Root	MSE	=	1.0637
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.948543	.0186902	50.75	0.000	.91172	212	.9853649
SMB	.7518409	.0240948	31.20	0.000	.70437	16	.7993103
HML	.3148626	.0371267	8.48	0.000	.24171	.89	.3880063
RMW	.2773499	.0307193	9.03	0.000	.21682	94	.3378703
CMA	0393655	.051032	-0.77	0.441	13990	41	.0611732
cons	114133	.0749139	-1.52	0.129	26172	17	.0334557

Small size, neutral momentum third period (2002/09 – 2020/05)

Source	SS	df	MS		er of obs	=	213 1833.80
Model	6498.75315	5	1299.75063		207) > F	=	0.0000
Residual	146.71667	207	.708776182	R-sq	uared	=	0.9779
				- Adj	R-squared	=	0.9774
Total	6645.46982	212	31.3465558	Root	MSE	=	.84189
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
MktRF SMB HML RMW CMA _cons	.9690886 .831131 .2386921 .0592706 1404067 .08882	.0159603 .0275035 .0258125 .0368228 .0449368 .0603839	30.22 9.25 1.61 -3.12	0.000 0.000 0.000 0.109 0.002 0.143	.93762 .776908 .187803 013325 228999	1 1 1	1.000554 .8853539 .2895812 .1318663 0518143 .2078664

Small size, high momentum first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA

229	os =	ber of ob	Numb	MS	df	SS	Source
703.3	=	, 223)	— F(5,				
0.000	=	b > F	7 Prob	1788.2620	5	8941.31036	Model
0.940	=	quared	12 R-sc	2.54258842	223	566.997218	Residual
0.939	ed =	R-square	— Adj				
1.594	=	t MSE	34 Root	41.7031034	228	9508.30757	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
					.0289544	1.048969	MktRF
1.10602	9093	.9919	0.000	36.23	.0203344	1.040303	THECH
1.10602		.9919 .7694	0.000 0.000	36.23 21.94	.0385413	.8454269	SMB
	4752						
.921378	4752 8511	.7694	0.000	21.94	.0385413	.8454269	SMB
.921378	4752 8511 8777	.7694 1818	0.000	21.94 -0.76	.0385413 .0666454	.8454269 0505158	SMB HML

Small size, high momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Number		= 241
Model	8977.10673	5	1795.42135	F(5, 23		= 816.49 = 0.0000
Residual	516.752833	235	2.19894823		-	= 0.0000
Residuat	310.732033	233	2.15054025	- Adj R-s		= 0.9444
Total	9493.85957	240	39.5577482	-		= 1.4829
RiRf	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
MktRF	1.058682	.026055	40.63	0.000	1.00735	1.110013
SMB	.9521005	.0335891	28.35	0.000	.8859263	1.018275
HML	1304583	.0517562	-2.52	0.012 -	.2324236	0284929
RMW	0315228	.042824	-0.74	0.462 -	.1158909	.0528452
CMA	.1724373	.0711408	2.42	0.016	.0322821	.3125925
_cons	.6018016	.1044332	5.76	0.000	.3960567	.8075466

Small size, high momentum third period (2002/09 – 2020/05)

Source	SS	df	MS		er of obs	=	213
Model	6598.13339	5	1319.62668		207) > F	=	648.27 0.0000
		-				=	
Residual	421.374434	207	2.03562528		uared .	=	0.9400
				- Adj	R-squared	=	0.9385
Total	7019.50783	212	33.110886	Root	MSE	=	1.4268
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	.9830996	.0270481	36.35	0.000	.92977	46	1.036425
SMB	.9768407	.0466103	20.96	0.000	.88494	89	1.068732
HML	0921348	.0437445	-2.11	0.036	17837	67	0058928
RMW	.0168458	.0624038	0.27	0.787	10618	26	.1398742
CMA	1617052	.0761546	-2.12	0.035	31184	32	0115671
_cons	.0252997	.102333	0.25	0.805	17644	89	.2270482

Big size, low momentum first period (1963/07 – 1982/07)

reg RiRf MktRF SMB HML RMW CMA

229	s =	ber of ob	Numb	MS	df	SS	Source
167.95	=	, 223)	– F(5,				
0.0000	=	b > F	9 Prob	1064.03629	5	5320.18147	Model
0.7902	=	quared	3 R-sc	6.3353753	223	1412.78869	Residual
0.7855	ed =	R-square	– Adj				
2.517	=	t MSE	9 Root	29.5305709	228	6732.97016	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.178171	334	.9980	0.000	23.81	.0457049	1.088102	MktRF
.1700014	801	0697	0.411	0.82	.0608379	.0501107	SMB
.1761383	907	2384	0.767	-0.30	.1052006	0311762	HML
	060	5221	0.127	-1.53	.1491337	2282151	RMW
.0656766	.003						
.0656766 .3390942		2220	0.682	0.41	.1423808	.0585102	CMA

Big size, low momentum second period (1982/08-2002/08) reg riff Mktrf SMB HML RMW CMA

Source	ss	df	MS	Numb	er of ob	s =	241
				- F(5,	235)	=	108.95
Model	5463.86281	5	1092.77256	Prob	> F	=	0.0000
Residual	2357.08987	235	10.0301697	R-sq	uared	=	0.6986
				- Adj	R-square	d =	0.6922
Total	7820.95269	240	32.5873029	Root	MSE	=	3.167
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.9845398	. 0556465	17.69	0.000	.8749	101	1.09417
SMB	0331392	.0717373	-0.46	0.645	1744	697	.1081913
HML	.4837391	.1105373	4.38	0.000	.2659	684	.7015097
RMW	.0776343	.0914606	0.85	0.397	1025	532	.2578219
CMA	7008541	.1519376	-4.61	0.000	-1.000	188	4015202
_cons	1150043	.2230413	-0.52	0.607	55442	202	.3244117
_							

Big size, low momentum third period (2002/09 - 2020/05) reg Riff Mktrf SMB HML RMW CMA

Source	SS	df	MS		er of obs	=	213
		_			207)	=	185.58
Model	7596.27194	5	1519.25439	Prob	> F	=	0.0000
Residual	1694.56704	207	8.18631423	R-sq	uared	=	0.8176
				- Adj	R-squared	=	0.8132
Total	9290.83898	212	43.8247122	Root	MSE	=	2.8612
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	1.265713	.0542415	23.33	0.000	1.1587	76	1.372649
SMB	1335619	.0934711	-1.43	0.155	31783	93	.0507155
HML	.4753537	.0877241	5.42	0.000	.30240	64	.648301
RMW	3021363	.1251429	-2.41	0.017	54885	43	0554184
CMA	1652349	.1527184	-1.08	0.281	46631	78	.135848
_cons	127195	.2052159	-0.62	0.536	53177	62	.2773862

Big size, neutral momentum first period (1963/07 - 1982/07) reg rirf mktrf smb hml rmw cma

Source	SS	df	MS		er of obs		229
Model	3971.68499	5	794.336997		223) > F	=	943.96 0.0000
Residual	187.65387	223	.841497173	R-sq	uared	=	0.9549
				- Adj I	R-squared	i =	0.9539
Total	4159.33886	228	18.2427143	Root	MSE	=	.91733
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.9840785	.0166572	59.08	0.000	.95125	528	1.016904
SMB	0865851	.0221725	-3.91	0.000	13027	795	0428907
HML	.03096	.0383406	0.81	0.420	04459	962	.1065161
RMW	.0304104	.0543521	0.56	0.576	0766	599	.1375198
CMA	.051746	.051891	1.00	0.320	05051	L34	.1540053

Big size, neutral momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Numb	er of obs	s =	241
				- F(5,	235)	=	555.71
Model	4108.22449	5	821.644898	3 Prob	> F	=	0.0000
Residual	347.459973	235	1.47855308	R−sq	uared	=	0.9220
				– Adj	R-squared	i =	0.9204
Total	4455.68446	240	18.5653519	Root	MSE	=	1.216
Т							
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	.9890709	.021365	46.29	0.000	.94697	796	1.031162
SMB	130006	.0275429	-4.72	0.000	18426	85	0757434
HML	.1546567	.0424398	3.64	0.000	.07104	156	.2382678
RMW	.2435768	.0351155	6.94	0.000	.17439	955	.3127582
CMA	.065456	.0583351	1.12	0.263	04947	704	.1803825
_cons	3003755	.0856347	-3.51	0.001	46908	352	1316658

Big size, neutral momentum third period (2002/09 – 2020/05)

213	s =	ber of ob		MS	df	SS	Source
1167.28 0.0000	=	, 207) b > F		721.371688	5	3606.85844	Model
0.9657	=	quared	R-s	.61799538	207	127.925044	Residual
0.9649	d =	R-square	- Adj				
.78613	=	t MSE	Roc	17.6169032	212	3734.78348	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.003114	351	.944	0.000	65.34	.0149032	.9737326	MktRF
0248181	081	126	0.004	-2.94	.0256818	0754496	SMB
.1495034	665	.0544	0.000	4.23	.0241028	.101985	HML
.1908078	329	. 0552	0.000	3.58	.0343838	.1230203	RMW
.106553	962	0588	0.571	0.57	.0419604	.0238284	CMA
.1749547		0473	0.259	1.13	.0563845	.0637933	cons

Big size, high momentum first period (1963/07 - 1982/07) . reg Riff Mktrf SMB HML RMW CMA

		1						
	Source	SS	df	MS	Numbe	r of obs	=	229
-					F(5,	223)	=	252.26
	Model	5094.63488	5	1018.92698	Prob	> F	=	0.0000
	Residual	900.748519	223	4.03923103	R-squ	ared	=	0.8498
-					- Adj R	-squared	=	0.8464
	Total	5995.3834	228	26.2955412	Root	MSE	=	2.0098
-								
_	RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
	MktRF	1.020926	.0364944	27.97	0.000	.94900	83	1.092844
	SMB	.0259421	.0485777	0.53	0.594	0697	88	.1216723
	HML	1231491	.0840004	-1.47	0.144	28868	53	.0423871
	RMW	.0702342	.1190801	0.59	0.556	1644	32	.3049004
	CMA	0711065	.113688	-0.63	0.532	29514	67	.1529338
	_cons	.4856102	.1420036	3.42	0.001	.20576	95	.7654509

Big size, high momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA

Source	SS	df	MS	Number of obs	=	241 377.40
Model Residual	5136.26612 639.658981	5 235	1027.25322 2.72195311	Prob > F	=	0.0000 0.8893 0.8869
Total	5775.9251	240	24.0663546		=	1.6498
RiRf	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
MktRF SMB HML RMW CMA _cons	1.039031 0349941 2390617 .0580747 .3508624 .1382076	.0289884 .0373707 .0575831 .0476453 .0791501 .1161907	-0.94 -4.15 1.22 4.43	0.000 .98192 0.35010861 0.00035250 0.22403579 0.000 .1949 0.2350907	86 68 18 28	1.096142 .0386303 1256167 .1519413 .5067968

Big size, high momentum third period (2002/09 – 2020/05)

213	s =	ber of obs	Numb	MS	d f	SS	Source
245.42	=	, 207)					
0.0000	=	b > F	B Prob	680.762023	5	3403.81011	Model
0.8557	=	quared	6 R−sq	2.77391676	207	574.200769	Residual
0.8522	d =	R-squared	– Adj				
1.6655	=	t MSE	Root	18.7642023	212	3978.01088	Total
Intervall	Conf.	[95% (P> t	t	Std. Err.	Coef.	RiRf
1		[330 (1-14		5141 2111		
.9987946	975	.87429	0.000	29.66	.0315743	.936546	MktRF
.2556212	083	.0416	0.007	2.73	.0544101	.1483521	SMB
	881	28258	0.000	-3.56	.0510648	1819143	HML
0812406							
0812406 .3138055		.02657	0.020	2.34	.0728465	.1701894	RMW
	733	.02657 35996	0.020 0.039		.0728465 .0888984	.1701894 1846424	RMW CMA

Six Size - Momentum portfolios with the inclusion of the Momentum factor:

Small size, low momentum first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA MOM

Source	ss	df	MS		er of obs	=	229
Model	10670.3957	6	1778.39928	- F(6, Prob		=	2496.03 0.0000
Residual	158.173161	222	.712491718			_	0.9854
Residuat	130.1/3101	222	./12491/10				0.9850
Total	10828.5688	228	47.493723		R-squared MSE	=	.84409
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	.9929064	.0153277	64.78	0.000	.96269	99	1.023113
SMB	.983344	.0204708	48.04	0.000	.94300	21	1.023686
HML	.1350649	.0353955	3.82	0.000	.06531	07	.204819
RMW	11959	.0501941	-2.38	0.018	21850	79	0206722

-4.31 0.000

-2.85 0.005

-.2998676 -.1116094

-.2979324 -.0541955

-.443252

-.5053041

Small size, low momentum second period (1982/08 – 2002/08)

-.4742781 .0157436 -30.13 0.000

. reg RiRf MktRF SMB HML RMW CMA MOM

-.2057385 .0477641

-.176064 .0618399

CMA

MOM

_cons

Source	SS	df	MS	Number of obs	=	
				F(6, 233)	=	184
Model	8857.30957	6	1476.21826	Prob > F	=	0.0
Residual	1865.11543	233	8.00478723	R-squared	=	0.8
				Adj R-squared	=	0.8
Total	10722.425	239	44.8637029	Root MSE	=	2.8

RiRf	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
MktRF	1.027034	.0506564	20.27	0.000	.9272308	1.126837
SMB	.8960885	.066727	13.43	0.000	.764623	1.027554
HML	.5885003	.0991104	5.94	0.000	.3932333	.7837674
RMW	1309427	.0827096	-1.58	0.115	2938969	.0320116
CMA	8206079	.1362023	-6.02	0.000	-1.088953	5522625
MOM	.0695071	.0452548	1.54	0.126	0196537	.1586679
_cons	7586329	.2078635	-3.65	0.000	-1.168165	3491008

Small size, low momentum third period (2002/09 – 2020/05)

21	s =	er of ob	Numb	MS	df	SS	Source
2174.6	=	206)	F(6,				
0.000	=) > F	7 Prob	2212.797	6	13276.782	Model
0.984	=	uared	4 R-so	1.01756204	206	209.617779	Residual
0.984	ed =	R-square	— Adj				
1.008	=	MSE	2 Root	63.6150932	212	13486.3998	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
1.12093	237	1.042	0.000	54.19	.0199587	1.081586	MktRF
1.08697	298	.9564	0.000	30.86	.0331068	1.021702	SMB
016585	546	143	0.014	-2.49	.0321982	0800658	HML
015460	234	1922	0.022	-2.32	.0448286	1038418	RMW
.097361	401	1151	0.869	-0.16	.0538921	0088894	CMA
643409	.016	7131	0.000	-38.37	.0176745	6782556	MOM
		0991	0.548	0.60	.0723662	.0435521	_cons

Small size, neutral momentum first period (1963/07 – 1982/07)

. reg RiRf MktRF SMB HML RMW CMA MOM

Source	ss	df	MS	Number of obs	=	229
Model Residual	7095.14439 97.1841314	6 222	1182.52407		=	2701.27 0.0000 0.9865
Residuat	97.1041314	222	.437700337	- Adj R-squared		0.9861
Total	7192.32852	228	31.5453005		=	.66164
RiRf	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
MktRF SMB HML RMW CMA MOM _cons	.9387643 .7713017 .168437 .0086742 .067309 0893128	.0120146 .016046 .0277446 .0393445 .0374398 .0123406 .048473	48.07 6.07 0.22 1.80 -7.24	0.000 .91508 0.000 .73967 0.000 .11376 0.82606886 0.07400647 0.00011363 0.27104201	98 04 23 38 25	.9624416 .8029236 .2231136 .0862107 .1410919 0649932

Small size, neutral momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

241		ber of ob		MS	d f	SS	Source
933.02 0.0000	=	, 234) b > F		828.64148	6	4971.84892	Model
					-		
0.9599	. =	quared		.88812431	234	207.821089	Residual
0.9588	d =	R-square	-				
.9424	=	t MSE	34 Root	21.581958	240	5179.67001	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
.9867524	508	.9214	0.000	57.57	.0165727	.9541016	MktRF
.7991688	178	.7150	0.000	35.45	.0213564	.7570933	SMB
.2936923	409	.1569	0.000	6.49	.0347058	.2253166	HML
.3372074	927	.229	0.000	10.42	.0272264	.2835672	RMW
.1835125	104	0053	0.064	1.86	.0479208	.089101	CMA
0945363	315	1554	0.000	-8.09	.0154544	1249839	мом
.1137092	755	1518	0.777	-0.28	.067402	0190831	cons

Small size, neutral momentum third period (2002/09 – 2020/05)

21	s =	er of ob	Numb	MS	df	SS	Source
1771.3	=	206)					
0.000	=) > F	9 Prob	1086.51919	6	6519.11516	Model
0.981	=	quared	9 R-so	.613372149	206	126.354663	Residual
0.980	ed =	R-square	— Adj				
.7831	=	MSE	8 Root	31.3465558	212	6645.46982	Total
Interval	Conf.	[95%	P> t	t	Std. Err.	Coef.	RiRf
.974081	804	.9129	0.000	60.89	.0154958	.9435312	MktRF
.896001	6489	.7946	0.000	32.89	.0257039	.8453253	SMB
. 247925	3544	.1493	0.000	7.95	.0249984	.19864	HML
.163385	L476	.0261	0.007	2.72	.0348046	.0947665	RMW
	2038	2332	0.000	-3.60	.0418414	1507115	CMA
068219							
0682193 0520093		1061	0.000	-5.76	.0137223	0790635	MOM

Small size, high momentum first period (1963/07 – 1982/07)

reg RiRf MktRF SMB HML RMW CMA MOM

Source	SS	df	MS		er of obs	; = =	229 2611.42
Model	9375.47108	6	1562.57851			=	0.0000
Residual	132.836493	222	.59836258	R-sq	uared	=	0.9860
				- Adj I	R-squared	i =	0.9857
Total	9508.30757	228	41.7031034	Root	MSE	=	.77354
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	1.051753	.0140466	74.88	0.000	1.0240	72	1.079435
SMB	.8867494	.0187598	47.27	0.000	.84977	94	.9237194
HML	.0201698	.032437	0.62	0.535	0437	54	.0840935
RMW	1099587	.0459986	-2.39	0.018	20060	85	0193089
CMA	.0137626	.0437718	0.31	0.753	07249	88	.1000239
MOM	.388633	.0144277	26.94	0.000	.36020	002	.4170657
_cons	.1480619	.0566711	2.61	0.010	.03637	98	.259744

Small size, high momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

_	bs =	per of ob		MS	df		SS	Source
	=	, 234)						
	=) > F		1543.8316	6		9262.98986	Model
0.97	=	quared	33 R	.98662268	234		230.869708	Residual
0.97	ed =	R-square	_ A					
.993	=	t MSE	32 R	39.557748	240		9493.85957	Total
Interva	Conf.	[95%	P> t	t	Err.	Std.	Coef.	RiRf
1.0807	1936	1.01	0.00	59.90	4676	.017	1.04635	MktRF
.98479	1009	.8961	0.00	41.78	5096	.022	.9404482	SMB
.14026	8694	0038	0.06	1.86	5797	.036	.0681982	HML
.01122	8523	1018	0.11	-1.58	6965	.028	0453158	RMW
01305	0729	2126	0.02	-2.23	5083	.050	1125637	CMA

5.50 0.000

.2509724

.5308974

Small size, high momentum third period (2002/09 – 2020/05)

.0710414

reg RiRf MktRF SMB HML RMW CMA MOM

_cons

.3909349

Source	SS	df	MS		er of obs	=	213 1980.81
Model	6899.91178	6	1149.9853		> F	_	0.0000
Residual	119.596051	206	.580563353		uared	=	0.9830
				- Adj	R-squared	=	0.9825
Total	7019.50783	212	33.110886	Root	MSE	=	.76195
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	1.08149	.0150757	71.74	0.000	1.0517	67	1.111212
SMB	.9221959	.025007	36.88	0.000	.87289	34	.9714984
HML	.0620563	.0243207	2.55	0.011	.0141	07	.1100057
RMW	1198047	.033861	-3.54	0.000	18656	31	0530462
CMA	1220341	.040707	-3.00	0.003	20228	99	0417784
MOM	.3043756	.0133503	22.80	0.000	.27805	49	.3306963
cons	.0001369	.0546613	0.00	0.998	10763	05	.1079042

Big size, low momentum first period (1963/07 – 1982/07)

	Source	SS	df	MS		er of obs	s = =	229 1024.97
	Model Residual	6498.38841 234.581759	6 222	1083.06473 1.05667459	Prob R-sq		=	0.0000 0.9652 0.9642
	Total	6732.97016	228	29.5305709			=	1.0279
_	RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
	MktRF SMB HML RMW	1.083514 017962 1476199 0548092	.0186663 .0249296 .0431051 .061127	-0.72 -3.42	0.000 0.472 0.001 0.371	1.0467 0676 23256 17527	991 574	1.1203 .031167 0626724 .0656543

1.87 0.062

0.000

3.89

-.0056692

.1448855

-.677998 -.6024301

.4417115

Big size, low momentum second period (1982/08 – 2002/08)

-.640214 .0191728 -33.39 0.000

.1089625 .0581678

.2932985 .0753095

. reg RiRf MktRF SMB HML RMW CMA MOM

CMA

MOM _cons

Source	ss	df	MS	Numb	er of obs	s =	241
				- F(6,	234)	=	750.75
Model	7434.73347	6	1239.12224	Prob	> F	=	0.0000
Residual	386.219221	234	1.65050949	R-sq	uared	=	0.9506
				- Adj	R-squared	i =	0.9494
Total	7820.95269	240	32.5873029	Root	MSE	=	1.2847
RiRf	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MktRF	1.016918	.0225926	45.01	0.000	.97246	73	1.061429
SMB	0025445	.0291139	-0.09	0.930	05996	34	.0548145
HML	0378609	.0473123	-0.80	0.424	13107	734	.0553515
RMW	.1138497	.0371161	3.07	0.002	.04072	253	.1869741
CMA	.0474552	.0653276	0.73	0.468	08125	502	.1761606
MOM	7280231	.0210681	-34.56	0.000	76953	305	6865157
_cons	.4386553	.0918851	4.77	0.000	.25762	276	.6196831

Big size, low momentum third period (2002/09 – 2020/05)

reg RiRf MktRF SMB HML RMW CMA MOM

Model Residual	9032.30891				2061	=	1199.51
	258.530072	6 206	1505.38482 1.25500035	Prob R-sq	uared	=	0.0000 0.9722
Total	9290.83898	212	43.8247122		R-squared MSE	=	0.9714 1.1203
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
MktRF SMB HML RMW CMA MOM	1.051083 0143588 .1389985 0040446 251774 6639702	.0221653 .0367671 .035758 .0497847 .0598503	-0.39 3.89 -0.08 -4.21	0.000 0.697 0.000 0.935 0.000	1.00734 086840 .066 102193 369773	68 85 75	1.094783 .0581292 .209497 .0941084 1337763

Big size, neutral momentum first period (1963/07 – 1982/07)

Source	ss	df	MS	Number of obs		229 943.96
Model	3971.68499	5	794.336997		=	0.0000
Residual	187.65387	223	.841497173	R-squared	=	0.9549
				- Adj R-squared	i =	0.9539
Total	4159.33886	228	18.2427143	Root MSE	=	.91733
RiRf	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
MktRF	.9840785	.0166572	59.08	0.000 .95125	528	1.016904
SMB	0865851	.0221725	-3.91	0.00013027	795	0428907
HML	.03096	.0383406	0.81	0.42004459	962	.1065161
RMW	.0304104	.0543521	0.56	0.5760766	599	.1375198
CMA	.051746	.051891	1.00	0.32005053	L34	.1540053
_cons	136107	.0648151	-2.10	0.03726383	356	0083785

Big size, neutral momentum second period (1982/08 – 2002/08)

. reg RiRf MktRF SMB HML RMW CMA MOM

Source	SS	df	MS		er of obs 234)	=	241 593.45
Model	4180.92699	6	696.821166		> F	_	0.0000
sidual	274.757468	234	1.17417721	R-sq	uared	=	0.9383
				- Adj	R-squared	=	0.9368
Total	4455.68446	240	18.5653519	Root	MSE	=	1.0836
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
MktRF	.9952896	.0190557	52.23	0.000	.957747	71	1.032832
SMB	1241298	.0245561	-5.05	0.000	172509	91	0757506
HML	.0544762	.0399054	1.37	0.174	024143	36	.133096
RMW	.2505325	.0313055	8.00	0.000	.188855	59	.3122091
CMA	.2091792	.0551004	3.80	0.000	.10062	23	.3177354
MOM	1398269	.0177698	-7.87	0.000	174836	52	1048177
_cons	1940375	.0775002	-2.50	0.013	346724	18	0413501

Big size, neutral momentum third period (2002/09 – 2020/05)

21	os =	per of ob		MS	df	SS	Source
0.000	=	, 206) > F		604.041976	6	3624.25186	Model
					-		
0.970	=	quared		.536561288	206	110.531625	Residual
0.969	ed =	R-square	Adj				
.732	=	t MSE	Root	17.6169032	212	3734.78348	Total
Interval	Conf.	[95%	P> t	t I	Std. Err.	Coef.	RiRf
.978685	5376	.9215	0.000	65.56	.0144931	.9501115	MktRF
014933	9728	109	0.010	-2.59	.0240407	0623307	SMB
.111063	3709	.0188	0.006	2.78	.0233809	.0649674	HML
.220005		.0916	0.000		.0325525	.1558268	RMW
.091458		0628	0.715		.0323323	.0143043	CMA
047769	3768	0983	0.000		.0128344	0730732	MOM
.173437	7687	0337	0.185	1.33	.0525491	.0698343	cons

Big size, high momentum first period (1963/07 – 1982/07)

Source	SS	df	MS	Numb	er of obs	=	229
				- F(6,	222)	=	1123.02
Model	5804.15523	6	967.359205	Prob	> F	=	0.0000
Residual	191.228169	222	.861388148	R-so	juared	=	0.9681
				- Adj	R-squared	=	0.9672
Total	5995.3834	228	26.2955412	Root	MSE	=	.92811
RiRf	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
MktRF	1.024486	.0168534	60.79	0.000	.99127	33	1.0577
SMB	.0787677	.0225084		0.001	.03441		.1231252
HML	0327867	.0389186		0.400	1094		.0439105
RMW	0643319	.0551902		0.245	17309	-	.0444319
CMA	1102583	.0525184		0.037	21375	67	00676
MOM	.4968174	.0173107	28.70	0.000	.46270	32	.5309317
cons	0302345	.0679953		0.657	16423		.1037642

Big size, high momentum second period (1982/08 – 2002/08)

reg RiRf MktRF SMB HML RMW CMA

-							
Source	SS	df	MS	Numb	er of obs	=	241
				F(5,	235)	=	377.40
Model	5136.26612	5	1027.25322	Prob) > F	=	0.0000
Residual	639.658981	235	2.72195311	R-sc	uared	=	0.8893
				- Adi	R-squared	=	0.8869
Total	5775.9251	240	24.0663546	,	MSE	=	1.6498
RiRf	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
MktRF	1.039031	.0289884	35.84	0.000	.981921	12	1.096142
SMB	0349941	.0373707	-0.94	0.350	108618	86	.0386303
HML	2390617	.0575831		0.000	352506	58	1256167
RMW	.0580747	.0476453		0.224	035791		.1519413
CMA	.3508624	.0791501		0.000	.19492		.5067968
_cons	.1382076	.1161907		0.235	09070		.3671161
_coms	.1302070	.1101907	1.19	0.233	05070	-	.30/1101

Big size, high momentum third period (2002/09 – 2020/05)

2	; =	er of obs	Numb	MS	df	SS	Source
783.	=	, 206)	F(6,				
0.00	=	Prob > F =		635.160418	6	3810.96251	Model
0.95	=	quared	4 R-sq	.810914444	206	167.048375	Residual
0.95	i =	R-squared	— Adj				
.900	=	t MSE	3 Root	18.7642023	212	3978.01088	Total
Interva	Conf.	[95% 0	P> t	t	Std. Err.	Coef.	RiRf
1.0859	703	1.0157	0.000	58.98	.0178172	1.05083	MktRF
.14314	117	.02661	0.005	2.87	.0295546	.0848799	SMB
.05385	341	05948	0.922	-0.10	.0287434	0028151	HML
.09036	343	06743	0.775	0.29	.0400186	.0114643	RMW
04371	L32	23341	0.004	-2.88	.0481096	1385628	CMA
043/1		.32243	0.000	22.41	.015778	.3535447	мом
.38465	375	.32243	0.000				