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ABSTRACT 
 

This Master Thesis estimates and applies three various futures hedging strategies for the 

spot exposures at the Nordic electricity market. We compare the variance and hedging 

effectiveness of the traditional naïve hedge, the static Ordinary Least Squares (OLS) 

hedge, and the dynamic Constant Conditional Correlation GARCH (CCC-GARCH) 

hedge. The various hedging strategies are implemented on monthly- and quarterly futures 

contracts with different hedging durations. The key finding of our study is that futures 

contracts can reduce some price uncertainty compared to an unhedged position, even with 

the lack of straight forward arbitrage possibilities in the electricity market. The results 

indicate that dynamic hedge ratios can in some cases be more efficient than a static 

approach, when ARCH-effects are present. Furthermore, we find that an electricity 

producer will not benefit from hedging over a longer duration. The main reason for this 

is that that the correlation between spot- and futures returns are generally higher for the 

contracts with a shorter duration. This might indicate that noise in the Nordic electricity 

market is not cancelled over time. We find that both spot- and futures returns have 

developed to become even more volatile over the years, which may be explained by the 

market developing towards more renewable- and intermittent energy. 
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1.0 Introduction 

The electricity market was deregulated in the 1990s to increase the competition and get a 

more efficient allocation of economic resources (Nord Pool, 2020c). Consequently, prices 

are now determined by the integration between supply and demand. This shift in price 

determination led to higher price volatility. In the new market situation, electricity 

producers sell their electricity in potentially volatile spot markets and can therefore be at 

risk if spot prices are insufficient to cover production costs. This price uncertainty 

introduces market risk for all participants, creating an incentive for risk management. The 

market liberalization has resulted in an increased interest in electricity derivatives as a 

risk management tool. 

 

Electricity can be considered as a flow commodity that is strongly characterized by its 

limited storability and transportability, and the prices are substantially more volatile than 

other commodity prices. The Nordic electricity market is split between a physical and a 

financial market, where trading takes place on separate exchanges (Norwegian Ministry 

of Petroleum and Energy, 2020b). The physical electricity trading takes place on Nord 

Pool AS, while Nasdaq Commodities accounts for the financial trading. The special 

characteristics of the electricity market as well as its continuous development, makes a 

further investigation of the market and the effectiveness of various hedging strategies an 

important and interesting research topic. A lot of the research on hedging effectiveness in 

the electricity market is from the early 2000s. The key contribution of this thesis is that 

we examine the development of the market and if our results on electricity price hedging 

using futures are consistent with earlier research.  

 

The scope of this thesis is to test if hedging with electricity futures contracts available at 

NASDAQ Commodities result in reducing the volatility an electricity producer face when 

selling at the spot market. The thesis investigates naïve one-to-one, static OLS, and CCC-

GARCH hedging approaches. In addition, we analyse the effect of different contracts 

with various holding periods. The optimal hedge ratios are estimated with the minimum 

variance method and the various hedging approaches are compared using Ederington 

(1979) hedge effectiveness metric. The results are also compared in- and out-of-sample. 

In addition, we observe how the effectiveness of hedging with futures has changed over 

time and study how the electricity market has developed.  
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Our results show that hedging with electricity futures contracts reduce volatility in the 

Nordic electricity market, however, the hedge effectiveness depends on the strategy, the 

contract, and the hedging duration. When ARCH-effect are present, dynamic hedge ratios 

can in some cases be more efficient than a static approach. Hedging with futures that have 

longer hedging durations does not obtain superior performance compared to hedging with 

shorter durations. The spot- and futures returns in the market have developed to become 

even more volatile over the years, which might give a strong incentive for electricity 

producers to manage the risk. 

 

The next section of this paper presents background information regarding the Nordic 

electricity market and electricity price characteristics. Section 3 provides a brief review 

of the related literature. Section 4 explains the empirical methods and models, which 

includes statistical tests, the minimum variance method, the various hedging strategies, 

the hedge effectiveness metric, and backtesting. Section 5 gives an overview of how the 

data is collected and transformed, as well as a preliminary data analysis. Based on the 

preliminary analysis, the expected results are discussed. Section 6 provides a discussion 

of the results. Lastly, section 7 of the thesis concludes upon the performance of the various 

hedging strategies, the impact of contracts with different maturity and holding periods, 

and the market development.  
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2.0 Background 

2.1 The History 

In the 1990s, the Nordic countries deregulated their electricity markets and brought their 

individual markets together into a common Nordic market, Nord Pool (Nord Pool, 

2020c). Norway deregulated their electricity market in 1991, Sweden followed in 1996, 

and Finland and Denmark joined the exchange by 2000 (Nord Pool, 2020b). A 

deregulation of the electricity market means that free competition is introduced, and that 

the electricity price is determined by the balance between supply and demand. This 

change was undertaken to create a more efficient market, including exchange of 

electricity between countries and increasing the security of supply. Consequently, 

integrating the markets enhance productivity and the electricity capacity can be used more 

efficiently.  

 

Nord Pool has later grown to become the market for selling and buying electricity in most 

of northern Europe, and one of its roles is to provide accurate information to the market 

and ensuring transparency (Nord Pool, 2020b). The market is split into a physical- and 

financial market (Norwegian Ministry of Petroleum and Energy, 2020b). The physical 

market consists of three organized markets: the day-ahead market, the intraday market, 

and the balancing market. The day-ahead and intraday trading take place on the Nord 

Pool exchange, while the balancing market is run by the Nordic transmission system 

operators (TSOs). Nasdaq Commodities accounts for the trading at the financial market. 

Today, the electricity market covers large parts of Europe, since the transmission capacity 

and coupling are in place between the Nordic countries, the European continent, and the 

Baltics (Nord Pool, 2020c). This means that electricity comes from many different 

sources such as hydro, thermal, nuclear, wind and solar, ensuring a liquid market.  

 

2.2 Risk Factors in the Electricity Market 

Participants in the electricity market are exposed to both quantity and price risk on an 

hourly basis, due to the characteristics of electricity (Souhir, Heni, & Lotfi, 2019). 

Electricity prices are characterized by seasonal variations, where the prices are normally 

higher during the winter compared to the summer (Ek & Thorbjørnsen, 2014). 

Furthermore, the limited storability of electricity results in price spikes due to for example 
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extreme weather conditions causing price variations. The limited storability of electricity 

is an important characteristic of the electricity market and is the major reason for the high 

volatility in electricity prices (Geman, 2008). Consequently, electricity prices are 

considerably more volatile compared to other commodity prices (Souhir et al., 2019). 

Another factor causing price fluctuations is the physical restrictions of transferring 

electricity in the transmission grid, causing disturbances in the electricity supply 

(Saakvitne & Bjønnes, 2015). The liberalization of electricity markets has increased price 

volatility and has led to the creation of an organised market where electricity is traded 

like other commodities. In several other commodity market producers can hedge against 

the price volatility by storing the commodity until the price is favourable. Since electricity 

has limited storability, electricity producers rely more on the use of electricity derivatives 

in securing future prices.  

 

The electricity production in the Nordic market consists of a relatively large amount of 

renewable energy sources, such as hydropower and wind (Veie et al., 2019).  Over half 

of the electricity production is generated from hydropower (Nordic Energy Regulators, 

2019). This means that the market is also exposed to a significant amount of quantity risk, 

because of for example variation in water inflow to storage reservoirs and wind force near 

the turbines. The electricity supply is higher when the inflow is high, and prices are 

pushed down. In contrast, lower electricity inflow result in rising prices. Furthermore, 

electricity production capacity is generally split into flexible- and intermittent sources 

(Norwegian Ministry of Petroleum and Energy, 2020a). Electricity plants can adjust 

production according to market developments in a flexible production. Intermittent 

production means that the electricity can only be generated when the energy is available. 

Hydropower producers have some ability to store electricity since many plants have 

storage reservoirs, enabling the producers to govern outflow. The plants therefore have 

the advantage of scaling down during periods of low prices and scaling up when prices 

are higher. 

 

The high price volatility in the market is not likely to diminish soon. There is a 

considerable amount of uncertainty associated with the development of the electricity 

market, mainly due to the global climate challenge (Bøhnsdalen et al., 2016). To be able 

to follow climate policies and reach climate goals, a larger share of the total electricity 

production needs to consist of renewable energy sources. The Nordic electricity market 
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is expected to still be dominated by hydropower in the years to come, however, the 

amount of highly variable and intermittent sources such as solar- and wind power will 

increase (Veie et al., 2019).  As a result, the production in periods with a lot of sunshine 

and wind can exceed consumption, where the high production is balanced with lower 

prices due to non-storability. Hence, an increased portion of solar- and wind power is 

expected to increase price volatility. This may result in price risk management being even 

more important in the future. 

 

2.3 Hedging Electricity Price Risk 

Electricity market participants are confronted with high price volatility, and in order to 

deal with this risk, they can apply risk management tools to control risk while maximizing 

their profits (Souhir et al., 2019). Therefore, more effective risk management has become 

a central issue in the electricity market. Souhir et al. (2019) define risk management as 

the process of accomplishing a desired profit or return, considering the risks, by 

implementing a strategy. In the financial field, one can mitigate risk either by adopting 

hedging strategies or apply diversification to decrease exposure to risks. Hedging of the 

mentioned price risk has become an important part of the risk management process for 

electricity producers. This strategy can be used to limit or offset the probability of loss 

from price fluctuations, helping to protect from uncertainty (Edwards, 2014).  

 

In order to obtain successful hedging, it is of importance to understand how the price of 

futures behave relative to the price of the commodity being hedged. Hedging the highly 

volatile electricity prices in the electricity market is more difficult than in other 

commodity markets, making the implementation of a perfect hedge difficult (Lucia & 

Schwartz, 2002). The looser relationship between spot and futures prices might be 

because of the lacking cash-and-carry arbitrage (Torró, 2009). In addition, the special 

characteristics of electricity prices contribute to a lower correlation. Madaleno and Pinho 

(2010) state that the basis risk is lower when the correlation is higher.  The noise in the 

market does not tend to be cancelled over time, and the relationship is especially looser 

when futures maturity increases (Dewally & Marriott, 2008). Furthermore, it can also be 

difficult to reduce the quantity risk through hedging due to the limited storability of 

electricity (Souhir et al., 2019). 
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2.4 The Nordic Electricity Market 

The Nordic electricity market is divided into 15 bidding areas at Nord Pool (Nord Pool, 

2020a).  Norway is divided into five areas, Sweden into four, and Denmark into two. In 

addition, Finland, Estonia, Latvia, and Lithuania all have their own area price. The area 

prices are different since the available transmission capacity can vary and congest the 

flow of electricity between bidding areas. The prices are higher if there is a supply deficit, 

and lower where there is a supply surplus. Participants in each respective area pay or 

receive the area price when they trade electricity on the physical market at Nord Pool. 

The area prices for the following day is calculated based on all the purchase and sell 

orders on the day-ahead market at Nord Pool as well as the transmission capacity 

available (Norwegian Ministry of Petroleum and Energy, 2020b). The day-ahead market 

ensures balance between supply and demand, and the intraday market is used to balance 

the difference between the actual consumption and production of the market participants 

and their position in the day-ahead market. Furthermore, there are events that disturb the 

balance between production and consumption within a specific hour of operation. The 

Nordic TSOs use the balancing markets to regulate production or consumption up or 

down to correct for these events. 

 

If congestions in the Nordic transmission grid is disregarded, the theoretical price that 

would occur is the system price (Nord Pool, 2020a). This is the equilibrium price when 

aggregating all supply and demand curves for every area in the system. The system price 

is used as a reference price for most of the financial contracts on Nordic electricity market. 

Hence, technical conditions such as grid congestion and access to capacity are not taken 

into consideration when entering contracts on the financial electricity market. However, 

buyers and sellers can still manage the risks associated to the physical market prices with 

the help of this market (Nord Pool, 2020c).  

 

An electricity producer can reduce the price uncertainty by using financial electricity 

market contracts (Nord Pool, 2020c). Financial electricity trading includes trading with 

financial instruments used for risk management purposes as well as speculation, where 

the contracts are settled financially without any physical electricity deliveries. The 

contracts are priced in Euros per MWh and have a time horizon up to ten years, covering 

daily, weekly, monthly, quarterly, and annual contracts. Most of the Nordic financial 
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electricity trading takes place at Nasdaq Commodities, through the Nasdaq Oslo ASA 

Exchange and Nasdaq Clearing AB (Nasdaq, 2020).  The contracts are cleared and 

standardized, facilitating the creation of a more liquid derivatives market. The financial 

products offered are both contingent claims and forward commitments, including futures, 

forwards (deferred settlement futures), options, and electricity price area differential 

(EPAD) contracts. Contingent claims provide the right, but not the obligation, to purchase 

or sell the underlying at a predefined price (McDonald, 2014). Forward commitments 

provide the ability to lock in a price that the underlying can be bought or sold for in the 

future. All contracts, except EPADs, use the system price as a reference price. The 

reference price for EPADs is the difference between the area price and the system price 

(Nasdaq, 2020). Hence, it hedges against the price area risk caused by constraints in the 

transmission grid. 
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3.0 Literature Review   

After the deregulation of the Nordic electricity market in the 1990s there has been a vast 

amount of research on spot prices and derivatives. This section of the paper will review 

the most important and relevant research for our research question. Researchers have 

some agreement on how the market function and the effectiveness of various hedging 

methods. 

 

Modigliani and Miller (1958) claim that hedging cannot add value since markets are 

efficient and investors can hedge themselves. However, the hedging literature provides 

theoretical arguments and to some level empirical evidence that hedging can add value 

for a firm. McDonald (2014) defines a hedge as an investment in a derivative, where the 

value is determined by an underlying asset such as the electricity price. Hedging theories 

today has its foundation in old corporate finance hedging theories like Keynes’ theory, 

which states that the derivative market function as an insurance system (Keynes, 1930). 

The naïve one-to-one hedge approach was early challenged by Markowitz’s minimum 

variance framework (Working, 1953). Further, Johnson (1960) and Stein (1961) proposed 

a minimum variance hedge ratio approach due to the imperfect correlation between spot 

and future prices. Ederington (1979) formally developed this approach, where the optimal 

hedge ratio is estimated by regressing spot prices on future prices using Ordinary Least 

Squares (OLS). Further, he proposed a measure for hedging effectiveness, which 

measures the variance reduction of the hedged portfolio compared to the unhedged spot 

position.  

 

The mean variance portfolio theory by Ederington (1979) is extensively employed in the 

literature on hedging, such as in Hill and Schneeweis (1981) and Myers and Thompson 

(1989). In Byström’s (2003) study of the Nordic electricity market, he states that the OLS 

hedging strategy reduces the hedge portfolio variance. Furthermore, Mandaleno and 

Pinho (2008) find that the OLS hedge outperforms the naïve hedge strategy. Zanotti, 

Gabbi, and Geranio (2010) find that OLS static hedge performs better than OLS dynamic 

hedge for all the electricity markets tested. Torró (2009) concludes that hedging at the 

Nordic electricity market can reduce risk between 60-80% depending on the duration of 

the hedge. In contrast, Torró (2008) finds that hedging strategies can generate ineffective 
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performances in the Nordic electricity market due to the characteristics of electricity 

prices.  

 

Even though the OLS approach has an acceptable level of performance, it has its 

limitations. The OLS hedge ratio assumes that the variance-covariance matrix of returns 

is constant over time, which can be difficult to accept for a highly volatile electricity 

market. Therefore, research has turned its attention more towards time-varying hedge 

ratios. The conditional Heteroskedastic Autoregressive Specification (ARCH) was 

presented by Engle (1982), and was a few years later extended by Bollerslev (1986) to 

the Generalized Conditional Heteroskedastic specification (GARCH). Baillie and Myers 

(1991) and Kroner and Sultan (1993) conclude that bivariate GARCH models result in 

improved hedge performance compared to the OLS approach, using a bivariate Constant 

Conditional Correlation GARCH (CCC-GARCH) model proposed by Bollerslev (1990). 

Research has further looked at how correlations change over time by introducing the 

multivariate Dynamic Conditional Correlations GARCH (DCC-GARCH) model (Engle, 

2002).  

 

Kroner and Ng (1998) state that the choice of the GARCH model affects the hedge ratio 

and is important for the hedge effectiveness. In contrast, Malo and Kanto (2006) find few 

differences in hedging performance when implementing various GARCH specifications. 

According to Byström (2003), the GARCH approaches reduce the volatility in returns, 

however, it cannot outperform the conventional OLS approach in reducing portfolio 

variance. Zanotti et al. (2010) find that CCC-GARCH is the best performing model for 

the Nordic electricity market, and the model seems to be able to capture the time-varying 

nature of spot and futures returns. Lien, Tse, and Tsui (2002) state that it is important to 

choose a model that is computationally convenient. The CCC-GARCH model is 

computationally simple and is relatively easy to ensure the positive semi-definiteness of 

the conditional variance-covariance matrix during the optimization. 

 

In addition to comparing static and dynamic hedging approaches, several researchers 

investigate the effect of different hedging durations. Ederington (1979), Geppert (1995), 

and Lien and Tse (2002) find that the in-sample hedging effectiveness increases as the 

investment duration increases. Lien and Shrestha (2007) estimate optimal hedge ratios 

for 23 diverse futures contracts with different durations and conclude that the 
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performance improves with the increase in the length of the hedging duration. Hanly, 

Morales, and Cassells (2018) find that electricity market participants may struggle to 

reduce their exposure using futures hedging over short durations. 

 

A lot of the research on hedging effectiveness in the electricity market is from the early 

2000s and does not investigate the continuous development of the electricity market. This 

study complements existing studies by examining the development of the market and if 

our hedging results are consistent with earlier research. As in past research, this paper 

compares the hedge effectiveness of both static and dynamic hedge ratios. We implement 

this in the form of the naïve one-to-one, static OLS, and CCC-GARCH hedge ratios. It 

can be argued that the preferred strategy should have the lowest return reduction and the 

highest hedging effectiveness, however, the focus of this thesis is on hedging 

effectiveness. This is because it is a more valid result due to the overall return depending 

on the underlying trends in the returns of spot and futures (Zanotti et al., 2010). In 

addition, the analysis will include contracts with different maturities and holding periods 

in order to observe the impact of this on hedge effectiveness.  
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4.0 Theory and Methodology 

In this section we introduce the theory and methods of calculating the optimal hedge ratios 

for the three hedging strategies; naïve one-to-one, static OLS, and CCC-GARCH, as well 

as introduce methods for comparing how effective the strategies are.  

 

4.1 Required Data  

In order to test the strategies mentioned above, we need spot and futures prices on 

electricity.  

 

4.2 Statistical Tests  

The following statistical tests are performed in order to get an impression of how the data 

behaves. 

 

4.2.1 Jarque-Bera  

The Jarque-Bera test is a test for normality (Brooks, 2019). The null hypothesis states that 

skewness and excess kurtosis are jointly zero. The normality assumption is violated if the 

null hypothesis is rejected, indicating a non-normal distribution of the residuals.  

 

4.2.2 Augmented Dickey-Fuller (ADF) and Kwiatkowski, Phillips, Schmidt, and Shin 

(KPSS)  

ADF is a unit root test completed to check for stationarity in the time series (Brooks, 

2019). Unit root tests are poor at rejection when the process is stationary, but with a root 

close to the non-stationary boundary. KPSS is a stationarity test performed in this paper 

to confirm the results of the ADF test (Brooks, 2019). The conclusion regarding 

stationarity is robust when the tests give opposite results. Stationary and non-stationary 

time series should be treated differently, since non-stationary time series can produce 

unreliable and spurious results.  
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4.2.3 Ljung Box  

The Ljung Box test is useful as a general test of linear dependence in time series (Brooks, 

2019). It tests the joint hypothesis that all m (m = max length lags) of autocorrelation are 

simultaneously equal to zero. Autocorrelation, also known as serial correlation, is 

repeating patterns or similarities between data observations. If the null hypothesis is 

rejected, the residuals are autocorrelated and the model shows a lack of fit. Ljung Box is 

implemented instead of Box Pierce since it is known to give better properties for small 

sample sizes (Brooks, 2019).  

 

4.2.4 Autoregressive Conditional Heteroskedasticity (ARCH) 

Even though a time series is not autocorrelated, the residuals can still be serial dependent 

due to a dynamic conditional variance process. This is called heteroscedasticity, and if 

present in the data it is said to have ARCH-effects (Brooks, 2019). We use Engle’s 

ARCH-test and the Ljung Box test with squared residuals to test for ARCH-effects. If we 

have significant evidence of heteroscedasticity, the standard errors could be wrong, and 

it might be appropriate to use a model that does not assume constant variance. 

 

4.3 Minimum Variance Hedge  

The minimum variance approach is implemented in this paper in order to find the optimal 

hedge ratio. This approach estimates the hedge ratio that gives the minimum variance for 

the value of the hedged position for the electricity producer (Brooks, 2019). The producer 

is long the asset and hedges its position by shorting futures contracts. The portfolio return 

of a long position in the spot market and a short position in the futures market, at time 

t+1, can be expressed as:  

 

	𝑅!"# =	∆𝑆!"# −	𝛽!	∆𝐹!"# 

 

𝑅!"# is the return between t and t+1, ∆𝑆!"# and ∆𝐹!"# are the log spot and futures returns 

between t and t+1, and 𝛽𝒕 is the optimal hedge ratio. The conditional variance of this 

portfolio is:  

 

𝑉𝑎𝑟(𝑅!"#) = 	𝑉𝑎𝑟	(∆𝑆!"#) +	𝛽!%	𝑉𝑎𝑟	(∆𝐹!"#) − 	2	𝛽!	𝐶𝑜𝑣	(∆𝑆!"#, ∆𝐹!"#) 
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The conditional minimum variance hedge ratio is obtained by minimizing the variance of 

the hedge portfolio with respect to 𝛽!:  

 

𝛽!,()*,+,- 	= 	
𝐶𝑜𝑣(∆𝑆!"#, ∆𝐹!"#)
𝑉𝑎𝑟	(∆𝐹!"#)

 

 

The hedge ratio specifies how many futures contract should be either bought or sold to 

hedge the underlying position in order to minimize the portfolio variance.   

 

4.4 Hedging Strategies 

This paper compares three various hedging strategies: the naïve one-to-one, static OLS, 

and dynamic CCC-GARCH. The aim of the hedging strategies is to find the optimal 

hedging ratios and reduce the amount of variance for the producer.  

 

4.4.1 The Naïve Hedge  

The naïve one-to-one hedge implies that each spot position is offset completely by one 

futures contract (Brooks, 2019). The strategy assumes that the covariance between futures 

and spot returns equals the variance of futures returns.  

 

4.4.2 The Ordinary Least Squares (OLS) Hedge  

The OLS minimum variance hedge ratio is estimated running a linear regression (Brooks, 

2019):  

 

∆𝑆!"# = 	𝛼 + 𝛽∆𝐹!"# + 𝑢! 

 

𝛽 gives an estimate for the unconditional minimum variance hedge ratio:  

 

𝛽()*,+,- =	
𝐶𝑜𝑣(∆𝑆!"#, ∆𝐹!"#)
𝑉𝑎𝑟	(∆𝐹!"#)
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4.4.3 The Constant Conditional Correlation GARCH (CCC-GARCH) 

The GARCH-model allows the conditional variances to be dependent upon previous own 

lags (Brooks, 2019). We use a univariate GARCH (1,1) to calculate conditional variances. 

These are one-period ahead estimates that are based on past information.   

 

𝜎!% =	α. +	𝛼#𝑢!/#% + 	𝛽𝜎!/#%  

 

As mentioned, this paper implements the CCC-GARCH to hedge electricity prices. The 

CCC-GARCH model requires correlation to be fixed through time. The conditional 

covariances are not fixed, however, they are tied to the conditional variances in the CCC-

GARCH model. The conditional variances are identical to the ones from the univariate 

GARCH-model (see equation above). The conditional covariances are calculated as 

follows:  

 

ℎ)0,! 	= 	 𝜌)0	ℎ)),!
#/%	ℎ00,!

#/%	 

 

Where  ℎ)),! and  ℎ00,! are conditional variances for spot and futures, respectively. 𝜌)0	 

represents the fixed correlation between spot and futures. 

 

The optimal hedge ratios are calculated using the conditional covariances and conditional 

variances. The hedge ratios vary with time and is conditioned on previous information.  

 

4.5 Hedge Effectiveness  

In order to compare the performance of the hedge, the hedge effectiveness (HE) metric 

introduced by Ederington (1979) is implemented. This metric measures the percentage of 

variance reduction of the hedged position compared to the unhedged spot position:  

 

𝐻𝐸	 = 	1	 −	
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒234534
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒6*234534
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A positive HE indicates that the hedge is effective, and the hedging strategy that gives the 

highest percentage variance reduction is considered the best. In contrast, the hedging is 

inefficient and could even increase the variance when the obtained HE is zero or negative.   

 

4.6 Backtesting  

Backtesting is performed to see how well the various hedging strategies perform ex-post. 

This step can be important in optimizing the strategy and validating results. In-sample 

testing is implemented for statistical tests and hedging strategies, and the out-of-sample 

testing is implemented to test how well the models perform using a different time period 

(Brooks, 2019). The out-of-sample testing allow for a more realistic hedging 

effectiveness. 
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5.0 Data  

5.1 Data Description 

When setting up the framework for the electricity hedges, this thesis takes the point of 

view of an electricity producer. In order to evaluate the performance of various hedging 

strategies on the Nordic electricity market, we observe weekly and monthly spot- and 

futures prices for monthly futures contracts, and monthly and quarterly spot- and futures 

prices for quarterly contracts denoted EUR/MWh. The spot prices are collected directly 

from the Nord Pool website, and the futures prices traded at Nasdaq Commodities are 

collected from Bloomberg. The spot price refers to the Nordic system price. This means 

that the hedge is not against the area price risk and a perfect hedge is only possible when 

there are no transmission grid congestions in the market area. Hence, hedging with Nordic 

electricity futures imply an additional basis risk equal to the difference between the area 

price at the producer's physical location and the system price. 

 

The study includes an in-sample period and an out-of-sample period, where the in-sample 

period is 2015Q4-2018 and the out-of-sample period is 2019. Both sample periods are 

used on monthly and quarterly contracts with the different holding periods explained 

above. We roll over the hedges after the respective holding periods. When we roll over 

the hedges before the maturity date, we introduce basis risk as the futures prices are not 

tied directly to the spot prices prior to the expiration date (Byström, 2003). Different 

holding periods are tested to see if it influences the hedge effectiveness.  

 

We need a sufficient amount of data in order to get valid results and models. This paper 

has close to a 3 year in-sample and a 1 year out-of-sample, which might be too small to 

get generalized and valid results. A larger number of observations would be preferable to 

obtain insightful results, especially for the quarterly contracts trading quarterly (Appendix 

1). We would also get a larger amount of observations by focusing on weekly futures 

contracts, but this data was not available at Bloomberg. In addition, we use overlapping 

contracts that possibly could introduce autocorrelation in the time series (Torró, 2008).  
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5.2 Data Transformation 

The spot and futures prices are transformed into log-returns before implementing them. 

It is preferable not to work directly with raw price series for several statistical reasons, 

and price series are therefore usually converted into series of returns (Brooks, 2019). 

Returns also have the added benefit of being unit-free, avoiding the problem of non-

stationary time series. Log-returns have been implemented since they can be interpreted 

as continuously compounded returns and are time-additive. In addition, taking a 

logarithm can result in a more constant variance, a positively skewed distribution getting 

closer to a normal distribution, and making a non-linear, multiplicative relationship 

between variables into a linear, additive one. Continuously compounded returns are 

achieved as follows:  

 

𝑟! 	= 	100%	 ∗ 	𝑙𝑛	(
𝑝!
𝑝!/#

) 	= 	100%	 ∗ 	(𝑙𝑛	𝑝!	– 	𝑙𝑛	𝑝!/#)	 

 

Where 𝑟! denotes the continuously compounded return at time t, 𝑝!	denotes the asset price 

at time t and ln denotes the natural logarithm. 

 

5.3 Descriptive Statistics 

This section shows and discusses the results of the statistical tests mentioned earlier in 

the paper.  
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Table 1: Descriptive statistics for spot and futures log returns  

  MONTHLY CONTRACTS QUARTERLY CONTRACTS 

  Traded weekly Traded monthly Traded monthly Traded quarterly  

  Spot Futures Spot Futures Spot Futures Spot Futures 

Mean 0.008 0.006 0.018 0.022 0.018 0.020 0.096 0.079 

Standard deviation  0.168 0.082 0.238 0.162 0.238 0.149 0.225 0.202 

Skewness -0.611 0.010 -0.181 -0.029 -0.181 -0.699 -0.239 -0.818 

Kurtosis  9.177 14.071 3.344 4.355 3.344 3.616 1.966 3.557 

Jarque Bera  279.174 863.145 0.395 2.914 0.395 3.697 0.648 1.492 

ADF                  

Price levels  0.268 0.832 0.267 0.720 0.267 0.753 1.317 1.309 

First differences  -17.450 -13.293 -8.193 -8.913 -8.193 -6.710 -4.027 -3.364 

KPSS                 

Price levels  0.528 0.901 0.083 0.209 0.083 0.252 0.071 0.137 

First differences  0.013 0.025 0.017 0.022 0.017 0.044 0.064 0.055 

Q(6) 15.509 19.185 13.830 11.222 13.830 5.008 6.895 4.721 

Q(12)  19.029 20.094 22.831 18.595 22.831 13.027 - - 
Q2(6) 44.191 40.271 3.267 12.489 3.267 3.560 7.594 5.006 

Q2(12) 45.272 43.308 5.782 14.029 5.782 11.353 - - 
ARCH(6) 56.071 37.149 2.881 4.225 2.881 3.515 6.000 6.000 

ARCH(12) 50.948 49.672 6.343 9.904 6.343 11.115 - - 

Correlation  31.01% 14.92% 34.87% 11.31% 
The 99% critical values of Jarque Bera are 12.053 for contracts traded weekly, 11.934 for contracts traded 
monthly, and 6.857 for contracts traded quarterly. The null hypothesis of the ADF test is that at least one 
unit root exists, and for the KPSS test the null hypothesis is that the time series are stationary. The ADF 
99% critical values for price levels and first differences are –1.942 for contracts traded weekly, -1.948 for 
contracts traded monthly, and –1.958 for contracts traded quarterly. The KPSS 99% critical value for price 
levels and first differences is 0.146 for all contracts. Q(6) and Q(12) are the Ljung Box tests for 
autocorrelation in residuals. Q2(6) and Q2(12) are Ljung Box tests with squared residuals testing for ARCH-
effects. ARCH(6) and ARCH(12) are Engle’s ARCH-tests. These tests have 99% critical values of 12.592 
for the 6th order tests and 21.026 for the 12th order tests.  
  

The weekly spot and futures returns exhibit means close to zero, skewness, and high 

excess kurtosis. Both the monthly and quarterly spot and futures returns have means close 

to zero, the series are negatively skewed, and have low excess kurtosis. Another 

significant point is that the standard deviations of the spot and futures are different within 

the same market, with the spot volatility being higher than the futures volatility. The 

Jarque Bera test shows that the weekly spot and futures returns have a non-normal 

distribution of the residuals. All other times series follow a normal distribution with a 1% 

significance level. The issue of non-normality can be caused by outliers or 
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heteroscedasticity in the time series (Brooks, 2019). The solution to outliers can be to 

remove them or introduce dummy variables, but one can argue that every data point 

contains useful information. Heteroscedasticity in the time series confirms that GARCH 

models can be appropriate. 

 

The ADF test on price levels fails to reject the null hypothesis in all cases, indicating that 

all time series have at least one unit root. The KPSS test on price levels rejects the null 

hypothesis of stationary in weekly spot and futures returns and monthly futures returns. 

In the cases where the null hypothesis is not rejected, the ADF and KPSS test are 

inconclusive on stationarity. When taking first differences in the ADF test, the null 

hypothesis is rejected for all time series. This indicates that they have one-unit root. All 

time series are also stationary when taking first differences in the KPSS test. Even though 

the tests on price levels are inconclusive regarding stationarity in some of the cases, the 

results from first differences confirm that it would be beneficial to transform the time 

series into returns before implementing.  

 

In the Ljung Box test with 6 lags, the time series have residual autocorrelation in weekly 

spot and futures returns and in monthly spot returns for both contracts. The Ljung Box 

test with 12 lags concludes that monthly spot returns for both contracts have 

autocorrelation in the residuals. The null hypothesis is not rejected in the other time series, 

indicating no pattern in the true residuals. Autocorrelation in the residuals can lead to 

inefficient OLS coefficients, and further could give wrong standard errors (Brooks, 2019). 

The Ljung Box tests with squared residuals show significant ARCH effects in the 

residuals in weekly spot and futures returns. Furthermore, Engle’s ARCH-test also rejects 

the null hypothesis of no ARCH effects for weekly spot and futures returns. This reveals 

heteroscedasticity for weekly returns, however, the remaining time series show no ARCH 

effects. This confirms that implementing time varying variances in the hedging model 

can be beneficial. However, it does not make sense to use a time varying model if there 

is no evidence of volatility clustering, hence, we will only test GARCH on weekly returns. 

For the OLS hedge, we apply the Newey-West estimator to overcome the issues with 

autocorrelation and heteroscedasticity. This procedure gives heteroscedasticity- and 

autocorrelation consistent standard errors (Brooks, 2019).  
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The correlation between the spot and futures returns are quite low and varies, with a 

higher correlation for monthly contracts with a one week holding period, and quarterly 

contracts with a holding period of one month. The basis risk is higher when the correlation 

is lower and the low correlation between spot and futures conditions the effectiveness of 

electricity hedging. 

 

5.4 Expected Results  

It is expected that hedging the spot prices at the Nordic electricity market will reduce the 

uncertainty of the hedged portfolio. The naïve hedge assumes a perfect linear correlation 

between spot- and futures price returns and does not take basis risk into account (Rossi 

& Zucca, 2002). In contrast, the static OLS hedge recognizes the less than perfect 

correlation. Therefore, the OLS hedge is expected to perform better in-sample than the 

naïve hedge due to the low correlation seen in Table 1. The naïve hedge is expected to 

perform similar to the OLS hedge when the OLS hedge ratio is close to one, otherwise, a 

lower performance is expected. The OLS hedge imposes the restriction of a constant joint 

distribution of spot- and futures price returns, which is suboptimal in periods with high 

basis volatility (Rossi & Zucca, 2002). The CCC-GARCH model is expected to be an 

appropriate strategy to apply for time series with ARCH-effects. Based on the statistical 

tests, we expect that the CCC-GARCH model would obtain an increased hedge 

effectiveness on monthly contracts traded weekly due to the detected ARCH-effects. 

Since the other time series have no ARCH-effects, we will only perform naïve hedge and 

OLS hedge on these time series. Based on past research, the hedge effectiveness is 

expected to increase as the holding period increases.  
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6.0 Hedging Results   

This section presents the obtained results of the in- and out-of-sample hedge 

performances, as well as an overall analysis, of the naïve, OLS, and CCC-GARCH 

hedging approaches. In addition, we present the development of spot- and futures price 

volatility and hedging effectiveness. The hedge performances are examined and 

compared by looking at the variances and the hedge effectiveness metric of each strategy. 

The obtained hedge effectiveness is calculated for the in-sample and out-of-sample 

periods for the monthly and quarterly contracts. The hedge effectiveness of the CCC-

GARCH strategy is only calculated for the monthly contract traded weekly, since this is 

the only contract with evidence of ARCH-effects. 

 

6.1 In-Sample Performance   

Table 2 presents the in-sample hedge performance of the various contracts and hedging 

strategies. 
 

Table 2: Variances and hedge effectiveness  

    No hedge Naïve  OLS  CCC 

M
on

th
ly

 c
on

tra
ct

s Weekly          

Variance 0.0281 0.0263 0.0254 0.0252 

Hedge Effectiveness - 6.36% 9.62% 10.03% 

Monthly          

Variance 0.0568 0.0714 0.0555 - 

Hedge Effectiveness - -25.73% 2.23% - 

Q
ua

rte
rly

 c
on

tra
ct

s  Monthly          
Variance 0.0568 0.0542 0.0499 - 

Hedge Effectiveness - 4.53% 12.16% - 

Quarterly           
Variance 0.0507 0.0810 0.0500 - 

Hedge Effectiveness - -59.93% 1.28% - 

 

For the monthly contract traded weekly the hedge effectiveness is 9.62% and 10.03% for 

OLS and CCC-GARCH, respectively. Both contracts are efficient, but the CCC-GARCH 

approach performs slightly better. The naïve hedge resulted in reducing the variance by 

6.36%, indicating that it performs less good compared to the abovementioned strategies. 

For the monthly contracts trading monthly, the naïve hedge strategy results in a higher 
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variance compared to the unhedged position and a hedge effectiveness of -25.73%. The 

OLS hedge strategy has a positive hedge effectiveness of 2.23%, reducing the variance 

of the portfolio. Both the naïve- and OLS hedge strategy reduce the variance when 

implementing quarterly contracts trading monthly. The hedge effectiveness is 4.53% and 

12.16%, respectively, indicating that the OLS approach performs better. The naïve hedge 

strategy has a hedge effectiveness of –59.93% for the quarterly contract trading quarterly, 

which means that the hedge is inefficient and increases the variance. The OLS hedge 

strategy is effective, with a positive hedge effectiveness of 1.28%.  

 

The in-sample analysis shows that the dynamic CCC-GARCH hedge performs better than 

the static naïve- and OLS hedge when hedging with monthly contracts trading weekly. 

The dynamic model appears to be able to capture the property of the time varying 

variances of the spot and futures returns. As a result, the CCC-GARCH approach 

improves the hedge performance compared to the static hedges in the analysis.  

 

The performance of the naïve hedge strategy is highly variable, with both efficient and 

inefficient results. The strategy results in a positive hedge effectiveness for the monthly 

contract trading weekly and the quarterly contract trading monthly.  In contrast, the 

strategy performs poorly with the monthly contract trading monthly and the quarterly 

contract trading quarterly, where the hedge effectiveness is negative. The variable results 

may be explained by the highly volatile electricity prices and low correlations between 

spot and futures returns. The correlation coefficients are higher for the efficient contracts, 

and the naïve approach performs better as the correlations get higher. Furthermore, we 

observe that the closer the OLS hedge ratio is to one, the better the naïve hedge strategy 

performs (Appendix 2). When the OLS hedge ratio is low, the naïve hedge strategy is 

inefficient. Also, the OLS hedging strategy performs better when the correlation is higher 

due to lower basis risk. The volatility of the futures returns is lower compared to the spot 

returns for the two contracts with higher correlations, which contributes to a better hedge 

result. Furthermore, we observed non-normality in the weekly spot- and futures returns 

which might give inefficient estimates, hence this strategy could have done better if the 

time series were normal.  
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6.2 Out-of-Sample Performance  

In order to test the out-of-sample performance of the naïve- and OLS hedge, we apply the 

static hedge ratios from in-sample to the out-of-sample data. For the dynamic CCC-

GARCH model we need forecasted hedge ratios. Therefore, we forecast the conditional 

variances from the in-sample period. The obtained hedge ratios are reported in Appendix 

3. Further, we use the obtained hedge ratios and conditional variances from the out-of-

sample data to compute the hedged variance and hedge effectiveness. The results are 

presented in Table 3.  
 

Table 3: Variances and hedge effectiveness  

    No hedge Naïve  OLS  CCC 

M
on

th
ly

 c
on

tra
ct

s Weekly          

Variance 0.0350 0.0263 0.0286 0.0276 

Hedge Effectiveness - 24.76% 18.41% 21.15% 

Monthly          

Variance 0.0862 0.0323 0.0702 - 

Hedge Effectiveness - 62.57% 18.58% - 

Q
ua

rte
rly

 c
on

tra
ct

s Monthly          
Variance 0.0862 0.0197 0.0423 - 

Hedge Effectiveness - 77.18% 50.96% - 

Quarterly           

Variance 0.2167 0.0592 0.1902 - 

Hedge Effectiveness - 72.66% 12.24% - 
 

The out-of-sample performance presented indicates that all hedging strategies reduce 

variance. The naïve hedge performs best for the monthly contracts trading weekly, with 

a variance reduction of 24.76%. The OLS- and CCC-GARCH hedging strategy reduce 

the variance by 18.41% and 21.15%, respectively. For monthly contracts trading monthly, 

the naïve hedge results in a hedge effectiveness of 62.57%. The hedge effectiveness is 

18.58% for the OLS hedge strategy. For quarterly contracts, the naïve hedge reduced the 

variance by 77.18% and 72.66% for contracts trading monthly and quarterly, while OLS 

reduced the variance by 50.96% and 12.24% for the respective trading periods. These 

results show that the naïve hedge, somewhat surprisingly, performed better than the OLS 

hedge for all the strategies.  
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The spot standard deviations are significantly higher than the futures standard deviations 

in the out-of-sample period (Appendix 4), which indicates that the unhedged spot 

portfolio is more volatile than the hedged futures portfolio. The out-of-sample analysis 

results in a higher variance reduction in the hedged portfolio compared to the in-sample 

analysis, which is somewhat unexpected. The out-of-sample correlations are much higher 

than the in-sample, which also affects the hedge performances. We find that all strategies 

were able to reduce variance. However, a limitation of the out-of-sample test is that we 

have fewer observations than what might be preferable. 

 

The naïve approach performs better than both OLS and CCC-GARCH for the monthly 

contracts traded weekly. This is due to the volatility of spot returns being higher and 

volatility of futures returns being lower for the out-of-sample period, compared to the in-

sample period. In addition, the higher correlation contributes to an even better 

performance for the naïve approach. The dynamic model seems to be able to capture the 

time-varying variance also for the out-of-sample period. Furthermore, the naïve hedge 

performs significantly better than the OLS hedge for the three latter cases. This indicates 

that the naïve hedge is the overall best out-of-sample hedge in our analysis. This can also 

be explained by higher correlations (Appendix 4) as well as a significantly higher standard 

deviations on spot returns compared to futures returns. The correlations vary between 

0.85 and 0.96 for the three strategies. Since the naïve hedge assumes perfect correlation 

and that the spot position is completely offset by the futures position, the out-of-sample 

test performs well. The same reasoning applies for the OLS hedge. The hedge is efficient 

due to positive hedge ratios, but the naïve hedge performs better since the OLS hedge 

ratios are lower than one. The OLS approach performs better for the quarterly contracts 

traded monthly due to a higher hedge ratio compared to the monthly contract trading 

monthly and the quarterly contract traded quarterly.  

 

6.3 Overall Performance and Market Development   

The overall result of both the in-sample and out-of-sample analysis is that hedging with 

futures contracts reduce volatility compared to the non-hedged spot position, even though 

the electricity market lack straight forward arbitrage possibilities. This indicates that 

hedging with futures contracts can be profitable for a variance-minimizing trader. Hence, 

the results of this study confirm previous empirical studies of the electricity market, 
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stating that futures contracts have the capability of variance reduction (Byström, 2003; 

Torró, 2009; Madaleno & Pinho, 2010). 

 

In the in-sample analysis we find that CCC-GARCH outperforms the naïve- and OLS 

approaches when ARCH-effects are present, while in the out-of-sample analysis the naïve 

approach performs best. Further, the CCC-GARCH performs better than OLS. Our out-

of-sample results are similar to the research by Byström (2003). Byström (2003) finds 

that the static models, naïve and OLS, outperformed the dynamic GARCH hedges out-

of-sample. This indicates that modelling with time-varying variance does not necessarily 

result in a better hedge than the static hedges. On the contrary, we observed lower cluster 

volatility out-of-sample compared to in-sample, which can be explained by a shorter 

period. If we implemented a longer period, we might have seen the same pattern of 

volatility clustering as in-sample, and hence the CCC-GARCH might have performed 

better out-of-sample. In contrast to Byström (2003), Zanotti et al. (2010) find that static 

hedging ratios are inefficient when markets are characterized by high time-varying 

volatility, and hedging errors are reduced when dynamic volatility- and correlation 

approaches are implemented. Madaleno and Pinho (2010) report similar results for the 

German electricity market, where the dynamic hedging strategies provide higher variance 

reductions. 

 

The cost and time spent on the various hedging strategies are important aspects when 

deciding on the optimal hedge. The static naïve- and OLS hedging approaches have 

constant hedge ratios, whilst in the CCC-GARCH model the position taken in derivatives 

changes over time. The dynamic hedge ratios indicate that an electricity producer must 

frequently rebalance the portfolio to adjust for time varying hedge ratios. The economic 

gain of the dynamic hedging may be reduced compared to the static hedges due to the 

higher cost and time spent on updating the hedge (Byström, 2003). Dynamic hedging can 

especially be costly if there are significant transaction costs in the market. 

 

Torró (2009) and several other researchers find that hedging performance improves as 

hedging duration increases. In our in-sample analysis, the hedge effectiveness is higher 

for the contracts with a shorter hedging duration. Hedging with monthly futures contracts 

trading weekly provides superior hedge performance compared to holding the same 

contract for a month. In addition, hedging with quarterly futures contracts trading monthly 
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perform better than holding the contract for a quarter. The correlation coefficients 

between the spot- and futures returns are higher for the contracts with a shorter holding 

period. The out-of-sample results are variable in relation to the hedging duration. For the 

monthly contracts, the monthly hedging duration performs better than the weekly. In 

contrast, the monthly hedging duration results in a higher hedge effectiveness than the 

quarterly hedging duration for the quarterly contracts. Hence, the results do not show that 

the hedge effectiveness improves when hedging over longer durations.  

 

Byström (2003) hedge with weekly futures with one-week hedge durations, using spot 

and futures prices from January 1996 to October 1999. He finds that the spot- and futures 

returns in the Nordic electricity market have standard deviations of 0.0655 and 0.0418, 

respectively. Zanotti et al. (2010) find standard deviations of 0.0531 for spot returns and 

0.02397 for futures returns when implementing monthly futures from January 2004 to 

February 2006. Comparing this to our analysis, the volatility has increased for both the 

spot and futures returns in the years 2015Q4 to 2018. One reason for this can be an 

increased portion of renewable energy, indicating that price risk management can be even 

more important in the future. Higher volatilities require higher hedge ratios to achieve the 

same level of predictability. The spot returns are still much more volatile than the futures 

returns. 
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7.0 Conclusion  

This Master Thesis studies the hedging performance of electricity futures traded on 

Nasdaq Commodities. The overall result of this study is that the futures contracts can 

reduce price uncertainty of the hedged portfolio compared to an unhedged position, 

despite of low correlations between spot- and futures prices and the lack of 

straightforward arbitrage opportunities. However, the performance varies with the hedge 

approach, the maturity of the contract, as well as the holding period.  

 

When ARCH effects are present, this study shows that a dynamic model, such as the 

CCC-GARCH, has some ability to improve the hedge performance compared to a static 

approach. This shows gains from taking time-varying variances into account when 

calculating the hedge ratios. This is not the case for the out-of-sample results, but we 

might have seen the same pattern of volatility clustering as in-sample if we implemented 

a longer sample period. The transaction- and clearing costs associated with daily updating 

the dynamic hedges must be considered. Furthermore, the results of this study indicate 

that increasing the hedging duration does not improve the performance of the hedge, 

which might indicate that the noise in the market is not cancelled over time. The results 

show that spot- and futures returns in the market have developed to become more volatile 

over the years. This development might indicate that price risk management is even more 

important than earlier, where higher hedge ratios are needed to achieve the same level of 

predictability. 

 

We suggest further research on the behaviour of the futures market and its relation to the 

spot price, which will assist in a better understanding of the hedge effectiveness in the 

market. Further research on hedging in different areas of the Nordic electricity market, 

by implementing EPADs, would be interesting even though these contracts are less liquid. 

It would also be interesting to investigate the performance of other hedging methods 

outside derivative trading such as Pumped Hydro Storage (PHS). PHS allows water 

storage in an upper reservoir, pumped from a reservoir at a lower elevation when demand 

and prices are low. Since over half of the electricity production at the Nordic electricity 

market is generated from hydropower, PHS can solve some of the issues related to 

electricity hedging by providing an improved energy-balance and more stability.  
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Appendices  

Appendix 1  

Appendix 1 gives an overview of the number of observations for the two different 

contracts with two different hedging durations. The in-sample period is 2015Q4-2019 and 

out-of-sample is 2019.  

Number of observations  

  In-sample Out-of-sample 

Monthly contracts     

Traded weekly 169 51 

Traded monthly 38 11 

Quarterly contracts     

Traded monthly 38 11 

Traded quarterly  13 3 
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Appendix 2 
Appendix 2 contains the hedge ratios used in this paper for the in-sample period.  

 

Table A2.1: Hedge ratios for OLS-hedge for the different contracts  

  Monthly contracts Quarterly contracts 

  Traded weekly Traded monthly Traded monthly Traded quarterly  

Beta 0.6322 0.2201 0.558 0.126 

 

 
 
Table A2.2: Dynamic hedge ratios for monthly contracts traded weekly  

11/10/2015 1.1004 06/11/2016 0.2955 03/12/2017 0.4639 
18/10/2015 0.6785 13/11/2016 0.3307 10/12/2017 0.4728 
25/10/2015 0.4402 20/11/2016 0.4513 17/12/2017 0.5315 
01/11/2015 0.4522 27/11/2016 0.3978 24/12/2017 0.8868 
08/11/2015 0.4620 04/12/2016 0.3586 31/12/2017 0.6025 
15/11/2015 0.4145 11/12/2016 0.4842 07/01/2018 0.5164 
22/11/2015 0.4775 18/12/2016 0.4120 14/01/2018 0.4880 
29/11/2015 0.8145 25/12/2016 0.7920 21/01/2018 0.5773 
06/12/2015 1.2790 01/01/2017 0.5009 28/01/2018 0.7413 
13/12/2015 1.6590 08/01/2017 0.3314 04/02/2018 0.6383 
20/12/2015 1.7154 15/01/2017 0.3005 11/02/2018 0.5107 
27/12/2015 0.6964 22/01/2017 0.3375 18/02/2018 0.6748 
03/01/2016 0.7507 29/01/2017 0.3371 25/02/2018 0.4536 
10/01/2016 0.4641 05/02/2017 0.3614 04/03/2018 0.4319 
17/01/2016 0.3588 12/02/2017 0.3224 11/03/2018 0.5289 
24/01/2016 0.3463 19/02/2017 0.3936 18/03/2018 0.4387 
31/01/2016 0.6824 26/02/2017 0.3679 25/03/2018 0.4855 
07/02/2016 0.2569 05/03/2017 0.3839 01/04/2018 0.4524 
14/02/2016 0.3145 12/03/2017 0.4092 08/04/2018 0.4230 
21/02/2016 0.2718 19/03/2017 0.4104 15/04/2018 0.4328 
28/02/2016 0.3895 26/03/2017 0.4446 22/04/2018 0.5862 
06/03/2016 0.3049 02/04/2017 0.4408 29/04/2018 0.4705 
13/03/2016 0.3487 09/04/2017 0.4424 06/05/2018 0.9538 
20/03/2016 0.3517 16/04/2017 0.5149 13/05/2018 0.8657 
27/03/2016 0.5894 23/04/2017 0.4617 20/05/2018 0.9459 
03/04/2016 0.5759 30/04/2017 0.4626 27/05/2018 1.2351 
10/04/2016 0.4229 07/05/2017 0.4479 03/06/2018 0.4719 
17/04/2016 0.4613 14/05/2017 0.4547 10/06/2018 0.3918 
24/04/2016 0.5666 21/05/2017 1.4351 17/06/2018 0.3853 
01/05/2016 0.4517 28/05/2017 0.7234 24/06/2018 0.3743 
08/05/2016 1.0262 04/06/2017 0.6624 01/07/2018 0.4361 
15/05/2016 0.8693 11/06/2017 0.6381 08/07/2018 0.4395 
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22/05/2016 0.6012 18/06/2017 0.5772 15/07/2018 0.4221 
29/05/2016 0.5155 25/06/2017 0.7184 22/07/2018 0.4205 
05/06/2016 0.5207 02/07/2017 0.6687 29/07/2018 0.4523 
12/06/2016 0.6221 09/07/2017 0.7123 05/08/2018 0.4448 
19/06/2016 0.5217 16/07/2017 0.5335 12/08/2018 0.5249 
26/06/2016 0.4709 23/07/2017 0.4738 19/08/2018 0.4646 
03/07/2016 0.5305 30/07/2017 0.5420 26/08/2018 0.5824 
10/07/2016 0.5470 06/08/2017 0.6857 02/09/2018 0.5913 
17/07/2016 0.4431 13/08/2017 0.5474 09/09/2018 0.4755 
24/07/2016 0.5070 20/08/2017 0.5715 16/09/2018 0.5500 
31/07/2016 0.5060 27/08/2017 0.9022 23/09/2018 1.0789 
07/08/2016 0.6583 03/09/2017 0.4668 30/09/2018 0.5327 
14/08/2016 0.5233 10/09/2017 0.5047 07/10/2018 1.1093 
21/08/2016 0.5347 17/09/2017 0.5151 14/10/2018 2.7078 
28/08/2016 0.4894 24/09/2017 0.4515 21/10/2018 2.4240 
04/09/2016 0.4793 01/10/2017 0.6058 28/10/2018 0.9273 
11/09/2016 0.4790 08/10/2017 0.4723 04/11/2018 0.4960 
18/09/2016 0.4915 15/10/2017 0.5047 11/11/2018 0.5123 
25/09/2016 0.4837 22/10/2017 0.5217 18/11/2018 0.6086 
02/10/2016 0.5802 29/10/2017 0.9931 25/11/2018 0.4628 
09/10/2016 0.4515 05/11/2017 0.8749 02/12/2018 0.5229 
16/10/2016 0.3883 12/11/2017 0.5863 09/12/2018 0.4530 
23/10/2016 0.4740 19/11/2017 0.4920 16/12/2018 0.5877 
30/10/2016 0.4250 26/11/2017 0.4599 23/12/2018 0.5187 
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Appendix 3 
Appendix 3 goes through the procedure of getting forecasted hedge ratios in order to 

evaluate the CCC-GARCH out-of-sample.   

 

A3.1 Forecasting Procedure  

To test the strategy out-of-sample we need to forecast the conditional variances from the 

GARCH (1,1), both on spot and futures returns. The procedure takes previous information 

and tries to predict the conditional variances ahead of time. The forecast is a one step 

ahead forecast meaning that the model only predicts one estimation at the time and at 

each point take new information into account (Brooks, 2019). We then use the forecasted 

conditional variances to compute the forecasted hedge ratios.  

 

𝜎!"#% =	α. +	𝛼#𝑢!% + 	𝛽𝜎!% 

 
Table A3.1: Forecasted conditional variances on weekly spot and futures returns and forecasted 

betas 

Dates Spot Futures Beta 

13/01/2019 0.01071 0.00428 0.58230 
20/01/2019 0.01655 0.00469 0.62337 
27/01/2019 0.02037 0.00504 0.64200 
03/02/2019 0.02288 0.00534 0.64951 
10/02/2019 0.02451 0.00559 0.65128 
17/02/2019 0.02559 0.00580 0.65011 
24/02/2019 0.02629 0.00598 0.64752 
03/03/2019 0.02675 0.00613 0.64435 
10/03/2019 0.02705 0.00626 0.64107 
17/03/2019 0.02725 0.00638 0.63791 
24/03/2019 0.02737 0.00647 0.63500 
31/03/2019 0.02746 0.00655 0.63239 
07/04/2019 0.02751 0.00662 0.63008 
14/04/2019 0.02755 0.00667 0.62807 
21/04/2019 0.02757 0.00672 0.62633 
28/04/2019 0.02759 0.00676 0.62483 
05/05/2019 0.02760 0.00680 0.62354 
12/05/2019 0.02761 0.00683 0.62244 
19/05/2019 0.02761 0.00685 0.62150 
26/05/2019 0.02761 0.00687 0.62070 
02/06/2019 0.02762 0.00689 0.62003 
09/06/2019 0.02762 0.00691 0.61945 
16/06/2019 0.02762 0.00692 0.61896 
23/06/2019 0.02762 0.00693 0.61854 
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30/06/2019 0.02762 0.00694 0.61819 
07/07/2019 0.02762 0.00695 0.61789 
14/07/2019 0.02762 0.00696 0.61763 
21/07/2019 0.02762 0.00696 0.61742 
28/07/2019 0.02762 0.00697 0.61723 
04/08/2019 0.02762 0.00697 0.61708 
11/08/2019 0.02762 0.00697 0.61695 
18/08/2019 0.02762 0.00698 0.61684 
25/08/2019 0.02762 0.00698 0.61674 
01/09/2019 0.02762 0.00698 0.61666 
08/09/2019 0.02762 0.00698 0.61659 
15/09/2019 0.02762 0.00699 0.61653 
22/09/2019 0.02762 0.00699 0.61648 
29/09/2019 0.02762 0.00699 0.61644 
06/10/2019 0.02762 0.00699 0.61641 
13/10/2019 0.02762 0.00699 0.61638 
20/10/2019 0.02762 0.00699 0.61635 
27/10/2019 0.02762 0.00699 0.61633 
03/11/2019 0.02762 0.00699 0.61631 
10/11/2019 0.02762 0.00699 0.61630 
17/11/2019 0.02762 0.00699 0.61628 
24/11/2019 0.02762 0.00699 0.61627 
01/12/2019 0.02762 0.00699 0.61626 
08/12/2019 0.02762 0.00699 0.61625 
15/12/2019 0.02762 0.00699 0.61625 
22/12/2019 0.02762 0.00699 0.61624 
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Appendix 4 
 
Table A4.1: Standard deviations and correlations for spot and futures returns out-of-sample  

  Spot Futures Correlation 

Monthly contracts       

Weekly  0.187 0.065 0.5314 

Monthly  0.294 0.155 0.8558 

Quarterly contracts       

Monthly 0.294 0.166 0.9649 

Quarterly   0.466 0.245 0.9532 
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