BI Norwegian Business School - campus Oslo

GRA 19703

Master Thesis

Thesis Master of Science

Forecasting the U.S. Treasury Yield Curve using Targeted Diffusion Indices

Navn:	Fredrik Bergh Pien
Start:	15.01 .202009 .00
Finish:	01.09 .202012 .00

Forecasting the U.S. Treasury Yield Curve using Targeted Diffusion Indices

By

Fredrik B. Piene
Jan Ove Vedvik

And Supervised By
Dr. Ilan Cooper

Abstract

We investigate possible empirical linkages between variation in the U.S. Treasury yield curve and several measures of economic and financial activity by the methodology targeted diffusion index forecasting. First, we model the entire yield curve with the Nelson-Siegel exponential components framework period-by-period, thereby distilling the yield curve into three, dynamic parameters. We show that these three parameters can be interpreted as yield curve factors corresponding to level, slope and curvature, and that their variation explain almost all yield curve variation. We then use targeted diffusion indices estimated from a set of 1196 different macroeconomic and financial variables to produce both in-sample and out-ofsample forecasts these three parameters, thus obtaining forecasts of the the entire yield curve. While we do find in-sample predictability of the Nelson-Siegel dynamic paramaters by the targeted diffusion indices, we do not find that they are able to produce better out-of-sample forecasts than the competitor models. Additionally, we find that the established Diebold-Li yield curve forecasting model, which has previously been found to produce superior forecasts, is outperformed by a simple random walk model. Our findings on a new, updated sample thus contradict earlier findings.

BI Norwegian Business School
 Master of Science in Business - Major in Finance

Acknowledgements

We would like to thank BI Norwegian Business School for five both challenging and rewarding years, and give a special thanks to the Department of Finance for providing us the knowledge needed for this thesis. We would like to express our gratitude to our supervisor, Dr. Ilan Cooper, for his insightful comments and feedback, and to Prof. Eivind Eriksen for the help he provided on the mathematical concepts and notation. We would also like to thank Dr. Canlin Li from the Federal Reserve Bank for helping us with the yield curve modelling methodology. Lastly, we thank our families and girlfriends for giving us the love and support needed after the long and demanding days we spent working on this thesis.

Contents

1 Introduction 4
2 Literature Review 7
2.1 Two Fundamental Yield Curve Theories 7
2.1.1 Expectations Hypothesis 8
2.1.2 Liquidity Preference Theory 9
2.2 Yield Curve Modelling 10
2.2.1 Statistical Yield Curve Models 11
2.2.2 Affine Yield Curve Models 12
2.2.3 'Snapshot' Models 13
2.3 Yield Curve Forecasting 16
2.3.1 Forecasting Excess Bond Returns 16
2.3.2 Forecasting the Nelson-Siegel Yield Curves 21
3 Methodology 22
3.1 Obtaining Historical Yields 22
3.1.1 Yields Estimated with the Bootstrap Method 22
3.1.2 Raw Yields Estimated by The U.S. Department of theTreasury24
3.2 Yield Curve Modelling 24
3.2.1 The Discount Curve, Forward Rate Curve and Yield Curve 25
3.2.2 The Nelson-Siegel Model 25
3.2.3 Yield Curve Factors 27
3.2.4 The Dynamic Nelson-Siegel Model 27
3.3 Forecasting the Yield Curve 29
3.3.1 Introducing the Full Set of Predictors 31
3.3.2 Principal Component Analysis 32
3.3.3 Diffusion Index Forecasting 35
3.3.4 Targeted Diffusion Index Forecasting 36
3.3.5 The Targeted DI Forecasting Algorithm 37
3.3.6 Benchmarking 39
4 Data and preliminary analysis 41
4.1 Obtaining Historical Yield Data 41
4.1.1 Historical yield curve data from 1991 to 2014 41
4.1.2 Historical yield curve data from 2015 to 2019 42
4.2 Obtaining Data on Explanatory Variables 42
4.3 Descriptive Statistics on Historical Raw Yields 44
5 Results and main analysis 45
5.1 Modelling Results: Is the Dynamic Nelson-Siegel Model Able to
Replicate the Yield Curves? 45
5.2 Forecasting Results 51
5.2.1 In-Sample Analysis 51
5.2.2 Out-of-Sample Analysis 63
5.3 Limitations 65
6 Conclusion 67
References 69
7 Appendixes 73
7.1 Appendix 1: Descriptive Statistics on Historical Raw Yields 73
7.2 Appendix 2: Top Variables in terms of t-statistics (In-Sample) 74
7.3 Appendix 3: Data Description 90

1 Introduction

The objective of our thesis is to investigate the predictability of the US Treasury yield curve and study whether it can be foretasted using socalled targeted diffusion indices estimated from a large set of macroeconomic and financial variables.

Diffusion indices are often referred to as latent factors, or principal components, that explain the majority of the variation in a set of variables, and such factors estimated from macroeconomic variables have previously been shown to predict excess returns on Treasury securities (Ludvigson \& Ng, 2009). Our set of explanatory variables, from which we estimate principal components, consists of 1196 monthly different macroeconomic variables such as inflation and industrial production indices, and financial variables such as the dividend-price ratio on the S\&P500 index and investor sentiment indices. We test whether the first few principal components estimated from this dataset predicts changes in the U.S. Treasury yield curve. We do so by producing monthly in-sample and out-of-sample forecasts of the Dynamic Nelson-Siegel yield curve model parameters using these principal components from January, 1991 to December, 2019. This topic is interesting for several reasons, both from a financial and macroeconomic perspective. Understanding the dynamic evolution of the yield curve and its predictability is important for tasks such as pricing both financial and real assets, risk management, bond portfolio management, structuring fiscal debt and conducting monetary policy (Diebold \& Rudebusch, 2013).

A yield curve is a plot of yields on similar quality securities against their contract lengths, or maturities. This thesis studies the US Treasury Yield Curve which relates yields on Treasury bills, notes and bonds to their respective time to maturity. Forecasting the U.S. Treasury yield curve ultimately amounts to forecasting yields on U.S. Treasury securities. One could view the yields for different maturities as separate time-series and forecast them separately, thereby predicting the yield curve by forecasting the yields that constitute it. In this thesis, however, we forecast the entire yield curve, i.e. yields for a continuum of maturities. As the historical yield curves are nothing more than graphical representations of the relationship between observed yields and their respective time to maturity, we need a method to obtain a parsimonious model representation of historical Treasury yield curves, comprised of time varying variables which can be forecasted. In other words, we model historical yield curves by assuming a general functional form which we fit to the cross-section of yields, before we forecast this yield curve function.

Many such yield curve models have been produced by researchers whose goal have been to investigate yield curve dynamics, but most of them tend to be either theoretically or empirically disappointing (Diebold \& Rudebusch, 2013). We have chosen to employ an extension by Diebold and Rudebusch
(2013) to the Nelson-Siegel (NS) model (1987) called the Dynamic NelsonSiegel model (DNS), since this model has proven to exhibit both good fit and forecast abilities (Diebold \& Rudebusch, 2013). For example, Diebold and Li (2006) use the DNS model to produce out-of-sample yield forecasts superior to that of several benchmark models. They forecast the yield curve by forecasting the DNS model parameters as autoregressive models of order 1.

The original NS model is a parametrically parsimonious functional form (Nelson \& Siegel, 1987) which over time has proved to fit well in the cross section of yields (Diebold \& Rudebusch, 2013), and it has become one of the most popular and widely used approaches in yield curve modelling (Rebonato, 2018). When moving from the original, cross-sectional NS model to a timeseries perspective with the DNS, the time-varying estimates of the three model parameters transmute into variables which capture almost all temporal variation in the yield curve (Diebold \& Rudebusch, 2013). We will show that these variables can be interpreted as three latent yield curve factors corresponding to the yield curve level, slope and curvature. Forecasting the yield curve translates into forecasting these factors, which a-priori can be linked to several macroeconomic and financial variables (Diebold \& Rudebusch, 2013). If we are able to approximate the historical, unsmoothed yield curves (i.e. the set of "raw" yields) with a smooth yield curve function in an accurate manner with the DNS model, we might be able to explain some of the variation in the yield curve by explaining the variation in the three DNS parameters. Inspired by the methodology of Diebold and Li (2006), we fit the NS model to the set of observed yields period-by-period to obtain the DNS model parameters, resulting in one estimate of the three model parameters for each month in our sample. We find that the model provides a good fit in our sample, explaining 93.42% of the variation in yields across maturities on average.

However, before we can model the historical yield curves with the DNS model we must obtain historical "raw" yields which will be used as input in the model. As "raw" yields in practice are unobserved, they have to be estimated using the large set of observed bond prices which exist at any given moment in time (Diebold \& Li, 2006). In our thesis, we obtain historical "raw" yields from two different sources. In the first part of our sample, from January, 1991 to December, 2014, we estimate "raw yields" using data on historical Treasury bond quotes obtained from CRSP. In the final part of our sample, from January, 2015 to December, 2019, we employ the historical yield estimates of the U.S. Treasury Department. The reason we are using two different sources to obtain historical "raw" yields is because CRSP only offers bond quotes data until December, 2014. Since the data from CRSP enables to obtain "raw" yields for a larger set of maturities than what is offered by the U.S. Treasury Department, and thus gives us more data-points as input into the DNS model, we choose to use this data where possible.

We forecast the estimated DNS parameters, i.e. the three yield curve factors level, slope, and curvature, using targeted diffusion indices inspired by the works of Bai and Ng (2008) and Ludivigson and Ng (2009). We are, to the best of our knowledge, the first to use this forecasting methodology on the U.S. Treasury yield curve. By targeted diffusion indices we mean that we target variables that have been tested to have predictive power for the three factors before we form the principal components. We construct an algorithm which seeks to minimize the Bayesian Information Criterion (BIC) by selecting an optimal (in terms of BIC) forecasting model specification using a combination of autoregressive processes and the targeted diffusion indices. We use this algorithm to produce in-sample forecasts and recursive out-of-sample forecasts of the three DNS yield curve factors. We then use these out-of-sample forecasts to re-construct the Nelson-Siegel yield curves, from which we can extract yield forecasts for different maturities.

We do find in-sample predictability in two of the three DNS yield curve factors by the targeted diffusion indices, specifically the first and the third yield curve factor (i.e. level and curvature). The in-sample results are reported in Section 5. We find that the 10 first principal components estimated from the set of targeted variables explain almost 16% of the variation in the onemonth ahead change in the curvature factor (the third DNS model parameter), and 14% of the twelve-month ahead change in the level factor (the first DNS model parameter). For the level factor we find the most predictability, with the 10 first targeted principal components explaining 7% and 9% at the one and six month horizons, respectively. By using the BIC-minimizing algorithm in-sample, we find that the optimal forecasting models for the second DNS model parameter, slope, never include targeted principal components. For the first DNS model parameter, level, it is optimal to include targeted principal components across all forecast horizons, and for the last DNS model parameter, curvature, it is optimal to include targeted principal components at the one and six month forecast horizons. We thus find that the yield curve level and curvature are forecastable by the targeted diffusion indices, while the yield curve slope is not.

Does the in-sample predictability we find in the first and last DNS model parameter translate to superior out-of-sample forecasts? Unfortunately, we find that it does not. We find that our out-of-sample forecasting algorithm using targeted diffusion indices produce forecasts inferior to that of all benchmark models. Not only do we find that our targeted diffusion indices forecasting framework exhibit poor out-of-sample forecasting performance; we also find that the Diebold and Li (2006) model is outperformed by a simple random walk model. This means that the finding of Diebold and Li (2006), i.e. that optimal yield curve forecasts are obtained by forecasting the DNS model parameters as $\operatorname{AR}(1)$ processes, does not hold in our sample. In fact, we find
that both the random walk model and simple $\mathrm{AR}(1)$ models used directly on yield levels, as opposed to forecasting yields through the DNS model, outperform both our targeted diffusion indices model and the model of Diebold and Li (2006).

We proceed as follows. In Section 2, we conduct a literature review in which we look at the literature on both yield curve modelling and yield curve forecasting. We will emphasize why we choose to use the parametric NS function to model the yield curves before forecasting them, and why we use the targeted diffusion indices framework of Bai and Ng (2008) to forecast the yield curves. In Section 3 we cover the methodology we use to forecast the yield curves. First, we look at the method of obtaining "raw" yields from observed bond prices. Second, we review the DNS yield curve modelling methodology we employ in this thesis. Third, we look at the targeted diffusion indices forecasting framework and the algorithm we use to forecast the yield curve. In Section 4, we describe the data and provide descriptive statistics on the "raw" yields we use as input into our yield curve model. In Section 5 we review how well the DNS model perform at replicating the historical yield curves, before we look at the in-sample and out-of-sample forecasting results. In Section 6, we provide some concluding remarks and suggestions for further research.

2 Literature Review

We will now review relevant yield curve literature and theory. We will begin with a review of two fundamental yield curve theories, specifically the expectation hypothesis and liquidity preference theory, before we study whether these theories hold empirically. We will then continue with a review of the different models one can employ to model the yield curve, before assessing the ability of these models to predict changes in the yield curve. We will also review studies that do not model and forecast the yield curve directly, but rather seek to forecast excess bond returns.

2.1 Two Fundamental Yield Curve Theories

The term structure of interest rates, i.e. the yield curve, is the relation between the yield to maturity (YTM) and the time to maturity (TTM) of bonds (Bodie, Kane, \& Marcus, 2018). The yields tend to change with the different maturities, which means that the yield curve tends not to be flat. The curve can take on a variety of shapes, from (approximately) linearly increasing to linearly decreasing in maturity, and from humped to U-shaped (Bodie et al., 2018). The shape might dramatically change from one period to another, and it is this time-variation in the shape of the yield curve we seek to forecast. As we will see later, the average yield curve is increasing and concave, meaning
that you get a higher yield, or higher compensation, for holding longer maturity bonds, but at a decreasing rate. We present figures showing the different yield curve shapes in Section 5.

Why do investors require different yields for different maturities, i.e. what explains the shape of the yield curve? And how do expectations for future interest rates affect the yield curve today? In a world without uncertainty and hence without risk, and upward sloping yield curve implies that the future short-rate, i.e. the interest rate for a 1-period time interval in the future, will be higher than the short-rate today. This is due to the equalization of returns over different strategies with equal risk and investment horizon; the return of two consecutive one-year investments in zeros must equal an equal-sized investment in a two-year zero. If the yield on the two-year bond is higher than the yield on the one-year bond, it must be because the short rate between year 1 and 2 is higher than the short-rate today. If not, an arbitrage opportunity exists (Bodie et al., 2018).

How can we explain the shape of the yield curve when future interest rates are not certain? There are two fundamental theories explaining the yield curve under the presence of uncertainty, namely the Expectations Hypothesis (EH) and the Liquidity Preference Theory (LPT) (Bodie et al., 2018). Before we look at these models, we introduce the forward interest rate which is the future short-rate you can lock in today. For no arbitrage opportunities to exist, we have that the forward interest rate must be the break-even interest rate that equates the return of an n-period bond investment and an ($n-1$)-period investment rolled over into a one-year bond investment

$$
\begin{equation*}
\left(1+f_{n}\right)=\frac{\left(1+y_{n}\right)^{n}}{\left(1+y_{n-1}\right)^{n-1}} \tag{1}
\end{equation*}
$$

Both EH and LPT relates the forward interest rate, f_{n}, to the expected future short-rate, $E\left(r_{n}\right)$. As we will see, the return of different equal-sized investment strategies with the same horizon need not be equalized in presence of risk, meaning that investors might require a premium for investing in strategies with uncertain returns. We now look at a theory which assumes that investors do not require such a premium, namely the expectation hypothesis.

2.1.1 Expectations Hypothesis

The expectations hypothesis is the simplest theory trying to explain the shape of the yield curve. According to this theory, the interest rates for the different maturities are solely determined by current and expected future one-period short-rates; a change in the shape of the yield curve from one period to another can only be attributed to a change in the current and/or expected future shortrates. The hypothesis assumes risk neutral investors and hence no liquidity premiums, which means that an upward sloping yield curve would indicate
that investors expect interest rates to increase. In other words, we can infer the expected future short-rates by looking at the yield curve today, i.e. using today's information on yields to make forecasts for future short-rates. A wellrecognized version of the hypothesis states that the forward rate is equal to the short-term future interest rate expected by the overall market, i.e. $f_{n}=E\left(r_{n}\right)$ (Bodie et al., 2018). If we assume that the EH holds and we rewrite Eq. (1), we get

$$
\begin{equation*}
\left(1+y_{n}\right)^{n}=\left(1+y_{n-1}\right)^{n-1} \times\left(1+E\left(r_{n}\right)\right) \tag{2}
\end{equation*}
$$

According to this equation, bonds with different maturities are perfect substitutes due to equalization of expected rates of returns under a no-arbitrage argument, even with uncertainty. As mentioned above, the current and future expected future spot rates are the only variables explaining the interest rates at different maturities.

What implications does the EH have for the research question of our thesis, if it were to hold? Well, if investors are indeed risk neutral and $f_{n}=E\left(r_{n}\right)$, it means that the optimal forecasts of future short-rates are the prevailing forward rates. For example, we could forecast the short-rate between period 1 and 2 as f_{2}, and the short-rate between period 2 and 3 as f_{3}. We could use these short-rate forecasts to find the expected 2 -period yield in one year, i.e. the yield on bonds issued in period 1 and maturing in period 3. In other words, there is no forecastable variation in yields that is not already incorporated in today's yield curve; remember that the forward rates are found using yields known today (Eq. (1)). This is an important point because, if the theory holds, there is no point in searching for a yield curve forecasting model. However, the theory does not hold. As will be discussed in a later section, several studies find predictability in excess bond returns, which is evidence against the EH (Cochrane \& Piazzesi, 2005). Next, we consider the second fundamental yield curve theory and assess its implications for our research question.

2.1.2 Liquidity Preference Theory

As mentioned above, investors might require a risk premium for strategies with uncertain returns. Short-term investors can choose between buying a short-term bond with a certain return, and a longer-term bond sold off before maturity with an uncertain return. Contrarily, long-term investors may choose between long-term bonds held to maturity with certain returns, and rolling their investment over from a short-term bond to another with uncertain returns. In the liquidity preference theory one assumes that investors preferring liquid securities dominate the market, such that investors typically require a liquidity premium for holding long-term bonds. This means that the prices of long-term bonds under the LPT would have to be lower than under
the EH, allowing for a greater expected holding period return for holding a long-term bond and selling it before maturity than holding a short-term bond until maturity

$$
\begin{equation*}
\frac{\left(1+y_{n}\right)^{n}}{1+E\left(r_{n}\right)}>\left(1+y_{n-1}\right)^{n-1} \tag{3}
\end{equation*}
$$

The above inequality states that the holding period return for holding an n period bond for $n-1$ periods must exceed the certain return of holding an n - 1-period bond for $n-1$-periods. We re-write Eq. (3) to see that

$$
\begin{equation*}
\frac{\left(1+y_{n}\right)^{n}}{\left(1+y_{n-1}\right)^{n-1}}>1+E\left(r_{n}\right) \tag{4}
\end{equation*}
$$

From Eq. (4) it is easy to see that $f_{n}>E\left(r_{n}\right)$. The difference $f_{n}-E\left(r_{n}\right)$ is the liquidity premium for holding long-term bonds, such that $f_{n}=E\left(r_{n}\right)+L P$.

What are the implications of the LPT on our goal of forecasting the yield curve? The expected future short rates depend only on the prevailing forward rates and the unknown liquidity premium, meaning that we can no longer infer expected future short rates from today's yield curve. If the theory holds, we could try to estimate this liquidity premium. It turns out, however, that neither of the two fundamental yield curve theories hold. The observation by Fama and Bliss (1987) that the ordering of expected returns across maturities changes through time translates to that the ordering of risks changes through time. This is not in line with the LPT which assumes that expected returns always increase with maturity (Fama \& Bliss, 1987).

We have to look beyond the two fundamental yield curve theories in order to obtain a good forecasting model of the yield curve. We now proceed to review different models that aim to model and forecast the yield curve as functional forms.

2.2 Yield Curve Modelling

When looking for a suitable yield curve modelling framework from a forecasting perspective, we not only have to find a model which describes the yield curve well both theoretically and empirically (i.e. providing a good fit), but also one that is good at predicting its evolution. Finding and choosing one such model from the enormous literature that has emerged from the quest for understanding what moves bond yields, is a challenging task (Piazzesi, 2010). In this thesis we will employ a model belonging to the so-called "snapshot"class of models, that is the Nelson-Siegel (NS) parametric model. A detailed explanation of this model, including its derivation, limitations, and benefits, will be presented in the methodology section. We will now review the most important classes of yield curve models that have been used to model and/or forecast yields, albeit somewhat superficially. We will see if and how we could
have used the models to reach the goal of our thesis; to forecast the yield curve. A detailed explanation of all the existing yield curve models and their extensions is beyond the scope of this thesis.

The tradition of yield curve fitting originates from Durand's publication from 1942. He studied the shape of the yield curve estimated through observed corporate bond prices in the United States of all maturities for the first quarter of each year between 1900 and 1942. Durand obtained the yield curves by fitting a free-hand trend line to the lowest yield bonds. He concluded that the yield curve generally takes on three different shapes: a horizontal straight line, a smooth curve increasing at a decreasing rate and a smooth curve decreasing at a decreasing rate (Durand, 1942). Today, these shapes of the yield curve are well-recognized as "flat", "normal" and "inverted". Durand's method is, for obvious reasons, considered to be statistically disappointing, but the study motivated researchers to develop statistical methods for fitting the yield curves.

2.2.1 Statistical Yield Curve Models

The main models from this class are Vector Autoregresive models (VARs) (Rebonato, 2018). Yield curve movements over time can be described by simple VARs in yields, or simple VARs in yields and other macroeconomic, explanatory variables (Piazzesi, 2010). VARs are often employed to forecast the yield curve because of their relative ease of use, their ability to fit observed yield curves well, and their good predictive power. All of this comes at a cost, however; they lack the theoretical foundation to make the estimated yields arbitrage-free. This lack of a theoretical foundation results in the need for cross-equation restrictions in the VAR systems (Piazzesi, 2010). Additionally, Rebonato (2018) argues that "quasi-unit-root nature of the level of rates" renders the VAR yield estimation procedure difficult, along with making the estimation errors large (Rebonato, 2018).

Piazzesi (2010) argues that several aspects of yields make them different from other variables often used in VARs. First, several bonds with different maturities are traded at the same time, giving a large cross-section of yields across maturities ranging from a few months to several years. As previously discussed, long-term bonds held for short horizons are risky, and investors demand compensation for bearing this risk. This results in the existence of arbitrage opportunities unless the long-term yields are risk-adjusted expectations of future short-rates (Piazzesi, 2010). In other words; the risk-adjusted expected future short-rates drive long-term yields, and movements in the crosssection of yields (i.e. movements in the yield curve) are thus linked across maturities. These links give the rise to the above-mentioned cross-equation restrictions, such that the system do not allow for any free lunches to be had. Furthermore, Piazzesi (2010) argues that yields are generally not normally dis-
tributed, rendering the computation of risk-adjusted expected value of future short rates difficult (Piazzesi, 2010).

Because of the limitations of yield-VARs we now move to a popular and frequently employed class of models, namely the class of so-called affine yield curve models.

2.2.2 Affine Yield Curve Models

Here we look at a specific class of structural models; the affine class of yield curve models. Affine term structure models are any type of arbitrage-free model in which bond yields are depended on constant-plus-linear functions of some vector x containing state variables. The general model for yields can be written as

$$
\begin{equation*}
y(\tau)=A(\tau)+B(\tau)^{T} x \tag{5}
\end{equation*}
$$

where both $A(\tau)$ and $B(\tau)$ are coefficients depending on the time to maturity, τ (Piazzesi, 2010). Vasicek (1977) and Cox et al. (1985) introduced the first well-recognized one-factor models where the risk-free interest rate was the only state variable included in their models, resulting in perfectly correlated bond yields. In the following years, a number of extensions to this model appeared both in terms of the number of state variables included and the data-generating processes used for these variables (Piazzesi, 2010). Duffie and Kan (1996) paved the way for a second generation of mixture models, or more precisely the multifactor affine models of the term structure of interest rates. The authors tried to explain bond yields with latent, i.e. not observable but rather inferred, factors. The factors of their model are the zero-coupon bond yields $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of n different fixed maturities $\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$, and these yield factors form a Markov process (Duffie \& Kan, 1996). Contrarily, the state vector x in the Vasicek-type models follow a Gaussian process. However, are any of these affine models suitable for our objective of forecasting the U.S. Treasury yield curve?

Diebold and Li (2006) argues that the arbitrage-free yield curve literature is mainly about fitting the curve at a certain point in time, rather than focusing on the dynamics or forecasting of the term structure. The affine equilibrium literature discussed above could be linked to forecasting since it looks at dynamics of the term structure driven by the short rate. However, most of the research within the area of affine term structure models focus only on in-sample fit, rather than out-of-sample forecasts. The publications of Dai and Singleton (2000) and de Jong (2000) are well-known examples on the in-sample fitting of the term structure using affine models (Diebold \& Li, 2006). Dai and Singleton (2000) studied the relative goodness-of-fit of different affine term structure models, while de Jong (2000) provided an empirical analysis using the multi-
factor affine models presented by Duffie and Kan. Furthermore, Diebold and Li (2005) mention that those studies that actually do employ the affine models for out-of-sample forecasts, like Duffee (2002), conclude that the models forecast poorly. The affine arbitrage-free models generally exhibit disappointing time-series performance and poor out-of-sample forecasting abilities (Diebold \& Rudebusch, 2013). Recall that the objective of this thesis is to forecast the U.S. Treasury yield curve, and we therefore need a model that perform well both in-sample and out-of-sample. Consequently, we move on to the parametric "snapshot"-models due to the limited forecasting ability of the affine models.

2.2.3 'Snapshot' Models

Lastly we look at a class in which the model we use in this thesis belongs; the class of so-called parametric "snapshot"-models. What set these "snapshot" models apart from the affine and statistical models described above? "Snapshot" models are a-theoretical cross-sectional devices used to interpolate unobserved yields (i.e. yields of unobserved maturities) through functional forms using the set of observed yields (Rebonato, 2018). In other words, these models are functions one fit to the cross-section of yields at time t, thereby obtaining a "snapshot" of the yield curve at time t. They seek to obtain as high goodness of fit as possible without overfitting, even if this means allowing for arbitrage opportunities. These models assume a continuum of discount bonds with different maturities, and their output serve as the yield data input in the affine models (Rebonato, 2018).

Early examples of such models are those of Cohen, Kramer, and Waugh (1966), Fisher (1966), Echols and Elliott (1976), Dobson (1978), Heller and Khan (1979), and Chambers, Carleton, and Waldman (1984). In 1987 and 1992, more modern approaches to term structure modelling were introduced by Nelson and Siegel (NS) and Longstaff and Schwartz (LS). Dahlquist and Svensson (1994) are investigating the application of the simple functional NSmodel and the highly complex model presented by LS, by comparing estimates of spot (zero-coupon) interest rates and implicit forward interest rates in the Swedish market derived from these models. The authors conclude that the NS is much easier to use, while the LS is more flexible. In addition, their analysis reveal only a marginally better fit for LS. The property of flexibility provided by LS is only needed when studying a country with a highly complex term structure (when the fit of NS is bad). This is certainly not the case for the term structure of interest in our study. Hence, the use of the complex LS model, which would probably contribute with a marginal increase in the goodness of fit, is not necessary in our case (Dahlquist \& Svensson, 1994). Because of its parsimony and ability to fit the cross-section of yields well, the

NS model has become the most known and widely adopted "snapshot" model by both academics and practitioners alike. For example, this is the model preferred by the Federal Reserve (Rebonato, 2018).

Given a set of observed yields, y, for different maturities, τ, these models try to find a function, $f(\tau$, that best replicate the observed yield curve; $y=f(\tau)$. As an example, we will here present the NS model which we will use throughout this thesis. The NS model is

$$
\begin{equation*}
y(\tau)=\beta_{1}+\beta_{2}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}\right)+\beta_{3}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}-e^{-\lambda \tau}\right) \tag{6}
\end{equation*}
$$

This model will be fitted to the observed set of yields, resulting in parameter estimates $\left\{\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right\}$. Yield curve movements from period to period will result in changes in $\left\{\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right\}$. By predicting $\left\{\hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}\right\}$, we predict the yield curve. This will be expanded upon in the methodology section.

This class of models generally lack a theoretical foundation. For example, the models preceding the NS model shared a common problem; they failed to fit extrapolated long term yields outside of the data range. This is due to the fact that at least one linear term (linear in maturity) is included in each of the models. Consequently, as the time to maturity goes to infinity, the yields will become unboundedly large, i.e. $\lim _{\tau \rightarrow \infty} y(\tau)= \pm \infty$ (Nelson \& Siegel, 1987). This feature does not reason well with neither the theory or observed yield curve behaviour. Newer "snapshot" models do not display this behavior.

Another possible weakness of this class is that because of the lack of a theoretical foundation, these models cannot guarantee arbitrage-free yields; they are often not imposed with a no-arbitrage condition. It is reasonable to assume that the existence of arbitrage opportunities in deep and well-organized bond markets is rare. If the bond markets are virtually arbitrage free, good yield curve models should not allow for arbitrage (Diebold \& Rudebusch, 2013). Is it a problem, then, that the model we have chosen for modelling yield curves in our thesis does not exhibit no-arbitrage behavior? Not necessarily. Diebold and Rudebusch (2013) argues that although a model might be internally consistent, meaning free from arbitrage, it might at the same time be misspecified and bear little relationship with the real world. Such a model would forecast poorly. In other words, absence of arbitrage does not necessarily imply a good model, although a model perfectly replicating real world curves would be arbitrage free (Diebold \& Rudebusch, 2013). Further, one could argue that if a model provides a very good description of reality, and reality is arbitrage free, then imposing an arbitrage-free condition would have little effect but constraining the flexibility of the model by reducing the degrees of freedom (Diebold \& Rudebusch, 2013). We would not gain much by introducing constraints if the model already is approximately free from arbitrage. We believe this to be true for the model we have chosen for this thesis, i.e. the NS model, which is known
to provide an accurate description of real world yield curves. Moreover, as our intention is to forecast the yield curve, we are more concerned with replicating reality as accurately as possible than we are with ensuring arbitrage-free yields. If we by imposing arbitrage constraints reduce the model's time-series performance, we are not maximizing our chances of obtaining a good forecasting model. Diebold and Rudebusch (2013) show that it is actually possible to obtain both no-arbitrage behavior and good out-of-sample forecasting abilities by including a yield-adjustment term in the NS model. They call this model the Arbitrage-Free Nelson-Siegel (AFNS). Because of the difficultly we found using this model to produce out-of-sample forecasts with the diffusion index forecasting framework, we refer the interested reader to the chapter on the Arbitrage-Free Nelson-Siegel in Diebold and Rudebusch (2013).

Additionally, it is generally not possible to give any theoretical or economic interpretation of the parameters in the "snapshot"-models. The exception is the NS model, whose parameters can be interpreted as three latent yield curve factors, corresponding to the yield curve level, slope and curvature (Diebold \& Li, 2006). Furthermore, the seemingly ad-hoc nature of the Nelson-Siegel functional form will later be shown to exhibit some very appealing features that reason well with yield curve theory.

The advantage of using a "snapshot" model to model the yield curves for the purpose of forecasting them, is the goodness of fit these model provide along with the ease of which the model parameters are estimated. The NS model has been shown to generally fit well the cross-section of yields while maintaining parsimony, i.e. to provide a high R^{2} for a number of different samples using only a few variables (Diebold \& Li, 2006). Nelson and Siegel (1987) report an average R^{2} of 96% for their 1981-1983 sample, while we find that the model on average explains 93.42% of the variation in yields across maturities in our 1991-2019 sample. Furthermore, the NS model allows us to distill the entire yield curve into three, dynamic parameters, such that forecasting the yield curve translates to forecasting the model parameters which, as mentioned above, can be interpreted as three latent yield curve factors. The Nelson-Siegel parameters, i.e. the three latent yield curve factors, have previously been shown to be forcastable. Fabozzi et. al. (2005), Diebold and Li (2006), and Diebold and Rudebusch (2013) forecast the yield curve through forecasting these parameters with good results. For example, Diebold and Li (2006) find their yield curve forecasts based on the NS parameters to be superior to that of several established yield curve forecasting models.

We wish to employ the relatively new time-series forecasting methodology of diffusion index forecasting to predict the yield curve. We find the NelsonSiegel modelling framework to be very suitable for this purpose, as it enables us to distill the entire cross section of yields into to three, time-varying parameters to which the method of diffusion index forecasting can be applied. We now
move to a more detailed and in-depth review of the literature on yield curve forecasting.

2.3 Yield Curve Forecasting

Several studies have successfully been able to forecast yields, either through some functional form like the NS model or by forecasting excess bond returns. We will now review the most important findings of these studies, before explaining how our forecasting methodology differs from previous studies on this topic. We begin by looking at the empirical literature on forecasting excess bond returns.

2.3.1 Forecasting Excess Bond Returns

One of the best known early studies using yield-curve based regressors to predict excess bond returns is a study by Fama and Bliss (1987). The authors find that one-year forward rates forecast the one-year short-rate two to four years ahead, with the predictive power increasing in the forecast horizon. They also find that current forward rates explain the one-year expected returns, that is, the expected one-year holding period return on the bonds less the return on a one year zero, on one-to-five year bonds (Fama \& Bliss, 1987). Specifically, they find that the spread between the n-year forward rate and the one year yield predicts n-year excess bond returns; i.e. that excess bond returns are forcastable by the same maturity forward spread (Cochrane \& Piazzesi, 2005).

They test the information in current forward rates about current expected returns and future interest rates by simple regressions of future returns and changes in interest rates on forward rates. The authors find the term-structure of expected bond returns to be time-varying. As differences in expected returns across maturities often are regarded as rewards for risk, this time-variability implies changes in the ordering of risk over time. This does not resonate well with the liquidity preference theory, as mentioned above. In their sample, they find that the term-structure of expected return can be both positive and negative, while it on average is flat. This means that you on average obtain the same reward for holding bonds of maturities one-to-five years.

Specifically, the authors find that forward rates are poor at forecasting interest rates at short horizons, but obtain a high forecasting power at longer horizon. For example, they find that the one-year forward rate contracted at time t for bonds from time $t+4$ to the maturity date $t+5$ explains 48% of the variation of the change in the one-year short-rate four years ahead Fama \& Bliss, 1987). The authors attribute this finding to a slow mean-reverting tendency in short-rates which becomes more apparent as the horizon increases. At the time, these results were novel. Past studies had fail to explain expected return on bonds with longer than one year to maturity. Previous studies had
also failed to find evidence that the forward rates can predict future interest rates. For example, a study by Robert Shiller et al. (1983) actually conclude that current forward rates have no predictive power over future interest rates. This finding has been refuted by several studies in addition to Fama and Bliss (1987).

In later years, Cochrane and Piazzesi (2005) presented an extended version of the classic regressions by Fama and Bliss (1987). The authors study the time variation in excess bond returns on the Fama and Bliss one through five year discount bonds (obtained from CRSP) and find that the one year excess returns, that is, the holding period return of holding a long-term bond for one year in excess of the return on the one year bond, is forecastable by a single tent-shaped factor; a linear combination of five forward rates (Cochrane \& Piazzesi, 2005). By forecasting excess returns both inflation and the level of interest rates are netted out, such that they focus directly on the risk premia in the nominal term structure. This single factor explains time-variation in excess returns at all maturities. This differs from Fama and Bliss (1987), in which different forward spreads is used for different maturities. Their results are encouraging; they find that their p-values are much smaller and their forecast R^{2} is more than doubled compared to the previous findings of Fama and Bliss (1987) and Campbell and Shiller (1991).

The return-forecasting factor $(C P)$ is a symmetric, tent-shaped linear combination of forward rates which is unrelated to the three standard yield curve factors (i.e. the three first yield principal components), namely the level, slope and curvature factors (Cochrane \& Piazzesi, 2005). It is widely accepted that these three factors explain almost all time-variation in the cross-section of yields (Diebold \& Rudebusch, 2013), and it is these three factors that the Nelson-Siegel parameters emulate. The authors find that forecasting power of the return-forecasting factors is both statistically and economically significantly higher than that of three-factor forecasts (Cochrane \& Piazzesi, 2005). This is an important finding in relation to our thesis, as we construct yield curve forecasts based on the NS model parameters. As the parameters can be interpreted as proxies for the three yield curve factors means that we ultimately form three-factor forecasts.

Both Fama and Bliss (1987) and Cochrane and Piazzesi (2005) use the information in forward rates to forecast excess bond returns. They find that excess bond returns indeed are forcastable (and hence the expectations hypothesis to be false) by pure financial indicators such as yield spreads and forward spreads rather than by macroeconomic variables such as consumption or production variables. In other words, they use yield-based regressors to forecast yields as opposed to using non-yield based explanatory variables. We will review two studies that employ such macroeconomic variables to successfully forecast excess bond returns. The first is a study by Cooper and Priestley (2009)
which employs the output gap, a productivity-based macroeconomic variable measuring real-economic activity, to predict U.S. excess bond returns, U.S. excess stock returns, and excess stock returns in other G7 countries (Cooper \& Priestley, 2009). The second is a study by Ludvigson and Ng (2009) using so-called diffusion indices based on targeted predictors to forecast U.S. excess bond returns (Ludvigson \& Ng, 2009).

Cooper and Priestley (2009) study the economics of time-varying risk premia. As risk premia vary across business cycles, are risk premia on bonds and stocks predictable by business cycle variables? The authors choose to employ the output gap as their business cycle variable because it has several a-priori advantages over other predictors. First, asset return predictability by the output gap is unlikely to arise from asset mispricing, because the output gap does not contain the level of asset prices (Cooper \& Priestley, 2009). Second, the output gap is a production based measure as opposed to almost all other known macroeconomic predictor variables, which largely are consumption based measures like consumer price indices. This means that any predictive power of the output gap represents independent evidence on excess returns and the business cycle (Cooper \& Priestley, 2009). Since we are concerned with forecasting yields we will focus on the part of the paper regarding the ouput gap's predictive power over excess bond returns.

To the best of the authors' knowledge, they are the first to show that a single macroeconomic variable can predict excess bond returns. This finding is of great interest to us as we are interested in the predictive power of macroeconomic variables for yields. The authors find that the output gap, measured as deviations of the industrial production index from its trend, is negatively correlated with the Cochrane and Piazessi (2005) return-forecasting factor CP; they find a correlation coefficient of -0.46 (Cooper \& Priestley, 2009). When the authors include the part of the $C P$ uncorrelated with the output gap they still find the output gap to have predictive power, meaning that their results are robust to the inclusion of $C P$. The authors argue that this may suggest that a part of the predictive power of the $C P$ stems from its correlation with the output gap (Cooper \& Priestley, 2009).

The authors use the same Fama and Bliss discount bonds as Cochrane and Piazzesi (2005) and Fama and Bliss (1987) to estimate monthly excess returns on bonds with two, three, four, and five-year bonds from 1952:6 to 2003:12. They use data obtained from the Federal Reserve to compute the output gap from the Industrial Production index (IPI), an index we also employ as a predictor in this thesis (see Appendix 3). They use several methods to measure the output gap, with the main specification being $y_{t}=a+b t+c t^{2}+v_{t}$, where y_{t} is the log of IPI, t is a time trend, and the error term v_{t} is the output gap at time t. This measure of the output gap is used to predict excess returns on U.S. government bonds.

Cochrane and Piazzesi (2005) suggest that there may be a correlation between excess bond returns and the business cycle, while they do not attempt to establish any relationship between the two. In fact, in seems as if this potential source of bond return predictability has been largely unexplored. Ludvigson and Ng (2009) state that there has been few studies exploring this relationship, before they set out to do just so. Indeed, they find a strong counter-cyclical component in the yield curve (Ludvigson \& Ng, 2009). However, as they use macro factors estimated from several macroeconomic variables to predict excess returns, they fail to identify a specific such variable as the source bond return predictability (Cooper \& Priestley, 2009). In this regard, Cooper and Priestley (2009) seem to be somewhat unique.

The authors regress excess bond returns on v_{t}, and on v_{t} along with an orthogonalized version of $C P$. They orthogonalize this factor by first regressing $C P$ on the output gap, such that only the uncorrelated part of the factor is included in the final regression (they do so because of the collinearity of the two variables). They find all coefficient estimates to be statistically significant across all maturities, and an adjusted R^{2} ranging from 1-4\% depending of the choice of output gap measure (Cooper \& Priestley, 2009). They also find out-of-sample predictability in the bond risk premia by the output gap and the orthogonalized $C P$. Their results suggest that the output gap is capturing risk not contained in $C P$, and that affine yield curve models only employing yieldbased predictors such as forward rates are unlikely to fully describe movements in the yield curve (Cooper \& Priestley, 2009).

We will now take a more detailed look at the second study involving macroeconomic variables we choose to include in this literature review, namely the Ludvigson and Ng (2009) paper on macro factors and excess bond returns. The authors are trying to ascertain whether there are important cyclical variations in bond risk premia, and if so, whether there are empirical linkages between forecastable variation in excess bond returns and macroeconomic aggregates. They use the method of diffusion index forecasting to predict excess bond returns using a large set of macroeconomic variables, and they find that factors based on real-economic activity and inflation have important predictive power above and beyond what is contained in forward rates and yield spreads such as the regressors used in Fama and Bliss (1987) and Cochrane and Piazzesi (2005) (Ludvigson \& Ng, 2009). As mentioned above, the authors find a strong counter-cyclical component in the risk premia of both returns and longterm yields when the macro factors are included, as opposed to an a-cyclical behavior when they are not.

The authors argue that there are three main reasons why it may be difficult to find a direct link between macroeconomic activity and bond risk premia. First, there might exist latent, i.e. unobservable, macroeconomic variables whose information cannot be summarized by just a few observable time series.

Second, observable macroeconomic time-series might be imperfectly measured and thus not correspond to theoretical economic concepts in a satisfactory manner. Third, theoretical models trying to explain macroeconomic concepts do not model reality perfectly, in addition to only being concerned with a small set of variables that fail to incorporate all the information used by financial market participants (Ludvigson \& Ng, 2009). The method of diffusion index forecasting offers an elegant way around these problems.

As we will cover the methodology of diffusion index forecasting in great depth later in this thesis, we restrict ourselves to only here include a brief description of their method and results. The macro factors of Ludvigson and Ng (2009) are so-called diffusion indices estimated from a monthly set of 132 macroeconomic variables through the method of principal component analysis. In broad strokes, their method is to form factors (i.e. the first few principal components) from a large set of macroeconomic variables that one a-priori expect to be linked with the business cycle, before using these factors as predictors for excess bond returns and for the risk premia in long-term yields. Indeed, they find that these macro factors predict excess bond returns to both a statistcally and economically significant extent. They also find a strong, countercyclical variation in bond risk premia (Ludvigson \& Ng, 2009). This countercyclicality is in line with the findings of Cooper and Priestley (2009), who as mentioned predict excess bond returns with a business-cycle related variable. The factors have the strongest predictive power for the two-year bond excess return with an R^{2} of 26%, but they also predict the excess returns on three, four and five-year bonds. They benchmark the macro factor-based forecasts against that of the Cochrane and Piazzesi (2005) return-forecasting factor $C P$, and find that while they obtain a higher R^{2} for the two-year bond using $C P$, the factors contain important information about future excess bond returns not contained in $C P$. This is similar to the finding that the output gap contains information not found in $C P$. Together, the macro factors and $C P$ obtain an R^{2} as high as 44% with all coefficient estimates being strongly significant (Ludvigson \& Ng, 2009).

The authors find the single most important factor in terms of predictive power to be the factor most highly correlated with measures of the real economy and employment and not highly correlated with measures of prices and financial activity. They also find the factor most correlated with inflation measures to contain important information about future excess bond returns (Ludvigson \& Ng, 2009). What is the economic interpretation of these findings? Interpreting the individual factors economically is not possible nor meaningful, as no individual factor correspond precisely to an economic concept like real economic activity. This is due to the factors being linear combinations of all the variables in the dataset; hence all variables will to some extent influence the factors. As these variables span across several different economic
concepts, so do the factors. However, as the factors loads differently on the different variables, one can find what kind of variables each factor loads the most heavily on. The first factor (first principal component) of Ludvigson and Ng (2009) loads heavily on production and employment variables. This is the factor with the greatest individual predictive power mentioned above. As Cooper and Priestley (2009) also found the production-related variable output gap to contain important information about excess bond returns, it seems that such variables might be important for predicting yields. This finding is of great interest to us, and we include several production based variables in our analysis.

We find the findings and methodology of Ludvigson and Ng (2009) to be highly interesting. In this thesis, we will employ an extension of the original diffusion index forecasting methodology employed in Ludvigson and Ng (2009) to forecast yield curve changes. We will do so not by forecasting the term risk premia, excess bond returns, or yields directly, but rather by forecasting the parameters of the NS yield curve model by using diffusion indices as explanatory variables. To the best of our knowledge, this has not been done before.

We are not, however, the first to use the NS model to forecast the yield curve. We will now briefly review a study by Diebold and Li (2006) who successfully predicts the yield curve by forecasting the model parameters as $\mathrm{AR}(1)$ processes.

2.3.2 Forecasting the Nelson-Siegel Yield Curves

The framework of Diebold and Li (2006) has been the greatest source of inspiration for this thesis. The authors model historical yield curves with the NS model using data on end-of-month bond price quotes from January, 1985 to December, 2000 obtained from CRSP. By modelling the historical yield curves with the NS model they distill the curves into three dynamic parameters which can be shown (as we will later) to be proxies for three latent yield curve factors explaining almost all cross-sectional variation in yield (meaning variation across maturities); namely the level, slope an curvature factors. The authors show that the NS model provides a good fit historically, and they obtain superior yield forecasts by forecasting the three parameters as $\mathrm{AR}(1)$ processes. They use $\operatorname{AR}(1)$ models to independently produce 1,6 , and 12 months ahead out-of-sample forecasts of the change in each of the three NS yield curve parameters $\left\{\beta_{1 t}, \beta_{2 t}, \beta_{3 t}\right\}$ with a recursive approach, and find that their simple $\mathrm{AR}(1)$ models outperform all of the natural benchmark models, including the Fama and Bliss (1987) model and the Cochrane and Piazessi (2005) $C P$-factor, at both the 6 and 12 months ahead horizons for maturities of $3,12,36,60$ and 120 months (Diebold \& Li, 2006)

As the methodology of Diebold and Li (2006) will be discussed thoroughly later in this thesis, we keep this review rather brief. We emphasize, however, that our forecasting methodology differs from that of Diebold and Li (2006), as we use diffusion indices rather than autoregressive models to forecast the NS parameters. In this regard, we marry the methodology of Diebold and Li (2006) and Ludvigson and Ng (2009). We will test if we are able to produce forecasts superior to that of the Diebold and Li (2006) forecasting framework by including diffusion indices in addition to autoregressive terms in the forecasting model.

3 Methodology

3.1 Obtaining Historical Yields

When modelling historical Treasury yield curves one needs data one historical Treasury yields. That is, we need to obtain historical data on Treasury zero coupon yields ranging from short to long maturities. As zero coupon bonds with maturities longer than one year are not traded in the market, these zero coupon yields are not observed directly; they have to be estimated using the large set of observed bond prices on coupon bonds which exist at any given moment in time (Diebold \& Li, 2006). We derive the so-called stripped zerocoupon Treasury securities from the observed bond quotes, which means zerocoupons created by stripping the bond price of the present value of each coupon payment. We call these artificial zero coupon yields the "observed raw yields". These raw yields will serve as input in the NS modelling framework. We will now consider the method we use to estimate these raw yields from observed Treasury bond quotes.

3.1.1 Yields Estimated with the Bootstrap Method

The raw yield sample from 1991:1 to 2014:12 is estimated from monthly, end-of-month observed price quotes (bid-ask average) for non-callable Treasury bills, notes and bonds. This data is obtained from the CRSP Treasury files through Wharton Research Data Services. We filter the data for securities with liquidity problems, i.e. bonds and notes with less than one year to maturity, and bills with less than one month to maturity. The prices are clean, meaning that they do not include accrued interest. We sort the data after settle date. At each settle date, hundreds of transactions of Treasury securities is observed. Each of these observations have a unique time to maturity; we observe trades on bonds ranging from less than one month to maturity to close to 30 years to maturity. The settle dates are the last trading day each month from 1991:1 to 2014:12. We must use the observed trades on each settle date to estimate the raw yields, such that we each settle date have a set of zero coupon yields
for maturities ranging from less than one month to 30 years. This set of estimated zero yields for different maturities is the set of raw yields we will use to construct the monthly NS yield curves.

To obtain these raw yields we employ the Matlab algorithm "zbtprice". This algorithm estimates the zero curve, i.e. the set of zero yields, on each settle date with the bootstrap method. This method uses a theoretical par bond arbitrage argument, and linear yield interpolation for determining the interest rates for the cash flows, to derive all zero yields on each settle date (MathWorks, 2020). The arbitrage argument assumes that the value of the whole bond, i.e. the bond including all coupon payments, is equal to the value of the sum of the separate cash flows the bond produces. If this does not hold, an arbitrage opportunity exits. If investors observe that the value of the bond is higher than the sum of it's parts, they could buy the bond, sell of the stripped cash flows, and make an instant, risk-less profit (Bodie et al., 2018). In other words, we assume any discrepancies between the observed bond prices and the prices of the stripped cash flow to be a violation the Law of One Price. The artificial zero coupon yields produced by "zbtprice" will satisfy this no-arbitrage assumption.

We use an actual/actual (ICMA) day-count convention in this algorithm, which is the convention generally used for pricing U.S. Treasury securities. The output of "zbtprice" is a vector containing the set of raw continuously compounded yields with each row corresponding to a maturity date, and a vector containing the maturity date associated with each zero yield. We use the maturity date for each zero yield and the settle date to calculate the time to maturity. By concatenating the zero yields vector and the time to maturity vector on each settle date, we obtain the monthly datasets of raw yields for a range of different maturities we need for the NS model. We choose to only use yields with maturities between three months and 10 years as input in the NS model, as the yields with less than three months to maturity are volatile and as we have most observations on yields with less than 10 years to maturity. The NS curve offers the best fit to our data in this range. The maturities are actual, observed maturities. For example, we observe several maturities of approximately 10 years, but none that are exactly 10 years. We want to compare the Nelson-Siegel yield forecasts with observed raw yields at exact maturities, e.g. comparing the 10-year Nelson-Siegel yield forecast with the actual 10-year yield. Hence, we employ a method of interpolation, specifically a piecewise cubic hermite interpolating polynomial, to obtain yields for regularly spaced maturities of $3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108$ and 120 months. This is the method used by the U.S. Treasury to obtain raw yields for exact maturities (U.S. Department of the Treasury, 2020).

Data on observed Treasury bond quotes is only available until 2014:12. In order to extend the sample period with observations until 2019:12 we use
data on estimated zero yields obtained from the U.S. Department of the Treasury. Said department publishes end-of-month estimated zero yields for eight selected maturities. The reason for not using this data for the whole sample period is because the selection of maturities are much more narrow than what we obtain by estimating the raw yields from observed bond quotes. This means we get more data-points when modelling the yield curves for the sample 1991:1 to 2014:12 compared to what we would have if we used data from the U.S. Treasury for the whole sample period.

3.1.2 Raw Yields Estimated by The U.S. Department of the Treasury

We download yields for maturities of $3,6,12,24,36,60,84$ and 120 months estimated by the U.S. Treasury Department for the final part of our raw yield sample (2015:1 to 2019:12). They use a cubic hermite spline interpolation function to obtain yields at evenly spaced maturities from quotation data on Treasury securities. Ideally, we would prefer to obtain the bond quotes data used by the U.S. Treasury and estimate the yields with the bootstrap method described above. However, we have not been able to obtain this data; the bond price quote data on CRSP ends with 2014:12.

Since we for the latter part of our sample have fewer intermediate maturities (that is, maturities between 3 and 120 months), the NS parameters will be estimated using fewer data-points. The function will interpolate greater distances between the data-points, causing the estimated model parameters to contain less information about the actual, continuous yield curve that were at the time. We consider this to be a weakness with using the data from the U.S. Treasury. However, since the yields we obtain from the U.S. Treasury are estimated using interpolation from observed bond trades, most information about the actual yield curve should be incorporated in the set of eight estimated maturities they provide. The benefits of including this data in our sample is that we are able to greatly extend the sample period. We want to obtain a forecasting model that can be used by investors today, meaning using data they can obtain today. Hence, we choose to extend our sample period with the U.S. Treasury data such that it runs until 2019:12 instead of 2014:12.

3.2 Yield Curve Modelling

We now turn to the task of modelling yield curves from the estimated raw yields. Before we explain the yield curve NS modelling framework we employ in this thesis, we look at some basic yield curve concepts.

3.2.1 The Discount Curve, Forward Rate Curve and Yield Curve

To understand the NS model, we first have to define three important bond market curves and understand the relationship among them, specifically the discount curve, forward rate curve and yield curve. Let $P(\tau)$ denote the price of a discount bond with time to maturity τ and $y(\tau)$ denote its continuously compounded yield to maturity. The discount curve is the present value of receiving $\$ 1 \tau$-periods ahead:

$$
\begin{equation*}
P(\tau)=e^{-\tau y(\tau)} \tag{7}
\end{equation*}
$$

The forward rate curve is defined as

$$
\begin{equation*}
f(\tau)=\frac{-P^{\prime}(\tau)}{P(\tau)} \tag{8}
\end{equation*}
$$

Together, Eq. (7) and (8) lets us express the yield curve in terms of the forward rate curve:

$$
\begin{equation*}
f(\tau)=\frac{e^{-\tau y(\tau)}\left(\tau y^{\prime}(\tau)+y(\tau)\right)}{e^{-\tau y(\tau)}} \Leftrightarrow f(\tau)=\tau y^{\prime}(\tau)+y(\tau) \tag{9}
\end{equation*}
$$

The yield curve is the solution to this differential equation (Eq. (9)), solved for $y(\tau)$ and given some initial condition:

$$
\begin{equation*}
y(\tau)=\frac{1}{\tau} \int_{0}^{\tau} f(u) d u \tag{10}
\end{equation*}
$$

Eq. (10) expresses that the yield on a zero-coupon bond is the equally weighted average of the forward rates (Nelson \& Siegel, 1987). This relationship will be used later.

3.2.2 The Nelson-Siegel Model

We now turn to the original paper by Nelson and Siegel (1987). The authors state that a class of functions associated with solutions to differential equations are able to generate the typical yield curve shapes. They further motivate an investigation of such functions by the following argument; "... if spot rates are generated by a differential equation, then forward rates, being forecasts, will be the solution to the equations." (Nelson \& Siegel, 1987). Hence, they begin with a search among a class of solutions to differential equations for a function that fits the forward rate curve. They find the following solution equation for the case of equal roots to provide a good fit:

$$
\begin{equation*}
f(\tau)=\beta_{1}+\beta_{2} e^{-\lambda \tau}+\beta_{3} \lambda \tau e^{-\lambda \tau} \tag{11}
\end{equation*}
$$

where λ is a time constant associated with the equation, while β_{0}, β_{1} and β_{2} are determined by initial conditions (Nelson \& Siegel, 1987). We are now
ready to obtain yields as a function of maturities. This is done by using the relationship expressed in Eq. (10). By integrating Eq. (11) from 0 to τ and dividing by τ we obtain the following functional form to fit the cross-section of yields

$$
\begin{equation*}
y(\tau)=\beta_{1}+\beta_{2}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}\right)+\beta_{3}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}-e^{-\lambda \tau}\right) \tag{12}
\end{equation*}
$$

where $\hat{\beta}_{1}, \hat{\beta}_{2}$, and $\hat{\beta}_{3}$ is obtained with ordinary least squares (OLS). In Nelson and Siegel (1987) the parameter $\hat{\lambda}$ is also estimated through non-linear estimation. We choose to fix λ to a constant in the same manner as Diebold and Li (2006) for reasons which will be discussed later.

It is important to mention that we use a different notation and a different factorization than that of the Nelson and Siegel (1987), in a similar manner as Diebold and Rudebusch (2013) (first introduced by Diebold and Li (2006)). The factorization of Diebold and Rudebusch (2013) makes it possible to to interpret the parameters β_{1}, β_{2} and β_{3} as yield curve factors, specifically level, slope and curvature. Why this is the case will be discussed later.

Although the NS functional form (Eq. (12)) might seem somewhat ad hoc, it exhibits some very appealing features which link it to financial reality and economic theory (Diebold \& Rudebusch, 2013). First, it satisfies the two limiting values of bond prices, specifically $\lim _{\tau \rightarrow 0} P(\tau)=1$ and $\lim _{\tau \rightarrow \infty} P(\tau)=0$ for any values of the parameters. Second, NS satisfies $\lim _{\tau \rightarrow 0} y(\tau)=\lim _{\tau \rightarrow 0} f(\tau)=r$, where r denotes the instantaneous short rate, i.e. the yield on a zero coupon with infinitesimally short time to maturity. This means that the yields of the NS model converge to the instantaneous short rate as the time to maturity approaches zero, which is an economically sound feature (Rebonato, 2018). Finally, the yields produced by the model converge to a constant, β_{1}, as the time to maturity goes to infinity; $\lim _{\tau \rightarrow \infty} y(\tau)=\beta_{1}$.

In addition, the NS functional form is both parsimonious and flexible. Parsimony inhibits in-sample overfitting, while its flexibility lets it approximate the variety of shapes the yield curve assumes, including the upward sloping, downward sloping, humped and inverted hump shapes (Diebold \& Li, 2006). Lastly, the NS functional form is an appropriate yield curve approximation from a mathematical perspective. The forward rate curve (Eq. (11)) can be viewed as a constant plus a Laguerre function, and such functions are common approximating functions on the domain $[0, \infty]$, which is the domain of the yield curve (Diebold \& Rudebusch, 2013).

Before introducing dynamics in the model and obtain the DNS, we are going to investigate the principal components, or factors, of the yield curve. This analysis will be important when we later show that the DNS model parameters can be used as proxies for these factors.

3.2.3 Yield Curve Factors

The large set of observed bond yields is a high-dimensional object, meaning that the number of features (i.e. the different yields for different maturities) exceed the number of observations. This makes computations difficult. Luckily, financial asset returns like yields are typically driven by an underlying lower-dimensional set of factors (Diebold \& Rudebusch, 2013), which make computations more feasible. The three first bond yield principal components, or factors, typically explain most yield curve variation, and these three factors can be shown to effectively equal the level, slope and curvature of the yield curve (Diebold \& Rudebusch, 2013). Diebold and Rudebusch (2013) show this by plotting time series of the three first principal components (factors) against the standard empirical yield curve measures of level, slope and curvature (the $10 Y$ yield, the $10 Y-3 M$ spread, and the $2 \times 2 Y-(10 Y+3 M)$ butterfly spread, respectively). This is an important feature of the yield curve factors, as level, slope, and curvature can be linked economically with different explanatory variables. The yield curve level is for example related to inflation, and the slope is related to the stage of the business cycle (Diebold \& Rudebusch, 2013). As we are going to show, the estimated parameters of the DNS can be interpreted as proxies for these three factors. When we are to forecast these parameters, we can use the economic link these factors have with macroeconomic (and possibly financial) variables as the theoretical foundation of our forecasting model.

3.2.4 The Dynamic Nelson-Siegel Model

Eq. (12) above represents the static NS yield curve. However, the yield curve is not static, but time varying. Hence, the model parameters must be time varying. Introducing dynamics is uncomplicated; we just let the three parameters of (12) be time-varying.

$$
\begin{equation*}
y_{t}(\tau)=\beta_{1 t}+\beta_{2 t}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}\right)+\beta_{3 t}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}-e^{-\lambda \tau}\right) \tag{13}
\end{equation*}
$$

This factor model explains the yield curve with three, dynamic factors ($\beta_{1 t}$, $\beta_{2 t}$ and $\left.\beta_{3 t}\right)$ and three factor loadings ($1,\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}\right)$, and $\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}-e^{-\lambda \tau}\right)$). We plot the three loadings against τ for $\lambda=0.0609$ in Figure (1). Why we fix λ to this value will be explained in the next paragraph. The loading on $\beta_{1 t}$ is constant across all maturities and equal to 1 . Hence, a change in $\beta_{1 t}$ shifts the entire curve, and $\beta_{1 t}$ thus governs the yield curve level. The loading on $\beta_{2 t}$, $\left(1-e^{-\lambda \tau}\right) / \lambda \tau$, is a function of τ that starts at 1 and decreases monotonically and rapidly to zero. A change in $\beta_{2 t}$ thus mainly affect short-term yields, with the effect becoming negligible as τ increases. As a result, $\beta_{2 t}$ governs the yield curve slope. The loading on the last factor, $\left(1-e^{-\lambda \tau}\right) / \lambda \tau-e^{-\lambda \tau}$, has a humped
shape; it starts at zero before increasing, then decreasing toward 0 . A change in $\beta_{3 t}$ thus mostly affect medium-term yields, with an insignificant effect on short-term and long-term yields. Hence, $\beta_{3 t}$ governs the yield curve curvature (Diebold \& Li, 2006). In their sample period, Diebold and Li (2006) find a very high correlation between their estimated DNS factors and the empirical yield curve $\left(l_{t}\right)$, slope $\left(s_{t}\right)$, and curvature $\left(c_{t}\right)$, specifically $\rho\left(\hat{\beta}_{1 t}, l_{t}\right)=0.97$, $\rho\left(\hat{\beta}_{2 t}, s_{t}\right)=-0.99$, and $\rho\left(\hat{\beta}_{3 t}, c_{t}\right)=0.99$ (Diebold \& Li, 2006). In the Section 5 on results we presents plots of the three first yield curve principal components against both $\left(l_{t}, s_{t}, c_{t}\right)$ and ($\left.\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right)$ for our sample period, and report their correlations.

Figure 1: Plot of the factor loadings as a function of maturity for $\lambda=0.0609$

As one can see from Eq. (13), the model also contains an additional parameter λ. When fitting the model to historical, unsmoothed yields, one can either let λ be time-varying $\left(\lambda_{t}\right)$, or it can be treated as a known constant. We plan to calibrate λ to a constant in the same manner as Diebold and Li (2006). λ determines where the loading on $\beta_{3 t}$ (the hump-shaped function) is maximized, and this maximum should be at a medium maturity in order for $\beta_{3 t}$ to drive curvature (Diebold \& Rudebusch, 2013). The authors argue that maturities in the range of two to three years commonly is considered mediumterm maturities, and hence they pick the average of 2.5 years, or 30 months; τ $=30$. To make the loading on $\beta_{3 t}$ achieve its maximum at $\tau=30, \lambda$ is set to 0.0609 (Diebold \& Li, 2006). The motivation for fixing λ is that it enables us to employ simple OLS when fitting the yield curve each month, rather than some complex nonlinear least squares estimation method. This should increase the reliability of the estimates as the number of numerical optimizations is drastically reduced (Diebold \& Li, 2006). Additionally, as we are going to forecast the Nelson-Siegel yield curve, fixing λ reduces the number of time-series we need to forecast. Furthermore, the fit of the model is typically robust to the exact choice of λ (Diebold \& Rudebusch, 2013).

For the DNS to be a good model, the yield curves it produces should accord with historical facts about the yield curve. The average yield curve is increasing and concave, and it assumes different shapes at different times. Yield dynamics are persistent, meaning that shocks to the empirical yield curve level (10-year yield) persist for a long time, while yield spread dynamics are much less persistent, which means that shocks to the the empirical yield curve slope do not persist for a long time. The short-term yields are more volatile than long-term yields, while long-term yields are more persistent than shortterm yields (Diebold \& Li, 2006). Diebold and Li (2006) argue that the DNS yield curves in principle accord with all of these facts. A potential problem with using the NS model for forecasting purposes is that we might loose some important information as we smooth the yields. Cochrane and Piazzesi (2004) argues that the Nelson-Siegel procedure smooths away not just noise, but also information.

We have now investigated the theoretical aspects of the framework we employ to model the yield curves. To summarize, we fit Eq. (13) to the monthly, historical cross-section of yields (i.e. to the observed unsmoothed yields each month from 1991:1 to 2019:12) and obtain monthly DNS parameter estimates $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. Most of the temporal yield curve variation will be captured by the time-varying DNS parameter estimates. Hence, if we can explain the variation $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ we can explain the variation in the yield curves (given that the model provides a good fit in the cross-section of yields).

3.3 Forecasting the Yield Curve

Forecasting the yield curve translates into forecasting the DNS yield curve factors $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$, i.e. to forecast the level, slope and curvature of the yield curve. The forecast of the factors will result in a forecasted NS yield curve from which we can extract the forecasted yields for different maturities.

As discussed in the literature review, there exist a range of models one can employ to model and forecast financial and economic time series, from univariate autoregressive processes or simple and multiple linear regression models, to more sophisticated multivariate systems such as vector autoregression processes with exogenous variables. In this thesis, we will employ the method of "diffusion index forecasting" (sometimes called "factor augmented forecasting") to forecast the change in the DNS yield curve factors. With this method we use the information stored in 1196 different economic and financial timeseries to construct a parsimonious model producing out-of-sample forecasts 1 , 6 and 12 months ahead with a recursive approach.

DI forecasting makes it possible to utilize the information stored in several hundred, or even thousand, economic time series to forecast a few financial or economic variables (Stock \& Watson, 2002). This is achieved by replacing
the large set of predictors with a smaller set of estimated factors which capture most of the time-variation in the predictors. Specifically, we create an algorithm which from a very large set of potential predictors, both financial and macroeconomic in nature, selects the most informative predictors based on some predictive power threshold, and uses these targeted predictors to construct factors (principal components). These factors are then ultimately used to forecast the changes in the DNS yield curve factors. We call this method "targeted diffusion index forecasting", which is inspired by the works of Bai and Ng (2008).

Stock and Watson (2002) find that their 6, 12, and 24 months ahead DI forecasts of 8 different U.S. macroeconomic variables outperform univariate autoregressions, small vector autoregressions, and leading indicator models (Stock \& Watson, 2002). Bai and Ng (2008) refines the methodology of Stock and Watson (2002) by introducing the use of targeted predictors, i.e. to let an algorithm select different predictors for different dependent variables and/or different samples, drawing from a very large pool of economic and financial time series. The authors argue that their set of predictors is suitable for forecasting several different economic variables, including inflation which is the variable they choose to forecast in their study. They find that the use of targeted predictors improve the DI forecasts at all forecasting horizons, in addition to outperforming their $\mathrm{AR}(4)$ benchmark model. They find that holding the set of predictors fixed as you would in the original DI forecasting framework, rather than flexible as you would with the use of targeted predictors, is unnecessarily restrictive (Bai \& Ng, 2008).

While we do not find that this forecasting procedure has been used to forecast yield curves, we do find that the DI forecasting procedure with targeted predictors has been used to explain and forecast variation in excess bond returns. As mentioned in the literature review, Ludvigson and Ng (2009) find that diffusion indices based on macroeconomic variables have important forecasting power for future excess return on U.S. government bonds. While these findings do not directly translate to the predictability of the U.S. Treasury yield curve (i.e. to forecast the YTM across all maturities), these findings indicate a promising relationship between macroeconomic variables and yields generally, and the DI forecasting procedure and yields specifically. We wish to explore this relationship further, and investigate whether such macro factors (or diffusion indices) have any predictive power for future U.S. Treasury yield curves.

Other studies have found predictability in the yield curve by using simpler, univariate models. One of the most cited papers on this topic is Diebold and Li (2006), which find that univariate autoregressive processes of order 1 best predict the yield curve. They do not benchmark the performance of their model against DI forecasts. Hence, we view the $\operatorname{AR}(1)$ model as the main
benchmark model when we evaluate the performance of our forecasting model.

3.3.1 Introducing the Full Set of Predictors

Consider a very large set of economic and financial time-series contained in the matrix X with elements $X_{i t}$. In this set, there are N predictors and T observations. Each row of X corresponds to an observation $t=1,2, \ldots, T$ and each column corresponds to a variable $i=1,2, \ldots, N$. We call the $N \times 1$ vector $X_{t}=\left(X_{1 t}, X_{2 t}, \ldots, X_{N t}\right)$ the the full set of predictors at time t. The crosssectional dimension N can be very large, and possibly much larger than the time dimension $T ; X$ can contain observations on several hundred or several thousand variables which capture information about the real-economy and the financial markets. As such, we let X contain time-series on several leading economic indicators and real economic activity measures such as unemployment rates in different industries, inflation measures in different industries, confidence indicators and capacity utilization measures, along with several financial market activity measures such as volatility indices, put vs. call volume indices and stock market returns. An exhaustive list of the time-series contained in X is presented in Appendix 3 and elaborated on in the data-section.

Now consider the three time-series on the estimated DNS yield curve factors $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. For simplicity, we will use $\hat{\beta}_{i t}$ to denote the factors when explaining the forecasting methodology as all of the three time-series are to be forecast in exactly the same way. Additionally, we will refer to the forecasts as forecasts of $\hat{\beta}_{i t}$ (meaning the level of the factors) although we in practice are going to forecast the change in $\hat{\beta}_{i t}$ due to non-stationarity of the estimated factors and persistent NS yield curve residuals (if errors are persistent, they vanish when we take the change of the yield curve. This will be expanded upon in Section 5 on modelling results). Lastly, we will throughout the paper denote the forecasts of the estimated factors as $\hat{\hat{\beta}}_{i t}$. The first (lower) hat means that we are looking at the OLS estimate of $\beta_{i t}$ from Eq. (13), and the second (upper) hat means that we are looking at the forecast of this estimate.

When using X_{t} to forecast $\hat{\beta}_{i, t+h}$ (i.e. $\hat{\beta}_{i t} h$-steps ahead), one could run a multiple linear regression on the form

$$
\hat{\beta}_{i, t+h}=\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}\right) \times\left(\begin{array}{c}
1 \tag{14}\\
\hat{\beta}_{i, t} \\
\hat{\beta}_{i, t-1} \\
\vdots \\
\hat{\beta}_{i, t-k}
\end{array}\right)+\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{N}\right) \times\left(\begin{array}{c}
X_{1 t} \\
X_{2 t} \\
\vdots \\
X_{N t}
\end{array}\right)+\epsilon_{t+h}
$$

or in matrix notation (which we will from now on use)

$$
\begin{equation*}
\hat{\beta}_{i, t+h}=\alpha^{T} Z_{t}+\Gamma^{T} X_{t}+\epsilon_{t+h} \tag{15}
\end{equation*}
$$

where Z_{t} is a vector containing a constant and lags of $\hat{\beta}_{i, t+h}$ and X_{t} is the full set of predictors at time $t . \hat{\alpha}$ and $\hat{\Gamma}$ could be estimated through OLS and the optimal number of lags and predictors could be chosen by minimizing some information criterion like the Bayesian Information Criterion (BIC). The minimum BIC value $B I C^{*}$ is found as the optimal trade-off between reduced residuals $\left(\log \left(\hat{\sigma}_{n}^{2}\right)\right)$ and a penalty term for adding more variables $\left(n \frac{\log (T)}{T}\right)$

$$
\begin{equation*}
B I C^{*}=\min \left(\log \left(\hat{\sigma}_{n}^{2}\right)+n \frac{\log (T)}{T}\right) \tag{16}
\end{equation*}
$$

The main problem with this forecasting procedure (Eq. (15)) is that when the number of predictors is large and the predictors have no natural ordering, it is computationally infeasible to obtain the BIC-minimizing set of predictors. This is because there are 2^{N} possible combinations of predictors, which in our case implies a staggering amount of different potential BIC-minimizing combinations of regressors.

We thus turn to the DI forecasting framework as explained in Stock and Watson (2002). An important concept in this framework is Principal Component Analysis (PCA). By using PCA to obtain the factor scores, or principal components, of X, we can greatly reduce the dimensionality of our dataset without loosing much information. That is, important information contained in X in the form of time-variation can be preserved in a much smaller set of factors, which greatly reduces the number of explanatory variables used in the forecasting model (Stock \& Watson, 2002). The principal components of X now becomes the explanatory variables instead of the variables in X. Before we look at how DI forecasting models are constructed through the use of principal components, we first take a look at what principal components are, how they are calculated, and why just a few of them are able to preserve the majority of the information in X.

3.3.2 Principal Component Analysis

To understand PCA, we begin by explaining how Matlab finds the principal components of our dataset X. First, we center the data by demeaning each variable (i.e. subtracting its mean) such that the mean of each centered variable is zero. We denote the centered data \dot{X}

$$
\begin{gather*}
\dot{X}=\left(\begin{array}{cccc}
X_{11}-\bar{X}_{1} & X_{12}-\bar{X}_{2} & \cdots & X_{1 N}-\bar{X}_{N} \\
X_{21}-\bar{X}_{1} & X_{22}-\bar{X}_{2} & \cdots & X_{2 N}-\bar{X}_{N} \\
\vdots & \vdots & \ddots & \vdots \\
X_{T 1}-\bar{X}_{1} & X_{T 2}-\bar{X}_{2} & \cdots & X_{T N}-\bar{X}_{N}
\end{array}\right) \\
=\left(\begin{array}{cccc}
\dot{X}_{11} & \dot{X}_{12} & \cdots & \dot{X}_{1 N} \\
\dot{X}_{21} & \dot{X}_{22} & \cdots & \dot{X}_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
\dot{X}_{T 1} & \dot{X}_{T 2} & \cdots & \dot{X}_{T N}
\end{array}\right) \tag{17}
\end{gather*}
$$

We then calculate the $N \times N$ covariance matrix C of \dot{X} as $\dot{X}^{T} \dot{X}$

$$
\dot{X}^{T} \dot{X}=C=\left(\begin{array}{cccc}
\sigma^{2}\left(\dot{X}_{1}\right) & \sigma\left(\dot{X}_{1}, \dot{X}_{2}\right) & \cdots & \sigma\left(\dot{X}_{1}, \dot{X}_{N}\right) \tag{18}\\
\sigma\left(\dot{X}_{2}, \dot{X}_{1}\right) & \sigma^{2}\left(\dot{X}_{2}\right) & \cdots & \sigma\left(\dot{X}_{2}, \dot{X}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\sigma\left(\dot{X}_{N}, \dot{X}_{1}\right) & \sigma\left(\dot{X}_{N}, \dot{X}_{2}\right) & \cdots & \sigma^{2}\left(\dot{X}_{N}\right)
\end{array}\right)
$$

We then find the N eigenvalues $\left(\lambda_{i}\right)$ and $N N \times 1$ orthogonal (perpendicular) eigenvectors (\mathbf{v}) of the covariance matrix

$$
\lambda=\left(\begin{array}{c}
\lambda_{1} \tag{19}\\
\lambda_{2} \\
\vdots \\
\lambda_{N}
\end{array}\right) \text { and } \mathbf{v}=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{N}\right)
$$

The N eigenvectors are used to construct the feature vector \mathbf{v} which is a matrix with the eigenvectors as column vectors. Each eigenvector is a unit vector, meaning that they are of length 1 . These eigenvectors capture important relationships between the data in X. In fact, the whole data-set X can be explained (i.e. reconstructed) by these eigenvectors and eigenvalues. The eigenvector in \mathbf{v} that explains the largest share of the total variance in X is the eigenvector associated with the largest eigenvalue (in absolute terms). In other words, the eigenvectors associated with the largest eigenvalues capture most of the important relationships between the data in X. Hence, we order the eigenvectors by their eigenvalues from highest to lowest, and identify each eigenvector's degree of significance as the percentage of the total variance in X explained by each eigenvector. The ordered eigenvectors are stored in \mathbf{v}^{*} with descending importance column-wise

$$
\mathbf{v}^{*}=\left(\begin{array}{cccc}
v_{11} & v_{12} & \cdots & v_{1 N} \tag{20}\\
v_{21} & v_{22} & \cdots & v_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
v_{N 1} & v_{N 2} & \cdots & v_{N N}
\end{array}\right)
$$

Each column in \mathbf{v}^{*} is an eigenvector, with the first column corresponding to the most important eigenvector in terms of variance explained. We then use these eigenvectors to obtain the factor scores, or prinicipal components (PCs), of X by multiplying the centered data \dot{X} with \mathbf{v}^{*}

$$
P=\dot{X} \cdot \mathbf{v}^{*}=\left(\begin{array}{cccc}
\dot{X}_{11} & \dot{X}_{12} & \cdots & \dot{X}_{1 N} \tag{21}\\
\dot{X}_{21} & \dot{X}_{22} & \cdots & \dot{X}_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
\dot{X}_{T 1} & \dot{X}_{T 2} & \cdots & \dot{X}_{T N}
\end{array}\right) \cdot\left(\begin{array}{cccc}
v_{11} & v_{12} & \cdots & v_{1 N} \\
v_{21} & v_{22} & \cdots & v_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
v_{N 1} & v_{N 2} & \cdots & v_{N N}
\end{array}\right)
$$

The above matrix multiplication yields a transposed matrix of principal components with T rows and N columns. The first observation of the first principal component P_{11} is a linear combination of the first eigenvector in \mathbf{v}^{*} and all the N variables in \dot{X} at time $t=1$

$$
P_{11}=\left(\dot{X}_{11}, \dot{X}_{12}, \ldots, \dot{X}_{1 N}\right) \cdot\left(\begin{array}{c}
v_{11} \tag{22}\\
v_{21} \\
\vdots \\
v_{N 1}
\end{array}\right)
$$

and the first observation of the second principal component P_{12} is a linear combination of the second eigenvector in \mathbf{v}^{*} and all variables in \dot{X} at time $t=1$, and so on. Remember that because we ordered the eigenvectors after decending importance, the PCs are also ordered after descending order of importance (in terms of the share of total variance explained). The first column of P is the first principal component of X and explains the largest share of total variance. To reduce the dimensionality of our dataset we only keep the most important PCs, say, the N^{*} first PCs $\left(N^{*} \ll N\right)$. In this way we are able to greatly reduce the number of dimensions without loosing much of the information contained in X.

To see how the original data relates to the PCs, we show how one can reconstruct the original centered data \dot{X} using the eigenvectors in \mathbf{v}^{*} and the PCs in P

$$
\begin{equation*}
P=\dot{X} \cdot \mathbf{v}^{*} \Rightarrow P \cdot\left(\mathbf{v}^{*}\right)^{-1}=\dot{X} \Rightarrow \dot{X}=P \cdot\left(\mathbf{v}^{*}\right)^{-1} \tag{23}
\end{equation*}
$$

How do we find the inverse of \mathbf{v}^{*} ? Well, it turns out that as long as we have N unique eigenvalues (no eigenvalues of multiplicity larger than 1), finding $\left(\mathbf{v}^{*}\right)^{-1}$ is easy. Since C is a square and symmetric matrix we can make \mathbf{v}^{*} to be an orthonormal basis, which means that \mathbf{v}^{*} consists of N orthogonal eigenvectors of length 1 . This makes the process of finding $\left(\mathbf{v}^{*}\right)^{-1}$ much easier. When \mathbf{v}^{*} is an orthonormal basis, we have that $\left(\mathbf{v}^{*}\right)^{-1}=\left(\mathbf{v}^{*}\right)^{T}$, such that $\dot{X}=P \cdot\left(\mathbf{v}^{*}\right)^{T}$. The first observation of the first centered variable $\left(\dot{X}_{11}\right)$ can thus be written
as the linear combination

$$
\dot{X}_{11}=\left(P_{11}, P_{12}, \ldots, P_{1 N}\right) \cdot\left(\begin{array}{c}
v_{11} \tag{24}\\
v_{12} \\
\vdots \\
v_{1 N}
\end{array}\right)
$$

The N^{*} first PCs, i.e. the most important PCs in terms of total variance explained, will serve as the predictors in our forecasting model. We will now examine how PCs are used in the DI forecasting method.

3.3.3 Diffusion Index Forecasting

Let P be the set of principal components estimated from X, with T rows and N columns. Each column corresponds to a principal component, and each row corresponds to an observation. $P_{t}=\left(P_{1 t}, P_{2 t}, \ldots, P_{N t}\right)$ is the row-vector of all the PCs at time t. In our data-set we have 1196 predictors $(N=1196)$, and hence we have 1196 PCs at time t. We choose to only use the N^{*} first PCs $\left(N^{*} \ll N\right)$ because these explain the majority of the total variance in X. We denote these N^{*} first PCs by P_{t}^{*}. Similar to Bai and Ng (2008), we choose to only include the ten first PCs $\left(N^{*}=10\right)$ before estimating the forecasting model because these explain most of the variance in X while rendering the computation feasible. We then specify the forecasting model

$$
\begin{equation*}
\hat{\beta}_{i, t+h}=\alpha^{T} Z_{t}+\gamma^{T} p_{t}+\epsilon_{t+h} \tag{25}
\end{equation*}
$$

where Z_{t} is a vector containing a constant and lags of $\hat{\beta}_{i, t+h}, p_{t}$ is a subset of P_{t}^{*} and contains the optimal PCs to include in the model, and γ are the coefficients pertaining to p_{t}. The subset p_{t} of P_{t}^{*} and the optimal number of lags of $\hat{\beta}_{i, t+h}$ is obtained by minmizing BIC. The DI forecast of $\hat{\beta}_{i, t+h}$ is $\hat{\hat{\beta}}_{t+h}=\hat{\alpha}^{T} Z_{t}+\hat{\gamma}^{T} p_{t}$. This model constitutes the DI forecasting framework of Stock and Watson 2002.

Comparing Eq. (15) and Eq. (25), it is clear that Eq. (25) has to be evaluated at much fewer combinations of predictors than Eq. (15). Whereas Eq. (15) is computationally infeasible, Eq. (25) is easily estimated because of the dramatically reduced number of explanatory variables. However, since the PCs can be written as linear combinations of all the variables in X, the DI forecasting model (26) uses all of the $N=1196$ predictors (Bai \& Ng, 2008). Hence, through the method of DI forecasting, one is able to use a very large set of predictors to forecast economic and financial time series in a computationally feasible and effective manner. In practice, Eq. (25) is estimated by running an algorithm which searches through all the possible combinations of predictors and lags and saves the model specification that minimizes BIC. Not only is this method of forecasting in practice relatively straight forward, it has also been
used to produce promising forecasts historically. Stock and Watson (2002), Ludvigson and Ng (2005), and Bai and Ng (2008) find that the DI forecasts often outperform alternative methods of forecasting.

3.3.4 Targeted Diffusion Index Forecasting

In this thesis we will employ an extension to the original DI forecasting model (Eq. (25)) as presented in the section above, namely the method of "targeted diffusion index forecasting" as introduced by Bai and Ng (2008). This method involves two new concepts over the standard DI forecasting framework. First, we take the predictive ability of each predictor for $\hat{\beta}_{i t}$ in to account before estimating the PCs of X, only allowing the most informative predictors to form the set from which we form PCs. In other words, we form PCs from a subset $x \subset X$ consisting of variables that are tested to have predictive power for $\hat{\beta}_{i t}$ (Bai \& Ng, 2008). Secondly, we allow for a non-linear link function between the predictors and the PCs.

The standard DI forecasting method is comparatively rigid as it always forms the PCs from the same set of predictors regardless of both which dependent variable one is trying to forecast, and of which sample one uses to estimate the forecasting model. Additionally, it only allows for a linear relationship between the predictors and the PCs ($\overline{\mathrm{Bai} \& \mathrm{Ng}, 2008) \text {. The targeted }}$ DI forecasting method relaxes these constraints and thus provides a more flexible structure. Bai and Ng (2008) argues that only allowing for linear relationships and holding the set of predictors fixed is unnecessarily restrictive. Furthermore, as shown in Boivin and Ng (2006), expanding the dataset by including variables that have little predictive power for the variable to be forecasted does not necessarily improve the forecasts. These variables constitute noise rather than information, and we are thus better off by discarding them before forming the PCs (Bai \& Ng, 2008).

We allow for a non-linear relationship between the predictors and the PCs by using a non-linear link function between the predictors in X_{t} and the PCs. In practice, this is done by augmenting X_{t} to include a squared term of each predictor before forming the PCs; $X_{t}^{*}=\left\{X_{i t}, X_{i t}^{2}\right\}$. In other words, we let P (Eq. (22)) be a linear combination of both the linear and the squared terms of $X_{i t}$. Bai and Ng (2008) refers to this procedure as Squared Principal Components (SPC). We will use the SPCs, i.e. the PCs of X_{t}^{*}, when forecasting $\hat{\beta}_{i t}$. Note that the forecasting equation (Eq. (25)) is still linear in the PCs.

The predictors are targeted through a procedure which employs so-called "hard" thresholding. With this procedure, a statistical test to determine the individual significance of predictor i is used to decide which of the predictors in X make it to the subset of predictors x. We want to use a statistical test which tests the predictive power of the variable $X_{i t}$ for $\hat{\beta}_{i, t+h}$. For this purpose we use
the same method as Bai and Ng (2008), which is to form a threshold rule based on the t-statistic from regressions of $\hat{\beta}_{i, t+h}$ on each $X_{i t}$ after controlling for lags of $\hat{\beta}_{i, t+h}$. Only variables associated with a t-statistic above some threshold significance level α are included in the subset x of predictors. We use an α of 5% as this is the conventional threshold for determining statistical significance, and, as recommended by Bai and Ng (2008), we control for four lags of $\hat{\beta}_{i, t+h}$ since autoregressive forecasts always are available as an alternative to other forecasting models (Bai \& Ng, 2008).

3.3.5 The Targeted DI Forecasting Algorithm

We now present the targeted DI forecasting algorithm which we use to construct forecasts of $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. Since we use subscript i to denote the variables in X_{t}, we now denote $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ by $\hat{\beta}_{j t}$ for $j=1,2,3$. The algorithm produces out-of-sample forecasts of $\hat{\beta}_{j t}$ recursively (the training period increases with one observation each forecast), with a training period of $(t=1$ to $\left.t=T^{*}\right)$ and a holdout period of $\left(t=T^{*}+1\right.$ to $\left.t=T\right)$. We choose to use a $10-$ year training period in our out-of-sample forecasting, such that $T^{*}=2001: 1$ Before initiating the algorithm, we import and transform the dataset X. We use the Augmented Dickey Fuller test to determine whether the time-series are stationary, before transforming the non-stationary variables to $I(0)$ stationary time-series by taking logs, log first differences, or \log second differences if possible (i.e. if $X_{i t}>0$ for all t). For time-series with observations for which the logarithm is not defined (i.e. $X_{i t} \leq 0$ for all or some t) we take ordinary first or second differences to make the time-series stationary. We report which transformation has been applied to each variable in Appendix 3. The targeted DI forecasting algorithm is as follows

1. Load the training sample, i.e. X_{t}^{*} and $\hat{\beta}_{j, t+h}$ for $t=1$ to $t=T^{*}$.
2. For each $i=1,2, \ldots, N$, run $\hat{\beta}_{j, t+h}=\alpha+\sum_{q=0}^{3} \vartheta_{i} \beta_{t-q}+\gamma X_{i t}^{*}+\epsilon_{t+h}$. From these N regressions, save the t-statistic associated with each $X_{i t}$ as t_{i}.
3. Sort the t-statistics from highest to lowest in descending order $\left(\left|t_{1}\right|,\left|t_{2}\right|, \ldots,\left|t_{N}\right|\right)$.
4. Extract the predictors associated with t-statistics above the threshold significance level $\alpha=5 \%$, and let k_{α} denote the number of series where $\left|t_{i}\right| \geq 1.65$.
5. Save these targeted predictors in $x_{t}(\alpha)=\left(x_{1 t}, x_{2 t}, \ldots, x_{k_{\alpha} t}\right)$ and form PCs from $x_{t}(\alpha)$. We then have k_{α} PCs.
6. Extract the 10 first PCs $\left(10 \ll k_{\alpha}\right)$ and save them in $P_{t}^{*}=\left(P_{1 t}, P_{2 t}, \ldots, P_{10 t}\right)$. These 10 first PCs explain almost all variation in $x_{t}(\alpha)$.
7. Estimate $\hat{\beta}_{j, t+h}=\alpha^{T} Z_{t}+\gamma^{T} p_{t}+\epsilon_{t+h}$ where Z_{t} contains a constant and lags of $\hat{\beta}_{j, t+h}$, and γ contains coefficients pertaining to $p_{t} \subset P_{t}^{*}$. Use BIC to select lags and p_{t}. The algorithm searches through all possible model specifications and selects the one minimizing BIC. For computational efficiency and parsimony we restrict the number of lags the algorithm draws from to 4.
8. Save the $\hat{\alpha}$ and $\hat{\gamma}$ estimates of the BIC-minimizing model specification. Load data for the observation succeeding T^{*} (observation number $T^{*}+1$), i.e. the first observation in the hold-out period.
9. The first h period ahead out-of-sample forecast is $\hat{\hat{\beta}}_{j,\left(T^{*}+1\right)+h}=\hat{\alpha}^{T} Z_{T^{*}+1}+$ $\hat{\gamma}^{T} p_{T^{*}+1}$. We use coefficients estimated from the sample $t=1$ to $t=T^{*}$ to predict the h period ahead $\hat{\beta}_{j, t+h}$ at $t=T^{*}+1$.
10. Iterate steps 1-9 by including one new observation each iteration until $t=T-h$. This observation will be used to predict the last observation $\hat{\beta}_{j T}$.

We use this algorithm separately to forecast $\hat{\beta}_{j t}$ for $j=1,2,3$ (i.e. we run the algorithm for each DNS yield curve factor separately) and obtain forecasts for the three DNS yield curve factors $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ for forecast horizons of one, six and twelve months ($h=1,6,12$). This means that we use the same full set of predictors to forecast all three time-series, i.e. the yield curve level, slope and curvature. However, as the algorithm is designed to target the most informative predictors, we expect it to choose a different set of predictors for the three different time-series. Also note that we let the targeted set of predictors change with both the forecast horizon and the sample period. This means that the targeted set of predictors used to forecast the $300^{\text {th }}$ observation of, say, $\hat{\beta}_{1 t}$ (level), might not be same set of predictors used to forecast the $299^{\text {th }}$ observation of $\hat{\beta}_{1 t}$. It also means that the same set of predictors need not be used when forecasting $\hat{\beta}_{1 t}$ one month ahead and, say, six months ahead. Bai and Ng (2008) argues that this flexibility is an advancement over the original DI forecasting framework.

There are potential problems with the procedure with which we target the predictors, i.e. the hard thresholding procedure. While the decision rule based on the t-statistic associated with each predictor is both relatively easy to program and execute, it ignores any joint significance of the predictors, leading us to disregard predictors that might be jointly significant. Furthermore, by selecting predictors independently we ignore information in other predictors,
resulting in the possibility of selecting too similar predictors (i.e. collinear predictors). This is a problem because the DI forecasting model is most effective when we pool variables that bear distinct information about the time-series to be forecasted ($\overline{\text { Bai \& Ng, 2008) }}$. Moreover, as the decision rule is based on statistical significance rather than economic significance, we might not include highly economic significant predictors if their corresponding t-statistics happen to be just below the threshold significance level α. Lastly, such hard thresholding can be very sensitive to small changes is the data. A small change in the sample can cause some t-statistics to change just enough for the corresponding predictor to be either in or out, while the predictive power of that variable is virtually unchanged. That is, the discreteness of the decision rule causes the targeting procedure to be sensitive to small changes in the data (Bai \& Ng 2008).

3.3.6 Benchmarking

To determine the accuracy of our forecasts we will calculate the root mean squared error (RMSE) of the yield forecasts at some selected maturities (i.e. at specific points on the yield curve), and compare this measure to the RMSE of several benchmark models. We denote the targeted DI forecasting model as presented in this thesis by "TDIF" and the benchmarking models by "BM". We will use these benchmark models to produce out-of-sample yield curve forecasts with a recursive approach in the same manner as with the TDIF model of this thesis. To compare the performance of the different models we construct a relative measure inspired by Bai and Ng (2008). We call the relative measure the "relative RMSE" (RRMSE)

$$
\begin{equation*}
R R M S E=\frac{R M S E(T D I F)}{R M S E(B M)} \tag{26}
\end{equation*}
$$

A value of RRMSE less than 1 implies that the targeted DI forecasts are superior to that of the benchmark model.

The first competitor model we are going to consider is the simple Random Walk model. This model assumes that the yields each period take a random step away from its previous value, and that the steps are IID with a mean of zero (Brooks, 2019). By this assumption, the optimal yield forecast is

$$
\begin{equation*}
\hat{y}_{t+h}(\tau)=y_{t}(\tau) \tag{27}
\end{equation*}
$$

where τ is the time to maturity.
Diebold and Li (2006) find that modelling and forecasting the DNS yield curve factors $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ as univariate $\operatorname{AR}(1)$ processes generates superior yield curve forecasts. As stated by Diebold and Li (2006): "The AR(1) models can be viewed as natural benchmarks determined a priori: the simplest great
workhorse autoregressive models." (Diebold \& Li, 2006). Hence, we consider the $\mathrm{AR}(\mathrm{p})$-class of forecasting models to be the main benchmarks when evaluating the performance of the TDIF model. This is similar to how Bai and Ng (2008) choose to evaluate their TDIF model; they benchmark their inflation forecasts against that of an $\operatorname{AR}(4)$ model. The Diebold-Li model is as follows

$$
\begin{equation*}
\hat{y}_{t+h}(\tau)=\hat{\beta}_{1, t+h}+\hat{\beta}_{2, t+h}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}\right)+\hat{\beta}_{3, t+h}\left(\frac{1-e^{-\lambda \tau}}{\lambda \tau}-e^{-\lambda \tau}\right) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\hat{\beta}}_{i, t+h}=\hat{\alpha}_{i}+\hat{\gamma}_{i} \hat{\beta}_{i t}, \quad i=1,2,3 \tag{29}
\end{equation*}
$$

and coefficients $\hat{\alpha}_{i}$ and $\hat{\gamma}_{i}$ are obtained by OLS.
We will also extend the Diebold-Li model to allow for more lags, in addition to letting the optimal number of lags change with both the forecast horizon and the sample period, thereby making it more flexible. Eq. (29) then becomes

$$
\begin{equation*}
\hat{\hat{\beta}}_{i, t+h}=\hat{\alpha}_{i}+\sum_{n=0}^{p} \hat{\gamma}_{n} \hat{\beta}_{i, t-n}, \quad i=1,2,3 \tag{30}
\end{equation*}
$$

where p is obtained by minimizing BIC and restricted to four. We re-specify the model recursively, meaning that we with each forecast re-evaluate the optimal number of lags p as more observations are added to the training period. The reason why we are altering the Diebold-Li model is both because we wish to examine if this added flexibility improves the forecasts over the original Diebold-Li model, and because we view this added flexibility to render the Diebold-Li model more comparable with the TDIF model. This is because we in the latter model let the optimal number of lags vary with both the forecast horizon and the sample period.

In addition to model and forecast the DNS yield curve factors as univariate $\mathrm{AR}(\mathrm{p})$ processes, we will also use $\mathrm{AR}(1)$ models to forecast the yield levels directly

$$
\begin{equation*}
\hat{y}_{t+h}(\tau)=\hat{c}(\tau)+\hat{\gamma}_{i} y_{t}(\tau) \tag{31}
\end{equation*}
$$

With this method we do not need to model the yield curve before forecasting the yields, since we are forecasting the observed yields directly. If we are not able to produce superior forecasts over this simple forecasting method, either with the TDIF model or the $\mathrm{AR}(1)$ models described above, we are not benefiting from modelling the yield curve by the three DNS yield curve factors.

An alternative to the $\mathrm{AR}(\mathrm{p})$-class of models is to model and forecast the DNS yield curve factors as a system, specifically as an Vector Autoregressive model (VAR). However, Diebold and Li (2006) and Diebold and Rude-
busch (2013) argue that forecasts of economic variables from unrestricted VARs might perform worse than that of an $\operatorname{AR}(\mathrm{p})$ due to the large number of parameters and hence the potential for in-sample overfitting. Additionally, VARs are used to capture important cross-variable interactions. We do not expect such interactions between the factors as they should not be significantly correlated due to their close resemblance to principal components (Diebold \& Li 2006). Hence, we do not employ VAR models when evaluating the performance of our TDIF model.

4 Data and preliminary analysis

4.1 Obtaining Historical Yield Data

Our historical yield data is twofold; the first part, which is spanning from January, 1991 through December, 2014, is calculated through non-callable treasury securities, while the yield data staring from January, 2015 and ending December, 2019 is obtained directly from the U.S. Department of the Treasury.

4.1.1 Historical yield curve data from 1991 to 2014

To estimate the historical yields, we use end-of-month price quotes on T-bills, T-notes and T-bonds collected from the The Center of Research in Security Prices (CRSP) through Wharton Research Data Services. For each treasury security, we gathered the following characteristics: settlement date, the maturity date, yearly coupon rate (if any), and both the first price (usually bid) and the second price (usually ask). Finally, we calculated the bid-ask average for each security. This data is then used as input to the bootstrap method of obtaining the theoretical zero curve with the Matlab-algorithm zbtprice.

We made two major adjustments to our treasury data during this stage. Originally, we collected data all the way back to the beginning of 1990. However, we decided to remove all treasuries with settlement dates during 1990 due to a serious outlier problem. Secondly, we filtered out all notes and bonds with less than one year to maturity and t-bills with less than one month using the same argument as Diebold and Li (2006); these types of treasury securities with such a short time to maturity have significant liquidity problems. Finally, we removed all treasury securities with more than 10 years to maturity to avoid a missing data problem. Approximately 84% of the bond data observations have a maturity of less than 10 years. Hence, increasing the time to maturity would reduce the statistical power of our model. In addition, using the interpolation technique for such long maturities would diminish the quality of our estimated yield curves.

4.1.2 Historical yield curve data from 2015 to 2019

To obtain the second part of our yield curve data, we started by collecting daily treasury yield curve rates from the U.S. Department of the Treasury as of January 2015 through December 2019. To derive these yields, commonly referred to as "Constant Maturity Treasury" rates, the treasury department uses a quasi-cubic hermite spline function calculated from indicative, bid-side market quotations obtained by the Federal Reserve Bank of New York at or near 3:30 PM each trading day. The collected data consists of fixed maturities of 3 and 6 months and $1,2,3,5,7$ and 10 years. Notice that we filtered out yields with maturities of 1 month, 2 months, 20 years og 30 years. Finally, we imported the daily data to Excel and extracted the last trading day of each month resulting in 60 end-of-month yield curves from January 2015 through December 2019, containing the 8 different maturities mentioned above.

4.2 Obtaining Data on Explanatory Variables

Our dataset consists of 1196 monthly explanatory variables for the United States in the period from January 1991 through December 2019. Our choice of explanatory variables is inspired by the works of Stock and Watson (2002), Bai and Ng (2008), and Ludvigson and Ng (2009). We include all variables used in these studies that we have found access to and matches our sample period of 1991:1 to 2019:12. In addition to these variables, we have included new variables that we a-priori believe to affect bond markets. The vast majority of the predictors are retrieved from the Federal Reserve Bank of St.Louis Economic Data (FRED) through their self-developed Excel Add-in, while the remaining variables are retrieved from the following sources: Chicago Board Options Exchange (CBOE), Yale School of Management - International Center of Finance, Bloomberg, Yahoo Finance, and the home page of both Kenneth R. French and Robert Shiller. All variables in our dataset have either a daily, weekly of monthly reporting frequency. Consequently, we needed to convert the daily and weekly data to be monthly. For the variables with daily sampling frequencies, we have extracted the first trading day of each month to obtain monthly series. Further, the weekly data is transformed such that the observation at or closest to the first day of each month is stored. I.e. if a macroeconomic variable is reported at both the $28^{\text {th }}$ of January and the $4^{\text {th }}$ of February, we use the observation in January to represent the $1^{\text {st }}$ of February.

In Table (1) below we have sorted the variables in 14 different classes depending on their nature. We exemplify the type and report number of variables of each class. See Appendix 3 for an exhaustive list of all the variables used in this study.

Categories	\#	Types of variables
Employment \& Hours	279	(Un)employment level and rates for various population groups, number of un(employeed) by industry, avearges on overtime, hours and earnings. Job losers, initial claims, etc
Bond Market	164	Corporate bond yields, secondary market rates, constant maturity rates, interest rate spreads, loans outstanding
Housing	131	Home price indices, housing starts and sales, new private housing units authorized
Real Output Measures	126	Industrial production, capacity utilization
Price Indices	102	Consumer price indices, producer price indeces
Personal Income \& Expenditures	77	Personal income, (real) disposal personal income, personal current taxes, transfer payments, interest payments, savings and outlays. Personal consumption expenditures and prices
Leading Indicators	72	Leading indicators for each state and for US in total, OECD leading indicators: business situation, confidence, recession indicators etc.
Monetary Measures	61	Money Stock, US government deposits and demand, monetary base
Equity Market	59	Foreign stock indices, US stock market indices, S\&P500 level/dividend/earnings etc, Fama-French factors, equity market volatility tracker, volatility indices
Exports \& Imports	35	Exports of goods by FAS basis, imports of goos by custom basis, exports/imports of services, export/import prices (commodities and semi-finished products)
Manufacturing Activity	26	Manufacturing and trade, retail sales, unfilled orders and new orders
Sentiment	12	Business expectations, tendency and uncertainty, current and future company outlook and general business activity, consumer opinion survey, consumer sentiment and inflation expectations
Miscellaneous	52	NAPM indices, put/call ratios, fitted instantaneous forward rates, foreign exchange rates, excess reserves, effective federal funds rate

Table 1: Types of explanatory variables

4.3 Descriptive Statistics on Historical Raw Yields

We now present descriptive statistics on the raw yields we use to model the Nelson-Siegel yield curves. As we have two different samples of raw yields, one that is estimated from observed bond price quotes and one that is obtained from the U.S. Treasury, we present descriptive statistics for each sub-sample in addition to statistics for the full sample. The tables for each sub-sample is reported in Appendix 1.

Figure 2: We plot the average actual yields (data-based) for maturities of 3, $6,12,24,36,60,84$ and 120 months.

Maturity (Months)	Mean	Std.dev.	Min.	Max.	$\hat{p}(1)$	$\hat{p}(12)$	$\hat{p}(30)$
3	2.580	2.107	0.000	6.323	0.991	0.790	0.456
6	2.692	2.126	0.000	6.406	0.990	0.792	0.465
12	2.878	2.171	0.100	7.148	0.990	0.801	0.507
24	3.125	2.154	0.206	7.529	0.988	0.814	0.587
36	3.372	2.115	0.290	7.677	0.987	0.821	0.635
60	3.785	1.999	0.597	7.870	0.984	0.815	0.678
84	4.115	1.893	0.976	8.179	0.980	0.815	0.696
120	4.413	1.802	1.460	8.321	0.980	0.801	0.689

Table 2: Descriptive statistics, yields (full sample)

We begin by looking at the average yield curve for the full sample presented in Figure (2) and observe that the average yield curve in our sample exhibits typical yield curve behavior; it is upward sloping and concave. From Table 2 we see that the longest maturity yield on average is about two percentage points
higher than the shortest maturity yield, and that long yields are less volatile than short yields. Shocks in long term yields are more persistent compared to short term yields, although there is a high degree of persistence across all maturities. Looking at Table (12) and (13) in Appendix (1) we see that the average yield curve looks similar across the two samples, although the level of interest rates is lower in the latter. The volatility of the observed yields is also substantially lower in the second sub-sample, meaning that yield curves have become more stable over time.

In Figure (3) we present a 3D-plot of the historical yields. From the figure it becomes evident that the yield curve typically is upward sloping and concave. One can also easily see that the level of interest rates has substantially decreased over time, with a low-point following the financial crisis of 2007-2008. There seems to be a high temporal variation in the level, with less observable (but still apparent) temporal variation in the slope and curvature.

Figure 3: The plane of historical yield curves, 1991:1-2019:12. The sample consists of monthly yield data at maturities of $3,6,12,24,36,60,84$ and 120 months.

5 Results and main analysis

In this section we will present our main results. First, we will look at the NS modelled yield curves and how well the model is at replicating the historical yield curves. We will then move to an assessment of the performance of our TDIF model; is our DNS targeted diffusion index forecasting framework able to produce superior forecasts?

5.1 Modelling Results: Is the Dynamic Nelson-Siegel Model Able to Replicate the Yield Curves?

We begin by comparing the average fitted NS yield curve with the actual average yield curve in each sub-sample in Figure (4). As we can see, the NS model
is on average very good at replicating the yield curve in both samples, explaining 93.3% and 94.3% of the cross-sectional variation in yields on average, respectively. For the whole sample, the average R^{2} is 93.42%.

Figure 4: We scatter the actual (data-based) and plot the fitted (NS based) average yield curve for each sub-sample. We find the average NS yield curve by evaluating the NS function at the mean values of $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$.

Maturity (Months)	Mean	Std.dev.	Min.	Max.	$\hat{p}(1)$	$\hat{p}(12)$	$\hat{p}(30)$
3	2.637	2.081	-0.049	6.320	0.991	0.784	0.443
6	2.687	2.127	0.007	6.443	0.991	0.795	0.472
12	2.815	2.178	-0.032	6.977	0.990	0.806	0.517
24	3.112	2.173	0.106	7.532	0.988	0.815	0.585
36	3.395	2.112	0.329	7.728	0.986	0.818	0.632
60	3.829	1.986	0.693	7.811	0.984	0.818	0.682
84	4.107	1.907	0.959	8.079	0.983	0.814	0.695
120	4.350	1.851	1.204	8.296	0.982	0.805	0.690

Table 3: Descriptive statistics, NS yields (full sample)

In Table 3 we report descriptive statistics for the NS yields at the same maturities as in Table (2). Comparing Table (2) and (3) we see that the NS yields exhibit very similar behaviour as the actual yields. The average at each maturity is very close, both increasing from about 2.60% at the three-month maturity to around 4.35% at the ten-year maturity. The volatility of the yields are also similar and share the same trend; the standard deviation is decreasing in maturity. While none of the observed yields are negative at any point in time, the minimum values of the shorter-term NS yields are negative. This is a weakness of the NS model; it allows for negative yields. Both yields exhibit the same pattern of persistence; the autocorrelation coefficients are approximately equal at the one, twelve and thirty months displacements. From Figure (4) and Table (3) it becomes clear that the NS model generally provides a good
fit in the cross-section of yields, i.e. that the DNS model generally is able to replicate the historical yield curves. In Figure (5) we report four observed yield curves far from the average, and review how the NS model handles a-typical yield curve shapes. One can see how the NS model is able to provide a good fit for the various yield curve shapes present in our sample.
 Figure 5: Various yield curves with special shapes.

The NS model does not always provide a good fit, however. There are certain yield curves in our sample our model struggles to replicate, explaining only a small proportion of the cross-sectional variation. Two such yield curves are presented in Figure (6). The first is a yield curve increasing rapidly at short maturities, decreasing at medium maturities and slowly increasing again at longer maturities. As one can see, the NS model is largely affected by the steep humped shape in the area between maturities 0 and 40 . The second is a curve with yields "all over the place" and no distinct shape. The R^{2} is 11% and 19%, respectively.

Figure 6: Two observations where the NS model provides a bad fit.

In Table 4 we present statistics on the NS model residual for each maturity, that is, statistics on the difference between the NS yields and the actual yields. From the autocorrelation coefficients we see that the residuals are persistent. This implies that we have persistent pricing errors. Diebold and Li (2006) argue that there is a general discrepancy between actual bonds prices and prices estimated from yield curve models, probably due to persistent tax and/or liquidity effects (Diebold \& Li, 2006). They further argue these errors pose no threat; because the errors are persistent they should disappear from fitted yield changes, which is ultimately what we are going to forecast.

Maturity	Mean	Std.dev.	Min.	Max.	MAE	RMSE	$\hat{p}(1)$	$\hat{p}(12)$	$\hat{p}(30)$
3	-0.058	0.096	-0.538	0.160	0.085	0.112	0.751	0.366	0.168
6	0.004	0.066	-0.907	0.244	0.034	0.066	0.151	0.101	0.019
12	0.062	0.079	-0.213	0.464	0.080	0.101	0.775	0.338	0.154
24	0.013	0.045	-0.163	0.223	0.034	0.047	0.776	0.336	0.201
36	-0.024	0.041	-0.224	0.166	0.036	0.047	0.658	0.084	-0.063
60	-0.045	0.042	-0.171	0.076	0.052	0.062	0.667	0.140	0.009
84	0.008	0.131	-1.870	0.368	0.044	0.131	0.655	0.017	-0.006
120	0.063	0.152	-0.238	0.790	0.114	0.164	0.848	0.545	0.333

Table 4: Descriptive statistics, NS-residuals (full sample)

In Figure (7) we plot the DNS yield curve factors $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ along with both the three first yield curve principal components (which together explain almost all cross-sectional variation in yields) and the empirical (data-based) level, slope, and curvature. These measures are defined below Figure (6). The figures display a high observable pairwise correlation between the three; we find that $\rho\left(\hat{\beta}_{1 t}, P C_{1 t}\right)=0.80, \rho\left(\hat{\beta}_{2 t}, P C_{2 t}\right)=-0.95$, and $\rho\left(\hat{\beta}_{3 t}, P C_{3 t}\right)=-0.56$, and that $\rho\left(\hat{\beta}_{1 t}, l_{t}\right)=0.96, \rho\left(\hat{\beta}_{2 t}, s_{t}\right)=-0.99$, and $\rho\left(\hat{\beta}_{3 t}, c_{t}\right)=0.99$, and finally that $\rho\left(P C_{1 t}, l_{t}\right)=0.92, \rho\left(P C_{2 t}, s_{t}\right)=0.94$, and $\rho\left(P C_{3 t}, c_{t}\right)=-0.58$.

Figure 7: DNS level, slope, curvature factors (i.e. $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$) vs. the three first principal components and empirical level, slope, and curvature. Empirical level is the 10 -year yield, empirical slope is the difference between 10 -year and 3 -month yields, and empirical curvature is two times the 2-year yield less the sum of the 10 -year and 3 -month yields.

Although Diebold and Li (2006) find the pairwise correlations between $\left\{\hat{\beta}_{1 t}\right.$,
$\left.\hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ to be negligible and attribute this finding to the fact that their estimated factors resemble the first three principal components (which are orthogonal and therefore uncorrelated), we find that $\rho\left(\hat{\beta}_{1 t}, \hat{\beta}_{2 t}\right)=-0.32, \rho\left(\hat{\beta}_{1 t}, \hat{\beta}_{3 t}\right)=$ 0.17 , and $\rho\left(\hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right)=0.66$. This might imply that our estimated factors are less correlated with the first three principal components of our yield data compared with what Diebold and Li (2006) find in their sample. This means that the a-priori argument of not using VARs to forecast the factor because of their resemblance with principal components might not be as valid with our sample as for Diebold and Li (2006).

In Table (5) we present descriptive statistics on the estimated DNS yield curve factors level, slope, and curvature, i.e. $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. From the autocorrelations we observe that shocks to all factors are very persistent at the 1 month displacement, with autocorrelations ranging between 0.95 and 0.98 . The first factor, $\hat{\beta}_{1 t}$, is the most persistent, with the highest autocorrelation at all displacements. This means that shocks to the yield curve level persist for a long time. The second and third factor are about equally persistent. The Augmented Dickey-Fuller (ADF) p-value indicates that $\hat{\beta}_{1 t}$ and $\hat{\beta}_{2 t}$ may contain unit roots, while the null is rejected for $\hat{\beta}_{3 t}$. To avoid working with non-stationary time series we take the first differences of $\hat{\beta}_{1 t}$ and $\hat{\beta}_{2 t}$, which we find to by stationary by the ADF. Also taking the first difference of $\hat{\beta}_{3 t}$ (although the ADF null is rejected) makes it easier to implement the forecasting algorithm and renders the ADF p-value even lower. Hence, we forecast the first difference of each estimated factor.

Factor	Mean	Std.Dev	Min	Max	$\hat{\rho}(1)$	$\hat{\rho}(12)$	$\hat{\rho}(30)$	$\operatorname{ADF}(\mathrm{p}$-value $)$
$\hat{\beta}_{1 t}$	4.951	1.798	1.574	8.875	0.977	0.761	0.597	0.096
$\hat{\beta}_{2 t}$	-2.349	1.667	-5.565	0.938	0.975	0.502	-0.183	0.182
$\hat{\beta}_{3 t}$	-2.057	2.391	-7.312	3.859	0.951	0.596	0.189	0.027

Table 5: Descriptive statistics on DNS factors

Overall, we find the DNS model to generally provide a good fit in the crosssection yields. This is important because we ultimately forecast NS curves; not yields. If the historical NS curves do not provide a good fit, our yield curve forecasts will presumably be bad. Next, we assess the performance of our forecasting framework and finally obtain an answer to our research question; is the U.S. Treasury yield curve as modelled by the NS framework forcastable by diffusion indices?

5.2 Forecasting Results

5.2.1 In-Sample Analysis

We begin with an in-sample analysis of the relationship between the change in the estimated DNS factors $\left\{\hat{\beta}_{1, t+h}, \hat{\beta}_{2, t+h}, \hat{\beta}_{3, t+h}\right\}$ and the targeted principal components of X. First, we look at the difference between principal components formed with targeted predictors and with non-targeted predictors; do we gain predictive power by targeting predictors before we form the PCs?

To assess this question, we do as follows. We use the hard thresholding rule based on a t-statistic of $1.65(\alpha=5 \%)$ to find the targeted predictors from X for $\left\{\hat{\beta}_{1, t+h}, \hat{\beta}_{2, t+h}, \hat{\beta}_{3, t+h}\right\}$ with $h=1,6$, and 12 months, controlling for four lags of the factors. We obtain the 10 first PCs formed from these targeted predictors, one set for each variable and each horizon, and use them to produce in-sample forecasts of the factors one, six and twelve months ahead. We also form PCs using all the predictors in X (non-targeted PCs) and compare the results. Note that for each factor and each forecast horizon we have a different set of targeted predictors, resulting in a different set of targeted PCs. We report the results in Table (6) and (7).

From the two tables we observe several patterns. First, we find that the R^{2} and the RMSE from regressions using targeted PCs are higher for both $\hat{\beta}_{1, t+h}$ and $\hat{\beta}_{2, t+h}$ at all horizons. For $\hat{\beta}_{3, t+h}$, the R^{2} and RMSE is higher with targeted PCs only for the one month horizon. This means that the targeted PCs explain more variation in the one, six and twelve months ahead factor changes compared with the non-targeted PCs, with the exception being $\hat{\beta}_{3, t+h}$ at the six and twelve months horizons. Not surprisingly, the targeted F-test p-values are lower (i.e. higher joint significance) for the two first factors at all horizons, and for the third factor at the one month horizon.

Secondly, we find the targeted PCs to generally obtain higher individual statistical significance. This result is the strongest for $\hat{\beta}_{1, t+h}$, lesser for $\hat{\beta}_{2, t+h}$, and the weakest for $\hat{\beta}_{3, t+h}$. For $\hat{\beta}_{1, t+h}$, the targeted PCs have higher t-statistics in seven out of ten cases for the one and six months horizons, and in eight out of ten cases for the twelve months horizon. For $\hat{\beta}_{2, t+h}$, the targeted PCs attain higher t-statistics in six out of ten cases for the one month horizon, and seven of out ten cases for the six and twelve month horizons. For $\hat{\beta}_{3, t+h}$, the numbers are seven, four and five, respectively. Across all factors and horizons, the t statistics associated with targeted PCs are higher in 64% of the cases.

Thirdly, we find that the targeted PCs attain higher economic significance (i.e. higher coefficient estimates in absolute terms) across all PCs for all factors at all horizons, except for the fourth PC in the $\hat{\beta}_{1, t}$ one month ahead model. This means that we obtain higher economic significance by targeting predictors in 99% of the cases.

In sum, we seem to gain predictive power by targeting predictors before
Threshold t-stat. $=1.65$

Factor	h	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	R^{2}	$R^{2} a d j$.	RMSE	F-test
$\hat{\beta}_{1, t+h}$	1	$\begin{gathered} 4.363 \mathrm{E}-11 \\ (2.510) \end{gathered}$	$\begin{gathered} 2.976 \mathrm{E}-11 \\ (1.117) \end{gathered}$	$\begin{gathered} 7.075 \mathrm{E}-11 \\ (1.449) \end{gathered}$	$\begin{gathered} -7.812 \mathrm{E}-14 \\ (-0.001) \end{gathered}$	$\begin{gathered} -2.466 \mathrm{E}-10 \\ (-0.880) \end{gathered}$	$\begin{gathered} 7.946 \mathrm{E}-10 \\ (2.698) \end{gathered}$	$\begin{gathered} 7.266 \mathrm{E}-10 \\ (0.447) \end{gathered}$	$\begin{gathered} 3.125 \mathrm{E}-09 \\ (1.539) \end{gathered}$	$\begin{gathered} 3.335 \mathrm{E}-09 \\ (1.151) \end{gathered}$	$\begin{gathered} 1.260 \mathrm{E}-08 \\ (2.184) \end{gathered}$	0.073	0.045	0.075	0.004
	6	$\begin{gathered} 1.545 \mathrm{E}-10 \\ (1.947) \end{gathered}$	$\begin{gathered} 3.192 \mathrm{E}-10 \\ (2.101) \end{gathered}$	$\begin{gathered} 7.108 \mathrm{E}-10 \\ (1.057) \end{gathered}$	$\begin{gathered} 2.488 \mathrm{E}-08 \\ (0.453) \end{gathered}$	$\begin{gathered} 1.136 \mathrm{E}-05 \\ (0.676) \end{gathered}$	$\begin{gathered} 7.192 \mathrm{E}-05 \\ (3.377) \end{gathered}$	$\begin{gathered} 5.280 \mathrm{E}-05 \\ (1.769) \end{gathered}$	$\begin{gathered} 9.113 \mathrm{E}-05 \\ (2.483) \end{gathered}$	$\begin{gathered} 3.625 \mathrm{E}-05 \\ (0.730) \end{gathered}$	$\begin{gathered} 9.784 \mathrm{E}-05 \\ (1.318) \end{gathered}$	0.091	0.063	0.177	$4.330 \mathrm{E}-04$
	12	$\begin{gathered} 3.263 \mathrm{E}-10 \\ (1.997) \end{gathered}$	$\begin{gathered} 9.937 \mathrm{E}-10 \\ (1.104) \end{gathered}$	$\begin{gathered} 2.610 \mathrm{E}-05 \\ (2.503) \end{gathered}$	$\begin{gathered} -5.498 \mathrm{E}-05 \\ (-4.062) \end{gathered}$	$\begin{gathered} -1.040 \mathrm{E}-05 \\ (-0.469) \end{gathered}$	$\begin{gathered} -1.352 \mathrm{E}-04 \\ (-4.063) \end{gathered}$	$\begin{gathered} -5.764 \mathrm{E}-05 \\ (-1.580) \end{gathered}$	$\begin{gathered} 9.600 \mathrm{E}-05 \\ (2.009) \end{gathered}$	$\begin{gathered} 3.294 \mathrm{E}-05 \\ (0.504) \end{gathered}$	$\begin{gathered} -6.168 \mathrm{E}-06 \\ (-0.062) \end{gathered}$	0.137	0.110	0.237	$5.300 \mathrm{E}-07$
$\hat{\beta}_{2, t+h}$	1	$\begin{gathered} 1.110 \mathrm{E}-12 \\ (1.887) \end{gathered}$	$\begin{gathered} 2.424 \mathrm{E}-10 \\ (0.893) \end{gathered}$	$\begin{gathered} -6.102 \mathrm{E}-11 \\ (-0.085) \end{gathered}$	$\begin{gathered} 1.018 \mathrm{E}-09 \\ (1.142) \end{gathered}$	$\begin{gathered} 5.676 \mathrm{E}-10 \\ (0.404) \end{gathered}$	$\begin{gathered} 3.335 \mathrm{E}-09 \\ (1.453) \end{gathered}$	$\begin{gathered} 6.488 \mathrm{E}-09 \\ (0.488) \end{gathered}$	$\begin{gathered} 1.343 \mathrm{E}-08 \\ (0.537) \end{gathered}$	$\begin{gathered} -1.188 \mathrm{E}-08 \\ (-0.209) \end{gathered}$	$\begin{gathered} 1.406 \mathrm{E}-08 \\ (0.235) \end{gathered}$	0.025	-0.004	0.839	0.574
	6	$\begin{gathered} 3.161 \mathrm{E}-12 \\ (2.013) \end{gathered}$	$\begin{gathered} 4.863 \mathrm{E}-10 \\ (0.896) \end{gathered}$	$\begin{gathered} 2.015 \mathrm{E}-10 \\ (0.264) \end{gathered}$	$\begin{gathered} -1.636 \mathrm{E}-10 \\ (-0.084) \end{gathered}$	$\begin{gathered} 2.225 \mathrm{E}-09 \\ (0.948) \end{gathered}$	$\begin{gathered} 3.442 \mathrm{E}-09 \\ (1.015) \end{gathered}$	$\begin{gathered} 7.657 \mathrm{E}-09 \\ (1.287) \end{gathered}$	$\begin{gathered} 3.736 \mathrm{E}-09 \\ (0.564) \end{gathered}$	$\begin{gathered} 1.140 \mathrm{E}-08 \\ (1.529) \end{gathered}$	$\begin{gathered} 8.299 \mathrm{E}-10 \\ (0.089) \end{gathered}$	0.033	0.004	2.220	0.347
	12	$\begin{gathered} 7.557 \mathrm{E}-08 \\ (1.719) \\ \hline \end{gathered}$	$\begin{gathered} 2.882 \mathrm{E}-06 \\ (2.135) \\ \hline \end{gathered}$	$\begin{gathered} 1.725 \mathrm{E}-06 \\ (1.185) \end{gathered}$	$\begin{gathered} 5.762 \mathrm{E}-05 \\ (1.203) \\ \hline \end{gathered}$	$\begin{gathered} 2.898 \mathrm{E}-05 \\ (0.427) \\ \hline \end{gathered}$	$\begin{gathered} -2.694 \mathrm{E}-05 \\ (-0.323) \\ \hline \end{gathered}$	$\begin{gathered} 3.657 \mathrm{E}-05 \\ (0.323) \\ \hline \end{gathered}$	$\begin{gathered} -1.887 \mathrm{E}-05 \\ (-0.101) \end{gathered}$	$\begin{gathered} 1.625 \mathrm{E}-04 \\ (0.829) \\ \hline \end{gathered}$	$\begin{gathered} 3.980 \mathrm{E}-04 \\ (0.691) \\ \hline \end{gathered}$	0.035	0.006	4.380	0.295
$\hat{\beta}_{3, t+h}$	1	$\begin{gathered} -1.869 \mathrm{E}-06 \\ (-6.274) \end{gathered}$	$\begin{gathered} 1.243 \mathrm{E}-06 \\ (1.559) \end{gathered}$	$\begin{gathered} -2.480 \mathrm{E}-05 \\ (-0.854) \end{gathered}$	$\begin{gathered} -2.688 \mathrm{E}-04 \\ (-2.897) \end{gathered}$	$\begin{gathered} 1.489 \mathrm{E}-05 \\ (0.123) \end{gathered}$	$\begin{gathered} 4.759 \mathrm{E}-04 \\ (1.952) \end{gathered}$	$\begin{gathered} 2.267 \mathrm{E}-03 \\ (2.017) \end{gathered}$	$\begin{gathered} 8.765 \mathrm{E}-04 \\ (0.482) \end{gathered}$	$\begin{gathered} -5.157 \mathrm{E}-03 \\ (-1.881) \end{gathered}$	$\begin{gathered} 5.195 \mathrm{E}-05 \\ (0.017) \end{gathered}$	0.157	0.132	1.420	$8.430 \mathrm{E}-09$
	6	$\begin{gathered} 4.789 \mathrm{E}-09 \\ (0.830) \end{gathered}$	$\begin{gathered} 1.841 \mathrm{E}-08 \\ (1.171) \end{gathered}$	$\begin{gathered} -1.413 \mathrm{E}-07 \\ (-0.969) \end{gathered}$	$\begin{gathered} -8.684 \mathrm{E}-07 \\ (-0.377) \end{gathered}$	$\begin{gathered} 4.831 \mathrm{E}-05 \\ (0.834) \end{gathered}$	$\begin{gathered} 3.063 \mathrm{E}-05 \\ (0.306) \end{gathered}$	$\begin{gathered} -1.036 \mathrm{E}-04 \\ (-0.749) \end{gathered}$	$\begin{gathered} -2.335 \mathrm{E}-04 \\ (-0.715) \end{gathered}$	$\begin{gathered} -8.287 \mathrm{E}-05 \\ (-0.154) \end{gathered}$	$\begin{gathered} 4.490 \mathrm{E}-04 \\ (0.654) \end{gathered}$	0.016	-0.014	4.840	0.857
	12	$\begin{gathered} 4.539 \mathrm{E}-12 \\ (1.500) \end{gathered}$	$\begin{gathered} 5.077 \mathrm{E}-10 \\ (0.421) \end{gathered}$	$\begin{gathered} 2.822 \mathrm{E}-09 \\ (0.989) \end{gathered}$	$\begin{gathered} -6.093 \mathrm{E}-11 \\ (-0.020) \end{gathered}$	$\begin{gathered} 2.192 \mathrm{E}-09 \\ (0.532) \end{gathered}$	$\begin{gathered} 4.043 \mathrm{E}-09 \\ (0.861) \end{gathered}$	$\begin{gathered} 5.291 \mathrm{E}-09 \\ (0.873) \end{gathered}$	$\begin{gathered} -2.454 \mathrm{E}-09 \\ (-0.306) \end{gathered}$	$\begin{gathered} 8.686 \mathrm{E}-09 \\ (0.837) \\ \hline \end{gathered}$	$\begin{gathered} 1.977 \mathrm{E}-09 \\ (0.127) \\ \hline \end{gathered}$	0.018	-0.012	4.240	0.814

Table 6

Threshold t-stat. $=1.65$

Factor	h	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	R^{2}	$R^{2} a d j$.	RMSE	F-test
$\hat{\beta}_{1, t+h}$	1	$\begin{gathered} 7.807 \mathrm{E}-14 \\ (1.482) \end{gathered}$	$\begin{gathered} -2.955 \mathrm{E}-14 \\ (-0.376) \end{gathered}$	$\begin{gathered} 2.148 \mathrm{E}-13 \\ (0.582) \end{gathered}$	$\begin{gathered} -2.229 \mathrm{E}-13 \\ (-0.469) \end{gathered}$	$\begin{gathered} 2.344 \mathrm{E}-13 \\ (0.170) \end{gathered}$	$\begin{gathered} -1.984 \mathrm{E}-12 \\ (-0.182) \end{gathered}$	$\begin{gathered} 8.543 \mathrm{E}-12 \\ (0.694) \end{gathered}$	$\begin{gathered} -2.832 \mathrm{E}-11 \\ (-1.355) \end{gathered}$	$\begin{gathered} 2.925 \mathrm{E}-11 \\ (1.192) \end{gathered}$	$\begin{gathered} 1.466 \mathrm{E}-11 \\ (0.581) \end{gathered}$	0.021	-0.009	0.077	0.721
	6	$\begin{gathered} 2.762 \mathrm{E}-13 \\ (2.198) \end{gathered}$	$\begin{gathered} -5.460 \mathrm{E}-14 \\ (-0.294) \end{gathered}$	$\begin{gathered} -5.327 \mathrm{E}-13 \\ (-0.611) \end{gathered}$	$\begin{gathered} -7.218 \mathrm{E}-13 \\ (-0.641) \end{gathered}$	$\begin{gathered} 2.397 \mathrm{E}-12 \\ (0.737) \end{gathered}$	$\begin{gathered} -4.314 \mathrm{E}-11 \\ (-1.671) \end{gathered}$	$\begin{gathered} 1.369 \mathrm{E}-11 \\ (0.469) \end{gathered}$	$\begin{gathered} -4.203 \mathrm{E}-11 \\ (-0.850) \end{gathered}$	$\begin{gathered} 1.250 \mathrm{E}-11 \\ (0.216) \end{gathered}$	$\begin{gathered} \text { 6.891E-11 } \\ (1.154) \end{gathered}$	0.033	0.004	0.183	0.334
	12	$\begin{gathered} 1.532 \mathrm{E}-13 \\ (0.872) \end{gathered}$	$\begin{gathered} -2.235 \mathrm{E}-13 \\ (-0.867) \end{gathered}$	$\underset{(-0.233)}{-2.814 \mathrm{E}-13}$	$\begin{gathered} -1.046 \mathrm{E}-12 \\ (-0.670) \end{gathered}$	$\begin{gathered} -1.524 \mathrm{E}-12 \\ (-0.338) \end{gathered}$	$\begin{gathered} -3.320 \mathrm{E}-11 \\ (-0.920) \end{gathered}$	$\begin{gathered} 2.340 \mathrm{E}-11 \\ (0.577) \end{gathered}$	$\begin{gathered} -3.941 \mathrm{E}-11 \\ (-0.575) \end{gathered}$	$\begin{gathered} 5.071 \mathrm{E}-11 \\ (0.630) \end{gathered}$	$\begin{gathered} 9.820 \mathrm{E}-11 \\ (1.187) \end{gathered}$	0.017	-0.014	0.253	0.858
$\hat{\beta}_{2, t+h}$	1	$\begin{gathered} 9.786 \mathrm{E}-13 \\ (1.710) \end{gathered}$	$\begin{gathered} -1.035 \mathrm{E}-12 \\ (-1.210) \end{gathered}$	$\begin{gathered} 1.938 \mathrm{E}-12 \\ (0.483) \end{gathered}$	$\begin{gathered} 1.581 \mathrm{E}-12 \\ (0.306) \end{gathered}$	$\begin{gathered} 3.003 \mathrm{E}-12 \\ (0.201) \end{gathered}$	$\begin{gathered} 6.880 \mathrm{E}-11 \\ (0.580) \end{gathered}$	$\begin{gathered} -1.659 \mathrm{E}-10 \\ (-1.240) \end{gathered}$	$\begin{gathered} -1.001 \mathrm{E}-10 \\ (-0.441) \end{gathered}$	$\begin{gathered} 1.166 \mathrm{E}-11 \\ (0.044) \end{gathered}$	$\begin{gathered} -7.073 \mathrm{E}-11 \\ (-0.258) \end{gathered}$	0.020	-0.009	0.841	0.735
	6	$\begin{gathered} 2.93 \mathrm{E}-12 \\ (1.914) \end{gathered}$	$\begin{gathered} -1.54 \mathrm{E}-12 \\ (-0.678) \end{gathered}$	$\begin{gathered} 2.21 \mathrm{E}-13 \\ (0.021) \end{gathered}$	$\begin{gathered} 2.16 \mathrm{E}-11 \\ (1.576) \end{gathered}$	$\begin{gathered} 4.27 \mathrm{E}-12 \\ (0.108) \end{gathered}$	$\begin{gathered} 2.98 \mathrm{E}-11 \\ (0.095) \end{gathered}$	$\begin{gathered} -5.44 \mathrm{E}-10 \\ (-1.533) \end{gathered}$	$\begin{gathered} 1.04 \mathrm{E}-10 \\ (0.174) \end{gathered}$	$\begin{gathered} 7.24 \mathrm{E}-11 \\ (0.103) \end{gathered}$	$\begin{gathered} -1.80 \mathrm{E}-10 \\ (-0.248) \end{gathered}$	0.027	-0.003	2.230	0.526
	12	$\begin{gathered} 3.28 \mathrm{E}-12 \\ (1.069) \end{gathered}$	$\begin{gathered} -5.38 \mathrm{E}-12 \\ (-1.198) \end{gathered}$	$\begin{gathered} -7.45 \mathrm{E}-12 \\ (-0.354) \end{gathered}$	$\begin{gathered} 6.40 \mathrm{E}-12 \\ (0.235) \end{gathered}$	$\begin{gathered} -2.41 \mathrm{E}-11 \\ (-0.307) \end{gathered}$	$\begin{gathered} 2.39 \mathrm{E}-10 \\ (0.380) \end{gathered}$	$\begin{gathered} -1.14 \mathrm{E}-09 \\ (-1.606) \end{gathered}$	$\begin{gathered} 3.70 \mathrm{E}-10 \\ (0.310) \end{gathered}$	$\begin{gathered} 4.79 \mathrm{E}-10 \\ (0.341) \end{gathered}$	$\begin{gathered} -9.74 \mathrm{E}-10 \\ (-0.676) \end{gathered}$	0.019	-0.011	4.420	0.793
$\hat{\beta}_{3, t+h}$	1	$\begin{gathered} 4.118 \mathrm{E}-13 \\ (0.397) \end{gathered}$	$\begin{gathered} 8.903 \mathrm{E}-14 \\ (0.057) \end{gathered}$	$\begin{gathered} -1.655 \mathrm{E}-11 \\ (-2.276) \end{gathered}$	$\begin{gathered} 1.020 \mathrm{E}-11 \\ (1.089) \end{gathered}$	$\begin{gathered} 3.183 \mathrm{E}-12 \\ (0.117) \end{gathered}$	$\begin{gathered} 9.021 \mathrm{E}-11 \\ (0.419) \end{gathered}$	$\begin{gathered} -3.707 \mathrm{E}-10 \\ (-1.528) \end{gathered}$	$\begin{gathered} -2.872 \mathrm{E}-10 \\ (-0.698) \end{gathered}$	$\begin{gathered} -8.338 \mathrm{E}-11 \\ (-0.173) \end{gathered}$	$\begin{gathered} -5.134 \mathrm{E}-10 \\ (-1.033) \end{gathered}$	0.031	0.002	1.520	0.390
	6	$\begin{gathered} 4.83 \mathrm{E}-13 \\ (0.146) \end{gathered}$	$\begin{gathered} -1.26 \mathrm{E}-13 \\ (-0.026) \end{gathered}$	$\begin{gathered} -3.51 \mathrm{E}-11 \\ (-1.524) \end{gathered}$	$\begin{gathered} 3.95 \mathrm{E}-11 \\ (1.331) \end{gathered}$	$\begin{gathered} -1.23 \mathrm{E}-11 \\ (-0.143) \end{gathered}$	$\begin{gathered} 3.82 \mathrm{E}-10 \\ (0.560) \end{gathered}$	$\begin{gathered} -1.52 \mathrm{E}-11 \\ (-0.020) \end{gathered}$	$\begin{gathered} -1.67 \mathrm{E}-09 \\ (-1.280) \end{gathered}$	$\begin{gathered} -1.31 \mathrm{E}-09 \\ (-0.855) \end{gathered}$	$\begin{gathered} -8.10 \mathrm{E}-10 \\ (-0.514) \end{gathered}$	0.021	-0.009	4.830	0.717
	12	$\begin{gathered} 4.13 \mathrm{E}-12 \\ (1.410) \end{gathered}$	$\begin{gathered} -1.81 \mathrm{E}-12 \\ (-0.422) \end{gathered}$	$\begin{gathered} -3.51 \mathrm{E}-11 \\ (-1.743) \end{gathered}$	$\begin{gathered} 2.07 \mathrm{E}-11 \\ (0.797) \end{gathered}$	$\begin{gathered} -4.57 \mathrm{E}-11 \\ (-0.609) \end{gathered}$	$\begin{gathered} 3.77 \mathrm{E}-10 \\ (0.627) \end{gathered}$	$\begin{gathered} -2.65 \mathrm{E}-10 \\ (-0.392) \end{gathered}$	$\begin{gathered} -9.04 \mathrm{E}-10 \\ (-0.791) \end{gathered}$	$\begin{gathered} -9.00 \mathrm{E}-10 \\ (-0.671) \end{gathered}$	$\begin{gathered} -6.36 \mathrm{E}-10 \\ (-0.461) \end{gathered}$	0.0242	-0.0059	4.230	0.624

forming the PCs, as opposed to forming the PCs from all the variables in X. We now turn our focus to only the regressions with targeted PCs. We obtain the highest R^{2} in the $\hat{\beta}_{3, t+1}$ model; the targeted PCs explain almost 16% of the variation in the one month ahead curvature factor changes. This number drastically decreases at longer horizons, with R^{2} s of 1.6% and 1.8% at the six and twelve months horizons, respectively. The second highest R^{2} is obtained in the $\hat{\beta}_{1, t+12}$ regression, with about 14% of the variation being explained by the targeted PCs. This number decreases as the horizons decreases. This is an interesting finding; the targeted PCs do better at forecasting $\hat{\beta}_{1, t+h}$ as h increases. The same pattern is observed in the $\mathrm{R}^{2} \mathrm{~s}$ from the $\hat{\beta}_{1, t+h}$ regressions; here too do the targeted PCs perform better in terms of R^{2} at longer horizons. The RMSE, however, tends to increase in the forecasting horizon, meaning that the forecasting errors become larger as we increase h.

In Table (6) and (7), we have simply run multiple linear regressions of the 10 first targeted and non-targeted PCs on the factor changes at different forecasting horizons. What happens if we control for lags of the factors and let an algorithm choose the BIC-minimizing model specifications, i.e., the BICminimizing combination of lags and targeted PCs? The answer is found in Table (8). The results presented in Table (8) are from regression specifications chosen by a Matlab algorithm which searches through different combinations of the 10 first targeted PCs and four lags of $\hat{\beta}_{t+h}$ (i.e. $\hat{\beta}_{t}, \hat{\beta}_{t-1}, \hat{\beta}_{t-2}$, and $\hat{\beta}_{t-3}$), and selects the combination minimizing BIC. This is the same method we use in the algorithm discussed in the methodology section, only now we produce in-sample forecasts rather than out-of-sample forecasts. In Table (9) we run the same BIC-minimizing algorithm using only lags as predictors, i.e. only using autoregressive models. This is used as an in-sample benchmark against the targeted PCs.

From the results in Table (8) and (9) it becomes clear that we increase the in-sample predictive power for $\hat{\beta}_{1, t+h}$ and $\hat{\beta}_{3, t+h}$ by including targeted PCs in addition to lags of the factors. That is, by extending the forecasting equations to include targeted PCs if this reduces the BIC, we obtain higher predictive power for these two factors. For $\hat{\beta}_{2, t+h}$, it is never optimal to include targeted PCs. At the one month ahead and twelve months ahead regressions only lags of $\hat{\beta}_{2, t+h}$ are included, while at the six month ahead regression the BICminimizing specification is to only include an intercept.

We begin with analysis of the $\hat{\beta}_{1, t+h}$ regressions. The BIC-minimizing algorithm chooses to include combinations of targeted PCs and lags at all horizons, and all coefficient estimates are statistically significant, both on the lags and the targeted PCs. The predictors are also jointly significant across all horizons. We slightly improve the predictive power for $\hat{\beta}_{1, t+h}$ by letting the algorithm select from the targeted PCs. This can be seen by higher $\mathrm{R}^{2} \mathrm{~s}$, both ordinary and adjusted, lower RMSEs, lower BICs, and lower F-test p-values from
Threshold t-stat. $=1.65$

Factor	h	Intercept	$\hat{\beta}_{t}$	$\hat{\beta}_{t-1}$	$\hat{\beta}_{t-2}$	$\hat{\beta}_{t-3}$	P1	P3	P4	P5	P6	P7	P9	P10	R^{2}	R^{2} adj.	RMSE	BIC	F-test
$\hat{\beta}_{1, t+h}$	1	$\begin{gathered} -0.001 \\ (-0.328) \end{gathered}$		$\begin{gathered} -0.165 \\ (-3.111) \end{gathered}$			$\begin{gathered} 4.412 \mathrm{E}-11 \\ (2.499) \end{gathered}$				$\begin{gathered} 7.291 \mathrm{E}-10 \\ (2.455) \end{gathered}$				0.065	0.057	0.075	-781.566	$4.590 \mathrm{E}-05$
	6	$\begin{gathered} -0.003 \\ (-0.440) \end{gathered}$	$\begin{gathered} 0.924 \\ (17.442) \end{gathered}$	$\underset{(-2.555)}{-1.361 \mathrm{E}-01}$						$\begin{gathered} 2.588 \mathrm{E}-05 \\ (2.575) \end{gathered}$		$\begin{gathered} 5.673 \mathrm{E}-05 \\ (3.188) \end{gathered}$			0.678	0.674	0.105	-538.224	1.660E-80
	12	$\begin{gathered} -0.003 \\ (-0.516) \end{gathered}$	$\begin{gathered} 1.112 \\ (21.919) \end{gathered}$	$\begin{gathered} -0.401 \\ (-5.569) \end{gathered}$	$\begin{gathered} 0.388 \\ (5.405) \end{gathered}$	$\begin{gathered} -0.213 \\ (-4.196) \end{gathered}$						$\begin{gathered} -9.006 \mathrm{E}-05 \\ (-5.613) \end{gathered}$	$\begin{gathered} 9.154 \mathrm{E}-05 \\ (3.201) \end{gathered}$	$\begin{gathered} -1.812 \mathrm{E}-04 \\ (-4.165) \end{gathered}$	0.836	0.833	0.104	-525.2582	3.35E-123
$\hat{\beta}_{2, t+h}$	1	$\begin{gathered} -0.082 \\ (-1.859) \end{gathered}$	$\begin{gathered} 0.140 \\ (2.642) \end{gathered}$	$\begin{gathered} 0.130 \\ (2.457) \end{gathered}$	$\begin{gathered} -0.240 \\ (-4.510) \\ \hline \end{gathered}$										0.081	0.073	0.811	848.6709	$2.490 \mathrm{E}-06$
	6	$\begin{gathered} -2.24 \mathrm{E}-01 \\ (-1.840) \end{gathered}$													0.000	0.000	2.240	$1.508 \mathrm{E}+03$	0.000
	12	$\begin{gathered} -4.88 \mathrm{E}-01 \\ (-2.027) \end{gathered}$	$\begin{gathered} -1.62 \mathrm{E}-01 \\ (-2.987) \\ \hline \end{gathered}$												0.026	0.023	4.37	$1.930 \mathrm{E}+03$	0.003
$\hat{\beta}_{3, t+h}$	1	$\begin{gathered} -0.125 \\ (-1.658) \end{gathered}$					$\begin{gathered} \hline-1.881 \mathrm{E}-06 \\ (-6.398) \end{gathered}$		$\begin{gathered} \hline-2.716 \mathrm{E}-04 \\ (-2.953) \end{gathered}$						0.128	0.123	1.400	$1.220 \mathrm{E}+03$	7.940E-11
	6	$\begin{gathered} -2.33 \mathrm{E}-01 \\ (-1.738) \end{gathered}$			$\frac{-9.946 \mathrm{E}-02}{(-3.585)}$			$\underset{(-2.629)}{-1.955 \mathrm{E}-07}$							0.058	0.0525	2.460	$1.58 \mathrm{E}+03$	4.380E-05
	12	$\begin{gathered} -0.388 \\ (-2.151) \\ \hline \end{gathered}$	$\begin{gathered} 0.192 \\ (3.655) \\ \hline \end{gathered}$												0.039	0.036	3.260	$1.74 \mathrm{E}+03$	$2.990 \mathrm{E}-04$

Table 8
Threshold t-stat. $=1.65$

Factor	h	Intercept	$\hat{\beta}_{t}$	$\hat{\beta}_{t-1}$	$\hat{\beta}_{t-2}$	$\hat{\beta}_{t-3}$	R^{2}	$R^{2} a d j$.	RMSE	BIC	F-test
$\hat{\beta}_{1, t+h}$	1	$\begin{gathered} \hline-0.001 \\ (-0.351) \end{gathered}$		$\begin{gathered} \hline-0.176 \\ (-3.295) \end{gathered}$			0.031	0.028	0.0764	-781.025	0.001
	6	$\begin{gathered} -2.491 \mathrm{E}-03 \\ (-0.425) \end{gathered}$	$\begin{gathered} 9.370 \mathrm{E}-01 \\ (17.351) \end{gathered}$	$\begin{gathered} -1.601 \mathrm{E}-01 \\ (-2.960) \end{gathered}$			0.661	0.659	0.108	-533.350	$1.690 \mathrm{E}-79$
	12	$\begin{gathered} -3.031 \mathrm{E}-03 \\ (-0.492) \end{gathered}$	$\begin{gathered} 1.067 \mathrm{E}+00 \\ (19.615) \end{gathered}$	$\begin{gathered} -0.376 \\ (-4.847) \end{gathered}$	$\begin{gathered} 0.371 \\ (4.784) \end{gathered}$	$\begin{gathered} -0.185 \\ (-3.384) \end{gathered}$	0.807	8.043E-01	0.112	-487.582	$2.70 \mathrm{E}-115$
$\hat{\beta}_{2, t+h}$	1	$\begin{gathered} -0.082 \\ (-1.859) \end{gathered}$	$\begin{gathered} \hline 0.140 \\ (2.642) \end{gathered}$	$\begin{gathered} \hline 0.130 \\ (2.457) \end{gathered}$	$\begin{gathered} -0.240 \\ (-4.510) \end{gathered}$		0.081	0.073	0.811	848.671	$2.49 \mathrm{E}-06$
	6	$\begin{gathered} -2.24 \mathrm{E}-01 \\ (-1.840) \end{gathered}$					0.000	0.000	2.240	$1.508 \mathrm{E}+03$	0.000
	12	$\begin{gathered} -4.88 \mathrm{E}-01 \\ (-2.027) \end{gathered}$	$\begin{gathered} -1.62 \mathrm{E}-01 \\ (-2.987) \end{gathered}$				0.026	0.0234	4.37	$1.930 \mathrm{E}+03$	0.003
$\hat{\beta}_{3, t+h}$	1	$\begin{gathered} -1.258 \mathrm{E}-01 \\ (-1.557) \end{gathered}$					0.000	0.000	1.500	$1.255 \mathrm{E}+03$	0.000
	6	$\begin{gathered} -2.367 \mathrm{E}-01 \\ (-1.748) \end{gathered}$			$\begin{gathered} -1.028 \mathrm{E}-01 \\ (-3.679) \end{gathered}$		0.039	0.036	2.480	$1.584 \mathrm{E}+03$	$2.730 \mathrm{E}-04$
	12	$\begin{gathered} -0.388 \\ (-2.151) \end{gathered}$	$\begin{gathered} 0.192 \\ (3.655) \end{gathered}$				0.039	0.036	3.260	$1.737 \mathrm{E}+03$	$2.990 \mathrm{E}-04$

the regressions including targeted PCs compared to those only including lags. Taking a closer look at $\hat{\beta}_{1, t+1}$, we observe that by including the first and sixth targeted PC in addition the second lag we obtain almost twice as high R^{2} and R^{2} adjusted compared to only including the second lag, from 3.1% and 2.8% to 6.5% and 5.87%, respectively. Also note that although the R^{2} is slightly lower in Table (8) than in Table (6), the R^{2} adjusted has increased. This means that we explain more variance relative to the number of predictors, which means that we have a more parsimonious forecasting equation. The RMSE, BIC (obviously), and F-test p-value are also improved by including targeted PCs for $\hat{\beta}_{1, t+1}$, although the differences are slight. If we compare the coefficient estimates of the targeted PCs and the second lag, we see a huge difference in the economic significance; the coefficient estimate on the second lag is much, much larger than the estimates on the targeted principal components. This is the reason why the differences in the BIC and RMSE between not including targeted PCs and including them are so slight; the model with targeted PCs only slightly outperform the alternative.

The same pattern holds for $\hat{\beta}_{1, t+6}$ and $\hat{\beta}_{1, t+12}$; it is optimal to include targeted PCs (the fifth and seventh, and the seventh, ninth and tenth, respectively), but the improvements in predictive power are only slight due to the low economic significance of the targeted PCs. What's noteworthy about these two horizons is the remarkably high R^{2} of 68% and 84%, respectively. This finding is mostly driven by the lags; in the regressions only including lags, we obtain an R^{2} of 66% and 81%, which means that $\hat{\beta}_{1, t+h}$ is highly forecastable by autoregressive models of order 2 and 4 at the six and twelve months horizons. We gain a slight improvement of the predictive power by including the targeted PCs.

For $\hat{\beta}_{2, t+h}$ it is never optimal to include targeted PCs. At the one month horizon an $\operatorname{AR}(3)$ model is chosen by the algorithm which gives an R^{2} of 8.1%. At the six months horizon it is optimal to only include an intercept, and we thus obtain an R^{2} of 0% for $\hat{\beta}_{2, t+6}$. At the twelve months horizon the minimum BIC is obtained with an $\operatorname{AR}(1)$ model, which explains 2.6% of the variation in $\hat{\beta}_{2, t+12}$. We find it quite surprising that $\hat{\beta}_{2, t+h}$ is not forcastable with targeted predictors. As $\hat{\beta}_{2 t}$ can be interpreted as the yield curve slope, we expected it to be related to variables measuring real economic activity. Indeed, when we look at the top 100 most important predictors for $\hat{\beta}_{2, t+h}$ (in terms of t statistics) we find many such variables. Additionally, in Table (6) we see that the first targeted PC for $\hat{\beta}_{2, t+h}$ is statistically significant across all horizons. Nonetheless, we find that the BIC-minimizing in-sample forecasting models do not include any targeted PCs, meaning that we do not find $\hat{\beta}_{2, t+h}$ to be forecastable with the targeted diffusion indices. Note that when we perform out-of-sample forecasting it may for some forecasts be optimal (in terms of BIC) to include targeted PCs, i.e. that targeted PCs might predict $\hat{\beta}_{2, t+h}$ for
certain sample periods.
Contrarily, the algorithm chooses to only include targeted PCs, and not any lags, for $\hat{\beta}_{3, t+h}$ at the one month horizon. Here, it is optimal to include the first and fourth targeted PC which together explain 12.8% of the variation in $\hat{\beta}_{3, t+1}$. They are both independently and jointly significant, with an F-test p-value close to zero. Since the algorithm chooses not to include any lags, it seems that we are able to outperform the Diebold and Li model (which forecasts the factors as $\mathrm{AR}(1)$ processes) in-sample. We observe that if we only let the algorithm use lags as regressors, it is optimal to only include an intercept for $\hat{\beta}_{3, t+1}$. Comparing Table (6) and Table (8), we see that by using the algorithm to minimize BIC we actually obtain a lower R^{2} adjusted than we do by using all of the ten first targeted PCs. We see, however, that the RMSE is lower when using the algorithm and that the difference in the R^{2} adjusted is small, while the model chosen by the algorithm is more parsimonious.

For the six months horizon, it is optimal to include the third lag and the third targeted PC. Both are statistically significant. This model obtains an R^{2} of 5.8% and an R^{2} adjusted of 5.3% which is higher than what we obtain if we were only to use lags. This is also higher than what we obtain by using all of the ten first PCs, with which we obtain an R^{2} of 1.6%. The RMSE is also the lowest when using the algorithm with targeted PCs. At the twelve months horizon an $\operatorname{AR}(1)$ model is chosen by the algorithm. With this we obtain an R^{2} of 3.9%. This means that we find no in-sample predictive power of the targeted PCs for $\hat{\beta}_{3, t+12}$.

We now move to an analysis of the targeted PCs and the targeted variables for each factor. We begin by looking at which variables the targeted PCs chosen by the algorithm loads the heaviest on. We find this in the same manner as Ludvigson and Ng (2009); we regress each of the targeted PCs on each of the variables in X and report the marginal R^{2} using a bar-plot. Each bar corresponds to a variable in X, and we have grouped the variables such that one can see which variable category the targeted PCs load the heaviest on. Because each factor and each forecast horizon use a different set of targeted variables (which gives different targeted PCs), we restrict our analysis to only look at the targeted PCs chosen for the one month horizon. For $\hat{\beta}_{1, t+1}$ this is the first and sixth targeted PC, for $\hat{\beta}_{2, t+1}$ no targeted PCs are chosen, and for $\hat{\beta}_{3, t+1}$ the first and fourth targeted PC are included. Again, we stress that the first targeted PC for $\hat{\beta}_{1, t+1}$ is not the same as the first targeted PC for $\hat{\beta}_{3, t+1}$. Hence, we expect the two PCs to load differently on the variables in X. We will examine the two most important variable categories for each of the targeted PCs the algorithm choose to include for $\hat{\beta}_{1, t+1}$ and $\hat{\beta}_{3, t+1}$. For an exhaustive list of all the variables in each category, please see Appendix 3.

First, we look at the first and sixth targeted PC for $\hat{\beta}_{1, t+1}$ in Figure (8). Each vertical line marks the beginning of a new variable category (each cate-

Figure 8
gory is reported in Appendix 3). We find that the first targeted PC for $\hat{\beta}_{1, t+1}$ loads the most heavily on the "Jobless Claims"-category, i.e. the range between 716 and 816 on the X-axis. In this category we have variables such as state-level initial claims and continued claims. Initial claims are the claims first to be filed by unemployed individuals to request a determination of eligibility for unemployment insurance benefits, while continued claims are the filed by individuals needing to continue receiving benefits because of continued unemployment. Because they give an indication of the state of employment before the actual unemployment numbers are released, these variables are considered to be important leading indicators of macroeconomic activity (Federal Reserve Bank of St.Louis, 2020). Because the first targeted PC for $\hat{\beta}_{1, t+1}$ load heavily on these variables, it means that these variables have predictive power for the one-month ahead yield curve level.

The second group to which the first targeted PC for $\hat{\beta}_{1, t+1}$ loads heavily on is the group of so-called "Leading Index"-variables (the range between 953
and 1003 on the X -axis). A leading index is a state-level prediction of the sixmonth growth rate of the state's coincident index, which is a measure of the current state of economic activity in that particular state. The leading index is estimated from other, leading variables in addition to the coincident index; state-level housing permits, state initial unemployment insurance claims, delivery times from the Institute for Supply Management manufacturing survey, and the interest rate spread between the 10 -year Treasury bond and the 3 month Treasury bill (i.e. the empirical yield curve slope) (Federal Reserve Bank of St.Louis, 2020).

It becomes clear that the first targeted PC for $\hat{\beta}_{1, t+1}$ relates to leading macroeconomic variables such as initial claims and leading indices. Since we find this PC to predict the yield curve level one month ahead, we find a link between these leading variables and $\hat{\beta}_{1, t+1}$.

We now move to the sixth targeted PC for $\hat{\beta}_{1, t+1}$. This PC also loads heavily on the "Jobless Claims"-category, albeit weaker than the first targeted PC. The most important variables for this PC are the ones belonging to the group of "High Quality Market (HQM) Corporate Bonds"-variables (the range between 143 and 249 on the X-axis). This category consists of spot rates for HQM Corporate Bonds for different maturities, and can this be viewed as the U.S. HQM Corporate Bond yield curve. The HQM yield curve is constructed from a set of corporate bonds rated AAA, AA or A that accurately represent the high quality U.S. corporate bonds market (Federal Reserve Bank of St.Louis, 2020). Since the sixth targeted PC for $\hat{\beta}_{1, t+1}$ loads heavily on the HQM yield curve, and this PC has predictive power for $\hat{\beta}_{1, t+1}$, we can infer that the HQM yield curve predicts the Treasury yield curve level factor.

In Figure (9) we perform the same analysis on the targeted PCs for $\hat{\beta}_{3, t+1}$ chosen by the algorithm, namely the first and fourth targeted PC. The first targeted PC for $\hat{\beta}_{3, t+1}$ loads very distinctively on both the "High Quality Market (HQM) Corporate Bonds"-category and on the "Home Price Index (HMI)"category (the range between 506 and 563 on the X-axis). The loading on the first category implies that the HQM yield curve also predicts the US Treasury yield curve curvature factor, in addition to the level factor as discussed above. The second category consists city-level S\&P Case-Shiller Home Price Indices, which are the leading measures of U.S. residential real estate prices (Federal Reserve Bank of St.Louis, 2020). Since the first targeted PC for $\hat{\beta}_{3, t+1}$ load heavily on these variables, we can infer a link between current home prices and the one-month ahead yield curve curvature.

Lastly, we look at the fourth targeted PC for $\hat{\beta}_{3, t+1}$. This PC loads very heavily on the already mentioned group of "Leading Index"-variables (the range between 953 and 1003 on the X -axis). This means that the state-level leading indices also predicts the one-month ahead yield curve curvature. Next, the PC loads heavily on the "Home Price Index (HMI)"-category in the same

Figure 9
manner as the first targeted PC. Since both the first and sixth targeted PC for $\hat{\beta}_{3, t+1}$ is related to the housing market, and both are chosen by the algorithm to predict $\hat{\beta}_{3, t+1}$, the notion that the home prices predict the yield curve curvature is further strengthened. The last category we will examine is the category we call "Employment and Hours" (the range between 240 and 417 on the X-axis). This group consists of variables on the numbers of employees in different sectors, the number of hours they work, the employment and unemployment rates of different demographical groups, and ratios of unemployed to the labour force (among others). We thus establish a link between the current state of employment and the yield curve curvature factor one month ahead.

The last part of our in-sample analysis will be devoted to further analysing the relationship between the variables in X and the three DNS yield curve factors $\left\{\hat{\beta}_{1, t+h}, \hat{\beta}_{2, t+h}, \hat{\beta}_{3, t+h}\right\}$. We do so by looking at the variables targeted with our t-statistic threshold of $1.65(\alpha=5 \%)$; which variables are chosen for the different factors at the different time steps? In other words, we examine
the predictive power of each variable in X for $\left\{\hat{\beta}_{1, t+h}, \hat{\beta}_{2, t+h}, \hat{\beta}_{3, t+h}\right\}$ at $h=1$, 6 , and 12 months, after controlling for four lags of the factors. This analysis gives insight into which variables are used to form the targeted PCs we employ in the forecasting models reported in Table (6) and Table (8). We present the top 100 most important variables (in terms of t-statistic) for each factor and each forecast horizon in Appendix 2. Note that because for all factors at all horizons the top 100 t-statistics are all greater that 1.65, all top 100 variables make it into the PCs.

For $\hat{\beta}_{1, t+h}$, we see that the HQM Corporate Bonds spot rates are important predictors across all forecast horizons, but especially at the one and twelve months horizons. This is in line with what we found above; the HQM yield curve has predictive power for the Treasury yield curve level. For both $\hat{\beta}_{1, t+6}$ and $\hat{\beta}_{1, t+12}$, but not for $\hat{\beta}_{1, t+1}$, we find that the "Fitted Instantaneous Forward Rate" of various maturities are associated with the highest t-statistics. This implies that forward rates bear important predictive information about the yield curve, which is in line with the findings of Fama and Bliss (1987) and Cochrane and Piazzesi (2005). It is interesting that no forward rates enter the top 100 for $\hat{\beta}_{1, t+h}$ at the one month horizon, since these have been found to have predictive power for excess government bond returns both. Lastly, we find it interesting that different price indices (e.g. inflation) only enters the top 100 at the one month horizon. A priori, we expected the yield curve level to be highly related to inflation. However, our analysis shows that price indices like inflation has decreasing predictive power in the forecast horizon. It is also worth noting that different real-output variables like the industrial production index enters the top 100 at both the six and twelve months horizons, but not at the one month horizon. In sum, we observe more similar variables among the top 100 across the six and twelve months horizons than we do across the one and six months or the one and twelve months horizons.

For $\hat{\beta}_{2, t+h}$ we observe variables from many different groups; the only category that stands out across all three horizons is the "Employment and Hours"category. Also note that while we for the most part found the levels of the variables in the top 100 for $\hat{\beta}_{1, t+h}$, we find several squared variables in the top 100 for $\hat{\beta}_{2, t+h}$. This implies that we gain predictive power by allowing for a non-linear link function between the variables and the PCs. We further observe a mix between macroeconomic variables, such as employment and real output measures, and financial variables such as the Fama-French factors across all horizons.

For $\hat{\beta}_{3, t+h}$ we find price indices (e.g. inflation) to be important, especially for the one and six months horizons. For $\hat{\beta}_{3, t+1}$, "Personal Income and Expenditures"-variables are associated with high t-statistics. While some of these variables enter the top 100 at the longer horizons, the relationship is weaker. Furthermore, we observe a lot of real-output measures like indus-
trial production indices for different industries, and also a decent amount of variables related to the state of employment. In sum, we find quite similar variables across all three forecast horizons. Additionally, we find many similar variables to predict both $\hat{\beta}_{2, t+h}$ and $\hat{\beta}_{3, t+h}$. This might imply that the same economic forces are driving the yield curve slope and yield curve curvature (i.e. forecastable by the same economic variables), which might explain why we find a correlation between $\hat{\beta}_{2}$ and $\hat{\beta}_{3}$ of 0.66 .

We have now seen that the targeted PCs have in-sample predictive power for $\hat{\beta}_{1, t+h}$ and $\hat{\beta}_{3, t+h}$, but not for $\hat{\beta}_{2, t+h}$. This means that we by including targeted PCs in the BIC-minimizing algorithm obtain superior in-sample forecasts to that of an pure autoregressive alternative (see Table (8) vs. Table (9)). This means that we in-sample beat the Diebold and Li (2006) model in terms of BIC; if $\mathrm{AR}(1)$ models were optimal, our algorithm would have chosen these models. It is not our ultimate goal, however, to produce in-sample forecast the DNS yield curve factors; we are ultimately going to forecast out-of-sample yields, not in-sample yield curve factors. We thus turn to the out-of-sample forecasting results.

5.2.2 Out-of-Sample Analysis

Here we employ the algorithm presented in the methodology section. We have an initial training period of 10 years from 1991:1 to 2001:1, and produce out-of-sample forecasts of the changes in $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\} 1,6$, and 12 months ahead recursively with a holdout-period from 2001:2 to 2019:12. In Table (10), we report the RMSE of our TDIF model along with the RMSE of the benchmark models outlined in the methodology section, while we in Table (11) report the relative RMSE (RRMSE) measure (Eq. (26)).

As one can see from Table (10) and (11), the TDIF model is systematically outperformed in terms of RMSE by all of the benchmark models. It is only for the six months ahead forecast of the three-month yield we are able to outperform the Diebold-Li model, which we considered to be the main benchmark. We find this result to be somewhat surprising given the in-sample predictive power we found the targeted diffusion indexes to have for the DNS model parameters $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. Although we a-priori viewed the Diebold-Li model (Eq. (29)) to be the main benchmark as they were able to beat all benchmarks in their sample, it is with the random walk model (Eq. (27)) we obtain the lowest RMSE. This means that the findings of Diebold and Li (2006) do not hold in our sample. Additionally, we find that the added flexibility of letting an algorithm select the number of lags by minimizing BIC (Eq. (30)) results in lower RMSEs at the six and twelve month horizon compared with the Diebold-Li model. Not only is the Diebold-Li model outperformed by the random walk model; this simple model is superior to all the models we use

Maturity	DNS with AR(1)	DNS with AR(p)	AR(1) on yield levels	Random walk	TDIF
$h=1$					
3	0.378	0.402	0.195	0.194	0.620
6	0.317	0.353	0.214	0.212	0.622
12	0.285	0.320	0.199	0.197	0.693
24	0.332	0.353	0.231	0.228	0.740
36	0.369	0.379	0.253	0.249	0.680
60	0.356	0.361	0.268	0.264	0.550
84	0.303	0.305	0.279	0.274	0.490
120	0.307	0.311	0.280	0.278	0.484
$h=6$					
3	1.288	1.116	0.707	0.690	1.250
6	1.273	1.065	0.711	0.687	1.323
12	1.255	1.014	0.713	0.678	1.526
24	1.228	0.971	0.716	0.661	1.727
36	1.153	0.912	0.723	0.662	1.699
60	0.945	0.759	0.702	0.648	1.408
84	0.738	0.604	0.684	0.610	1.117
120	0.574	0.501	0.594	0.579	0.840
$h=12$					
3	2.096	2.292	1.247	1.162	3.924
6	2.022	2.158	1.249	1.135	3.647
12	1.905	1.959	1.218	1.073	3.206
24	1.734	1.699	1.152	0.970	2.631
36	1.560	1.492	1.094	0.911	2.225
60	1.212	1.142	0.972	0.815	1.642
84	0.920	0.872	0.870	0.749	1.283
120	0.684	0.666	0.752	0.697	0.993

Table 10: RMSE
to produce out-of-sample forecasts of the yield curve. The second lowest RMSEs is obtained with a model also not related to the DNS yield curve model, namely the model in which we forecast the yield levels directly as $\operatorname{AR}(1)$ processes (Eq. (31)). This forecasting model along with the random walk model are both not depending on the DNS yield curve modelling procedure, and they are both able to produce superior out-of-sample forecasts to that of any of the DNS based models. This means that the models unrelated to the DNS modelling framework systematically outperform the models which forecast yields by forecasting the DNS model paramaters. From this finding we can infer that we are not benefiting from distilling the yield curve into three dynamic factors with the DNS approach, although we find the DNS model parameters $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}\right.$, $\left.\hat{\beta}_{3 t}\right\}$ to capture most of the cross-sectional variation in yields. The poor results of the forecasting models on forecasting the DNS model parameters can either be ascribed to poor forecasting of said parameters, or poor estimation of the parameters, or both. We find that the three DNS model parameters explain 93.42% of the variation in the yield curves. This points to the problem being poor out-of-sample forecasts, not poor estimation, of the model parameters.

Maturity DNS with $\operatorname{AR}(1)$ DNS with $\operatorname{AR}(\mathrm{p}) \quad \operatorname{AR}(1)$ on yield levels Random walk

$h=1$				
3	1.642	1.544	3.184	3.199
6	1.963	1.763	2.902	2.931
12	2.428	2.167	3.472	3.511
24	2.227	2.095	3.198	3.250
36	1.845	1.793	2.684	2.732
60	1.547	1.525	2.053	2.082
84	1.619	1.608	1.757	1.787
120	1.577	1.559	1.731	1.742
$h=6$				
3	0.970	1.119	1.768	1.862
6	1.216	1.242	2.140	1.812
12	1.407	1.505	2.414	2.249
24	1.473	1.779	2.349	2.612
36	1.489	1.863	2.004	2.568
60	1.514	1.854	1.635	2.174
84	1.462	1.849	1.413	1.832
120		1.678		1.451
$h=12$	1.872			
3	1.804	1.712	3.146	3.377
6	1.683	1.690	2.919	3.212
12	1.517	1.636	2.632	2.988
24	1.427	1.548	2.284	2.713
36	1.354	1.491	2.035	2.442
60	1.394	1.471	1.689	2.014
84		1.492	1.474	1.712
120			1.321	1.425

Table 11: RRMSE

5.3 Limitations

Our findings contradict the findings of Diebold and Li (2006). What could be the reason for the inferior out-of-sample forecasts from all the models based on the DNS yield curve modelling framework generally, and the TDIF model specifically? We will now explore the methodological limitations of our study.

First of all, our yield curve modelling methodology involves a lot of estimation which gives room for a lot of measurement errors. First, we estimate "raw" yields from the set of observable bond prices with the bootstrap method. These "raw" yields are not true, observed yields, but rather artificial yields from a theoretical zero coupon Treasury yield curve. Then, we use these estimated "raw" yields to estimate the DNS model parameters by fitting the NS model to the set of "raw" yields period by period. With this, we obtain estimated yields for a continuum of maturities, i.e. smoothed yield curves, but once again we move farther away from the actual yield curves. While this smoothing lets us describe the dynamics of the historical yield curves by just three, dynamic
parameters $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$, we lose some information by doing so. It is clear that the better these parameters explain the variation in the historical yield curves, the better the forecasts based on these parameters.

Second, our yield curve forecasting methodology also involves estimation. We do not use any explanatory variables directly in the forecasting models, but rather the first few principal components estimated from a large set of variables. It is clear that while the first few PCs explain a lot of the variation in X, we also lose potentially important information when reducing the set of 1196 variables to just ten variables. There might also be measurement errors in the PCs. Raykov, Marcoulides and Li (2017) shows that as long as just one variable in the set form which PCs are formed contains error of measurement, so does any estimated PC. When we have as many as 1196 variables it is clearly some risk of measurement error in one or more of the variables.

Additionally, some variables that constitute noise rather than information might make into the PCs; while we test for the predictive power of $X_{i t}$ before deciding whether the variable is "in our out" of the set of targeted variables from which we form the targeted PCs, it is not certain that this variable has true predictive power for $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$. As we use a hard thresholding rule based on a critical t-statstic value of 1.65, we might encounter false rejections; while we can say that if the null hypothesis of no predictive power is true we only get t-statistics larger than 1.65 with a relative frequency of 5%, we almost certainly commit one or more Type I errors since we run the test 1196 times - one time for each of the 1196 variables. In other words, the rate of false rejection is increasing in the number of variables for which we perform the statistical test. We chose a significance level α of 5% because this is the conventional significance threshold level. It would, however, be interesting to use a lower α too see if this yields lower forecast errors.

Furthermore, the choice of using hard thresholding based on t-statics means that we ignore joint significance, as discussed in the methodology section. This means that jointly significant but individually insignificant variables might be dropped. Furthermore, this thresholding is sensitive to small changes in the data because of the discreteness of our threshold rule. For a more detailed discussion regarding this issue we refer to page 38 in the methodology section.

Lastly, a potential weakness of our forecasting methodology might arise from collinear predictors in X. We have, for example, included consumer price indices for several different groups of goods, and we expect these variables to be highly correlated. Since we use PCs in our forecasting model, which are uncorrelated by design, we do not have a problem of collinear predictors directly. However, we rather have an indirect problem of collinearity since the diffusion indices are most effective when the set of variables from which they are estimated contain variables with distinct predictive information (Bai \& Ng, 2008). One might thus obtain lower forecast errors by designing a thresholding
test which takes into account both (a) the predictive power of $X_{i t}$ and (b) the correlation between $X_{i t}$ and any other targeted variable(s). For a more detailed discussion on alternative thresholding procedures we refer the interested reader to the section on soft thresholding in Bai and Ng (2008).

6 Conclusion

The objective of this thesis was to investigate the predictability of the U.S. Treasury yield curve and test whether it could be forecasted by targeted diffusion indices. We chose to model the yield curve with the Dynamic NelsonSiegel model in the same manner as Diebold and Li (2006), both because this model has proven to fit well in the cross-section of yields and because it has successfully been used to forecast the yield curve. Diebold and Li (2006) uses a-theoretical $\mathrm{AR}(1)$ processes to forecast the DNS model parameters and extract yields from the forecasted NS yield curves, with which they are able to produce superior out-of-sample forecasting results. We wanted to explore whether we could improve these forecasts by using explanatory variables that might explain the demand for Treasury securities. As Ludvigson and Ng (2009) produce improved forecasts of excess Treasury bond returns using targeted diffusion indices based on macroeconomic variables, we hypothesized that such targeted diffusion indices also might predict the DNS model parameters and thus the entire yield curve.

First of all, we find that the DNS model indeed provides a good fit to the yield curve, with an average R^{2} of 93.42%. This means that the three dynamic model parameters $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$ on average capture most of the variation in the yield curves. We also found that the DNS yield curves largely exhibit the same behavior as the actual yield curves, in terms of the mean values, standard deviation, and persistence. Furthermore, we showed why these three parameters could be interpreted as proxies for three first yield curve factors; level, slope and curvature. These three factors (i.e. the three first principal components of the yield curves) explain almost all cross-sectional variation in yields, and can be a-priori linked with macroeconomic variables such as inflation and real output. This finding helps explain why the DNS model provides such a good fit; it is possible to give its parameters an economic interpretation. Additionally, we show that the NS functional form exhibit some appealing properties that reason well with economic theory, and we presented some stylized facts about the yield curve to which the DNS model in principle should adhere.

Although we find the DNS model to provide a good fit, we do not find that the method of forecasting its parameters gives superior out-of-sample yield curve forecasts. We find that our TDIF model performs the worst in terms of RMSE across all benchmark models. We further find that any of the
models based on the DNS model produce inferior results to that of a random walk model, including the Diebold-Li model. This means that the findings of Diebold and Li (2006) do not hold for the yield curves in our sample; we obtain the best out-of-sample forecasts by employing models directly on yield levels rather than on the DNS model parameters.

We do, however, find in-sample predictability of the DNS model parameters by the targeted diffusion indices. This implies that the targeted diffusion indices we have estimated have some predictive power for $\left\{\hat{\beta}_{1 t}, \hat{\beta}_{2 t}, \hat{\beta}_{3 t}\right\}$, but that this predictability does not translate into superior out-of-sample yield forecasts. This can either be because the estimated DNS model parameters are sub-optimal for out-of-sample forecasting purposes, or because the targeted diffusion indices have low out-of-sample predictive power.

For further research, we suggest the following. First, it would be interesting to see if the forecasts improved by using a different thresholding procedure to obtain targeted predictors, e.g. the soft thresholding procedures presented in Bai and Ng (2008). The authors find that these procedures, which do not depend on individual t-statistics, generally produce better diffusion indices. Second, we suggest that targeted diffusion indices can be used with alternative yield curve models, such as the affine yield curve model of Vasicek (1977), or on models on the term premium directly. Third, it would be interesting to test whether other financial variables, such as stock market returns, are forecastable by targeted diffusion indices.

References

Andersen, T. G., \& Lund, J. (1997). Stochastic volatility and mean drift in the short term interest rate diffusion: sources of steepness, level, and curvature in the yield curve. In Journal of finance (Vol. 52, pp. 12041204).

Bai, J., \& Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 146(2), 304-317.
Balduzzi, P., Das, S. R., \& Foresi, S. (1996). A simple appr0acht) three-fact0r affine term structure m0de1s.
Bliss, R. R. (1996). Testing term structure estimation methods (Tech. Rep.). Working Paper, Federal Reserve Bank of Atlanta.
Bliss, R. R. (1997). Movements in the term structure of interest rates. Economic Review-Federal Reserve Bank of Atlanta, 82(4), 16.
Bodie, Z., Kane, A., \& Marcus, A. (2018). Investments, 11th edt. McGrawHill/Irwin Publishing.
Brandt, M. W., \& Yaron, A. (2003). Time-consistent no-arbitrage models of the term structure (Tech. Rep.). National Bureau of Economic Research.
Brooks, C. (2019). Introductory econometrics for finance. Cambridge university press.
Campbell, J. Y., \& Shiller, R. J. (1991). Yield spreads and interest rate movements: A bird's eye view. The Review of Economic Studies, 58(3), 495-514.
Chambers, D. R., Carleton, W. T., \& Waldman, D. W. (1984). A new approach to estimation of the term structure of interest rates. Journal of financial and quantitative analysis, 233-252.
Chen, L. (1996). Stochastic mean and stochastic volatility: A three-factor model of the term structure of interest rates and its applications in derivatives pricing and risk management. Blackwell publishers.
Cochrane, J. H., \& Piazzesi, M. (2002). The fed and interest rates - a highfrequency identification. American Economic Review, 92(2), 90-95.
Cochrane, J. H., \& Piazzesi, M. (2005). Bond risk premia. American Economic Review, 95(1), 138-160.
Cochrane, J. H., \& Piazzesi, M. (2009). Decomposing the yield curve. In Afa 2010 atlanta meetings paper.
Cohen, K. J., Kramer, R. L., \& Waugh, W. H. (1966). Regression yield curves for us government securities. Management science, 13(4), B-168.
Cooper, I., \& Priestley, R. (2009). Time-varying risk premiums and the output gap. The Review of Financial Studies, 22(7), 2801-2833.
Cox, J. C., Ingersoll Jr, J. E., \& Ross, S. A. (1985). An intertemporal general equilibrium model of asset prices. Econometrica: Journal of the Econometric Society, 363-384.

Dahlquist, M., \& Svensson, L. E. (1994). Estimating the term structure of interest rates with simple and complex functional forms: Nelson \mathcal{B} siegel vs. longstaff $\& \in$ schwartz. IIES.
Dai, Q., \& Singleton, K. J. (2000). Specification analysis of affine term structure models. The Journal of Finance, 55(5), 1943-1978.
Dai, Q., \& Singleton, K. J. (2002). Expectation puzzles, time-varying risk premia, and affine models of the term structure. Journal of financial Economics, 63(3), 415-441.
De Jong, F., \& Santa-Clara, P. (1999). The dynamics of the forward interest rate curve: A formulation with state variables. Journal of Financial and Quantitative Analysis, 34 (1), 131-157.
Diebold, F. X., \& Li, C. (2006). Forecasting the term structure of government bond yields. Journal of econometrics, 130(2), 337-364.
Diebold, F. X., \& Rudebusch, G. D. (2013). Yield curve modeling and forecasting: the dynamic nelson-siegel approach. Princeton University Press.
Diebold, F. X., Rudebusch, G. D., \& Aruoba, S. B. (2006). The macroeconomy and the yield curve: a dynamic latent factor approach. Journal of econometrics, 131(1-2), 309-338.
Dobson, S. W. (1978). Estimating term structure equations with individual bond data. The Journal of Finance, 33(1), 75-92.
Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models. The Journal of Finance, 57(1), 405-443.
Duffie, D., \& Kan, R. (1996). A yield-factor model of interest rates. Mathematical finance, 6(4), 379-406.
Durand, D. (1942). Basic yields of corporate bonds, 1900-1942. In Basic yields of corporate bonds, 1900-1942 (pp. 1-40). NBER.
Echols, M. E., \& Elliott, J. W. (1976). A quantitative yield curve model for estimating the term structure of interest rates. Journal of Financial and Quantitative Analysis, 11 (1), 87-114.
Fabozzi, F. J., Martellini, L., \& Priaulet, P. (2005). Predictability in the shape of the term structure of interest rates. The Journal of Fixed Income, 15(1), 40-53.
Fama, E. F., \& Bliss, R. R. (1987). The information in long-maturity forward rates. The American Economic Review, 680-692.
Federal Reserve Bank of St.Louis. (2020). FRED Economic Data. https:// fred.stlouisfed.org/. (Online; accessed 10 March 2020)
Fisher, D. (1966). Expectations, the term structure of interest rates, and recent british experience. Economica, 319-329.
Heller, H. R., \& Khan, M. S. (1979). The demand for money and the term structure of interest rates. Journal of Political Economy, 87(1), 109-129.
Jong, F. d. (2000). Time series and cross-section information in affine termstructure models. Journal of Business \& Economic Statistics, 18(3),

300-314.
Longstaff, F. A., \& Schwartz, E. S. (1992). Interest rate volatility and the term structure: A two-factor general equilibrium model. The Journal of Finance, 47(4), 1259-1282.
Ludvigson, S. C., \& Ng, S. (2009). Macro factors in bond risk premia. The Review of Financial Studies, 22(12), 5027-5067.
MathWorks. (2020). Zero curve bootstrapping from coupon bond data given price. https://se.mathworks.com/help/finance/zbtprice .html. (Online; accessed 1 May 2020)
McCulloch, J. H. (1971). Measuring the term structure of interest rates. The Journal of Business, 44(1), 19-31.
McCulloch, J. H. (1975). The tax-adjusted yield curve. The Journal of Finance, 30(3), 811-830.
Nelson, C. R., \& Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of business, 473-489.
Piazzesi, M. (2010). Affine term structure models. In Handbook of financial econometrics: Tools and techniques (pp. 691-766). Elsevier.
Raykov, T., Marcoulides, G. A., \& Li, T. (2017). On the fallibility of principal components in research. Educational and psychological measurement, 77(1), 165-178.
Rebonato, R. (2018). Bond pricing and yield curve modeling: A structural approach. Cambridge University Press.
Reschenhofer, E., Stark, T., et al. (2019). Forecasting the yield curve with dynamic factors. Journal for Economic Forecasting(1), 101-113.
Shea, G. S. (1984). Pitfalls in smoothing interest rate term structure data: Equilibrium models and spline approximations. Journal of Financial and Quantitative Analysis, 19(3), 253-269.
Shea, G. S. (1985). Interest rate term structure estimation with exponential splines: a note. The Journal of Finance, 40(1), 319-325.
Stock, J. H., \& Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business \mathfrak{B} Economic Statistics, 20(2), 147-162.
Svensson, L. E. (1995). Estimating forward interest rates with the extended nelson \& siegel method. Sveriges Riksbank Quarterly Review, 3(1), 1326.

Tsay, R. S. (2014). Financial time series. Wiley StatsRef: Statistics Reference Online, 1-23.
U.S. Department of the Treasury. (2020). Treasury Yield Curve Methodology. https://www.treasury.gov/resource-center/data-chart-center/ interest-rates/Pages/yieldmethod.aspx?fbclid=IwAR1xD -CpTBDYBMFcafQH_i2u8wzVmdSx9-1wc3pjjxGlyVOX8dQ6xNWGu4Q.
(Online; accessed 19 March 2020)

Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2), 177-188.
Vasicek, O. A., \& Fong, H. G. (1982). Term structure modeling using exponential splines. The Journal of Finance, 37(2), 339-348.
Wood, J. H. (1983). Do yield curves normally slope up? Fed. Res. Bank of Chicago Economic Perspective.

7 Appendixes

7.1 Appendix 1: Descriptive Statistics on Historical Raw Yields

Maturity (Months)	Mean	Std.dev.	Min.	Max.	$\hat{p}(1)$	$\hat{p}(12)$	$\hat{p}(30)$
3	2.891	2.155	0.000	6.323	0.988	0.739	0.331
6	3.003	2.179	0.000	6.406	0.987	0.742	0.339
9	3.064	2.191	0.045	6.858	0.982	0.745	0.371
12	3.204	2.222	0.100	7.148	0.987	0.753	0.382
15	3.271	2.237	0.122	7.366	0.987	0.758	0.404
18	3.341	2.230	0.161	7.418	0.986	0.762	0.426
21	3.412	2.216	0.188	7.480	0.986	0.767	0.445
24	3.469	2.194	0.206	7.529	0.986	0.770	0.465
30	3.603	2.173	0.253	7.646	0.985	0.776	0.493
36	3.737	2.132	0.290	7.677	0.984	0.782	0.515
48	3.987	2.053	0.428	7.700	0.983	0.786	0.546
60	4.183	1.961	0.597	7.870	0.982	0.778	0.558
72	4.378	1.889	0.801	8.038	0.980	0.775	0.568
84	4.536	1.804	0.976	8.179	0.976	0.776	0.575
96	4.695	1.769	1.176	8.295	0.978	0.770	0.578
108	4.796	1.715	1.382	8.367	0.977	0.762	0.574
120	4.864	1.644	1.547	8.321	0.974	0.751	0.568

Table 12: Descriptive statistics, yield curves 1991 to 2014

Maturity (Months)	Mean	Std.dev.	Min.	Max.	$\hat{p}(1)$	$\hat{p}(12)$	$\hat{p}(30)$
3	1.084	0.871	0.000	2.450	0.978	0.444	-0.382
6	1.198	0.855	0.060	2.560	0.976	0.438	-0.378
12	1.313	0.826	0.180	2.700	0.974	0.418	-0.388
24	1.475	0.729	0.470	2.870	0.964	0.366	-0.389
36	1.618	0.655	0.710	2.930	0.955	0.307	-0.393
60	1.873	0.544	1.010	2.980	0.930	0.174	-0.371
84	2.094	0.475	1.290	3.070	0.905	0.054	-0.330
120	2.247	0.437	1.460	3.150	0.892	-0.040	-0.296

Table 13: Descriptive statistics, yield curves 2015 to 2019

7.2 Appendix 2: Top Variables in terms of t-statistics (In-Sample)

$\hat{\beta}_{1}: 1$ month ahead		
Variable name	Category	t-stat
LI OECD: Component series: Interest rate spread: Original series, US (\%, sa)	Leading indicators	11.464
10-Year Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)	Bond market	11.439
10Y Treasury const. mat. minus 3M Treasury const. mat. (\%, nsa)	Bond market	11.427
10Y Treasury const. mat. minus 2Y Treasury const. mat. (\%, nsa)	Bond market	10.606
37-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	8.057
38.5 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.943
38 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.898
39-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.841
39.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.823
40-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.702
41-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.659
41.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.601
43-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.485
45-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.290
46-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	7.267
	Bond market	6.985
51.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.913
52-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.867
54.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.760
55-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.746
59-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.558
	Bond market	6.516
66 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.300
LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa)	Leading indicators	6.244
69.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.194
	Bond market	6.177
71-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.167
75-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.116
73 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.107
74.5 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.091
76-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	6.008
79-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.995
79.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.979
80-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.971
76.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.960
81-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.934
	Bond market	5.833
85.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.815
90.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.803
86.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.784
88 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.724
96-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.703
95.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.694
92-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.685
Moody's Seasoned Baa Corporate Bond Minus Federal Funds Rate (\%, nsa)	Bond market	5.651
99-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.649
98-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.646
100-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	5.620
CPI-U: Gasoline (All Types) (1982-1984=100, sa)	Price indices	5.357
CPI-U: Motor Fuel (1982-1984=100, sa)	Price indices	5.304
CPI-U: Energy Commodities (1982-1984=100, sa)	Price indices	5.290
CPI-U: Transportation (1982-1984=100, sa)	Price indices	5.194
CPI-U: Commodities Less Food (1982-1984=100, sa)	Price indices	5.138
CPI-U: Energy (1982-1984=100, sa)	Price indices	4.973

PCE: Energy goods and services (chain-type price index) (2012=100, sa)
Business tendency - manuf.: Confidence Indic.: Composite Indic. (Normal=100, sa)
CPI-U: Nondurables (1982-1984=100, sa)
Prices for PCE: Chained Price Index: energy goods\&ser. (\%change from prec.period, sa)
CPI-U: Commodities (1982-1984=100, sa)
Moody's Seasoned Baa Corp Bond Yield Relative to Yield on 10Y-T cont mat. (\%, nsa)
Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa)
Prices for PCE: Chained Price Index: Goods (\% Change from Preceding Period, sa)
PCE: Goods (chain-type price index) $(2012=100$, sa)
PCE: Nondurable goods (chain-type price index) $(2012=100$, sa)
CPI-U: All Items Less Food (1982-1984=100, sa)
PPI-C: Fuels \& Related Products \& Power: Petroleum Products, Refined (1982=100, sa)
Prices for PCE: Chained Price Index: Market-based PCE (\%change from prec.period, sa) LI OECD: Component series: BTS - Business situation: Normalised, US (Index, sa)
Prices for PCE: Chained Price Index: Nondur.goods (\% Change from preced.period, sa)
CPI-U: All Items Less Medical Care (1982-1984=100, sa)
PCE:: Market-based (chain-type price index) $(2012=100$, sa)
Experimental CPI: Transportation $(1982=100$, sa)
CPI-U \& clerical workers: All Items (1982-1984=100, sa)
CPI-U: All Items (1982-1984=100, sa)
CPI-U: All Items Less Shelter (1982-1984=100, sa)
PPI-C: Intermed. Demand,C-Type: Processed Materials ex foods\&feeds (1982=100, sa)
PPI-C: Final Demand: Personal Consump.goods (Finished con.goods) $(1982=100$, sa)
PPI-C: Fuels \& Related Products \& Power: Home heating oil \& distillates (1982=100, sa)
PPI-C: Intermediate Demand by Commodity Type: Processed Goods (1982=100, sa)
PCE: Nondurable Goods (bn of usd, sa)
PPI-C: Final Demand: Finished Goods $(1982=100$, sa)
PPI-C: Final Demand: Finished Consumer Energy Goods (1982=100, sa)
Prices for PCE: Chained Price Index (\% Change from Preceding Period, sa)
CPI-U: Gasoline (All Types) (1982-1984=100, sa), Squared
Leading Index for Georgia (\%, sa)
PPI-C: Fuels \& Related Products \& Power: Home heating oil \& distillates (1982=100, sa), Squared CPI-U: Motor Fuel (1982-1984=100, sa), Squared
PCE: Chain-type Price Index $(2012=100$, sa)
CPI-U: Energy Commodities (1982-1984=100, sa), Squared
Real M2 Money Stock (bn of 1982-84 usd, sa), Squared
Unemployment Level - Job Losers on Layoff (thous of pers., sa)
PPI-C: Fuels and Related Products and Power: No. 2 Diesel Fuel (1982=100, sa)
Real M1 Money Stock (bn of 1982-84 usd, sa), Squared
LI OECD: Leading indicators: CLI: Normalised, US (Index, sa)
LI OECD: Leading indicators: CLI: Amplitude adjusted, US (Index, sa)
Job Losers on Layoff as a \% of Total Unemployed (\%, sa)
Global price of Rubber (U.S. Cents per Pound, nsa)
PPI-C: Fuels \& Related Products \& Power: Petroleum Products, Refined (1982=100, sa), Squared
LI OECD: Component series: Share prices: Original series, US (2015=100, nsa)
Equity Market Volatility Tracker: Macro: Business Investment \& Sentiment (Index, nsa), Squared

Personal income and expenditures	4.909
Sentiment	4.889
Price indices	4.814
Personal income and expenditures	4.811
Price indices	4.796
Bond market	4.731
Bond market	4.706
Personal income and expenditures	4.670
Personal income and expenditures	4.646
Personal income and expenditures	4.627
Price indices	4.577
Price indices	4.566
Personal income and expenditures	4.541
Leading indicators	4.517
Personal income and expenditures	4.501
Price indices	4.463
Personal income and expenditures	4.448
Price indices	4.447
Price indices	4.433
Price indices	4.376
Price indices	4.349
Price indices	4.109
Price indices	4.099
Price indices	4.022
Price indices	4.008
Personal income and expenditures	3.948
Price indices	3.942
Price indices	3.921
Personal income and expenditures	3.866
Price indices	3.815
Leading indicators	3.814
Price indices	3.808
Price indices	3.770
Personal income and expenditures	3.768
Price indices	3.753
Monetary measures	3.726
Employment and hours	3.681
Price indices	3.671
Monetary measures	3.651
Leading indicators	3.650
Leading indicators	3.649
Employment and hours	3.622
Miscellaneous	3.621
Price indices	3.619
Leading indicators	3.588
Sentiment	3.450

	$\hat{\beta}_{1}: 6$ months ahead	
Variable name	Category	
Fitted Instantaneous Forward Rate 6 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 7 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 8 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 9 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 5 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 10 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 4 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 3 Years Hence (\%, nsa)	Bond market	
Fitted Instantaneous Forward Rate 2 Years Hence (\%, nsa)	Bond market	
HPI (Low Tier) for Minneapolis, Minnesota (Jan 2000=100, sa), Squared	Housing	

37-Year HQM Corporate Bond Spot Rate (\%, nsa)
S\&P/Case-Shiller WA-Seattle HPI (Jan $2000=100$, sa), Squared
38-Year HQM Corporate Bond Spot Rate (\%, nsa)
39-Year HQM Corporate Bond Spot Rate (\%, nsa)
Leading Index for Nebraska (\%, sa)
38.5-Year HQM Corporate Bond Spot Rate (\%, nsa)
39.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

Leading Index for Nebraska (\%, sa), Squared
40-Year HQM Corporate Bond Spot Rate (\%, nsa)
IP: Durable Goods: Truck trailer $(2012=100$, sa), Squared
41.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

HPI (High Tier) for Seattle, Washington (Jan $2000=100$, sa), Squared
41-Year HQM Corporate Bond Spot Rate (\%, nsa)
43-Year HQM Corporate Bond Spot Rate (\%, nsa)
NYSE Composite Monthly Close 1989-01-01 to 2020-02-01 (Index, nsa)
45 -Year HQM Corporate Bond Spot Rate (\%, nsa)
46-Year HQM Corporate Bond Spot Rate (\%, nsa)
50-Year HQM Corporate Bond Spot Rate (\%, nsa)
51.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

52-Year HQM Corporate Bond Spot Rate (\%, nsa)
U.S. Exports of Goods by F.A.S. Basis to World (MM of usd, sa)
54.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

S\&P500 Level (Index, nsa)
55-Year HQM Corporate Bond Spot Rate (\%, nsa)
Instantaneous Forward Term Premium 10 Years Hence (\%, nsa)
Leading Index for Texas (\%, sa), Squared
All Employees, Clothing and Clothing Accessories Stores (thous of pers., sa)
59-Year HQM Corporate Bond Spot Rate (\%, nsa)
60-Year HQM Corporate Bond Spot Rate (\%, nsa)
66-Year HQM Corporate Bond Spot Rate (\%, nsa)
HPI (Middle Tier) for Minneapolis, Minnesota (Jan 2000=100, sa), Squared
Exports: Value Goods for the United States (US usd Monthly Level, sa)
Exports: Value Goods for the United States (National currency, Monthly Level, sa)
69.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

CU: Nonmetallic mineral mining and quarrying (\% of capacity, sa)
70-Year HQM Corporate Bond Spot Rate (\%, nsa)
76-Year HQM Corporate Bond Spot Rate (\%, nsa)
Exports: Value Goods for the United States (Growth Rate Previous Period, sa)
71-Year HQM Corporate Bond Spot Rate (\%, nsa)
74.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

75-Year HQM Corporate Bond Spot Rate (\%, nsa)
73-Year HQM Corporate Bond Spot Rate (\%, nsa)
76.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

Leading Index for Texas (\%, sa)
81-Year HQM Corporate Bond Spot Rate (\%, nsa)
CU: Manufacturing (SIC) (\% of capacity, sa), Squared
79-Year HQM Corporate Bond Spot Rate (\%, nsa)
10Y Treasury const. mat. minus 3M Treasury const. mat. (\%, nsa)
IP: Durable Goods: Automobile ($2012=100$, sa)
Business tendency - manuf.: Orders Inflow: Tendency (Net \%, sa)
80-Year HQM Corporate Bond Spot Rate (\%, nsa)
79.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

IP: Durable manufacturing: Furniture and related product (2012=100, sa), Squared
85.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

88-Year HQM Corporate Bond Spot Rate (\%, nsa)
86.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

LI OECD: Component series: Share prices: Original series, US (2015=100, nsa)
NPHUA by Building Permits in the Northeast Census Region (thous of units, sa), Squared IP: Manufacturing (SIC)(2012=100, sa), Squared

IP: Materials $(2012=100$, sa)

Bond market	3.819
Housing	3.816
Bond market	3.801
Bond market	3.769
Leading indicators	3.767
Bond market	3.758
Bond market	3.720
Leading indicators	3.707
Bond market	3.706
Real output measures	3.695
Bond market	3.671
Housing	3.668
Bond market	3.664
Bond market	3.627
Equity market	3.591
Bond market	3.585
Bond market	3.567
Bond market	3.550
Bond market	3.505
Bond market	3.505
Exports and imports	3.499
Bond market	3.457
Equity market	3.441
Bond market	3.440
Bond market	3.418
Leading indicators	3.406
Employment and hours	3.397
Bond market	3.394
Bond market	3.365
Bond market	3.362
Housing	3.321
Exports and imports	3.312
Exports and imports	3.312
Bond market	3.297
Real output measures	3.284
Bond market	3.282
Bond market	3.273
Exports and imports	3.267
Bond market	3.262
Bond market	3.260
Bond market	3.241
Bond market	3.240
Bond market	3.234
Leading indicators	3.233
Bond market	3.231
Real output measures	3.225
Bond market	3.211
Bond market	3.209
Real output measures	3.209
Sentiment	3.203
Bond market	3.201
Bond market	3.199
Real output measures	3.196
Bond market	3.194
Bond market	3.191
Bond market	3.180
Leading indicators	3.174
Housing	3.173
Real output measures	3.160
Real output measures	3.154

98-Year HQM Corporate Bond Spot Rate (\%, nsa)
92-Year HQM Corporate Bond Spot Rate (\%, nsa)
90.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

CU: Manufacturing (NAICS) (\% of capacity, sa), Squared
99-Year HQM Corporate Bond Spot Rate (\%, nsa)
96-Year HQM Corporate Bond Spot Rate (\%, nsa)
CU: Manuf. ex. comp., communications equip., \& semiconductors (\% of capacity, sa), Squared
CU: Durable Manufacturing (\% of capacity, sa), Squared
HPI (Low Tier) for Tampa, Florida (Jan $2000=100$, sa), Squared
95.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

S\&P500 Real Prices (Index, nsa)
90-Year HQM Corporate Bond Spot Rate (\%, nsa)
100-Year HQM Corporate Bond Spot Rate (\%, nsa)
S\&P500 Real Total Return Price (Index, nsa)
IP: Manufacturing (NAICS)(2012=100, sa), Squared
S\&P500 Shiller's CAPE (Index, nsa)
S\&P500 Shiller's TRCAPE (Index, nsa)
S\&P/Case-Shiller OR-Portland HPI (Jan $2000=100$, sa), Squared
10-Year Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
LI OECD: Leading indicators: CLI: Trend restored, US (Index, sa)
LI OECD: Component series: Interest rate spread: Original series, US (\%, sa)
Business tendency - manufacturing: Production: Tendency (Net \%, sa)
CU: Durable Manufacturing: Furniture and related product (\% of capacity, sa), Squared
Pers. cur. transfer receipts (bn of usd, sa)
Pers. cur. transf. receipts: Gov. social benefits to persons (bn of usd, sa)
CU: Total ex. Comp., communications equip., and semiconductors (\% of capacity, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, mining\&logging ($2002=100$, sa)
Continued Claims (Insured Unemployment) in New Jersey (number, nsa), Squared
Capacity Utilization: Total Industry (\% of capacity, sa)
Production of Total Industry in United States $(2015=100$, sa)

Bond market	3.153
Bond market	3.146
Bond market	3.146
Real output measures	3.144
Bond market	3.132
Bond market	3.131
Real output measures	3.130
Real output measures	3.129
Housing	3.129
Bond market	3.122
Equity market	3.119
Bond market	3.116
Bond market	3.111
Equity market	3.109
Real output measures	3.099
Equity market	3.074
Equity market	3.062
Housing	3.061
Bond market	3.048
Leading indicators	3.042
Leading indicators	3.040
Sentiment	3.019
Real output measures	2.997
Personal income and expenditures	2.959
Personal income and expenditures	2.956
Real output measures	2.954
Employment and hours	2.950
Employment and hours	2.949
Real output measures	2.916
Real output measures	2.907

$\hat{\beta}_{1}: 12$ months ahead		
Variable name	Category	t-stat
Fitted Instantaneous Forward Rate 6 Years Hence (\%, nsa)	Bond market	15.329
Fitted Instantaneous Forward Rate 7 Years Hence (\%, nsa)	Bond market	15.273
Fitted Instantaneous Forward Rate 5 Years Hence (\%, nsa)	Bond market	15.161
Fitted Instantaneous Forward Rate 8 Years Hence (\%, nsa)	Bond market	15.136
Fitted Instantaneous Forward Rate 9 Years Hence (\%, nsa)	Bond market	14.980
Fitted Instantaneous Forward Rate 10 Years Hence (\%, nsa)	Bond market	14.825
Fitted Instantaneous Forward Rate 4 Years Hence (\%, nsa)	Bond market	14.488
Fitted Instantaneous Forward Rate 3 Years Hence (\%, nsa)	Bond market	12.881
Fitted Instantaneous Forward Rate 2 Years Hence (\%, nsa)	Bond market	9.939
Instantaneous Forward Term Premium 7 Years Hence (\%, nsa), Squared	Bond market	4.935
San Francisco Tech Pulse (\% Change from Year Ago, sa), Squared	Miscellaneous	4.693
$37-Y e a r$ HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.488
38 -Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.486
38.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.443
39-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.436
40-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.426
39.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.422
43-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.407
41.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.385
41-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.373
	Bond market	4.366
51.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.306
46-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.300
	Bond market	4.287
52-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.256
54.5-Year HQM Corporate Bond Spot Rate (\%, nsa)	Bond market	4.237

Leading Index for Texas (\%, sa), Squared
55 -Year HQM Corporate Bond Spot Rate (\%, nsa)
59-Year HQM Corporate Bond Spot Rate (\%, nsa)
San Francisco Tech Pulse (\% Change from Year Ago, sa)
HPI (High Tier) for Seattle, Washington (Jan $2000=100$, sa), Squared
Leading Index for Texas (\%, sa)
60-Year HQM Corporate Bond Spot Rate (\%, nsa)
66-Year HQM Corporate Bond Spot Rate (\%, nsa)
Business tendency - manufacturing: Production: Tendency (Net \%, sa)
IP: Durable Goods: Truck trailer ($2012=100$, sa), Squared
76-Year HQM Corporate Bond Spot Rate (\%, nsa)
69.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

70-Year HQM Corporate Bond Spot Rate (\%, nsa)
79.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

79-Year HQM Corporate Bond Spot Rate (\%, nsa)
71-Year HQM Corporate Bond Spot Rate (\%, nsa)
74.5-Year HQM Corporate Bond Spot Rate (\%, nsa)
76.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

73-Year HQM Corporate Bond Spot Rate (\%, nsa)
75 -Year HQM Corporate Bond Spot Rate (\%, nsa)
81-Year HQM Corporate Bond Spot Rate (\%, nsa)
85.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

80-Year HQM Corporate Bond Spot Rate (\%, nsa)
88-Year HQM Corporate Bond Spot Rate (\%, nsa)
92-Year HQM Corporate Bond Spot Rate (\%, nsa)
96-Year HQM Corporate Bond Spot Rate (\%, nsa)
Business tendency - manuf.: Orders Inflow: Tendency (Net \%, sa)
95.5-Year HQM Corporate Bond Spot Rate (\%, nsa)
90.5-Year HQM Corporate Bond Spot Rate (\%, nsa)
86.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

98 -Year HQM Corporate Bond Spot Rate (\%, nsa)
90-Year HQM Corporate Bond Spot Rate (\%, nsa)
99-Year HQM Corporate Bond Spot Rate (\%, nsa)
Instantaneous Forward Term Premium 8 Years Hence (\%, nsa), Squared 100-Year HQM Corporate Bond Spot Rate (\%, nsa)
10-Year Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
LI OECD: Component series: Interest rate spread: Original series, US (\%, sa)
S\&P/Case-Shiller WA-Seattle HPI (Jan $2000=100$, sa), Squared
IP: Durable Goods: Automobile ($2012=100$, sa), Squared
CPI-U: Women's and Girls' Apparel (1982-1984=100, sa)
10Y Treasury const. mat. minus 3M Treasury const. mat. (\%, nsa)
Instantaneous Forward Term Premium 7 Years Hence (\%, nsa)
IP: Durable Goods: Automobile (2012=100, sa)
HPI (Middle Tier) for Minneapolis, Minnesota (Jan 2000=100, sa), Squared
HPI (Low Tier) for Minneapolis, Minnesota (Jan $2000=100$, sa), Squared
S\&P/Case-Shiller IL-Chicago HPI (Jan $2000=100$, sa), Squared
Business tendency - manuf.: Confidence Indicators: Composite Indicators (Net \%, sa)
LI OECD: Component series: BTS - Business situation: Original series, US (\%, sa)
Leading Index for Nebraska (\%, sa)
CU: Total ex. Comp., communications equip., and semiconductors (\% of capacity, sa)
10Y Treasury const. mat. minus 2Y Treasury const. mat. (\%, nsa)
CPI-U: Apparel Less Footwear (1982-1984=100, sa)
IP: Durable manufacturing: Furniture and related product (2012=100, sa), Squared
Pers. cur. transf. receipts: Gov.social benefits to persons: Social security (bn of usd, sa), Squared Capacity Utilization: Total Industry (\% of capacity, sa)
CU: Durable Manufacturing: Motor vehicles and parts (\% of capacity, sa)
CU: Durable Manufacturing: Furniture and related product (\% of capacity, sa), Squared
IP: Durable manufacturing: Motor vehicles and parts (2012=100, sa)
Motor Vehicle Assemblies: Total motor vehicle assemblies (MM of units, sa)
CPI-U: Apparel (1982-1984=100, sa)

Leading indicators	4.211
Bond market	4.191
Bond market	4.180
Miscellaneous	4.171
Housing	4.159
Leading indicators	4.151
Bond market	4.145
Bond market	4.143
Sentiment	4.121
Real output measures	4.100
Bond market	4.081
Bond market	4.069
Bond market	4.054
Bond market	4.051
Bond market	4.048
Bond market	4.043
Bond market	4.042
Bond market	4.041
Bond market	4.040
Bond market	4.008
Bond market	4.006
Bond market	3.999
Bond market	3.994
Bond market	3.993
Bond market	3.983
Bond market	3.982
Sentiment	3.964
Bond market	3.963
Bond market	3.961
Bond market	3.955
Bond market	3.952
Bond market	3.941
Bond market	3.937
Bond market	3.917
Bond market	3.915
Bond market	3.815
Leading indicators	3.815
Housing	3.808
Real output measures	3.676
Price indices	3.668
Bond market	3.606
Bond market	3.581
Real output measures	3.573
Housing	3.501
Housing	3.478
Housing	3.310
Sentiment	3.301
Leading indicators	3.301
Leading indicators	3.294
Real output measures	3.263
Bond market	3.254
Price indices	3.252
Real output measures	3.234
Personal income and expenditures	3.233
Real output measures	3.227
Real output measures	3.217
Real output measures	3.161
Real output measures	3.154
Real output measures	3.148
Price indices	3.109

Motor Vehicle Assemblies: Autos and light truck assemblies (MM of units, sa)
Pers. cur. transf. receipts: Gov.social benefits to persons: Social security (bn of usd, sa)
S\&P/Case-Shiller MN-Minneapolis HPI (Jan $2000=100$, sa), Squared
HPI (Middle Tier) for Phoenix, Arizona (Jan $2000=100$, sa), Squared
CU: Durable Manufacturing (\% of capacity, sa)
Instantaneous Forward Term Premium 4 Years Hence (\%, nsa)
Industrial Production Index $(2012=100$, sa)
Production of Total Industry in United States (2015=100, sa)
CU: Manuf. ex. comp., communications equip., \& semiconductors (\% of capacity, sa)
CU: Durable Manuf.: Automobile and light duty motor vehicle (\% of capacity, sa)
Real M2 Money Stock (bn of 1982-84 usd, sa)
CU: Manufacturing (SIC) (\% of capacity, sa)
IP: Materials $(2012=100$, sa)
M2 Money Stock (bn of usd, sa)

Miscellaneous
Personal income and expenditures $\quad 3.073$
Housing
Housing
Real output measures 3.060
Bond market
3.043

Real output measures
Real output measures
Real output measures
Real output measures
Monetary measures
Real output measures
Real output measures
Monetary measures

$\hat{\beta}_{2}: 1$ month ahead		
Variable name	Category	t-stat
U.S. Imports of Goods by Customs Basis from Venezuela (MM of usd, nsa), Squared	Exports and imports	7.205
Unemployment Rate - Married Women (\%, sa), Squared	Employment and hours	6.984
EMVT: Competition Matters(Index, nsa), Squared	Equity market	6.051
IP: Durable Goods: Auto parts and allied goods (2012=100, sa), Squared	Real output measures	5.057
EMVT: Competition Matters(Index, nsa)	Equity market	4.717
Japan / U.S. Foreign Exchange Rate (Ratio, nsa), Squared	Exchange rates	4.367
Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa)	Bond market	4.353
EMVT: Macroeconomic News and Outlook: Interest Rates(Index, nsa), Squared	Equity market	4.207
Moody's Seasoned Baa Corp Bond Yield Relative to Yield on 10Y-T cont mat. (\%, nsa)	Bond market	3.844
CU: Communications equipment (\% of capacity, sa), Squared	Real output measures	3.822
Future UOs; \% Reporting No Change for FRB - Philadelphia District (\%, sa), Squared	Manufacturing activity	3.609
Unemployment Rate - 20 Yrs. \& Over, Black or African American Men (\%, sa)	Employment and hours	3.586
Moody's Seasoned Baa Corporate Bond Minus Federal Funds Rate (\%, nsa), Squared	Bond market	3.551
EMVT: Macroeconomic News and Outlook: Interest Rates(Index, nsa)	Equity market	3.512
Japan / U.S. Foreign Exchange Rate (Ratio, nsa)	Exchange rates	3.298
Unemployment Rate - 18-19 Yrs., Women (\%, sa), Squared	Employment and hours	3.243
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Professional and Business Services (Hours, sa), Squared	Employment and hours	3.207
Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa), Squared	Bond market	3.151
Singapore / U.S. Foreign Exchange Rate (Ratio, nsa), Squared	Exchange rates	3.134
Continued Claims (Insured Unemployment) in Arizona (number, nsa), Squared	Employment and hours	3.087
EMVT: Overall(Index, nsa)	Equity market	3.086
Fama-French Small-minus-Big (\%, nsa)	Equity market	3.055
CPI-U: Dairy and Related Products (1982-1984=100, sa)	Price indices	3.028
Indexes of agg. wkly payrolls of prod.\&nonsup.emp., pro\&business ser. (2002=100, sa), Squared	Employment and hours	2.939
Unemployment Rate - 20-24 Yrs. (\%, sa), Squared	Employment and hours	2.932
EMVT: Overall(Index, nsa), Squared	Equity market	2.921
EMVT: Monetary Policy(Index, nsa)	Equity market	2.905
Continued Claims (Insured Unemployment) in Illinois (number, nsa)	Employment and hours	2.881
CU: Communications equipment (\% of capacity, sa)	Real output measures	2.868
LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa)	Leading indicators	2.836
EMVT: Monetary Policy(Index, nsa), Squared	Equity market	2.834
Continued Claims (Insured Unemployment) in Colorado (number, nsa)	Employment and hours	2.833
Continued Claims (Insured Unemployment) in New Jersey (number, nsa)	Employment and hours	2.805
Continued Claims (Insured Unemployment) in Massachusetts (number, nsa)	Employment and hours	2.773
Continued Claims (Insured Unemployment) in Pennsylvania (number, nsa)	Employment and hours	2.737
Unemployment Rate - Married Women (\%, sa)	Employment and hours	2.722
3-Month Treasury Bill Minus Federal Funds Rate (\%, nsa), Squared	Bond market	2.722
IP: Durable manufacturing: Electrical equip., appliance, and component (2012=100, sa)	Real output measures	2.687
EMVT: Macroeconomic News and Outlook: Other Financial Indicators(Index, nsa)	Equity market	2.655
Median Weeks Unemployed (Weeks, sa)	Employment and hours	2.638
CPI-U: Services by Other Medical Professionals (Dec 1986=100, sa), Squared	Price indices	2.625
Initial Claims in Virginia (number, nsa)	Employment and hours	2.621

CPI-U: Women's and Girls' Apparel (1982-1984=100, sa), Squared
EMVT: Policy Related(Index, nsa)
EMVT: Macroeconomic News And Outlook(Index, nsa)
Continued Claims (Insured Unemployment) in Minnesota (number, nsa)
CU: Durable Manuf.: Electrical equip., appliance, and component (\% of capacity, sa)
Non-M1 Components of M2 (bn of usd, sa), Squared
Initial Claims in West Virginia (number, nsa)
Fama-French Small-minus-Big (\%, nsa), Squared
AEWT: Merc. wholesalers, dur.goods in Riverside-San BO, CA (thous of pers., sa)
Indexes of agg. wkly payrolls of prod.\&nonsup.emp., pro\&business ser. (2002=100, sa)
EMVT: Macroeconomic News and Outlook: Other Financial Indicators(Index, nsa), Squared
IP: Defense and space equipment $(2012=100$, sa), Squared
Continued Claims (Insured Unemployment) in Montana (number, nsa)
Number Unemployed for 15 Weeks \& Over (thous of pers., sa)
Initial Claims in Georgia (number, nsa)
Initial Claims in Colorado (number, nsa)
10-Year Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
Unemployment Level - Black or African American (thous of pers., sa)
LI OECD: Component series: Interest rate spread: Original series, US (\%, sa)
Continued Claims (Insured Unemployment) (number, nsa)
Retail Money Funds (bn of usd, sa)
Continued Claims (Insured Unemployment) in Massachusetts (number, nsa), Squared
CPI-U: Alcoholic Beverages Away From Home (1982-1984=100, sa)
EMVT: Labor Regulations(Index, nsa), Squared
3-Month Treasury Bill Minus Federal Funds Rate (\%, nsa)
CPI-U: Women's and Girls' Apparel (1982-1984=100, sa)
Initial Claims in Illinois (number, nsa)
EMVT: Macroeconomic News and Outlook: Inflation(Index, nsa)
Non-M1 Components of M2 (bn of usd, sa)
Unemployment Rate - Black or African American (\%, sa)
U.S. Exports of Goods by F.A.S. Basis to Japan (MM of usd, nsa), Squared

Continued Claims (Insured Unemployment) in Indiana (number, nsa), Squared
Continued Claims (Insured Unemployment) in West Virginia (number, nsa)
3M Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa), Squared
EMVT: Macroeconomic News and Outlook: Inflation(Index, nsa), Squared
Of Total Unemployed, \% Unemployed 15 Weeks \& Over (\%, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Louisville-Jeff., KY-IN (units, sa)
EMVT: Macroeconomic News And Outlook(Index, nsa), Squared
New Entrants as a \% of Total Unemployed (\%, sa), Squared
Unemployment Level - New Entrants (thous of pers., sa), Squared
U.S. Imports of Goods by Customs Basis from Venezuela (MM of usd, nsa)

Continued Claims (Insured Unemployment) in Wyoming (number, nsa)
Initial Claims (number, nsa)
Unemployment Rate - 25-54 Yrs., Men (\%, sa)
Continued Claims (Insured Unemployment) in Alabama (number, nsa), Squared
Of Total Unemployed, \% Unemployed 5-14 Weeks (\%, sa), Squared
AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa)
U.S. Imports of Goods by Customs Basis from China (MM of usd, nsa)

Of Total Unemployed, \% Unemployed Less Than 5 Weeks (\%, sa)
EMVT: Policy Related(Index, nsa), Squared
Continued Claims (Insured Unemployment) in California (number, nsa)
CPI-U: Motor Vehicle Maintenance and Repair (1982-1984=100, sa), Squared
AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa), Squared Initial Claims in Utah (number, nsa)
Continued Claims (Insured Unemployment) in Nebraska (number, nsa)
3M Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
Employment-Population Ratio - Black or African American (\%, sa)
CPI-U: Apparel (1982-1984=100, sa), Squared

Price indices	2.580
Equity market	2.570
Equity market	2.559
Employment and hours	2.530
Real output measures	2.528
Monetary measures	2.521
Employment and hours	2.516
Equity market	2.512
Employment and hours	2.490
Employment and hours	2.476
Equity market	2.466
Real output measures	2.447
Employment and hours	2.445
Employment and hours	2.441
Employment and hours	2.417
Employment and hours	2.404
Bond market	2.402
Employment and hours	2.401
Leading indicators	2.397
Employment and hours	2.385
Manufacturing activity	2.382
Employment and hours	2.380
Price indices	2.367
Equity market	2.358
Bond market	2.356
Price indices	2.354
Employment and hours	2.324
Equity market	2.319
Monetary measures	2.318
Employment and hours	2.318
Exports and imports	2.317
Employment and hours	2.312
Employment and hours	2.290
Bond market	2.281
Equity market	2.277
Employment and hours	2.270
Housing	2.265
Equity market	2.248
Employment and hours	2.247
Employment and hours	2.245
Exports and imports	2.243
Employment and hours	2.239
Employment and hours	2.236
Employment and hours	2.234
Employment and hours	2.232
Employment and hours	2.223
Employment and hours	2.214
Exports and imports	2.214
Employment and hours	2.212
Equity market	2.203
Employment and hours	2.201
Price indices	2.191
Employment and hours	2.190
Employment and hours	2.188
Employment and hours	2.180
Bond market	2.174
Employment and hours	2.170
Price indices	2.159

Variable name
CU: Communications equipment (\% of capacity, sa), Squared
Moody's Seasoned Baa Corporate Bond Minus Federal Funds Rate (\%, nsa), S
IP: Defense and space equipment $(2012=100$, sa)
IP: Defense and space equipment $(2012=100$, sa), Squared
Moody's Seasoned Aaa Corporate Bond Minus Federal Funds Rate (\%, nsa), S
New Entrants as a \% of Total Unemployed (\%, sa), Squared
LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa)

Unemployment Level - New Entrants (thous of pers., sa), Squared
CPI-U: Other Goods and Services (1982-1984=100, sa), Squared
Japan / U.S. Foreign Exchange Rate (Ratio, nsa), Squared
CPI-U: Other Goods and Services (1982-1984=100, sa)
Median Weeks Unemployed (Weeks, sa)
CPI-U: Housing (1982-1984=100, sa), Squared
CPI-U: Housing (1982-1984=100, sa)
Experimental Consumer Price Index: Housing(1982=100, sa), Squared
EMVT: Macroeconomic News and Outlook: Interest Rates(Index, nsa), Squared
CPI-U: Tobacco and Smoking Products (1982-1984=100, sa), Squared
Of Total Unemployed, \% Unemployed 15 Weeks \& Over (\%, sa)
Initial Claims in Colorado (number, nsa)
CPI-U: Tobacco and Smoking Products (1982-1984=100, sa)
Continued Claims (Insured Unemployment) in Oklahoma (number, nsa), Squared
Indexes of agg. wkly payrolls of prod.\&nonsup.emp., pro\&business ser. $(2002=100$, sa), Squared
EMVT: Macroeconomic News and Outlook: Interest Rates(Index, nsa)
EMVT: Macroeconomic News and Outlook: Other Financial Indicators(Index, nsa), Squared
Prices for PCE: Chained Price Index: Services (\% Change from Preceding Period, sa)
EMVT: Other Regulation(Index, nsa)
Initial Claims in Washington (number, nsa)
Future UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa), Squared
EMVT: Other Regulation(Index, nsa), Squared
Moody's Seasoned Aaa Corporate Bond Minus Federal Funds Rate (\%, nsa)
Avg weekly earnings of prod.\&nonsupervisory Employees, tot.priv (usd per Week, sa)
Avg weekly earnings of prod.\&nonsupervisory Employees, tot.priv (usd per Week, sa), Squared Housing Starts: 2-4 units (thous of units, sa), Squared
Of Total Unemployed, \% Unemployed 27 Weeks \& Over (\%, sa)
PPI-C: Intermediate Demand by Commodity Type: Unprocessed Goods (1982=100, sa)
CU: Communications equipment (\% of capacity, sa)
CPI-U \& clerical workers: Housing (1982-1984=100, sa)
All Employees, Government (thous of pers., sa), Squared
Equity Market-related Economic Uncertainty (Index, nsa), Squared
EMVT: Competition Matters(Index, nsa), Squared
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Professional and Business Services (Hours, sa), Squared AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa), Squared
PPI-C: Farm Products: Slaughter Hogs $(1982=100$, sa), Squared
CPI-U \& clerical workers: Housing (1982-1984=100, sa), Squared
Fama-French Small-minus-Big (\%, nsa), Squared
Initial Claims in Maine (number, nsa)
Indexes of agg. wkly payrolls of prod\&nonsup. Employees, tot. priv (2002=100, sa)
Initial Claims in Wyoming (number, nsa)
Initial Claims in Arizona (number, nsa)
All Employees, Federal (thous of pers., sa), Squared
All Employees, Air Transportation (thous of pers., sa)
Production and Nonsupervisory Employees, Retail Trade (thous of pers., sa), Squared
Of Total Unemployed, \% Unemployed 5-14 Weeks (\%, sa), Squared
Initial Claims in New York (number, nsa)
Number Unemployed for 15 Weeks \& Over (thous of pers., sa)
Initial Claims in Wyoming (number, nsa), Squared
Unemployment Rate - 20-24 Yrs. (\%, sa), Squared

Category	t-stat
Real output measures	6.529
Bond market	6.084
Real output measures	4.425
Real output measures	4.387
Bond market	3.867
Employment and hours	3.648
Leading indicators	3.622
Employment and hours	3.564
Price indices	3.533
Exchange rates	3.411
Price indices	3.334
Employment and hours	3.302
Price indices	3.302
Price indices	3.255
Price indices	3.250
Equity market	3.198
Price indices	3.185
Employment and hours	3.184
Employment and hours	3.161
Price indices	3.158
Employment and hours	3.145
Employment and hours	3.115
Equity market	3.098
Equity market	3.063
Personal income and expenditures	3.032
Equity market	3.013
Employment and hours	2.993
Manufacturing activity	2.935
Equity market	2.925
Bond market	2.910
Employment and hours	2.899
Employment and hours	2.874
Housing	2.873
Employment and hours	2.870
Price indices	2.860
Real output measures	2.839
Price indices	2.836
Employment and hours	2.821
Equity market	2.798
Equity market	2.789
Employment and hours	2.775
Employment and hours	2.771
Price indices	2.760
Price indices	2.723
Equity market	2.721
Employment and hours	2.709
Employment and hours	2.708
Employment and hours	2.691
Employment and hours	2.676
Employment and hours	2.645
Employment and hours	2.631
Employment and hours	2.629
Employment and hours	2.624
Employment and hours	2.622
Employment and hours	2.618
Employment and hours	2.617
Employment and hours	2.614

Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa), Squared Indexes of agg. wkly payrolls of prod.\&nonsup.emp., pro\&business ser. $(2002=100$, sa)
Initial Claims in Washington (number, nsa), Squared
Initial Claims in Virginia (number, nsa)
Leading Index for the United States (\%, sa)
Equity Market-related Economic Uncertainty (Index, nsa)
CPI-U: Services (1982-1984=100, sa), Squared
EMVT: Intellectual Property Policy(Index, nsa)
Number Unemployed for 27 Weeks \& Over (thous of pers., sa)
EMVT: Macroeconomic News and Outlook: Other Financial Indicators(Index, nsa)
IP: Durable manufacturing: Aerospace\&miscellaneous transp.equip. (2012=100, sa)
PCE: Services (chain-type price index) $(2012=100$, sa)
Initial Claims in Colorado (number, nsa), Squared
Initial Claims in Delaware (number, nsa)
CU: Durable Manuf.: Aerosp. and miscellaneous transp. equip. (\% of capacity, sa)
Initial Claims (number, nsa)
Housing Starts: 2-4 units (thous of units, sa)
Initial Claims in Illinois (number, nsa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Professional and Business Services (Hours, sa)
Indexes of agg. wkly payrolls of prod\&nonsup. Employees, tot. priv (2002=100, sa), Squared
Average Weeks Unemployed (Weeks, sa)
Initial Claims in Idaho (number, nsa)
CPI-U: Services (1982-1984=100, sa)
CPI-U: all urb.consumers: Food at Home in U.S. City avg. (1982-1984=100, sa)
Continued Claims (Insured Unemployment) in Maine (number, nsa)
EMVT: Competition Policy(Index, nsa), Squared
Unemployment Rate - Job Losers (U-2) (\%, sa), Squared
Initial Claims in Oklahoma (number, nsa)
San Francisco Tech Pulse (Jan $2000=100$, sa), Squared
Avg weekly hrs of Production and Nonsupervisory Employees, Total Private (Hours, sa)
Real M1 Money Stock (bn of 1982-84 usd, sa)
Equity Market Volatility Tracker: Macro: Business Investment \& Sentiment (Index, nsa), Squared Effective Federal Funds Rate (\%, nsa), Squared
CPI-U: Fuels and Utilities (1982-1984=100, sa)
Avg hr earnings of Production \& Nonsupervisory Employees, Tot priv (usd per Hour, sa), Squared U.S. Imports of Goods by Customs Basis from China (MM of usd, nsa), Squared

EMVT: Lawsuit And Tort Reform Supreme Court Decisions(Index, nsa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Jacksonville, FL (units, sa), Squared
CPI-U: Commodities Less Food and Energy Commodities (1982-1984=100, sa), Squared
CPI-U: Energy Services (1982-1984=100, sa)
Of Total Unemployed, \% Unemployed Less Than 5 Weeks (\%, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Total Private ($2002=100$, sa)
Initial Claims in Virginia (number, nsa), Squared

Bond market	2.594
Employment and hours	2.584
Employment and hours	2.582
Employment and hours	2.571
Leading indicators	2.564
Equity market	2.553
Price indices	2.550
Equity market	2.526
Employment and hours	2.517
Equity market	2.511
Real output measures	2.495
Personal income and expenditures	2.491
Employment and hours	2.486
Employment and hours	2.480
Real output measures	2.478
Employment and hours	2.458
Housing	2.441
Employment and hours	2.423
Employment and hours	2.377
Employment and hours	2.375
Employment and hours	2.368
Employment and hours	2.352
Price indices	2.338
Price indices	2.336
Employment and hours	2.313
Equity market	2.294
Employment and hours	2.291
Employment and hours	2.284
Miscellaneous	2.283
Employment and hours	2.268
Monetary measures	2.266
Sentiment	2.264
Miscellaneous	2.264
Price indices	2.260
Employment and hours	2.258
Exports and imports	2.258
Equity market	2.236
Housing	2.233
Price indices	2.230
Price indices	2.217
Employment and hours	2.214
Employment and hours	2.209
Employment and hours	2.207

$\hat{\beta}_{2}$: 12 months ahead

Variable name	Category
CU: Communications equipment (\% of capacity, sa), Squared	Real output measures
IP: Defense and space equipment (2012=100, sa), Squared	Real output measures
EMVT: Competition Matters(Index, nsa), Squared	Equity market
Moody's Seasoned Aaa Corporate Bond Minus Federal Funds Rate (\%, nsa), Squared	Bond market
Moody's Seasoned Aaa Corporate Bond Minus Federal Funds Rate (\%, nsa)	Bond market
AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa), Squared	Employment and hours
EMVT: Competition Matters(Index, nsa)	Equity market
Unemployment Rate: Aged 55-64: All Persons for the United States (\%, sa), Squared	Employment and hours
CU: Communications equipment (\% of capacity, sa)	Real output measures
HPI (Middle Tier) for Denver, Colorado (Jan 2000=100, sa), Squared	Housing
All Employees, Government (thous of pers., sa), Squared	Employment and hours
CU: Computers, communications equipment, and semiconductors (\% of capacity, sa), Squared	Real output measures
Future UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa), Squared	3.914

Moody's Seasoned Baa Corporate Bond Minus Federal Funds Rate (\%, nsa)
Other Checkable Deposits at Commercial Banks (bn of usd, sa), Squared
Continued Claims (Insured Unemployment) in Pennsylvania (number, nsa), Squared
Unemployment Rate - Married Men (\%, sa)
Fama-French Small-minus-Big (\%, nsa), Squared
CPI-U: Services by Other Medical Professionals (Dec 1986=100, sa), Squared
EMVT: Lawsuit And Tort Reform Supreme Court Decisions(Index, nsa)
Unemployment Level - Job Losers on Layoff (thous of pers., sa)
All Employees, Federal (thous of pers., sa), Squared
IP: Durable Goods: Auto parts and allied goods (2012=100, sa)
Equity Market-related Economic Uncertainty (Index, nsa)
EMVT: Food And Drug Policy(Index, nsa), Squared
Job Losers on Layoff as a \% of Total Unemployed (\%, sa)
EMVT: Food And Drug Policy(Index, nsa)
Continued Claims (Insured Unemployment) in Oklahoma (number, nsa), Squared
CPI-U: Cereals and Bakery Products (1982-1984=100, sa)
EMVT: Intellectual Property Policy (Index, nsa)
Import Price (End Use): All imports excluding petroleum (2000=100, nsa)
Unemployment Level - New Entrants (thous of pers., sa), Squared
OECD based Recession Indicators-U.S. from the Peak through the Trough (+1 or 0 , sa)
OECD based Recession Indicators-U.S. from the Peak through the Trough (+1 or 0 , sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Houston, TX (units, sa), Squared
AEWT: Merc. wholesalers, dur.goods in Riverside-San BO, CA (thous of pers., sa)
Equity Market-related Economic Uncertainty (Index, nsa), Squared
Future UOs; \% Reporting No Change for FRB - Philadelphia District (\%, sa)
OECD based Recession Ind.-US Peak through the Period preceding trough (+1 or 0 , sa)
OECD based Recession Ind.-US Peak through the Period preceding trough (+1 or 0 , sa), Squared New priv.hous. units auth. by buil.per.: 1-unit struc.: Charlotte-C-G, NC-SC (units, sa), Squared Continued Claims (Insured Unemployment) in Massachusetts (number, nsa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Jacksonville, FL (units, sa), Squared
EMVT: Lawsuit And Tort Reform Supreme Court Decisions(Index, nsa), Squared
Employment Level - Agriculture and Related Industries (thous of pers., sa)
Unemployment Rate - Job Losers (U-2) (\%, sa)
Avg weekly earnings of prod.\&nonsupervisory Employees, tot.priv (usd per Week, sa), Squared New Entrants as a \% of Total Unemployed (\%, sa), Squared
Avg.wkly.overtime-hrs. of Prod.\& nonsupervisory Employees, Dur. Goods (Hours, sa)
Avg weekly earnings of prod.\&nonsupervisory Employees, tot.priv (usd per Week, sa)
Initial Claims in Colorado (number, nsa)
Job Leavers as a \% of Total Unemployed (\%, sa)
LI OECD: Component series: Orders: Original series, US (US Dollar, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Private Service-Providing (Hours, sa)
AEWT: Merc. wholesalers, dur.goods in Riverside-San BO, CA (thous of pers., sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Tampa-St. P-C, FL (units, sa)
Indexes of agg. wkly payrolls of prod\&nonsup. Employees, tot. priv ($2002=100$, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Charlotte-C-G, NC-SC (units, sa)
Personal interest payments (bn of usd, sa)
Number Unemployed for 5-14 Weeks (thous of pers., sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: New York (units, sa)
Number Unemployed for 27 Weeks \& Over (thous of pers., sa)
OECD based Recession Ind.-U.S. Period following the Peak through (+1 or 0 , sa)
OECD based Recession Ind.-U.S. Period following the Peak through (+1 or 0, sa), Squared
Avg hr earnings of prod.\& nonsupervisory Employees, Construction (usd per Hour, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Total Private ($2002=100$, sa)
Initial Claims in Utah (number, nsa)
Personal interest payments (bn of usd, sa), Squared
S\&P/Case-Shiller CO-Denver HPI (Jan $2000=100$, sa), Squared
EMVT: Litigation Matters(Index, nsa), Squared
Other Checkable Deposits (bn of usd, sa), Squared
Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa), Squared
Pers. cur. transf. receipts: Gov.social benefits to persons: Social security (bn of usd, sa), Squared

Bond market	3.180
Monetary measures	2.978
Employment and hours	2.880
Employment and hours	2.873
Equity market	2.863
Price indices	2.846
Equity market	2.827
Employment and hours	2.806
Employment and hours	2.747
Real output measures	2.715
Equity market	2.713
Equity market	2.705
Employment and hours	2.696
Equity market	2.673
Employment and hours	2.659
Price indices	2.604
Equity market	2.588
Exports and imports	2.567
Employment and hours	2.565
Leading indicators	2.561
Leading indicators	2.561
Housing	2.520
Employment and hours	2.503
Equity market	2.486
Manufacturing activity	2.479
Leading indicators	2.477
Leading indicators	2.477
Housing	2.462
Employment and hours	2.429
Housing	2.422
Equity market	2.418
Employment and hours	2.400
Employment and hours	2.384
Employment and hours	2.367
Employment and hours	2.363
Employment and hours	2.363
Employment and hours	2.348
Employment and hours	2.345
Employment and hours	2.338
Leading indicators	2.320
Employment and hours	2.316
Employment and hours	2.300
Housing	2.293
Employment and hours	2.276
Housing	2.276
Personal income and expenditures	2.240
Employment and hours	2.237
Housing	2.232
Employment and hours	2.223
Leading indicators	2.209
Leading indicators	2.209
Employment and hours	2.190
Employment and hours	2.146
Employment and hours	2.133
Personal income and expenditures	2.117
Housing	2.110
Equity market	2.106
Monetary measures	2.099
Bond market	2.097
Personal income and expenditures	2.083

Of Total Unemployed, \% Unemployed 27 Weeks \& Over (\%, sa)
Avg.wkly.overtime-hrs. of Prod.\& Nonsupervisory Employees, Manufact. (Hours, sa)
CU : Computers, communications equipment, and semiconductors (\% of capacity, sa)
Future UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa)
New Entrants as a \% of Total Unemployed (\%, sa)
Unemployment Rate - 25-54 Yrs., Men (\%, sa)
Unemployment Rate - Hispanic or Latino (\%, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Jacksonville, FL (units, sa)
HPI (Low Tier) for San Diego, California (Jan $2000=100$, sa), Squared
CPI-U: Services by Other Medical Professionals (Dec 1986=100, sa)
U.S. Imports of Goods by Customs Basis from Taiwan (MM of usd, nsa), Squared

Avg hr earnings of prod. \& nonsup. Employees, transp.\&warehousing (usd pr hour, sa), Squared
3-Month Treasury Bill: Secondary Market Rate (\%, nsa), Squared
3-Month Treasury Constant Maturity Rate (\%, nsa), Squared
Indexes of agg. wkly payrolls of prod\&nonsup. Employees, tot. priv (2002=100, sa), Squared
AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Utah (units, sa), Squared
IP: Defense and space equipment $(2012=100$, sa)
CPI-U: Energy Services (1982-1984=100, sa)
HPI (Low Tier) for Denver, Colorado (Jan $2000=100$, sa), Squared
IP: Durable manufacturing: Fabricated metal product (2012=100, sa)
Initial Claims in Wyoming (number, nsa)
Non-M1 Components of M2 (bn of usd, sa), Squared
6-Month Treasury Bill: Secondary Market Rate (\%, nsa), Squared
6-Month Treasury Constant Maturity Rate (\%, nsa), Squared
Unemployment Rate - Hispanic or Latino (\%, sa), Squared
Avg weekly hrs of Production and Nonsupervisory Employees, Total Private (Hours, sa)

Employment and hours	2.076
Employment and hours	2.067
Real output measures	2.047
Manufacturing activity	2.045
Employment and hours	2.031
Employment and hours	2.018
Employment and hours	2.013
Housing	2.011
Housing	2.009
Price indices	1.999
Exports and imports	1.991
Employment and hours	1.979
Bond market	1.975
Bond market	1.971
Employment and hours	1.959
Employment and hours	1.951
Housing	1.945
Real output measures	1.935
Price indices	1.935
Housing	1.926
Real output measures	1.925
Employment and hours	1.916
Monetary measures	1.916
Bond market	1.914
Bond market	1.913
Employment and hours	1.911
Employment and hours	1.910

$\hat{\beta}_{3}: 1$ month ahead

Variable name
New priv.hous. units auth. by buil.per.: 1-unit struc.: Lakeland-W Haven, FL (units, sa), Squared

Prices for PCE: Chained Price Index (\% Change from Preceding Period, sa), Squared
PCE: Chain-type Price Index $(2012=100$, sa), Squared
PCE:: Market-based (chain-type price index) $(2012=100$, sa), Squared
Prices for PCE: Chained Price Index: Market-based PCE (\%change from prec.period, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Lakeland-W Haven, FL (units, sa)
CU: Crude processing (\% of capacity, sa), Squared
PPI-C: Final Demand: Finished Consumer Foods, Crude (1982=100, sa), Squared
CPI-U: All Items (1982-1984=100, sa), Squared
PCE:: Market-based (chain-type price index) $(2012=100$, sa)
IP: Durable manufacturing: Aerospace\&miscellaneous transp.equip. (2012=100, sa), Squared
CU: Durable Manuf.: Aerosp. and miscellaneous transp. equip. (\% of capacity, sa), Squared
PCE: Chain-type Price Index $(2012=100$, sa)
Prices for PCE: Chained Price Index: Market-based PCE (\%change from prec.period, sa)
CPI-U: All Items Less Food (1982-1984=100, sa)
IP: Mining: Crude oil $(2012=100$, sa)
Prices for PCE: Chained Price Index: Nondur.goods (\% Change from preced.period, sa)
Experimental CPI: Transportation(1982=100, sa)
Prices for PCE: Chained Price Index (\% Change from Preceding Period, sa)
PCE: Nondurable goods (chain-type price index) $(2012=100$, sa)
CPI-U: All Items Less Medical Care (1982-1984=100, sa), Squared
CPI-U: All Items (1982-1984=100, sa)
CPI-U: All Items Less Food (1982-1984=100, sa), Squared
CPI-U: All Items Less Medical Care (1982-1984=100, sa)
CPI-U: All Items Less Shelter (1982-1984=100, sa), Squared
IP: Mining: Oil and gas extraction $(2012=100$, sa)
CU: Nondurable Manufacturing: Chemical (\% of capacity, sa), Squared
CPI-U: All Items Less Shelter (1982-1984=100, sa)
IP: Mining ($2012=100$, sa), Squared
Category t-stat

Housing
Personal income and expenditures
Personal income and expenditures
Personal income and expenditures
Personal income and expenditures

Housing

Real output measures
Price indices
Price indices
Personal income and expenditures
Real output measures
Real output measures
Personal income and expenditures
Personal income and expenditures
Price indices
Real output measures
Personal income and expenditures
Price indices
Personal income and expenditures
Personal income and expenditures
Price indices
Price indices
Price indices
Price indices
Price indices
Real output measures
Real output measures
Price indices
Real output measures

IP: Mining: Crude oil $(2012=100$, sa), Squared
CPI-U \& clerical workers: All Items (1982-1984=100, sa)
CU: Oil and gas extraction (\% of capacity, sa)
CPI-U: Commodities Less Food (1982-1984=100, sa)
Prices for PCE: Chained Price Index: energy goods\&ser. (\%change from prec.period, sa)
Prices for PCE: Chained Price Index: Goods (\% Change from Preceding Period, sa)
PCE: Goods (chain-type price index) $(2012=100$, sa)
CU: Mining (\% of capacity, sa), Squared
CPI-U \& clerical workers: All Items (1982-1984=100, sa), Squared
CU: Crude processing (\% of capacity, sa)
CPI-U: Nondurables (1982-1984=100, sa)
CPI-U: Commodities (1982-1984=100, sa)
CPI-U: Transportation (1982-1984=100, sa)
PCE: Energy goods and services (chain-type price index) $(2012=100$, sa)
CPI-U: Energy (1982-1984=100, sa)
Prices for PCE: Chained Price Index: energy goods\&ser. (\%change from prec.period, sa), Squared CU: Nondurable Manufacturing: Chemical (\% of capacity, sa)
Experimental CPI: All Items (1982=100, sa)
IP: Nondurable manufacturing: Chemical $(2012=100$, sa)
IP: Mining: Oil and gas extraction $(2012=100$, sa), Squared
CPI-U: Energy Commodities (1982-1984=100, sa)
CU: Oil and gas extraction (\% of capacity, sa), Squared
U.S. Exports of Goods by F.A.S. Basis to Japan (MM of usd, nsa), Squared

CPI-U: Motor Fuel (1982-1984=100, sa)
IP: Nondurable manufacturing: Chemical $(2012=100$, sa), Squared
IP: Durable Goods: Aircraft and parts $(2012=100$, sa), Squared
CPI-U: Gasoline (All Types) (1982-1984=100, sa)
Experimental CPI: All Items(1982=100, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Orlando-Kissimmee, FL (units, sa), Squared
CPI-U: Household Energy (1982-1984=100, sa), Squared
CPI-U: Fuels and Utilities (1982-1984=100, sa), Squared
Unemployment Rate - Hispanic or Latino (\%, sa)
Import Price (End Use): All commodities ($2000=100$, nsa)
Housing Starts: 2-4 units (thous of units, sa), Squared
CPI-U: Utility (Piped) Gas Service (1982-1984=100, sa), Squared
Instantaneous Forward Term Premium 5 Years Hence (\%, nsa), Squared
IP: Durable manufacturing: Aerospace\&miscellaneous transp.equip. $(2012=100$, sa)
Rel. importance weight (Contribution to total IP-index): Oil and gas extraction (\%, sa)
CU: Durable Manuf.: Aerosp. and miscellaneous transp. equip. (\% of capacity, sa)
IP: Mining ($2012=100$, sa)
CU: Mining (\% of capacity, sa)
IP: Nondurable Manufacturing (NAICS)(2012=100, sa)
CU: Nondurable manufacturing (\% of capacity, sa)
CPI-U: Energy (1982-1984=100, sa), Squared
Rental income of persons with capital consumption adjustment (bn of usd, sa)
Prices for PCE: Chained Price Index: Nondur.goods (\% Change from preced.period, sa), Squared Japan / U.S. Foreign Exchange Rate (Ratio, nsa), Squared
IP: Durable Goods: Aircraft and parts $(2012=100$, sa)
HPI (High Tier) for Portland, Oregon (Jan $2000=100$, sa), Squared
Savings and Small Time Deposits - Total (bn of usd, nsa)
PCE: Energy goods and services (chain-type price index) $(2012=100$, sa), Squared
PPI-C: Final Demand: Finished Consumer Foods $(1982=100$, sa), Squared
PCE: Nondurable goods (chain-type price index) $(2012=100$, sa), Squared
Job Leavers as a \% of Total Unemployed (\%, sa)
Housing Starts: 2-4 units (thous of units, sa)
Consumer Opinion Surveys: Confidence Indicators: Composite Indic. (Normal=100, sa), Squared All Employees, Mining and Logging (thous of pers., sa)
Import Price (End Use): All imports excluding petroleum (2000=100, nsa)
CPI-U: Commodities (1982-1984=100, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: St. Louis, MO-IL (units, sa), Squared

Real output measures	3.567
Price indices	3.567
Real output measures	3.562
Price indices	3.558
Personal income and expenditures	3.543
Personal income and expenditures	3.532
Personal income and expenditures	3.480
Real output measures	3.455
Price indices	3.447
Real output measures	3.411
Price indices	3.406
Price indices	3.393
Price indices	3.374
Personal income and expenditures	3.349
Price indices	3.324
Personal income and expenditures	3.319
Real output measures	3.288
Price indices	3.287
Real output measures	3.269
Real output measures	3.265
Price indices	3.251
Real output measures	3.222
Exports and imports	3.210
Price indices	3.204
Real output measures	3.175
Real output measures	3.166
Price indices	3.096
Price indices	3.086
Housing	3.047
Price indices	3.041
Price indices	3.039
Employment and hours	3.023
Exports and imports	3.009
Housing	2.961
Price indices	2.934
Bond market	2.873
Real output measures	2.825
Real output measures	2.799
Real output measures	2.794
Real output measures	2.785
Real output measures	2.767
Real output measures	2.752
Real output measures	2.741
Price indices	2.688
Personal income and expenditures	2.641
Personal income and expenditures	2.634
Exchange rates	2.633
Real output measures	2.623
Housing	2.593
Monetary measures	2.589
Personal income and expenditures	2.567
Price indices	2.536
Personal income and expenditures	2.520
Employment and hours	2.515
Housing	2.508
Sentiment	2.504
Employment and hours	2.487
Exports and imports	2.481
Price indices	2.476
Housing	2.455

CPI-U: Fuel Oil and Other Fuels (1982-1984=100, sa)
PCE: Energy goods and services (bn of usd, sa)
PCE: Nondurable Goods (bn of usd, sa)
All Employees, Mining (thous of pers., sa)
U.S. Government Demand Deposits at Commercial Banks (bn of usd, nsa), Squared

Unemployment Level - Job Leavers (thous of pers., sa)
CPI-U: Energy Services (1982-1984=100, sa), Squared
All Employees, Health and Personal Care Stores (thous of pers., sa)
Unemployment Rate - 55 Yrs. \& Over (\%, sa), Squared
Prices for PCE: Chained Price Index: Goods (\% Change from Preceding Period, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Albuquerque, NM (units, sa)

Price indices	2.445
Personal income and expenditures	2.443
Personal income and expenditures	2.423
Employment and hours	2.417
Monetary measures	2.414
Employment and hours	2.396
Price indices	2.375
Employment and hours	2.339
Employment and hours	2.337
Personal income and expenditures	2.335
Housing	2.333

$\hat{\beta}_{3}: 6$ months ahead		
Variable name	Category	t-stat
PPI-C: Final Demand: Finished Consumer Foods, Crude (1982=100, sa), Squared	Price indices	6.624
CU: Communications equipment (\% of capacity, sa), Squared	Real output measures	4.068
U.S. Exports of Goods by F.A.S. Basis to Japan (MM of usd, nsa), Squared	Exports and imports	3.747
CPI-U: Sugar and Sweets (1982-1984=100, sa)	Price indices	3.649
PPI-C: Farm Products: Slaughter Hogs (1982=100, sa)	Price indices	3.150
CPI-U: Sugar and Sweets (1982-1984=100, sa), Squared	Price indices	3.013
PPI-C: Final Demand: Finished Consumer Foods (1982=100, sa), Squared	Price indices	2.974
Instantaneous Forward Term Premium 6 Years Hence (\%, nsa)	Bond market	2.922
New priv.hous. units auth. by buil.per.: 1-unit struc.: Orlando-Kissimmee, FL (units, sa), Squared	Housing	2.743
Business Equipment Loans Owned by Finance Companies, outst. (MM of usd, nsa), Squared	Bond market	2.713
AEWT: Merc. wholesalers, dur.goods in San Jose-S-S Clara, CA (thous of pers., sa), Squared	Employment and hours	2.689
Other Checkable Deposits at Thrift Institutions (bn of usd, nsa)	Monetary measures	2.637
CPI-U \& clerical workers: tuition, oth. sch. fees, \& childcare (1982-1984=100, sa)	Price indices	2.598
All Employees, Financial Activities (thous of pers., sa)	Employment and hours	2.525
IP: Utilities: Electric power transmission, control, and distribution (2012=100, sa)	Real output measures	2.494
New priv.hous. units auth. by buil.per.: 1-unit struc.: St. Louis, MO-IL (units, sa)	Housing	2.493
Job Leavers as a \% of Total Unemployed (\%, sa)	Employment and hours	2.488
EMVT: Intellectual Property Policy(Index, nsa)	Equity market	2.475
Housing Starts: 2-4 units (thous of units, sa), Squared	Housing	2.448
Of Total Unemployed, \% Unemployed 27 Weeks \& Over (\%, sa), Squared	Employment and hours	2.428
Unemployment Rate - 55 Yrs. \& Over (\%, sa), Squared	Employment and hours	2.393
Unemployment Level - Job Leavers (thous of pers., sa), Squared	Employment and hours	2.392
New priv.hous. units auth. by buil.per.: 1-unit struc.: Albuquerque, NM (units, sa)	Housing	2.359
CPI-U: Rent of Shelter (Dec 1982=100, sa)	Price indices	2.349
New priv.hous. units auth. by buil.per.: 1-unit struc.: St. Louis, MO-IL (units, sa), Squared	Housing	2.336
Savings and Small Time Deposits - Total (bn of usd, nsa)	Monetary measures	2.316
Total Revolving Credit Owned and Securitized, Outstanding (bn of usd, nsa)	Bond market	2.288
Personal interest payments (bn of usd, sa)	Personal income and expenditures	2.281
U.S. Exports of Goods by F.A.S. Basis to South Korea (MM of usd, nsa)	Exports and imports	2.272
Initial Claims (number, sa)	Employment and hours	2.255
Initial Claims (number, sa), Squared	Employment and hours	2.243
M2 Money Stock (bn of usd, nsa)	Monetary measures	2.240
EMVT: Housing And Land Management(Index, nsa)	Equity market	2.223
New priv.hous. units auth. by buil.per.: 1-unit struc.: Albuquerque, NM (units, sa), Squared	Housing	2.205
Other Checkable Deposits at Commercial Banks (bn of usd, sa), Squared	Monetary measures	2.180
Unemployment Level - Job Leavers (thous of pers., sa)	Employment and hours	2.171
Personal outlays (bn of usd, sa)	Personal income and expenditures	2.150
CPI-U: Tuition, Other School Fees, and Childcare (1982-1984=100, sa)	Price indices	2.148
IP: Nondurable manufacturing: Food, beverage, and tobacco (2012=100, sa)	Real output measures	2.148
Total Consumer Credit Owned and Securitized, Outstanding (bn of usd, nsa)	Bond market	2.141
Unemployment Rate - 35-44 Yrs. (\%, sa), Squared	Employment and hours	2.139
Avg hr earnings of Production \& Nonsupervisory Employees, Tot priv (usd per Hour, sa), Squared	Employment and hours	2.123
Initial Claims in Connecticut (number, nsa)	Employment and hours	2.122
New priv. housing units auth. by building permits: 1-unit structures: Texas (units, sa), Squared	Housing	2.115
Non-M1 Components of M2 (bn of usd, nsa)	Monetary measures	2.110

CPI-U: Shelter (1982-1984=100, sa)
CU: Nondurable Manufacturing: Food, beverage, and tobacco (\% of capacity, sa)
Other Checkable Deposits (bn of usd, sa)
CPI-U \& clerical workers: tuition, oth. sch. fees, \& childcare (1982-1984=100, sa), Squared
Total Revolving Credit Owned and Securitized, Outstanding (bn of usd, sa)
EMVT: Trade Policy(Index, nsa), Squared
LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa)
S\&P/Case-Shiller NC-Charlotte HPI (Jan $2000=100$, sa)
Initial Claims in Alaska (number, nsa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Pueblo, CO (units, sa)
CPI-U: Rent of Shelter (Dec 1982=100, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Arizona (units, sa)
CU: Communications equipment (\% of capacity, sa)
Number Unemployed for 27 Weeks \& Over (thous of pers., sa), Squared
U.S. Imports of Goods by Customs Basis from China (MM of usd, nsa), Squared

Unemployment Rate - Hispanic or Latino (\%, sa), Squared
Unemployment Rate: Aged 55-64: All Persons for the United States (\%, sa), Squared
CPI-U: Shelter (1982-1984=100, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Houston, TX (units, sa), Squared
Current UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa), Squared
CPI-U: Tobacco and Smoking Products (1982-1984=100, sa), Squared
Pers. cur. transf. receipts: Gov.social benefits to pers.: Unemp.insurance (bn of usd, sa), Squared
PCE (bn of usd, sa)
Total Consumer Credit Owned and Securitized, Outstanding (bn of usd, sa)
New One Family Homes for Sale in the United States (thous of units, sa)
Leading Index for Connecticut (\%, sa)
AEWT: Merc. wholesalers, dur.goods in Riverside-San BO, CA (thous of pers., sa)
Housing Starts: 2-4 units (thous of units, sa)
Job Leavers as a \% of Total Unemployed (\%, sa), Squared
U.S. Exports of Goods by F.A.S. Basis to Mexico (MM of usd, nsa), Squared

IP: Durable Goods: Engine, turbine, and power transmission equipment ($2012=100$, sa)
PPI-C: Final Demand: Priv. capital equip.: Manufacturing Industries (1982=100, sa)
Other Checkable Deposits at Commercial Banks (bn of usd, sa)
Employment-Population Ratio - 25-54 Yrs. (\%, sa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Phoenix-Mesa-C, AZ (units, sa)
IP: Nondurable Consumer Goods $(2012=100$, sa), Squared
Initial Claims in Georgia (number, nsa)
CPI-U: Tobacco and Smoking Products (1982-1984=100, sa)
CU: Nondurable Manufacturing: Food (\% of capacity, sa)
Initial Claims in Connecticut (number, nsa), Squared
Employment Level - All Industries Self-Employed, Unincorporated (thous of pers., sa)
PCE: Market-based (bn of usd, sa)
EMVT: Trade Policy(Index, nsa)
Rental income of persons with capital consumption adjustment (bn of usd, sa), Squared
Leading Index for Louisiana (\%, sa), Squared
IP: Electric power generation, transmission, and distribution (2012=100, sa)
Leading Index for Louisiana (\%, sa)
U.S. Exports of Goods by F.A.S. Basis to World (MM of usd, nsa), Squared

Initial Claims in Florida (number, nsa)
HPI (Low Tier) for New York, New York (Jan $2000=100$, sa)
Employment Level - All Industries Self-Employed, Unincorporated (thous of pers., sa), Squared
Employment Level - PT Eco Reasons, Slack Work/Bus. Con., All Ind. (thous of pers., sa)
All Employees, Residential Building (thous of pers., sa), Squared
Indexes of agg. wkly hrs of prod\&nonsup. employees, Construction (2002=100, sa)
CU: Electric power generation, transmission, and distribution (\% of capacity, sa)

Price indices	2.091
Real output measures	2.082
Monetary measures	2.082
Price indices	2.081
Bond market	2.080
Equity market	2.076
Leading indicators	2.052
Housing	2.051
Employment and hours	2.032
Housing	2.023
Price indices	2.017
Housing	2.015
Real output measures	2.015
Employment and hours	2.009
Exports and imports	1.992
Employment and hours	1.980
Employment and hours	1.975
Price indices	1.972
Housing	1.971
Manufacturing activity	1.970
Price indices	1.962
Personal income and expenditures	1.962
Personal income and expenditures	1.959
Bond market	1.959
Housing	1.950
Leading indicators	1.947
Employment and hours	1.933
Housing	1.921
Employment and hours	1.918
Exports and imports	1.911
Real output measures	1.909
Price indices	1.907
Monetary measures	1.903
Employment and hours	1.896
Housing	1.895
Real output measures	1.893
Employment and hours	1.878
Price indices	1.874
Real output measures	1.874
Employment and hours	1.858
Employment and hours	1.847
Personal income and expenditures	1.843
Equity market	1.832
Personal income and expenditures	1.820
Leading indicators	1.813
Real output measures	1.808
Leading indicators	1.801
Exports and imports	1.798
Employment and hours	1.792
Housing	1.791
Employment and hours	1.791
Employment and hours	1.790
Employment and hours	1.788
Employment and hours	1.782
Real output measures	1.776

$\hat{\beta}_{3}: 12$ months ahead

Variable name	Category
PPI-C: Final Demand: Finished Consumer Foods, Crude $(1982=100$, sa), Squared	Price indices

Leading Index for Louisiana (\%, sa)
Instantaneous Forward Term Premium 5 Years Hence (\%, nsa)
U.S. Exports of Goods by F.A.S. Basis to Japan (MM of usd, nsa), Squared

CU: Crude processing (\% of capacity, sa)
New One Family Homes for Sale in the United States (thous of units, sa)
Leading Index for Alaska (\%, sa), Squared
IP: Durable Goods: Aircraft and parts $(2012=100$, sa)
IP: Mining ($2012=100$, sa)
Leading Index for Mississippi (\%, sa)
Leading Index for Mississippi (\%, sa), Squared
IP: Business Equipment (2012=100, sa)
CU: Mining (\% of capacity, sa)
PPI-C: Farm Products: Slaughter Hogs $(1982=100$, sa)
Instantaneous Forward Term Premium 5 Years Hence (\%, nsa), Squared
Leading Index for Louisiana (\%, sa), Squared
U.S. Government Demand Deposits at Commercial Banks (bn of usd, nsa)

Leading Index for Alaska (\%, sa)
CU: Durable Manuf.: Aerosp. and miscellaneous transp. equip. (\% of capacity, sa)
Fama-French Conservative-minus-Aggressive (\%, nsa), Squared
New priv.hous. units auth. by buil.per.: 1-unit struc.: Memphis, TN-MS-AR (units, sa), Squared
CU: Crude processing (\% of capacity, sa), Squared
U.S. Government Demand Deposits at Commercial Banks (bn of usd, nsa), Squared

IP: Durable manufacturing: Aerospace\&miscellaneous transp.equip. $(2012=100$, sa)
IP: Mining: Oil and gas extraction $(2012=100$, sa)
CU: Oil and gas extraction (\% of capacity, sa)
Continued Claims (Insured Unemployment) in Illinois (number, nsa)
PPI-C: Final Demand: Finished Consumer Foods $(1982=100$, sa)
IP: Mining: Crude oil (2012=100, sa)
Leading Index for Illinois (\%, sa)
Current NOs; Diffusion for FRB - Philadelphia District (Index, sa)
PI Receipts on Assets: Personal Interest Income (bn of usd, sa)
Unemployment Rate - 55 Yrs. \& Over (\%, sa), Squared
Current Unfilled Orders; Diffusion for FRB - Philadelphia District (Index, sa)
All Employees, Mining and Logging (thous of pers., sa)
Continued Claims (Insured Unemployment) in Connecticut (number, nsa)
Initial Claims (number, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, mining\&logging ($2002=100$, sa)
CU: Nondurable Manufacturing: Chemical (\% of capacity, sa), Squared
IP: Materials $(2012=100$, sa)
All Employees, Goods-Producing (thous of pers., sa)
India / U.S. Foreign Exchange Rate (Ratio, nsa), Squared
IP: Nondurable manufacturing: Chemical $(2012=100$, sa), Squared
CU: Mining (\% of capacity, sa), Squared
All Employees, Mining (thous of pers., sa)
IP: Mining: Crude oil $(2012=100$, sa), Squared
IP: Mining ($2012=100$, sa), Squared
Instantaneous Forward Term Premium 6 Years Hence (\%, nsa), Squared
Continued Claims (Insured Unemployment) in Maryland (number, nsa)
S\&P/Case-Shiller NC-Charlotte HPI (Jan 2000=100, sa)
Small Time Deposits at Commercial Banks (bn of usd, sa)
Continued Claims (Insured Unemployment) in Kansas (number, nsa)
LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa)
Unemployment Rate - Hispanic or Latino (\%, sa), Squared
Initial Claims in Wyoming (number, nsa), Squared
Business tendency - manuf.: Confidence Indicators: Composite Indicators (Net \%, sa)
LI OECD: Component series: BTS - Business situation: Original series, US (\%, sa)
Personal interest payments (bn of usd, sa)
Continued Claims (Insured Unemployment) in Mississippi (number, nsa), Squared
Initial Claims in Connecticut (number, nsa)
CU: Total ex. Comp., communications equip., and semiconductors (\% of capacity, sa)

Leading indicators	4.162
Miscellaneous	4.136
Exports and imports	3.360
Real output measures	3.195
Housing	3.127
Leading indicators	3.070
Real output measures	2.941
Real output measures	2.919
Leading indicators	2.915
Leading indicators	2.903
Real output measures	2.889
Real output measures	2.880
Price indices	2.877
Miscellaneous	2.876
Leading indicators	2.873
Monetary measures	2.872
Leading indicators	2.868
Real output measures	2.810
Equity market	2.794
Housing	2.779
Real output measures	2.772
Monetary measures	2.761
Real output measures	2.727
Real output measures	2.723
Real output measures	2.712
Employment and hours	2.696
Price indices	2.687
Real output measures	2.685
Leading indicators	2.683
Manufacturing activity	2.672
Personal income and expenditures	2.642
Employment and hours	2.634
Manufacturing activity	2.616
Employment and hours	2.584
Employment and hours	2.579
Employment and hours	2.576
Employment and hours	2.564
Real output measures	2.544
Real output measures	2.542
Employment and hours	2.519
Miscellaneous	2.510
Real output measures	2.508
Real output measures	2.494
Employment and hours	2.485
Real output measures	2.470
Real output measures	2.469
Miscellaneous	2.460
Employment and hours	2.452
Housing	2.450
Monetary measures	2.443
Employment and hours	2.441
Leading indicators	2.433
Employment and hours	2.430
Employment and hours	2.423
Sentiment	2.382
Leading indicators	2.382
Personal income and expenditures	2.377
Employment and hours	2.377
Employment and hours	2.369
Real output measures	2.367

University of Michigan: Consumer Sentiment (1966:Q1=100, nsa), Squared
LI OECD: Component series: CS - Confidence indicator: Original series, US (Index, sa), Squared Industrial Production Index $(2012=100$, sa)
Production of Total Industry in United States (2015=100, sa)
1Y Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Florida (units, sa), Squared
Current UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa)
CU: Oil and gas extraction (\% of capacity, sa), Squared
IP: Mining: Oil and gas extraction $(2012=100$, sa), Squared
M2 Less Small Time Deposits (bn of usd, sa)
Unemployment Rate: Aged 55-64: All Persons for the United States (\%, sa), Squared
Initial Claims in Wyoming (number, nsa)
Small Time Deposits at Commercial Banks (bn of usd, nsa)
IP: Durable manufacturing: Machinery ($2012=100$, sa)
PPI-C: Farm Products: Slaughter Hogs $(1982=100$, sa), Squared
CU: Durable Manufacturing: Machinery (\% of capacity, sa)
Continued Claims (Insured Unemployment) in Colorado (number, nsa)
Capacity Utilization: Total Industry (\% of capacity, sa)
Current UOs; \% Reporting Decreases for FRB - Philadelphia District (\%, sa)
Current UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa), Squared
Hong Kong / U.S. Foreign Exchange Rate (Ratio, nsa), Squared
Initial Claims (number, nsa)
CU: Manufacturing excluding hi-tech and motor vehicles and parts (\% of capacity, sa)
Experimental CPI: Medical Care (1982=100, sa), Squared
Savings Deposits - Total (bn of usd, sa)
IP: Durable Goods: HVAC, metalworking, \& power transmission mach.(2012=100, sa)
Initial Claims in New Jersey (number, nsa)
Business tendency - manuf.: Capacity Utilization (\% of capacity, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Construction ($2002=100$, sa)
CPI-U: Alcoholic Beverages (1982-1984=100, sa), Squared
Initial Claims in Ohio (number, nsa)
Instantaneous Forward Term Premium 6 Years Hence (\%, nsa)
Initial Claims in Pennsylvania (number, nsa)
Initial Claims in Indiana (number, nsa)
Leading Index for Oklahoma (\%, sa), Squared
6M Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
Initial Claims in Illinois (number, nsa)
Leading Index for Kansas (\%, sa)
Average Weeks Unemployed (Weeks, sa)

Sentiment	2.359
Leading indicators	2.359
Real output measures	2.343
Real output measures	2.343
Bond market	2.338
Housing	2.337
Manufacturing activity	2.326
Real output measures	2.321
Real output measures	2.309
Monetary measures	2.307
Employment and hours	2.305
Employment and hours	2.299
Monetary measures	2.285
Real output measures	2.280
Price indices	2.274
Real output measures	2.269
Employment and hours	2.268
Real output measures	2.266
Manufacturing activity	2.265
Manufacturing activity	2.262
Miscellaneous	2.260
Employment and hours	2.253
Real output measures	2.251
Price indices	2.248
Monetary measures	2.232
Real output measures	2.230
Employment and hours	2.220
Sentiment	2.218
Employment and hours	2.216
Price indices	2.206
Employment and hours	2.205
Miscellaneous	2.196
Employment and hours	2.185
Employment and hours	2.185
Leading indicators	2.171
Bond market	2.170
Employment and hours	2.169
Leading indicators	2.167
Employment and hours	2.165

7.3 Appendix 3: Data Description

All explanatory variables used in our forecast model are presented in this appendix. The first table gives an overview of the sources for the variables, with both a short form and the source description.

Short	Source
ADP	Automatic Data Processing, Inc.
BBD	Baker, Scott R., Bloom, Nick, Davis, Stephen J.
FED	Board of Governors of the Federal Reserve System (US)
CBOE	Chicago Board Options Exchange
EPU	Economic Policy Uncertainty
Euronext	Euronext Paris
FRBA	Federal Reserve Bank of Atlanta
FRBD	Federal Reserve Bank of Dallas
FRBN	Federal Reserve Bank of New York
FRBP	Federal Reserve Bank of Philadelphia
FRBR	Federal Reserve Bank of Richmond
FRBSF	Federal Reserve Bank of San Francisco
FRBSL	Federal Reserve Bank of St. Louis
ISM	Institute of Supply Management
IMF	International Monetary Fund
French	Kenneth R. French
Moodys	Moody's Corporation
NASDAQ	Nasdaq Composite
NAR	National Association of Realtors
Nikkei	Nikkei Industry Research Institute
OECD	Organization for Economic Co-operation and Development
Shiller	Robert Shiller
SPDJ	S\&P Dow Jones Indices LLC
SC	Sahm, Claudia
SSE	Shanghai Stock Exchange
NYSE	The New York Stock Exchange
BEA	U.S. Bureau of Economic Analysis
BEACB	U.S. Bureau of Economic Analysis, U.S. Census Bureau
BLS	U.S. Bureau of Labor Statistics
USCB	U.S. Census Bureau
DHUD	U.S. Census Bureau, Dep. of Housing and Urban Development
USDT	U.S. Department of the Treasury
ETA	U.S. Employment and Training Administration
FHFA	U.S. Federal Housing Finance Agency
UM	University of Michigan
Yale	Yale School of Management

Table 23: List of sources for the explanatory variables

All 1196 variables are listed up in the table below. The vast majority of the variables are retrieved from the Federal Reserve Bank of St.Louis Economic Data (FRED) through their self-developed Excel Add-in, while the remaining variables are retrieved from the following sources: Chicago Board Options Ex-
change (CBOE), Yale School of Management - International Center of Finance, Bloomberg, Yahoo Finance, and the home page of both Kenneth R. French and Robert Shiller. The columns in the table are structured as follows: series number, ticker symbol, monthly date range, type of transformation, the source of the data and a short description of each variable. This description displays the unit type, i.e. whether it is an index, a ratio, an monetary amount, etc. In addition, we get information about whether the time series are seasonally adjusted (SA), or not (NSA). Finally the structure of our transformation codes are as follows: $1=\operatorname{logarithm}, 2=\log$ first differences, $3=\log$ second differences, $4=$ first differences in percent, $5=$ first differences in absolute value , $6=$ second differences in absolute value , $7=$ no transformation (Level).

Bond market					
1	AAA	$1989: 01-2020: 02$	7	Moodys	Moody's Seasoned Aaa Corporate Bond Yield (\%, nsa)
2	BBB	$1989: 01-2020: 02$	7	Moodys	Moody's Seasoned Baa Corporate Bond Yield (\%, nsa)
3	TB3MS	$1989: 01-2020: 02$	7	FED	3-Month Treasury Bill: Secondary Market Rate (\%, nsa)
4	GS3M	$1989: 01-2020: 02$	7	FED	3-Month Treasury Constant Maturity Rate (\%, nsa)
5	TB6MS	$1989: 01-2020: 02$	7	FED	6-Month Treasury Bill: Secondary Market Rate (\%, nsa)
6	GS6M	$1989: 01-2020: 02$	7	FED	6-Month Treasury Constant Maturity Rate (\%, nsa)
7	GS1	$1989: 01-2020: 02$	7	FED	1-Year Treasury Constant Maturity Rate (\%, nsa)
8	GS5	$1989: 01-2020: 02$	7	FED	5-Year Treasury Constant Maturity Rate (\%, nsa)
9	GS10	$1989: 01-2020: 02$	7	FED	10-Year Treasury Constant Maturity Rate (\%, nsa)

Capacity Utilization measures (CU)

10	TCU	$1967: 01-2020: 01$
11	CAPUTLN2121S	$1967: 01-2020: 01$
12	CAPUTLG3342S	$1972: 01-2020: 01$
13	CAPUTLG3341S	$1972: 01-2020: 01$
14	CAPUTLHITEK2S	$1967: 01-2020: 01$
15	CAPUTLB5610CS	$1967: 01-2020: 01$
16	CAPUTLG3364T9S	$1948: 01-2020: 01$
17	CAPUTLG335S	$1972: 01-2020: 01$
18	CAPUTLGMFDS	$1967: 01-2020: 01$
19	CAPUTLG33611S	$1972: 01-2020: 01$
20	CAPUTLG334S	$1972: 01-2020: 01$
21	CAPUTLG332S	$1948: 01-2020: 01$
22	CAPUTLG337S	$1967: 01-2020: 01$
23	CAPUTLG3311A2S	$1972: 01-2020: 01$
24	CAPUTLG333S	$1967: 01-2020: 01$
25	CAPUTLG339S	$1972: 01-2020: 01$
26	CAPUTLG3361T3S	$1948: 01-2020: 01$
27	CAPUTLG327S	$1948: 01-2020: 01$
28	CAPUTLG331S	$1967: 01-2020: 01$
29	CAPUTLG336S	$1967: 01-2020: 01$
30	CAPUTLG321S	$1972: 01-2020: 01$
31	CAPUTLG2211A2S	$1967: 01-2020: 01$
32	CAPUTLG2211S	$1967: 01-2020: 01$
33	CAPUTLB5640CS	$1948: 01-2020: 01$
34	CAPUTLX4HTK2S	$1967: 01-2020: 01$
35	MCUMFN	$1972: 01-2020: 01$
36	CUMFNS	$1948: 01-2020: 01$
37	CAPUTLX4HTMVS	$1967: 01-2020: 01$
38	CAPUTLG2122S	$1967: 01-2020: 01$
39	CAPUTLG21S	$1967: 01-2020: 01$
40	CAPUTLG212S	$1972: 01-2020: 01$
41	CAPUTLG2212S	$1967: 01-2020: 01$
10		

```
FED
FED
FED
CU: Computer and peripheral equipment (% of capacity, sa)
FED CU: Computers, communications equipment, and semiconductors (% of capacity, sa)
FED CU: Crude processing (% of capacity, sa)
FED CU: Durable Manuf.: Aerosp. and miscellaneous transp. equip. (% of capacity, sa)
FED CU: Durable Manuf.: Electrical equip., appliance, and component (% of capacity, sa)
FED CU: Durable Manufacturing (% of capacity, sa)
FED CU: Durable Manuf.: Automobile and light duty motor vehicle (% of capacity, sa)
FED CU: Durable Manufacturing: Computer and electronic product (% of capacity, sa)
FED CU: Durable Manufacturing: Fabricated metal product (% of capacity, sa)
FED CU: Durable Manufacturing: Furniture and related product (% of capacity, sa)
FED CU: Durable manufacturing: Iron and steel products (% of capacity, sa)
FED CU: Durable Manufacturing: Machinery (% of capacity, sa)
FED CU: Durable Manufacturing: Miscellaneous (% of capacity, sa)
FED CU: Durable Manufacturing: Motor vehicles and parts (% of capacity, sa)
FED CU: Durable Manufacturing: Nonmetallic mineral product (% of capacity, sa)
FED CU: Durable Manufacturing: Primary metal (% of capacity, sa)
FED CU: Durable Manufacturing: Transportation equipment (% of capacity, sa)
FED CU: Durable Manufacturing: Wood product (% of capacity, sa)
FED CU: Electric and gas utilities (% of capacity, sa)
FED CU: Electric power generation, transmission, and distribution (% of capacity, sa)
FED CU: Finished processing (% of capacity, sa)
FED CU: Manuf. ex. comp., communications equip., & semiconductors (% of capacity, sa)
FED CU: Manufacturing (NAICS) (% of capacity, sa)
FED CU: Manufacturing (SIC) (% of capacity, sa)
FED CU: Manufacturing excluding hi-tech and motor vehicles and parts (% of capacity, sa)
FED CU: Metal ore mining (% of capacity, sa)
FED CU: Mining (% of capacity, sa)
FED CU: Mining (except oil and gas) (% of capacity, sa)
FED CU: Natural gas distribution (% of capacity, sa)
```

CAPUTLGMFNS CAPUTLG315S CAPUTLG315A6S CAPUTLG312S CAPUTLG325S CAPUTLG311S CAPUTLG311A2S CAPUTLG316S CAPUTLGMFOS CAPUTLG322S CAPUTLG324S CAPUTLG326S CAPUTLG323S CAPUTLG325212S CAPUTLG313S CAPUTLG314S CAPUTLG313A4S CAPUTLG2123S CAPUTLG211S CAPUTLB562A3CS CAPUTLG213S CAPUTLX50HTKS CAPG2211S

Consumer Price Index (CPI)
65 CPIAUCSL

CWSR0000SEFV CWSR0000SAF112 CWSR0000SA0 CWSR0000SAH CWSR0000SEEB CUSR0000SAF115 CUSR0000SETG01 CUSR0000SAF116 CUSR0000SEFW CUSR0000SEFX CPILEGSL CPIULFSL CPILFESL CUSR0000SA0L5 CUSR0000SA0L2 CPIAPPSL CUSR0000SA311 CUSR0000SAF111 CUSR0000SAC CUSR0000SACL1 CUSR0000SACL1E CUSR0000SEFJ CUSR0000SAD CUSR0000SEEA CUSR0000SEHF01 CPIENGSL CUSR0000SACE CUSR0000SEHF CPIUFDSL CPIFABSL CUSR0000SAF11 CUSR0000SEFV CUSR0000SEAE CUSR0000SAF113

1967:01-2020:01 1972:01-2020:01 1972:01-2020:01 1972:01-2020:01 1948:01-2020:0 1972:01-2020:01 1967:01-2020:01 1967:01-2020:01 1972:01-2020:01 1948:01-2020:01 1948:01-2020:01 1948:01-2020:01 1972:01-2020:01 1972:01-2020:01 1972:01-2020:01 1972:01-2020:01 1972:01-2020:01 1967:01-2020:01 1972:01-2020:01 1948:01-2020:01 1972:01-2020:01 1967:01-2020:01 1967:01-2020:01

1953:01-2020:02 1967:01-2020:02 1947:01-2020:02 1967:01-2020:02 1978:01-2020:02 1967:01-2020:02 1989:01-2020:02 1967:01-2020:02 1978:01-2020:02 1978:01-2020:02 1957:01-2020:02 1947:01-2020:02 1957:01-2020:02 1957:01-2020:02 1947:01-2020:02 1947:01-2020:02 1947:01-2020:02 1989:01-2020:02 1956:01-2020:02 1956:01-2020:02 1957:01-2020:02 1989:01-2020:02 1956:01-2020:02 1967:01-2020:02 1952:01-2020:02 1957:01-2020:02 1957:01-2020:02 1947:01-2020:02 1947:01-2020:02 1967:01-2020:02 1952:01-2020:02 1953:01-2020:02 1947:01-2020:02 1947:01-2020:02

BLS
BLS CPI-U: Food and Beverages (1982-1984=100, sa)
BLS CPI-U: Food at Home (1982-1984=100, sa)
BLS CPI-U: Food Away From Home (1982-1984=100, sa)
BLS CPI-U: Footwear (1982-1984=100, sa)

CPI-U: Fruits and Vegetables (1982-1984=100, sa)
CPI-U: All Items (1982-1984=100, sa)

CPI-U \& clerical workers: meats, poultry, fish, \& eggs (1982-1984=100, sa)
CPI-U \& clerical workers: All Items (1982-1984=100, sa)
CPI-U \& clerical workers: Housing (1982-1984=100, sa)
CPI-U \& clerical workers: tuition, oth. sch. fees, \& childcare (1982-1984=100, sa)
CPI-U: all urb.consumers: Food at Home in U.S. City avg. (1982-1984=100, sa)
CPI-U: Airline Fares (1982-1984=100, sa)
CPI-U: Alcoholic Beverages (1982-1984=100, sa)
CPI-U: Alcoholic Beverages at Home (1982-1984=100, sa)
CPI-U: Alcoholic Beverages Away From Home (1982-1984=100, sa)
CPI-U: All Items Less Energy (1982-1984=100, sa)
CPI-U: All Items Less Food (1982-1984=100, sa)
CPI-U: All Items Less Food and Energy (1982-1984=100, sa)
CPI-U: All Items Less Medical Care (1982-1984=100, sa)
CPI-U: All Items Less Shelter (1982-1984=100, sa)
CPI-U: Apparel (1982-1984=100, sa)
CPI-U: Apparel Less Footwear (1982-1984=100, sa)
CPI-U: Cereals and Bakery Products (1982-1984=100, sa)
CPI-U: Commodities (1982-1984=100, sa)
CPI-U: Commodities Less Food (1982-1984=100, sa)
CPI-U: Commodities Less Food and Energy Commodities (1982-1984=100, sa)
CPI-U: Dairy and Related Products (1982-1984=100, sa)
CPI-U: Durables (1982-1984=100, sa)
CPI-U: Educational Books and Supplies (1982-1984=100, sa)
CPI-U: Electricity (1982-1984=100, sa)
CPI-U: Energy (1982-1984=100, sa)
CPI-U: Energy Commodities (1982-1984=100, sa)
CPI-U: Energy Services (1982-1984=100, sa)
CPI-U: Food (1982-1984=100, sa)
CPI-U: Food and Beverages (1982-1984=100, sa)
CPI-U: Food at Home (1982-1984=100, sa)
CPI-U: Food Away From Home (1982-1984=100, sa)
CPI-U: Footwear (1982-1984=100, sa)

CPI-U \& clerical workers: food away from home in U.S. City avg. (1982-1984=100, sa)

CUSR0000SEHE CUSR0000SAH2 CUSR0000SETB01 CUSR0000SEMD CUSR0000SAH21 CUSR0000SAH3 CPIHOSSL CUSR0000SAF112 CPIMEDSL CUSR0000SAM1 CUSR0000SAM2 CUSR0000SAA1 CUSR0000SETB CUSR0000SETD CUSR0000SETA01 CUSR0000SAF114 CUSR0000SAN CPIOGSSL CUSR0000SEHC01 CUSR0000SEHC CUSR0000SEMC CUSR0000SEHA CUSR0000SAS2RS CUSR0000SAS CUSR0000SEMC04 CUSR0000SASLE CUSR0000SASL5 CUSR0000SASL2RS CUSR0000SAH1 CUSR0000SEFR CUSR0000SEGA CUSR0000SERE01 CPITRNSL CUSR0000SAS4 CUSR0000SEEB CUSR0000SETA02 CUSR0000SEHF02 CUSR0000SAA2 CPIEHOUSE CPIEALL CPIEAPPAREL CPIEMEDCARE CPIETRANS

1947:01-2020:02 1953:01-2020:02 1967:01-2020:02 1978:01-2020:0 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1947:01-2020:02 1967:01-2020:02 1956:01-2020:02 1947:01-2020:02 1967:01-2020:02 1967:01-2020:02 1953:01-2020:02 1947:01-2020:02 1956:01-2020:02 1967:01-2020:02 1983:01-2020:02 1983:01-2020:02 1980:01-2020:02 1981:01-2020:02 1990:01-2020:02 1956:01-2020:02 1989:01-2020:02 1967:01-2020:02 1983:01-2020:02 1985:01-2020:02 1953:01-2020:02 1989:01-2020:02 1986:01-2020:0 1978:01-2020:02 1947:01-2020:02 1956:01-2020:02 1978:01-2020:02 1953:01-2020:0 1952:01-2020:02 1947:01-2020:02 1982:12-2020:02 1982:12-2020:02 1982:12-2020:02 1982:12-2020:0 1982:12-2020:02

BLS
BLS
BLS
BLS
BLS BLS

CPI-U: Fuel Oil and Other Fuels (1982-1984=100, sa)
CPI-U: Fuels and Utilities (1982-1984=100, sa)
CPI-U: Gasoline (All Types) $(1982-1984=100$, sa)
CPI-U: Hospital and Related Services (1982-1984=100, sa)
CPI-U: Household Energy (1982-1984=100, sa)
CPI-U: Household Furnishings and Operations (1982-1984=100, sa)
CPI-U: Housing (1982-1984=100, sa)
CPI-U: Meats, Poultry, Fish, and Eggs (1982-1984=100, sa)
CPI-U: Medical Care (1982-1984=100, sa)
CPI-U: Medical Care Commodities (1982-1984=100, sa)
CPI-U: Medical Care Services (1982-1984=100, sa)
CPI-U: Men's and Boys' Apparel (1982-1984=100, sa)
CPI-U: Motor Fuel (1982-1984=100, sa)
CPI-U: Motor Vehicle Maintenance and Repair (1982-1984=100, sa)
CPI-U: New Vehicles (1982-1984=100, sa)
CPI-U: Nonalcoholic Beverages and Beverage Materials (1982-1984=100, sa)
CPI-U: Nondurables (1982-1984=100, sa)
CPI-U: Other Goods and Services (1982-1984=100, sa)
CPI-U: Owners' Equivalent Rent of Primary Residence (Dec 1982=100, sa)
CPI-U: Owners' Equivalent Rent of Residences (Dec 1982=100, sa)
CPI-U: Professional Services (1982-1984=100, sa)
CPI-U: Rent of Primary Residence (1982-1984=100, sa)
CPI-U: Rent of Shelter (Dec 1982=100, sa)
CPI-U: Services (1982-1984=100, sa)
CPI-U: Services by Other Medical Professionals (Dec 1986=100, sa)
CPI-U: Services Less Energy Services (1982-1984=100, sa)
CPI-U: Services Less Medical Care Services (1982-1984=100, sa)
CPI-U: Services Less Rent of Shelter (Dec 1982=100, sa)
CPI-U: Shelter (1982-1984=100, sa)
CPI-U: Sugar and Sweets (1982-1984=100, sa)
CPI-U: Tobacco and Smoking Products (1982-1984=100, sa)
CPI-U: Toys (1982-1984=100, sa)
CPI-U: Transportation (1982-1984=100, sa)
CPI-U: Transportation Services (1982-1984=100, sa)
CPI-U: Tuition, Other School Fees, and Childcare (1982-1984=100, sa)
CPI-U: Used Cars and Trucks (1982-1984=100, sa)
CPI-U: Utility (Piped) Gas Service (1982-1984=100, sa)
CPI-U: Women's and Girls' Apparel (1982-1984=100, sa)
Experimental Consumer Price Index: Housing $(1982=100$, sa)
Experimental CPI: All Items(1982=100, sa)
Experimental CPI: Apparel(1982=100, sa)
Experimental CPI: Medical Care $(1982=100$, sa)
Experimental CPI: Transportation $(1982=100$, sa)

Quality Market (HQM) Corporate Bonds

HQMCB10YR
HQMCB20YR
HQMCB5YR
HQMCB30YR
HQMCB10YRP
HQMCB1YR
HQMCB15YR
HQMCB5YRP
HQMCB30YRP
HQMCB2YR
HQMCB100YR
HQMCB25YR
HQMCB3YR
HQMCB50YR
HQMCB2YRP

1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02

10-Year HQM Corporate Bond Spot Rate (\%, nsa) 20-Year HQM Corporate Bond Spot Rate (\%, nsa) 5-Year HQM Corporate Bond Spot Rate (\%, nsa) 30-Year HQM Corporate Bond Spot Rate (\%, nsa) 10-Year HQM Corporate Bond Par Yield (\%, nsa)
1-Year HQM Corporate Bond Spot Rate (\%, nsa)
15-Year HQM Corporate Bond Spot Rate (\%, nsa) 5-Year HQM Corporate Bond Par Yield (\%, nsa) 30-Year HQM Corporate Bond Par Yield (\%, nsa) 2-Year HQM Corporate Bond Spot Rate (\%, nsa) 100-Year HQM Corporate Bond Spot Rate (\%, nsa)
25-Year HQM Corporate Bond Spot Rate (\%, nsa)
3-Year HQM Corporate Bond Spot Rate (\%, nsa)
50-Year HQM Corporate Bond Spot Rate (\%, nsa)
2-Year HQM Corporate Bond Par Yield (\%, nsa)

HQMCB12YR HQMCB40YR HQMCB7YR HQMCB6MT HQMCB4YR HQMCB18YR HQMCB8YR HQMCB9YR HQMCB6YR HQMCB99YR HQMCB23YR HQMCB16YR HQMCB51Y6M HQMCB90YR HQMCB60YR HQMCB1Y6M HQMCB6Y6M HQMCB35YR HQMCB26YR HQMCB8Y6M HQMCB69Y6M HQMCB70YR HQMCB11YR HQMCB13YR HQMCB79Y6M HQMCB3Y6M HQMCB5Y6M HQMCB7Y6M HQMCB75YR HQMCB2Y6M HQMCB86Y6M HQMCB14YR HQMCB4Y6M HQMCB10Y6M HQMCB27YR HQMCB66YR HQMCB11Y6M HQMCB19YR HQMCB43YR HQMCB59YR HQMCB80YR HQMCB45YR HQMCB54Y6M HQMCB81YR HQMCB22YR HQMCB14Y6M HQMCB73YR HQMCB21YR HQMCB95Y6M HQMCB19Y6M HQMCB24YR HQMCB31Y6M HQMCB52YR HQMCB33Y6M HQMCB90Y6M HQMCB41YR HQMCB55YR HQMCB17YR HQMCB38Y6M HQMCB88YR

1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:0 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:0 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:0 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:0 1984:01-2020:0 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02
USDT

12-Year HQM Corporate Bond Spot Rate (\%, nsa) 40-Year HQM Corporate Bond Spot Rate (\%, nsa)
7-Year HQM Corporate Bond Spot Rate (\%, nsa)
6 -Month HQM Corporate Bond Spot Rate (\%, nsa)
4-Year HQM Corporate Bond Spot Rate (\%, nsa)
18-Year HQM Corporate Bond Spot Rate (\%, nsa)
8-Year HQM Corporate Bond Spot Rate (\%, nsa)
9-Year HQM Corporate Bond Spot Rate (\%, nsa)
6-Year HQM Corporate Bond Spot Rate (\%, nsa)
99-Year HQM Corporate Bond Spot Rate (\%, nsa)
23-Year HQM Corporate Bond Spot Rate (\%, nsa)
16-Year HQM Corporate Bond Spot Rate (\%, nsa)
51.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

90-Year HQM Corporate Bond Spot Rate (\%, nsa)
60-Year HQM Corporate Bond Spot Rate (\%, nsa)
1.5-Year HQM Corporate Bond Spot Rate (\%, nsa)
6.5-Year HQM Corporate Bond Spot Rate (\%, nsa)

35-Year HQM Corporate Bond Spot Rate (\%, nsa)
26-Year HQM Corporate Bond Spot Rate (\%, nsa)
8.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 69.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 70-Year HQM Corporate Bond Spot Rate (\%, nsa) 11-Year HQM Corporate Bond Spot Rate (\%, nsa) 13-Year HQM Corporate Bond Spot Rate (\%, nsa) 79.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 3.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 5.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 7.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 75-Year HQM Corporate Bond Spot Rate (\%, nsa) 2.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 86.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 14-Year HQM Corporate Bond Spot Rate (\%, nsa) 4.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 10.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 27-Year HQM Corporate Bond Spot Rate (\%, nsa) 66-Year HQM Corporate Bond Spot Rate (\%, nsa) 11.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 19-Year HQM Corporate Bond Spot Rate (\%, nsa) 43-Year HQM Corporate Bond Spot Rate (\%, nsa) 59-Year HQM Corporate Bond Spot Rate (\%, nsa) 80-Year HQM Corporate Bond Spot Rate (\%, nsa) 45-Year HQM Corporate Bond Spot Rate (\%, nsa) 54.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 81-Year HQM Corporate Bond Spot Rate (\%, nsa) $22-$ Year HQM Corporate Bond Spot Rate (\%, nsa) 14.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 73-Year HQM Corporate Bond Spot Rate (\%, nsa) 21-Year HQM Corporate Bond Spot Rate (\%, nsa) 95.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 19.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 24-Year HQM Corporate Bond Spot Rate (\%, nsa) 31.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 52-Year HQM Corporate Bond Spot Rate (\%, nsa) 33.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 90.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 41-Year HQM Corporate Bond Spot Rate (\%, nsa) 55-Year HQM Corporate Bond Spot Rate (\%, nsa) 17-Year HQM Corporate Bond Spot Rate (\%, nsa) 38.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 88-Year HQM Corporate Bond Spot Rate (\%, nsa)

HQMCB96YR HQMCB79YR HQMCB71YR HQMCB29YR HQMCB28YR HQMCB76YR HQMCB74Y6M HQMCB37YR HQMCB9Y6M HQMCB92YR HQMCB76Y6M HQMCB85Y6M HQMCB46YR HQMCB38YR HQMCB17Y6M HQMCB34YR HQMCB39YR HQMCB35Y6M HQMCB31YR HQMCB41Y6M HQMCB39Y6M HQMCB98YR
loyment and hours
CES4348100001
CES4244110001
CES4244800001
CES1021210001
USCONS
DMANEMP
USEHS
CES6561000001
CES9091000001
USFIRE
CES7072200001
CES4244200001
USGOOD
USGOVT
CES4244600001
CES6562000101
USINFO
USLAH
MANEMP
USMINE
CES1021000001
CES3133600101
NDMANEMP
CES1021100001
CES0800000001
USPBS
CES2023610001
USTRADE
SRVPRD
TEMPHELPS
PAYEMS
USPRIV
USTPU
CES4300000001
CES4348400001
CES4349300001

1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:0 1984:01-2020:02 1984:01-2020:02

USDT USDT

96-Year HQM Corporate Bond Spot Rate (\%, nsa)
79-Year HQM Corporate Bond Spot Rate (\%, nsa)
71-Year HQM Corporate Bond Spot Rate (\%, nsa) 29-Year HQM Corporate Bond Spot Rate (\%, nsa) 28-Year HQM Corporate Bond Spot Rate (\%, nsa) 76-Year HQM Corporate Bond Spot Rate (\%, nsa) 74.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 37 -Year HQM Corporate Bond Spot Rate (\%, nsa) 9.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 92-Year HQM Corporate Bond Spot Rate (\%, nsa) 76.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 85.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 46-Year HQM Corporate Bond Spot Rate (\%, nsa) 38-Year HQM Corporate Bond Spot Rate (\%, nsa) 17.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 34 -Year HQM Corporate Bond Spot Rate (\%, nsa) 39-Year HQM Corporate Bond Spot Rate (\%, nsa) 35.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 31-Year HQM Corporate Bond Spot Rate (\%, nsa) 41.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 39.5-Year HQM Corporate Bond Spot Rate (\%, nsa) 98-Year HQM Corporate Bond Spot Rate (\%, nsa)

```
BLS
BLS All Employees, Food Services and Drinking Places (thous of pers., sa)
BLS All Employees, Furniture and Home Furnishings Stores (thous of pers., sa)
BLS All Employees, Goods-Producing (thous of pers., sa)
BLS All Employees, Government (thous of pers., sa)
BLS All Employees, Health and Personal Care Stores (thous of pers., sa)
BLS All Employees, Health Care (thous of pers., sa)
BLS All Employees, Information (thous of pers., sa)
BLS All Employees, Leisure and Hospitality (thous of pers., sa)
BLS All Employees, Manufacturing (thous of pers., sa)
BLS All Employees, Mining and Logging (thous of pers., sa)
BLS All Employees, Mining (thous of pers., sa)
BLS All Employees, Motor Vehicles and Parts (thous of pers., sa)
BLS All Employees, Nondurable Goods (thous of pers., sa)
All Employees, Oil and Gas Extraction (thous of pers., sa)
All Employees, Private Service-Providing (thous of pers., sa)
All Employees, Professional and Business Services (thous of pers., sa)
All Employees, Residential Building (thous of pers., sa)
All Employees, Retail Trade (thous of pers., sa)
All Employees, Service-Providing (thous of pers., sa)
All Employees, Temporary Help Services (thous of pers., sa)
All Employees, Total Nonfarm (thous of pers., sa)
All Employees, Total Private (thous of pers., sa)
All Employees, Trade, Transportation, and Utilities (thous of pers., sa)
All Employees, Transportation and Warehousing (thous of pers., sa)
All Employees, Truck Transportation (thous of pers., sa)
All Employees, Warehousing and Storage (thous of pers., sa)
```

USWTRADE
SMU06000004142320001SA SMU06000004142370001SA SMU06000004142330001SA SMU26000004142300001SA SMU33000004142300001SA SMU36356144142300001SA SMU06401404142300001SA SMU06419404142300001SA SMU34350844142400001SA SMU26000004142310001SA
CES2000000007
CES3100000007
CES0600000007
CES0800000007
CES6000000007
CES4200000007
CES4000000007
CES3100000009
AWOTMAN
CES3200000009
UEMPMEAN
CES2000000008
CES3000000008
AHETPI
CES4300000008
CES0500000030
AWHMAN
AWHNONAG
CLF16OV
W209RC1
A132RC1
LNS12500000
LNS12600000
LNS12000060
LNS12034560
LNS12027714
LNS12000006
LNS12032194
LNS12032197
LNS12032195
LNS12000002
CE16OV
LREM64TTUSM156S LREM25TTUSM156S LREM25FEUSM156S LREM25MAUSM156S LNS12300060 LNS12300006 LNS12300001 LNS12300002 EMRATIO LRHUTTTTUSM156S CES2000000034

CES5500000034
CES7000000034
CES3000000034
CES1000000034
CES4200000034 AWHI

939:01-2020:02 1990:01-2020:01 1990:01-2020:01 1990:01-2020:0 1990:01-2020:01 1990:01-2020:0 1990:01-2020:01 1990:01-2020:01 1990:01-2020:01 1990:01-2020:0 1990:01-2020:01 1947:01-2020:02 1939:01-2020:02 1947:01-2020:02 1964:01-2020:02 1964:01-2020:02 1972:01-2020:02 1964:01-2020:02 1956:01-2020:02 1956:01-2020:02 1956:01-2020:02 1948:01-2020:02 1947:01-2020:02 1939:01-2020:02 1964:01-2020:02 1972:01-2020:02 1964:01-2020:02 1939:01-2020:02 1964:01-2020:02 1989:01-2020:02 1959:01-2020:01 1959:01-2020:01 1968:01-2020:02 1968:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1972:01-2020:02 1955:05-2020:02 1955:05-2020:02 1955:05-2020:02 1948:01-2020:02 1948:01-2020:02 1977:01-2020:02 1977:01-2020:02 1977:01-2020:02 1977:01-2020:02 1948:01-2020:02 1972:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1960:01-2020:02 1947:01-2020:02 1964:01-2020:02 1964:01-2020:02 1939:01-2020:02 1947:01-2020:02 1972:01-2020:02 1964:01-2020:02
BLS Avg hr earnings of prod.\& nonsupervisory Employees, Construction (usd per Hour, sa)
BLS Avg hr earnings of prod.\&nonsupervisory Employees, Manufacturing (usd per Hour, sa)
BLS Avg hr earnings of Production \& Nonsupervisory Employees, Tot priv (usd per Hour, sa)
BLS Avg hr earnings of prod. \& nonsup. Employees, transp.\&warehousing (usd pr hour, sa)
BLS Avg weekly earnings of prod.\&nonsupervisory Employees, tot.priv (usd per Week, sa)
BLS Avg weekly hrs of Production \& Nonsupervisory Employees, Manufacturing (Hours, sa)
BLS Avg weekly hrs of Production and Nonsupervisory Employees, Total Private (Hours, sa)
BLS Civilian Labor Force Level 1989-01-01 to 2020-02-01 (thous of pers., sa)
BEA Compensation of employees, received (bn of usd, sa)
BEA Compensation of employees, Received: wage \& salary Disb.: priv. Ind. (bn of usd, sa)
BLS Employed, Usually Work Full Time (thous of pers., sa)
BLS Employed, Usually Work Part Time (thous of pers., sa)
BLS Employment Level - 25-54 Yrs. (thous of pers., sa)
BLS Employment Level - Agriculture and Related Industries (thous of pers., sa)
BLS Employment Level - All Industries Self-Employed, Unincorporated (thous of pers., sa)
BLS Employment Level - Black or African American (thous of pers., sa)
BLS Employment Level - Part-Time for Economic Reasons, All Industries (thous of pers., sa)
BLS Employment Level - PT,Economic Reasons, Nonagricultural Ind.(thous of pers., sa)
BLS Employment Level - PT Eco Reasons, Slack Work/Bus. Con., All Ind. (thous of pers., sa)
BLS Employment Level - Women (thous of pers., sa)
BLS Employment Level (thous of pers., sa)
OECD Employment Rate: Aged 15-64: All Persons for the United States (\%, sa)
OECD Employment Rate: Aged 25-54: All Persons for the United States (\%, sa)
OECD Employment Rate: Aged 25-54: Females for the United States (\%, sa)
OECD Employment Rate: Aged 25-54: Males for the United States (\%, sa)
BLS Employment-Population Ratio - 25-54 Yrs. (\%, sa)
BLS Employment-Population Ratio - Black or African American (\%, sa)
BLS Employment-Population Ratio - Men (\%, sa)
BLS Employment-Population Ratio - Women (\%, sa)
BLS Employment-Population Ratio (\%, sa)
OECD Harmonized Unemployment Rate: Total: All Persons for the United States (\%, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, Construction (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, Fin. Activities (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, leisure\&hosp (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, Manufacturing (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, mining\&logging (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, Retail Trade (2002=100, sa)
BLS Indexes of agg. wkly hrs of prod\&nonsup. employees, Total Private $(2002=100$, sa)

BLS All Employees, Wholesale Trade (AEWT) (thous of pers., sa)
FRBSL AEWT: Furniture \& home furnishing merc. wholesalers. Cali. (thous of pers., sa)
FRBSL AEWT: h.ware, \& plumbing \& heat. equip. \& sup. merc. whole. Cali (thous of pers., sa)
FRBSL AEWT: lumber \& ot. construction materials merc. wholesalers. Cali (thous of pers., sa)
FRBSL AEWT: Merchant wholesalers, durable goods in Michigan (thous of pers., sa)
FRBSL AEWT: Merc. wholesalers, dur.goods in New Hampshire (thous of pers., sa)
FRBSL AEWT: Merc. wholesalers, dur.goods in NY-NJ (MD) (thous of pers., sa)
FRBSL AEWT: Merc. wholesalers, dur.goods in Riverside-San BO, CA (thous of pers., sa)
FRBSL AEWT: Merc. wholesalers, dur.goods in San Jose-S-S Clara, CA (thous of pers., sa)
FRBSL AEWT: Merc. wholesalers, nondur.goods in Newark, NJ-PA (MD) (thous of pers., sa)
FRBSL AEWT: Motor veh.\&.parts \& sup. merc. wholesalers, Michigan (thous of pers., sa)
BLS Avg.wkly.hrs. of Production and Nonsupervisory Employees, Construction (Hours, sa)
BLS Avg.wkly.hrs. of prod.\&nonsup. Emplys, Durable Goods (Hours, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Goods-Producing (Hours, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Private Service-Providing (Hours, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Professional and Business Services (Hours, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Retail Trade (Hours, sa)
Avg.wkly.hrs. of prod.\&nonsup. Emplys, Trade, Transportation, and Utilities (Hours, sa)
Avg.wkly.overtime-hrs. of Prod.\& nonsupervisory Employees, Dur. Goods (Hours, sa)
Avg.wkly.overtime-hrs. of Prod.\& Nonsupervisory Employees, Manufact. (Hours, sa)
Avg.wkly.overtime-hrs. of prod.\& nonsupervisory employees, nondur. goods (Hours, sa)
Average Weeks Unemployed (Weeks, sa)
Avg hr earnings of prod.\& nonsupervisory Employees, Construction (usd per Hour, sa)
Avg hr earnings of prod.\&nonsupervisory Employees, Manufacturing (usd per Hour, sa)
Avg hr earnings of Production \& Nonsupervisory Employees, Tot priv (usd per Hour, sa)
Avg hr earnings of prod. \& nonsup. Employees, transp.\&warehousing (usd pr hour, sa)
Avg weekly hrs of Production \& Nonsupervisory Employees, Manufacturing (Hours, sa)
Avg weekly hrs of Production and Nonsupervisory Employees, Total Private (Hours, sa)
Civilian Labor Force Level 1989-01-01 to 2020-02-01 (thous of pers., sa)
Compensation of employees, received (bn of usd, sa)
Compensation of employees, Received: wage \& salary Disb.: priv. Ind. (bn of usd, sa)
(thous of pers., sa)

Employment Level - 25-54 Yrs. (thous of pers., sa)
Employment Level - Agriculture and Related Industries (thous of pers., sa)
Employment Level - All Industries Self-Employed, Unincorporated (thous of pers., sa)
mployment Level - Black or African American (thous of pers., sa)

Employment Level - PT,Economic Reasons, Nonagricultural Ind.(thous of pers., sa)
Employment Level - PT Eco Reasons, Slack Work/Bus. Con., All Ind. (thous of pers., sa)
Employment Level - Women (thous of pers., sa)
Employment Level (thous of pers., sa)
OECD Employment Rate: Aged 15-64: All Persons for the United States (\%, sa)
OECD Employment Rate: Aged 25-54: All Persons for the United States (\%, sa)
OECD Employment Rate: Aged 25-54: Females for the United States (\%, sa)
Employment Rate: Aged 25-54: Males for the United States (\%, sa)
Employment-Population Ratio - 25-54 Yrs. (\%, sa)
Employment-Population Ratio - Black or African American (\%, sa)

Employment-Population Ratio - Women (\%, sa)
Employment-Population Ratio (\%, sa)
Harmonized Unemployment Rate: Total: All Persons for the United States (\%, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Fin. Activities (2002=100, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, leisure\&hosp (2002=100, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Manufacturing (2002=100, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, mining\&logging ($2002=100$, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Retail Trade ($2002=100$, sa)
Indexes of agg. wkly hrs of prod\&nonsup. employees, Total Private ($2002=100$, sa)

CES4142000034
CES3000000035
CES6000000035 CES0500000035

LNS13023706 LNS13023622 LNS13026511 LNS13023654 LNS17000000 LNS17800000 LNS17400000 LNS17200000 LNS17600000 LNS17100000 LNS17900000 LNS17500000 LNS11300002 CIVPART UEMPMED LNS13023570 UEMP15OV UEMP15T26 UEMP27OV UEMP5TO14 UEMPLT5 LNS13008517 LNS13025702 LNS13025703 LNS13025701 LNS13008397 U1RATE CES4200000006 CES0500000006 LNS13023558 LNS13000032 LNS13000060 LNS13000006 LNS13023705 LNS13025699 LNS13023653 LNS13023621 LNS13200000 LNS13000001 LNS13023569 LNS13023557 LNS13000002 UNEMPLOY LNS14000012 LNS14000018 LNS14000015 LNS14024887 LNS14000088 LNS14000319 LNS14000024 LNS14000031 LNS14000032 LNS14000025 LNS14000028 LNS14000029 LNS14000026

1972:01-2020:02 1939:01-2020:02 1964:01-2020:0 1964:01-2020:02 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1990:02-2020:02 1948:01-2020:02 1989:01-2020:01 1967:07-2020:02 1967:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1972:01-2020:02 1964:01-2020:02 1967:01-2020:02 1972:01-2020:02 1948:01-2020:02 1972:01-2020:02 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1967:01-2020:02 1963:01-2020:02 1948:01-2020:02 1967:01-2020:02 1967:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1972:01-2020:02 1954:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1972:01-2020:02 1972:01-2020:02 1948:01-2020:02 1954:01-2020:02 1954:01-2020:02 1948:01-2020:02

BLS BLS

Indexes of agg. wkly hrs of prod\&nonsup. employees, Wholesale Trade (2002=100, sa) Indexes of agg. wkly payrolls of prod. \& nonsup. emp., manufacturing ($2002=100$, sa) Indexes of agg. wkly payrolls of prod.\&nonsup.emp., pro\&business ser. $(2002=100$, sa) Indexes of agg. wkly payrolls of prod\&nonsup. Employees, tot. priv (2002=100, sa)
Job Leavers as a \% of Total Unemployed (\%, sa)
Job Losers as a \% of Total Unemployed (\%, sa)
Job Losers Not on Layoff as a \% of Total Unemployed (\%, sa)
Job Losers on Layoff as a \% of Total Unemployed (\%, sa)
Labor Force Flows Employed to Employed (thous of pers., sa)
Labor Force Flows Employed to Not in Labor Force (thous of pers., sa)
Labor Force Flows Employed to Unemployed (thous of pers., sa)
Labor Force Flows Not in Labor Force to Employed (thous of pers., sa)
Labor Force Flows Not in Labor Force to Unemployed (thous of pers., sa)
Labor Force Flows Unemployed to Employed (thous of pers., sa)
Labor Force Flows Unemployed to Not in Labor Force (thous of pers., sa)
Labor Force Flows Unemployed to Unemployed (thous of pers., sa)
Labor Force Participation Rate - Women (\%, sa)
Labor Force Participation Rate (\%, sa)
Median Weeks Unemployed (Weeks, sa)
New Entrants as a \% of Total Unemployed (\%, sa)
Number Unemployed for 15 Weeks \& Over (thous of pers., sa)
Number Unemployed for 15-26 Weeks (thous of pers., sa)
Number Unemployed for 27 Weeks \& Over (thous of pers., sa)
Number Unemployed for 5-14 Weeks (thous of pers., sa)
Number Unemployed for Less Than 5 Weeks (thous of pers., sa)
Of Total Unemployed, \% Unemployed 15 Weeks \& Over (\%, sa)
Of Total Unemployed, \% Unemployed 15-26 Weeks (\%, sa)
Of Total Unemployed, \% Unemployed 27 Weeks \& Over (\%, sa)
Of Total Unemployed, \% Unemployed 5-14 Weeks (\%, sa)
Of Total Unemployed, \% Unemployed Less Than 5 Weeks (\%, sa)
\% of Civilian Labor Force Unemployed 15 Weeks and Over (U-1) (\%, sa)
Production and Nonsupervisory Employees, Retail Trade (thous of pers., sa)
Production and Nonsupervisory Employees, Total Private (thous of pers., sa)
Reentrants to Labor Force as a \% of Total Unemployed (\%, sa)
Unemployment Level-20 Yrs.\&Over, Black or Afr.American Women (thous of pers., sa)
Unemployment Level - 25-54 Yrs. (thous of pers., sa)
Unemployment Level - Black or African American (thous of pers., sa)
Unemployment Level - Job Leavers (thous of pers., sa)
Unemployment Level - Job Losers Not on Layoff (thous of pers., sa)
Unemployment Level - Job Losers on Layoff (thous of pers., sa)
Unemployment Level - Job Losers (thous of pers., sa)
Unemployment Level - Looking For Part-Time Work (thous of pers., sa)
Unemployment Level - Men (thous of pers., sa)
Unemployment Level - New Entrants (thous of pers., sa)
Unemployment Level - Reentrants to Labor Force (thous of pers., sa)
Unemployment Level - Women (thous of pers., sa)
Unemployment Level (thous of pers., sa)
Unemployment Rate - 16-19 Yrs. (\%, sa)
Unemployment Rate - 16-19 Yrs., Black or African American (\%, sa)
Unemployment Rate - 16-19 Yrs., White (\%, sa)
Unemployment Rate - 16-24 Yrs. (\%, sa)
Unemployment Rate - 18-19 Yrs. (\%, sa)
Unemployment Rate - 18-19 Yrs., Women (\%, sa)
Unemployment Rate - 20 Yrs. \& Over (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, Black or African American Men (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, Black or African American Women (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, Men (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, White Men (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, White Women (\%, sa)
Unemployment Rate - 20 Yrs. \& Over, Women (\%, sa)

LNS14000036
LNS14000048
LNS14000089
LNS14000060
LNS14000061
LNS14000091
LNS14024230
LNS14000006
LNS14000009
U2RATE
LNS14000150
LNS14000315
LNS14000001
LNS14000003
LNS14000002
LNS14100000
LNS14200000
UNRATE LRUN24TTUSM156S LRUN64TTUSM156S LRUN25TTUSM156S LRUN55TTUSM156S

1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1948:01-2020:02 1972:01-2020:02 1973:03-2020:02 1967:01-2020:02 1955:01-2020:02 1955:01-2020:02 1948:01-2020:02 1954:01-2020:02 1948:01-2020:02 1968:01-2020:02 1968:01-2020:02 1948:01-2020:02 1960:01-2020:02 1970:01-2020:02 1960:01-2020:02 1970:01-2020:02

```
BLS
```

BLS Unemployment Rate - 25 Yrs. \& Over (\%, sa)
BLS Unemployment Rate - 25-34 Yrs. (\%, sa)
BLS Unemployment Rate - 25-54 Yrs. (\%, sa)
BLS Unemployment Rate - 25-54 Yrs., Men (\%, sa)
BLS Unemployment Rate - 35-44 Yrs. (\%, sa)
BLS Unemployment Rate - 55 Yrs. \& Over (\%, sa)
BLS Unemployment Rate - Black or African American (\%, sa)
BLS Unemployment Rate - Hispanic or Latino (\%, sa)
BLS Unemployment Rate - Job Losers (U-2) (\%, sa)
BLS Unemployment Rate - Married Men (\%, sa)
BLS Unemployment Rate - Married Women (\%, sa)
BLS Unemployment Rate - Men (\%, sa)
BLS Unemployment Rate - White (\%, sa)
BLS Unemployment Rate - Women (\%, sa)
BLS Unemployment Rate Full-Time Workers (\%, sa)
BLS Unemployment Rate Part-Time Workers (\%, sa)
BLS Unemployment Rate (\%, sa)
OECD Unemployment Rate: Aged 15-24: All Persons for the United States (\%, sa)
OECD Unemployment Rate: Aged 15-64: All Persons for the United States (\%, sa)
OECD Unemployment Rate: Aged 25-54: All Persons for the United States (\%, sa)
OECD Unemployment Rate: Aged 55-64: All Persons for the United States (\%, sa)
Equity Market Volatility Tracker (EMVT)

EMVOVERALLEMV EMVGOVTSPEND EMVFINCRISES EMVMACROINTEREST EMVMACROINFLATION EmVMONETARYPOL emvenrgyenvreg EMVELECTGOVRN EMVMACRORE EMVCOMMMKT EMVEXRATES EMVMACROTRADE EMVHEALTHCAREMAT EMVTRADEPOLEMV EMVMACRONEWS EMVMACROFININD EMVAGRPOLICY EMVPOLRLTDEMV EMVFOODDRUG EMVMACROBROAD EMVWELFARE EMVFINREG EMVTRADEPUBUTEMV EMVTAXESEMV EMVCOMPMAT EMVNATSEC EMVHEALTHCAREPOL EMVREGEMV EMVHOUSELANDMGMT EMVLAWTORT EMVMACROLABORMKT EMVOTHERREG
EMVIPPOL
EMVIPMAT
EMVLABORDISPUTES EMVLITGMAT

1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:02 1985:01-2020:0 1985:01-2020:02

EMVT: Overall(Index, nsa)
EMVT: Government Spending Deficits And Debt(Index, nsa)
EMVT: Financial Crises(Index, nsa)
EMVT: Macroeconomic News and Outlook: Interest Rates(Index, nsa)
EMVT: Macroeconomic News and Outlook: Inflation(Index, nsa)
EMVT: Monetary Policy (Index, nsa)
EMVT: Energy And Environmental Regulation(Index, nsa)
EMVT: Elections And Political Governance(Index, nsa)
EMVT: Macroeconomic News and Outlook: Real Estate Markets(Index, nsa)
EMVT: Commodity Markets(Index, nsa)
EMVT: Exchange Rates(Index, nsa)
EMVT: Macroeconomic News and Outlook: Trade(Index, nsa)
EMVT: Healthcare Matters(Index, nsa)
EMVT: Trade Policy(Index, nsa)
EMVT: Macroeconomic News And Outlook(Index, nsa)
EMVT: Macroeconomic News and Outlook: Other Financial Indicators(Index, nsa)
EMVT: Agricultural Policy(Index, nsa)
EMVT: Policy Related(Index, nsa)
EMVT: Food And Drug Policy(Index, nsa)
EMVT: Macroeconomic News and Outlook: Broad Quantity Indicators(Index, nsa)
EMVT: Entitlement And Welfare Programs(Index, nsa)
EMVT: Financial Regulation(Index, nsa)
EMVT: Transportation, Infrastructure, and Public Utilities(Index, nsa)
EMVT: Taxes(Index, nsa)
EMVT: Competition Matters(Index, nsa)
EMVT: National Security Policy(Index, nsa)
EMVT: Healthcare Policy(Index, nsa)
EMVT: Regulation(Index, nsa)
EMVT: Housing And Land Management(Index, nsa)
EMVT: Lawsuit And Tort Reform Supreme Court Decisions(Index, nsa)
EMVT: Macroeconomic News and Outlook: Labor Markets(Index, nsa)
EMVT: Other Regulation(Index, nsa)
EMVT: Intellectual Property Policy(Index, nsa)
EMVT: Intellectual Property Matters(Index, nsa)
EMVT: Labor Disputes(Index, nsa)
EMVT: Litigation Matters(Index, nsa)

EMVCOMPPOL EMNLABORREG EMVGOVTSPENT

1985:01-2020:02 1985:01-2020:02 1985:01-2020:0

BBD
BBD
BBD

EMVT: Competition Policy(Index, nsa)
EMVT: Labor Regulations(Index, nsa)
EMVT: Government Sponsored Enterprises(Index, nsa)

Exports
457 IQAG
458 IQ
459 IQ2
460 XTEXVA01USM657S

1985:03-2020:02 1983:09-2020:02 1978:12-2020:0 1960:01-2019:12 1960:01-2019:12 1960:01-2019:12 1960:01-2019:12 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1987:01-2020:01 1989:01-2020:01

BLS

BLS
BLS OECD OECD OECD OECD Exports: Value Goods for the United States (US usd Monthly Level, sa) BEACB U.S. Exports of Goods by F.A.S. Basis to Canada (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to Germany (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to Japan (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to Mexico (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to South Korea (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to the United Kingdom (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to World (MM of usd, nsa) BEACB U.S. Exports of Goods by F.A.S. Basis to World (MM of usd, sa)

Fitted Instantaneous Forward Rates

472 THREEFF1
473 THREEFF10
474 THREEFF2
475 THREEFF3
476 THREEFF4
477 THREEFF5
478 THREEFF6
479 THREEFF7
480 THREEFF8
481 THREEFF9
482 THREEFFTP1
483 THREEFFTP10
484 THREEFFTP2
485 THREEFFTP3

491 THREEFFTP9

1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02 1990:01-2020:02

FED
FED
FED
FED FED FED FED FED Fitted Instantaneous Forward Rate 7 Years Hence (\%, nsa) FED Fitted Instantaneous Forward Rate 8 Years Hence (\%, nsa) FED Fitted Instantaneous Forward Rate 9 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 1 Year Hence (\%, nsa) FED Instantaneous Forward Term Premium 10 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 2 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 3 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 4 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 5 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 6 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 7 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 8 Years Hence (\%, nsa) FED Instantaneous Forward Term Premium 9 Years Hence (\%, nsa)

Fitted Instantaneous Forward Rate 1 Year Hence (\%, nsa) Fitted Instantaneous Forward Rate 10 Years Hence (\%, nsa) Fitted Instantaneous Forward Rate 2 Years Hence (\%, nsa) Fitted Instantaneous Forward Rate 3 Years Hence (\%, nsa) Fitted Instantaneous Forward Rate 4 Years Hence (\%, nsa) Fitted Instantaneous Forward Rate 5 Years Hence (\%, nsa) Fitted Instantaneous Forward Rate 6 Years Hence (\%, nsa)

Nikkei Nikkei 225 Monthly Close 1989-01-01 to 2020-02-01 (Index, nsa) NYSE NYSE Composite Monthly Close 1989-01-01 to 2020-02-01 (Index, nsa) NASDAQNASDAQ Composite Monthly Close 1989-01-01 to 2020-02-01 (Index, nsa)

Foreign Exchange Rates
496 EXUSUK

497 EXSIUS
498 EXHKUS
499 EXSZUS
500 EXKOUS
501 EXINUS
502 EXCAUS
503 EXJPUS
504 EXUSAL
505 EXCHUS

1989:01-2020:02 1989:01-2020:02 1989:01-2020:02 1990:03-2020:02

Euronext CAC40 Monthly Close 1990-03-01 to 2020-02-01 (Index, nsa)
,

FED
FED Singapore / U.S. Foreign Exchange Rate (Ratio, nsa)
FED Hong Kong / U.S. Foreign Exchange Rate (Ratio, nsa) FED Switzerland / U.S. Foreign Exchange Rate (Ratio, nsa) FED South Korea / U.S. Foreign Exchange Rate (Ratio, nsa)
FED India / U.S. Foreign Exchange Rate (Ratio, nsa)
FED Canada / U.S. Foreign Exchange Rate (Ratio, nsa)
FED Japan / U.S. Foreign Exchange Rate (Ratio, nsa)
FED U.S. / Australia Foreign Exchange Rate (Ratio, nsa)
FED China / U.S. Foreign Exchange Rate (Ratio, nsa)

Home Price Index (HPI)

CSUSHPISA
SFXRSA
LXXRSA
NYXRSA
BOXRSA
SDXRSA
CHXRSA
DNXRSA
WDXRSA
POXRSA
SPCS10RSA
mNXRSA
TPXRSA
SEXRSA
CEXRSA
PHXRSA
LVXRSA
MIXRSA
PHXRHTSA CRXRSA Lxxrhtsa
NYXRHTSA
BOXRHTSA
SDXRHTSA
SDXRLTSA
DNXRHTSA
NYXRLTSA
SFXRHTSA
SEXRHTSA
NYXRMTSA
SEXRLTSA
TPXRHTSA
SDXRMTSA
SEXRMTSA
MNXRHTSA
SFXRLTSA
MIXRHTSA
SFXRMTSA
POXRLTSA WDXRHTSA POXRMTSA LXXRLTSA boxrltsa PHXRLTSA LXXRMTSA MIXRLTSA POXRHTSA TPXRLTSA PHXRMTSA WDXRLTSA DNXRLTSA boxrmtsa MNXRLTSA DNXRMTSA TPXRMTSA WDXRMTSA MNXRMTSA mixRMTSA

1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1990:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1990:01-2019:12 1987:01-2019:12 1990:01-2019:12 1987:01-2019:12 1989:01-2019:12 1990:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12 1987:01-2019:12 1987:01-2019:12 1989:01-2019:12 1987:01-2019:12

S\&P/Case-Shiller U.S. National HPI (Jan 2000=100, sa)
S\&P/Case-Shiller CA-San Francisco HPI (Jan 2000=100, sa)
S\&P/Case-Shiller CA-Los Angeles HPI (Jan 2000=100, sa)
S\&P /Case-Shiller NY-New York HPI (Jan 2000=100, sa)
S\&P/Case-Shiller MA-Boston HPI (Jan $2000=100$, sa)
S\&P/Case-Shiller CA-San Diego HPI (Jan 2000=100, sa)
S\&P/Case-Shiller IL-Chicago HPI (Jan $2000=100$, sa)
S\&P/Case-Shiller CO-Denver HPI (Jan $2000=100$, sa)
S\&P/Case-Shiller DC-Washington HPI (Jan 2000=100, sa)
S\&P/Case-Shiller OR-Portland HPI (Jan 2000=100, sa)
S\&P/Case-Shiller 10-City Composite HPI (Jan 2000=100, sa)
S\&P/Case-Shiller MN-Minneapolis HPI (Jan 2000=100, sa)
S\&P /Case-Shiller FL-Tampa HPI (Jan 2000 = 100, sa)
S\&P /Case-Shiller WA-Seattle HPI (Jan $2000=100$, sa)
S\&P/Case-Shiller OH-Cleveland HPI (Jan 2000=100, sa)
S\&P/Case-Shiller AZ-Phoenix HPI (Jan $2000=100$, sa)
S\&P/Case-Shiller NV-Las Vegas HPI (Jan 2000=100, sa)
S\&P/Case-Shiller FL-Miami HPI (Jan $2000=100$, sa)
HPI (High Tier) for Phoenix, Arizona (Jan 2000=100, sa)
S\&P/Case-Shiller NC-Charlotte HPI (Jan 2000=100, sa)
HPI (High Tier) for Los Angeles, California (Jan 2000=100, sa)
HPI (High Tier) for New York, New York (Jan 2000=100, sa)
HPI (High Tier) for Boston, Massachusetts (Jan 2000=100, sa)
HPI (High Tier) for San Diego, California (Jan 2000=100, sa)
HPI (Low Tier) for San Diego, California (Jan 2000=100, sa)
HPI (High Tier) for Denver, Colorado (Jan 2000=100, sa)
HPI (Low Tier) for New York, New York (Jan 2000=100, sa)
HPI (High Tier) for San Francisco, California (Jan 2000=100, sa)
HPI (High Tier) for Seattle, Washington (Jan 2000=100, sa)
HPI (Middle Tier) for New York, New York (Jan 2000=100, sa)
HPI (Low Tier) for Seattle, Washington (Jan 2000=100, sa)
HPI (High Tier) for Tampa, Florida (Jan 2000=100, sa)
HPI (Middle Tier) for San Diego, California (Jan 2000=100, sa)
HPI (Middle Tier) for Seattle, Washington (Jan 2000=100, sa) HPI (High Tier) for Minneapolis, Minnesota (Jan 2000=100, sa) HPI (Low Tier) for San Francisco, California (Jan 2000=100, sa) HPI (High Tier) for Miami, Florida (Jan 2000=100, sa) HPI (Middle Tier) for San Francisco, California (Jan 2000=100, sa) HPI (Low Tier) for Portland, Oregon (Jan 2000=100, sa) HPI (High Tier) for Washington D.C. (Jan 2000=100, sa) HPI (Middle Tier) for Portland, Oregon (Jan 2000=100, sa) HPI (Low Tier) for Los Angeles, California (Jan 2000=100, sa) HPI (Low Tier) for Boston, Massachusetts (Jan 2000=100, sa) HPI (Low Tier) for Phoenix, Arizona (Jan 2000=100, sa) HPI (Middle Tier) for Los Angeles, California (Jan 2000=100, sa) HPI (Low Tier) for Miami, Florida (Jan $2000=100$, sa) HPI (High Tier) for Portland, Oregon (Jan 2000=100, sa) HPI (Low Tier) for Tampa, Florida (Jan 2000=100, sa) HPI (Middle Tier) for Phoenix, Arizona (Jan 2000=100, sa) HPI (Low Tier) for Washington D.C. (Jan 2000=100, sa) HPI (Low Tier) for Denver, Colorado (Jan 2000=100, sa) HPI (Middle Tier) for Boston, Massachusetts (Jan 2000=100, sa) HPI (Low Tier) for Minneapolis, Minnesota (Jan 2000=100, sa) HPI (Middle Tier) for Denver, Colorado (Jan 2000=100, sa) HPI (Middle Tier) for Tampa, Florida (Jan 2000=100, sa) HPI (Middle Tier) for Washington D.C. (Jan 2000=100, sa) HPI (Middle Tier) for Minneapolis, Minnesota (Jan 2000=100, sa) HPI (Middle Tier) for Miami, Florida (Jan 2000=100, sa)

Housing starts and sales

1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:0 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1984:01-2020:02 1963:01-2020:01 1963:01-2020:01 1973:01-2020:0 1973:01-2020:0 1973:01-2020:01 1973:01-2020:0 1988:01-2020:01 1988:01-2020:0 1988:01-2020:0 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:01 1988:01-2020:0 1988:01-2020:01 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:0 1988:01-2020:0 1988:01-2020:0 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01 1988:01-2020:01

Housing Starts: Total: New Privately Owned Housing units Started (thous of units, sa) Privately Owned Housing Starts: 1-Unit Structures (thous of units, sa)

Privately Owned Housing Starts: 5-Unit Structures or More (thous of units, sa)
Housing Starts in Midwest Census Region (thous of units, sa)
Housing Starts in West Census Region (thous of units, sa)
Housing Starts in South Census Region (thous of units, sa)
Housing Starts in Northeast Census Region (thous of units, sa)
Housing Starts: 2-4 units (thous of units, sa)
Housing Starts for 1-Unit Structures in West Census Region (thous of units, sa)
Housing Starts for 1-Unit Structures in Northeast Census Region (thous of units, sa)
Housing Starts for 1-Unit Structures in Midwest Census Region (thous of units, sa)
Housing Starts for 1-Unit Structures in South Census Region (thous of units, sa)
New One Family Houses Sold: United States (thous, sa)
New One Family Homes for Sale in the United States (thous of units, sa)
New One Family Houses Sold in West Census Region (thous, sa)
New One Family Houses Sold in South Census Region (thous, sa)
New One Family Houses Sold in Northeast Census Region (thous, sa)
New One Family Houses Sold in Midwest Census Region (thous, sa)
New priv. housing units auth. by building permits: 1-unit structures: Texas (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Dallas-Fort WA, TX (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Phoenix-Mesa-C, AZ (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Florida (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Albuquerque, NM (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Riverside-San B-O, CA (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Odessa, TX (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Portland-Vancouver-H (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Houston, TX (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: St. Louis, MO-IL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Charlotte-C-G, NC-SC (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Miami-FB LP, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Las Vegas-H-P, NV (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Louisville-Jeff., KY-IN (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: South Census Region (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Nashville-D-MF, TN (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: California (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: San Antonio-NB, TX (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Orlando-Kissimmee, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Massachusetts (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Minnesota (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Arizona (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Memphis, TN-MS-AR (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Minneapolis-St. PB (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Chicago-Naperville-E (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Colorado (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Tampa-St. P-C, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Pueblo, CO (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Utah (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: New York (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: South Carolina (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Atlanta-Sandy S-A, GA (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Wisconsin (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Columbia, MO (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Illinois (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Palm Bay-M-T, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Jacksonville, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Lakeland-W Haven, FL (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: New Jersey (units, sa)
New priv.hous. units auth. by buil.per.: 1-unit struc.: Boise City, ID (units, sa)

622 PENS812BP1FHSA
623 NDBP1FHSA
624 CTBP1FHSA

1988:01-2020:01 1988:01-2020:0 1988:01-2020:01

USCB
USCB
USCB

New priv.hous. units auth. by buil.per.: 1-unit struc.: Pensacola-Ferry PB, FL (units, sa) New priv.hous. units auth. by buil.per.: 1-unit struc.: North Dakota (units, sa) New priv.hous. units auth. by buil.per.: 1-unit struc.: Connecticut (units, sa)

Imports
625 IR
626 IREXPET
627 IR4
628 XTIMVA01USM657S
629 XTIMVA01USM659S
630 XTIMVA01USM664S
631 XTIMVA01USM667S
632 IMPCA
633 IMPCH
634 IMPFR
635 IMPGE
636 IMP5600
637 IMPJP
638 IMPMX
639 IMPKR
640 IMP5830
641 IMPUK
642 IMP3070
643 IMP0015
644 IMP0004

Industrial Production (IP)
645 INDPRO
646 IPBUSEQ
647 IPHITEK2S
648 IPB54100S
649 IPCONGD
650 IPB52300S
651 IPDCONGD
652 IPG3331S
653 IPG336411T3S
654 IPB51112S
655 IPG336111S
656 IPB51110S
657 IPG3273S
658 IPG3336S
659 IPG3272S
660 IPG33612S
661 IPG3352S
662 IPB511221S
663 IPG3334T6S
664 IPG3311A2S
665 IPN3391S
666 IPG3344S
667 IPG336212S
668 IPDMAN
669 IPG3364T9S
670 IPG334S
671 IPG335S
672 IPG332S
673 IPG337S
674 IPG333S
675 IPG339S
676 IPG3361T3S
677 IPG327S 1985:03-2020:02 1982:06-2020:0 1960:01-2019:12 1960:01-2019:12 1960:01-2019:12 1960:01-2019:12 1985:01-2020:0 1985:01-2020:01 1985:01-2020:0 1985:01-2020:0 1985:01-2020:0 1985:01-2020:01 1985:01-2020:0 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1985:01-2020:01 1987:01-2020:01 1989:01-2020:01

BLS
BLS
BLS
OECD
OECD
OECD Imports: Value Goods for the United States (National currency, Monthly Level, sa)
OECD Imports: Value Goods for the United States (US usd Monthly Level, sa)
BEACB U.S. Imports of Goods by Customs Basis from Canada (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from China (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from France (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Germany (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Indonesia (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Japan (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Mexico (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from South Korea (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Taiwan (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from the United Kingdom (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from Venezuela (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from World (MM of usd, nsa)
BEACB U.S. Imports of Goods by Customs Basis from World (MM of usd, sa)

```
Industrial Production Index (2012=100, sa)
FED IP: Business Equipment (2012=100, sa)
FED IP: Computers, communications equipment, and semiconductors (2012=100, sa)
FED IP: Construction supplies (2012=100, sa)
FED IP: Consumer Goods (2012=100, sa)
FED IP: Defense and space equipment (2012=100, sa)
FED IP: Durable Consumer Goods (2012=100, sa)
FED IP: Durable Goods: Agriculture, construction, and mining machinery (2012=100, sa)
FED IP: Durable Goods: Aircraft and parts (2012=100, sa)
FED IP: Durable Goods: Auto parts and allied goods (2012=100, sa)
FED IP: Durable Goods: Automobile (2012=100, sa)
FED IP: Durable Goods: Automotive products (2012=100, sa)
FED IP: Durable Goods: Cement and concrete product (2012=100, sa)
FED IP: Durable Goods: Engine, turbine, and power transmission equipment (2012=100, sa)
FED IP: Durable Goods: Glass and glass product (2012=100, sa)
FED IP: Durable Goods: Heavy duty truck (2012=100, sa)
FED IP: Durable Goods: Household appliance (2012=100, sa)
FED IP: Durable Goods: Household appliances (2012=100, sa)
FED IP: Durable Goods: HVAC, metalworking, & power transmission mach.(2012=100, sa)
FED IP: Durable Goods: Iron and steel products (2012=100, sa)
FED IP: Durable Goods: Medical equipment and supplies (2012=100, sa)
FED IP: Durable Goods: Semiconductor and other electronic component (2012=100, sa)
FED IP: Durable Goods: Truck trailer (2012=100, sa)
FED IP: Durable Manufacturing (NAICS)(2012=100, sa)
FED IP: Durable manufacturing:Aerospace&miscellaneous transp.equip. (2012=100, sa)
FED IP: Durable manufacturing: Computer and electronic product (2012=100, sa)
FED IP: Durable manufacturing: Electrical equip., appliance, and component (2012=100, sa)
FED IP: Durable manufacturing: Fabricated metal product (2012=100, sa)
FED IP: Durable manufacturing: Furniture and related product (2012=100, sa)
FED IP: Durable manufacturing: Machinery (2012=100, sa)
FED IP: Durable manufacturing: Miscellaneous (2012=100, sa)
FED IP: Durable manufacturing: Motor vehicles and parts (2012=100, sa)
IP: Durable manufacturing: Nonmetallic mineral product (2012=100, sa)
```

IPG331S
IPG321S
IPUTIL
IPG2211S
IPB50089S
IPFINAL
IPFPNSS
IPMAN
IPMANSICS
IPMAT
IPMINE
IPN2121S
IPG21223S
IPG211111CS
IPN213111S
IPG21222S
IPG211S
IPNCONGD
IPB51213S
IPG32551S
IPG3254S
IPG3261S
IPNMAN
IPG315A6S
IPG325S
IPG311A2S
IPG322S
IPG324S
IPG326S
IPG323S
IPG313A4S
IPB53122S
IPG22111S
IPG22112S
MVATOTASSS
USAPROINDMISMEI
RIWG211111CS RIWG211S

1972:01-2020:01 1972:01-2020:0 1939:01-2020:01 1972:01-2020:0 1967:01-2020:01 1939:01-2020:01 1939:01-2020:01 1972:01-2020:0 1919:01-2020:01 1939:01-2020:01 1919:01-2020:01 1972:01-2020:01 1972:01-2020:0 1972:01-2020:0 1972:01-2020:0 1972:01-2020:0 1972:01-2020:01 1947:01-2020:01 1954:01-2020:0 1972:01-2020:01 1972:01-2020:0 1972:01-2020:01 1972:01-2020:0 1972:01-2020:01 1972:01-2020:0 1972:01-2020:01 1972:01-2020:0 1972:01-2020:01 1972:01-2020:01 1972:01-2020:0 1972:01-2020:01 1954:01-2020:01 1972:01-2020:01 1972:01-2020:01 1967:01-2020:0 1960:01-2020:01 1972:01-2020:01

1972:01-2020:01

FED
FED IP: Durable manufacturing: Wood product (2012=100, sa)
FED IP: Electric and Gas Utilities $(2012=100$, sa)
FED IP: Electric power generation, transmission, and distribution (2012=100, sa)
FED IP: Energy Materials: Energy, total (2012=100, sa)
FED IP: Final Products (Market Group) $(2012=100$, sa)
FED IP: Final Products and Nonindustrial Supplies (2012=100, sa)
FED IP: Manufacturing (NAICS) $(2012=100$, sa)
FED IP: Manufacturing (SIC) $(2012=100$, sa)
FED IP: Materials $(2012=100$, sa)
FED IP: Mining (2012=100, sa)
FED IP: Mining: Coal mining $(2012=100$, sa)
FED IP: Mining: Copper, nickel, lead, and zinc mining (2012=100, sa)
FED IP: Mining: Crude oil $(2012=100$, sa)
FED IP: Mining: Drilling oil and gas wells ($2012=100$, sa)
FED IP: Mining: Gold ore and silver ore mining (2012=100, sa)
FED IP: Mining: Oil and gas extraction (2012=100, sa)
FED IP: Nondurable Consumer Goods (2012=100, sa)
FED IP: Nondurable Goods: Chemical products (2012=100, sa)
FED IP: Nondurable Goods: Paint and coating (2012=100, sa)
FED IP: Nondurable Goods: Pharmaceutical and medicine (2012=100, sa)
FED IP: Nondurable Goods: Plastics product ($2012=100$, sa)
FED IP: Nondurable Manufacturing (NAICS)(2012=100, sa)
FED IP: Nondurable manufacturing: Apparel and leather goods (2012=100, sa)
FED IP: Nondurable manufacturing: Chemical (2012=100, sa)
FED IP: Nondurable manufacturing: Food, beverage, and tobacco (2012=100, sa)
FED IP: Nondurable manufacturing: Paper ($2012=100$, sa)
FED IP: Nondurable manufacturing: Petroleum and coal products (2012=100, sa)
FED IP: Nondurable manufacturing: Plastics and rubber products (2012=100, sa)
FED IP: Nondurable manufacturing: Printing and related support activities (2012=100, sa)
FED IP: Nondurable manufacturing: Textiles and products (2012=100, sa)
FED IP: Semiconductors, printed circuit boards, and other (2012=100, sa)
FED IP: Utilities: Electric power generation (2012=100, sa)
FED IP: Utilities: Electric power transmission, control, and distribution (2012=100, sa)
FED Motor Vehicle Assemblies: Total motor vehicle assemblies (MM of units, sa)
OECD Production of Total Industry in United States (2015=100, sa)
FED Rel. importance weight (Contribution to total IP-index): Extraction: Crude oil (\%, sa) FED Rel. importance weight (Contribution to total IP-index): Oil and gas extraction (\%, sa)

Jobless claims

ICNSA
ICSA
ALICLAIMS
AKICLAIMS
AZICLAIMS
ARICLAIMS
CAICLAIMS
COICLAIMS CTICLAIMS DEICLAIMS FLICLAIMS GAICLAIMS HIICLAIMS IDICLAIMS ILICLAIMS INICLAIMS IAICLAIMS KSICLAIMS KYICLAIMS LAICLAIMS

1967:01-2020:05 1967:01-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1985:09-2020:05 1985:10-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1985:04-2020:05 1986:02-2020:05 1984:08-2020:05 1986:02-2020:0 1986:02-2020:05 1986:02-2020:0 1986:02-2020:05 1986:02-2020:05

```
Initial Claims (number, nsa)
Initial Claims (number, sa)
Initial Claims in Alabama (number, nsa)
Initial Claims in Alaska (number, nsa)
Initial Claims in Arizona (number, nsa)
Initial Claims in Arkansas (number, nsa)
Initial Claims in California (number, nsa)
Initial Claims in Colorado (number, nsa)
Initial Claims in Connecticut (number, nsa)
Initial Claims in Delaware (number, nsa)
Initial Claims in Florida (number, nsa)
Initial Claims in Georgia (number, nsa)
Initial Claims in Hawaii (number, nsa)
Initial Claims in Idaho (number, nsa)
Initial Claims in Illinois (number, nsa)
Initial Claims in Indiana (number, nsa)
Initial Claims in Iowa (number, nsa)
Initial Claims in Kansas (number, nsa)
Initial Claims in Kentucky (number, nsa)
Initial Claims in Louisiana (number, nsa)
```

MEICLAIMS MDICLAIMS MAICLAIMS MIICLAIMS MNICLAIMS MSICLAIMS MOICLAIMS MTICLAIMS NEICLAIMS NVICLAIMS NHICLAIMS NJICLAIMS NMICLAIMS NYICLAIMS NCICLAIMS NDICLAIMS OHICLAIMS OKICLAIMS ORICLAIMS PAICLAIMS RIICLAIMS SCICLAIMS SDICLAIMS TNICLAIMS TXICLAIMS DCICLAIMS UTICLAIMS VTICLAIMS VAICLAIMS WAICLAIMS WVICLAIMS WIICLAIMS WYICLAIMS CCNSA ALCCLAIMS AKCCLAIMS AZCCLAIMS ARCCLAIMS CACCLAIMS COCCLAIMS CTCCLAIMS DECCLAIMS FLCCLAIMS GACCLAIMS HICCLAIMS IDCCLAIMS ILCCLAIMS INCCLAIMS IACCLAIMS KSCCLAIMS KYCCLAIMS LACCLAIMS MECCLAIMS MDCCLAIMS MACCLAIMS MICCLAIMS MNCCLAIMS MSCCLAIMS MOCCLAIMS MTCCLAIMS

1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1985:10-2020:05 1984:06-2020:05 1986:02-2020:05 1986:02-2020:05 1985:10-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1985:10-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1985:09-2020:0 1986:02-2020:05 1986:02-2020:05 1986:01-2020:0 1985:09-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:05 1986:02-2020:0 1986:02-2020:05 1985:09-2020:05 1967:01-2020:05 1986:02-2020:04 1986:02-2020:04 1986:02-2020:0 1986:02-2020:0 1986:02-2020:04 1985:09-2020:04 1985:09-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1985:03-2020:04 1986:02-2020:04 1984:07-2020:04 1986:02-2020:0 1986:02-2020:04 1986:02-2020:04 1986:02-2020:0 1986:02-2020:0 1986:02-2020:0 1986:02-2020:0 1986:01-2020:04 1985:09-2020:04 1984:06-2020:04 1986:02-2020:0 1986:02-2020:04 1985:09-2020:04

Initial Claims in Maine (number, nsa)
Initial Claims in Maryland (number, nsa)
Initial Claims in Massachusetts (number, nsa)
Initial Claims in Michigan (number, nsa)
Initial Claims in Minnesota (number, nsa)
Initial Claims in Mississippi (number, nsa)
Initial Claims in Missouri (number, nsa)
Initial Claims in Montana (number, nsa)
Initial Claims in Nebraska (number, nsa)
Initial Claims in Nevada (number, nsa)
Initial Claims in New Hampshire (number, nsa)
Initial Claims in New Jersey (number, nsa)
Initial Claims in New Mexico (number, nsa)
Initial Claims in New York (number, nsa)
Initial Claims in North Carolina (number, nsa)
Initial Claims in North Dakota (number, nsa)
Initial Claims in Ohio (number, nsa)
Initial Claims in Oklahoma (number, nsa)
Initial Claims in Oregon (number, nsa)
Initial Claims in Pennsylvania (number, nsa)
Initial Claims in Rhode Island (number, nsa)
Initial Claims in South Carolina (number, nsa)
Initial Claims in South Dakota (number, nsa)
Initial Claims in Tennessee (number, nsa)
Initial Claims in Texas (number, nsa)
Initial Claims in the District of Columbia (number, nsa)
Initial Claims in Utah (number, nsa)
Initial Claims in Vermont (number, nsa)
Initial Claims in Virginia (number, nsa)
Initial Claims in Washington (number, nsa)
Initial Claims in West Virginia (number, nsa)
Initial Claims in Wisconsin (number, nsa)
Initial Claims in Wyoming (number, nsa)
Continued Claims (Insured Unemployment) (number, nsa)
Continued Claims (Insured Unemployment) in Alabama (number, nsa)
Continued Claims (Insured Unemployment) in Alaska (number, nsa)
Continued Claims (Insured Unemployment) in Arizona (number, nsa)
Continued Claims (Insured Unemployment) in Arkansas (number, nsa)
Continued Claims (Insured Unemployment) in California (number, nsa)
Continued Claims (Insured Unemployment) in Colorado (number, nsa)
Continued Claims (Insured Unemployment) in Connecticut (number, nsa)
Continued Claims (Insured Unemployment) in Delaware (number, nsa)
Continued Claims (Insured Unemployment) in Florida (number, nsa)
Continued Claims (Insured Unemployment) in Georgia (number, nsa)
Continued Claims (Insured Unemployment) in Hawaii (number, nsa)
Continued Claims (Insured Unemployment) in Idaho (number, nsa)
Continued Claims (Insured Unemployment) in Illinois (number, nsa)
Continued Claims (Insured Unemployment) in Indiana (number, nsa)
Continued Claims (Insured Unemployment) in Iowa (number, nsa)
Continued Claims (Insured Unemployment) in Kansas (number, nsa)
Continued Claims (Insured Unemployment) in Kentucky (number, nsa)
Continued Claims (Insured Unemployment) in Louisiana (number, nsa)
Continued Claims (Insured Unemployment) in Maine (number, nsa)
Continued Claims (Insured Unemployment) in Maryland (number, nsa) Continued Claims (Insured Unemployment) in Massachusetts (number, nsa) Continued Claims (Insured Unemployment) in Michigan (number, nsa) Continued Claims (Insured Unemployment) in Minnesota (number, nsa) Continued Claims (Insured Unemployment) in Mississippi (number, nsa) Continued Claims (Insured Unemployment) in Missouri (number, nsa) Continued Claims (Insured Unemployment) in Montana (number, nsa)

NECCLAIMS
NVCCLAIMS
NJCCLAIMS
NYCCLAIMS
NCCCLAIMS
NDCCLAIMS
OHCCLAIMS
OKCCLAIMS
ORCCLAIMS
PACCLAIMS SCCCLAIMS TNCCLAIMS TXCCLAIMS
DCCCLAIMS
UTCCLAIMS
VTCCLAIMS VACCLAIMS WACCLAIMS WVCCLAIMS WICCLAIMS WYCCLAIMS

1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:0 1986:02-2020:0 1985:10-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:01-2020:04 1986:01-2020:04 1985:09-2020:0 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1986:02-2020:04 1985:09-2020:04

```
ETA
```

ETA Continued Claims (Insured Unemployment) in South Carolina (number, nsa)
ETA Continued Claims (Insured Unemployment) in Tennessee (number, nsa)
ETA Continued Claims (Insured Unemployment) in Texas (number, nsa)
ETA Continued Claims (Insured Unemployment) in the District of Columbia (number, nsa)
ETA Continued Claims (Insured Unemployment) in Utah (number, nsa)
ETA Continued Claims (Insured Unemployment) in Vermont (number, nsa)
ETA Continued Claims (Insured Unemployment) in Virginia (number, nsa)
ETA Continued Claims (Insured Unemployment) in Washington (number, nsa)
ETA Continued Claims (Insured Unemployment) in West Virginia (number, nsa)
ETA Continued Claims (Insured Unemployment) in Wisconsin (number, nsa)
Continued Claims (Insured Unemployment) in Wyoming (number, nsa)

Interest rate spreads
817 T10Y2YM
818 T10Y3MM
819 BAAFFM

830 DTBOENM
831 DTBOELNM
832 DTBOVNM DTBOVLRNM DTBOVLWNM DTCOLNVHFNM DTCNLNVHFNM REVOLNCU REVOLNDI REVOLNFC REVOLNNFC NREVNCU NREVNDI NREVNFC NREVNNFC NREVNGOV DTROSNM DTCOLNOHFNM DTCNLNOHFNM DTROONM NREVNSEC TOTALSEC

1976:06-2020:02 1982:01-2020:02 1954:07-2020:02 1954:07-2020:02 1953:04-2020:02 1954:07-2020:02 1954:07-2020:02 1953:04-2020:02 1954:07-2020:02 1982:01-2020:02 1954:07-2020:02 1982:01-2020:02 1989:01-2020:02

FRBSL 10Y Treasury const. mat. minus 2Y Treasury const. mat. (\%, nsa)
FRBSL 10Y Treasury const. mat. minus 3M Treasury const. mat. (\%, nsa)
FRBSL Moody's Seasoned Baa Corporate Bond Minus Federal Funds Rate (\%, nsa)
FRBSL 3-Month Treasury Bill Minus Federal Funds Rate (\%, nsa)
FRBSL Moody's Seasoned Baa Corp Bond Yield Relative to Yield on 10Y-T cont mat. (\%, nsa) FRBSL 10-Year Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
FRBSL Moody's Seasoned Aaa Corporate Bond Minus Federal Funds Rate (\%, nsa)
FRBSL Moody's Seasoned Aaa Corp Bond Yield Relative to Yield on 10Y-T const mat. (\%, nsa)
FRBSL 5Y Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
FRBSL 3M Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
FRBSL 1 Y Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
FRBSL 6M Treasury Constant Maturity Minus Federal Funds Rate (\%, nsa)
FRBSL TED Spread (\%, nsa)

1985:06-2020:01 1985:06-2020:01 1980:06-2020:01 1980:06-2020:01 1980:06-2020:01 1943:01-2020:01 1989:01-2020:01 1984:01-2020:01 1968:01-2020:01 1984:12-2020:01 1970:01-2020:01 1943:01-2020:01 1943:01-2020:01 1943:01-2020:01 1943:01-2020:01 1977:01-2020:01 1970:06-2020:01 1943:01-2020:01 1989:01-2020:01 1970:06-2020:01 1989:01-2020:01 1989:01-2020:01

FED FED

Business Equipment Loans \& Leases Owned by Fin. Companies, outst. (MM of usd, nsa) Business Equipment Loans Owned by Finance Companies, outst. (MM of usd, nsa) Business Motor Vehicle Loans\&Leases Owned by fin.comp., outst. (MM of usd, nsa) Business Retail Motor Vehicle Loans Owned by Fin. Companies, outst. (MM of usd, nsa) Business Wholesale Motor Vehicle Loans Owned by fin.comp., outst. (MM of usd, nsa) Consumer Motor Vehicle Loans Owned by Finance Companies, outst. (MM of usd, nsa) Consumer Motor Vehicle Loans Securitized by Fin. Companies, outst. (MM of usd, nsa) Consumer Revolving Credit Owned by Credit Unions, Outstanding (bn of usd, nsa) Consumer Revolving Credit Owned by Depository Institutions, outst. (bn of usd, nsa) Consumer Revolving Credit Owned by Finance Companies, Outstanding (bn of usd, nsa) Consumer Revolving Credit Owned by Nonfinancial Businesses, outst. (bn of usd, nsa) Nonrevolving Consumer Loans Owned by Credit Unions, Outstanding (bn of usd, nsa) Nonrevolving Consumer Loans Owned by Depository inst., outst. (bn of usd, nsa) Nonrevolving Consumer Loans Owned by Finance Companies, outst. (bn of usd, nsa) Nonrevolving Consumer Loans Owned by Nonfin. Businesses, outst. (bn of usd, nsa) Nonrevolving Consumer Loans Owned by the Fed Gov, outst. (bn of usd, nsa) One to Four Fam. Real Estate Loans Owned by Fin.companies, outst. (MM of usd, nsa) Other Consumer Loans Owned by Finance Companies, Outstanding (MM of usd, nsa) Other Consumer Loans Securitized by Finance Companies, outst. (MM of usd, nsa) Other Real Estate Loans Owned by Finance Companies, Outstanding (MM of usd, nsa) Securitized Consumer Nonrevolving Credit, Outstanding (bn of usd, nsa)

Securitized Total Consumer Loans, Outstanding (bn of usd, nsa)
dTBTNM
Dтвтм
totalns
TOTALSL
DTCTHFNM
DTCTHFM
totaltcu
TOTALDI
TOTALGOV
TOTALFC
TOTALNFC
DTTHFXDFBANM
DTTHFXDFBANA
DTTHFXDFBAA
DTTHFXDFBAM
DTTHFNM
DTTHFM
NONREVNS
NONREVSL
DTRTNM
DTRTM
REVOLNS
REVOLSL

Manufacturing and trade
875 CMRMTSPL

Money Stock
877 CURRNS
878 CURRSL
879 CURRDD

1980:06-2020:0 1985:06-2020:0 1943:01-2020:0 1943:01-2020:0 1943:01-2020:0 1985:06-2020:01 1943:01-2020:0 1943:01-2020:0 1977:01-2020:01 1943:01-2020:01 1943:01-2020:0 1943:02-2020:0 1943:02-2020:0 1970:07-2020:01 1970:07-2020:0 1943:01-2020:0 1970:06-2020:0 1943:01-2020:0 1943:01-2020:0 1970:06-2020:0 1970:06-2020:01 1968:01-2020:0 1968:01-2020:01

FED FED Total Business loans \& leases Owned \& securitized by fin.comp., outst. (MM of usd, sa) FED Total Consumer Credit Owned and Securitized, Outstanding (bn of usd, nsa) FED Total Consumer Credit Owned and Securitized, Outstanding (bn of usd, sa) FED Total cons. loans\&leases Owned \& Securitized by fin.comp., outst. (MM of usd, nsa) FED Total cons. loans\&leases Owned \& Securitized by fin.comp., outst. (MM of usd, sa) FED Total Consumer Loans Owned by Credit Unions, Outstanding (bn of usd, nsa) FED Total Consumer Loans Owned by Depository Institutions, Outstanding (bn of usd, nsa) FED Total Consumer Loans Owned by Federal Government, Outstanding (bn of usd, nsa) FED Total Consumer Loans Owned by Finance Companies, Outstanding (bn of usd, nsa) FED Total Consumer Loans Owned by Nonfinancial Businesses, Outstanding (bn of usd, nsa) FED Total Loans and Leases outst. at Domestic Finance Companies, Flow (MM of usd, nsa) FED Total Loans and Leases outst. at Domestic Finance Companies, Flow (MM of usd, nsa) FED Total Loans and Leases outst. at Domestic Finance Companies, Flow (MM of usd, sa) FED Total Loans and Leases outst. at Domestic Finance Companies, Flow (MM of usd, sa) FED Total Loans and Leases outst. at Domestic Finance Companies, outst. (MM of usd, nsa) FED Total Loans and Leases outst. at Domestic Finance Companies, outst. (MM of usd, sa) FED Total Nonrevolving Credit Owned and Securitized, Outstanding (bn of usd, nsa) FED Total Nonrevolving Credit Owned and Securitized, Outstanding (bn of usd, sa) FED Total Real Estate Loans Owned and Securitized by fin.comp., outst. (MM of usd, nsa) FED Total Real Estate Loans Owned and Securitized by fin.comp., outst. (MM of usd, sa) FED Total Revolving Credit Owned and Securitized, Outstanding (bn of usd, nsa) FED Total Revolving Credit Owned and Securitized, Outstanding (bn of usd, sa)

1967:01-2019:12 2
1967:01-2019:12 2

1947:01-2020:02 2 1947:01-2020:02 2 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1974:01-2020:02 1974:01-2020:02 1962:11-2020:02 1967:12-2020:02 1959:01-2020:02 1960:01-2020:01 1960:01-2020:0 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:0 1959:01-2020:02 1959:01-2020:02 1960:01-2020:01 1960:01-2020:01 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1963:01-2020:02 1963:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02
FED Demand Deposits: Total (bn of usd, nsa)
FED Demand Deposits: Total (bn of usd, sa)
FED Institutional Money Funds (bn of usd, nsa)
FED Institutional Money Funds (bn of usd, sa)
FED IRA and Keogh Accounts - Total (bn of usd, nsa)
FED IRA and Keogh Accounts at Commercial Banks (bn of usd, nsa)
FED IRA and Keogh accounts at thrift institutions (bn of usd, nsa)
OECD M1 for the United States (Growth Rate Previous Period, sa)
OECD M1 for the United States (National Currency, sa)
FED M1 Money Stock (bn of usd, nsa)
FED M1 Money Stock (bn of usd, sa)
FRBSL M2 Less Small Time Deposits (bn of usd, nsa)
FRBSL M2 Less Small Time Deposits (bn of usd, sa)
FED M2 Money Stock (bn of usd, nsa)
FED M2 Money Stock (bn of usd, sa)
OECD M3 for the United States (Growth Rate Previous Period, sa)
OECD M3 for the United States (National Currency, sa)
FRBSL MZM Money Stock (bn of usd, nsa)
FRBSL MZM Money Stock (bn of usd, sa)
FED Non-M1 Components of M2 (bn of usd, nsa)
FED Non-M1 Components of M2 (bn of usd, sa)
FED Other Checkable Deposits (bn of usd, sa)
FED Other Checkable Deposits (bn of usd, sa)
FED Other Checkable Deposits at Commercial Banks (bn of usd, nsa)
FED Other Checkable Deposits at Commercial Banks (bn of usd, sa)
FED Other Checkable Deposits at Thrift Institutions (bn of usd, nsa)

OCDTIS
M1REAL
M2REAL
MZMREAL
RMFNS
SVSTNS
SVSTSL
SVSTCBNS
SVSTCBSL
SAVINGNS
SAVINGSL
SVGCBNS
SVGCBSL
SVGTNS
SVGTI
STDNS
STDSL
STDCBNS
STDCBSL
STDTNS
STDTI
TSDFBOI
TCDNS
TCDSL
USGVDDNS
USGDCB
NBCB
GDBFRM
GDTSDCBM
GDTCBM

1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1973:11-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:0 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:0 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:0 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02 1978:11-2020:02 1959:01-2020:02 1959:01-2020:02 1959:01-2020:02

FED Other Checkable Deposits at Thrift Institutions (bn of usd, sa)
FRBSL Real M1 Money Stock (bn of 1982-84 usd, sa)
FRBSL Real M2 Money Stock (bn of 1982-84 usd, sa)
FRBSL Real MZM Money Stock (bn of 1982-84 usd, sa)
FED Retail Money Funds (bn of usd, nsa)
FED Savings and Small Time Deposits - Total (bn of usd, nsa)
FED Savings and Small Time Deposits - Total (bn of usd, sa)
FED Savings and Small Time Deposits at Commercial Banks (bn of usd, nsa)
FED Savings and Small Time Deposits at Commercial Banks (bn of usd, sa)
FED Savings Deposits - Total (bn of usd, nsa)
FED Savings Deposits - Total (bn of usd, sa)
FED Savings Deposits at Commercial Banks (bn of usd, nsa)
FED Savings Deposits at Commercial Banks (bn of usd, sa)
FED Savings Deposits at Thrift Institutions (bn of usd, nsa)
FED Savings Deposits at Thrift Institutions (bn of usd, sa)
FED Small Time Deposits - Total (bn of usd, nsa)
FED Small Time Deposits - Total (bn of usd, sa)
FED Small Time Deposits at Commercial Banks (bn of usd, nsa)
FED Small Time Deposits at Commercial Banks (bn of usd, sa)
FED Small Time Deposits at Thrift Institutions (bn of usd, nsa)
FED Small Time Deposits at Thrift Institutions (bn of usd, sa)
FED Time \& savings deposits due to foreign banks and official institutions (bn of usd, nsa)
FED Total Checkable Deposits (bn of usd, nsa)
FED Total Checkable Deposits (bn of usd, sa)
FED U.S. Government Demand Deposits \& Note Balances - Total (bn of usd, nsa)
FED U.S. Government Demand Deposits at Commercial Banks (bn of usd, nsa)
FED U.S. Government Note Balances at Depository Institutions (bn of usd, nsa)
FED US government deposits: General account balance at Fed Reserve (bn of usd, nsa)
FED US government deposits: Time \& savings deposits at commercial banks (bn of usd, nsa)
FED US government deposits: Total cash balance (bn of usd, nsa)

1968:05-2020:03 1968:05-2020:03 1968:05-2020:03

FRBP Current NOs; Diffusion for FRB - Philadelphia District (Index, sa) FRBP Current Unfilled Orders; Diffusion for FRB - Philadelphia District (Index, sa) FRBP Future NOs; Diffusion for FRB - Philadelphia District (Index, sa)

Leading Index
953 USSLIND
954 CASLIND
955 TXSLIND
956 OHSLIND
957 FLSLIND
958 COSLIND
959 NYSLIND
960 WASLIND
961 ALSLIND

1988:01-2020:02 1960:01-2020:02 1960:01-2020:02 1960:01-2020:02 1960:01-2020:02 1988:01-2020:02 1988:01-2020:02 1988:01-2020:02 1960:01-2020:02 1960:01-2020:02 1960:01-2020:02 1960:01-2020:02

DHUD NPHUA by Building Permits - in Structures with 1 Unit (thous of units, sa)
DHUD NPHUA by Building Permits - in Structures with 2 to 4 units (thous of units, sa)
DHUD NPHUA by Building Permits - in Structures with 5 units (thous of units, sa) DHUD NPHUA by Building Permits (thous of units, sa) DHUD NPHUA by Building Permits: Struct.- 1 Unit, Midwest Census Reg. (thous of units, sa) DHUD NPHUA by Building Permits: Struct.- 1 Unit, South Census Region (thous of units, sa) DHUD NPHUA by Building Permits: Struct.- 1 Unit, West Census Region (thous of units, sa) DHUD NPHUA by Building Permits in the Midwest Census Region (thous of units, sa) DHUD NPHUA by Building Permits in the Northeast Census Region (thous of units, sa) DHUD NPHUA by Building Permits in the South Census Region (thous of units, sa) DHUD NPHUA by Building Permits in the West Census Region (thous of units, sa)

```
FRBP
FRBP
FRBP
FRBP
FRBP
FRBP
FRBP
FRBP
FRBP
```

962	OKSLIND
963	MOSLIND
964	TNSLIND
965	LASLIND
966	AZSLIND
967	MNSLIND
968	WISLIND
969	MISLIND
970	CTSLIND
971	GASLIND
972	NCSLIND
973	KYSLIND
974	INSLIND
975	AKSLIND
976	VASLIND
977	IASLIND
978	ILSLIND
979	ORSLIND
980	SCSLIND
981	PASLIND
982	NVSLIND
983	HISLIND
984	KSSLIND
985	IDSLIND
986	ARSLIND
987	MASLIND
988	MDSLIND
989	NMSLIND
990	MTSLIND
991	UTSLIND
992	SDSLIND
993	WVSLIND
994	NESLIND
995	NJSLIND
996	MESLIND
997	WYSLIND
998	NDSLIND
999	DESLIND
1000	VTSLIND
1001	MSSLIND
1002	NHSLIND
1003	RISLIND

1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:0 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:0 1982:01-2020:0 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:0 1982:01-2020:02 1982:01-2020:0 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:0 1982:01-2020:02 1982:01-2020:02 1982:01-2020:02 1982:01-2020:0 1982:01-2020:0 1982:01-2020:0 1982:01-2020:02 1982:01-2020:0 1982:01-2020:0 1982:01-2020:02 1982:01-2020:0 1982:01-2020:02

FRBP Leading Index for Missouri (\%, sa) Leading Index for Tennessee (\%, sa) FRBP Leading Index for Louisiana (\%, sa)
FRBP Leading Index for Arizona (\%, sa)
FRBP Leading Index for Minnesota (\%, sa)
FRBP Leading Index for Wisconsin (\%, sa)
FRBP Leading Index for Michigan (\%, sa)
FRBP Leading Index for Connecticut (\%, sa)
FRBP Leading Index for Georgia (\%, sa)
FRBP Leading Index for North Carolina (\%, sa)
FRBP Leading Index for Kentucky (\%, sa)
FRBP Leading Index for Indiana (\%, sa)
FRBP Leading Index for Alaska (\%, sa)
FRBP Leading Index for Virginia (\%, sa)
FRBP Leading Index for Iowa (\%, sa)
FRBP Leading Index for Illinois (\%, sa)
FRBP Leading Index for Oregon (\%, sa)
FRBP Leading Index for South Carolina (\%, sa)
FRBP Leading Index for Pennsylvania (\%, sa)
FRBP Leading Index for Nevada (\%, sa)
FRBP Leading Index for Hawaii (\%, sa)
FRBP Leading Index for Kansas (\%, sa)
FRBP Leading Index for Idaho (\%, sa)
FRBP Leading Index for Arkansas (\%, sa)
FRBP Leading Index for Massachusetts (\%, sa)
FRBP Leading Index for Maryland (\%, sa)
FRBP Leading Index for New Mexico (\%, sa)
FRBP Leading Index for Montana (\%, sa)
FRBP Leading Index for Utah (\%, sa)
FRBP Leading Index for South Dakota (\%, sa)
FRBP Leading Index for West Virginia (\%, sa)
FRBP Leading Index for Nebraska (\%, sa)
FRBP Leading Index for New Jersey (\%, sa)
FRBP Leading Index for Maine (\%, sa)
FRBP Leading Index for Wyoming (\%, sa)
FRBP Leading Index for North Dakota (\%, sa)
FRBP Leading Index for Delaware (\%, sa)
FRBP Leading Index for Vermont (\%, sa)
FRBP Leading Index for Mississippi (\%, sa)
FRBP Leading Index for New Hampshire (\%, sa)
FRBP Leading Index for Rhode Island (\%, sa)

Leading Index for Oklahoma (\%, sa)
Leading Index for Missouri (\%, sa)
Leading Index for Louisiana (\%, sa)

Leading Indicators OECD (LI OECD)
1004 USALOCOBSNOSTSAM 1960:01-2020:01 1005 USALOCOBSORSTSAM 1960:01-2020:01 1006 USALOCODWNOSTSAM 1960:01-2019:12 3 1007 USALOCODWORMLSAM 1960:01-2019:12 2 1978:01-2020:01 2 1978:01-2020:01 2 1960:01-2020:01 2 1960:01-2020:01 2 1960:01-2020:01 5 1960:01-2019:12 2 1960:01-2019:12 1960:01-2020:01 1960:01-2020:01 1960:01-2019:12 2 1960:01-2019:12 2 1960:01-2019:12 4

OECD OECD LI OECD: Component series: BTS - Business situation: Original series, US (\%, sa) OECD LI OECD: Component series: Construction: Normalised, US (Index, sa) OECD LI OECD: Component series: Construction: Original series, US (Number, sa) OECD LI OECD: Component series: CS - Confidence indicator: Normalised, US (Index, sa) OECD LI OECD: Component series: CS - Confidence indicator: Original series, US (Index, sa) OECD LI OECD: Component series: Hours: Original series, US (Hours, sa) OECD LI OECD: Component series: Interest rate spread: Normalised, US (Index, nsa) OECD LI OECD: Component series: Interest rate spread: Original series, US (\%, sa) OECD LI OECD: Component series: Orders: Normalised, US (Index, sa) OECD LI OECD: Component series: Orders: Original series, US (US Dollar, sa)
OECD LI OECD: Component series: Share prices: Normalised, US (Index, sa) OECD LI OECD: Component series: Share prices: Original series, US ($2015=100$, nsa) OECD LI OECD: Leading indicators: CLI: Amplitude adjusted, US (Index, sa) OECD LI OECD: Leading indicators: CLI: Normalised, US (Index, sa) OECD LI OECD: Leading ind.: CLI: Trend restored-US (Gr.rate same period prev.year, sa)

1020 USALOLITOTRSTSAM 1021 USALORSGPRTSTSAM 1022 USARECP

1023 USARECM
1024 USAREC

1960:01-2019:12 1960:01-2019:12 1947:02-2019:12 1947:02-2019:12 7 1947:02-2019:12 7

Personal Consumption Expenditures (PCE) 1025 PCE 1026 PCEPILFE
1027 PCEPI
1028 DDURRG3M086SBEA 1029 PCEDG
1030 DNRGRG3M086SBEA 1031 DNRGRC1M027SBEA 1032 DPCCRC1M027SBEA 1033 DFXARC1M027SBEA 1034 DGDSRG3M086SBEA 1035 DGDSRC1

1036 DPCMRC1M027SBEA 1037 DPCXRG3M086SBEA 1038 DNDGRG3M086SBEA 1039 PCEND
1040 DSERRG3M086SBEA 1041 PCES
1042 DFXARG3M086SBEA
1043 DPCMRG3M086SBEA
1044 DPCXRC1M027SBEA 1045 DPCERGM1M225SBEA 1046 DNRGRGM1M225SBEA 1047 DFXARGM1M225SBEA 1048 DGDSRGM1M225SBEA 1049 DDURRGM1M225SBEA 1050 DNDGRGM1M225SBEA 1051 DPCMRGM1M225SBEA 1052 DPCXRGM1M225SBEA 1053 DPCCRGM1M225SBEA 1054 DSERRGM1M225SBEA 1055 DPCERA3M086SBEA 1056 DPCERAM1M225NBEA 1057 DPCCRA3M086SBEA 1058 DDURRA3M086SBEA 1059 DNRGRA3M086SBEA 1060 DNRGRAM1M225NBEA 1061 DFXARA3M086SBEA 1062 DFXARAM1M225NBEA 1063 DGDSRA3M086SBEA 1064 DGDSRAM1M225NBEA 1065 DDURRAM1M225NBEA 1066 DNDGRAM1M225NBEA 1067 DPCMRA3M086SBEA 1068 DPCMRAM1M225NBEA 1069 DPCXRA3M086SBEA 1070 DPCXRAM1M225NBEA 1071 DNDGRA3M086SBEA 1072 DPCCRAM1M225NBEA 1073 DSERRA3M086SBEA 1074 DSERRAM1M225NBEA

1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1987:01-2020:01 1987:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1987:01-2020:01 1987:01-2020:01 1959:02-2020:01 1959:02-2020:01 1959:02-2020:01 1959:02-2020:01 1959:02-2020:01 1959:02-2020:01 1987:02-2020:01 1987:02-2020:01 1959:02-2020:01 1959:02-2020:01 1959:01-2020:01 1959:02-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:02-2020:01 1959:01-2020:01 1959:02-2020:01 1959:01-2020:01 1959:02-2020:01 1959:02-2020:01 1959:02-2020:01 1987:01-2020:01 1987:02-2020:01 1987:01-2020:01 1987:02-2020:01 1959:01-2020:01 1959:02-2020:01 1959:01-2020:01 1959:02-2020:01
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
Prices for PCE: Chained Price Index: energy goods\&ser. (\%change from prec.period, sa)
BEA Prices for PCE: Chained Price Index: Food (\% Change from Preceding Period, sa)
BEA Prices for PCE: Chained Price Index: Goods (\% Change from Preceding Period, sa)
BEA Real PCE excluding food and energy (chain-type quantity index) (2012=100, sa)
BEA Real PCE: Durable goods (chain-type quantity index) $(2012=100$, sa)
BEA Real PCE: Energy goods and services (chain-type quantity index) $(2012=100$, sa)
BEA Real PCE: Energy goods and services (\% Change from Preceding Period, sa)
BEA Real PCE: Food (chain-type quantity index) (2012=100, sa)
BEA Real PCE: Food (\% Change from Preceding Period, sa)
BEA Real PCE: Goods (chain-type quantity index) $(2012=100$, sa)
BEA Real PCE: Goods (\% Change from Preceding Period, sa)
BEA Real PCE: Goods: Durable goods (\% Change from Preceding Period, sa)
BEA Real PCE: Goods: Nondurable goods (\% Change from Preceding Period, sa)
BEA Real PCE: Market-based (chain-type quantity index) (2012=100, sa)
BEA Real PCE: Market-based PCE (\% Change from Preceding Period, sa)
BEA Real PCE: Market-based PCE ex food\&energy (chain-type quantity index) $(2012=100$, sa)
BEA Real PCE: Market-based PCE ex food and energy (\% Change from Preceding Period, sa)
BEA Real PCE: Nondurable goods (chain-type quantity index) $(2012=100$, sa)
BEA Real PCE: PCE excluding food and energy (\% Change from Preceding Period, sa)
BEA Real PCE: Services (chain-type quantity index) $(2012=100$, sa)

PCE (bn of usd, sa)
PCE Excluding Food and Energy (Chain-Type Price Index) (2012=100, sa)
PCE: Chain-type Price Index $(2012=100$, sa)
PCE: Durable goods (chain-type price index) $(2012=100$, sa)
PCE: Durable Goods (bn of usd, sa)
PCE: Energy goods and services (chain-type price index) $(2012=100$, sa)
PCE: Energy goods and services (bn of usd, sa)
PCE: excluding food and energy (bn of usd, sa)
PCE: Food (bn of usd, sa)
PCE: Goods (chain-type price index) $(2012=100$, sa)
PCE: Goods (bn of usd, sa)
PCE: Market-based (bn of usd, sa)
PCE: Market-based PCE ex. food \& energy (chain-type price index) $(2012=100$, sa)
PCE: Nondurable goods (chain-type price index) $(2012=100$, sa)
PCE: Nondurable Goods (bn of usd, sa)
PCE: Services (chain-type price index) $(2012=100$, sa)
PCE: Services (bn of usd, sa)
PCE:: Food (chain-type price index) $(2012=100$, sa)
PCE:: Market-based (chain-type price index) $(2012=100$, sa)
PCE:: Market-based PCE excluding food and energy (bn of usd, sa)
Prices for PCE: Chained Price Index (\% Change from Preceding Period, sa)

Prices for PCE: Chained Price Index: Food (\% Change from Preceding Period, sa)
Prices for PCE: Chained Price Index: Goods (\% Change from Preceding Period, sa)
Prices for PCE: Chained Price Index: Dur.goods (\% Change from Preceding Period, sa)
Prices for PCE: Chained Price Index: Nondur.goods (\% Change from preced.period, sa)
Prices for PCE: Chained Price Index: Market-based PCE (\%change from prec.period, sa)
Prices for PCE: Chained Price Index: MB ex food\&energy (\%change from pre.period, sa)
Prices for PCE: Chained P-Index: PCE ex food\&energy (\%change from prec.period, sa)
Prices for PCE: Chained Price Index: Services (\% Change from Preceding Period, sa)
Real PCE (chain-type quantity index) $(2012=100$, sa)
Real PCE (\% Change from Preceding Period, sa)
Real PCE excluding food and energy (chain-type quantity index) $(2012=100$, sa)
Real PCE: Durable goods (chain-type quantity index) $(2012=100$, sa)
Real PCE: Energy goods and services (chain-type quantity index) $(2012=100$, sa)
Real PCE: Energy goods and services (\% Change from Preceding Period, sa)

Real PCE: Food (\% Change from Preceding Period, sa)
Real PCE: Goods (chain-type quantity index) $(2012=100$, sa)
Real PCE: Goods (\% Change from Preceding Period, sa)
Real PCE: Goods: Durable goods (\% Change from Preceding Period, sa)

Real PCE: Market-based (chain-type quantity index) $(2012=100$, sa)
Real PCE: Market-based PCE (\% Change from Preceding Period, sa)
Real PCE: Market-based PCE ex food\&energy (chain-type quantity index) $(2012=100$, sa)
Real PCE: Market-based PCE ex food and energy (\% Change from Preceding Period, sa)
Real PCE: Nondurable goods (chain-type quantity index) $(2012=100$, sa)

Real PCE: Services (chain-type quantity index) $(2012=100$, sa)
Real PCE: Services (\% Change from Preceding Period, sa)

1076 A229RC0
1077 W055RC1
1078 W211RC1
1079 W062RC1M027SBEA
1080 B070RC1M027SBEA
1081 PCTR
1082 A063RC1
1083 W729RC1
1084 W824RC1
1085 W827RC1
1086 W823RC1
1087 W825RC1
1088 W826RC1
1089 PI
1090 PIROA
1091 PDI
1092 PII
1093 B069RC1
1094 A068RC1
1095 PMSAVE
1096 PSAVERT
1097 DSPIC96
1098 A229RX0
1099 RPI
1100 W875RX1
1101 A048RC1

1959:01-2020:01 1959:01-2020:01 1959:01-2020:0 1959:01-2020:01 1959:01-2020:0 1959:01-2020:0 1959:01-2020:01 1966:01-2020:01 1966:07-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01 1959:01-2020:01

BEA

BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA
BEA BEA BEA Personal interest payments (bn of usd, sa) BEA Personal outlays (bn of usd, sa) BEA Personal Saving (bn of usd, sa) BEA Personal Saving Rate (\%, sa) BEA Real Disposable PI (bn of Chained 2012 usd, sa) BEA Real Disposable PI: Per Capita (Chained 2012 usd, sa) BEA Real PI (bn of Chained 2012 usd, sa) BEA Real personal income excluding current transfer receipts (bn of Chained 2012 usd, sa) BEA Rental income of persons with capital consumption adjustment (bn of usd, sa)

Producer Price Index by Commodity
1102 WPSFD49207 1947:04-2020:02

1103 WPSFD4131
1104 WPS1321
1105 WPSFD41312
1106 WPSID612
1107 WPSID62
1108 WPSID61
1109 WPSFD49502
1110 WPSFD41311
1111 WPS132101
1112 WPS057303
1113 WPSFD413121
1114 WPSFD4121
1115 WPSFD4111
1116 WPSID69111
1117 WPS102302
1118 WPSFD41113
1119 WPS022104
1120 WPS1411
1121 WPS057
1122 WPSID69115
1123 WPSID61111
1124 WPS0132
1125 WPS057302

20:02 1974:01-2020:02 1973:01-2020:02 1947:04-2020:02 1973:01-2020:02 1947:04-2020:02 1947:04-2020:02 1947:04-2020:02 1974:01-2020:02 1984:01-2020:02 1985:06-2020:02 1975:01-2020:02 1974:01-2020:02 1947:04-2020:02 1947:04-2020:02 1974:01-2020:02 1973:01-2020:02 1974:01-2020:02 1975:01-2020:02 1967:01-2020:02 1974:01-2020:02 1973:01-2020:02 1967:01-2020:02 1975:01-2020:02

BLS BLS

PPI-C: Final Demand: Finished Goods $(1982=100$, sa)
PPI-C: Final Demand: Finished Goods Less Foods and Energy (1982=100, sa)
PPI-C: Nonmetallic Mineral Prod.: Cons.sand, gravel\&crushed stone (1982=100, sa)
PPI-C: Final Demand: Private Capital Equipment (1982=100, sa)
PPI-C: Intermediate Demand: Materials\&comp., construction (1982=100, sa)
PPI-C: Intermediate Demand by Commodity Type: Unprocessed Goods (1982=100, sa)
PPI-C: Intermediate Demand by Commodity Type: Processed Goods (1982=100, sa)
PPI-C: Final Demand: Personal Consump.goods (Finished con.goods) $(1982=100$, sa)
PPI-C: Final Demand: Finished Consumer Goods Less Foods and Energy (1982=100, sa)
PPI-C: Nonmetallic Mineral Products: Const.sand, gravel\&crushed stone (1982=100, sa)
PPI-C: Fuels and Related Products and Power: No. 2 Diesel Fuel (1982=100, sa)
PPI-C: Final Demand: Priv. capital equip.: Manufacturing Industries ($1982=100$, sa)
PPI-C: Final Demand: Finished Consumer Energy Goods (1982=100, sa)
PPI-C: Final Demand: Finished Consumer Foods $(1982=100$, sa)
PPI-C: Intermed. Demand,C-Type: Processed Materials ex foods\&feeds ($1982=100$, sa)
PPI-C: Metals and Metal Products: Aluminum Base Scrap (1982=100, sa)
PPI-C: Final Demand: Finished Consumer Foods, Crude (1982=100, sa)
PPI-C: Processed Foods\&fe.: Pork prod., fresh, frozen, ex Sausage (1982=100, sa)
PPI-C: Transportation Equipment: Motor Vehicles ($1982=100$, sa)
PPI-C: Fuels \& Related Products \& Power: Petroleum Products, Refined (1982=100, sa)
PPI-C: Intermediate Demand, C-type: Processed mat. ex Foods\&Energy (1982=100, sa)
PPI-C: Intermediate Demand by C-Type: Materials: Food Manufacturing (1982=100, sa)
PPI-C: Farm Products: Slaughter Hogs $(1982=100$, sa)
PPI-C: Fuels \& Related Products \& Power: Home heating oil \& distillates (1982=100, sa)

1976:01-2020:02
1967:01-2020:02
1967:01-2020:02
1967:01-2020:02
1967:01-2020:02
1967:01-2020:02

BEA
BEA

BEA Motor Vehicle RS: Domestic Light Weight Trucks (MM of units, sa) BEA Motor Vehicle RS: Domestic Light Weight Trucks (thous of units, sa) BEA Motor Vehicle RS: Foreign Autos (MM of units, sa)

1132 FAUTOSA
1133 FLTRUCKSSAAR
1134 HTRUCKSSAAR
1135 HTRUCKSSA
1136 LTRUCKSA
1137 RMFSL
1138 USASARTMISMEI
1139 TOTALSA

Sentiment
1140 BSCURT02USM160S
1141 BSCICP02USM460S
1142 BSCICP03USM665S
1143 BSXRLV02USM086S
1144 BSOITE02USM460S
1145 BSPRTE02USM460S
1146 CSCICP03USM665S
1147 CSINFT02USM460S
1148 EMVMACROBUS
1149 EMVMACROCONSUME
1150 UMCSENT
1151 MICH

Unfilled Orders (UOs)
1152 UOCDSA156MSFRBPHI
1153 UOCISA156MSFRBPHI
1154 UOCNSA156MSFRBPHI 1155 UOFDFSA066MSFRBPHI
1156 UOFDSA156MSFRBPHI
1157 UOFISA156MSFRBPHI
1158 UOFNSA156MSFRBPHI

US stock market
1159 SPL
1160 SPD
1161 SPE
1162 SPRP
1163 SPRD
1164 SPRTRP
1165 SPRE
1166 SPRTRSCALEDEARN
1167 SPCAPE
1168 SPTRCAPE
1169 FFSMB
1170 FFHML
1171 FFRMW
1172 FFCMA

Volatility index
1173 VIXCLS
1174 VXOCLS

Miscellaneous
1175 FEDFUNDS
1176 WLEMUINDXD
1177 EXCSRESNS
1178 PRUBBUSDM
1179 PSHRIUSDM
1180 MBCURRCIR
1181 BOGMBBM

1967:01-2020:02 1976:01-2020:02 1967:01-2020:0 1967:01-2020:02 1976:01-2020:02 1973:11-2020:02 1960:01-2019:12 1976:01-2020:02

967:01-2020:01 1960:01-2020:02 1960:01-2020:02 1990:01-2020:0 1960:01-2020:02 1960:01-2020:02 1960:01-2020:02 1978:01-2020:0 1985:01-2020:0 1985:01-2020:0 1952:11-2020:01 1978:01-2020:0

1968:05-2020:03 1968:05-2020:03 1968:05-2020:03 1968:05-2020:03 1968:05-2020:03 1968:05-2020:03 1968:05-2020:0

FRBP
FRBP FRBP FRBP FRBP FRBP FRBP

Current UOs; \% Reporting Decreases for FRB - Philadelphia District (\%, sa)
Current UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa)
Current UOs; \% Reporting No Change for FRB - Philadelphia District (\%, sa)
Future UOs; Diffusion for FRB - Philadelphia District (Index, sa)
Future UOs; \% Reporting Decreases for FRB - Philadelphia District (\%, sa)
Future UOs; \% Reporting Increases for FRB - Philadelphia District (\%, sa)
Future UOs; \% Reporting No Change for FRB - Philadelphia District (\%, sa)

1988:12-2020:02 1988:12-2020:02 1988:12-2020:0 1988:12-2020:02 1988:12-2020:02 1988:12-2020:0 1988:12-2020:02 1988:12-2020:02 1988:12-2020:0 1988:12-2020:02 1988:12-2020:0 1988:12-2020:01 1988:12-2020:0 1988:12-2020:01

Shiller
French
French
French French

Fama-French Conservative-minus-Aggressive (\%, nsa)

1990:01-2020:03 7
1986:01-2020:03

CBOE
CBOE

CBOE Volatility Index: VIX (Index, nsa)
CBOE S\&P 100 Volatility Index: VXO (Index, nsa)

FRBN Effective Federal Funds Rate (\%, nsa)

EPU Equity Market-related Economic Uncertainty (Index, nsa)
FRBSL Excess Reserves of Depository Institutions (MM of usd, nsa)
IMF Global price of Rubber (U.S. Cents per Pound, nsa)
IMF Global price of Shrimp (U.S. usd per Kilogram, nsa)
FED Monetary Base; Currency in Circulation (MM of usd, nsa)
FED Monetary Base; Total Balances Maintained (MM of usd, nsa)

1182	BOGMBASE	1989:01-2020:01	2	FED	Monetary Base; Total, MM of usd (MM of usd, nsa)
1183	MVAAUTLTTS	1977:01-2020:01	2	FED	Motor Vehicle Assemblies: Autos and light truck assemblies (MM of units, sa)
1184	MVAHMTRCKS	1979:01-2020:01	2	FED	Motor Vehicle Assemblies: Heavy and medium truck assemblies (MM of units, sa)
1185	NAPMPMI	1989:01-2020:02	2	ISM	NAPM NAPMPMI (Index, sa)
1186	UKX	1989:01-2020:02	2	ISM	NAPM UKX (Index, sa)
1187	RTWVDCA684NMFRBDAL	1988:01-2020:01	2	FRBD	Real Trade-Weighted Value of the dollar for California (Jan 1988=100, nsa)
1188	RTWVDNY684NMFRBDAL	1988:01-2020:01	2	FRBD	Real Trade-Weighted Value of the dollar for New York (Jan 1988=100, nsa)
1189	RTWVDTX684NMFRBDAL	1988:01-2020:01	2	FRBD	Real Trade-Weighted Value of the dollar for Texas (Jan 1988=100, nsa)
1190	SAHMREALTIME	1959:12-2020:02	5	SC	Real-time Sahm Rule Recession Indicator (\%age Points, sa)
1191	SAHMCURRENT	1949:03-2020:02	5	SC	Sahm Rule Recession Indicator (\%age Points, sa)
1192	SFTPINDM114SFRBSF	1971:04-2020:02	2	FRBSF	San Francisco Tech Pulse (Jan $2000=100$, sa)
1193	SFTPAGRM158SFRBSF	1971:05-2020:02	7	FRBSF	San Francisco Tech Pulse (\% Change at Annual Rate, sa)
1194	SFTPGR12M159SFRBSF	1972:04-2020:02	4	FRBSF	San Francisco Tech Pulse (\% Change from Year Ago, sa)
1195	BORROW	1989:01-2020:02	7	FED	Total Borrowings of Depository Institutions from the Federal Reserve (bn of usd, nsa)
1196	RESBALNS	1989:01-2020:02	2	FED	Total Reserve Balances Maintained with Federal Reserve Banks (bn of usd, nsa)

