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Unconstrained Cholesky-based parametrization of correlation matrices 

 

Abstract: 

Parameter estimation is relatively complicated for models containing correlation matrices, 

because the elements of correlation matrices are heavily constrained. We put forward a 

Cholesky-based parametrization that is easy to implement and allows for unconstrained 

parameter estimation. To compare the new parametrization with the commonly applied 

spherical parametrization, we use Monte Carlo simulation in which we estimate multivariate 

distributions containing Gaussian copulas. We show that the new parametrization performs 

well, in particular as the dimensionality of the multivariate distribution increases, computing 

times increase, and non-convergence occurs increasingly often. 
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1. Introduction 

Applied statistical modeling often involves estimation of the elements of a correlation 

matrix alongside other model parameters. For example, variables of interest co-vary and 

frequently have marginal distributions that do not imply an elliptical (e.g., multivariate 

normal) joint distribution, requiring copulas to adequately capture the underlying dependence 

(Nelsen, 2006; Sklar, 1959). Copulas are becoming increasingly popular, and “the so-called 

‘elliptical copula’ have proven the most popular in applied modeling” (Danaher and Smith, 

2011, p. 9). A convenient and frequently used elliptical copula is the Gaussian copula that 

contains a correlation matrix to link the marginal distributions (Pitt et al., 2006; Song, 2000). 

 Numerical maximization of the log-likelihood function to obtain estimates of the 

correlation matrix (and other model parameters) usually requires an extensive search in the 

parameter space. To avoid that infeasible parameter values cause the search algorithm to 

break down, the parametrization needs to become unconstrained (Pinheiro and Bates, 1996). 

Obviously, the correlation matrix poses a challenge, because this matrix needs to be positive 

definite, have all diagonal elements equal to one, and have all off-diagonal elements bounded 

by 1 and +1. For example, eigenspectrum decomposition may be used for unconstrained 

parametrization of covariance matrices, despite “considerable calculations” (Pinheiro and 

Bates, 1996, p. 292), but only captures positive definiteness and is unable to capture the 

additional restrictions that are present in correlation matrices.  

 Although unconstrained parametrizations of correlation matrices exist, such as partial 

correlations (Joe, 2006), these approaches tend to be relatively complicated. Therefore, “the 

general correlated case is typically computed by using spherical parametrizations” (Madar, 

2015, p.142), which conveniently transform the Cholesky decomposition into spherical 

coordinates in order to make the parametrization unconstrained (e.g., Rebonato and Jäckel, 

2000; Tsay and Pourahmadi, 2017).  
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The present paper introduces an easy Cholesky-based parametrization that has not 

been documented before. We use Monte Carlo simulation, with Gaussian copulas, to compare 

the new parametrization with the spherical parametrization. The results indicate that the 

relative performance of the new parametrization improves as the dimensionality of the 

multivariate distribution increases and the estimation problem becomes more complex. 

 

2. Cholesky decomposition of correlation matrices 

Let 

𝑅 = (𝑟𝑖,𝑗) =

(

 
 

𝑟1,1 𝑟1,2 … 𝑟1,𝑀−1 𝑟1,𝑀
𝑟2,1 𝑟2,2 … 𝑟2,𝑀−1 𝑟2,𝑀
⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑀−1,1 𝑟𝑀−1,2 … 𝑟𝑀−1,𝑀−1 𝑟𝑀−1,𝑀
𝑟𝑀,1 𝑟𝑀,2 … 𝑟𝑀,𝑀−1 𝑟𝑀,𝑀 )

 
 

 

denote the M × M positive definite correlation matrix, where 𝑟𝑖,𝑗 = 𝑟𝑗,𝑖 due to symmetry, 

𝑟𝑖,𝑖 = 1, 𝑖 = 1,… ,𝑀, and 𝑟𝑖,𝑗 ∈ (−1, 1) if 𝑖 ≠ 𝑗. Because 𝑅 is symmetric and positive 

definite, it has a Cholesky decomposition 𝑅 = 𝐿𝐿′, where 

𝐿 = (𝑙𝑖,𝑗) =

(

  
 

𝑙1,1 0 … 0 0

𝑙2,1 𝑙2,2 0 0

⋮ ⋮ ⋱ ⋮
𝑙𝑀−1,1 𝑙𝑀−1,2 … 𝑙𝑀−1,𝑀−1 0

𝑙𝑀,1 𝑙𝑀,2 … 𝑙𝑀,𝑀−1 𝑙𝑀,𝑀)

  
 

 

is a unique lower triangular matrix with all diagonal elements taking positive values. Writing 

out 𝑅 = 𝐿𝐿′ and using that 𝐿 is lower triangular yields 

𝑟𝑖,𝑗 =∑𝑙𝑖,𝑘𝑙𝑗,𝑘

𝑗

𝑘=1

,      𝑗 ≤ 𝑖,                                                                            (1) 

immediately implying that 

𝑟𝑖,𝑖 =∑𝑙𝑖,𝑘
2

𝑖

𝑘=1

,      𝑖 = 1,… ,𝑀,                                                                    (2) 

It follows from 𝑟𝑖,𝑖 = 1 and 𝑙𝑖,𝑖 > 0, 𝑖 = 1, … ,𝑀, that (2) can be rewritten as 



6 
 

𝑙𝑖,𝑖 = √1 −∑ 𝑙𝑖,𝑘
2

𝑖−1

𝑘=1

,      𝑖 = 1,… ,𝑀,                                                         (3) 

which shows that the diagonal elements 𝑙𝑖,𝑖 = √1 − ∑ 𝑙𝑖,𝑘
2𝑖−1

𝑘=1  are completely determined by 

the off-diagonal elements 𝑙𝑖,𝑗, 𝑗 = 1,… , 𝑖 − 1, reducing the number of “free” elements in L to 

the number of elements below the diagonal, 𝑀(𝑀 − 1)/2. Because 𝑟𝑖,𝑖 = 1 in (2), the 

coordinates (𝑙𝑖,1, … , 𝑙𝑖,𝑖) in the i-th row of L must be located on the i-dimensional unit sphere, 

with a (squared) Euclidean distance from the origin that is equal to one, which is indeed 

captured by (3). 

 

3. New parametrization: Cholesky-based and unconstrained 

 The 𝑀(𝑀 − 1)/2 “free” elements of L need to satisfy the restriction that the diagonal 

elements of 𝐿 take positive and non-complex values; that is, 𝑙𝑖,𝑖 = √1 − ∑ 𝑙𝑖,𝑘
2𝑖−1

𝑘=1 > 0, 𝑖 =

1, … ,𝑀, or equivalently, ∑ 𝑙𝑖,𝑘
2𝑖−1

𝑘=1 < 1, 𝑖 = 2,… ,𝑀. Thus, the (𝑖 − 1)-dimensional subset of 

coordinates (𝑙𝑖,1, … , 𝑙𝑖,𝑖−1) should be inside the (𝑖 − 1)-dimensional unit sphere, with a 

Euclidean distance from the origin that is less than one. An equivalent condition is that for 

any 𝑗 = 1,… , 𝑖 − 1, the coordinates (𝑙𝑖,1, … , 𝑙𝑖,𝑗) should be located inside the corresponding j-

dimensional unit sphere:  

∑𝑙𝑖,𝑘
2

𝑗

𝑘=1

< 1,      𝑖 = 2,… ,𝑀,      𝑗 = 1,… , 𝑖 − 1,                                            

𝑙𝑖,𝑖 = √1 −∑ 𝑙𝑖,𝑘
2

𝑖−1

𝑘=1

,      𝑖 = 1,… ,𝑀.                                                         (4) 

To ensure that all restrictions in (4) are satisfied, we put forward an alternative lower 

triangular parametrization for the elements of 𝐿 = (𝑙𝑖,𝑗): 
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Θ = (𝜃𝑖,𝑗) =

(

  
 

𝜃1,1 0 … 0 0

𝜃2,1 𝜃2,2 0 0

⋮ ⋱ ⋱ ⋮
⋮ ⋱ 𝜃𝑀−1,𝑀−1 0

𝜃𝑀,1 … … 𝜃𝑀,𝑀−1 𝜃𝑀,𝑀)

  
 
, 

where 𝜃𝑖,𝑖 = 1, 𝑖 = 1, … ,𝑀, and 𝜃𝑖,𝑗 ∈ (−1, 1) if 𝑗 < 𝑖. We define 

𝜃𝑖,𝑗 =
𝑙𝑖,𝑗

√1 − ∑ 𝑙𝑖,𝑘
2𝑗−1

𝑘=1

,      𝑖 = 2,…𝑀,      𝑗 = 1,… , 𝑖 − 1,                           

𝜃𝑖,𝑖 = 1,      𝑖 = 1, … ,𝑀,                                                                                (5) 

with inverse transformation 

𝑙𝑖,𝑗 = 𝜃𝑖,𝑗√1 −∑ 𝑙𝑖,𝑘
2

𝑗−1

𝑘=1
,       𝑖 = 1,…𝑀,      𝑗 = 1,… , 𝑖,                         

𝜃𝑖,𝑖 = 1,      𝑖 = 1, … ,𝑀.                                                                                (6) 

The absolute value of 𝜃𝑖,𝑗 in (5) expresses the absolute value of 𝑙𝑖,𝑗 as a fraction of the 

maximum absolute value of 𝑙𝑖,𝑗 in order to stay within the unit sphere, given the previous 

(𝑙𝑖,1, … , 𝑙𝑖,𝑗−1). The sign of 𝜃𝑖,𝑗 captures whether 𝑙𝑖,𝑗 is positive or negative. Note that (6) 

implies that 𝑙𝑖,𝑗
2 < 1 − ∑ 𝑙𝑖,𝑘

2𝑗−1
𝑘=1 , and thus ∑ 𝑙𝑖,𝑘

2𝑗
𝑘=1 < 1, for all 𝑗 = 1,… , 𝑖 − 1, and that 

𝑙𝑖,𝑖 = √1 − ∑ 𝑙𝑖,𝑘
2𝑖−1

𝑘=1 . Thus, the transformation from 𝑙𝑖,𝑗 to 𝜃𝑖,𝑗 satisfies all restrictions in (4).   

 

4.  Spherical parametrization: Cholesky-based and unconstrained 

 The typical approach to obtain unconstrained correlation parameters is the spherical 

parametrization that transforms the Cholesky decomposition 𝑅 = 𝐿𝐿′ into spherical 

coordinates: 

𝑙𝑖,𝑗 = cos(𝜃𝑖,𝑗)∏sin(𝜃𝑖,𝑘)

𝑗−1

𝑘=1

,      𝑖 = 1,… ,𝑀,      𝑗 = 1,… , 𝑖,                      

𝜃𝑖,𝑖 = 0,      𝑖 = 1, … ,𝑀,                                                                                (7) 
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where 𝜃𝑖,𝑗 ∈ (0, 𝜋) for all 𝑖 = 2, … ,𝑀 and 𝑗 = 1,… , 𝑖 − 1 (e.g., Rebonato and Jäckel, 2000; 

Tsay and Pourahmadi, 2017). For instance, for 𝑀 = 2 dimensions, (7) reduces to 𝑙1,1 = 1, 

𝑙2,1 = cos(𝜃2,1), and 𝑙2,2 = sin(𝜃2,1). 

Whereas (7) imposes the unit sphere restrictions in spherical coordinates, the new 

parametrization (6) can be regarded as doing so in radial-based coordinates; that is, after 

applying the radial-based transformation by Bauwens et al. (2004). 

 

5.  Monte Carlo simulation 

 To compare the performance of the new parametrization with the spherical 

parametrization, we simulate data from non-elliptical distributions that do not necessarily 

imply marginal distributions from the same distributional family; we use the Gaussian copula 

to capture the dependence structure (e.g., Danaher and Smith, 2011; Song, 2000). 

For 𝑖 = 1, … ,𝑀, let 𝑓𝑖(𝑥𝑙,𝑖|𝜙𝑖) denote the marginal density of variable 𝑥𝑖, with 𝑥𝑙,𝑖 

being the l-th observation of 𝑥𝑖, and let 𝐹𝑖(𝑥𝑙,𝑖|𝜙𝑖), denote the corresponding cumulative 

distribution function, with parameters 𝜙𝑖. The joint density of (𝑥𝑙,1, … , 𝑥𝑙,𝑀) is the product of 

the copula density and the marginal densities: 

 𝑔(𝑥𝑙,1, … , 𝑥𝑙,𝑀|𝜙1, …𝜙𝑀, 𝑅) = 𝑐(𝑥𝑙,1, … , 𝑥𝑙,𝑀|𝜙1, …𝜙𝑀 , 𝑅)∏ 𝑓𝑖(𝑥𝑙,𝑖|𝜙𝑖)

𝑀

𝑖=1

,         (8) 

where 

𝑐(𝑥𝑙,1, … , 𝑥𝑙,𝑀|𝜙1, …𝜙𝑀, 𝑅)

= |𝑅|−1/2 exp (−
1

2
[Φ−1 (𝐹𝑖(𝑥𝑙,𝑖|𝜙𝑖))] ′(𝑅

−1 − 𝐼𝑀) [Φ
−1 (𝐹𝑖(𝑥𝑙,𝑖|𝜙𝑖))]) (9) 

is the Gaussian copula density, Φ−1 denotes the inverse of the standard normal cumulative 

distribution function, and 𝐼𝑀 is the 𝑀 ×𝑀 identity matrix (e.g., Danaher and Smith, 2011; 
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Song, 2000). If 𝑅 = 𝐼𝑀, (9) reduces to 𝑐(𝑥𝑙,1, … , 𝑥𝑙,𝑀|𝜙1, …𝜙𝑀 , 𝑅) = 1, which is the 

independence copula density. 

 

5.1   Simulation setup 

We obtain the scenarios by varying the number of marginal distributions in (8) and 

(9); we take 𝑀 = 6, 12, 18, or 24. In a first set of scenarios, we consider gamma marginal 

distributions for all variables (e.g., Song, 2000), so that all marginal distributions are from the 

same family. In a second set of scenarios, we take gamma distributions for one half of the 

variables, and we take beta distributions for the other half; thus, the marginal distributions are 

no longer from the same family. 

 Within each scenario we simulate 1000 data sets, each containing 500 observations. 

We obtain each data set by first simulating the parameters (𝜙1, …𝜙𝑀 , 𝑅) and then using the 

algorithm in Danaher and Smith (2011, p. 11) to draw the data (𝑥𝑙,𝑖) from (8) and (9). For 

each gamma distribution, we draw both the shape parameter and the scale parameter from the 

standard lognormal distribution. Similarly, we draw the two shape parameters of each beta 

distribution from the standard lognormal distribution. To simulate realistic correlation 

matrices R, we use the algorithm in Madar (2015, p. 145). 

For each simulated data set, we estimate the correlation matrix R and the parameters 

of the marginal distributions, 𝜙1, …𝜙𝑀, by maximizing the log-likelihood function: 

ln 𝐿 =∑[ln (𝑐(𝑥𝑙,1, … , 𝑥𝑙,𝑀|𝜙1, …𝜙𝑀, 𝑅)) +∑ln (𝑓𝑖(𝑥𝑙,𝑖|𝜙𝑖))

𝑀

𝑖=1

]

𝑙

,            (10) 

where 𝑅 = 𝐿𝐿′. We use (6) to express L in terms of the transformed parameters Θ = (𝜃𝑖,𝑗) for 

the new parametrization; we use (7) for the spherical parametrization. Because 𝜃𝑖,𝑗 ∈ (−1, 1) 

in the new parametrization, we write 𝜃𝑖,𝑗 = (exp(�̃�𝑖,𝑗) − 1)/(exp(�̃�𝑖,𝑗) + 1) and estimate 

unbounded �̃�𝑖,𝑗. Similarly, 𝜃𝑖,𝑗 ∈ (0, 𝜋) in the spherical parametrization; we write 𝜃𝑖,𝑗 =
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𝜋/(1 + exp(−�̃�𝑖,𝑗)) and estimate unbounded �̃�𝑖,𝑗 when applying the spherical transformation. 

For both parametrizations and each simulated data set, we start the numerical maximization 

of (10) from �̃�𝑖,𝑗 = 0. These starting values correspond to the independence copula, with 𝑅 =

𝐼𝑀, which is a natural starting point when the dependence structure is unknown. 

< INSERT TABLE 1 ABOUT HERE > 

< INSERT TABLE 2 ABOUT HERE > 

 

5.2   Simulation results 

 We implement the simulation in the programming language Ox (Doornik, 2007); we 

use Ox’s default settings for the search algorithm. Table 1 compares the new parametrization 

with the spherical parametrization by considering five criteria: the percentage of simulated 

data sets (i.e., simulation runs) for which the search algorithm stopped without reporting 

convergence, the average time needed to reach convergence, the upper 10% quantile for time 

needed to reach convergence, the upper 5% quantile, and the upper 1% quantile. The reported 

computing times are based on simulation runs for which both the new parametrization and the 

spherical parametrization resulted in convergence. Thus, the corresponding statistics are not 

distorted by computing times without convergence; we report the frequency of non-

convergence separately. 

 Table 1 shows that convergence is usually reached for the new parametrization in all 

scenarios. As the dimensionality M increases, the percent non-convergence increases only 

slowly when using the new parametrization. In contrast, the percent non-convergence 

increases quickly when using the spherical parametrization. Importantly, non-converge 

occurs less often for the new parametrization than for the spherical parametrization in all 

scenarios. Furthermore, the relative time efficiency of the two parametrizations depends on 

the dimensionality 𝑀, with the new parametrization becoming more preferable as M 
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increases. The spherical parametrization is faster for 𝑀 = 6, but the new parametrization is 

faster for 𝑀 = 12, 𝑀 = 18, and 𝑀 = 24.  

Table 2 contains the 10%, 5%, and 1% upper quantiles for computing time. It 

confirms that the new parametrization’s relative performance increases as the dimensionality 

M increases. Furthermore, the quantiles indicate that the new parametrization becomes more 

preferable when moving farther into the tail of the distribution of computing times; that is, 

when increased complexity makes it harder to estimate the model parameters. In all scenarios 

with 𝑀 = 12, 𝑀 = 18, and 𝑀 = 24, the quantiles are lower (and thus better) for the new 

parametrization than for the spherical parametrization. Furthermore, when considering 𝑀 =

6, the spherical parameterization provides the lowest 10% and 5% quantiles, but the new 

parametrization provides the lowest 1% quantiles. 

 

6.  Conclusion 

 We presented an easy Cholesky-based parametrization of correlation matrices that 

allows for unconstrained estimation. The simulation results for Gaussian copulas indicated 

that, compared with the commonly applied spherical parametrization, the new 

parametrization reduces non-convergence and is better able to curb long computing times. 

Whereas we focused on copula estimation, we encourage future research to evaluate the 

performance of the new parametrization in other applications. 
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Table 1. Performance comparison of new parametrization and spherical parametrization in 

terms of percent non-convergence and average computing time across simulation runs. 

  Gamma marginals Gamma-beta marginals 

Criterion M New Spherical New Spherical 

% Non-convergence 6 0.0 2.9 0.0 2.1 

 12 0.1 22.1 0.2 14.6 

 18 1.5 51.7 0.9 40.2 

 24 5.9 80.4 3.5 67.5 

Average time 6 5.77 5.49 7.18 6.68 

 12 52.12 53.68 64.49 64.71 

 18 190.20 202.50 229.75 242.67 

 24 497.35 547.66 594.72 643.43 

Note. Computing time is measured in seconds; M is the dimensionality of the multivariate 

distribution. 
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Table 2. Performance comparison of new parametrization and spherical parametrization in 

terms of upper 10%, 5%, and 1% quantiles for computing time across simulation runs. 

  Gamma marginals Gamma-beta marginals 

Criterion M New Spherical New Spherical 

Upper 10% quantile of time 6 7.02 6.71 8.77 8.16 

 12 63.19 65.11 78.03 78.93 

 18 229.74 248.46 280.38 300.18 

 24 603.23 681.36 741.09 802.50 

Upper 5% quantile of time 6 7.62 7.13 9.50 8.86 

 12 66.68 69.26 82.84 84.05 

 18 244.39 267.60 299.06 319.49 

 24 633.35 732.97 802.24 867.36 

Upper 1% quantile of time 6 9.24 9.29 10.91 11.20 

 12 79.98 87.67 98.85 103.56 

 18 273.80 307.68 329.32 357.31 

 24 708.50 815.20 895.16 945.95 

Note. Computing time is measured in seconds; M is the dimensionality of the multivariate 

distribution. 

 


