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Abstract

What proportion of Australian business cycle �uctuations are caused by international shocks? We

address this question by estimating a panel VAR model that has time-varying parameters and

a common stochastic volatility factor. The time-varying parameters capture the inter-temporal

nature of Australia's various bilateral trade relationships, while the common stochastic volatility

factor captures various episodes of volatility clustering among macroeconomic shocks, e.g., the

1997/98 Asian Financial Crisis and the 2007/08 Global Financial Crisis. Our main result is that

international shocks from Australia's �ve largest trading partners: China, Japan, the EU, the US

and the Republic of Korea, have caused around half of all Australian business cycle �uctuations

over the past two decades. We also �nd important changes in the relative importance of each

country's economic impact. For instance, China's positive contribution increased throughout the

mining boom of the 2000s, while the overall US in�uence has almost halved since the 1990s.

1. Introduction

Following the seminal work of Dungey and Pagan (2000), structural vector autoregression

(SVAR) models have been the primary tool for modeling macroeconomic linkages between Australia

and the rest of the world (see, e.g., Dungey and Pagan, 2000, 2009; Dungey and Fry, 2003; Nimark,

2009; Voss and Willard, 2009; Liu, 2010; Leu, 2011; Dungey et al., 2014). Throughout most of

this literature, foreign �uctuations are assumed to originate from a single entity. This entity is

often represented by the United States of America (US) (Dungey and Pagan, 2000, 2009; Voss

1We thank Sharada Davidson and Yiqiao Sun for useful comments on the paper.
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and Willard, 2009; Leu, 2011), or a single conglomerate, such as the G7 countries (Claus et al.,

2008; Nimark, 2009; Liu, 2010; Leu and Sheen, 2011). The primary reason for this assumption is

that it allows for a parsimonious model speci�cation that avoids estimation concerns regarding the

curse of dimensionality. However, this simpli�cation does not come without costs. If the researcher

focuses on a single economy then they forego any information relating to international transmissions

from alternative trading partners. Alternatively, if the researcher considers a single conglomerate,

then they forego any inference on country-speci�c sources of variation. For instance, using a

trade-weighted index of G7 countries as a single foreign conglomerate, Liu (2010) and Nimark

(2009) independently �nd that international shocks account for more than half of all Australian

business cycle �uctuations. Under their speci�cation, however, there is no way of disentangling

the individual signi�cance of each country. Such a decomposition is important. For instance,

using a three-country SVAR Dungey et al. (2014) �nd that the transmission mechanism from the

Euro area and the US to Australia di�er substantially. Since macroeconomic shocks from distinct

economies may have a substantially di�erent impact on the Australian economy, a comprehensive

investigation into the sources and e�ects of foreign shocks has important policy implications.

With this in mind, our objective in this paper is to quantify the proportion of Australian

business cycle �uctuations that can be attributed to international shocks. To that end, we consider

macroeconomic data on Australia's �ve largest trading partners: China, Japan, the EU, the US

and the Republic of Korea. While the inclusion of multiple economies in an SVAR model is a

trivial theoretical extension, in practice, the curse of dimensionality quickly becomes an issue. To

overcome this problem, Ba«bura et al. (2010) show how Bayesian shrinkage techniques developed

by De Mol et al. (2008) can be used to estimate large scale reduced form VAR models. While such

VARs are a useful tool in studying single economies such as the US, an important shortcoming

of these models in the context of a multi-country analysis such as ours, is that they give no

consideration to the existence of cross-sectional heterogeneity in the panel dimension of the data.

In this paper, we consequently move away from the large VAR framework and instead opt to

estimate a panel VAR (PVAR) model.2

2When choosing the model for our study we also considered estimating international factor augmented VAR



3

As in traditional VARs, PVAR models provide a multivariate framework through which the

propagation of exogenous shocks can be analyzed. In the context of our research question, the

advantage of the PVAR speci�cation is that it allows us to capture intra- and inter-country variable

interdependencies as well as cross-sectional heterogeneity. In addition to these features, we also

allow for time-varying coe�cients and stochastic volatility. Both features are important. The

time-varying coe�cients allow us to capture the evolving inter-temporal nature of Australia's

various bilateral trade relationships, while the common stochastic volatility factor captures any

volatility clustering among idiosyncratic macroeconomic shocks.3 While the addition of time-

varying parameters exacerbates the curse of dimensionality, we overcome this concern by adopting

an economically meaningful factorization structure, details of which are deferred to Section 2.2.

Our main results are as follows. From a modeling perspective, the common stochastic volatil-

ity factor is capable of capturing signi�cant exogenous shocks in and around the 1997/98 Asian

Financial Crisis and the 2007/08 Global Financial Crisis, which a constant volatility model would

fail to detect. Similarly, the time-varying parameters show various interesting changes in the ef-

fects of international shocks over our sample period. For instance, over the past two decades,

the contribution of international shocks stemming from the US is found to have declined, while

contributions from China, Japan, and the EU have increased. Interestingly, contributions from

Korea have been constant over the sample period. In relation to our primary research question,

we �nd that international shocks are responsible for around half of all Australian business cycle

�uctuations over the sample period. While this aggregate result is consistent with earlier works

by Liu (2010) and Nimark (2009) the country-speci�c contributions are novel. Another new result

is that we �nd an important asymmetry in the e�ects of international shocks stemming from each

country. For instance, China's positive contribution increased by six percent throughout the min-

ing boom of the 2000s, while the overall US in�uence has almost halved since the 1990s. Taken

(FAVAR) (e.g., Mumtaz and Surico, 2009) and global VAR (GVAR) (e.g., Dees et al., 2007) models. The primary
reason for choosing the PVAR framework is that it allows us to estimate time-varying coe�cients in an economically
meaningful way (Canova et al., 2007). We provide further details of this estimation method in Section 2.2. For a
more detailed survey of the bene�ts of the panel VAR approach to FAVARs and GVARs see Canova and Ciccarelli
(2013).

3Volatility clustering is a phenomenon whereby large changes in observations tend to be followed by large changes
and small changes are followed by small changes.
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together, the results highlight the dynamic nature of Australia's trade relationships and suggest

that Australian policymakers should be particularly mindful of international economic events when

making decisions.

The rest of the paper is structured as follows. Section 2 presents the key steps in the method-

ology. This includes data transformations, model speci�cations and model selection. Section 3

presents the main results regarding business cycle drivers, and Section 4 concludes.

2. Methodology

2.1. Data

The set of countries considered in our analysis are Australia and its �ve largest trading partners:

China, Japan, the EU, (the Republic of) Korea and the US.4 For each country, we use a standard set

of business cycle variables: real GDP, consumption, investment, the trade-balance-to-GDP-ratio

and a short-term interest rate (taken to be each country's bank rate). Due to data limitations, we

were unable to include employment and government expenditure data in the analysis (government

expenditure data does not exist for the EU, while, to the best of our knowledge, open-source

employment data is not available for China). Since we are dealing with a small open economy

that engages in in�ation targeting, we also consider GDP de�ator measured in�ation and the real

e�ective exchange rate. The reason for using GDP de�ator measured in�ation as compared to the

consumer price index (CPI), is that the former includes prices of other goods that likely in�uence

the Australian business cycle, e.g. the price of goods and services in the mining sector. Each series

is measured at a quarterly frequency, and the sample runs from 1995Q1 to 2017Q4. This sample

maximizes the amount of common data between countries with data from China providing the

main limitation. Data for China was sourced from the Federal Reserve Bank of Atlanta. Except

for the exchange rate, all data for Australia was sourced from the Australian Bureau of Statistics

website. All remaining data is collected from the Federal Reserve Bank of St. Louis economic

database (FRED).

4Our reason for limiting the analysis to this set of countries is due to a lack of data availability. We would ideally
include the top 10 trading partners but could not obtain quarterly time series data for Singapore, Thailand, and
India. We therefore decided to limit the analysis to Australia's top �ve trading partners.
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The combined bilateral trade of goods and services with these �ve economies accounts for ap-

proximately two-thirds of total Australian international trade over the sample period, making this

the largest scale study on the e�ects of international shocks on Australian business cycle �uctu-

ations. To illustrate the importance of these bilateral trade relationships, we plot the quarterly

bilateral trade balance of goods and services between Australia and each of these economies in

Figure 1.5 It is immediately obvious that the trade relationships between Australia and the re-

spective nations exhibit substantial time variation over the sample period. For instance, while

Japan has remained a top-two trading partner over most of the sample period, total trade with

China has increased exponentially, moving from the �fth largest trading partner in January 1995,

to the largest at the end of the sample.6 The dynamic nature of these bilateral trade relationships

highlights the importance of allowing for time-varying parameters in the PVAR model.

Figure 1: Total bilateral merchandise trade over the sample period in constant 2013 Australian dollar prices
(Source: Australian Department of Foreign A�airs and Trade (DFAT) (2017))

5All statistics and data used in this paragraph are based on historical trade and economic data
available from the Australian Department of Foreign A�airs and Trade (DFAT) website. Link:
https://dfat.gov.au/trade/resources/trade-statistics/Pages/trade-time-series-data.aspx. Due to data availability,
the EU proportion of the statistics is represented by Belgium, Finland, France, Germany, Ireland, Italy, Nether-
lands, and Sweden. Importantly, the data used in the empirical application covers all 28 EU countries.

6For details underlying the nature of the dramatic change in the Australia-China trade relationship we refer the
interested reader to Sheng and Song (2008).
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Before estimating the model, we annualized and standardized each series. Speci�cally, we �rst

computed annualized growth rates by taking the quarter on quarter percentage change � i.e., for

a given level Xt, the annualized growth rate is taken to be gt = 400× ln
(

Xt

Xt−1

)
. Next, each of the

series was standardized (i.e., demeaned and divided by the standard deviation). We also tested

for cointegration using the Johansen trace statistic on variables within each country and report

the results in the online appendix. The results are mixed. For instance, the US variables have

cointegration rank 6, while those in Japan and the EU are not cointegrated at all. Since a mixed

cointegration panel VAR would be a non-trivial econometric innovation, we use variables in growth

rates, however, this points to an important area of future research.

2.2. A time-varying parameter panel VAR model

The reduced form time-varying parameter PVAR (TVP-PVAR) model has a state-space rep-

resentation. The observation equation for dates t = 1, . . . , T , is:

yit = cit + A1,itYt−1 + · · ·+ Ap,itYt−p + uit, (1)

where yit, cit and uit respectively denote G×1 vectors containing variables of interest, time-varying

intercepts and stochastic disturbances for the i-th country, i = 1, . . . N , Y t = (Y
′

1t, . . . ,Y
′

Nt)
′ is an

NG× 1 vector which stacks the variables of interest for each country, and Aj,it, j = 1, . . . , p, is a

G×NG matrix of time-varying autoregressive coe�cients. Note that when i = 1 the (time-varying

parameter) PVAR model becomes a standard (time-varying parameter) VAR model. Thus, the

primary di�erence between the PVAR and VAR models is that the former accounts for country-

speci�c heterogeneity by accounting for the panel dimension of each country's data. For estimation

purposes (1) can be written in the form of a seemingly unrelated regression (SUR) model:

Yt = Xtβt + ut, (2)

where Xt = ING⊗
[

Y′t−1 . . . Y′t−p 1

]
, βt = vec

([
At ct

]′)
, At =

[
A′1t . . . A′Nt

]′
, Ait =[

A1,it . . . Ap,it

]
, ct =

(
c′1t . . . c′Nt

)′
and ut =

(
u′1,t . . . u′N,t

)′
. Note that ⊗ denotes

the Kronecker product and vec (·) is a vectorization operation that takes the NG×NG matrix of
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VAR parameters: At, and the NG× 1 intercept matrix: ct, and stacks them block by block into

a NGk × 1 parameter vector: βt, where k = NGp+ 1.

The cost of the added �exibility in allowing for time-varying parameters is that we must estimate

an additional (T − 1)NGk states. Following Canova et al. (2007), this computational burden can

be reduced by implementing a cross-sectional parameter shrinkage procedure, which exploits the

panel dimension of the model. More precisely, βt is factorized as:

βt = Ξ1θ1,t + Ξ2θ2,t + Ξ3θ3,t, (3)

where θi,t, i = 1, 2, 3 are mutually orthogonal vectors that induce time variation in the PVAR

coe�cients, with associated loading matrices Ξi which are respectively of dimension NGk×N1 <

N , NGk × N and NGk × G. This factorization has the practical advantage of reducing the

computational burden from NGk parameters to just N1 + N + G factors. We highlight that

the loading matrices in (3) are not estimated, but are instead manually constructed to provide

a meaningful economic interpretation. To see this, note that writing (3) in matrix notation and

substituting the result into (2) gives:

Yt = Ztθt + ut, (4)

where Zt = XtΞ, Ξ =
[

Ξ1 Ξ2 Ξ3

]
, and θt =

(
θ1,t θ2,t θ3,t

)′
. The coe�cients in (4)

provide measures of world, country and variable speci�c indicators that can be used to assess

the relative contributions to Australia's business cycle. In particular, by setting N1 = 1, Ξ1

to an NGk × 1 unit vector and θ1,t is a scalar, the �rst term: XtΞ1θ1,t, can be interpreted as a

common or world leading indicator (WLI). Similarly, if we were interested in identifying a common

component in small and large economies�as in Section 2.3�then we could set N1 = 2, Ξ1 to be

an appropriately de�ned NGk × 2 vector of ones and zeros and θ1,t as a 2 × 1 vector. Next, by

de�ning Ξ2 as a NGk ×N matrix of zeros with ones on each country's variables in the respective

columns, θ2,t becomes an N × 1 vector that captures commen movements within each country,

implying that the second term: XtΞ2θ2,t, can be interpreted as country-speci�c leading indicators
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(CLI). Since it provides a measure of the business cycle within each country, the CLI is particularly

important in addressing our research question. Finally, by de�ning Ξ3 as a NGk × G matrix of

zeros with ones on each variable in the respective columns, θ3,t is a G × 1 vector that captures

common movements among variables, implying that the �nal term: XtΞ3θ3,t can be interpreted

as a vector of variable speci�c leading indicators (VLI).

To complete the state space speci�cation of the time-varying coe�cient PVAR model, we need

to describe the law of motion for the latent factors (i.e., θi, i = 1, 2, 3) along with their prior

distributions. To this end, we follow Canova et al. (2007) and specify the state equations for dates

t = 2, . . . , T , as random walks:

θt = θt−1 + ηt, ηt ∼ N (0,Ω) . (5)

Economically, the random walk speci�cation is useful because it allows for the possibility of per-

manent shifts in the relationships between macroeconomic variables. Computationally, it has the

advantage of parsimony. One di�erence between our speci�cation here and that in Canova et al.

(2007) is that Ω is a full matrix. This allows for the possibility that the shocks to the time-varying

coe�cients are contemporaneously correlated. For instance, a shock to the world leading indica-

tor may also generate contemporaneous movements in the country-speci�c and variable-speci�c

leading indicators too.

Before continuing, we think that it's useful to illustrate the structure of the above indicators.

To this end, consider a two country, two variable version of the TVP-PVAR model. The associated

factorization in (3) is given by:

βt =



1

1

...

1


θ1t +



ι1 0

ι1 0

0 ι2

0 ι2


θ2t +



ι3 0

0 ι4

ι3 0

0 ι4


θ3t, (6)

where ι1 = [1, 1, 0, 0, 0]′, ι2 = [0, 0, 1, 1, 0]′, ι3 = [1, 0, 1, 0, 0]′, ι4 = [0, 1, 0, 1, 0]′ and 0 are all 5× 1

zero vectors. Note that Ξ1 is a 20 × 1 vector, while Ξ2 and Ξ3 are distinct 20 × 2 matrices.
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Moreover, if we let yit and xit, i = 1, 2, denote the variables for each country (i.e., components of

Yit), then the associated Eq (4) is given by:



y1t

x1t

y2t

x2t


=



z0,t

z0,t

z0,t

z0,t


θ1t +



z1,t 0

z1,t 0

0 z2,t

0 z2,t


θ2t +



z3,t 0

0 z3,t

z4,t 0

0 z4,t


θ3t + ut, (7)

where and z0,t = y1t−1 + x1t−1 + y2t−1 + x2t−1 + 1, z1,t = y1t−1 + x1t−1, z2,t = y2t−1 + x2t−1,

z3,t = y1t−1 + y1t−1 and z4,t = x1t−1 + x2t−1. This structure can then be generalized to our six

country, seven variable framework.

2.2.1. The Common Stochastic Volatility Factor

To allow for the possibility of volatility clustering across macroeconomic shocks, we also include

a common stochastic volatility factor. Following Poon (2018), this is done by specifying:

ut ∼ N
(
0, ehtΣu

)
, (8)

where ut is the disturbance term in (4), Σu is an NG×NG covariance matrix and eht is a latent

stochastic volatility factor which is common to all countries. Consistent with both Poon (2018),

and other recent studies on large Bayesian VARs (e.g. Carriero et al. (2016) and Chan (2018)),

the state equation for the latent log-volatility; ht, is set to be a stationary AR (1) process:

ht = ρht−1 + ξt, ξt ∼ N
(
0, σ2

h

)
, (9)

where |ρ| < 1.

2.2.2. Priors

To complete the model speci�cation we assume the following independent prior distributions:
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Σu ∼ IW (ν1,S1), (10)

Ω ∼ IW (ν2,S2), (11)

σ2
h ∼ IG(ν3, S3), (12)

where IW (ν,S) denotes the inverse-Wishart distribution with degree of freedom parameter ν >

m− 1, and positive de�nite scale matrix S and IG(ν, S) denotes the inverse-Gamma distribution

with shape parameter ν > 0 and scale parameter S > 0.

It is well-known that empirical results from Bayesian estimation can be sensitive to the choice

of hyperparameters in these prior distributions (see, e.g. Amir-Ahmadi et al., 2018, and references

therein). To mitigate this problem, we follow Amir-Ahmadi et al. (2018) and adopt the following

hierarchical modeling approach.7 First, for the measurement covariance matrix, we de�ne S1 =

ν1k
2
1V1, in which we set ν1 = NG, V1 = V ar(Σ̂OLS), where V ar(Σ̂OLS) is the OLS estimate of

the time-invariant model error covariance matrix, and estimate k1 within the MCMC algorithm.

Second, for the covariance of the time-varying coe�cients, we de�ne S2 = ν2k2V2k2, in which we

set ν2 = 40, V2 = V ar(θ̂OLS), where V ar(θ̂OLS) is the OLS estimate of the variance-covariance

matrix of the parameters in the time-invariant model, and k2 is a m × m diagonal matrix in

which the diagonal elements are estimated. Third, for the variance of the log-volatility, we set

ν3 = k23 and S3 = k23V3, in which we set V3 = .01 and estimate k3. Following Amir-Ahmadi et al.

(2018), we draw k1, k2 and k3, with a random walk Metropolis-Hasting step. To that end, let

κ = (k1, diag(k2)
′, k3)

′, where diag(k2) is a column vector consisting of the diagonal elements of

k2, making κ a (m+ 2)× 1 vector. The j-th element of κ, κj, has an independent inverse-Gamma

prior of the form:

7In the online appendix we provide model results with conventional user choices of hyperparameters in time-
varying PVAR models as in Poon (2018). The results suggest that such choices may provide di�erent results
compared to the modern hierarchical prior framework. Speci�cally, the time-varying parameter results under the
hierarchical prior framework are smoother, and therefore show less time variation compared to conventional user
choices. Interestingly, the estimated common stochastic volatility factor is almost identical under both estimation
methods.
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κj ∼ IG(1, 0.1). (13)

Finally, the states in the conditional mean are initialized with θ1 ∼ N (θ0,Vθ) where θ0 and

Vθ are known hyperparameters. We specify a non-informative prior by centering the distribution

at θ0 = 0 and setting a large variance Vθ = 10ING. The states of the conditional variance

are initialized according to the stationary distribution of the �rst-order autoregressive process:

h1 ∼ N
(
h0,

σ2
h

(1−ρ)2

)
, where h0 = 0 is a known hyperparameter and σ2

h and ρ are drawn from their

prior distributions. To ensure stationarity of the states we set ρ ∼ N (µρ, Vp) 1 (|ρ| < 1) where 1 (·)

denotes the indicator function µρ = 0 and Vρ = 1. Estimation details are deferred to Appendix A.1.

2.3. Model Selection

Since our model has many bells and whistles, we �rst conduct a model selection exercise before

taking it to the data. Given our Bayesian estimation framework, this can be accomplished through

a direct comparison of each model's marginal likelihood via the Bayes factor. In what follows we

explain how to compute the Bayes factor for arbitrary models. The results are then presented in

Section 3.1.

LetM := {M1, . . . ,MI} denote the set of models that we wish to compare and Y =
[

Y1 . . . YT

]′
denote the vector of observations over the full sample. The posterior probability of model Mi, de-

noted p (Mi|Y), is calculated using Bayes Theorem:

p (Mi|Y) =
p (Y|Mi) p (Mi)

p (Y)
, (14)

where p (Y|Mi) denotes the marginal (model) likelihood, p (Mi) denote the prior probability of the

i-th model and p (Y) denotes the marginal data density. The marginal likelihood is calculated by

integrating over the parameter space of a given model:

p (Y|Mi) =

ˆ
p (Y|Mi,Θi) p (Θi|Mi) dΘi, (15)

where Θi represents a model-speci�c parameter vector, while p (Y|Θi,Mi) and p (Θi|Mi) respec-

tively denote the associated likelihood and prior density functions. Taking the ratio of the posterior



12

probabilities of two models: Mi and Mj, gives the posterior odds ratio:

p (Mi|Y)

p (Mj|Y)
=
p (Y|Mi) p (Mi)

p (Y|Mj) p (Mj)
. (16)

To avoid any user speci�ed bias in the calculation of the posterior odds, we assign equal prior

probabilities to all models, i.e., p (Mi) = p (Mj) = 1
2
. Under this assumption, (16) can be written

as:

p (Mi|Y)

p (Mj|Y)
=
p (Y|Mi)

p (Y|Mj)
. (17)

The likelihood ratio on the right hand side of (17) is commonly referred to as Bayes factor for

Mi against Mj, and is denoted BFij. Since the Bayes factor is a posterior odds ratio, it takes on

a probabilistic interpretation. For instance, if BFij = 2 then conditional on the data, Mi is twice

as likely as compared to Mj.

To compute the Bayes factor we �rst need to compute the marginal likelihood of each model.

To this end, we follow Geweke and Amisano (2011) and compute the one-step-ahead predictive

likelihood for which details are deferred to Appendix A.2. The reason for using the one-step-ahead

predictive likelihood instead of Chib's marginal likelihood method as in Canova et al. (2007), or the

harmonic mean estimator as in Canova and Ciccarelli (2012), is that recent work has shown that

these methods can be extremely inaccurate. Speci�cally, Chan and Grant (2015) show that the

(modi�ed) harmonic mean as in Gelfand and Dey (1994) can have a substantial �nite sample bias

and can thus lead to inaccurate model selection, while Frühwirth-Schnatter and Wagner (2008)

provide similar inference for Chib's marginal likelihood method (Chib, 1995).

3. Results

Our presentation of the main empirical results is partitioned by three themes. First, in Section

3.1 we present the results from our model selection exercise. Second, in 3.2 we discuss the economic

signi�cance of the model's indicators and common stochastic volatility factor. Finally, in Section

3.3 we address our primary research question surrounding the extent to which international shocks

drive Australian business cycle �uctuations.
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3.1. Model Selection

To commence the analysis we �rst compare the marginal likelihood of the baseline TVP-PVAR

model discussed in Section 2.2 against various alternative speci�cations. First, since it is not

economically relevant when answering our research question, we consider a version of each model

with no variable speci�c indicator�i.e., a TVP-PVAR model with only common and country-

speci�c indicators. Second, instead of using a single common indicator, we consider the case of

regional and country size indicators. These speci�cations enable us to answer the question: �Are

business cycles of the selected countries similar on a regional or country size basis?�. Such a

question is not only interesting in its own right but is also necessary when addressing our main

research question. As discussed in Canova et al. (2007), if regional business cycles deviate from the

rest of the world cycles, then failing to account for this feature � through the inclusion of only one

world indicator � may spuriously generate signi�cant country-speci�c indicators because of omitted

variable bias. The same logic applies to models that omit an indicator designed to capture distinct

cycles for small and large economies. To create the model with regional cycles, we partition the set

of countries by continent (i.e., Asia, Europe, The Americas, and Oceania). Since we already have

country-speci�c indicators for the EU, the US, and Australia, this grouping only requires regional

indicators for Asian countries (i.e., China, Japan, and Korea). Third, to assess the signi�cance

of distinct common behavior between small and large economies, we partition the set of countries

by size, with Australia and Korea constituting the set of small open economies. Finally, given

its extraordinary macroeconomic performance over the sample period, we exclude China from the

rest of the countries when specifying the WLI, and instead treat it as a separate �China-speci�c

indicator� (CSI). The marginal likelihoods of each model against the baseline TVP-PVAR model

are presented in Table 1. Given our relatively small sample period, we follow Canova et al. (2007);

Canova and Ciccarelli (2009); Poon (2018) and mitigate the risk of over-parameterization by using

a lag length of one in each model.
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Table 1: Two times log marginal likelihoods and associated Bayes factors subject to a Gaussian TVP-PVAR
benchmark

Speci�cation 2 logMLi (log) BFi,TV−PV AR
Baseline 1 -5170,6 0
Baseline 2 -4811,8 358,8

Regional Indicator 1 -5155,0 15,6
Regional Indicator 2 -4874,4 296,2

Country Size Indicator 1 -5118,6 52
Country Size Indicator 2 -4927,0 243,6
Baseline 1 with CSI -4869,5 301,1
Baseline 2 with CSI -5154,1 16,5

Note: The baseline model is the TVP-PVAR model discussed in Section 2. Model variant 1 refers
to models with a variable leading indicator and variant 2 refers to models without a variable

leading indicator.

Following Kass and Raftery (1995), a (log-) Bayes factor of between 0 and 2 is �not worth more

than a bare mention�, while values between 2 and 6 provide �positive� evidence, 6 to 10 provide

�strong� evidence and greater than 10 provide �very strong� evidence in favor of Mi against the

baseline model. The results therefore provide very strong evidence that the baseline 2 TVP-PVAR

model, i.e., the one without a variable speci�c leading indicator, is the best. The �nding that the

country size and regional indicator models do not outperform the baseline model, suggests that

neither regional business cycles nor country size business cycles are signi�cant among the nations

in our sample. This result is consistent with Kose et al. (2003) who use a sample of 76 countries to

show that, except for the North American region, regional business cycles do not play an important

role in explaining aggregate world economic volatility. The comparisons of the baseline model with

and without China in the common factor are also clear. While the Baseline 1 model with CSI

is strongly preferred to the associated Baseline 1 model with the CSI in the common factor, the

Baseline 2 model is still strongly preferred by the data. For the remainder of the paper, we will

consequently use the Baseline 2 model in the analysis.

3.2. Signi�cance of the Indicators

While the Bayes factor is a useful model comparison tool, it provides no inference on whether

the model's parameters at each date in the sample period are statistically di�erent from zero.

In this section, we, therefore, examine the world-leading indicator (WLI), the country leading
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indicator (CLI) and the common stochastic volatility factor over the sample period. To start, the

posterior median and 68percent posterior credible set for the WLI are reported in Figure 2.8

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
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-0.2
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0

0.1

0.2

0.3

Figure 2: World Leading Indicator (WLI): Posterior median (blue line) and 68percent credible interval (shaded
area).

Despite being signi�cant from a model comparison perspective, the posterior distribution of

the WLI contains zero for much of the sample. This implies that the indicator is not statistically

di�erent from zero for these parts of the sample. We emphasize that this not imply that there were

no meaningful global economic events within these periods. Instead, it implies that there was no

signi�cant co-movement across all included countries in these periods, at least from a statistical

perspective. For example, notable periods of signi�cant co-movement exist around the 1997/98

Asian Financial Crisis and the 2007/08 Global Financial Crisis. In contrast, there is no signi�cant

co-movement during the �dotcom bubble� in 2000. To further investigate the behavior of each

8We provide a 95percent credible interval for each of the �gures in the online appendix. The results are similar to
those presented here. Interestingly, the common factor becomes less signi�cant when using a two standard deviation
credible set, however, the country-speci�c factors and stochastic volatility factor remain signi�cant.
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country during these periods, we now consider each country's real GDP growth data - presented

in Figure 3.
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Figure 3: country-speci�c real GDP growth and posterior median values of the global indicator and country-speci�c
indicator.

In addition to containing real GDP growth time series for each country, Figure 3 also presents

the global indicator and country-speci�c indicator. Consistent with the analysis in Canova et al.

(2007), the global indicator tends to track low-frequency movements in the business cycles of

the respective nations, while the country-speci�c indicators replicate more high-frequency-type

�uctuations. In particular, while the median of the CLI under predicts those frequencies in the

EU, it generally does an excellent job of tracking the real GDP growth of the respective nations.

This includes the systematic collapse around the Global Financial Crisis along with the recent

slowdown in China's macroeconomic growth since 2015.

Finally, to assess the presence of volatility clustering, Figure 4 presents the posterior median

and 68 percent credible interval over the sample period. We highlight two key points. First, since
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the credible interval is above zero, from a statistical perspective we conclude that the common

stochastic volatility factor is signi�cant across the entire sample. Second, the common stochastic

volatility factor can detect two key periods of global economic turbulence over the past two decades.

The �rst is the 1997 Asian Financial Crisis (AFC) and the second is the recent 2007/08 Global

Financial Crisis (GFC). While the causes and consequences of these two crises are beyond the

scope of this paper (see e.g. Corsetti et al. (1999) for the former and Mian and Su� (2010) for the

latter), a key result of the paper is that the inclusion of the common stochastic volatility factor

within the panel VAR framework allows us to detect important structural instabilities that an

otherwise constant volatility model would fail to detect.
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Figure 4: Common stochastic volatility factor: Posterior median (blue line) and 68 percent credible interval (red
lines).

3.3. Drivers of Australian Business Cycle Fluctuations

In this section, we address our main research objective of quantifying the proportion of busi-

ness cycle �uctuations attributable to international shocks from Australia's �ve largest trading



3.3 Drivers of Australian Business Cycle Fluctuations 18

partners: China, Japan, the EU, Korea and the US. To this end, we use a historical decomposi-

tion. To construct the decomposition, the model's disturbances are orthogonalized using sign and

magnitude restrictions. In the �rst step, we assume that a positive shock from each of Australia's

trading partners results in a non-negative response to Australian real GDP growth. Next, to over-

come issues regarding partial identi�cation, we place a magnitude restriction that each country's

response to its own shock is larger than its response to any other country's shock. In the online

appendix, we provide impulse response functions (IRFs) that exhibit reasonable behavior. For

instance, the largest impacts are idiosyncratic, followed by China and the US, with Korea having

the smallest impact. For robustness, we also report impulse response functions from a simpler

recursive identi�cation strategy in which countries are ordered based on the end of sample trade

volumes. While technically simpler, the results suggest that economic expansion in Korea will

cause an economic contraction in Australia. This result highlights the importance of using the

combination of sign and magnitude restrictions to identify the structural model.9

The resulting historical decomposition in Figure 5 shows that international shocks have had

signi�cant e�ects on the Australian business cycle and that these e�ects have varied over the past

two decades. Particularly notable contributions come from China and Japan, while contributions

from the remaining countries are relatively modest. There is also substantial time variation in the

contribution of each shock. For instance, contributions from the US were mostly positive before

the 2007/08 GFC and have since been negative. Also, Korea had a strong in�uence around the

1997/98 AFC and has had little in�uence in the most recent decade. In line with the mining boom

of the mid-2000s, positive contributions from China are found to have been particularly important

around the 2007/08 GFC and appear to have greatly contributed towards o�setting the negative

impacts from the US. Our results, therefore, support the idea that one of the reasons Australia

avoided recession in this period was at least partially because of strong positive spillovers from

China, however positive contributions from Japan, Korea, and the EU also played an important

role.

While we are the �rst paper to consider contributions from this set of countries, Dungey et al.

9We are extremely grateful to a referee for this suggestion.
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(2014) provide a similar analysis with the EU and the US, while Liu (2010) and Nimark (2009)

independently examine the G7 economies as a single conglomerate. While the results here are not

directly comparable to Liu (2010) and Nimark (2009), we can draw some comparisons with Dungey

et al. (2014). Consistent with their results, we �nd that the EU and the US respectively have

negative and positive contributions during the mid to late 1990s. Also consistent with their result

is the fact that US output shocks to variation in Australian output, had a greater impact than the

EU in this period. In contrast with their results, however, we �nd that the domestic contribution is

mostly positive during this period. This may highlight the fact that our speci�cation also includes

China, which had some signi�cant negative impacts on the Australian economy during the Asian

�nancial crisis.

Figure 5: Historical decomposition of Australian business cycle

While this time variation is important, it is also useful to present the average contribution of

each shock. To this end, we use an indicator function to partition the historical decomposition in

Figure 5 into positive and negative Australian real GDP �uctuations over the sample period. We
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then average the contribution of each country over the sample period (as de�ned by the height of

the bars in Figure 5). The results are presented in Table 2. Since the trade statistics in Figure

1 revealed that the quarterly bilateral trade balance of goods and services between Australia and

each of these countries has substantially changed over our sample period, we also consider sub-

sample results. Speci�cally, we split the sample into three periods: pre-2000, between 2000 and

2007 and 2008 to 2017.

Table 2: Average country-speci�c percentage contributions to positive, negative and aggregate Australian business
cycle �uctuations over the sample period

China US EU Japan Korea Australia
Aggregate

Pre-2000 13 16 6 9 11 44
2000-2007 11 10 11 11 12 45
2008-2017 15 10 10 12 11 42
Full Sample 13 11 10 11 11 44
Positive

Pre-2000 10 21 5 9 13 42
2000-2007 16 10 11 6 7 50
2008-2017 11 5 7 24 20 33
Full Sample 13 10 8 14 14 41
Negative

Pre-2000 28 1 10 14 4 43
2000-2007 3 17 11 19 34 15
2008-2017 14 18 11 9 9 39
Full Sample 13 14 11 14 17 31

To answer our primary research question, we sum the aggregate contributions of all international

shocks to get a measure of the total contribution of international shocks. Based on this measure,

international shocks from Australia's top �ve trading partners are responsible for approximately

half (56 percent) of all Australian business cycle �uctuations over the past two decades. While this

aggregate result is consistent with earlier works by Liu (2010) and Nimark (2009) an important

novelty of our results is that the country-by-country composition of the total is far from stable. For

instance, over the past two decades, the contribution of international shocks stemming from the

US is found to have declined, while contributions from China, Japan, and the EU have increased.

Interestingly, contributions from Korea have been constant over the sample period.
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Another novelty of our results is that the positive and negative contributions of international

shocks on Australia's business cycle di�er across countries. For instance, the large negative con-

tributions from Japan and China in the pre-2000 era are likely due to the Asian Financial Crisis.

In comparison, both nations have had a net positive e�ect on the Australian economy in the most

recent decade. For instance, China's positive contribution increased six percent throughout the

mining boom of the 2000s, while Japan's positive in�uence has been especially strong since the

2007/08 GFC. In contrast, the positive US in�uence has almost halved over the sample period,

while the negative impacts have grown signi�cantly. Taken together, the results highlight the dy-

namic nature of Australia's trade relationships and suggest that Australian policymakers should

be particularly mindful of international economic events when making decisions.

4. Conclusion

Our objective in this paper was to quantify the proportion of Australian business cycle �uctua-

tions that can be attributed to international shocks stemming from its �ve largest trading partners:

China, Japan, the EU, the US and the Republic of Korea. To that end, we used a panel VAR

model, that allowed for time-varying parameters and common stochastic volatility. In the context

of our research question, the advantage of the panel VAR over a traditional VAR framework is

that it allowed us to parsimoniously model intra- and inter-country variable interdependencies as

well as cross-sectional heterogeneity. The common stochastic volatility factor was useful because

it captured various episodes of volatility clustering around the 1997/98 Asian Financial Crisis

and the 2007/08 Global Financial Crisis, which a constant volatility model would fail to detect.

The time-varying parameter dimension of the model was also able to capture the inter-temporal

nature of Australia's various bilateral trade relationships. For instance, the e�ects of aggregate

international shocks stemming from Europe have doubled since the turn of the century, while

those from the US have halved. Our main result was that international shocks are responsible for

around half of all Australian business cycle �uctuations over the sample period. We also found

an important asymmetry in the e�ects of international shocks stemming from each country. For

instance, China's positive contribution increased by six percent throughout the mining boom of

the early 2000s, while the US in�uence has almost halved over the sample period. Taken together,
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the results highlight the dynamic nature of Australia's trade relationships and suggest that Aus-

tralian policymakers should be particularly mindful of international economic events when making

decisions.
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Appendix A. Appendices

Appendix A.1. Markov Chain Monte Carlo Algorithm

In this appendix we present the Markov chain Monte Carlo (MCMC) algorithm used to estimate

the TVP-PVAR model. All alternative models considered in this paper are nested versions of this

model and can therefore be estimated by straightforward modi�cations of the MCMC procedure.

To detail the MCMC procedure, let Y = (Y 1, . . . ,Y T )′, θ = (θ1, . . . ,θT )′, h = (h1, . . . ,hT )′ and

λ = (λ1, . . . , λT )′. The posterior draws are obtained through a six-block Metropolis-within-Gibbs

sampler, that sequentially samples each variable from their respective full conditional distribution:
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1. Draw from p (θ | Y,h,Σu,Ω, ρ, σ
2
h,κ)

2. Draw from p (Σu | Y,θ,h,Ω, ρ, σ2
h,κ)

3. Draw from p (Ω | Y,θ,Σu,h, ρ, σ
2
h,κ)

4. Draw from p (h | Y,θ,Σu,Ω, ρ, σ
2
h,κ)

5. Draw from p (ρ | Y,θ,Σu,h,Ω, σ
2
h,κ)

6. Draw from p (σ2
h | Y,θ,Σu,h,Ω, ρ,κ)

7. Draw from p (κ | Y,θ,Σu,h,Ω, ρ, σ
2
h)

In our analysis, we use 35,000 posterior draws, discarding the �rst 15,000 to allow for convergence

of the Markov chain to its stationary distribution. Under the previously de�ned conjugate priors,

Steps 2, 3 and 6 can be directly sampled from their resulting posterior distributions. Next, following

Canova et al. (2007, 2012), the latent states in Step 1 can be sampled using standard Kalman �lter

algorithms as in Chib and Greenberg (1995). In this paper, we instead follow Poon (2018) and

make use of an e�cient precision sampling algorithm. The increased e�ciency of the algorithm

comes from exploiting the fact that the precision matrices of the latent states are block-banded and

sparse. This means that computational savings can be made in necessary operations when solving

linear systems � such as taking a Cholesky decomposition, matrix multiplication and forward-

backward substitution. Next, Step 4 involves a non-linear non-Gaussian measurement equation,

and the standard linear Kalman �lter can not be applied. To overcome this issue we follow Poon

(2017) and make use of the auxiliary mixture sampler developed by Kim et al. (1998) along with

an e�cient sampling algorithm in Chan and Hsiao (2014). The auxiliary mixture sampler uses a

seven-Gaussian mixture to convert the non-linear measurement equation in the stochastic volatility

model, into a log-linear equation that is conditionally Gaussian. Chan and Hsiao (2014) then

show how to adapt to sample the log-volatilities using an e�cient precision sampling algorithm.

Finally, the full conditional distribution in Steps 5 results in non-standard distribution. Sampling

is therefore achieved through an independence-chain Metropolis-Hastings Algorithm adapted from

the univariate models in Chan and Hsiao (2014). For completeness, we now discuss the derivation

of the conditional posterior distribution of each block in the Gibbs sampler. In each case, we use

the fact that the posterior distribution for a parameter of interest can be obtained by working with
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the kernel of the resulting product from the prior and likelihood functions.

Step 1: Sample from p (θ | Y,h,Σu,Ω, ρ, σ
2
h,κ)

To sample θ, �rst note that (4) can be rewritten as:

Y = Zθ + u, u ∼ N(0,Σ), (A.1)

where Z = diag (Z1, . . . ,ZT ), u =

[
u
′
1 u

′
2 . . . u

′
T

]′
,and Σ = diag

(
eh1Σu, . . . , e

hT Σu

)
. By a

change of variable:

Y ∼ N (Zθ,Σ) . (A.2)

Next, rewrite (5) as:

Hθθ = α̃θ + η, η ∼ N (0,Sθ) , (A.3)

where α̃θ =
[
θ
′

0 0 . . . 0

]
, η = (η1, . . . ,ηT )′, Sθ = diag(Vθ,Ω, . . . ,Ω) and Hθ is a Tm× Tm

block diagonal matrix, where m = N1 + N + G, with Im on the main diagonal, −Im on the

lower diagonal and 0m elsewhere. Since Hθ is a lower triangular matrix with ones along the main

diagonal, |Hθ| = 1, implying that it is invertible. Using this result, (A.3) can be rewritten as:

θ = αθ + H−1η, (A.4)

where αθ = H−1θ θ̃0. By a change of variable:

θ|Ω ∼ N
(
αθ,

(
H
′

θS
−1
θ Hθ

)−1)
. (A.5)

Combining (A.2) and (A.5) gives the conditional posterior distribution:

p
(
θ|Y ,h,Σu,Ω, ρ, σ

2
h

)
∝ p

(
Y |θ,h,Σu,Ω, ρ, σ

2
h

)
p (θ|Ω)

∝ exp
{
−1

2

[
(Y −Zθ) Σ−1 (Y −Zθ)′ + (θ −αθ)

(
H
′

θS
−1
θ Hθ

)
(θ −αθ)′

]}
∝ exp

{
−1

2

[
θ
(
Z ′Σ−1Z

)
θ′ − 2θ′

(
Z ′Σ−1Y +H

′

θS
−1
θ Hθαθ

)]}

Thus, by standard linear regression results (Kroese et al., 2014, p.237-240):
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(
θ | Y,h,Σu,Ω, ρ, σ

2
h,κ

)
∼ N

(
θ̂,D

−1

β

)
, (A.6)

where θ̂ = D
−1

β

(
Z′Σ−1Y + H

′
θS
−1
θ Hθαθ

)
and Dβ = Z′Σ−1Z + H

′
θS
−1
θ Hθ. Following Poon (2018),

sampling from this distribution is conducted with the precision sampling algorithm in Chan and

Jeliazkov (2009).

Step 2: Sample from p (Σu | Y,θ,h,Ω, ρ, σ2
h,κ)

To sample, Σu, combine the inverse-Wishart prior distribution with the Gaussian likelihood

function. Since this is a conjugate distribution it is easy to show that:

(
Σu|Y,θ,h, σ2

h,Ω, ρ,κ
)
∼ IW

(
ν2 + T,

T∑
t=1

(Yt − Ztθt)(Yt − Ztθt)
′

eht
+ ν2k

2
2V2

)
. (A.7)

Step 3: Sample from p (Ω | Y,θ,Σu,h, ρ, σ
2
h,κ)

To sample Ω, we combine the inverse-Wishart prior distribution with the Gaussian likelihood

function to get

(
Ω|Y,θ,h, σ2

h,Σu, ρ,κ
)
∼ IW (ν1 + T − 1,Hθθθ

′H′θ + ν1k1V1k1) . (A.8)

Step 4: Sample from p (h | Y,θ,Σu,Ω, ρ, σ
2
h,κ)

To sample h, we follow Poon (2018) and apply the auxiliary mixture sampler from Kim et al.

(1998) along with the precision sampler from Chan and Hsiao (2014). To this end, note that the

measurement equation in (4) can be written as:

P−1 (Yt − Ztθt) = e
1
2
htεt, εt ∼ N (0, In) , (A.9)

where P is the (lower) Cholesky factor of Σu. Squaring both sides of (A.9) and taking the (natural)

logarithm gives the log-linear equation:

y∗t = ιNGht + ε∗t , (A.10)
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where y∗t = ln
((
P−1 (Yt −XtΞθt)

)2)
, ιNG is aNG×1 unit vector and ε∗t =

[
ln
(
ε21,t

)
. . . ln

(
ε2n,t

) ]′
.

In practice, it is common to set some small constant; c, to y∗t to avoid numerical problems when

y∗t is close to zero � in this paper, we set c = 0.0001. Note that the resulting disturbance term

in (A.10) is no longer Gaussian distributed but instead follows a logχ2
1 distribution. This means

that despite being linear in the log-volatility term, standard linear Gaussian state space algorithms

can not be directly applied. To overcome this di�culty, Kim et al. (1998) show that the moments

of the logχ2
1 distribution can be well approximated through a seven Gaussian mixture, in which

an auxiliary random variable, denoted st, serves as the mixture component indicator � hence the

name of the algorithm. That is:

f (ε∗t ) ≈
7∑
j=1

pjfN
(
ε∗t |µj − 1.2704, σ2

j

)
, (A.11)

where pj = P (st = j), j = 1, . . . , 7, fN (·|µ, σ2) is a Gaussian density with mean µ and variance

σ2 and the values of the probabilities and moments associated with each Gaussian distribution are

given in Table A.3.

Table A.3: A seven component Gaussian mixture for approximation the log−χ2
1 distribution

Component pj µj σ2
j

1 0.00730 -10.12999 5.79596
2 0.10556 -3.97281 2.61369
3 0.00002 -8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 -1.08819 1.26261
Source: Kim et al. (1998, p. 371)

In summary, given the vector of mixture component indicators; s =
[
s1 . . . sT

]′
, and

parameter values in Table A.3, the state space model in (A.10) and (9) is linear and conditionally

Gaussian, thus standard sampling methods can be used. Instead of adopting traditional Kalman

�lter based algorithms, we follow Poon (2018) and implement the e�cient precision sampling based

algorithm in Chan and Jeliazkov (2009); Chan and Hsiao (2014).

To summarize, de�ne y∗ = (y∗1, . . . ,y
∗
T )′, h = (h1, ..., hT )′ is a T × 1 and ε∗ = (ε∗1, . . . ε

∗
t )
′.
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Stacking the measurement equation in (A.10) over dates t = 1, . . . , T gives:

y∗ = Xhh + ε∗, (A.12)

where Xh = IT⊗ιNG and ε∗ ∼ N(ds,Σy∗) where ds = (µs1 , . . . ,µsT )′ and Σy∗ = diag(σs1 , . . . ,σsT )

in which µst =
(
µs1t − 1.2704, . . . , µsnt − 1.2704

)
and σst =

(
σ2
s1t
, . . . , σ2

snt

)
. Thus, by a change of

variable:

(y∗i |si,hi) ∼ N
(
hi + di,Σy∗i

)
. (A.13)

To complete the state space representation, stack the state equation for the log stochastic

volatility factor in (9) over all dates t = 1, . . . , T to get:

h = αh + H−1h ξ, ξ ∼ N(0,Φ), (A.14)

where αh = H−1h

(
h0 0 . . . 0

)′
, Φ = diag

(
σ2
h

(1−ρ2) , σ
2
h, . . . , σ

2
h

)
and:

Hh =



1 0 0 · · · 0

−ρ 1 0 · · · ...

0 −ρ 1
. . . 0

...
. . . . . . 0

0 · · · 0 −ρ 1


.

By a change of variable:

(h | Φ, h0) ∼ N
(
αh,

(
H′hΦ

−1Hh

)−1)
. (A.15)

Finally, combining (A.13) and (A.15) gives the conditional posterior distribution:

(
h|Y,θ,Ω,Σu, σ

2
h, ρ,κ

)
∼ N

(
ĥ,K−1h

)
, (A.16)

where ĥ = K−1h (H
′
hΦ
−1H

′
hαh + X

′
hΣ
−1
y∗i

(y∗ − ds)) and Kh = H
′
hΦ
−1Hh + X

′
hΣ
−1
y∗i

Xh. As in step 1
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sampling from this distribution is conducted with the precision sampling algorithm in Chan and

Jeliazkov (2009).

Step 5: Sample from p (ρ | Y,θ,Σu,h,Ω, σ
2
h,κ)

To sample ρ, �rst note that combining the prior with (9) gives:

(
ρ|y,θ,Ω,h, σ2

h,Σu,κ
)
∝ p(ρ)g(ρ)exp

{
− 1

2σ2
h

T∑
t=2

(ht − ρht−1)2
}
, (A.17)

where g(ρ) = (1 − ρ2)
1
2 exp(− 1

2σ2
h
(1 − ρ2)(h1 − h0)

2) and p(ρ) is a truncated normal. Since this

conditional distribution is non-standard, we follow Chan and Hsiao (2014) and implement an

independence-chain Metropolis-Hastings step with a truncated normal distribution. More precisely,

ρ ∼ N(ρ̂, Dρ)1(|ρ| < 1), where Dρ =
(
Vρ +X ′ρXρ/σ

2
h

)−1
and ρ̂ = Dρ

(
V −1ρ µρ +X ′ρzρ/σ

2
h

)
, in

which Xρ = (h1, ..., hT−1)
′ and zρ = (h2, ..., hT )′. Then, given the current draw ρd, a proposal

draw ρc is accepted with probability min
{

1, g(ρ
c)

g(ρd)

}
, otherwise the Markov chain stays at the current

draw.

Step 6: Sample from p (σ2
h | Y,θ,Σu,h,Ω, ρ,κ)

To sample σ2
h, we combine the inverse-Gamma prior distribution with the Gaussian likelihood

function to get

(σ2
h|Y,θ,Ω,h, σ2

h,Σu, ρ,κ) ∼ IG(k23 +
T − 1

2
,+[(1−ρ)2(h1)

2 +
T∑
t=2

(ht−ρht−1)2 +k23V3]/2). (A.18)

Step 7: Sample from p (κ | Y,θ,Σu,h,Ω, ρ, σ
2
h)

Finally, to sample the hyperparameters in κ we follow Amir-Ahmadi et al. (2018) and employ

a version of the (Gaussian) random walk Metropolis-Hastings algorithm for the proposal variance

in a burn-in phase. In what follows, we describe the sampling procedure for a generic scaling factor

κX where X ∈ {Σu,Ω, σ
2
h}.10 Starting from an initial condition in which we set κ0

X to be the unit

vector, the details are as follows:

1. At step i, take a candidate draw κcX from N
(
κi−1X , σ2

κX
I
)
where σ2

κX
is a tuning parameter

10Note that κX will be a scalar when associated withΣu or σ2
h and a vector when associated with Ω.
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which is changed in the burn-in phase to achieve a target acceptance rate.11

2. Calculate the acceptance probability pi =
{

1,
p〈X|κc

X〉p(κc
X)

p〈X|κi−1
X 〉p(κi−1

X )

}
3. Accept the candidate draw by setting κiX = κcX with probability pi. Otherwise set κiX = κi−1X .

Appendix A.2. Model Comparison

In this appendix we discuss how to compute the marginal likelihood using the one-step-ahead

predictive likelihood. To this end, let Y o
t denote a vector of observed variables up to date t.

Following Geweke and Amisano (2011), the one step ahead predictive likelihood for model Mi,

given data up to date t− 1, is given by:

p
(
Yt|Yo

t−1,Mi

)
=

ˆ
p
(
Yt,Θi|Yo

t−1,Mi

)
dΘi, (A.19)

=

ˆ
p
(
Yt|Yo

t−1,Mi,Θi

)
p (Θi|Mi) dΘi (A.20)

where t = 1 is evaluated by:

p (Yo
1|Mi) =

ˆ
p (Yo

1) p (Θi|Mi) dΘi, (A.21)

which is entirely driven by the marginal data density: p (Yo
1). Given this value, we then approxi-

mate p
(
Yt|Yo

t−1,Mi

)
for dates t = 2, . . . , T by the Monte Carlo average:

̂p (Yt|Yo
t−1,Mi) = R−1

R∑
r=1

p
(
Yt|Yo

t−1,Mi,Θ
(r)
i,t−1

)
, (A.22)

where
{
Θ

(r)
i,t−1

}R
r=1

is a sequence of draws from then Metropolis-Hastings within Gibbs sampler

described in Appendix A.1.

Finally, to see how the predictive likelihood is related to the Bayes factor, note that the marginal

11We set the tuning parameter σκX
= 0.001 and we found that the acceptance ratio is between 80-90 percent for

each of the models used in the paper.
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likelihood of the model Mi is given by:

p (Yo
T |Mi) =

T∏
t=1

̂p (Yt|Yo
t−1,Mi). (A.23)

Thus, the Bayes factor between models Mi and Mj is:

BFi,j =
T∏
t=1

̂p (Yt|Yo
t−1,Mi)̂p (Yt|Yo
t−1,Mj)

. (A.24)
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