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Abstract

This paper presents an original approach for a practical workload balancing problem on non-identical pa-
rallel machines in manufacturing systems. After showing the limitations of an initial model, in particular
to support relevant decisions, the min-max fairness workload balancing problem is motivated and positi-
oned in the literature. The Iterated Min-Max (IMM) procedure is then presented, with its properties, and
illustrated. The IMM consists in solving a succession of linear programs using information from dual
variables obtained at each iteration. Computational results on industrial instances show the relevance of
the approach when compared to the initial model. The current use of the IMM procedure in an industrial
tool is discussed.
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1. Introduction

An important problem in many systems with multiple resources, such as manufacturing systems that
are considered in this paper, is the balancing of the workload, i.e. product quantities to process or tasks
to perform, on the various resources. This is in particular critical in capital intensive industries, such
as the semiconductor manufacturing industry, where machine usage should be maximized. Moreover,
in semiconductor manufacturing systems, machines in the same workshop often have different qualifi-
cations (Johnzén et al., 2011; Rowshannahad et al., 2015), i.e. not all products can be processed on all
machines or equivalently not all machines are qualified (also called eligible in the literature) to process
all products. Moreover, the process time per unit of a given product might differ from one qualified ma-
chine to another. In this case, the optimal allocation of product quantities to machines (called workload



balancing in this paper) for a given criterion is usually not a trivial problem.
The resolution of workload balancing problems have multiple purposes in production and capacity

planning (see for instance Mönch et al. (2018)). In particular, optimizing the workload balance helps to
define bottleneck (often also called critical) machines, that are usually defined as the machines that are
the most loaded. Process improvements should then prioritize focusing on these machines. However,
it is also important to characterize the machines that are the less loaded, since they should be made
eligible for additional products. In the literature, the focus is often only on minimizing the maximum
workload on any machine. As shown in an example in Section 3.2, this may lead to wrong decisions
by capacity planners. Because this was observed in an industrial planning tool, an alternative approach
has been developed and implemented which is described and discussed in this paper. We are considering
workload balancing at tactical level, i.e. continuous product quantities can be assigned to non-identical
parallel machines. Also, since hundreds of workload balancing problems are solved by the proposed
approach in each run of the industrial planning tool, solutions times are of critical importance. Note that
the identical machine case is trivial since a perfect workload balancing (i.e. where all machines have the
same workload) can always be found.

This paper is structured as follows. The workload balancing problem in manufacturing systems we
are considering is defined and motivated in Section 2. Then, the model initially used in the industrial
planning tool to solve the problem, as well as its limits, is presented in Section 3. Section 4 recalls the
concept of Min-Max Fairness with the associated literature, and presents its application to our workload
balancing problem. Section 5 introduces our Iterated Min-Max (IMM) procedure and, based on the work
of Nace and Orlin (2007), shows that it determines solutions with the expected properties. Computational
results on industrial instances are discussed in Section 6. Conclusions are drawn, with a short discussion
on how the the IMM procedure is used in practice, in Section 7. Future research directions are also
provided.

2. Problem Definition

Let us consider a set of products P = {1, . . . ,P}, and a quantity qp ∈ R+ for each product p ∈P ,
to be processed on a set of non-identical parallel machines M = {1, . . . ,M}. The quantity of a product
can be split on multiple machines. Moreover, the machines on which product p is processed have to be
selected in a subset of machines Mp⊆M , with a strictly positive process time ap,m (defined in time units
per unit of product) on machine m ∈Mp. Each machine m has a capacity cm (in time units) also strictly
positive. Let Xp,m be the quantity of product p that is allocated to machine m ∈Mp. The workload of
machine m is defined as:

Wm =
∑p∈P; m∈Mp ap,mXp,m

cm
(1)

Note that the workload Wm takes the capacity of machine m into account. Let us define X =

{Xp,m; ∀(p,m) ∈P ×Mp} as a workload balancing solution. The goal is therefore to determine the
quantity of each product to process on each machine, in order to optimize a certain objective. The
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problem (P) can be modeled as follows:

min f (X) (2)

∑
m∈Mp

Xp,m = qp p = 1, . . . ,P (3)

Xp,m ∈ R+ p = 1, . . . ,P, m = 1, . . . ,Mp (4)

The objective function f (.) takes a balancing solution as input. Constraints (3) ensure that, for each
product p, the whole quantity qp is allocated to the machines in Mp. Preemption is allowed since
variables Xp,m are continuous. Note that f (.) depends on the production criteria that are optimized. Also,
machine capacities are considered in the workload definition but not as constraints. Hence, the balancing
solution may induce a workload for a machine that is larger than its capacity. In this case, the workload
is larger than 1 and the machine is considered as overloaded.

Note that it is important for us that the time to solve (P) is very small, since hundreds of problems
(see experiments with industrial data in Section 6) are solved for each run of our industrial production
planning tool that is used daily in a semiconductor manufacturing facility (with hundreds of products
to be processed on hundreds of machines). This is why the function f (.) is usually linear and decision
variables Xp,m are in R+.

3. Initial Model and its Limitations

3.1. Initial Model

In the model initially implemented in our planning tool, three positive weights (α,β ,γ) are used to
balance between three criteria in the following objective function fc(.) which is used in (P):

fc(X) = α max
m∈M

Wm−β min
m∈M

Wm + γ ∑
m∈Mp

cmWm

= α max
m∈M

∑p∈P ap,mXp,m

cm
−β min

m∈M

∑p∈P ap,mXp,m

cm
+ γ ∑

p∈P
∑

m∈Mp

ap,mXp,m (5)

This objective function is rather natural in manufacturing systems. The first and primary criterion
aims at minimizing the workload of the most loaded machines, i.e. of the bottleneck machines. The
second criterion aims at maximizing the workload of the less loaded machines. Combining these two
criteria helps to reduce the workload variation between machines, and thus indirectly to better balance the
workload among all machines. Finally, the third criterion tries to reduce the total process time among all
machines, in order to avoid selecting solutions that increase the process times on machines by selecting
slower machines for products. This is particular true in semiconductor manufacturing where, in some
workshops, a machine can be faster to process one unit of product 1 than one unit of product 2, while the
opposite is true for another machine.

In our industrial case, weights are chosen so that a lexicographical order is satisfied from the first
criterion to the third criterion, i.e. α >> β >> γ . Minimizing the workload of bottleneck machines is
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Figure 1: Two "equivalent" workload balancing solutions

considered to have the highest priority, followed by maximizing the minimum workload on machines,
and finally minimizing the total process time. Another realistic lexicographical order would be to prio-
ritize the total process time over the minimum workload on machines, i.e. α >> γ >> β . This case is
also analyzed in the numerical experiments of Section 6.

3.2. Limitations on an illustrative example

Let us illustrate on an example the type of questions we would like to answer, and the limitations of
the initial model. It will also be used later to explain the mechanism of our new approach. This instance is
composed of 5 machines and 4 products A, B, C and D. To simplify the problem, let us consider identical
process times (ap,m = 1 ∀(p,m)∈P×Mp) and capacities (cm = 8 ∀m∈Mp). Besides, let us set weights
(α,β ,γ) = (1,1,0.01) to normalize the problem. Quantities for each product are {qA,qB,qC,qD} =
{10,12,4,4}. All machines cannot process all products. Machines 4 and 5 can only process product D,
machines 2 and 3 can process products B, C and D, while any product can be processed by machine 1.

Figure 1 presents two possible workload balancing solutions. The two solutions only differ in the
allocation of product B on machines 2 and 3. In solution (a), machine 2 takes 10 units of product B
for a total process time of 10 hours, and therefore is balanced with machine 1. In contrast, in solution
(b), 2 units of product B are moved from machine 2 to machine 3 to balance the workload between
machines 2 and 3. The two solutions lead to the same value for the objective function. Indeed, in both
cases, the maximum workload is set by machine 1 which, as it is the only one that can process product
A, has a workload which is equal to (aA,1XA,1)/c1 = (1× 10)/8 = 1.25. On the opposite, machines 4
and 5 are only qualified to process product D. Each machine takes 2 units of product D, which leads to
the minimal workload, which is equal to (1× 2)/8 = 0.25. Finally, as process times are identical for
all machines, the second term does not depend on the allocated quantities and is equal to (qA + qB +

qC + qD) = (10+ 12+ 4+ 4) = 30. Therefore, the objective function of both solutions (a) and (b) is
equal to fc = α×1.25+β ×0.25+ γ×30 = 1.80. However, the two solutions do not provide the same
information for the user and solution (b) provides more relevant information than solution (a).

Indeed, based on the allocation of solution (a), machines 1 and 2 appear to have a workload of 1.25,
meaning that these machines are critical and should be analyzed. Based on this information, capacity
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planners would be tempted to take measures such as, for instance, delaying preventive maintenance ope-
rations to provide additional capacity to the temporarily overloaded resource. However, solution (b)
shows that only machine 1 is really critical as machine 2 can be balanced with machine 3. Therefore,
providing additional capacity to machine 2 would be an unnecessary and costly measure. On the oppo-
site, because the workload of machine 3 in solution (a) is equal to 0.75, capacity planners would conclude
that machine 3 does not require any specific focus, and even that a productivity loss (i.e a decrease of
the capacity parameter cm) for machine 3 would not be critical. However, solution (b) underlines the fact
that machine 3 is actually important because it can be balanced with machine 2 since both machines are
qualified to process product B. Hence, a productivity loss on machine 3 would lead to a workload larger
than 1 for both machines 2 and 3, meaning that they would be overloaded and thus not be able to handle
the production plan.

This example illustrates the multiple risks of inaccurate forecasting of critical or under-loaded ma-
chines. Unnecessary decisions might be taken and the importance of some machines might be underes-
timated. Furthermore, some workload balancing solutions might not point out the relevant interactions
between machines such as solution (a) for machines 2 and 3. These problems were observed in the soluti-
ons provided by our industrial production planning tool when the initial objective function (5) was used.
When analyzing in detail the results, planners were sometimes complaining that they did not understand
the proposed workload on some machines.

To differentiate solutions, adding new terms in the objective function is not necessarily a good al-
ternative, in particular because the use of a linear objective function combining different criteria leads
to difficulties in the tuning of weights and loss of clarity. This is why we decided to develop a new and
more relevant approach.

4. The Min-Max Fairness Workload Balancing (MMFWB) Problem

In this section, let us introduce the Min-Max Fairness (MMF) problem, well studied, in particular
in various areas of networking, and then explain the interest to extend this problem to our workload
balancing problem for manufacturing systems by giving several properties on the provided solution.

4.1. The Min-Max Fairness Problem
Generally speaking, min-max fairness is applicable in situations where it is desirable to achieve an

equitable distribution of some resources, shared by competing demands (Nace and Pióro, 2008). Intui-
tively, a min-max fair (respectively max-min fair) solution is a solution where decreasing (respectively
increasing) the resources allocated to a demand necessarily leads to an increase (respectively decrease) of
the resources allocated to already larger (respectively lower) or equally allocated demands. Note that the
min-max (respectively max-min) fairness problem was originally defined as the lexicographic minimax
(respectively maximin) problem and some papers use this formulation. Although these terms are only
equivalent in case of convex attainable sets (Radunovic and Le Boudec, 2007), as it is the case for our
problem, we refer in the remainder of this section both to research on min-max fairness and lexicographic
minimax problems. Besides, in the remainder of this paper, we use the acronym MMF to mention both
Min-Max and Max-Min Fair problems.

The concept of MMF has been largely studied in a variety of settings, notably for network and com-
munication problems (Bertsekas et al., 1987; Radunovic and Le Boudec, 2007; Nace and Pióro, 2008;
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Yaakob and Khalil, 2016; Sadeghi et al., 2018; Zhu et al., 2018). For more information on applications
of MMF in network problems, readers are referred to Ogryczak et al. (2014). The concept of MMF has
also been applied in other domains such as public services with fair water resource allocation (Wang
et al., 2008) or in air transport problems as in Murça (2018) for fair air traffic flow management. More
recently, Qi (2016) developed a new performance measure for assignment design problems in the context
of outpatient clinics to describe dissatisfaction of both doctors and patients. She then uses a lexicographi-
cal minimax approach to improve the design of appointment systems. In a discrete optimization setting,
workload balancing has also been considered in the health care literature, see for instance Bredström
and Rönnqvist (2008), Lanzarone and Matta (2014) and Yalçındağ et al. (2016). Two recent literature
reviews on patient assignment problems in home health care are proposed in Cissé et al. (2017) and Fikar
and Hirsch (2017).

Considering applications to manufacturing problems, Luss and Smith (1986) develop a polynomial
time algorithm which can be used in production planning to balance the weighted deviation from given
product demands. Tang (1988) studies the application of the min-max fair approach to solve Material
Requirement Planning (MRP) problems to minimize the penalty cost when demands are not satisfied. He
also presents an application of max-min fairness to decide when to produce to maximize the time between
two production triggers. King (1989) presents an industrial application of the algorithm of Luss and
Smith (1986). He uses the lexicographic minimization procedure to develop a decision support tool to
help planners to choose alternative production plans when the initial production plan becomes unfeasible
due to variability in the manufacturing facility such as machine breakdowns or changes in customer
orders. The original algorithm is extended to a multi-period production problem, and a heuristic is used
to determine integer production values. Luss (1999) reviews a variety of resource allocation problems
using the lexicographic minimax approach. He notably underlines the interest to use this method in
production planning to fairly allocate component to products in high-tech product manufacturing. More
recently and at a higher scale, Liu and Papageorgiou (2013) exploit the lexicographic minimax method to
solve a multi-objective supply chain optimization problem. Then, Liu and Papageorgiou (2018) also use
a MMF approach to fairly balance the profit among actors of a three-echelon supply chain using transfer
prices. To the best of our knowledge, there is no reference to applications of min-max fairness that deal
with operational capacity planning and workload balancing on machines in manufacturing systems.

Several definitions have been proposed to characterize a min-max fair solution (Nace and Pióro,
2008; Radunovic and Le Boudec, 2007). The latter is used for the definition of a min-max fair solution
below. Let us consider a set χ ⊂ RN (N ∈ N) and a vector x ∈ χ . The vector x is said to be min-max fair
if and only if:

∀ y ∈ χ ∃s ∈ (1, . . . ,N) ys < xs =⇒ ∃ t ∈ (1, . . . ,N) s.t. yt > xt ≥ xs (6)

This means that decreasing xs necessarily leads to the increase of another element xt that is equal or
larger.

To connect this definition with our workload balancing problem, let us consider x∈RM as a workload
balancing solution where each component xm is the workload on machine m and χ ⊂ RM is the set of all
feasible allocations. Then, x is a min-max fair solution if it is not possible to reduce the workload on a
machine without increasing the workload of another machine already more or equally loaded.
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Let us define the search of the min-max fair solution for our workload balancing problem as the
Min-Max Fair Workload Balancing (MMFWB) problem and define an optimal solution of this problem
as a min-max fair workload balancing solution.

Considering again the example in Figure 1, the workload balancing proposed in solution (a) is not a
MMFWB solution. Indeed, it is possible to decrease the workload of machine 2 without increasing the
workload of machine 1. This re-allocation only increases the workload of machine 3 which is initially
less loaded. In contrast, it is not possible to perform such a workload reduction in solution (b). In fact,
this solution is min-max fair, which is proved in section 5.

4.2. Properties of MMFWB Solutions
Some properties of MMFWB solutions are presented that can be derived from the structure of min-

max fair solutions.

4.2.1. Detection of critical machines
Let us recall the definition used to characterize critical machines.

Definition 4.1. A machine is critical if it is impossible to reduce its workload without increasing the
workload of another machine with a larger than or equal workload.

Thus, let us state the following proposition.

Proposition 1. Any machine in a MMFWB solution is critical.

This property is directly derived from the definition of a min-max fair solution, as it is impossible
to reduce one component without increasing another component that is already larger or equal. Thus,
in a MMFWB solution, for any machine, it is not possible to reduce its workload without increasing
the workload of another machine with an equivalent or larger workload. Because of this property, ca-
pacity planners can determine critical machines (and specifically those with the largest workload) more
accurately, and thus better plan preventive actions.

4.2.2. Grouping of balanced machines
Let us present a property of machines with equal workload in a MMFWB solution.

Proposition 2. In a MMFWB solution, if two machines m1 and m2 are processing at least one common
product, i.e. ∃p such that Xp,m1 > 0 and Xp,m2 > 0, then they have the same workload, i.e. Wm1 =
∑p∈P; m1∈Mp ap,m1Xp,m1

cm1
=Wm2 =

∑p∈P; m2∈Mp ap,m2Xp,m2

cm2
.

The proof can be conducted by contradiction. Consider a MMFWB solution with two machines m1
and m2 with different workloads, that are processing at least one common product p. Let us assume that
machine m1 is more loaded than machine m2. It is always possible to transfer the workload of m1 to the
workload of m2 by reducing Xp,m1 and increasing Xp,m2. Thus, it is possible to reduce the workload of a
machine without increasing the workload of a machine with a workload which is larger or equal, which
contradicts the basic property of MMFWB solutions.

Because of Proposition 2, in a MMFWB solution, there is no unbalance between machines where
a workload can be transferred from one machine to another machine with a smaller workload. In the
illustrative example of Section 3.2, solution (a) in Figure 1 is not a MMFWB solution whereas solution
(b) is a MMFWB solution. Providing MMFWB solutions gives more confidence to capacity planners.
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4.2.3. Existence and Uniqueness
In their book, Bertsekas et al. (1987) propose an important property for the min-max fair vector.

Lemma 1. If a min-max fair vector exists on a given set, then it is unique.

Then, in addition to provide a general framework to define Max-Min Fair problems, Radunovic
and Le Boudec (2007) also underline a sufficient condition for the existence a min-max fair vector. A
simplified version is given below.

Lemma 2. If the set χ ⊂ RN is convex and compact, then a min-max fair vector exists on χ .

Using these two properties, it is possible to write the following proposition.

Proposition 3. For a given instance of the MMFWB problem, there exists a MMFWB solution and it is
unique.

Let us sketch the proof which is available in the appendix. The key is to prove that, for any instance
of the problem, the set of possible allocations χ is always compact and convex. This is based on the
fact that the set of feasible solutions ψ of the problem (P) is compact and convex, and by using a linear
application φ as χ = φ(ψ). Because of the linearity properties of φ , it is possible to conclude that the
set of possible allocations χ is compact and convex, and thus that there always exists a unique optimal
solution for the MMFWB problem.

The important result in Proposition 3 guarantees that, for any MMFWB problem, it is possible to
find a min-max fair solution that satisfies the properties presented in this section. It also guarantees that
the MMFWB solution is unique, in contrast to the initial model in Section 3 for which multiple solutions
are optimal.

5. The Iterated Min-Max (IMM) procedure

After motivating the relevance of min-max fair solutions and showing their properties for the wor-
kload balancing problem, let us now introduce our method to determine MMFWB solutions. The Iterated
Min-Max (IMM) procedure is based on the iterative resolution of a constrained version of the MMFWB
problem as a linear program and on the use of the complementary slackness theorem, which is an impor-
tant property of the Linear Programming theory. Based on Nace and Orlin (2007), we prove that the IMM
procedure determines the optimal solution of the MMFWB problem. Then, our illustrative example is
used again.

5.1. Description

To introduce the IMM procedure, let us rewrite the MMFWB problem. Let B ⊆M be a subset
of machines, and let γ = {γ1,γ2, . . . ,γm} ∈ RM be a given workload vector where γm is the workload
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assigned to machine m. Then, the linear program P(M,B,γ) is written:

min S (7)

s.c. Wm ≤ S ∀m ∈M \B (8)

Wm = γm ∀m ∈B (9)

Wm = ∑
p∈P; m∈Mp

ap,m

cm
Xp,m ∀m ∈M (10)

∑
m∈Mp

Xp,m = qp ∀p ∈P (11)

Xp,m ≥ 0 ∀p ∈P, ∀m ∈Mp (12)

Constraints (11) and (12) are respectively the quantity and the non-negativity constraints. The goal is
to minimize the workload of a subset of machines, while the workloads of the other machines are fixed.
Variable S is the workload of the most loaded machines in M \B and is determined through Constraints
(8). Note that S is positive since variables Wm are positive. Constraints (9) impose the workload for
machines in B. Constraints (10) define how the workload is allocated to the machines.

At the beginning of the IMM procedure, B = /0 and the maximum workload of all machines is
minimized. Then the workload vector γ is iteratively constructed so that, at the end of the procedure, the
workload assigned to each machine in γ is the workload in the MMFWB solution. Let us define λm as the
dual variable associated to Constraint (8) for machine m. Algorithm 1 summarizes the IMM procedure.

Algorithm 1: The IMM Procedure
Data: An instance with M machines and P products
Result: The MMFWB solution γ

B := /0, γm = 0 ∀m ∈M , S∗ = 0;
while B 6= M do

Solve P(M ,B,γ) and determine S∗ for m ∈M \B do
if λm < 0 then

γm := S∗;
end

end
Set B := B∪{m ∈M \B;λm > 0};

end

The algorithm takes as input an instance of the workload balancing problem with a set of M machines
and P products. Then, the linear program P(M ,B,γ) is solved to determine the optimal objective
function S∗. Next, Constraints (8) that are binding are checked, i.e. corresponding to the machines that
limit S∗ to its current value. This is done by looking at the dual values λ of Constraints (8), and by using
the complementary slackness theorem which states that: For an optimal solution, either the slack variable
or the dual variable is equal to 0. Thus, if λm < 0, then Constraint (8) associated to machine m is binding,
i.e. it is not possible to reduce the workload of m without degrading S∗ by increasing the workload of
other machines in M \B. Once Constraints (8) that are binding are identified, the workload of the
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corresponding machines is set to the current optimal objective function S∗ (moving from Constraints (8)
to Constraints (9)), and the workload vector γ is updated. Hence, the linear program at the next iteration
minimizes the maximum workload on the remaining machines while preventing the increase of the fixed
workloads of machines in B. The procedure is repeated until the workloads of all machines have been
fixed. Note that, when solving P(M ,B,γ), S∗ is such that S∗ < γm, ∀m ∈B.

Note that the Max-Min Fairness Workload Balancing problem, which can be seen as a dual version of
the MMFWB, can be solved by adapting the IMM procedure, which then becomes the Iterated Max-Min
procedure. More precisely, in Algorithm 1, the linear program P(M,B,γ) is modified by maximizing S
in (7) and replacing (8) by Wm ≥ S.

5.2. Proof of correctness

Various papers in the literature on MMF problems (or their lexicographic equivalent) have proposed
solution methods. Luss and Smith (1986) and Tang (1988) propose polynomial time algorithms to solve
special production planning problems. Other authors use the resolution of linear programs iteratively.
Bertsekas et al. (1987) also propose an algorithm to solve the max-min fair problem. Radunovic and
Le Boudec (2007) show that a special case of the max-min fairness problem can be solved very fast
by a Water Filling algorithm, and propose a procedure using linear programs iteratively to solve the
general problem. Moreover, Behringer (1981) details the use of a simplex based method to solve the
lexicographically extended maximin problem. In these two last papers, there is no mention of the use
of dual variables. However, some other research works explicitly consider duality. In his book, Luss
(2012) considers dual variables to detect saturated constraints, notably in the case of non separable
objective functions. Nace and Pióro (2008) develop a linear programming procedure to solve max-
min fair routing in communication networks and also mention the use of the min-max fair concept to
lexicographically balance the load in a given network. Finally, Nace and Orlin (2007) introduce what
they call lexicographically minimum load linear programming problems for applications in capacitated
multicommodity networks. They present a linear programming based procedure and give a proof of its
correctness. Thus, although we could not find an algorithm to solve our MMFWB problem, the analogy
between lexicographic minimization and min-max fair problems is strong. This is why we rely on Nace
and Orlin (2007) to state the proposition below.

Proposition 4. The solution provided by the IMM procedure for the MMFWB problem is optimal and is
obtained in polynomial time by solving at most |M | linear programs, where M is the set of machines.

The proof of Proposition 4 follows the proof of correctness in Nace and Orlin (2007), with nevert-
heless a difference for the polynomial time analysis. First, let us underline the analogy between the
approach in Nace and Orlin (2007) and the IMM procedure. First, the linear program (P1) in Nace and
Orlin (2007) can be transformed into problem P(M ,B,γ), by considering that Constraints (1) in (P1)

are Constraints (8) in P(M ,B,γ) and Constraints (2) in (P1) are Constraints (9) and (11) in P(M ,B,γ).
Besides, Step 1 in the algorithm of Nace and Orlin (2007), in which a linear program is solved, corre-
sponds to solving P(M ,B,γ) in Algorithm 1. Then Step 2 in the algorithm of Nace and Orlin (2007),
which aims at finding binding constraints and updating the new linear program, corresponds to the re-
maining steps in Algorithm 1. Finally, the two algorithms end when no inequality constraint remains,
and the resulting load vector γ is min-max fair (leximax minimal in Nace and Orlin (2007)).
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Nace and Orlin (2007) also show that their algorithm is polynomial by relying on two main points:
(1) The linear problem can be solved in polynomial time and (2) At most 2|M |−1 linear problems must
be solved. The first point brings no difficulty as there are numerous methods to solve linear programs in
polynomial time (Cook et al. (1995)).

For the second point, let us go a little further than Nace and Orlin (2007), who guarantee that the
linear program is solved at most |M | times when using a solution method that provides a strictly com-
plementary solution. They cite for example the central trajectory based interior point method of Freund
and Mizuno (2000). To overcome the use of a method that does not guarantee to provide strictly com-
plementary solutions, Nace and Orlin (2007) propose an additional step, leading to the resolution of at
most 2|M |−1 linear programs. However, we claim that, using the IMM, at most |M | linear programs
are solved, regardless of the solution method. To prove it, it is necessary to show that, at each iteration,
at least one dual value is strictly negative. This hypothesis is not obvious with a complementary optimal
solution. as the complementary slackness states that, for a given constraint, "at least" the slack variable
or the dual variable associated is equal to 0. Thus, although a given constraint is binding, the associa-
ted dual variable may be equal to 0, and if all dual variables are equal to zero, then the algorithm may
cycle without changing B. However, the unrestricted primal variable S in Constraints (8) leads to the
associated constraint in the dual problem ∑m∈M \B λm =−1. For more detail, a similar reasoning can be
found in Luss (2012) (Chapter 3, Page 115). Therefore, since λm ≤ 0, ∀m ∈M \B, the dual constraint
implies that λm < 0 for at least one machine m at each iteration. Consequently, there are at most M linear
programs to solve.

5.3. An illustrative example

To conclude this section, let us illustrate the IMM procedure using the example in Section 3.2. Let
us recall that the instance includes 5 machines, each with a capacity cm = 8, and 4 products A, B, C and
D. Moreover, to simplify, all process times are assumed to be identical. Quantities to process for each
product are {qA,qB,qC,qD} = {10,12,4,4}, and all machines cannot process all products. Machines 4
and 5 can only process product D, machines 2 and 3 can only process products B, C and D, while all
products can be processed by machine 1.

• Initialization: B := /0 and γ = {0, . . . ,0}. Thus, let us minimize the maximum workload of all
machines.

• Step 1.1 Solve the linear program P(M , /0,{0, . . . ,0}). The optimal objective function value S∗ =
10/8 = 1.25 with solution [qA,1,qB,2,qB,3,qC,3,qD,4,qD,5] = [10,10,2,4,4,0]. Therefore, machines
1 and/or 2 seem to be critical.

• Step 1.2 Analyze the dual values associated to Constraints (8). [λ1, . . . ,λ5] = [−12.5,0,0,0,0].
Therefore, although workload constraints associated to machines 1 and 2 seem to be blocking, the
analysis of the associated dual values shows that only machine 1 is actually critical.

• Step 1.3 Set γ1 = S∗ = 1.25 and B := {1}. The workload of machine 1 is set to 1.25, and machine
1 is no longer considered in the maximum workload minimization.

11



• Step 2.1 Solve the new linear program P(M ,{1},{1.25,0,0,0,0}). The optimal objective function
is S∗ = 8/8 = 1 with solution [qA,1,qB,2,qB,3,qC,3,qD,4,qD,5] = [10,8,4,4,4,0]. Compared to the
previous solution, some quantity of product B was transferred from machine 2 to machine 3, allo-
wing these two machines to balance each other with a common workload of 8/8=1.

• Step 2.2 Analyze the dual values associated to Constraints (8). [λ2, . . . ,λ5] = [−6.25,−6.25,0,0].
Machines 2 and 3 have a strictly negative dual value associated to their workload constraint, which
means that they both are blocking.

• Step 2.3 Set γ1 = γ2 = S∗ = 1 and B := {1,2,3}. The workload of machines 2 and 3 is set to 1,
and machines 2 and 3 are no longer considered in the maximum workload minimization.

• Step 3.1 Solve P(M ,{1,2,3},{1.25,1,1,0,0}). The optimal objective function is S∗ = 2/8 =

0.25 with solution [qA,1,qB,2,qB,3,qC,3,qD,4,qD,5] = [10,8,4,4,2,2]. Machines 4 and 5 can only
process product D, and thus share qD to balance each other, leading to a small workload of 0.25.

• Step 2.2 Analyze the dual values associated to Constraints (8). [λ4,λ5] = [−6.25,−6.25]. Ma-
chines 4 and 5 have a strictly negative dual value associated to their workload constraint, which
means that both machines are blocking.

• Step 2.3 Set γ4 = γ5 = S∗ = 0.25 and B := {1,2,3,4,5} The workload of machines 4 and 5 is set
to 0.25, and machines 4 and 5 are no longer considered in the maximum workload minimization.

• End, as B = M . Return γ = [1.25,1,1,0.25,0.25] with the corresponding quantity allocation
[qA,1,qB,2,qB,3,qC,3,qD,4,qD,5] = [10,8,4,4,2,2]. All machines have a fixed workload.

6. Computational Experiments

The previous sections showed that the characteristics of the min-max fair solutions lead to useful pro-
perties for our problem, and that the IMM procedure provides min-max fair solutions, and thus workload
balancing solutions with the desired properties. In this section, our goal is to experimentally evaluate
the performance of the IMM procedure compared to the initial balancing model using (i) Equation (5)
with α >> γ >> β in fc(.) and (ii) Equation (5) with α >> β >> γ in fc(.). The three approaches are,
respectively, referred as AvgFirst (minimizing total process time prioritized over maximizing minimum
workload), MinFirst (maximizing minimum machine workload prioritized over minimizing total process
time) and IMM. We use a set of 30 real industrial instances taken from the most advanced manufacturing
facility of STMicrolectronics, where the number of machines is about 350 and the number of products
ranges from 4,000 to 8,000.

The performance indicators to compare the initial balancing model and the IMM procedure are dis-
cussed in Section 6.1. The actual comparison is conducted in Section 6.2.

6.1. Performance Indicators

The indicator Nb of Unnecessary Loaded Machines aims at quantifying the ratio of machines for
which the initial model gives a larger workload than the one determined by the IMM procedure. Given
the properties of min-max fair solutions, we know that, if a machine has a larger workload than that of the
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MMF solution, then it should be possible to decrease this workload by only increasing the workload of
the less loaded machines, which is preferable. This indicator helps to evaluate the ratio of unnecessarily
loaded machines prevented by the IMM procedure. Using the example in Figure 1, the solution provided
by the initial model and presented in (a) shows machine 2 as being unnecessarily overloaded. Indeed,
machine 2 has a larger workload than in (b). However, according to the properties of the IMM procedure,
we know that it is possible to reduce the workload of machine 2 (from solution (a) to solution (b)), by
only increasing the workload of less loaded machines, i.e. machine 3 in our case. In this example, we
have one machine out of five that are unnecessarily overloaded, which leads to a ratio of 20%. Note that
machine 3 has a lower workload when using the initial method (solution (a)) than when using the IMM
procedure (solution (b)). However, this does not mean that solution (a) is better, because we know that,
by property of MMFWB solutions (provided by the IMM procedure), it would be possible to increase
the workload of machine 3 to reduce the workload of an already more loaded machine (here machine 2),
which is always preferable.

Then, as shown in previous sections, the IMM procedure determines independent sets of machines
and products. The indicator Nb of Unbalanced Machines aims at analyzing balanced machines in the
IMM solution, and then evaluates the ratio of these machines whose balance was broken. These cases of
broken balance are non desired as they do not provide information on the possible "mutual supply" rela-
tionship between machines. Again, by illustrating with the example in Figure 1, note that the workloads
of machines 2 and 3 are not the same in solution (a) and in solution (b). But we do know, by property of
MMFWB solutions, that if a method provides a solution with a different workload for a machine, then
there are two possible cases: (1) The machine has a larger workload than in the MMFWB solution, i.e it
is possible to transfer some of its workload to a less loaded machine (machine 2 in the example), or (2)
The machine has a lower workload than in the MMFWB solution, i.e. it is possible to add some of the
workload of a more loaded machine (machine 3 in the example). In both cases, these machines are not
well balanced. In the example, there are two unbalanced machines, i.e. a ratio of 40%.

The indicator Average Machine Workload is used to evaluate the impact of the IMM procedure on
the total process time on the machines. Indeed, we observed that, in the initial balancing model, the
second term in the objective function (5) aims at minimizing the total process time. The goal is to avoid
that smoothing the workload between machines (minimizing the maximum workload and maximizing
the minimum workload) impacts too negatively the total process time. Because it does not explicitly
consider the total process time, it is interesting to analyze the impact of the IMM procedure on this
indicator, expressed as the average machine workload.

Finally, since the IMM procedure generally solves several linear programs against only one with the
initial balancing model, it it also interesting to evaluate the impact on computational times. The column
Diff. shows the difference in percentage between the time required using the IMM procedure and the
fastest method between AvgFirst and MinFirst, i.e Diff.= CPUIMM−Min(CPUAvgFirst ,CPUMinFirst)

Min(CPUAvgFirst ,CPUMinFirst)
.

6.2. Comparison with Initial Balancing Models

Each instance was run with our planning tool, and the results are summarized in Tables 1 and 2. The
number of MMFWB problems solved for each instance can be found in the second column of Table 2.
Note that 365 MMFWB problems were solved on average for the 30 instances. For each MMFWB pro-
blem, AvgFirst, MinFirst and the IMM procedure are run and compared using the indicators introduced
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in the previous section. Each balancing problem includes several non-identical parallel machines (8 on
average but varying between 1 and 20 machines depending on the problem) and several dozen different
products.

Table 1: Proportion of non desirable balancing cases with initial model and IMM procedure

Nb of Unnecessary Nb of Unbalanced

Instance Loaded Machines Machines
AvgFirst MinFirst IMM AvgFirst MinFirst IMM

1 12.1% 14.9% 0.0% 16.7% 8.8% 0.0%
2 12.5% 17.3% 0.0% 16.8% 8.6% 0.0%
3 12.8% 15.6% 0.0% 17.5% 7.8% 0.0%
4 11.3% 14.6% 0.0% 15.1% 7.4% 0.0%
5 9.9% 13.1% 0.0% 12.1% 6.2% 0.0%
6 11.2% 13.3% 0.0% 10.8% 5.0% 0.0%
7 10.5% 13.4% 0.0% 14.6% 7.1% 0.0%
8 13.4% 16.1% 0.0% 18.1% 10.6% 0.0%
9 12.5% 16.0% 0.0% 18.0% 8.4% 0.0%
10 13.9% 17.2% 0.0% 14.9% 9.7% 0.0%
11 13.9% 19.6% 0.0% 16.0% 11.5% 0.0%
12 13.2% 19.5% 0.0% 16.4% 11.6% 0.0%
13 12.8% 14.8% 0.0% 14.1% 8.9% 0.0%
14 16.0% 17.9% 0.0% 16.4% 12.1% 0.0%
15 17.5% 18.7% 0.0% 16.5% 12.7% 0.0%
16 16.4% 18.1% 0.0% 15.1% 11.6% 0.0%
17 16.7% 18.5% 0.0% 16.0% 12.0% 0.0%
18 17.2% 19.8% 0.0% 16.8% 11.1% 0.0%
19 17.0% 18.0% 0.0% 14.2% 9.2% 0.0%
20 17.4% 18.1% 0.0% 16.4% 11.3% 0.0%
21 16.8% 19.6% 0.0% 15.3% 8.6% 0.0%
22 17.6% 18.7% 0.0% 14.6% 10.2% 0.0%
23 17.2% 18.1% 0.0% 16.4% 11.5% 0.0%
24 17.9% 19.6% 0.0% 18.1% 12.8% 0.0%
25 17.6% 21.3% 0.0% 17.0% 10.5% 0.0%
26 17.5% 20.0% 0.0% 17.0% 11.0% 0.0%
27 19.5% 21.1% 0.0% 17.4% 11.3% 0.0%
28 17.5% 18.2% 0.0% 17.6% 11.7% 0.0%
29 18.1% 21.4% 0.0% 17.8% 11.4% 0.0%
30 18.7% 20.3% 0.0% 16.8% 9.8% 0.0%

Avg 15.2% 17.8% 0.0% 16.0% 10.0% 0.0%
Max 19.5% 21.4% 0.0% 18.1% 12.8% 0.0%
Min 9.9% 13.1% 0.0% 10.8% 5.0% 0.0%

Several remarks can be made when analyzing Table 1. First, as expected, the columns corresponding
to the IMM procedure only have zeroes. Then, note that there are differences between the solutions
provided with the initial model depending on the criterion that is prioritized. The Nb of Unnecessary
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Loaded Machines is equal to 15.2% on average with AvgFirst while it increases to 17.8% with MinFirst.
This shows that a significant number of machines (55 on average, at least 36 in each instance) has a
workload that could be reduced without impacting the workload of more loaded machines.

Again, an important remark must be made on machines for which the IMM procedure appears to in-
crease the workload compared to the initial balancing model. Indeed, there are some machines for which
the average machine workload determined by the IMM procedure is larger than the average machine
workload determined by the initial model. This type of situations is possible but in theory implies that in
return the IMM procedure is able to reduce the workload of other machines that are already more loaded.
Our industrial computational experiments show that, every time a machine is more loaded in the IMM
solution than in the initial model, then the opposite phenomenon is observed for an already more loaded
machine.

The IMM procedure can thus significantly impact the analysis of the plant capacity, because planners
may have an incorrect view of the workload of dozens of machines. This may lead to inappropriate
decisions.

Let us now consider the second indicator, the Nb of Unbalanced Machines, which corresponds to
the ratio of machines that are balanced with each other in a Min-Max Fair solution but are not in the
solutions provided by the initial model. The results show that on average 16% of machines with AvgFirst
and 10% of machines with MinFirst are not balanced as they should. This type of unbalance is similar
to the one presented in our illustrative example, where machines 2 and 3 are not balanced in solution (a)
of Figure 1 although they could be. These results show that the use of the IMM procedure to replace
the initial balancing model allows the interdependence relationships to be highlighted for a significant
number of machines.

The results on the average machine workload summarized in Table 2 show that AvgFirst, as expected
and because it prioritizes the total process time over the minimum workload, provides solutions with
a lower average machine workload. However, note that the difference remains relatively small with
MinFirst and the IMM procedure. In addition, note that some of the solutions determined by the IMM
procedure are better than the ones of the initial model. Hence, the benefits of the IMM procedure do not
come at the expense of the average machine workload.

Furthermore, despite the large size of the instances and because only continuous variables are used,
the three approaches are running very quickly, with CPU times generally of the order of a few seconds
to solve hundreds of workload balancing problems. A slight increase of the computational time of 3.9%
on average is observed with the IMM procedure. Hence, because it is viable and efficient, the IMM
procedure is used to solve industrial problems of very large sizes.

7. Conclusions and Perspectives

We addressed the problem of optimally balancing the workload of different products on non-identical
parallel machines in manufacturing systems, which occurs in semiconductor manufacturing in particular.
We then recalled the notion of Min-Max Fair solution and showed that, applied to our problem, it can
provide comprehensible and meaningful solutions for planners, especially for machine capacity mana-
gement. The Iterated Min-Max (IMM) procedure is proposed and, based on the work of Nace and Orlin
(2007), is proved to determine optimal solutions for our Min-Max Fair Workload Balancing Problem.
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Table 2: Average machine workload and total computational time with initial model and IMM procedure

Nb of

Instance MMFWB Average Machine Workload Total CPU Time (ms)
Problems AvgFirst MinFirst IMM AvgFirst MinFirst IMM Diff.

1 386 0.391 0.398 0.397 130 120 130 8%
2 384 0.418 0.419 0.418 130 130 130 0%
3 384 0.318 0.320 0.320 120 130 120 0%
4 380 0.302 0.303 0.303 130 120 130 8%
5 379 0.346 0.344 0.344 130 130 120 -8%
6 379 0.207 0.206 0.206 150 110 120 9%
7 380 0.306 0.310 0.309 120 120 140 17%
8 378 0.314 0.321 0.321 120 110 110 0%
9 376 0.332 0.340 0.339 120 120 110 -8%

10 375 0.329 0.333 0.330 120 120 120 0%
11 372 0.262 0.267 0.265 120 110 110 0%
12 375 0.263 0.266 0.264 130 110 120 9%
13 376 0.300 0.303 0.302 120 120 120 0%
14 368 0.231 0.234 0.237 370 370 380 3%
15 335 0.251 0.254 0.258 380 390 390 3%
16 349 0.239 0.243 0.247 370 370 380 3%
17 369 0.308 0.312 0.317 380 380 420 11%
18 365 0.246 0.247 0.251 370 370 380 3%
19 382 0.250 0.250 0.251 380 400 450 18%
20 368 0.278 0.283 0.286 370 370 370 0%
21 339 0.215 0.217 0.219 120 110 120 9%
22 345 0.252 0.253 0.255 370 400 390 5%
23 365 0.264 0.263 0.265 430 450 420 -2%
24 378 0.298 0.299 0.301 420 510 430 2%
25 344 0.249 0.253 0.256 430 410 430 5%
26 345 0.278 0.282 0.285 400 450 430 8%
27 348 0.296 0.300 0.303 430 470 450 5%
28 345 0.329 0.336 0.340 430 460 440 2%
29 354 0.324 0.332 0.335 440 440 450 2%
30 339 0.246 0.248 0.250 420 430 440 5%

Avg 365 0.288 0.291 0.293 271.6 277.6 278.3 3.9%
Min 335 0.207 0.206 0.206 120 110 110 -8.3%
Max 384 0.418 0.419 0.418 440 510 450 18.4%
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The procedure has been implemented in a Decision Support System for operational production plan-
ning in an advanced wafer semiconductor manufacturing facility. The IMM procedure is ran hundreds
of times for each calculation of the production plan. Relevant information on the planned workload of
each machine is provided to the users. Moreover, the IMM procedure determines groups of "connected"
machines and products that are used in other applications.

Our future research is focusing on solving the workload balancing problem on two periods, by allo-
wing some product quantities to be assigned to either one of the two periods. Also, for some applications,
although a unique solution is determined by the IMM procedure for the workload per machine, there are
usually many ways to balance the quantity of a given product between machines. Hence, for operational
decisions, we are working on algorithms to propose various product dispatching from a single workload
balancing solution. This might require to study how to consider other criteria in the IMM procedure.
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AppendixA. Proof of the existence and uniqueness of min-max fair workload balancing solution

Let us recall the property based on Bertsekas et al. (1987) and Radunovic and Le Boudec (2007).

Proposition 5. Since any subset of RN is convex and compact, then there exists a min-max fair vector
and it is unique.

The idea is to prove that, for any instance of the MMFWB problem, the set of possible allocations
χ ⊂ RM, for which the vector γ corresponds to the workloads of the machines for a given feasible
workload balancing solution, is always compact and convex. However, this property is not obvious in
our case, and we first have to define the set of feasible workload balancing solutions ψ of Problem (P).

A solution is defined by a vector:

X ∈ R+(P×M) = {. . . ,Xp,m, . . .}

which summarizes the product quantities assigned to the machines. Let us then define the set of feasible
solutions ψ ⊂ R+(P×M), i.e. the set of solutions that satisfy the product quantity balance and qualification
constraints:

ψ = { X ∈ R+(P×M)

s.t. ∀p ∈P, ∑
m∈Mp

Xp,m = qp ∧ ∀p ∈P,∀m /∈Mp,Xp,m = 0} (A.1)

As it does not use strict inequality relations and because the intersection of closed sets is closed, it
is possible to state that the set ψ is closed. Since inf(ψ) = 0 and sup(ψ) = maxp∈P qp, the set ψ is
also bounded. Based on the Borel-Lebesgue theorem, in a RN topology, all closed and bounded sets are
also compact. Therefore ψ is compact. Besides, ψ is convex. Indeed, if (x,y) ∈ ψ2 then, for any vector
z = λx+(1−λ )y with λ ∈ [0,1], is also in ψ .
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Let us then define the application φ , that takes as input a vector of product quantities and gives the
load vector γ that includes the workloads of all machines:

φ : ψ ⊂ R+(P×M) → φ(ψ)⊂ R+M

X = {. . . ,Xp,m, . . .} 7→ γ = {. . . ,∑p∈P; m∈Mp

ap,m
cm

Xp,m, . . .}

The application φ is linear since, ∀(λ ,µ) ∈ R2 and ∀(x,y) ∈ χ , φ(λx+µy) = λφ(x)+µφ(y). The
set χ is defined as follows: χ = φ(ψ). Since ψ is convex and φ is linear, χ is also convex. Also, R+(P×M)

and R+M are finite dimension spaces, and thus the linear application φ preserves compacity. Since ψ is
compact, then χ is also compact.

It is thus possible to conclude that χ is a convex and compact set. Based on Proposition 5, it is
possible to assert that a min-max fair solution exists in the set, and that this solution is unique.
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