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The market behavior nationalized oil companies in the Organization of

Petroleum Exporting Countries (OPEC) is starkly time-varying. I ratio-

nalize OPEC's behavior in an in�nitely repeated game of Cournot competi-

tion with imperfect monitoring, capacity constraints to output, and demand

evolving as a Markov chain. I adapt the methodology of Abreu, Pearce, and

Stacchetti (1990) to derive optimal symmetric equilibria. High-powered in-

centives are created by the threat of output wars, the severity of which

is endogenously determined by current and future expected market condi-

tions. Implied price elasticities of supply increase in magnitude and may

change sign under constrained incentive creation. The key empirical impli-

cation is that unanticipated changes to OPEC's strategic environment will

persistently alter their behavior and create breaks in the joint stochastic

distribution of equilibrium prices and quantities.
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1 Introduction

�OPEC is strong when prices are weak, and weak when prices are strong.�

Sadek Boussena, OPEC conference president, 1989-1990, cited in Bret-Rouzaut
and Favennec (2011)

The market for crude oil is large, volatile and of considerable importance to the
global economy. Understanding the oil price-quantity relationships has therefore
been a subject of long-standing interest in the literature. Among others, a stand
must be taken on the Organization of Petroleum Exporting Countries' (OPEC)
ability to a�ect market outcomes through their output decisions. It is widely
agreed that OPEC members are endowed with considerable market power, strive
actively to increase their pro�ts by coordinating output restraint, and face no legal
constraints on collusion. Yet empirical evidence suggests output constraint has
been only partially successful, with OPEC conduct varying starkly over time. This
has led to calls for richer models of oligopolistic competition that may shed light on
evolving OPEC behavior.1 This paper takes a �rst step in this direction, asking:
How does non-cooperative oligopolists' supply respond optimally to changes in
the market environment?

To shine light on this question I consider a model of quantity competition where
production capacity is �nite, output is imperfectly observed, and the inverse de-
mand function is dynamic, evolving according to a Markov chain. I then study the
properties of optimal symmetric public Markov perfect equilibria. In equilibrium,
the oligopolists' ability to restrain output when cooperating, and the frequency,
intensity, and duration of output wars when not, are jointly and endogenously de-
termined with respect to current- and future expected market conditions. Output
wars optimally feature short periods of elevated supply and signi�cantly depressed
prices. The output wars' frequency and duration is increasing, and intensity de-
creasing, in the residual demand for the oligopolists' product. Under cooperative
periods an increase in demand will a�ect both the one-shot deviation pay-o� and
the (probabilistic) cost of initiating an output war. The net change in incen-
tive power depends on the prevailing monitoring quality and the expected future
pro�tability. The incentive power of punishments wilts under contemporaneous
demand pressure when information is poor or if there are expectations of dimin-
ishing future pro�ts. A second-order e�ect of falling cartel discipline is a further
reduction in the power of incentives. This �unraveling� of incentive power gener-
ates concave and even non-monotonic price-quantity relationships in cooperative
periods, with price elasticities of supply diverging locally to positive or negative

1For example, concluding their review of OPEC's output policies and past modeling e�orts,
Fattouh and Mahadeva (2013) write that �[the] evolution of OPEC behavior indicates that
OPEC's conduct is not constant. [...] This also explains the failure of empirical studies to reach
more concrete conclusions: Although some [models] may �t the data quite well in speci�c time
periods, they fail miserably in [others]. Hence, this review emphasizes the importance of relying
on dynamic models that allow for changes in OPEC behavior.� See also the concluding remarks
in Gri�n (1985).
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in�nity.

The main insight is that optimal oligopolistic output is generally not observation-
ally equivalent with competitive behavior when incentives for output restraint
are dynamically constrained. The magnitude and sign of the supply elasticity
then depends sensitively and non-linearly on monitoring technology and the ex-
pected evolution of future demand. Unanticipated changes to OPEC's strategic
environment may yield persistent and substantial shifts in their behavior.

The implication for applied work is that historical price-quantity relationships
under strategic competition, time-averaged over long samples, are an uninforma-
tive summary statistic of current and future behavior. Indeed, existing empirical
estimates of aggregate supply elasticities are contentious and sensitive to choices
of sample period, model speci�cation, and identifying assumptions.2 My analysis
suggests that exploiting the state-contingent properties of OPEC's output choices
will improve inference and our understanding of the crude oil market.

The paper relates to three strands of literature. First and foremost I join in
a long-standing e�ort to apply models of imperfect competition to shed light
on OPEC behavior. A closely related work is Rauscher (1992), who analyzes
OPEC's supply when cartel discipline is exogenously assumed proportional to
underlying demand. Other notable contributions are Salant (1976), Hnyilicza and
Pindyck (1976), Greene (1991), Huppmann (2013), Nakov and Nuño (2013), and
Behar and Ritz (2017). The common theme in this work is that a representative
OPEC producer competes inter-temporally with a non-OPEC fringe. The non-
cooperative aspects of OPEC members' interaction is not modeled and variation
in cartel discipline is absent or exogenously imposed. In contrast, my focus here
is on how output discipline is endogenously determined by underlying conditions.

Second, the analysis informs a long-running debate on the identi�cation of supply-
and demand shocks in the oil market, see Kilian (2009), Kilian and Murphy (2014),
Aastveit, Bjørnland, and Thorsrud (2015), with more recent contributions by Cal-
dara, Cavallo, and Iacoviello (2019), Fueki et al. (2018), Baumeister and Hamil-
ton (2019a). My analysis implies that under oligopolistic competition in a rich
strategic environment, structural relationships will not be identi�ed under the
assumption of �xed supply elasticities.

Third, this paper relates to an expansive literature on the determinants of collu-
sion, see Green and Porter (1984) on monitoring quality, Brock and Scheinkman
(1985), Fabra (2006) on capacity constraints, Rotemberg and Saloner (1986),
Haltiwanger and Harrington Jr (1991), Wilson and Reynolds (2005) on the e�ect
of transitory demand shocks on �rm behavior, and Abreu, Pearce, and Stacchetti
(1990) on optimal equilibria under imperfect monitoring. I contribute to this
literature not by originally recognizing the signi�cance of these individual com-
ponents, but by combining them in a common framework with a rich action set.
The model I consider is quite generalizable, so the insights from this paper may
therefore be of broader interest.

2See Kilian and Murphy (2014), Baumeister and Hamilton (2019a), Kilian and Zhou (2019),
Baumeister and Hamilton (2019b), and Kilian (2019).

2



I proceed as follows. Section 2 considers the stylized facts of OPEC's time-varying
behavior. I critically discuss the literatures' existing interpretations to motivate
my analysis. Sections 3 and 4 present model primitives and solution concept,
respectively. The endogenous cartel discipline is analyzed in Section 6. I conclude
with suggestions for further research in Section 7.

2 OPEC's market power and time-varying behav-

ior

A handful of oil companies, mainly but not exclusively the nationalized oil produc-
ers of OPEC member nations, are widely viewed as enjoying considerable market
power.34 There is strong evidence that OPEC's member states have systemati-
cally restrained production, but that the extent of collusion is less than perfect
and that their conduct is temporally unstable.5 For a stylized illustration, con-
sider Figure 1, plotting twelve-month changes in monthly OPEC crude oil output
and log real crude oil prices between January 1985 and October 2019.6 I have
highlighted by shaded bars four signi�cant episodes of oil price drops: 1986, 1997,
2008, and 2014. Measured across the entire 1985-2019 sample, OPEC output and
price developments are linearly uncorrelated. However, this masks signi�cant and
sign-varying correlation in sub-samples. Between 2002 and 2014, OPEC's out-

3OPEC members' produce at lower cost, higher capacity, and greater �exibility relative to
their competitors, and thus may unilaterally a�ect equilibrium prices. Al-Qahtani, Balistreri,
and Dahl (2008) comprehensively review the evidence of cartel behavior accumulated up to 2008.
Among others, empirical studies that reject both the price-taking and price-setting hypotheses of
OPEC behavior in favor of a dominant �rm, competitive fringe set-up are Alhajji and Huettner
(2000), Spilimbergo (2001), Hansen and Lindholt (2008), and Golombek, Irarrazabal, and Ma
(2018). See also Huppmann and Holz (2015).

4For the purposes of this paper, the identity of oligopolistic �rms is held �xed. The question of
which companies join oligopolistic agreements may be an avenue of future research. For example
Rosneft, a nationalized Russian oil producer, is a plausible non-OPEC candidate for a dominant
player. It has been reported that Russia coordinated output cuts with OPEC following the 2014
price fall, leading to the so-called �OPEC+� format, e.g. Astakhova, Olga and El Gamal, Rania:
Russia, Saudi Arabia agree OPEC+ format should be extended, accessed August 21 2018 from
www.reuters.com.

5Various econometric techniques have been applied to explicitly estimate the time-variation in
supply behavior. These include regression switching models, unit-root econometrics, structural
estimation of dynamic Stackelberg competition with non-OPEC �rms, and sample splitting,
see Almoguera, Douglas, and Herrera (2011), Barros, Gil-Alana, and Payne (2011), Kolodzeij
and Kaufmann (2014), Huppmann and Holz, 2012, Ratti and Vespignani (2015) respectively.
See in particular Baumeister and Peersman (2013) who estimates a time-varying parameter
vector- autoregressive model aggregating OPEC and non-OPEC output, but explicitly attributes
variation in estimated supply behavior to changes in OPEC's ability to cooperate. See also the
discussion Dees et al. (2007). All the aforementioned contributions �nd strong evidence of
persistent time-variation in OPEC behavior. Finally Dvir and Rogo� (2009) and Dvir and
Rogo� (2014) consider long-run variation in market power, studying samples that predate the
formation of OPEC.

6Monthly data on crude oil production is from the International Energy Agency's Monthly
Oil Data Service. To construct a real oil price series I have de�ated the U.S. crude coil composite
acquisition cost by re�ners from the Energy Information Agency with the average all-item CPI
from the Federal Reserve Bank of St. Louis data service.
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put and price changes are strongly and positively correlated. Particularly, during
the price collapse accompanying the 2008 global �nancial crisis, OPEC rapidly
restricted, and only gradually increased, output. Contrast this to their actions
during the 1986, 1997 and 2014 episodes, where OPEC production sharply in-
creases in the face of collapsing prices. The correlation here is sharply negative.
Why does OPEC's behavior varies so readily over time? To what end is OPEC ap-
parently �ooding the market, as suggested by the sometimes negative correlation
during steep price drops?

Two interpretations of OPEC's capricious behavior have predominated in the lit-
erature. One conceives OPEC, or a subset of OPEC members, as a representative
actor engaged in intertemporal competition à la Stackelberg vs. a price-taking,
non-OPEC fringe. The relatively higher volatility in OPEC's behavior is exoge-
nously imposed.7. This paper complements those analyses by providing a micro-
foundation for endogenously determining OPEC's excess output volatility. The
second views OPEC as a failed cartel, unable to cooperate since 1986 and behaving
as e�ective price-takers.8 I brie�y review the evidence upholding this view and ar-
gue that there are no theoretical grounds to support rejecting the (long-standing)
hypothesis that OPEC is a relevant force crude oil market outcomes.

The failed-cartel hypothesis views the exertion of market power as a temporary
departure from a competitive equilibrium. The existence of OPEC is largely irrele-
vant, and there is no need to distinguish between an OPEC-led output cut and, for
example, production disruptions due to a hurricane o� the U.S. Gulf coast.9 This
view is based chie�y on an interpretation of the evidence Almoguera, Douglas, and
Herrera (2011), who study the extent of time-varying cartel discipline in OPEC
output. Their analysis presents evidence that following a largely cooperative pe-
riod between 1974 and 1986, aggregate OPEC output became non-cooperative
until 2004, the end of their sample. Baumeister and Kilian (2016, p. 145) write
that �[the 1974-1986 period] is the �rst time in its history (and the only time) that
OPEC took a proactive role in trying to in�uence the price of oil [...]�, claiming
that the post-1986 non-cooperative period has been absorbing. The notion that
cooperation among nationalized oil companies permanently collapsed after 1986
is not consistent with record-high (> 100%) compliance in recent output cuts.10

Moreover, Baumeister and Kilian claim that the inability to cooperate is predicted
by theory, writing that �[...] OPEC agreements to jointly restrict oil production in
an e�ort to prop up the price of oil proved ine�ective, with many OPEC members
cheating on OPEC agreements, as predicted by the economic theory of cartels (for

7See the analyses in Greene (1991), Nakov and Nuño (2013), and Bornstein, Krusell, and
Rebelo (2019).

8See Kilian (2009), Baumeister and Peersman (2013), Kilian and Murphy (2014), and
Baumeister and Kilian (2016).

9The structural vector autoregression models in this tradition aggregate OPEC and non-
OPEC output into a representative, global producer. For instance Kilian and Murphy (2014)
describe oil supply shocks in their model as incorporating �supply disruptions associated with
exogenous political events in oil-producing countries as well as unexpected politically motivated
supply decisions by OPEC members and other �ow supply shocks.�

10See for instance Wing�eld, Brian et al : OPEC's allies unite on oil cuts, accessed September
12 2019 from www.bloomberg.com.
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(a) 1985 - 2001

(b) 2001 - 2019

Figure 1: Log real oil prices, September 2019 US dollars per barrel. OPEC crude
oil output, millions of barrels per day. Twelve-month change. January 1985 -
September 2019. Highlighted historical episodes: 1986 and 1997 output wars,
global �nancial crisis of 2008, and 2014- price fall. Source: International Energy
Agency Monthly Oil Data Statistics, Energy Information Agency, Federal Reserve
Bank of St. Louis

5



example, Green and Porter, 1984) [...].� This view is at odds with the standard
interpretation of public equilibria in games of imperfect monitoring. By de�ni-
tion, there is no cheating in equilibrium. Interpreting equilibrium-path output
wars, Green and Porter (1984, 88�89, my italics) write that �[we show] collusive
conduct may [...] result in a pattern of industry performance marked by recurrent
episodes in which price and pro�t levels sharply decrease. Thus we reject the re-
ceived view that performance of this type necessarily indicates an industry where
�rms are engaging in a sequence of abortive attempts to form a cartel.� On the
contrary, they continue, in the presence of imperfect monitoring �[...] we point
out [... the] necessary appearance of [equilibrium path output wars] if collusion
is to take place.� Acknowledging that imperfect monitoring does not predict a
necessary collapse of cooperation raises the question of what behavior is, in fact,
implied. To make progress a stand must be taken on the relevant properties of
OPEC's environment.

Industry experts and economic historians have argued that the steep price de-
clines in 1986 and 1997 were explicitly due to intentional market �ooding by
leading OPEC members, punishing peers for quota violations.11 The incidence of
such punishments, or output wars, has directed attention to imperfect monitoring
models as a salient framework to study OPEC behavior. The intuition is that
OPEC agreements which successfully restrict total production create an incentive
for individual producers to cheat. But since OPEC members do not perfectly
observe each others' actions, they cannot know with certainty whether an unex-
pected, adverse price development resulted from out-of-equilibrium play or not.
Incentive compatibility is maintained by equilibrium path punishments.12 It has
been argued that this framework captures salient properties of OPEC's strategic
environment.13

I add to imperfect monitoring three additional determinants of strategic compe-
tition. First, as the existence and relevance of considerable demand variation is
acknowledged to the point of self-evidence, I specify a dynamic residual demand
environment.14 Non-OPEC output is not explicitly modeled, but may be inter-
preted as subsumed in the dynamic residual demand function. Second, I do not
select an equilibrium arbitrarily but derive optimal symmetric equilibria, adapting

11See the accounts in Noreng (2006), Downey (2008), Yergin (2011), and also Coll (2012).
12This is a general result in the theory of repeated games under imperfect monitoring. See

for instance Mailath and Samuelson (2006, p. 233).
13See the discussions in Barsky and Kilian (2004) Almoguera, Douglas, and Herrera (2011),

and Fattouh and Mahadeva (2013). The idea is that data on crude output is of varying quality
and available after a long lag. The imperfect monitoring of OPEC's output is publicly and
transparently endorsed by the International Energy Agency (IEA), see �OPEC Crude Produc-
tion� in the IEA glossary, accessed October 12 2018 from www.iea.org. The following quotes by
Neil Atkinson, chief analyst at IEA, is illustrating: �OPEC, [accounting] for about one-third of
global oil output, is a �big black hole [in terms of data],� Mr. Atkinson said. Wary of disclosure
that could lead to embarrassments like owning up to cheating on agreed production ceilings,
the OPEC member states have not �produced or published reliably transparent data for [many]
years.� See Reed, Stanley: Satellites Aid the Chase for Better Information on Oil Supplies,
accessed October 12 2018 from www.nytimes.com.

14See for instance the Energy Information Agency: What drives crude oil prices? or the many
econometric analyses of the crude oil market cited above.
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results from Hotelling (1931).15 The restriction to a simple, symmetric, and short-
run framework is motivated by a desire for parsimony. I propose that studies of
producer heterogeneity, cartel entry- and exit, alternative sources of informational
frictions, capacity investment, and asymmetric equilibria are a promising avenue
for future research.

3 Model primitives

Time is discrete, indexed by t over an in�nite horizon. The common discount
factor is δ ∈ (0, 1). Two symmetric, dominant producers compete in homogeneous
output. Player i ∈ {1, 2} produces x̃i = xi + h̃i ≤ xmax from the set X , with X =
{0, ε, 2ε, 3ε, ..., xmax} ⊂ R+ an evenly ε-spaced grid. Quantities xi are observable,
but players may freely sell additional h̃i units unobserved by their competitor at
no further cost. Let x̃ ∈ X 2 be the action pro�le. Production costs are quadratic
c(x) = κx2 with κ > 0. Let ι′ a two-vector of ones so that ι′x̃t is total time-t
output. The inverse demand function is de�ned

p(θ̃, y, x̃) :=
θ̃y

ξ + βι′x̃
(1)

parameterized with y > 0, β > 0 and ξ > 2βxmax.16 In context it is natural to
interpret (1) as representing, in reduced form, the oligopolistic producers' resid-
ual demand, subsuming exogenously given competitive output, market growth,
and other developments. The unobserved random variable θ̃ is log-normally dis-
tributed, ln θ̃ ∼ N (−σ2

θ/2, σ2
θ) with independent realizations over t. The distribu-

tion and density Fθ and fθ are commonly known. The parameterization implies
expectation 1 and variance eσ

2
θ − 1. Prices are then conditionally log-normally

distributed

ln p(y,x) ∼ N(ln y − ln(κ+ βι′x)− σ2
θ/2, σ2

θ) (2)

on R+ with distribution Fp(·|x) and density fp(·|x) and support R+ independent
of actions. The parameter σθ governs a mean-preserving spread of the distribution
and has a natural interpretation as monitoring quality. Taking expectations over
θ̃, the ex-ante inverse-demand function is then

Eθp(θ̃t, y, x̃) := p(y, x̃) :=
y

ξ + βι′x̃
(3)

and is everywhere inelastic, with inverse elasticity

− ∂p(θ̃, y, x)

∂x

x

p
=

βx

ξ + βx
< 1 (4)

15See the discussions in Anderson, Kellogg, and Salant (2018) and Bornstein, Krusell, and
Rebelo (2019).

16The latter restriction ensures that ξ has a monotonic impact on optimal quantities, which
is shown following Equation (7) below.
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tending to a unit-elastic demand only in the limit as x → ∞. The property (4)
may be taken to tractably encode the assumption that no oligopolistic producer
is able to single-handedly push the market into an elastic demand region, thereby
simplifying the exposition. Taking expectations over θ̃ the ex-ante pro�t function
is

πi(y,xt) =
yxi

ξ + βι′x̃
− κx̃2

i (5)

strictly concave with second-order derivative ∂2/∂2x2πi(y, x) = −ξyβ/(ξ+βx)2−2κ < 0
everywhere. Fixing demand y, let

xn(y) :=

{
x : xi = arg max

x∈X
πi (y, x, x−i) = x−i ∀ x ∈ x

}
(6)

be the action pro�le constituting a symmetric pure strategy, stage-game Nash
equilibrium. Because output is discrete, the existence of (6) is not ensured for
all y ∈ R. I restrict attention to demand levels y where every element in X is a
stage-game Nash equilibrium

Assumption 1. Existence of stage-game Nash equilibrium. Let Y := {y :
xn ∈ X 2}.

which is straightforwardly implemented. Fixing a set of welfare weights α =
(α, 1− α)′, the highest feasible pay-o� is given by

x(y,α) := arg max
x∈X 2

απ1(y,x) + (1− α)π2(y,x) (7)

where, unless otherwise stated, I take α = 0.5, where xm := x(y, 0.5) is the jointly
pro�t-maximizing or monopoly output.

Notice that an increase in ξ has both a level and slope e�ect on the inverse price
elasticity (4). Increasing ξ makes demand less elastic and reduces the change
in elasticity induced by an incremental increase in output. The former (level)
e�ect decreases optimal production (7) while the latter (slope) increases it. The
restriction ξ > 2βxmax ensures that the level e�ect dominates.17 The restricted
demand environment may be interpreted as limiting the oligopolists' power such

17To verify this, suppose for the moment actions are continuous and pro�ts di�erentiable in
output. The �rst-order-condition de�ning (symmetric) monopoly quantities is

xm(y)(ξ + 2βxm(y))2

ξ
=

y

2κ

where ∂x
m(y)/∂ξ < 0 if the left-hand-side is increasing in ξ. Di�erentiating, this demands

∂

∂ξ

xm(y)(ξ + 2βxm(y))2

ξ
> 0⇒ ξ > 2βxm

so restricting ξ > 2βxmax ≥ 2βxm ensures the monotonic relationship everywhere.
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that output restrictions do not push the market into an elastic region and where
there is always an individual incentive to increase output. The demand level
y ∈ y = {y1, y2} ⊂ Y may be low or high with 0 < y1 < y2, and evolves as a
two-state Markov chain with transition matrix M

M =

(
m1 1−m1

1−m2 m2

)
(8)

stationary and irreducible. In the following, state-j values of endogenous variables
are denoted by a j superscript, for example xj. Finally, the stage game proceeds
in the following steps:

1. Demand y ∈ y is given

2. Players choose actions x ∈ X

3. Noise θ̃t, price p(θ̃t, y, x̃), and pro�ts π(θ̃t, y,x) are realized

Players condition their actions on the demand-state y and take expectations over
the idiosyncratic shock θ.

4 Solution concept

I consider symmetric, Markov public perfect equilibria of the repeated game, that
is an equilibrium in strongly symmetric public strategies that condition on the
observable, current-valued demand-state y.18 I refer throughout to the somewhat
more general notation and concepts of Abreu, Pearce, and Stacchetti (1990), here-
after APS, with which I assume the reader is familiar.19 This section aims to
succinctly demonstrate that the solution methods for (one-state) public perfect
equilibria in APS generalize directly to a time-homogeneous Markov demand en-
vironment. That is, by demonstrating that the necessary and su�cient primitive
assumptions for APS are satis�ed, it is not necessary to recreate their entire line of
proof. It is well-known that augmenting a repeated games of imperfect monitoring
with a public correlation device leaves the solution concept essentially unchanged,
see remarks 2.3.3 and 7.1.4 in Mailath and Samuelson (2006). Intuitively, the
generalization to multiple, observable states is equally straightforward because
public equilibria already feature a recursive Markov structure in the signal his-
tory. Thus the discounted, average pay-o�s may be decomposed into a stage-game
pay-o� and a convex combination of continuation values for reward- and punish-
ment phases, with weights given by transition probabilities and discount rates.
The convex combination of continuation values implies that equilibrium pay-o�s
are interdependently vector-valued and jointly determined. The inclusion of mul-
tiple demand states simply requires continuation values to be de�ned through

18See Abreu, Pearce, and Stacchetti (1986) for optimal, symmetric public- and Maskin and
Tirole (2001) on Markov perfect equilibria, respectively.

19For an excellent and comprehensive introductory treatment of repeated games with imper-
fect monitoring I refer the reader to Mailath and Samuelson (2006).
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yet another recursive convex combination. This operation preserves all the nec-
essary properties (measure, convexity, boundedness, monotonicity) demanded of
the functions used in APS to construct optimal public equilibria.

I denote the entire signal space, prices and observable actions, by Ω := X 2 ×R+.
Let a history ht = {p1, · · · , pt−1,x1, · · · ,xt−1} be the set of commonly observed
signals- and actions available at the beginning of stage t. Let h1 = ∅ and Ht

the set of feasible period-t histories. Because the strategies are stationary, relying
only on the current signal, I omit the t subscript. Let σ : H×Y → X a stationary
Markov public strategy, prescribing a set of actions for every t = 1, 2, · · · and
state. I denote the by σj(h) the actions prescribed after history h in state j.

De�nition 1. Equilibrium. A pro�le σ of Markov public strategies that consti-
tute a sequential equilibrium of the repeated game for all t and h ∈ H is a Markov
perfect public equilibrium.

As in the case of a single demand state, every history will yield a well-de�ned
continuation game, so the formulation of sequential rationality is exactly as in
APS. Let S be the set of all Markov PPE. Assumption 1 ensures that a static
Nash equilibrium exists in each demand state, so S is non-empty. Let v(σ) the
pay-o� induced by σ ∈ S and V := {v(σ) : σ :∈ S}, stated in discounted, average
terms. This set is bounded, above by repeated play of xm(yj) and below, through
individual rationality, by a pay-o� of 0. Consider the following property:

De�nition 2. Bang-bang property. A Markov PPE σ such that after any
history h ∈ H the continuation values are extremal, φ : X 2 ×R+ → extV, is said
to be bang-bang.

The following proposition states that the salient results from APS apply to the
Markov generalization.

Proposition 1. Optimal equilibria. The unique, e�cient symmetric public
Markov perfect equilibrium is in bang-bang strategies. It may be computed as the
�xed-point of a set-valued contraction mapping B(V) = V.

The proof is in Appendix A.1. Knowing that a unique, optimal symmetric Markov
public perfect equilibrium exists, I now set out to characterize it in terms of
primitive variables, making possible a numerical implementation of the operator
B.

5 Optimal equilibrium

The optimal, bang-bang strategy may be stated as follows: Begin in the regular
phase, playing xj, where j = {1, 2} denotes the demand state. If a player publicly
defects, xi ∈ Xj ⊂ Xi, or there is an adverse signal realization, pt ∈ P j ⊂ R,
switch to the punishment phase. Play xj, remaining there if xi ∈ Xj ⊂ Xi or
pt ∈ P j ⊂ R. If not, switch to the reward phase. Let τ : H × Y → [0, 1] the

transition probability implied by the trigger regions Xj, Xj, P j, P j. I compactly

10



denote a bang-bang strategy by a collection σbb = {xj,xj, τ j, τ j}2
j=1. Average

pay-o�s under this strategy satisfy the following stationary system

v = (1− δ) · π + δ ·M(τ · v + (ι− τ ) · v)

v = (1− δ) · π + δ ·M(τ · v + (ι− τ ) · v)
(9)

where v, π, τ stack present-valued- and stage-game pay-o�s, transition probabil-
ities by demand states 1, 2 and · denotes element-wise multiplication. Stacking
V = (v,v) and Π = (π,π) the system may be represented as

V = (1− δ)Π + δPV (10)

with equilibrium transition matrix

P :=

(
M · T M · (I − T )
M · T M · (I − T )

)
(11)

de�ned by 2×2 matrices T := (τ , τ ), T := (τ , τ ) and I = (ι, ι). Element pij ∈ P
denotes the probability of transitioning from state i to j, see Figure 2.

v1 v1

v2 v2

p11

p22

p33

p44

p13

p31

p12p21

p14

p41

p24

p42

p23

p32

p34p43

Figure 2: Equilibrium states v, v and transition matrix P .

Notice that equations (9) decompose the pay-o� into current- and future pay-
o�s with weights 1 − δ, δ. In sequential equilibria it is common knowledge that,
following any (zero-probability) defection, continuation play follows the initial
equilibrium. Taking any scalar element from (9), the generic IC constraint is
therefore

(1− δ)π(yj, xi, x
j
−i) + δτ(xi, x

j
−i)[m

j(vj − vj) + (1−mj)(v−j − v−j)]
≤

(1− δ)π(yj,xj) + δτ(xj)[mj(vj − vj) + (1−mj)(v−j − v−j)]
(12)

for all xi ∈ X in regular- and punishment phases, for players i and states j.
Concatenate action pro�les x ∈ X X i := (x, (x1, x2)′), X i := (x, (x1, x2)′) action
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pro�les across states (rows) where column (producers) elements are free in X and
−i plays the corresponding equilibrium action and X := (x1,x2), X := (x1,x2).
Rearranging and stacking terms yields an attractively transparent formulation of
the incentive compatibility constraint, that is for all x ∈ X 2 and i ∈ {1, 2}

∆π(X i) ≤
δ

1− δ
·∆τ (X i) ·M∆v

∆π(X i) ≤
δ

1− δ
·∆τ (X i) ·M∆v

(13)

where ∆π(X i) := π(X i) − π(X), ∆τ (X i) := τ (X i) − τ (X) and ∆v := v −
v. Equation (13) states that in equilibrium, the relative gain to a deviation
may not exceed the expected- and discounted cost of incrementally increasing
the probability of switching to, or remaining in, the punishing state. Incentives
are said to have higher power the greater is ∆v, the value function di�erential,
dynamically linked across states through the transition matrixM . Thus, higher-
powered incentives in any state enforce greater one-shot deviation pay-o�s in all
states. It is useful to solve for ∆v in terms of primitives,

∆v = (I − δ(τ − τ )M )−1(1− δ)(π − π) (14)

which makes transparent that incentives ∆v are increasing in the per-period loss
incurred under punishment and the di�erence ∆τ in probabilities of that loss
being sustained.

∂∆v

∂∆π
= (I − δ∆τM)−1(1− δ) > 0

∂∆v

∂∆τ
= (I − δ∆τM)−1δM(I − δ∆τM)−1 > 0

I now characterize the functions τ . I begin by claiming that the extremal action
pro�les satisfy

0 ≤ ι′xm(yj,α) ≤ ι′xj ≤ ι′xn(yj) ≤ ι′xj (15)

by the following argument. First, any quantity less than xm(yj,α) violates in-
dividual rationality. Second, there are no equilibria with output in both phases
exceeding stage-game equilibrium quantities xn(yj), which would violate incen-
tive compatibility (IC) by construction. Then v ≥ v and the incentive constraints
(13) hold trivially for downwards (upwards) deviations in the regular (punishing)
phase, as the left-hand-side is negative and the right-hand-side non-negative. In
deriving transition probabilities, attention may be restricted to pro�table devia-
tions. Beginning in the punishment phase and �xing an action pro�le, I argue
that the most severe punishment is achieved by

τ ji (x) = (1− 1(ι′x 6= ι′xj))τ j (16)

12



where 1(·) the indicator function and τ j ∈ [0, 1] governs the stochastic length of
the punishment. Note that (16) demands that the action pro�les be in observable
quantities only, so any downward deviation is immediately detected and there is
no information asymmetry. Holding constant the continuation pay-o�s, τ j is set
so

π(yj, xi, x
j
−i)−π(yj,xj) =

δ

1− δ
(τ j − 0)[mj(v

j − vj) + (1−mj)(v
−j − v−j)] (17)

holds with equality for all j. If not, strictly lower pay-o�s exist and the pay-o�
is not extremal. Notice that, by implication, τ = 0 if the punishment is in stage-
game actions xn. Turn to the regular phase, and �x some xj to be enforced. The
optimal transition function τ minimizes wasteful equilibrium transitions (size, τ)
while maintaining incentive compatibility (power, τ ∗ − τ). The trade-o� between
size and power of the players' statistical test is optimized with the following struc-
ture

Proposition 2. Trigger price, information bound. The regular-phase tran-
sition probability is

τ j(x) = 1− Fθ(p/p(yj ,x)) (18)

for both players i and where 0 < pj < exp(−σ2
θ

3/2)p(yj,x) and such that at least
one of the equations in (13) holds with equality for some feasible deviation. In the
case of a public defection τ ji (x) = 0.

which restricts the transition probability to the convex region of Fθ, see Ap-
pendix A.2 for the proof. In deriving the transition probabilities for both regular-
and punishing phases I argued that at least one of the incentive compatibility
constraints must bind with equality,

Corollary 1. Binding constraints. The incentive compatibility constraints in
(13) bind with equality in each state and phase.

a property used repeatedly below. By Proposition 1, the cartel maximizes its
pro�ts by maximizing incentive power. In terms of primitives, the equilibrium
solves

max
{xj ,xj ,τ j ,pj}2j=1

∆v (19)

subject to the constraints (13) evaluated for every x∗ ∈ X 2. The algorithm for
computing the �xed-point operator B is detailed in online Appendix C.
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6 Incentive power, unraveling of cartel discipline

I characterize the endogenous variation in cartel discipline and its implication for
observable behavior. I show �rst that the return to an optimal deviation from
the monopoly action increases convexly in demand y under a weak condition on
ξ and that ∆v is concave in y and reaches a maximum. Thus the left- and right-
hand-sides of the incentive compatibility constraint (13) are respectively convexly
increasing and concave in y. It follows that cartel discipline is decreasing in
demand y as constraints to ∆v are activated, increasing output war frequencies
or local implied price elasticities of supply. I characterize how the concavity of v
is modulated by the monitoring and dynamic demand environment.

Two key observable implications are illustrated through numerically solved equi-
librium values. Firstly, the frequency and duration of output wars increases in
demand. Second, the implied supply elasticities in the cooperative phase vary non-
linearly and may go to positive- or negative in�nity for regions of the parameter
space.

I �x y1, m1, m2 and consider a su�cient condition for monotonic changes to
one-shot deviation values in y2. To begin, suppose δ is such that the incentive
compatibility constraint (13) holds when evaluated for xm the monopoly action
pro�le de�ned in (7). How does an incremental increase in y2 a�ect the relative
value of one-shot deviations and incentive power? Under punishment, the one-
shot-deviation ∆π2 falls in y2 for any quantity. In regular play, the change in
relative value of a one-shot deviation ∆π2 is ambiguous if x∗ is constrained by
output capacity.

Lemma 1. Unconstrained one-shot deviation. As the output increment ε→
0, there exists a �nite ξ∗ such that for all ξ ≥ ξ∗

x∗ := max
x∈X

∆π(x, xm, y)

is interior to X and the relative value of a one-shot deviation ∆π(x, xm, y) is
convexly increasing in demand y.

The proof is in Appendix A.3. Recall from Section 3 that a high value of ξ limited
the oligopolists' power such that the market is constrained to an inelastic region of
the demand curve. If su�ciently constrained, optimal one-shot deviations will be
small enough not to be capacity constrained. This will ensure one-shot deviation
values increasing in demand, which is assumed in the following.20

It is straightforward to verify that the feasible, per-period, relative loss from
incurring a punishment is decreasing when the punishing quantity is capacity
constrained.

20Notice that when quantities are indivisible, there will generally be local, incremental reduc-
tions ∆π due to asynchronous changes in xm(y) and x∗(y).
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(a) Incentive power vs. persistence, low

demand state.

(b) Incentive power vs. persistence, high

demand state.

(c) Incentive power vs. monitoring quality,

low demand.

(d) Incentive power vs. monitoring qual-

ity, high demand.

Figure 3: Incentive power ∆v against the level y2 and persistence m2 of the high
demand state (a,b) and the noise wedge exp(−1.5σ2

θ) (c,d), see Proposition 2. See
Table 1 for a complete list of parameter values.
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Lemma 2. If the capacity constraint binds in the punishing phase, the per-period
loss π(y,xm)− π(y,xmax) is decreasing in y.

The proof is in Appendix A.6. It follows immediately that once demand pressure
is su�cient that the capacity constraint is reached under punishment, severity
is maintained through longer duration, depressing τ and raising ∆τ = τ − τ .
Since ∆τ is bounded ∆v reaches a maximum in y. But the one-shot-deviation
is increasing everywhere in y from the feasible optimum. Thus it follows from
Proposition 2 that τ must eventually fall to maintain incentive compatibility,
diluting ∆v. The resulting total change in ∆τ depends on the trade-o� between
signal power and false positives as governed by σθ. The following propositions
characterize the impact of demand persistence and monitoring quality on incentive
creation.

Proposition 3. Incentive power and demand-state persistence. Suppose
that ∆v2 > ∆v1. Then an increase in the persistence m2 of state 2 increases the
incentive power and cartel discipline in both states, ∂∆v/∂m2 > 0 and vice versa,
∂∆v/∂m1 < 0.

Proposition 4. Incentive power and monitoring quality. Incentives ∆v
are decreasing in σθ.

The proofs are in Appendices A.4 and A.5. The resulting concavity of v is il-
lustrated in Figure 3, which plots equilibrium values of ∆v against the level y2

and persistence m2 of the high demand state and information wedge exp(−1.5σ2
θ),

see Proposition 2. The key observable implication of falling incentive power and
increasing incentives to deviate is the unraveling of cartel discipline in constrained
states. Formally:

Corollary 2. Unraveling of cartel discipline. Suppose that ∆v2 > ∆v1 and
consider a marginal increase signal noise σθ, or a decrease in demand persistence
m2. Then the action pro�le become weakly less extremal with x2 increasing and
x2 decreasing. If quantities remain unchanged, the transition probabilities τ , τ
must increase and decrease, respectively.

I conclude by discussing the unraveling dynamic, illustrating the supply behavior
with three numerically computed equilibrium values. First, Figure 4 plots implicit
�supply curves�, that is, equilibrium prices p(y,x) vs. quantities ι′x. Optimal
equilibrium price-quantity combinations are shown for range of persistence and
monitoring quality parameters with lighter colors indicating more constrained
incentive creation. The limiting competitive (stage-game equilibrium) and pro�t-
maximizing (monopoly) actions are plotted in black. Second, the approximate
elasticities

∂ι′x

∂p(y, ι′x)

p(y, ι′x)

ι′x
=
∂ι′x

ι′x

p(y, ι′x)

∂p(y, ι′x)
≈ ∆ι′x

ι′x

p(y, ι′x)

∆p(y, ι′x)
(20)

shown in Figure 5 provide a unit-free measure of local supply behavior. The
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expected share of time spent in each state is given by the stationary distribution
µ of the transition matrix P , satisfying µ := z : P ′z = z is plotted in Figure 6.

In low-demand states, ample spare production capacity yields unconstrained in-
centive creation. A vanishing share of time is spent in output wars and cooperative
supply behavior is similar across parameterizations. As demand y2 increases the
strategic constraints induce concavity of ∆v in y2 while the return to one-shot de-
viation values ∆π(x∗) from xm increases convexly. Incentive compatibility must
be maintained by increasing ∆τ or x. But output in excess of monopoly pro-
duction xm or raising transition probabilities τ have the second-order e�ect of
reducing v, and by the bang-bang property, increase v. In turn the weakened
incentives will necessitate further reductions in cartel discipline and increases in
punishment frequency and duration. When incentive creation is su�ciently con-
strained the second-order e�ect dominates and local supply elasticities tend to
positive- or negative in�nity.

7 Conclusion

This paper has answered a long-standing call for richer models of imperfect com-
petition that may rationalize OPEC's time-varying behavior. As a �rst step in
this direction I have studied how cartel discipline is endogenously determined in
optimal symmetric equilibria of an imperfect monitoring model with a dynamic
environment and capacity constraints. When demand is low and monitoring qual-
ity is high, strategic competition is less salient and OPEC's behavior may be aptly
summarized by a constant price elasticity. When incentive creation is constrained
the magnitude and sign of local the supply elasticities depend sensitively and
non-linearly on the current- and future expected strategic environment.

Returning to the motivating Figure 1, my theoretical analysis yields derives novel
interpretations and testable implications that may be pursued in future research.
Optimal equilibria imply short, intense, and rare output wars, all continuous
empirical properties that may be tested. The variation in cartel discipline may be
plausibly explained by either coordination on a new, more e�cient equilibrium or
changes in the fundamental, strategic environment. Further research on this topic
is required. Indeed, this paper has only scratched the surface of potential strategic
mechanisms through which OPEC members interact. Producers are assumed
homogeneous, their preferences stable, cartel membership �xed, and monitoring
public. A promising avenue of research may combine historical and empirical
evidence with modern game theory in pursuit of a more re�ned model of crude
oil supply.
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(a) Cooperative (b) Cooperative

(c) Punishment (d) Punishment

Figure 4: Equilibrium prices p(y, ι′x) vs. quantities ι′x for a range of demand,
persistence- and signal noise parameters y2, m2, σθ. The cooperative- and punish-
ment phases are plotted in (a), (b) and (c), (d), respectively. Limiting monopoly-
and stage game equilibria are in black. Lighter colors indicate lower persistence
and monitoring quality. See Table 1, Appendix B for a complete list of parameter
values.
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A Proofs

A.1 Proposition 1. Optimal equilibria

Proof. Proof is by construction. I proceed by �rst verifying that the necessary
restrictions to the stage game apply. Next, I show that generalization to Markov
demand maintains the required recursive structure of the equilibrium.

The �ve key assumptions in Abreu, Pearce, and Stacchetti (1990, p.1045) are
satis�ed by construction. Action spaces are �nite (1). The signal is continuously
distributed with support independent of actions (2, 3). Stage-game pay-o�s are
continuous in the signal (4). Finally, a pure-strategy Nash equilibrium exists in
the stage game (5). I now show that the introduction of Markov demand leaves
unaltered the relevant computational primitives. The key object used in APS to
construct a symmetric equilibrium in one-dimensional pay-o�s is L(Ω;R) the set of
all bounded, Lebesgue-measurable mappings l : Ω→ R from signals into the reals.
Under Markovian demand the continuation values are naturally in R2, one for each
state. But the assumption of a constant transition matrix allows a particularly
simple computation of their (one-dimensional) expected value that preserves a
recursive structure. Let W 1, W 2 bounded subsets of R, W = W 1 ×W 2, and let
Aj(R2;M) denote the family of convex combinations aj : R2×[0, 1]→ R using the
state (row) j transition probabilities in M as weights. For some w ∈ W , then,
aj(w,M ) = mjw

j + (1−mj)w
−j. Consider the family Lc(Ω;M ,R2) of function

compositions l ◦ a : Ω → R. Clearly, the convex combinations a are de�ned for
any non-empty subset of R2. Second, the operation preserves boundedness and
measure, the properties demanded of L(Ω;R) in APS. Thus, Theorems 1 and 2
in APS apply to Lc. Third, Theorem 3 requires that the convex combination a
preserves convexity (and thus compactness), which it does by de�nition. Finally,
Lemma 1 and Theorems 4-5 require that a is rank-preserving, that is aj(w,M ) >
aj(w′,M ) if w > w′, which holds by the monotonicity of aj. Theorem 6 depends
on the compactness of w. The necessity of bang-bang strategies for an optimal
symmetric equilibrium is shown by Theorem 7, see in particular the comment on
pp. 1058.

A.2 Proposition 2. Trigger price, information bound.

τ ji (x) = 1− Fθ(p/p(yj ,x))

for both players i and where 0 < pji < exp(−σ2
θ

3/2)p(yj,x) and such that at least
one of the equations in (13) holds with equality for some feasible deviation in
{xji +ε, x

j
i +h̃ε} for at least one player. In the case of a public defection τ ji (x) = 0.

Proof. In the reward phase a pro�table deviation is upward, which may be up to
max(h̃ε, xmax − xji ) units in hidden quantities. Thus, defections must be inferred
from realizations of conditionally log-normally distributed prices, ln p(θ̃, y, x̃) ∼
N(ln(max(y− βι′x̃, ξ))− σ2

θ/2, σ2
θ), where distribution Fp(·|x) is parameterized by

the action pro�le x. Notice that the players' inference problem is e�ectively a
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goodness of �t test across of �models� ln p(θ̃, y, x̃) with unknown parameters x̃.
The likelihood-ratio test of the hypothesis x̃ > x is then uniformly most powerful
by the Neyman-Pearson lemma, minimizing size, given power. The log-normal
distribution satis�es the monotone likelihood ratio property in total output, that
is

∂

(
fp(ln p|x̂)

fp(ln p|x)

)/
∂p < 0

for ι′x̂ > ι′x, so the likelihood of a deviation is monotonically decreasing in
the realized price level. A tail test of observed prices, pj ≤ p(θ, yj,x) is then
a su�cient statistic for the likelihood ratio. Thus the functional form of the
transition function is Pr(p(θ, yj,x) ≤ pj) = Pr(θ ≤ pj/p(yj ,x)) = Fθ(p

j/p(yj ,x)). To
determine the upper bound p, �x �rst x. Notice that incentives are provided by
the conditional di�erence (power) τ ji (xi, x

j
−i)− τ

j
i (x

j), not the level τ ji (x
j) (false

positive rate). It is never optimal for the trigger price pj to locate Fθ(p
j/p(yj ,x))

in the concave region, as the same power can be achieved for a strictly lower
false positive ratio, increasing pay-o�s while maintaining incentives. The second
derivative F ′′θ changes sign at the mode,

∂2Fθ(z)

∂z∂z
= 0

−fθ
z
− fθ · 2

(
ln(z)√

2
σθ +

σθ√
2 · 2

)
1

z
√

2σθ
= 0

z = exp(−3

2
σ2
θ)

where replacing z with pj/p(yj ,x) in the �nal expression above yields the proposed
bound, restricting Fθ to the e�cient convex region. Finally, and again for �xed
actions x, the trigger pj is optimally set to the lowest level such that all incentive
compatibility constraints hold, minimizing false positives.

A.3 Proposition 1. Unconstrained one-shot deviation.

As the output increment ε→ 0, there exists a ξ∗, �nite, such that x∗ < xmax and
the relative value of a one-shot deviation ∆π∗ is convexly increasing in demand y.

Proof. Let x∗(y) the stage-game best response to xm(y), the jointly symmetric
pro�t-maximizing quantity. Consider the �rst-order conditions for xm(y):

xm(y) =
p(y,xm(y))− 2κxm(y)

−2∂/∂xp(y,xm(y))

⇔

−∂/∂xp(y,xm(y))
xm(y)

p(y,xm(y))
=

βxm(y)

ξ + βxm(y)
= 1− 2κxm(y)

p(y,xm(y))

20



The left-hand-side increases concavely xm(y), to unity. But the marginal cost
increases linearly in output, so the monopoly price must therefore be increasing
convexly relative to marginal cost. I now show that the di�erence x∗(y)− xm(y),
convexly increasing in y, is modulated by ξ. Consider the �rst-order conditions
de�ning xm(y),

xm(y)(ξ + 2βxm(y))2

ξ
=

y

2κ

and x∗(y):

x∗(y)(ξ + βx∗(y) + βxm(y))2

ξ + βxm(y)
=

y

2κ

They may be combined to form

xm(y)(ξ + 2βxm(y))2

ξ
=
x∗(y)(ξ + βx∗(y) + βxm(y))2

ξ + βxm(y)

⇔
xm(y)(ξ + 2βxm(y))2

x∗(y)(ξ + βx∗(y) + βxm(y))2
=

ξ

ξ + βxm(y)

(21)

which states that, for any ξ the right-hand-side is less than unity, so x∗(y) increases
more than one-for-one with xm(y). Hence, x∗(y) − xm(y) increases convexly in
y. Notice �nally that the right-hand-side goes to 1 as ξ → ∞, asymptotically
restraining x∗ towards xm. Since xm < xmax, there exists some ξ∗ such that x∗ <
xmax and the deviation pro�ts are not restrained by the capacity constraint.

A.4 Proposition 3. Incentive power and demand-state per-

sistence.

Suppose that ∆v2 > ∆v1. Then an increase in the persistence m2 (m1) of state 2
(1) increases (decreases) the incentive power and cartel discipline in both states,
∂∆v/∂m2 > 0 and ∂∆v/∂m1 < 0.

Proof. I evaluate the derivative for m2. A symmetric argument applies to m1

simply reverses the sign. Consider δ
1−δ∆τ ·M∆v, the incentive compatibility

constraints' (13) right-hand-side. Ignoring multiplicative constants δ
1−δ∆τ and

di�erentiating with respect to m2 yields a system of equations

∂∆v1

∂m2

=
δ∆τ 1(1−m1)

1− δ∆τ 1m1

∂∆v2

∂m2

(22)

∂∆v2

∂m2

=
δ∆τ 2

1− δ∆τ 2m2

(
∆v2 −∆v1 + (1−m2)

∂∆v1

∂m2

)
(23)
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where the sign of (22) is determined wholly by the sign of (23). Inserting (23) in
(22) and evaluating yields

∂∆v1

∂m2

=
δ∆τ 1(1−m1)

1− δ∆τ 1m1

δ∆τ 2

1− δ∆τ 2m2

(
∆v2 −∆v1 + (1−m2)

∂∆v1

∂m2

)
⇔

∂∆v1

∂m2

=
∆v2 −∆v1

(1− δ∆τ 1m1)(1− δ∆τ 2m2)− δ2∆τ 1∆τ 2(1−m1)(1−m2)
> 0

⇒
∂∆v2

∂m2

> 0

where the �nal inequality holds under the assumption that ∆v2 > ∆v1. By the
argument in Proposition 2, at least one incentive compatibility constraint binds
in equilibrium, for each phase and state. The increase in m2 introduces slack
into these constraints, allowing re-optimization, and thereby pushing regular- and
punishing pay-o�s vj, vj towards (weakly) more extremal values.

A.5 Proposition 4. Incentive power and monitoring quality.

Incentives ∆v are decreasing in σθ.

Proof. Increasing σθ reduces the slope of Fθ(·) so the conditional transition prob-
ability

∂∆τ

∂σθ
=

∂

∂σθ

(
Fθ

(
p

p(yj,x)

)
− Fθ

(
p

p(yj,x∗)

))
< 0

is less sensitive to a given deviation ι′x∗ > ι′x. This claim is easily veri�ed by
evaluating the derivative and rearranging terms

exp

[
ln
(

p

p(yj,x∗)

)
+ 1

2
σ2
θ√

2σθ

]2

exp

[
ln
(

p

p(yj,x)

)
+ 1

2
σ2
θ√

2σθ

]2 < 1 <

(
ln
(

p

p(yj,x)

)
(
√

2σθ)
2 + 1

2
3
2

)
(

ln
(

p

p(yj,x∗)

)
(
√

2σθ)
2 + 1

2
3
2

) (24)

where I use that Fθ(z) = 0.5 + π−1
∫ u

0
exp(−x2)dx for u = 0.5(ln z + 0.5σθ)σ

−2
θ .

By Corollary 1, at least one incentive compatibility constraint binds under regular
play, so the increase in σθ renders the initial equilibrium incentive incompatible
upon impact. In response, quantities x or trigger price p must increase, decreasing
v, in turn increasing v, and thus also ∆v.
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A.6 Lemma 2. Punishment severity.

If the capacity constraint binds in the punishing phase, the per-period loss π(y,xm)−
π(y,xmax) is decreasing in y.

Proof. Notice �rst that the punishment pay-o� π(y,xmax) increases linearly at a
rate xmax/ξ+βι′xmax in y. The marginal growth of monopoly pro�t π(y,xm) in y
is non-decreasing by individual rationality, since by maintaining current output
it increases minimally at the rate xm(y)/ξ+βι′xm(y). Thus, π(y,xm) grows convexly.
But there exists some y′ such that xm(y′) = xmax, with π(y,xmax) approaching
π(y,xm) from below. For the pro�ts to meet, the growth of π(y,xm) must then be
lower than π(y,xmax) for all y < y′, and hence π(y,xm)−π(y,xmax) is decreasing
in y.

B Tables, �gures

Parameter Description Value

X Elements in action set 31

xmax Output capacity 3

κ Marginal cost shifter 1

δ Discount factor 0.9

β Demand parameter 3

ξ Demand parameter 10

σθ Standard deviation, signal noise 0.15

σθ Range of signal noise {0.05, 0.1, · · · , 0.5}
exp(−3/2σ2

θ) Noise wedge 0.97

exp(−3/2σ2
θ) Range of noise wedge {0.99, · · · , 0.69}

y1, y2 Demand level, reference states (5.2, 50.9)

y2 Range of demand levels {5.2, · · · , 209.3}
m1,m2 Persistence, reference states (0.9, 0.9)

m2 Range of persistence parameters {0.1, 0.2, · · · , 1}

Table 1: Parameter values for numerical solutions.
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(b) Signal noise

Figure 5: Heat map plots of approximate price elasticities of supply
∆ι′x(ι′x2)−1p(y2, ι′x2)(∆p(y2, ι′x2))−1 vs demand level y2, persistence m2, and
signal noise σθ.

(a) Low signal noise (b) High signal noise

(c) Low persistence (d) High persistence

Figure 6: Stationary distribution µ := z : P ′z = z of the transition matrix P ,
Equation 11.
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C Algorithm: Not for publication

I implement the algorithm proposed by Abreu, Pearce, and Stacchetti, 1990, Sec-
tion 5. The set of equilibrium pay-o�s V is computed by repeatedly iteratingB on
a set of initial values V∗ satisfying V ⊂ V∗. I describe the initialization procedure,
then give an overview of the main steps in the computation, and �nally detail the
exact zero-�nding algorithm.

C.1 Preliminaries, initialization

Select a tolerance ζ. Fix state variables σθ, (y1, y2) ∈ Y . Let

wj0 := max
x∈X 2

π(yj,x)

wj0 := min
x∈X

π(yj,x)

be initial values, j = {1, 2}. Let the corresponding action pro�les by xj0 and
xj0. Adapting the notation used to de�ne the identities Equations (9) and (9),
compactly denote producer i's continuation value under action pro�le xi

v(xi,x−i, τ ,W t) = (1− δ) · π(xi,x−i)

+

δ · (τ (xi,x−i) ·wt + (ι− τ )(xi,x−i) ·wt)

(25)

v(xi,x−i, τ ,W t) = (1− δ) · π(xi,x−i)

+

δ · (τ (xi,x−i) ·wt + (ι− τ (xi,x−i)) ·wt)

(26)

where exogenous continuation values wj and wj, transition probabilities τ j, τ j

and action pro�les xj and xj are stacked in two-vectors. The set of feasible and
in individually rational deviations are {xj + ε, ..., xmax} and {0, ε, ..., xj− ε} in the
reward- and punishment state respectively.

C.2 Iteration

Index the iterations by t = {0, 1, 2, ...}, with t = 0 denoting the initial values.
Value functions are said to have converged when |wjt −w

j
t−1|≤ ζ and |wjt −w

j
t−1|≤

ζ. Starting from the initialization value j = 0, iterate the following steps until
convergence:

1. Compute candidate transition probabilities. Search, state for every in-
dividually rational x in X 2, for a trigger pj(x) and transition probability τ j

satisfying incentive compatibility for all deviations with equality for at least
one deviation
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v(xi,x−i, τ ,W t) = v(xi,x−i, τ ,W t) (27)

v(xi,x−i, τ ,W t) = v(xi,x−i, τ ,W t) (28)

and

v(x′i,x−i, τ ,W t) ≤ v(xi,x−i, τ ,W t)

v(x′i,x−i, τ ,W t) ≤ v(xi,x−i, τ ,W t)

for all other xi 6= xi. Gather transition probabilities and quantities solving

the equalities in vectors and matrices P
j

t , X
j

t and T j, Xj.

3. Update continuation values. Evaluate continuation values for every com-

bination (xjt ,p
j
t) ∈ {X

j

t ,P
j

t} and (xjt , τ
j
t) ∈ {X

j
t ,T

j
t} and select extremal

continuation values:

wt+1 = max
(xjt ,p

j
t )∈{P

j
t ,X

j
t}
v(xi,x−i, τ ,W t) (29)

wj
t+1 = min

(xjt ,τ
j
t )∈{T j ,Xj}

v(xi,x−i, τ ,W t) (30)

Due to discounting, we have wj
t+1 ≤ w

j
t and w

÷
j+1 ≥ v÷j . Using v+

j+1 and
v÷j+1 as new values, return to Step 1.
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